WO2010084645A1 - Solid acid catalyst having nanotube structure - Google Patents

Solid acid catalyst having nanotube structure Download PDF

Info

Publication number
WO2010084645A1
WO2010084645A1 PCT/JP2009/066478 JP2009066478W WO2010084645A1 WO 2010084645 A1 WO2010084645 A1 WO 2010084645A1 JP 2009066478 W JP2009066478 W JP 2009066478W WO 2010084645 A1 WO2010084645 A1 WO 2010084645A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid catalyst
solid acid
reaction
metal
titanium oxide
Prior art date
Application number
PCT/JP2009/066478
Other languages
French (fr)
Japanese (ja)
Inventor
政明 北野
亨和 原
Original Assignee
財団法人神奈川科学技術アカデミー
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人神奈川科学技術アカデミー, 国立大学法人東京工業大学 filed Critical 財団法人神奈川科学技術アカデミー
Priority to JP2010547397A priority Critical patent/JPWO2010084645A1/en
Publication of WO2010084645A1 publication Critical patent/WO2010084645A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J35/23
    • B01J35/30
    • B01J35/58
    • B01J35/615
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/861Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only halogen as hetero-atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof

Definitions

  • the present invention relates to a novel solid acid catalyst.
  • solid acid catalysts such as silicates, zeolites and various metal oxides have been widely used in various fields such as alkylation reaction of organic compounds and hydrolysis of carbohydrates. Since solid acid catalysts are solid, they have advantages of being more convenient to handle than liquid acid catalysts such as sulfuric acid and being easy to separate from products after use. Yes.
  • fibrous titanium oxide can be obtained by hydrothermally treating titanium oxide powder with a concentrated aqueous alkali solution.
  • Photocatalysts, dye-sensitized solar cells, sensors, catalyst carriers, ion exchange materials Numerous studies have been conducted for the purpose of application. However, there is no example applied as a solid acid catalyst.
  • an object of the present invention is to provide a novel solid acid catalyst having higher catalytic activity than known solid acid catalysts.
  • the present invention relates to a solid acid catalyst comprising a tubular substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution.
  • a solid acid catalyst comprising a tubular substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution.
  • the present invention also provides a solid acid catalyst of a tube-like substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution. Provide use for the manufacture of.
  • the present invention is a method for carrying out a chemical reaction by an acid catalyst, wherein the acid catalyst comprises at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds as a concentrated alkali.
  • the acid catalyst comprises at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds as a concentrated alkali.
  • a method for carrying out a chemical reaction which is a tube-shaped substance obtained by heat treatment in an aqueous solution.
  • the solid acid catalyst of the present invention has a high acid catalyst activity, and the alkylation reaction at room temperature where the reaction hardly proceeded with various known solid acid catalysts.
  • the solid acid catalyst of the present invention was often used as a catalyst.
  • FIG. 2 is a graph showing nitrogen adsorption / desorption isotherms and pore distribution curves of the solid acid catalysts obtained in Examples 1 to 4 of the present invention.
  • FIG. The figure which shows the nitrogen adsorption / desorption isotherm and pore distribution curve of the solid acid catalyst obtained in Comparative Examples 2 and 3.
  • FIG. The figure which shows the relationship between the reaction time when the benzylation reaction of toluene was performed at room temperature using the solid acid catalyst obtained in the Example of this invention, or various well-known solid acid catalysts, and the production amount of benzyltoluene. It is.
  • FIG. 1 The FT-IR spectrum of the titanium oxide (starting material) which adsorb
  • Titanium oxide having adsorbed trimethyl phosphine oxide (TMPO) as a probe molecule shows a 31 P MAS NMR spectrum of titanium oxide nanotubes prepared in (starting material) and Example 1.
  • the solid acid catalyst of the present invention is at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds (hereinafter referred to as “metal oxides” for convenience). Is obtained by heat-treating in a concentrated alkaline aqueous solution.
  • the “metal” is preferably at least one selected from the group consisting of titanium, niobium, tungsten, zirconium, zinc, molybdenum, silicon, aluminum, and tantalum. These metals can be used alone or in combination of a plurality of types. Of these, titanium is most preferred.
  • the solid acid catalyst of the present invention is obtained by using at least one selected from the group consisting of metal organic compounds such as metal oxides, chlorides, sulfates and alkoxides (preferably having 4 to 28 carbon atoms) as a starting material. It is done. Metal organic compounds such as oxides, chlorides, sulfates, and alkoxides can be used alone or in combination. Of the metal organic compounds such as oxides, chlorides, sulfates and alkoxides, oxides are most preferable.
  • an inorganic strong base such as an alkali metal hydroxide, an inorganic weak base such as ammonia, or the like can be used.
  • an inorganic strong base such as an alkali metal hydroxide, an inorganic weak base such as ammonia, or the like.
  • alkali metal hydroxides such as NaOH and KOH are most preferred.
  • “Concentrated alkaline aqueous solution” means that the pH is 12 or more, preferably pH 13 or more, particularly 14 or more.
  • the concentration is usually about 5M to 20M, preferably about 7M to 15M.
  • the temperature during the heat treatment is preferably about 120 ° C to 180 ° C, more preferably about 140 ° C to 160 ° C.
  • the heat treatment temperature is about 200 ° C. or higher, the metal oxide or the like becomes fibrous, but it does not become a tube (that is, a solid fibrous shape without forming a hollow portion extending in the longitudinal direction of the fibrous material). May become a substance).
  • heat treatment can be performed under pressure in an autoclave or the like. If the heat treatment time is too short, the metal oxide or the like will not be in the form of a fiber (thus, naturally, it will not be in a tube shape). On the other hand, there is no advantage of making it longer than necessary and energy is wasted.
  • the amount of metal oxide used in the heat treatment step is preferably about 5% to 10%, more preferably about 6% to 8%, based on the weight of the concentrated alkaline aqueous solution. If the amount of metal oxide used is too small, it will be fibrous, but it may not be tubular. On the other hand, if the amount of metal oxide used is too large, the concentrated alkaline aqueous solution is insufficient and the metal oxide does not become fibrous.
  • the heat treatment temperature and the amount of the metal oxide or the like used in a concentrated alkaline aqueous solution are important.
  • An oxide or the like can be formed into a tube shape.
  • the heat treatment conditions can be optimized by routine experiments using these as parameters.
  • a specific surface area and a total pore volume increase rather than a specific surface area and a total pore volume of the starting raw material before heat processing.
  • the specific surface area and total pore volume of the tube-shaped substance increase by 10% or more with respect to the specific surface area and total pore volume of the starting material before heat treatment in the concentrated alkaline aqueous solution, respectively. It is preferable.
  • the specific surface area is preferably increased by 20% to 50% of the specific surface area of the starting material, and the total pore volume is preferably increased by 15% to 20% of the starting material.
  • the specific surface area and the total pore volume can be measured by a nitrogen gas adsorption / desorption method (constant volume method), which is a conventional method, and can be easily measured by a commercially available automatic measuring device using this method (see below). See example).
  • the fact that the metal oxide or the like has become a tube can be confirmed by increasing the specific surface area and the total pore volume and whether the tube shape can be observed with a transmission electron microscope (see the following examples).
  • the metal oxide or the like after the heat treatment As a solid acid catalyst, it is preferable to remove alkali metal ions by washing with water. Furthermore, after that, it is preferable to perform an acid treatment and proton exchange alkali metal ions contained in the metal oxide or the like after the heat treatment.
  • the metal oxide after the heat treatment contains a large amount of sodium ions, but it is preferable to proton-exchange sodium ions by acid treatment.
  • the acid for the acid treatment is not particularly limited, but nitric acid, sulfuric acid, hydrochloric acid and the like can be preferably used.
  • the acid concentration is preferably such that the pH is 3 or less, more preferably 1.5 or less.
  • the drying may be air drying at room temperature, or may be heat drying in a drying furnace.
  • the temperature in the case of heat drying is 200 ° C. or lower, preferably 120 ° C. or lower.
  • the metal oxide and the like are formed into a tube by the heat treatment.
  • the tube shape is a shape in which the appearance is fibrous and a hollow portion extending in the longitudinal direction is present inside the fiber. Whether it is fibrous or not can be easily determined by observing with a scanning electron microscope (see FIGS. 1A and 1B, which are scanning electron micrographs of the catalyst prepared in the following Examples).
  • FIGS. 1A and 1B which are scanning electron micrographs of the catalyst prepared in the following Examples).
  • FIG. 1C A transmission electron micrograph of the catalyst produced in the following example is shown in FIG. 1C. As shown in FIG. 1C, it can be seen from the transmission electron microscope observation that the fibrous substance is in the form of a tube.
  • the tubular material constituting the solid acid catalyst of the present invention as shown in FIG. 1C has a diameter of usually 5 nm to 20 nm, preferably 7 nm to 10 nm, a length of 100 nm to 3000 nm, preferably 500 nm to 1000 nm,
  • the diameter of the hollow portion is usually 1 nm to 15 nm, preferably 2 nm to 10 nm, and the length / diameter (aspect ratio) is usually about 5 to 600, preferably about 50 to 150.
  • the tube Since the diameter of the tube is nano-order (less than 1 ⁇ m), the tube may be referred to as “nanotube” in the following.
  • nanotube what is fibrous but does not have a hollow portion inside and is solid is sometimes referred to as “nanowire”.
  • the fibrous substance obtained by the above method has activity as an acid catalyst and can be used as it is as a solid acid catalyst.
  • the solid acid catalyst of the present invention can catalyze the same reaction as a known solid acid catalyst.
  • an alkylation reaction of an organic compound including a reaction of adding an alkyl group-containing group
  • a carbohydrate decomposition reaction It can be used for hydrolysis reaction, reaction for synthesizing 5-hydroxymethylfurfural (HMF), reaction for synthesizing biodiesel fuel from vegetable oil and alcohol.
  • the conditions for each reaction may be the same as in the prior art, but the solid acid catalyst of the present invention has a particularly high acid catalyst activity, so the reaction time is shortened or the reaction temperature is lowered as compared with the conventional solid acid catalyst. (See the examples below). Therefore, the reaction conditions when the solid acid catalyst of the present invention is used are desirably determined under industrial conditions that are industrially advantageous through routine experiments for each reaction.
  • the solid acid catalyst of the present invention is present in an amount of about 0.05% to 1%, preferably about 0.1% to 0.5%, based on the weight of the reaction mixture.
  • An alkyl group-containing group can be added to an aromatic compound by reacting at a boiling point of the aromatic compound for about 2 to 10 hours. In the solid acid catalyst of the present invention, the reaction proceeds sufficiently even at room temperature.
  • an alkyl group such as alkene, acetic anhydride, benzoyl chloride, phosgene, or an acyl group-containing group is added to an organic compound such as benzene, anisole, and phenol in addition to toluene. be able to.
  • the decomposition reaction for synthesizing HMF or the like from a saccharide such as glucose for example, water is usually added about 5 to 20 times based on the weight of the saccharide, and the solid acid catalyst of the present invention is added to the saccharide. In general, it is present in an amount of about 0.2 to 5 times, preferably about 0.5 to 2 times, and is usually reacted at a temperature of the boiling point of water to about 130 ° C. for about 2 to 6 hours.
  • a decomposition reaction can be performed.
  • levoglucosan, fructose, formic acid, levulinic acid and the like can be synthesized in addition to HMF from saccharides such as fructose, xylose, mannose, sucrose, cellobiose and maltose.
  • a polysaccharide such as cellulose
  • water is usually added about 1 to 10 times based on the weight of the polysaccharide, and the solid acid catalyst of the present invention is added to the saccharide.
  • the solid acid catalyst of the present invention is added to the saccharide.
  • it is present in an amount of 1 to 5 times, preferably 2 to 3 times, and it is usually decomposed by reacting for about 1 to 24 hours at a temperature of the boiling point of water to about 200 ° C. It can be performed.
  • polysaccharides such as starch can be hydrolyzed in addition to cellulose to produce glucose, fructose, xylose, etc., which are monosaccharides of the constituent units.
  • ethanol is usually about 0.3 to 3 times based on the weight of triglyceride.
  • the solid acid catalyst of the present invention is usually present in an amount of about 1 to 70 times, preferably about 5 to 50 times with respect to the saccharide, and at a temperature of about 50 ° C. to 130 ° C. for 2 hours to Biodiesel fuel can be synthesized by reacting for about 48 hours.
  • a biodiesel fuel such as methyl oleate in addition to ethyl oleate can be synthesized from a vegetable oil such as triglyceride and an alcohol such as methanol in addition to ethanol.
  • ⁇ -tocopherol (vitamin E) in the reaction of synthesizing ⁇ -tocopherol (vitamin E) from trimethylhydroquinone and isophytol, for example, isophytol is usually added about 0.5 to 3 times based on weight with respect to trimethylhydroquinone.
  • the solid acid catalyst is usually present in an amount of about 1 to 10 times, preferably about 2 to 6 times the saccharide, and reacted at a temperature of about 50 to 120 ° C. for about 2 to 48 hours.
  • ⁇ -tocopherol (vitamin E) can be synthesized.
  • ⁇ -tocopherol (vitamin E) was obtained from trimethylhydroquinone and phytol, phytyl halide, phytyl acetate, phytyl methanesulfonate, phytyl ethanesulfonate, phytyl benzenesulfonate, and phytyl toluenesulfonate in addition to isophytol. ) Can be synthesized.
  • FIG. 1A Scanning electron micrographs of the obtained solid acid catalyst are shown in FIG. 1A (Example 1) and FIG. 1B (Example 3). Although the raw material was powder, it turns out that it is fibrous. Furthermore, the transmission electron micrograph of the solid acid catalyst obtained in Example 1 is shown in FIG. 1C. As shown in FIG. 1C, it can be seen that the obtained solid acid catalyst is not only in the form of fibers but also in the form of tubes. The tubular shape is in good agreement with the pore distribution results described below.
  • Comparative Example 1 Production of Titanium Oxide-Derived Nanowire The same operation as in Example 1 was performed except that the temperature of the heat treatment under hydrothermal conditions was 200 ° C. It was observed that the titanium oxide powder produced a fibrous substance with a scanning electron microscope.
  • Example 5 Physicochemical properties of solid acid catalyst (1) X-ray diffraction analysis
  • the solid acid catalyst obtained in Example 1 was subjected to X-ray diffraction (XRD) analysis using Ultima IV manufactured by Rigaku. The results are shown in FIG.
  • XRD X-ray diffraction
  • FIG. 2 An XRD pattern of the titanium oxide powder used as a starting material is also shown.
  • TNW-1 represents the results for the solid acid catalyst of Example 1
  • TiO 2 represents the titanium oxide powder starting material.
  • the starting titanium oxide powder has a 100% anatase structure, but the titanium oxide nanowires cannot be clearly distinguished because the peaks are broad, but around 10, 24, 28, and 48 °. Peaks are observed, H 2 Ti 3 O 7 , H 2 Ti 2 O 4 (OH) 2 , H 2 Ti 4 O 9 ⁇ H 2 O, H x Ti 2-x / 4 ⁇ x / 4 O 4 ( ⁇ Means a defect), and is considered to have a structure of either H 2 O, H 2 Ti 5 O 11 or H 2 O.
  • FIG. 3 shows nitrogen adsorption / desorption isotherms and pore distribution curves of the solid acid catalysts obtained in Examples 1 to 4.
  • the nitrogen adsorption / desorption isotherm and the pore distribution curve were measured using NOVA 4200e manufactured by Quantachrome, which is a commercially available measuring apparatus using a nitrogen gas adsorption / desorption method (constant volume method) which is a conventional method.
  • the specific surface area and pore volume obtained from these measurements are summarized in Table 1 below.
  • the specific surface area of the starting titanium oxide powder is 292 m 2 / g
  • the solid acid catalyst of Example 1 in which the titanium oxide powder (5 g) was treated at 150 ° C. for 20 hours has a specific surface area of 400 m. It was found to increase to 2 / g. Even when the treatment time was increased, no significant change was observed in the specific surface area. Furthermore, it was revealed that the pore distribution curve has pores having a distribution of about 2 nm to 7 nm.
  • Comparative Examples 4 ′ to 6 ′, 8 ′, and 10 ′ ′ show the results when the same commercially available solid acid catalyst as Comparative Examples 4 to 6, 8, and 10 is used. Moreover, it shows about the result at the time of using concentrated sulfuric acid (comparative example 13).
  • the amount of HMF produced was larger than when titanium oxide as a starting material was used.
  • the amount of HMF produced was comparable to that of hydrous niobic acid, which is known to exhibit particularly excellent catalytic activity for this reaction.
  • FIG. 8 shows FT-IR spectra of titanium oxide (starting material) and titanium oxide nanotubes produced in Example 1 on which pyridine was adsorbed as a probe molecule.
  • the peak observed near 1440 cm ⁇ 1 is absorption by pyridine coordinated to the Lewis acid point (Ti 4+ site), and this peak was observed for both titanium oxide and titanium oxide nanotubes.
  • the peak observed near 1540 cm ⁇ 1 is absorption derived from the pyridinium ion formed on the Bronsted acid point, and was observed only for the titanium oxide nanotube.
  • the titanium oxide nanotube had both a Bronsted acid point and a Lewis acid point, and the respective concentrations were 0.08 mmol / g and 0.23 mmol / g.
  • the Friedel-Crafts alkylation reaction is known to proceed efficiently with a Lewis acid, and the Lewis acid point of the titanium oxide nanotube is considered to be an active species for this reaction.
  • the turnover number at this time exceeds 350 in 3 hours. This indicates that this reaction is proceeding catalytically.
  • the reaction hardly progressed with titanium dioxide having only a Lewis acid point, it is considered that the Bronsted acid point of the titanium oxide nanotube also contributes to the activity improvement.
  • the above FT-IR spectroscopic analysis was performed using an IR cell connected to a closed circulation system.
  • a 25 mg mg sample was molded into a 20 mm diameter disk, placed in a cell, and then evacuated at 150 ° C. for 1 hour. Then, after cooling to room temperature, pyridine was introduced as a probe molecule and measured at room temperature.
  • CO as a probe molecule
  • the cell was cooled to near liquid nitrogen temperature, CO was introduced, and the sample was adsorbed on the sample for measurement.
  • FIG. 10 shows 31 P MAS NMR spectra of titanium oxide (starting material) adsorbing trimethylphosphine oxide (TMPO) as a probe molecule and the titanium oxide nanotube produced in Example 1. Indicates. It is known that the acid strength increases as the 31 P peak shifts to the lower magnetic field side. That is, it was found that the strength of Bronsted acid points was higher in titanium oxide nanotubes than in titanium oxide. This acid strength was found to be comparable to that of hydrous niobic acid.
  • TMPO trimethylphosphine oxide
  • the solid acid catalyst of the present invention functions well as an acid catalyst even under room temperature conditions where the reaction hardly proceeds with known solid acid catalysts. Therefore, the solid acid catalyst of the present invention exhibits excellent performance as a solid acid catalyst such as an alkylation reaction of an organic compound and a decomposition reaction of a carbohydrate.

