WO2010084211A1 - Device and method for detecting alternation of ventricular repolarisation using windowing - Google Patents

Device and method for detecting alternation of ventricular repolarisation using windowing Download PDF

Info

Publication number
WO2010084211A1
WO2010084211A1 PCT/ES2009/000296 ES2009000296W WO2010084211A1 WO 2010084211 A1 WO2010084211 A1 WO 2010084211A1 ES 2009000296 W ES2009000296 W ES 2009000296W WO 2010084211 A1 WO2010084211 A1 WO 2010084211A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ecg
window
periodic
noise
Prior art date
Application number
PCT/ES2009/000296
Other languages
Spanish (es)
French (fr)
Inventor
Eduardo MORENO MARTÍNEZ
Manuel Blanco Velasco
Pedro AMO LÓPEZ
Fernando CRUZ ROLDÁN
Concepción MORO SERRANO
Antonio HERNÁNDEZ MADRID
Original Assignee
Universidad De Alcalá
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alcalá filed Critical Universidad De Alcalá
Publication of WO2010084211A1 publication Critical patent/WO2010084211A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle

Definitions

  • TECHNICAL SECTOR The object of the patent is the description of a method that can be implemented in physical devices, both external and implantable in the human body, for the detection of alternating cardiac repolarization. Its use is therefore intended for the clinical environment, being included in the biomedical instrumentation technique sector.
  • the invention is a device and method for detecting alternating patterns' of Ia repolarization wave.
  • ECG electrocardiogram
  • the ECG is the electrical recording of the activity of the heart and is used to establish the diagnosis of heart disease.
  • Each heartbeat is made up of a set of waves that are traditionally; denote by the letters PQRST.
  • the segment of the signal between the S wave and the T wave referred to as the ST-T complex, corresponds to the ventricular repolarization and is related to various pathologies.
  • T-wave alternation (AOT) or alternation of ventricular repolarization has been proposed as a risk indicator for the diagnosis of ventricular failure and ventricular arrhythmias.
  • AOT is a stratifier of the risk of sudden cardiac death [GehO5]. It has also been concluded that AOT can appear before the cardiac ventricular fibrillation and after the occlusion of the coronary arteries that can also lead to episodes of ventricular fibrillation and sudden cardiac death. Its detection can be valid to predict these episodes and act accordingly, for example in an irriplementation in implantable defibrillators that can complement and improve the detection of positive cases.
  • the AOT consists of small variations in the morphology, amplitude and duration of the ST-T complex that occur between consecutive beats. In most of the cases, the AOT episodes are characterized by amplitudes close to the microvolts making their inspection and visual recognition practically impossible.
  • Figure 1 shows an example of a T wave alternation episode.
  • the ST-T complex in the absence of AOT episodes presents a morphology that we can associate with a pattern referenced as A.
  • AOT 1 exists periodically, beat-by-beat variations on the ventricular repolarization segment occur.
  • B a new pattern appears on the ST-T complex that is referred to as B.
  • the consecutive alternation between patterns A and B corresponds to an AOT event (ABABABA ). This phenomenon is reflected in the spectrum of the signal in the frequency components equal to half of the beat frequency.
  • the complex demodulation technique [Nea91]: this technique tries to model the fluctuation of the amplitude of the T wave by a sinusoid of frequency 0.5 cycles per beat and of variable amplitude and phase, so as to ensure dynamic tracking of the alternation variations of the T wave.
  • the autocorrelation technique it is a technique that consists in quantifying, in the temporal domain, the amplitude and morphology variations of the repolarization wave based on a correlation index.
  • Each T wave is correlated with a mean T wave representative of a series of beats, translating an alternation, positive or negative, into an oscillation of the correlation index around the unit value.
  • the intef beat series of coefficients is analyzed using a zero-pass counter in the time domain.
  • Filtering method Capón [MarOO] is a variant of complex demodulation.
  • An FIR filter is used that minimizes the power of the output signal while preserving the alternating component. It is applied instead of an invariant low pass filter.
  • Poincaré projection method [StrO2]: Poincaré maps are used to analyze dynamic systems that show periodicity. The Poincaré series is obtained by taking samples in the same phase of the ST-T complex of consecutive beats and pairs of differences between the samples of that series are represented. The alternation is identified when two separate point groupings are present on the maps.
  • the noise on the ECG signal is one of the main problems for the detection of AOT, especially when its power is of the same order of magnitude as that of the power of the alternation. In this case, it can happen that the noise conceals the small variations associated with the AOT. This fact is common for all the proposed detection methods, no more solution having been given than the inclusion of preprocessing stages for the elimination of noise.
  • the variability of the heart rate is another main problem in the detection of AOT in the sense that some of the methods described are designed with the necessary condition that the analyzed ECG signal has stationary conditions in the heart rate. Since the ECG signal is a variable frequency signal, the detection methods require obtaining said conditions of proximity to Ia. periodicity, through actions external to the AOT analysis. The solutions adapted to achieve these conditions consist in the administration of drugs, such as atropine or dobutamine, or in the performance of stress tests monitored by medical personnel.
  • This heart rate variability factor is magnified when the AOT detection method requires a high number of beats for the ECG analysis since it becomes difficult for said stationary conditions to be maintained over time.
  • the techniques described above use frames of high length of at least 64 to 128 beats. These two effects prevail in the case of certain r seu rs as Holter records or stress tests or ergometry records.
  • the present invention presents a new technique of detection, quantification and calculation of the alternating waveform in the analysis of the alternation of the T wave of an ECG signal.
  • this invention has the following properties:
  • the described invention aims at the detection of T Wave Alternation (AOT) by analyzing the frequency components preferably at half of the heartbeat frequency.
  • AOT T Wave Alternation
  • the proposed detection methods are applied on ECG signal blocks formed by several beats.
  • two properties are considered: proximity to periodicity conditions and proximity to stationary conditions.
  • the operation of the invention is based on the analysis of blocks with a reduced amount of beats (Fig. 2).
  • Fig. 2 On the one hand it is possible to reduce the heart rate variability of the block thus favoring conditions close to periodicity.
  • the succession of PQRST waves of each beat is stationary (Fig. 3).
  • the method proposed in the invention is based on the theoretical relationship between the heart rate and the frequency of the alternating waves.
  • the ECG is considered to consist of a stationary signal.
  • Let f c be the average heart rate at a given time of the ECG.
  • the occurrence of an AOT event which is manifested periodically every two beats, will be reflected in the frequency spectrum at half of the average heart rate f ⁇ / 2.
  • the method proposed in the invention performs the ECG treatment directly in the time domain.
  • the analysis is performed on segmented blocks of L beats.
  • AOT is modeled as an additive component ⁇ (t) of an alternating wave function that is assumed to arbitrary morphology, duration and amplitude. This function is repeated every couple of beats, so its frequency is half of the heart rate. Adding said function to the proposed ECG signal model, the following function is obtained:
  • b k are the coefficients of the Fourier series development of the periodic extension of the alternating wave function.
  • the AOT is manifested in the spectrum as impulse functions that are repeated at frequencies multiple of half of the beat frequency.
  • the objective of the method proposed in the invention is to extract the information of the coefficients b k of the alternating wave with respect to the rest of the ECG signal together with the noise that could exist. For this, the method of the invention must increase the significance of the harmonics of the AOT in relation to the main harmonics of the signal and the noise.
  • the method proposed in the invention adapts to different modes of operation or implementations. These implementations can be fixed, portable or implantable material devices. Three types of modes of operation applicable to the three types of implementation of the invention. These are, operation in normal mode, operation in noisy mode and operation in real time. The operation in normal mode is proposed for the analysis of signals in stable conditions such as ECG records taken in medical centers under low noise conditions. The clinical results of this method are the estimated alternating power and the alternating waveform.
  • the operation in noisy mode is proposed for the analysis of signals in unstable conditions with high noise level, such as signals from long-term Holter registers or stress tests.
  • the clinical result of this mode of operation is the estimated alternating power.
  • the real-time operation is proposed for the implementation of devices in which the detection of the AOT must be carried out in a known time interval that is sufficiently small for decision making.
  • This mode is indicated in implementations of implantable devices, such as the case of implantable defibrillators and pacemakers, in which the noise level of the intracavitary signal is low.
  • the detection of AOT is used as an added parameter in the detection of ventricular fibrillation phenomena and sudden cardiac death.