Abstract

Disclosed is a novel solid acid catalyst having a higher catalytic activity than those of conventional solid acid catalysts.  The solid acid catalyst is developed based on a finding that a tube-like titanium oxide substance produced by adding a titanium oxide powder to a concentrated aqueous alkaline solution and heating the resulting mixture under hydrothermal conditions has an excellent acid catalytic activity.  The solid acid catalyst comprises a tube-like substance produced by thermally treating at least one compound selected from a group consisting of an oxide of a metal, a chloride of a metal, a sulfate of a metal and an organometallic compound in a concentrated aqueous alkaline solution.

Description

ナノチューブ構造を有する固体酸触媒Solid acid catalyst with nanotube structure
 本発明は、新規な固体酸触媒に関する。 The present invention relates to a novel solid acid catalyst.
 従来より、有機化合物のアルキル化反応や、炭水化物の加水分解等、種々の分野において、シリケート、ゼオライト、各種金属酸化物等の種々の固体酸触媒が広く用いられている。固体酸触媒は、固体であるが故に、硫酸等の液体の酸触媒に比べて取り扱いが便利であり、使用後における生成物からの分離も容易であるという利点を有するため、盛んに研究されている。 Conventionally, various solid acid catalysts such as silicates, zeolites and various metal oxides have been widely used in various fields such as alkylation reaction of organic compounds and hydrolysis of carbohydrates. Since solid acid catalysts are solid, they have advantages of being more convenient to handle than liquid acid catalysts such as sulfuric acid and being easy to separate from products after use. Yes.
 一方、酸化チタン粉末を濃アルカリ水溶液で水熱処理することによって、繊維状の酸化チタンが得られることは、古くから知られており、光触媒、色素増感太陽電池、センサー、触媒担体、イオン交換材料等への応用を目的として、数多くの研究がなされている。しかし、固体酸触媒として応用された例はない。 On the other hand, it has long been known that fibrous titanium oxide can be obtained by hydrothermally treating titanium oxide powder with a concentrated aqueous alkali solution. Photocatalysts, dye-sensitized solar cells, sensors, catalyst carriers, ion exchange materials Numerous studies have been conducted for the purpose of application. However, there is no example applied as a solid acid catalyst.
特開2000-254512号公報JP 2000-254512 A 特開平10-152323JP-A-10-152323 特開2002-241129JP-A-2002-241129 特開2004-175586JP 2004-175586 A 特開2004-175587JP 2004-175587 A 特開2004-175588JP 2004-175588 A 特開2004-331490JP 2004-331490 A 特開2006-086036JP 2006-086036 A 特開2008-031152JP2008-031152 特開2005-068001JP 2005-068001 A
 従来より、固体酸触媒は種々知られているが、公知の固体酸触媒よりも触媒活性が高く、特に、従来の固体酸触媒では反応がほとんど進まなかったような条件下でも反応を進めることができる固体酸触媒が得られれば有利であることは言うまでもない。 Conventionally, various solid acid catalysts are known, but the catalytic activity is higher than that of known solid acid catalysts. In particular, the reaction can proceed even under conditions where the reaction hardly progressed with conventional solid acid catalysts. It goes without saying that it would be advantageous if a solid acid catalyst was obtained.
 従って、本発明の目的は、公知の固体酸触媒よりも触媒活性が高い新規な固体酸触媒を提供することである。 Therefore, an object of the present invention is to provide a novel solid acid catalyst having higher catalytic activity than known solid acid catalysts.
 本願発明者らは、鋭意研究の結果、酸化チタン粉末を濃アルカリ水溶液中に入れ、水熱条件下で加熱処理することによって得られた繊維状の酸化チタンが優れた酸触媒活性を有することを見出し、本発明を完成した。 As a result of earnest research, the inventors of the present application have found that fibrous titanium oxide obtained by placing titanium oxide powder in a concentrated alkaline aqueous solution and heat-treating under hydrothermal conditions has excellent acid catalytic activity. The headline and the present invention were completed.
 すなわち、本発明は、金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質を含む固体酸触媒を提供する。また、本発明は、金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質の、固体酸触媒の製造のための使用を提供する。さらに、本発明は、酸触媒による化学反応を実施する方法であって、該酸触媒が、金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質である、化学反応の実施方法を提供する。 That is, the present invention relates to a solid acid catalyst comprising a tubular substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution. I will provide a. The present invention also provides a solid acid catalyst of a tube-like substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution. Provide use for the manufacture of. Furthermore, the present invention is a method for carrying out a chemical reaction by an acid catalyst, wherein the acid catalyst comprises at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds as a concentrated alkali. Provided is a method for carrying out a chemical reaction, which is a tube-shaped substance obtained by heat treatment in an aqueous solution.
 本発明により、公知の固体酸触媒よりも触媒活性が高い新規な固体酸触媒を提供された。下記実施例に具体的に記載されるように、本発明の固体酸触媒は、高い酸触媒活性を有し、公知の種々の固体酸触媒で反応がほとんど進まなかった常温下でのアルキル化反応も、本発明の固体酸触媒を触媒に用いることでよく進行した。 According to the present invention, a novel solid acid catalyst having higher catalytic activity than a known solid acid catalyst has been provided. As specifically described in the following examples, the solid acid catalyst of the present invention has a high acid catalyst activity, and the alkylation reaction at room temperature where the reaction hardly proceeded with various known solid acid catalysts. The solid acid catalyst of the present invention was often used as a catalyst.
本発明の実施例1で得られた固体酸触媒の走査電子顕微鏡写真である。It is a scanning electron micrograph of the solid acid catalyst obtained in Example 1 of this invention. 本発明の実施例3で得られた固体酸触媒の走査電子顕微鏡写真である。It is a scanning electron micrograph of the solid acid catalyst obtained in Example 3 of this invention. 下記実施例で作製した触媒の透過電子顕微鏡写真である。It is a transmission electron micrograph of the catalyst produced in the following Example. 本発明の実施例1で得られた固体酸触媒のX線回折パターンを、出発原料の酸化チタンのX線回折パターンと比較して示す図である。It is a figure which compares and shows the X-ray diffraction pattern of the solid acid catalyst obtained in Example 1 of this invention with the X-ray diffraction pattern of the titanium oxide of a starting material. 本発明の実施例1~4で得られた固体酸触媒の窒素吸脱着等温線と細孔分布曲線を示す図である。FIG. 2 is a graph showing nitrogen adsorption / desorption isotherms and pore distribution curves of the solid acid catalysts obtained in Examples 1 to 4 of the present invention. 比較例2、3で得られた固体酸触媒の窒素吸脱着等温線と細孔分布曲線を示す図である。It is a figure which shows the nitrogen adsorption / desorption isotherm and pore distribution curve of the solid acid catalyst obtained in Comparative Examples 2 and 3. 本発明の実施例で得られた固体酸触媒又は種々の公知の固体酸触媒を用いてトルエンのベンジル化反応を100℃で行った際の、反応時間とベンジルトルエンの生成量との関係を示す図である。The relationship between the reaction time and the amount of benzyltoluene produced when the toluene benzylation reaction is carried out at 100 ° C. using the solid acid catalyst obtained in the examples of the present invention or various known solid acid catalysts is shown. FIG. 本発明の実施例で得られた固体酸触媒又は種々の公知の固体酸触媒を用いてトルエンのベンジル化反応を室温で行った際の、反応時間とベンジルトルエンの生成量との関係を示す図である。The figure which shows the relationship between the reaction time when the benzylation reaction of toluene was performed at room temperature using the solid acid catalyst obtained in the Example of this invention, or various well-known solid acid catalysts, and the production amount of benzyltoluene. It is. 本発明の実施例で得られた固体酸触媒又は種々の公知の固体酸触媒を用いてグルコースからヒドロキシメチルフルフラール(HMF)を生成する反応を120℃で3時間行った際のHMFの生成量を示す図である。The amount of HMF produced when the reaction for producing hydroxymethylfurfural (HMF) from glucose was carried out at 120 ° C. for 3 hours using the solid acid catalyst obtained in the examples of the present invention or various known solid acid catalysts. FIG. プローブ分子としてピリジンを吸着させた、酸化チタン(出発原料)及び実施例1で製造した酸化チタンナノチューブのFT-IRスペクトルを示す。The FT-IR spectrum of the titanium oxide (starting material) which adsorb | sucked pyridine as a probe molecule and the titanium oxide nanotube manufactured in Example 1 is shown. プローブ分子としてCOを吸着させた酸化チタン(出発原料)及び実施例1で製造した酸化チタンナノチューブのFT-IRスペクトルを示す。The FT-IR spectrum of the titanium oxide (starting material) which adsorb | sucked CO as a probe molecule and the titanium oxide nanotube manufactured in Example 1 is shown. プローブ分子としてトリメチルフォスフィンオキサイド(TMPO)を吸着させた酸化チタン(出発原料)及び実施例1で製造した酸化チタンナノチューブの31P MAS NMRスペクトルを示す。Titanium oxide having adsorbed trimethyl phosphine oxide (TMPO) as a probe molecule shows a 31 P MAS NMR spectrum of titanium oxide nanotubes prepared in (starting material) and Example 1.
 上記の通り、本発明の固体酸触媒は、金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種(以下、便宜的に「金属酸化物等」と呼ぶことがある)を濃アルカリ水溶液中で熱処理することにより得られる。ここで、「金属」としては、チタン、ニオブ、タングステン、ジルコニウム、亜鉛、モリブデン、ケイ素、アルミニウム、タンタルから成る群より選ばれる少なくとも1種が好ましい。これらの金属は、単独で用いることもできるし、複数種類を組み合わせて用いることもできる。これらのうち、チタンが最も好ましい。 As described above, the solid acid catalyst of the present invention is at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds (hereinafter referred to as “metal oxides” for convenience). Is obtained by heat-treating in a concentrated alkaline aqueous solution. Here, the “metal” is preferably at least one selected from the group consisting of titanium, niobium, tungsten, zirconium, zinc, molybdenum, silicon, aluminum, and tantalum. These metals can be used alone or in combination of a plurality of types. Of these, titanium is most preferred.