  • One or several graphic presentation devices that allow the visualization of the physiological signal captured with one or more leads as well as the results of the analysis, such as a screen or any printing medium (215, 220, 210, 225, 235 ).
  • - One or several communication mechanisms that allow the sending of control commands of the device or the transmission of information to another device based on any known wireless or cable communication system (235).
  • One or more data storage devices based on solid or magnetic state disks (185), removable or not, that allow storing signals, results, or execution data necessary in the operation of the device.
  • An operation interface based on a keyboard (200), mouse (205) or operation buttons (230).
  • the results shown for the estimation of the AOT can be one or more of the following:
  • the value of the power estimate which can be given in voltage units such as volts or power such as watts (220).
  • the presentation of the results commented on the device can be combined with other physiological data of the signal or of the patient that are considered appropriate (210).
  • physiological data of the signal or of the patient that are considered appropriate (210).
  • the estimation of the noise level of the signal, the heart rate, the respiratory rate, the values of cardiac variability, blood pressure, data referring to the gasometry tests, etc. are included.
  • Figure 1 a schematic example with the sequence of ABABA patterns is shown ... on the repolarization segment that illustrates an AOT episode.
  • Figure 2 in order to characterize the heart rate variability, the histograms of the standard deviation of the heart rate are shown for the same group of ECG signals from ergometry tests for blocks of lengths of 8, 16, 32, 64 and 128 beats. In the ordinate axis the standard deviation values of the heart rate are shown and in the abscissa axis the number of times said deviation values appear. The scales in the axis of ordinates of the previous graph are different to be able to appreciate the distributions of the cases of 64 and 128 beats.
  • Figure 3 128 isolated beats from a Holter register aligned from the QRS complex are shown. As can be seen, the morphology of the waves does not have a great variation. Therefore, it can be assumed that the cardiac signal consists of a waveform that is repeated at certain time points to give rise to a heartbeat. •
  • Figure 4 an example of a window used for the extraction of AOT information is shown. This window is synthesized from the periodic repetition of a
  • T - square pulse with a variable duty cycle (20, 25) of - - - 100%.
  • Figure 5 the spectrum corresponding to a block of 32 beats with a frequency of 71.2 beats per minute (1.8 Hz) is shown. As can be seen, the harmonics that reflect the AOT are located in the odd multiples of half of the beat frequency of 0.6 Hz (40, 45, 50, 55). The signal used in the simulation has been created using additive physiological noise. For the example, a periodic periodic pulse has been used at the beat frequency with a 25% duty cycle.
  • Figure 6 the sequential operation algorithm is shown.
  • the average frequency of the heartbeat block (115, 120) is calculated and a periodic window that will be multiplied by the block (125, 35, 20, 25, 140) is synthesized.
  • the poisoning is performed with a variable number of windows consisting of versions displaced in time from the original (135). The number of windows used will depend on the conditions of the signal as well as the characteristics, processing and memory of the physical device where the procedure is implemented.
  • Figure 8 a design scheme of the stage for the improvement of AOT detection is shown. This stage increases the significance of the information that identifies the AOT. The actions taken are the following: elimination of noise, artifacts and the background EQG (145, 155) and estimation of the trend of the signal (150).
  • Figure 9 the design scheme of the stage destined to the detection of AOT is shown, based on the estimation of the power spectral density of the. Poisoned signals (160), the T wave alternation ratio (RAOT) (165, 170) on which the decision of existence or not of AOT (175) is calculated is calculated. .
  • RAOT T wave alternation ratio
  • FIG 10 A heartbeat block is shown with an arrhythmia in the fourth heartbeat that causes a deviation from the average frequency in the block. It can be seen that the periodic window w (t) correctly adjusts with the ST-T complexes of the first beats but does not synchronize from said pathological event. In this case, the extraction of the alternation information is not done correctly because of which failures can occur in the detection.
  • Figure 11 the method for frequency normalization per truncated period (180) is shown, from which a periodic ECG signal is obtained from a chosen frequency. This method is used to improve the detection of AOT when the heart rate variability of the heartbeat block is high.
  • Figure 12 the possible physical implementations of the device of the invention and the elements that compose them are shown.
  • FIG. 13 a graphical representation interface of the alternation based on the visualization of the AOT information in time is shown. Different colors are used on the repolarization segment in the representation of the ECG without changing its morphology (255). This result is obtained from the parallel design algorithms and its resolution depends on the number of windows used. The representation is obtained by averaging and temporarily weighing the signal blocks that have obtained the highest RAOT. High powers are identified, with one color and low with another (245, 250).
  • Figure 14 the summary scheme of operation of the device is shown, adaptive modes of operation are included to the conditions of the signal and the actions taken regarding cardiac variability (250) and noise (265). I also know shows the recovery phase of the alternation signal (295) and together with the phases " of presentation and / or transmission of the results (300).
  • X ( ⁇ ) P ( ⁇ ) + V ( ⁇ ).
  • the method performs a preprocessing stage with the objective of extracting said information.
  • First a poisoning is performed on the ST-T complexes of.
  • the chosen period of the window w (t) is equal to the average period of the ECG signal, that is, T b .
  • the pulse width is defined by the variable T w . Choosing different width values you get different work cycles.
  • the power spectral density function S w ( ⁇ ) of the periodic window ⁇ w (i) in the case of the periodic repetition of a rectangular window (Fig. 4) is: where . sin (k ⁇ b T w ) _ c k -, K e ⁇ , k ⁇ y
  • a post-processing stage is applied immediately after poisoned Among the possible actions, a stage consisting in the subtraction of the consecutive repolarization segments extracted is obtained, thus obtaining the differential ECG entangled:
  • the noise is the variable that can mainly mask the detection of AOT.
  • the dependence of the poisoned differential signal on the noise is analyzed in order to evaluate the performance of the proposed method.
  • the statistical properties of the poisoned differential noise function described above are analyzed. If a stationary process is assumed broadly, the autocorrelation function R 1 ⁇ (T) of the differential noise v d ⁇ f) is as shown below:
  • R v ( ⁇ ) is the noise autocorrelation function.
  • the power spectral density function is obtained from the spectral density of the noise S v ( ⁇ ) as the Fourier transform of R v ( ⁇ )
  • the work cycle of the periodic pulse w (t) can be chosen according to certain criteria that allow fine-tuning the detection of AOT, with values between 5% and 45%.
  • n is an integer.
  • the detection of AOT events is subject to the search for the frequency peaks in the harmonics of the multiple frequencies of the alternating wave (Fig. 5), that is, f, / 2 (40), where f c and all its odd multiples that compare with the noise in its vicinity.
  • a T Wave Alternation Ratio RAOT
  • This detection can be performed by thresholding, peak detection techniques, use of neural networks ,. etc.
  • the device of the invention can calculate a Estimated waveform of the alternating wave by an inverse transformation and filtering of the calculated power spectral density.
  • the design scheme proposed in the invention occurs in five different sequential stages (Fig. 6), which are listed in order of application: i Extraction and / or storage of the ECG (80).
  • Its function is to capture the ECG signal that can consist of one or more leads.
  • This capture mechanism is implemented in the device itself (195). Otherwise, it will be responsible for adapting the signals taken by any other device capable of doing so by means of the physical reading of the data or its reception via any means of transmission.
  • Its function is to adapt the input signal to facilitate its analysis, eliminates noise and artifacts such as baseline noise. It can be implemented by any method existing in the state of the art such as linear filtering, nonlinear filtering or multitasking processing.
  • This stage is carried out in parallel in order to improve the resolution of the method.
  • the design scheme is based on the average of the spectra through the poisoning in different areas of the signal.
  • the scanning area on the ST-T complex decreases and it may be the case to cover areas of the ventricular repolarization segment in which there is no AOT being able to exist in adjacent areas.
  • the present invention analyzes the signal by means of different displaced versions of the periodic window, calculating the resulting average spectrum of the product of each of them with the ECG block.
  • This scheme in addition to providing greater robustness against noise, increases the resolution of the detection, eliminating the. effect that can cause the use of windows with small duty cycle.
  • This stage is subdivided into the following blocks to be implemented:
  • a periodic signal is synthesized from a pulse with a period equal to that of the average heartbeat frequency T b (25) and a duty cycle between 5% and 45%.
  • the choice of the duty cycle is determined based on the required resolution by choosing a value of T w
  • the poisoned ECG " with small work cycles extracts a smaller amount of information from the ST-T complex and is affected by noise to a lesser extent, while the poisoned with larger work cycles is more affected by it.