 本発明の固体酸触媒は、上記金属の酸化物、塩化物、硫酸化物及びアルコキシド(好ましくは、炭素数4~28)などの金属有機化合物から成る群より選ばれる少なくとも1種を出発原料として得られる。酸化物、塩化物、硫酸化物及びアルコキシドなどの金属有機化合物は、1種類のものを単独で用いることもできるし、複数種類を組み合わせて用いることもできる。また、酸化物、塩化物、硫酸化物及びアルコキシドなどの金属有機化合物のうち、酸化物が最も好ましい。 The solid acid catalyst of the present invention is obtained by using at least one selected from the group consisting of metal organic compounds such as metal oxides, chlorides, sulfates and alkoxides (preferably having 4 to 28 carbon atoms) as a starting material. It is done. Metal organic compounds such as oxides, chlorides, sulfates, and alkoxides can be used alone or in combination. Of the metal organic compounds such as oxides, chlorides, sulfates and alkoxides, oxides are most preferable.
 上記アルカリとしては、アルカリ金属水酸化物のような無機強塩基、アンモニアのような無機弱塩基等を用いることができる。これらは、1種類のものを単独で用いることもできるし、複数種類のものを組み合わせて用いることもできる。これらのうち、NaOHやKOHのようなアルカリ金属水酸化物が最も好ましい。 As the alkali, an inorganic strong base such as an alkali metal hydroxide, an inorganic weak base such as ammonia, or the like can be used. One of these can be used alone, or a plurality of types can be used in combination. Of these, alkali metal hydroxides such as NaOH and KOH are most preferred.
 「濃アルカリ水溶液」は、pHが12以上であることを意味し、好ましくはpH13以上、特に14以上である。例えば、アルカリがアルカリ金属水酸化物の場合、その濃度は、通常、5M~20M程度、好ましくは7M~15M程度である。 “Concentrated alkaline aqueous solution” means that the pH is 12 or more, preferably pH 13 or more, particularly 14 or more. For example, when the alkali is an alkali metal hydroxide, the concentration is usually about 5M to 20M, preferably about 7M to 15M.
 熱処理時の温度は、120℃~180℃程度が好ましく、140℃~160℃程度がさらに好ましい。熱処理温度が約200℃以上になると、金属酸化物等が繊維状にはなるが、チューブ状にはならない(すなわち、繊維状物質の長手方向に延びる中空部が形成されずに中実の繊維状物質になる)場合がある。なお、所望の温度を達成するために、必要であれば、熱処理をオートクレーブ等の中で加圧下で行うことができる。熱処理の時間は、短すぎると金属酸化物等が繊維状にならず(従って当然、チューブ状にならない)、一方、必要以上に長くする利点はなくエネルギーの無駄になるので、熱処理時間は、好ましくは15時間~80時間程度、さらに好ましくは15時間~40時間程度でよい。また、熱処理工程における、金属酸化物等の使用量は、濃アルカリ水溶液の重量に対して好ましくは5%~10%程度、さらに好ましくは6%~8%程度である。金属酸化物等の使用量が少なすぎると繊維状にはなるが、チューブ状にはならない場合がある。一方、金属酸化物等の使用量が多すぎると、濃アルカリ水溶液が不足して金属酸化物等が繊維状にならない。 The temperature during the heat treatment is preferably about 120 ° C to 180 ° C, more preferably about 140 ° C to 160 ° C. When the heat treatment temperature is about 200 ° C. or higher, the metal oxide or the like becomes fibrous, but it does not become a tube (that is, a solid fibrous shape without forming a hollow portion extending in the longitudinal direction of the fibrous material). May become a substance). In order to achieve a desired temperature, if necessary, heat treatment can be performed under pressure in an autoclave or the like. If the heat treatment time is too short, the metal oxide or the like will not be in the form of a fiber (thus, naturally, it will not be in a tube shape). On the other hand, there is no advantage of making it longer than necessary and energy is wasted. May be about 15 to 80 hours, more preferably about 15 to 40 hours. The amount of metal oxide used in the heat treatment step is preferably about 5% to 10%, more preferably about 6% to 8%, based on the weight of the concentrated alkaline aqueous solution. If the amount of metal oxide used is too small, it will be fibrous, but it may not be tubular. On the other hand, if the amount of metal oxide used is too large, the concentrated alkaline aqueous solution is insufficient and the metal oxide does not become fibrous.
 このように、金属酸化物等をチューブ状にするためには、熱処理温度、及び金属酸化物等の濃アルカリ水溶液に対する使用量が重要であり、これらを上記した好ましい範囲内に設定することにより金属酸化物等をチューブ状にすることができる。もし、必要があれば、これらをパラメーターとするルーチンな実験により熱処理条件を最適化することもできる。なお、金属酸化物等がチューブ状になった場合には、比表面積及び合計細孔容積が、熱処理前の出発原料の比表面積及び合計細孔容積よりも増大する。触媒活性の観点から、チューブ状の物質の比表面積及び合計細孔容積が、前記濃アルカリ水溶液中で熱処理する前の出発原料の比表面積及び合計細孔容積に対して、それぞれ10%以上増大することが好ましい。比表面積は、出発原料の比表面積の20%~50%増しが好ましく、合計細孔容積は、出発原料の15%~20%増しが好ましい。比表面積及び合計細孔容積は、常法である窒素ガス吸脱着法(定容法)により測定可能であり、この方法を利用した市販の自動測定装置により容易に測定することができる(下記実施例参照)。金属酸化物等がチューブ状になったことは、比表面積及び合計細孔容積の増大並びに透過電子顕微鏡でチューブ状の形状が観察できるかどうか(下記実施例参照)により確認することができる。 Thus, in order to make a metal oxide or the like into a tube shape, the heat treatment temperature and the amount of the metal oxide or the like used in a concentrated alkaline aqueous solution are important. An oxide or the like can be formed into a tube shape. If necessary, the heat treatment conditions can be optimized by routine experiments using these as parameters. In addition, when a metal oxide etc. become a tube shape, a specific surface area and a total pore volume increase rather than a specific surface area and a total pore volume of the starting raw material before heat processing. From the viewpoint of catalytic activity, the specific surface area and total pore volume of the tube-shaped substance increase by 10% or more with respect to the specific surface area and total pore volume of the starting material before heat treatment in the concentrated alkaline aqueous solution, respectively. It is preferable. The specific surface area is preferably increased by 20% to 50% of the specific surface area of the starting material, and the total pore volume is preferably increased by 15% to 20% of the starting material. The specific surface area and the total pore volume can be measured by a nitrogen gas adsorption / desorption method (constant volume method), which is a conventional method, and can be easily measured by a commercially available automatic measuring device using this method (see below). See example). The fact that the metal oxide or the like has become a tube can be confirmed by increasing the specific surface area and the total pore volume and whether the tube shape can be observed with a transmission electron microscope (see the following examples).
 上記の熱処理後の上記金属酸化物等を、固体酸触媒として用いるためには、水洗してアルカリ金属イオンを除去することが好ましい。さらに、その後、酸処理を行い、上記熱処理後の上記金属酸化物等に含まれるアルカリ金属イオンをプロトン交換することが好ましい。例えば、アルカリとして、水酸化ナトリウムを用いた場合、上記熱処理後の上記金属酸化物等には、ナトリウムイオンが多く含まれるが、酸処理により、ナトリウムイオンをプロトン交換することが好ましい。酸処理の酸としては、特に限定されないが、硝酸、硫酸、塩酸等を好ましく用いることができる。また、酸の濃度は、pHが3以下、さらに好ましくはpHが1.5以下となる濃度であることが好ましい。 In order to use the metal oxide or the like after the heat treatment as a solid acid catalyst, it is preferable to remove alkali metal ions by washing with water. Furthermore, after that, it is preferable to perform an acid treatment and proton exchange alkali metal ions contained in the metal oxide or the like after the heat treatment. For example, when sodium hydroxide is used as the alkali, the metal oxide after the heat treatment contains a large amount of sodium ions, but it is preferable to proton-exchange sodium ions by acid treatment. The acid for the acid treatment is not particularly limited, but nitric acid, sulfuric acid, hydrochloric acid and the like can be preferably used. The acid concentration is preferably such that the pH is 3 or less, more preferably 1.5 or less.
 酸処理後は、水洗し、乾燥することが好ましい。乾燥は、室温での風乾でもよいが、乾燥炉中で加熱乾燥してもよい。加熱乾燥の場合の温度は、200℃以下、好ましくは120℃以下である。 After the acid treatment, it is preferable to wash with water and dry. The drying may be air drying at room temperature, or may be heat drying in a drying furnace. The temperature in the case of heat drying is 200 ° C. or lower, preferably 120 ° C. or lower.
 上記熱処理により、金属酸化物等は、チューブ状になる。チューブ状は、外観が繊維状で、繊維の内部に、長手方向に延びる中空部が存在する形状である。繊維状か否かは、走査電子顕微鏡で観察することにより容易に判別することができる(下記実施例で作製した触媒の走査電子顕微鏡写真である図1A及び図1Bを参照)。下記実施例で作製した触媒の透過電子顕微鏡写真を図1Cに示す。図1Cに示されるように、透過電子顕微鏡観察によれば、繊維状物質がチューブ状になっていることがわかる。なお、チューブ状になっている場合には、上記のとおり、比表面積及び合計細孔容積が出発原料よりも増大するので、このこともチューブ状になったことの確認に利用することができる。図1Cに示されるような、本発明の固体酸触媒を構成するチューブ状物質は、直径が通常、5nm~20nm、好ましくは、7nm~10nm、長さが100nm~3000nm、好ましくは500nm~1000nm、中空部の直径が通常、1nm~15nm、好ましくは、2nm~10nm、長さ/直径(アスペクト比)が、通常、5~600、好ましくは50~150程度である。このようにチューブの直径はナノオーダー(1μm未満)であるので、以下において、チューブを「ナノチューブ」と呼ぶこともある。一方、繊維状ではあるが、内部に中空部を有さず、中実になっているものを「ナノワイヤー」と呼ぶことがある。 The metal oxide and the like are formed into a tube by the heat treatment. The tube shape is a shape in which the appearance is fibrous and a hollow portion extending in the longitudinal direction is present inside the fiber. Whether it is fibrous or not can be easily determined by observing with a scanning electron microscope (see FIGS. 1A and 1B, which are scanning electron micrographs of the catalyst prepared in the following Examples). A transmission electron micrograph of the catalyst produced in the following example is shown in FIG. 1C. As shown in FIG. 1C, it can be seen from the transmission electron microscope observation that the fibrous substance is in the form of a tube. In the case of the tube shape, as described above, the specific surface area and the total pore volume are increased as compared with the starting material, and this can also be used to confirm the tube shape. The tubular material constituting the solid acid catalyst of the present invention as shown in FIG. 1C has a diameter of usually 5 nm to 20 nm, preferably 7 nm to 10 nm, a length of 100 nm to 3000 nm, preferably 500 nm to 1000 nm, The diameter of the hollow portion is usually 1 nm to 15 nm, preferably 2 nm to 10 nm, and the length / diameter (aspect ratio) is usually about 5 to 600, preferably about 50 to 150. Since the diameter of the tube is nano-order (less than 1 μm), the tube may be referred to as “nanotube” in the following. On the other hand, what is fibrous but does not have a hollow portion inside and is solid is sometimes referred to as “nanowire”.