  • the pulse morphology (3p) from which the window is synthesized has an arbitrary waveform, such as, for example, hamming, hanning, triangular, rectangular, Kaiser windows, etc. Or non-parametrized waveforms can also be used as is the case of windows adapted with waveforms similar to the ST-T complex.
  • This stage has the mission of increasing the significance of the alternation on the noise of the signal by means of a processing so that the detection of AOT is favored.
  • the blocks to be implemented will be one or more of the following: • Elimination of the background ECG (145).
  • the background ECG is eliminated together with low frequency noise artifacts, by means of the subtraction of the consecutive repolarization segments extracted.
  • This sub-stage calculates the trend of the signal by partially discriminating the changes that the signal has caused by noise artifacts, so that the information of the AOT is enhanced in the next stage detection.
  • skillful methods are used for this purpose, as is the case of the empirical mode decomposition (EMD: Empirical Mode Decomposition) [HuaO1] that manages to separate the useful information corresponding to the ventricular repolarization of noise and artifacts.
  • EMD Empirical Mode Decomposition
  • HumanaO1 Empirical Mode Decomposition
  • the present invention proposes a method of estimating the trend from the separation that is carried out by means of the partial reconstruction of the signal obtained as the sum of the intrinsic mode functions (MFIs: Intrinsic Mode Functions) that have not been identified as noise .
  • MFIs Intrinsic Mode Functions
  • useful information is determined in the EMD domain using the descriptors Hjorth [Hjo70, Hjo73] and the spectral purity index (SPI: Spectrai Purity Index) [Sor05].
  • Hjorth [Hjo70, Hjo73] the spectral purity index
  • SPI Spectrai Purity Index
  • x [n] 1, ..., N-1, an isolated ST-T complex.
  • the signal s [n] represents the tendency of the original ST-T complex and corresponds to a slow variation signal, while v [n] is characterized as a rapidly varying signal, associated with higher frequency components.
  • the original signal is represented by the EMD decomposition technique:
  • the MFIs Cj [n] of faster oscillations, from the first order, C 1 In], to the order (P-1), c P .i [n], • are considered as non-relevant components to describe Ia ventricular repolarization.
  • the procedure for determining the P index is based on the analysis of the spectral purity index. This parameter is calculated as:
  • SPI ⁇ - m 0 m 4
  • m ⁇ represents the spectral / -th moment of the power spectrum of the signal x [n].
  • the SPI index indicates the extent to which one. Signal can be described by a single frequency.
  • the P index is identified as the first MFI that does not have oscillatory characteristics, starting with higher order MFIs: In other words, the P order of the P-th MFI is obtained when the value of the spectral purity index for That mode takes a certain value.
  • AOT Detection RAOT calculation and decision (100): • Estimation of the power spectral density (160): Its. mission is to calculate the total spectrum of the signal, in particular in the vicinity of the heartbeat frequency (0-5 Hz). Any method existing in the state of the art, both parametric and non-parametric, is valid for implementation. • Search and analysis of peaks in the harmonics of / ⁇ / 2 (165):
  • the results shown for the estimation of the AOT can be one or more of the following:
  • Output Interface It is the interface that transmits the information to a user; to another processing stage or to a device, about the existence or non-existence of AOT in the signal. '
  • the proposed design schemes are based on ECG conditions close to the periodicity for the detection of AOT. These conditions are difficult to achieve in some cases.
  • a signal with high heart rate variability can cause a lack of synchronization between the ECG signal and the window w (t) making the extraction of information from the AOT unsuccessful (Fig. 10).
  • the elements of the sequence consist of the duration of each beat. Assuming that the beats have a standing waveform, the ECG is defined as:
  • This generalized ECG model corresponds to the model described above in the case of samples with little dispersion over the heart rate, that is, with a small standard deviation with respect to the average heart rate. In this case, conditions close to the periodicity and by
  • the ECG model corresponds to the initially described model.
  • the present invention includes a further modification of the method by means of the application of a process of signal period normalization
  • ST-T complex could disappear if all the complexes are normalized with the same temporal width.
  • the solution proposed in this invention is carried out by normalizing the heart rate by truncating the period (180), which consists in the imposition of a constant period for the heartbeat block. This truncation changes the frequency components of the signal but does not modify the temporal information of. The alternation since it does not modify the morphology of the ST-T complex that remains intact.
  • T max be the period imposed in the heartbeat block taken as the maximum of. the interlaced times of the sequence of times T ⁇ ⁇
  • the choice of the truncated period of T max has been proposed in order to ensure that all beats are adjusted for duration within the normalized period and to ensure that the periodic pulse poisoning covers a greater part of the. ST-T complex.
  • the value of the truncated period can be chosen arbitrarily, for example taking a fixed and constant value for the entire analysis, and it can be a user configurable value of the device. .
  • the period used in the normalization must be a default value entered as an input parameter, of the device or as an input value entered by the user of the device depending on the characteristics of the patient in any range of values that allow high enough heart rates.
  • the normalization stage of the described period is applied in cases in which the ECG heart rate variability is high (250) and is performed. subsequent to Ia (120) to the poisoned, synthesizing w (t) (125) from the period T max chosen.

Abstract

Device and method for detecting alternation of cardiac ventricular repolarisation. The method involves extracting ventricular repolarisation information by windowing in continuous time blocks of beats of variable length of a bioelectric heart signal, ECG, where the windowing is effected with a window defined by a periodic adjustable duty-cycle signal.

Description

DISPOSITIVO Y MÉTODO PARA LA DETECCIÓN DE LA ALTERNANCIA DE LA REPOLARIZACIÓN VENTRICULAR MEDIANTE EL ENVENTANADO. DEVICE AND METHOD FOR DETECTION OF THE ALTERNANCE OF VENTRICULAR REPOLARIZATION THROUGH WINDING.
SECTOR DE LA TÉCNICA El objeto de Ia patente es Ia descripción de un método implementable en dispositivos físicos, tanto externos como implantables en el cuerpo humano, para Ia detección de alternantes en Ia repolarización cardiaca. Su uso por Io tanto está destinado al entorno clínico estando incluida en el sector de Ia técnica de Ia instrumentación biomédica.TECHNICAL SECTOR The object of the patent is the description of a method that can be implemented in physical devices, both external and implantable in the human body, for the detection of alternating cardiac repolarization. Its use is therefore intended for the clinical environment, being included in the biomedical instrumentation technique sector.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
La invención consiste en un dispositivo y un método para Ia detección de patrones de alternancia' de Ia onda de repolarización . ventricular sobre señales eléctricas del corazón o electrocardiograma (ECG). El ECG es Ia grabación eléctrica de Ia actividad del corazón y se utiliza para establecer el diagnóstico de enfermedades cardiacas. Cada latido del corazón se compone de un conjunto de ondas que tradicionalmente se; denotan mediante las letras PQRST. El segmento de Ia señal comprendido entre Ia onda S y Ia onda T, referido como complejo ST-T, corresponde con Ia repolarización ventricular y está relacionado con diversas patologías. La alternancia de onda T (AOT) o alternancia de Ia repolarización ventricular se ha propuesto como un indicador de riesgo para el diagnostico de fallos ventricuiares y arritmias ventricuiares. Estudios recientes, han concluido que Ia aparición de AOT es un estratificador del riesgo de padecer muerte súbita cardiaca [GehO5]. Se ha concluido también que Ia AOT puede aparecer en momentos previos a Ia fibrilación ventricular cardiaca y en posteriores a Ia oclusión de las arterias coronarias que también pueden desembocar en episodios de fibrilación ventricular y muerte súbita cardiaca. Su detección puede ser válida para predecir dichos episodios y actuar en consecuencia, por ejemplo en una irriplementación en desfribiladores implantables que pueda complementar y mejorar Ia detección de casos positivos. La AOT consiste en pequeñas variaciones en Ia morfología, amplitud y duración del complejo ST-T que se producen entre latidos consecutivos. En Ia mayor parte de los casos, los episodios de AOT están caracterizados por amplitudes cercanas a los microvoltios haciendo su inspección y reconocimiento visual prácticamente imposibles.The invention is a device and method for detecting alternating patterns' of Ia repolarization wave. ventricular on electrical signals of the heart or electrocardiogram (ECG). The ECG is the electrical recording of the activity of the heart and is used to establish the diagnosis of heart disease. Each heartbeat is made up of a set of waves that are traditionally; denote by the letters PQRST. The segment of the signal between the S wave and the T wave, referred to as the ST-T complex, corresponds to the ventricular repolarization and is related to various pathologies. T-wave alternation (AOT) or alternation of ventricular repolarization has been proposed as a risk indicator for the diagnosis of ventricular failure and ventricular arrhythmias. Recent studies have concluded that the appearance of AOT is a stratifier of the risk of sudden cardiac death [GehO5]. It has also been concluded that AOT can appear before the cardiac ventricular fibrillation and after the occlusion of the coronary arteries that can also lead to episodes of ventricular fibrillation and sudden cardiac death. Its detection can be valid to predict these episodes and act accordingly, for example in an irriplementation in implantable defibrillators that can complement and improve the detection of positive cases. The AOT consists of small variations in the morphology, amplitude and duration of the ST-T complex that occur between consecutive beats. In most of the cases, the AOT episodes are characterized by amplitudes close to the microvolts making their inspection and visual recognition practically impossible.