 上記方法により得られる繊維状の物質は、酸触媒としての活性を有しており、そのまま固体酸触媒として用いることができる。本発明の固体酸触媒は、公知の固体酸触媒と同じ反応を触媒することができ、例えば、有機化合物のアルキル化反応(アルキル基含有基を付加する反応を包含する)、炭水化物の分解反応(加水分解反応や5-ヒドロキシメチルフルフラール(HMF)を合成する反応)、植物油とアルコールからバイオディーゼル燃料を合成する反応等に利用できる。各反応の条件は、従来と同様でもよいが、本発明の固体酸触媒は、酸触媒活性が特に高いので、従来の固体酸触媒よりも反応時間を短くしたり、反応温度を低くしたりすることが可能である(下記実施例参照)。従って、本発明の固体酸触媒を用いた場合の反応条件は、各反応について、ルーチンな実験により工業的に有利な条件を求め、その条件で行うことが望ましい。 The fibrous substance obtained by the above method has activity as an acid catalyst and can be used as it is as a solid acid catalyst. The solid acid catalyst of the present invention can catalyze the same reaction as a known solid acid catalyst. For example, an alkylation reaction of an organic compound (including a reaction of adding an alkyl group-containing group), a carbohydrate decomposition reaction ( It can be used for hydrolysis reaction, reaction for synthesizing 5-hydroxymethylfurfural (HMF), reaction for synthesizing biodiesel fuel from vegetable oil and alcohol. The conditions for each reaction may be the same as in the prior art, but the solid acid catalyst of the present invention has a particularly high acid catalyst activity, so the reaction time is shortened or the reaction temperature is lowered as compared with the conventional solid acid catalyst. (See the examples below). Therefore, the reaction conditions when the solid acid catalyst of the present invention is used are desirably determined under industrial conditions that are industrially advantageous through routine experiments for each reaction.
 例えば、トルエン等の芳香族化合物に、アルキル基含有基であるベンジル基を付加するフリーデルクラフツ反応では、例えば、芳香族化合物と、ベンジルハライドのような、アルキル基含有化合物のハロゲン化物を、モル比で10:1~1:10程度で混合し、本発明の固体酸触媒を反応混合物の重量に対して0.05%~1%程度、好ましくは0.1%~0.5%程度の量で存在させ、室温~芳香族化合物の沸点の温度下で2時間~10時間程度反応させることによりアルキル基含有基を芳香族化合物に付加することができる。本発明の固体酸触媒では、室温でも反応が十分進行するので、室温で実施することが、エネルギー節約の観点から有利である。このような反応により、トルエン以外に例えば、ベンゼン、アニソール、フェノール等の有機化合物に、ベンジル基以外に例えばアルケン、無水酢酸、塩化ベンゾイル、ホスゲンのようなアルキル基または、アシル基含有基を付加することができる。 For example, in the Friedel-Crafts reaction in which a benzyl group that is an alkyl group-containing group is added to an aromatic compound such as toluene, for example, an aromatic compound and a halide of an alkyl group-containing compound such as benzyl halide are mixed. The solid acid catalyst of the present invention is present in an amount of about 0.05% to 1%, preferably about 0.1% to 0.5%, based on the weight of the reaction mixture. An alkyl group-containing group can be added to an aromatic compound by reacting at a boiling point of the aromatic compound for about 2 to 10 hours. In the solid acid catalyst of the present invention, the reaction proceeds sufficiently even at room temperature. Therefore, it is advantageous to carry out the reaction at room temperature from the viewpoint of energy saving. By such a reaction, in addition to toluene, for example, an alkyl group such as alkene, acetic anhydride, benzoyl chloride, phosgene, or an acyl group-containing group is added to an organic compound such as benzene, anisole, and phenol in addition to toluene. be able to.
 また、例えば、グルコースのような糖類からHMF等を合成する分解反応では、例えば、糖類に対して水を重量基準で通常、5倍~20倍程度加え、本発明の固体酸触媒を糖類に対して、通常、0.2倍~5倍、好ましくは0.5倍~2倍程度の量で存在させ、通常、水の沸点~130℃程度の温度下で、通常、2時間~6時間程度反応させることにより分解反応を行うことができる。このような反応により、グルコース以外に例えばフルクトース、キシロース、マンノース、スクロース、セロビオース、マルトースのような糖類から、HMF以外に例えばレボグルコサン、フルクトース、ギ酸、レブリン酸等を合成することができる。 Further, for example, in the decomposition reaction for synthesizing HMF or the like from a saccharide such as glucose, for example, water is usually added about 5 to 20 times based on the weight of the saccharide, and the solid acid catalyst of the present invention is added to the saccharide. In general, it is present in an amount of about 0.2 to 5 times, preferably about 0.5 to 2 times, and is usually reacted at a temperature of the boiling point of water to about 130 ° C. for about 2 to 6 hours. A decomposition reaction can be performed. By such a reaction, for example, levoglucosan, fructose, formic acid, levulinic acid and the like can be synthesized in addition to HMF from saccharides such as fructose, xylose, mannose, sucrose, cellobiose and maltose.
 また、例えば、セルロースのような多糖類の加水分解反応では、例えば、多糖類に対して水を重量基準で通常、1倍~10倍程度加え、本発明の固体酸触媒を糖類に対して、通常、1倍~5倍、好ましくは2倍~3倍程度の量で存在させ、通常、水の沸点~200℃程度の温度下で、通常、1時間~24時間程度反応させることにより分解反応を行うことができる。このような反応により、セルロース以外に例えばデンプン、などのような多糖類を加水分解して、その構成単位の単糖類であるグルコースやフルクトース、キシロース等を生成することができる。 Further, for example, in the hydrolysis reaction of a polysaccharide such as cellulose, for example, water is usually added about 1 to 10 times based on the weight of the polysaccharide, and the solid acid catalyst of the present invention is added to the saccharide. Usually, it is present in an amount of 1 to 5 times, preferably 2 to 3 times, and it is usually decomposed by reacting for about 1 to 24 hours at a temperature of the boiling point of water to about 200 ° C. It can be performed. By such a reaction, polysaccharides such as starch can be hydrolyzed in addition to cellulose to produce glucose, fructose, xylose, etc., which are monosaccharides of the constituent units.
 また、例えば、トリグリセリドのような植物油とエタノールのようなアルコールからオレイン酸エチルのようなバイオディーゼル燃料を合成する反応では、例えば、トリグリセリドに対してエタノールを重量基準で通常、0.3倍~3倍程度加え、本発明の固体酸触媒を糖類に対して、通常、1倍~70 倍、好ましくは5倍~50倍程度の量で存在させ、50℃~130℃程度の温度下で、2時間~48時間程度反応させることにより、バイオディーゼル燃料を合成することができる。このような反応により、トリグリセリドのような植物油と、エタノール以外にメタノールのようなアルコールとから、オレイン酸エチル以外にオレイン酸メチルのようなバイオディーゼル燃料を合成することができる。 In addition, for example, in a reaction for synthesizing a biodiesel fuel such as ethyl oleate from a vegetable oil such as triglyceride and an alcohol such as ethanol, ethanol is usually about 0.3 to 3 times based on the weight of triglyceride. In addition, the solid acid catalyst of the present invention is usually present in an amount of about 1 to 70 times, preferably about 5 to 50 times with respect to the saccharide, and at a temperature of about 50 ° C. to 130 ° C. for 2 hours to Biodiesel fuel can be synthesized by reacting for about 48 hours. By such a reaction, a biodiesel fuel such as methyl oleate in addition to ethyl oleate can be synthesized from a vegetable oil such as triglyceride and an alcohol such as methanol in addition to ethanol.
 また、例えば、トリメチルヒドロキノンとイソフィトール等からα-トコフェロール(ビタミンE)を合成する反応では、例えば、トリメチルヒドロキノンに対してイソフィトールを重量基準で通常、0.5倍~3倍程度加え、本発明の固体酸触媒を糖類に対して、通常、1倍~10 倍、好ましくは2倍~6倍程度の量で存在させ、50℃~120℃程度の温度下で、2時間~48時間程度反応させることにより、α-トコフェロール(ビタミンE)を合成することができる。このような反応により、トリメチルヒドロキノンと、イソフィトール以外にフィトール、ハロゲン化フィチル、酢酸フィチル、メタンスルホン酸フィチル、エタンスルホン酸フィチル、ベンゼンスルホン酸フィチル、トルエンスルホン酸フィチルから、α-トコフェロール(ビタミンE)を合成することができる。 In addition, for example, in the reaction of synthesizing α-tocopherol (vitamin E) from trimethylhydroquinone and isophytol, for example, isophytol is usually added about 0.5 to 3 times based on weight with respect to trimethylhydroquinone. The solid acid catalyst is usually present in an amount of about 1 to 10 times, preferably about 2 to 6 times the saccharide, and reacted at a temperature of about 50 to 120 ° C. for about 2 to 48 hours. Thus, α-tocopherol (vitamin E) can be synthesized. By such a reaction, α-tocopherol (vitamin E) was obtained from trimethylhydroquinone and phytol, phytyl halide, phytyl acetate, phytyl methanesulfonate, phytyl ethanesulfonate, phytyl benzenesulfonate, and phytyl toluenesulfonate in addition to isophytol. ) Can be synthesized.
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
実施例1~4  固体酸触媒の製造
 酸化チタン粉末(5g)を10M NaOH水溶液(70 ml)と混ぜ、耐圧オートクレーブに入れ、攪拌しながら150℃20時間(実施例1)、30時間(実施例2)、40時間(実施例3)又は80時間(実施例4)水熱条件下で加熱処理した。この時点では、Naイオンを過剰に含んでいるので、これを水洗し、ろ過回収した後、pH = 1の硝酸水溶液中で24時間処理し、プロトン交換した。その後、ろ過回収し、蒸留水で24時間攪拌した。その後、繰り返し蒸留水で洗浄したものを、100℃の乾燥炉で乾燥させ、本発明の固体酸触媒を得た。
Examples 1-4 Production of Solid Acid Catalyst Titanium oxide powder (5 g) was mixed with 10 M NaOH aqueous solution (70 ml), placed in a pressure-resistant autoclave and stirred at 150 ° C. for 20 hours (Example 1), 30 hours (Example) 2) Heat treatment was carried out under hydrothermal conditions for 40 hours (Example 3) or 80 hours (Example 4). At this point, since Na ions were excessively contained, this was washed with water, collected by filtration, treated in an aqueous nitric acid solution at pH = 1 for 24 hours, and proton exchanged. Thereafter, the solution was collected by filtration and stirred with distilled water for 24 hours. Then, what was repeatedly washed with distilled water was dried in a drying furnace at 100 ° C. to obtain the solid acid catalyst of the present invention.
 得られた固体酸触媒の走査電子顕微鏡写真を図1A(実施例1)及び図1B(実施例3)に示す。原料は粉末であったが、繊維状になっていることがわかる。さらに、実施例1で得られた固体酸触媒の透過電子顕微鏡写真を図1Cに示す。図1Cに示されるように、得られた固体酸触媒は、繊維状であるのみならず、チューブ状であることがわかる。チューブ状の形状は、後述する細孔分布の結果とよく一致する。 Scanning electron micrographs of the obtained solid acid catalyst are shown in FIG. 1A (Example 1) and FIG. 1B (Example 3). Although the raw material was powder, it turns out that it is fibrous. Furthermore, the transmission electron micrograph of the solid acid catalyst obtained in Example 1 is shown in FIG. 1C. As shown in FIG. 1C, it can be seen that the obtained solid acid catalyst is not only in the form of fibers but also in the form of tubes. The tubular shape is in good agreement with the pore distribution results described below.
比較例1 酸化チタン由来ナノワイヤーの製造
 水熱条件下での加熱処理の温度を200℃としたことを除き、実施例1と同様な操作を行った。酸化チタン粉末は、走査電子顕微鏡で、繊維状物質が生成したことが観察された。
Comparative Example 1 Production of Titanium Oxide-Derived Nanowire The same operation as in Example 1 was performed except that the temperature of the heat treatment under hydrothermal conditions was 200 ° C. It was observed that the titanium oxide powder produced a fibrous substance with a scanning electron microscope.
比較例2、3  酸化チタン由来ナノワイヤーの製造
 酸化チタン粉末(2g)を10M NaOH水溶液(70 ml)と混ぜ、耐圧オートクレーブに入れ、攪拌しながら150℃20時間(実施例5)又は80時間(実施例6)水熱条件下で加熱処理した。この時点では、Naイオンを過剰に含んでいるので、これを水洗し、ろ過回収した後、pH = 1の硝酸水溶液中で24時間処理し、プロトン交換した。その後、ろ過回収し、蒸留水で24時間攪拌した。その後、繰り返し蒸留水で洗浄したものを、100℃の乾燥炉で乾燥させ、繊維状物質が得られた。
Comparative Examples 2 and 3 Production of titanium oxide-derived nanowires Titanium oxide powder (2 g) was mixed with 10 M NaOH aqueous solution (70 ml), placed in a pressure-resistant autoclave and stirred at 150 ° C. for 20 hours (Example 5) or 80 hours ( Example 6) Heat treatment was performed under hydrothermal conditions. At this point, since Na ions were excessively contained, this was washed with water, collected by filtration, treated in an aqueous nitric acid solution at pH = 1 for 24 hours, and proton exchanged. Thereafter, the solution was collected by filtration and stirred with distilled water for 24 hours. Then, what was repeatedly washed with distilled water was dried in a drying furnace at 100 ° C. to obtain a fibrous material.
実施例5  固体酸触媒の理化学的性質
(1) X線回折分析
 実施例1で得られた固体酸触媒を、Rigaku社製 Ultima IVを用いてX線回折(XRD)分析にかけた。結果を図2に示す。比較のため、出発原料として用いた酸化チタン粉末のXRDパターンをも併せて示す。図2中、TNW-1が実施例1の固体酸触媒、TiO2が出発原料の酸化チタン粉末についての結果を示す。
Example 5 Physicochemical properties of solid acid catalyst
(1) X-ray diffraction analysis The solid acid catalyst obtained in Example 1 was subjected to X-ray diffraction (XRD) analysis using Ultima IV manufactured by Rigaku. The results are shown in FIG. For comparison, an XRD pattern of the titanium oxide powder used as a starting material is also shown. In FIG. 2, TNW-1 represents the results for the solid acid catalyst of Example 1, and TiO 2 represents the titanium oxide powder starting material.
 図2に示されるように、出発原料の酸化チタン粉末は100%アナターゼ構造であるが、酸化チタンナノワイヤーは、ピークがブロードであるためはっきりと判別できないが、10, 24, 28, 48°付近にピークが観測され、H2Ti3O7, H2Ti2O4(OH)2, H2Ti4O9・H2O, HxTi2-x/4x/4O4(□は欠陥を意味する)・H2O, H2Ti5O11・H2Oのいずれかの構造を有していると考えられる。 As shown in FIG. 2, the starting titanium oxide powder has a 100% anatase structure, but the titanium oxide nanowires cannot be clearly distinguished because the peaks are broad, but around 10, 24, 28, and 48 °. Peaks are observed, H 2 Ti 3 O 7 , H 2 Ti 2 O 4 (OH) 2 , H 2 Ti 4 O 9・ H 2 O, H x Ti 2-x / 4x / 4 O 4 (□ Means a defect), and is considered to have a structure of either H 2 O, H 2 Ti 5 O 11 or H 2 O.
(2) 多孔性
 実施例1~4で得られた固体酸触媒の窒素吸脱着等温線と細孔分布曲線を図3に示す。なお、窒素吸脱着等温線及び細孔分布曲線は、常法である窒素ガス吸脱着法(定容法)を利用する市販の測定装置であるQuantachrome社製NOVA 4200eを用いて測定した。また、それらの測定から得られた比表面積と、細孔容積を下記表1にまとめた。出発原料である酸化チタン粉末の比表面積は、292 m2/gであるのに対し、酸化チタン粉末(5g)を150℃20時間処理した実施例1の固体酸触媒は、比表面積が400 m2/gに増加することがわかった。処理時間を長くしても比表面積に大きな変化は見られなかった。さらに、細孔分布曲線も約2 nm~7 nm程度の分布を持った細孔を有していることが明らかとなった。
(2) Porosity FIG. 3 shows nitrogen adsorption / desorption isotherms and pore distribution curves of the solid acid catalysts obtained in Examples 1 to 4. The nitrogen adsorption / desorption isotherm and the pore distribution curve were measured using NOVA 4200e manufactured by Quantachrome, which is a commercially available measuring apparatus using a nitrogen gas adsorption / desorption method (constant volume method) which is a conventional method. The specific surface area and pore volume obtained from these measurements are summarized in Table 1 below. The specific surface area of the starting titanium oxide powder is 292 m 2 / g, whereas the solid acid catalyst of Example 1 in which the titanium oxide powder (5 g) was treated at 150 ° C. for 20 hours has a specific surface area of 400 m. It was found to increase to 2 / g. Even when the treatment time was increased, no significant change was observed in the specific surface area. Furthermore, it was revealed that the pore distribution curve has pores having a distribution of about 2 nm to 7 nm.
 一方、比較例2、3で得られた固体酸触媒の窒素吸脱着等温線と細孔分布曲線を図4に示す。また、測定された比表面積と、細孔容積を下記表2にまとめた。酸化チタン粉末(5g)を200℃で水熱処理した比較例1の繊維状物質や、酸化チタン粉末(2g)を150℃20時間処理した比較例2、3の繊維状物質は、比表面積が大幅に低下し、処理時間を長くするとさらに表面積は低下した。また、細孔分布曲線からも、細孔をほとんど有していないことが明らかとなった。従って、これらは、チューブ状の形状を有しておらず、中実の繊維状構造を有していることがわかった。 Meanwhile, the nitrogen adsorption / desorption isotherm and pore distribution curve of the solid acid catalyst obtained in Comparative Examples 2 and 3 are shown in FIG. The measured specific surface area and pore volume are summarized in Table 2 below. The specific surface area of the fibrous material of Comparative Example 1 in which titanium oxide powder (5 g) was hydrothermally treated at 200 ° C. and the fibrous material of Comparative Examples 2 and 3 in which titanium oxide powder (2 g) was treated at 150 ° C. for 20 hours were greatly increased. When the treatment time was increased, the surface area further decreased. Moreover, it became clear from a pore distribution curve that it has few pores. Therefore, it was found that they do not have a tubular shape but have a solid fibrous structure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例6、比較例1~7  固体酸触媒を用いた反応
(1) アルキル化反応
Example 6 and Comparative Examples 1 to 7 Reaction using a solid acid catalyst
(1) Alkylation reaction
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 トルエンとベンジルクロライドを反応させてベンジルトルエンを生成するFriedel-Craftsアルキル化反応を行った。実施例1で製造した固体酸触媒及び比較のため、種々の市販の固体酸触媒を触媒として用いた。固体酸触媒0.2gの存在下で、トルエン100mmolとベンジルクロライド10mmolを100℃で反応させた。反応は5時間行い、経時的にベンジルトルエンの生成量を測定した。なお、比較例で用いた市販の固体酸触媒は、酸化チタン(比較例4、出発原料)、含水ニオブ酸(比較例5)、H-ZMS-5(ゼオライトの1種、比較例6)、H-モルデナイト(比較例7)、強酸性樹脂ビーズから成る市販の固体酸触媒(Nafion NR50(商品名)、比較例8)、強酸性樹脂を多孔性支持体上に支持した市販の固体酸触媒(Nafion SAC13(商品名)、比較例9)、スチレン-ジビニルベンゼンにスルホ基を付けた市販の固体酸触媒(Amberlyst-15(商品名)、比較例10)、硫酸化ジルコニア (SO4 2-/ZrO2, JRC-SZ-1、比較例11)とHβゼオライト(Hβ; JRC-Z-B25, SiO2/Al2O3 = 25、比較例12)であった。 Friedel-Crafts alkylation reaction was carried out in which toluene and benzyl chloride were reacted to form benzyltoluene. The solid acid catalyst prepared in Example 1 and various commercially available solid acid catalysts were used as catalysts for comparison. In the presence of 0.2 g of a solid acid catalyst, 100 mmol of toluene and 10 mmol of benzyl chloride were reacted at 100 ° C. The reaction was carried out for 5 hours, and the amount of benzyltoluene produced was measured over time. The commercially available solid acid catalyst used in the comparative examples is titanium oxide (Comparative Example 4, starting material), hydrous niobic acid (Comparative Example 5), H-ZMS-5 (one type of zeolite, Comparative Example 6), H-mordenite (Comparative Example 7), a commercially available solid acid catalyst comprising strongly acidic resin beads (Nafion NR50 (trade name), Comparative Example 8), a commercially available solid acid catalyst having a strongly acidic resin supported on a porous support (Nafion SAC13 (trade name), Comparative Example 9), a commercially available solid acid catalyst with a sulfo group on styrene-divinylbenzene (Amberlyst-15 (trade name), Comparative Example 10), sulfated zirconia (SO 4 2- / ZrO 2 , JRC-SZ-1, Comparative Example 11) and Hβ zeolite (Hβ; JRC-Z-B25, SiO 2 / Al 2 O 3 = 25, Comparative Example 12).
 結果を図5に示す。含水ニオブ酸(比較例5)、酸化チタン(比較例4)、硫酸化ジルコニア(比較例11)又はHβゼオライト(比較例12)を用いた時に、1時間以内でほとんど反応が終了することがわかった。本発明の固体酸触媒(実施例1)の場合でも同様に、1時間以内でほとんど反応が終了することがわかった。 The results are shown in FIG. When hydrous niobic acid (Comparative Example 5), titanium oxide (Comparative Example 4), sulfated zirconia (Comparative Example 11) or Hβ zeolite (Comparative Example 12) is used, the reaction is almost completed within 1 hour. It was. Similarly, in the case of the solid acid catalyst of the present invention (Example 1), it was found that the reaction was almost completed within 1 hour.
 次に、反応温度を室温(25℃~27℃)にしたことと、ベンジルクロライド20mmolを用いたことを除き、上記と同じ条件で反応を行った。結果を図6に示す。 Next, the reaction was performed under the same conditions as described above except that the reaction temperature was room temperature (25 ° C. to 27 ° C.) and that 20 mmol of benzyl chloride was used. The results are shown in FIG.