En Ia figura 1 se muestra un ejemplo de episodio de alternancia de onda T. Considérese que el complejo ST-T en ausencia de episodios de AOT presenta una morfología que podemos asociar con un patrón referenciado como A. En caso de que exista AOT1 se producen variaciones periódicas latido a latido sobre el segmento de repolarización ventricular. En este caso aparece un nuevo patrón sobre el complejo ST-T que se referencia como B. La alternancia consecutiva entre patrones A y B (Fig. 1) se corresponde con un suceso de AOT (ABABABA...). Este fenómeno se refleja en el espectro de Ia señal en las componentes frecuenciales iguales a Ia mitad de Ia frecuencia de latido.Figure 1 shows an example of a T wave alternation episode. Consider that the ST-T complex in the absence of AOT episodes presents a morphology that we can associate with a pattern referenced as A. In case AOT 1 exists periodically, beat-by-beat variations on the ventricular repolarization segment occur. In this case, a new pattern appears on the ST-T complex that is referred to as B. The consecutive alternation between patterns A and B (Fig. 1) corresponds to an AOT event (ABABABA ...). This phenomenon is reflected in the spectrum of the signal in the frequency components equal to half of the beat frequency.
Entre las diversas técnicas de análisis de Ia alternancia de Ia onda T propuestas hasta el presente, se pueden citar: ' • El método espectral [Ros94], [Smi98]: esta técnica propone analizar las variaciones energéticas del espectro frecuencial de Ia señal ECG de las series temporales de un grupo de latidos, de manera que se busque un pico de energía para una frecuencia reveladora de Ia fluctuación buscada.Among the various analysis techniques of the alternation of the T wave proposed to date, we can mention: '• The spectral method [Ros94], [Smi98]: this technique proposes to analyze the energy variations of the frequency spectrum of the ECG signal of the time series of a group of beats, so that a peak of energy is sought for a revealing frequency of the fluctuation sought.
• La técnica de demodulación compleja [Nea91]: esta técnica intenta modellzar Ia fluctuación de Ia amplitud de Ia onda T por una sinusoide de frecuencia 0,5 ciclos por latido y de amplitud y de fase variables, de manera que se asegure un seguimiento dinámico de las variaciones de alternancia de Ia onda T.• The complex demodulation technique [Nea91]: this technique tries to model the fluctuation of the amplitude of the T wave by a sinusoid of frequency 0.5 cycles per beat and of variable amplitude and phase, so as to ensure dynamic tracking of the alternation variations of the T wave.
• La técnica de Ia media móvil modificada [VerOO]: este método consiste en calcular, cada dos latidos, Ia media móvil del nivel de Ia onda T en un punto dado del segmento de repolarización y en cuantificar Ia diferencia de amplitud entre las dos medias. '• The technique of the modified moving average [VerOO]: this method consists in calculating, every two beats, the moving average of the level of the T wave at a given point of the repolarization segment and in quantifying the difference in amplitude between the two means . '
• La técnica de estiramiento [Ber97]: en esta técnica se superpone Ia onda T a una plantilla y Ia componente temporal es estirada de manera que se minimice Ia diferencia entre Ia plantilla y el latido analizado.• The stretching technique [Ber97]: in this technique the T wave is superimposed on a template and the temporal component is stretched so as to minimize the difference between the template and the analyzed beat.