 既存の固体酸触媒(比較例4~12)ではほとんど反応が進行せず、含水ニオブ酸(比較例5)や酸化チタン(比較例4)を用いた時に、反応4時間後の収率が3.8%であった。また、図示していないが、比較例1で製造したナノワイヤーでは、反応4時間後の収率が0.5%であった。さらに、図示していないが、公知の酸化チタンナノシート(層状チタン酸化物(H2Ti3O7やH0.7Ti1.8250.175O4・H2O)を、メチルアミン、プロピルアミンまたは、水酸化テトラブチルアンモニウムなどのアミンを用いて層を剥離させ、酸性水溶液で洗浄することによって得られた酸化チタンナノシート(Journal of Catalysis 244, 230 (2006).やJ. Am. Chem. Soc., 126, 5851, (2004))では同収率が7.6%であった。さらに、層剥離する前の公知の層状酸化チタン(H2Ti3O7やH0.7Ti1.8250.175O4・H2O)は、単斜晶系のものも斜方晶系のものも収率は0%であった。 The reaction hardly progressed with the existing solid acid catalysts (Comparative Examples 4 to 12), and when using hydrous niobic acid (Comparative Example 5) or titanium oxide (Comparative Example 4), the yield after 4 hours of reaction was 3.8%. %Met. Although not shown, the nanowire manufactured in Comparative Example 1 had a yield of 0.5% after 4 hours of reaction. Further, although not shown, a known titanium oxide nanosheet (layered titanium oxide (H 2 Ti 3 O 7 or H 0.7 Ti 1.8250.175 O 4 · H 2 O) is replaced with methylamine, propylamine or hydroxylated Titanium oxide nanosheets (Journal of Catalysis 244, 230 (2006). Or J. Am. Chem. Soc., 126, obtained by peeling the layer with an amine such as tetrabutylammonium and washing with an acidic aqueous solution. 5851, (2004)), the yield was 7.6%, and well-known layered titanium oxide (H 2 Ti 3 O 7 and H 0.7 Ti 1.8250.175 O 4 · H 2 O) before delamination The yield of both monoclinic and orthorhombic crystals was 0%.
 一方、本発明の実施例1の固体酸触媒を用いた場合のみ、室温でも効率よく反応が進行し、反応4時間後の収率は、92%に達することがわかった。 On the other hand, it was found that only when the solid acid catalyst of Example 1 of the present invention was used, the reaction proceeded efficiently even at room temperature, and the yield after 4 hours of reaction reached 92%.
(2) 炭水化物の分解反応(グルコースからのヒドロキシメチルフルフラールの生成反応)
 実施例1で得られた固体酸触媒又は上記(1)と同じ市販の各固体酸触媒0.1gを触媒として用い、グルコース0.1gと水1.0mLを、120℃で3時間反応させた。反応後のヒドロキシメチルフルフラール(HMF)の生成量を測定した。
(2) Decomposition reaction of carbohydrate (formation reaction of hydroxymethylfurfural from glucose)
Using 0.1 g of the solid acid catalyst obtained in Example 1 or the same commercially available solid acid catalyst as in (1) above, 0.1 g of glucose and 1.0 mL of water were reacted at 120 ° C. for 3 hours. The amount of hydroxymethylfurfural (HMF) produced after the reaction was measured.
 結果を図7に示す。なお、図7中、比較例4'~6',8',10 'は、上記比較例4~6,8,10と同じ市販の固体酸触媒を用いた場合についての結果を示す。また、濃硫酸(比較例13)を用いた場合の結果についても示す。本発明の固体酸触媒を用いた場合、出発原料である酸化チタンを用いた場合と比べ、HMFの生成量が多かった。また、本発明の固体酸触媒を用いた場合、HMFの生成量は、この反応に特に優れた触媒活性を発揮することが知られている含水ニオブ酸に匹敵するものであった。 Results are shown in FIG. In FIG. 7, Comparative Examples 4 ′ to 6 ′, 8 ′, and 10 ′ ′ show the results when the same commercially available solid acid catalyst as Comparative Examples 4 to 6, 8, and 10 is used. Moreover, it shows about the result at the time of using concentrated sulfuric acid (comparative example 13). When the solid acid catalyst of the present invention was used, the amount of HMF produced was larger than when titanium oxide as a starting material was used. In addition, when the solid acid catalyst of the present invention was used, the amount of HMF produced was comparable to that of hydrous niobic acid, which is known to exhibit particularly excellent catalytic activity for this reaction.
実施例7  ナノチューブの特性
(1)  図8にプローブ分子としてピリジンを吸着させた、酸化チタン(出発原料)及び実施例1で製造した酸化チタンナノチューブのFT-IRスペクトルを示す。1440cm-1付近に見られるピークは、ルイス酸点(Ti4+サイト)に配位したピリジンによる吸収であり、酸化チタン及び酸化チタンナノチューブの両方でこのピークが観測された。一方、1540 cm-1付近に見られるピークは、ブレンステッド酸点上で生成したピリジニウムイオンに由来する吸収であり、酸化チタンナノチューブでのみ観測された。このことから、酸化チタンナノチューブは、ブレンステッド酸点とルイス酸点の両方を有しており、それぞれの濃度は、0.08 mmol/g, 0.23 mmol/gであった。Friedel-Craftsアルキル化反応は、ルイス酸によって効率よく進行することが知られており、酸化チタンナノチューブのルイス酸点がこの反応に対する活性種であると考えられる。このときのターンオーバー数は、3時間で350を超える。このことからこの反応は触媒的に進行していることがわかった。さらに、ルイス酸点のみを有する二酸化チタンでは、ほとんど反応が進行しなかったことから、酸化チタンナノチューブのブレンステッド酸点も活性向上に寄与していると考えられる。
Example 7 Nanotube properties
(1) FIG. 8 shows FT-IR spectra of titanium oxide (starting material) and titanium oxide nanotubes produced in Example 1 on which pyridine was adsorbed as a probe molecule. The peak observed near 1440 cm −1 is absorption by pyridine coordinated to the Lewis acid point (Ti 4+ site), and this peak was observed for both titanium oxide and titanium oxide nanotubes. On the other hand, the peak observed near 1540 cm −1 is absorption derived from the pyridinium ion formed on the Bronsted acid point, and was observed only for the titanium oxide nanotube. From this, the titanium oxide nanotube had both a Bronsted acid point and a Lewis acid point, and the respective concentrations were 0.08 mmol / g and 0.23 mmol / g. The Friedel-Crafts alkylation reaction is known to proceed efficiently with a Lewis acid, and the Lewis acid point of the titanium oxide nanotube is considered to be an active species for this reaction. The turnover number at this time exceeds 350 in 3 hours. This indicates that this reaction is proceeding catalytically. Furthermore, since the reaction hardly progressed with titanium dioxide having only a Lewis acid point, it is considered that the Bronsted acid point of the titanium oxide nanotube also contributes to the activity improvement.
 なお、上記FT-IR分光分析は、閉鎖循環系に接続されたIR セルを用いて行った。25 mg の試料を直径20 mmのディスクに成型し、セルに設置した後、150℃1時間真空排気処理した。その後、室温まで冷却してからプローブ分子としてピリジンを導入し、室温で測定した。プローブ分子としてCOを導入する際は、150℃1時間真空排気処理の後、セルを液体窒素温度付近にまで冷却し、COを導入し試料に吸着させ測定を行った。 The above FT-IR spectroscopic analysis was performed using an IR cell connected to a closed circulation system. A 25 mg mg sample was molded into a 20 mm diameter disk, placed in a cell, and then evacuated at 150 ° C. for 1 hour. Then, after cooling to room temperature, pyridine was introduced as a probe molecule and measured at room temperature. When introducing CO as a probe molecule, after evacuation at 150 ° C. for 1 hour, the cell was cooled to near liquid nitrogen temperature, CO was introduced, and the sample was adsorbed on the sample for measurement.
(2) 次に、実施例1で製造した酸化チタンナノチューブのルイス酸点の酸強度を調べるために、プローブ分子としてCOを吸着させた酸化チタン及び酸化チタンナノチューブのFT-IRスペクトルを示す(図9)。2150cm-1付近に見られるピークは、OH基に吸着したCO、2130cm-1付近に見られるピークは、物理吸着したCOに由来するピークである。一方、2180cm-1付近に見られるピークは、ルイス酸点(Ti4+サイト)に配位したCOによる吸収であり、このピークの波数が高いほど酸点の強度が強いことが知られている。図9に示すように、酸化チタンと酸化チタンナノチューブのルイス酸点の強度に大きな違いがなく、同程度の強度のルイス酸点を有していることがわかった。また、ゼオライト等で見られる強いルイス酸点(2200cm-1付近に現れるピーク)は観測されなかったため、中程度の酸強度のルイス酸点を有していることがわかった。 (2) Next, in order to investigate the acid strength of the Lewis acid sites of the titanium oxide nanotubes produced in Example 1, FT-IR spectra of titanium oxide and titanium oxide nanotubes adsorbing CO as probe molecules are shown (Fig. 9). Peak observed around 2150 cm -1 is CO adsorbed on OH groups, a peak observed around 2130 cm -1 is a peak derived from physisorbed CO. On the other hand, the peak observed near 2180 cm -1 is absorption by CO coordinated to the Lewis acid point (Ti 4+ site), and it is known that the higher the wave number of this peak, the stronger the acid point intensity. . As shown in FIG. 9, it was found that there was no significant difference in the intensity of Lewis acid points between titanium oxide and titanium oxide nanotubes, and the Lewis acid points had the same strength. In addition, a strong Lewis acid point (a peak appearing in the vicinity of 2200 cm −1 ) observed in zeolite or the like was not observed, and thus it was found that the Lewis acid point has a medium acid strength.
 ブレンステッド酸点の強度を調べるために、図10にプローブ分子としてトリメチルフォスフィンオキサイド(TMPO)を吸着させた酸化チタン(出発原料)及び実施例1で製造した酸化チタンナノチューブの31P MAS NMRスペクトルを示す。31Pのピークが低磁場側にシフトするほど酸強度が高いことが知られている。つまり、酸化チタンよりも酸化チタンナノチューブの方がブレンステッド酸点の強度が高いことがわかった。この酸強度は含水ニオブ酸の強度と同程度であることがわかった。 In order to investigate the intensity of the Bronsted acid point, FIG. 10 shows 31 P MAS NMR spectra of titanium oxide (starting material) adsorbing trimethylphosphine oxide (TMPO) as a probe molecule and the titanium oxide nanotube produced in Example 1. Indicates. It is known that the acid strength increases as the 31 P peak shifts to the lower magnetic field side. That is, it was found that the strength of Bronsted acid points was higher in titanium oxide nanotubes than in titanium oxide. This acid strength was found to be comparable to that of hydrous niobic acid.
 なお、31P核磁気共鳴分光分析は、試料を150℃で1時間真空排気処理をし、グローブボックス内で0.06 mmolのトリメチルフォスフィンオキサイド(TMPO)を溶かしたジクロロメタン溶液と試料とを混ぜた。ジクロロメタンを留去し、TMPOを吸着させた試料を,N2雰囲気のグローブボックスでジルコニアローターに充填し、Bruker製のASX400を用いて測定した。 In 31 P nuclear magnetic resonance spectroscopy, the sample was evacuated at 150 ° C. for 1 hour, and a dichloromethane solution in which 0.06 mmol of trimethylphosphine oxide (TMPO) was dissolved was mixed in the glove box. Dichloromethane was distilled off, and TMPO adsorbed sample was filled in a zirconia rotor with a glove box in an N 2 atmosphere and measured using an ASX400 manufactured by Bruker.
 本発明の固体酸触媒は、公知の固体酸触媒では反応がほとんど進まない室温条件下等でも酸触媒としてよく機能する。従って、本発明の固体酸触媒は、有機化合物のアルキル化反応、炭水化物の分解反応等の固体酸触媒として、優れた性能を発揮する。 The solid acid catalyst of the present invention functions well as an acid catalyst even under room temperature conditions where the reaction hardly proceeds with known solid acid catalysts. Therefore, the solid acid catalyst of the present invention exhibits excellent performance as a solid acid catalyst such as an alkylation reaction of an organic compound and a decomposition reaction of a carbohydrate.

Claims (12)

  1.  金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質を含む固体酸触媒。 A solid acid catalyst containing a tube-shaped substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution.
  2.  前記チューブ状の物質は、前記熱処理後、酸処理をさらに行うことにより得られたものである請求項1記載の固体酸触媒。 The solid acid catalyst according to claim 1, wherein the tubular substance is obtained by further performing an acid treatment after the heat treatment.
  3.  前記酸処理に用いられる酸は硝酸である請求項2記載の固体酸触媒。 The solid acid catalyst according to claim 2, wherein the acid used for the acid treatment is nitric acid.
  4.  前記金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種が金属酸化物である請求項1ないし3のいずれか1項に記載の固体酸触媒。 The solid acid catalyst according to any one of claims 1 to 3, wherein at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds is a metal oxide.
  5.  前記金属が、チタン、ニオブ、タングステン、ジルコニウム、亜鉛、モリブデン、ケイ素、アルミニウム、タンタルから成る群より選ばれる少なくとも1種である請求項1ないし4のいずれか1項に記載の固体酸触媒。 The solid acid catalyst according to any one of claims 1 to 4, wherein the metal is at least one selected from the group consisting of titanium, niobium, tungsten, zirconium, zinc, molybdenum, silicon, aluminum, and tantalum.
  6.  前記金属が、チタンである請求項5記載の固体酸触媒。 The solid acid catalyst according to claim 5, wherein the metal is titanium.
  7.  前記熱処理の温度が、120℃~180℃である請求項1ないし6のいずれか1項に記載の固体酸触媒。 The solid acid catalyst according to any one of claims 1 to 6, wherein a temperature of the heat treatment is 120 ° C to 180 ° C.
  8.  前記チューブ状の物質の比表面積及び合計細孔容積が、前記濃アルカリ水溶液中で熱処理する前の出発原料の比表面積及び合計細孔容積に対して、それぞれ10%以上増大した、請求項1ないし7のいずれか1項に記載の固体酸触媒。 The specific surface area and the total pore volume of the tubular substance increased by 10% or more with respect to the specific surface area and the total pore volume of the starting material before heat treatment in the concentrated alkaline aqueous solution, respectively. 8. The solid acid catalyst according to any one of 7 above.
  9.  有機化合物のアルキル化反応又は炭水化物の分解反応の触媒である請求項1ないし8のいずれか1項に記載の固体酸触媒。 The solid acid catalyst according to any one of claims 1 to 8, which is a catalyst for an alkylation reaction of an organic compound or a decomposition reaction of a carbohydrate.
  10.  金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質の、固体酸触媒の製造のための使用。 Use of a tube-shaped substance obtained by heat-treating at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in concentrated alkaline aqueous solution for the production of a solid acid catalyst .
  11.  酸触媒による化学反応を実施する方法であって、該酸触媒が、金属の酸化物、塩化物、硫酸化物及び金属有機化合物から成る群より選ばれる少なくとも1種を濃アルカリ水溶液中で熱処理して得られたチューブ状の物質である、化学反応の実施方法。 A method for carrying out a chemical reaction using an acid catalyst, wherein the acid catalyst is a heat treatment of at least one selected from the group consisting of metal oxides, chlorides, sulfates and metal organic compounds in a concentrated alkaline aqueous solution. A method for performing a chemical reaction, which is the obtained tube-shaped substance.
  12.  前記化学反応が、有機化合物のアルキル化反応又は炭水化物の分解反応の触媒である請求項11記載の方法。 The method according to claim 11, wherein the chemical reaction is a catalyst for an alkylation reaction of an organic compound or a decomposition reaction of a carbohydrate.
PCT/JP2009/066478 2009-01-20 2009-09-24 Solid acid catalyst having nanotube structure WO2010084645A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010547397A JPWO2010084645A1 (en) 2009-01-20 2009-09-24 Solid acid catalyst with nanotube structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009009465 2009-01-20
JP2009-009465 2009-01-20

Publications (1)

Publication Number Publication Date
WO2010084645A1 true WO2010084645A1 (en) 2010-07-29

Family

ID=42355715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066478 WO2010084645A1 (en) 2009-01-20 2009-09-24 Solid acid catalyst having nanotube structure

Country Status (2)

Country Link
JP (1) JPWO2010084645A1 (en)
WO (1) WO2010084645A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350331A (en) * 2011-08-22 2012-02-15 浙江工业大学 Method for preparing TiO2 nanotube by ultrasound-hydrothermal reaction coupling
JP2012211031A (en) * 2011-03-30 2012-11-01 Osaka Gas Co Ltd Method for isolating metal nanostructure having high aspect ratio
TWI602612B (en) * 2016-10-24 2017-10-21 張志雄 A preparation method of high catalytic performance acid catalyst pellets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137549A (en) * 2001-10-30 2003-05-14 Catalysts & Chem Ind Co Ltd Method for manufacturing tubular titanium oxide grain and tubular titanium oxide
WO2006087841A1 (en) * 2005-02-17 2006-08-24 Osaka University Titanium oxide nanotube and process for producing the same
JP2007130267A (en) * 2005-11-10 2007-05-31 Catalysts & Chem Ind Co Ltd Deodorant made of tubular titanium oxide particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003137549A (en) * 2001-10-30 2003-05-14 Catalysts & Chem Ind Co Ltd Method for manufacturing tubular titanium oxide grain and tubular titanium oxide
WO2006087841A1 (en) * 2005-02-17 2006-08-24 Osaka University Titanium oxide nanotube and process for producing the same
JP2007130267A (en) * 2005-11-10 2007-05-31 Catalysts & Chem Ind Co Ltd Deodorant made of tubular titanium oxide particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAVYKIN D V ET AL.: "The effect of hydrothermal conditions on the mesoporous structure of Ti02 nanotubes", J. MATER. CHEM., vol. 14, no. 22, 21 November 2004 (2004-11-21), pages 3370 - 3377 *
KUBO TAKASHI ET AL.: "Local Strucure of TiO2-Derived Nanotubes Prepared by Hydrothermal Process", J. PHYS. CHEM. C, vol. 112, no. 5, 7 February 2008 (2008-02-07), pages 1658 - 1662 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211031A (en) * 2011-03-30 2012-11-01 Osaka Gas Co Ltd Method for isolating metal nanostructure having high aspect ratio
CN102350331A (en) * 2011-08-22 2012-02-15 浙江工业大学 Method for preparing TiO2 nanotube by ultrasound-hydrothermal reaction coupling
TWI602612B (en) * 2016-10-24 2017-10-21 張志雄 A preparation method of high catalytic performance acid catalyst pellets

Also Published As

Publication number Publication date
JPWO2010084645A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
Wu et al. Selectivity control in photocatalytic valorization of biomass-derived platform compounds by surface engineering of titanium oxide
Kang et al. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst
Peng et al. Hydrothermally stable Nb-SBA-15 catalysts applied in carbohydrate conversion to 5-hydroxymethyl furfural
Wang et al. Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions
Zhou et al. Sulfonated hierarchical H-USY zeolite for efficient hydrolysis of hemicellulose/cellulose
Liu et al. Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups
Wang et al. Ultrafine single-crystal TiOF 2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis
RU2528389C2 (en) Mesoporous carbon supported tunsten-carbide catalysts, production and use thereof
Marianou et al. Cellulose conversion into lactic acid over supported HPA catalysts
Liu et al. Glucose conversion to methyl levulinate catalyzed by metal ion-exchanged montmorillonites
Wang et al. Sn-doped Pt catalyst supported on hierarchical porous ZSM-5 for the liquid-phase hydrogenation of cinnamaldehyde
Cao et al. Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO 2 photothermal catalyst
Liu et al. Highly efficient conversion of glucose into methyl levulinate catalyzed by tin-exchanged montmorillonite
Wang et al. Enhancing tungsten oxide/SBA-15 catalysts for hydrolysis of cellobiose through doping ZrO2
Mu et al. Microwave-assisted synthesis of highly dispersed ZrO2 on CNTs as an efficient catalyst for producing 5-hydroxymethylfurfural (5-HMF)
Akti et al. Role of synthesis media on properties of tin and copper incorporated SBA-15 catalysts and their activity in selective oxidation of ethanol
WO2010084645A1 (en) Solid acid catalyst having nanotube structure
Lu et al. Effective isomerization of glucose to fructose by Sn-MFI/MCM-41 composites as Lewis acid catalysts
He et al. Synthesis of titanium containing MCM-41 and its application for catalytic hydrolysis of cellulose
Yousatit et al. Selective synthesis of 5-hydroxymethylfurfural over natural rubber–derived carbon/silica nanocomposites with acid–base bifunctionality
Murillo et al. Conversion of sugars to methyl lactate with exfoliated layered stannosilicate UZAR-S4
Mayani et al. Development of nanocarbon gold composite for heterogeneous catalytic oxidation
KR100995982B1 (en) Catalytic application of mesoporous silica nanofiber in AAO membrane and control of their catalytic activity by tuning the mesostructure of mesoporous nanofiber
Ye et al. Plasmon resonance enhanced palygorskite-based composite toward the photocatalytic reformation of cellulose biomass under full spectrum
Zhong et al. Palygorskite-supported ruthenium catalysts for the efficient selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838835

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010547397

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838835

Country of ref document: EP

Kind code of ref document: A1