• La técnica por autocorrelación [Bur97]: se trata de una técnica que consiste en cuantificar, en el dominio temporal, las variaciones de amplitud y de morfología de Ia onda de repolarización sobre Ia base de un índice de correlación. Cada onda T se correlaciona con una onda T media representativa de una serie de latidos, traduciéndose una alternancia, positiva o negativa, en una oscilación del índice de correlación alrededor del valor unitario. La serie intef latidos de coeficientes se analiza utilizando un contador de paso por cero en el dominio del tiempo.• The autocorrelation technique [Bur97]: it is a technique that consists in quantifying, in the temporal domain, the amplitude and morphology variations of the repolarization wave based on a correlation index. Each T wave is correlated with a mean T wave representative of a series of beats, translating an alternation, positive or negative, into an oscillation of the correlation index around the unit value. The intef beat series of coefficients is analyzed using a zero-pass counter in the time domain.
« El enfoque mediante wavelets [Cou99]: Ia señal ECG se descompone como una suma de gaussianas que posteriormente se procesan, de manera que se aislan las diferentes componentes de Ia onda (P, QRS y T) y que aparezcan así singularidades, reveladoras en particular de una alternancia para Ia onda T.«The approach using wavelets [Cou99]: the ECG signal is broken down as a sum of Gaussians that are subsequently processed, so that the different components of the wave (P, QRS and T) are isolated and thus appear singularities, revealing in particular of an alternation for the T wave.
• Transformada de Karhunen-Loewe [Lag96]: se emplea Ia. KLT truncada para compactar Ia energía del complejo ST-T en un número reducido de coeficientes para posteriormente analizar las series espectralmente mediante el método de correlación.• Transformed from Karhunen-Loewe [Lag96]: Ia is used. KLT truncated to compact the energy of the ST-T complex in a reduced number of coefficients to subsequently analyze the series spectrally using the correlation method.
• Método de filtrado Capón [MarOO]: es una variante de la demodulación compleja. Se utiliza un filtro FIR que minimiza Ia potencia de Ia señal de salida mientras preserva Ia componente alternante. Se aplica en lugar de un filtro paso bajo invariante.• Filtering method Capón [MarOO]: is a variant of complex demodulation. An FIR filter is used that minimizes the power of the output signal while preserving the alternating component. It is applied instead of an invariant low pass filter.
• Método de proyección Poincaré [StrO2]: los mapas de Poincaré se usan para analizar sistemas dinámicos que muestran periodicidad. Se comienza obteniendo las series de Poincaré tomando muestras en Ia misma fase del complejo ST-T de latidos consecutivos y se representan pares de diferencias entre las muestras de esa serie. La alternancia se identifica cuando dos agrupaciones de puntos separadas están presentes en los mapas.• Poincaré projection method [StrO2]: Poincaré maps are used to analyze dynamic systems that show periodicity. The Poincaré series is obtained by taking samples in the same phase of the ST-T complex of consecutive beats and pairs of differences between the samples of that series are represented. The alternation is identified when two separate point groupings are present on the maps.
• Método de Ia transformada de periodicidad [SriO2a]: Ia transformada de periodicidad se aplica a las series interlatido de algunas características de Ia onda T, como por ejemplo Ia amplitud de pico, área o varianza. Con este método se calcula Ia energía de Ia proyección ortogonal de cada serie en el subespacio de secuencias de periodicidad 2 latidos.• Method of the periodicity transform [SriO2a]: The periodicity transform is applied to the interlaced series of some characteristics of the T wave, such as the peak amplitude, area or variance. With this method, the energy of the orthogonal projection of each series in the subspace of periodicity sequences 2 beats is calculated.
• Método de pruebas estadísticas [SriO2b]: se proponen distintas pruebas estadísticas para Ia detección de AOT. • Método de Ia relación de probabilidad Laplaciana [MarO6]: Dado un modelo de señal en el que se incluye ruido y alternancia, el estimador de máxima probabilidad (MLE) y el test de relación de probabilidad generalizado (GLRT) se pueden utilizar para Ia estimación y detección de alternancia. Se demuestra que Ia función densidad probabilidad del ruido fisiológico se corresponde con una distribución Laplaciana. El MLE y el GLRT para este modelo se basan en filtros de mediana.• Method of statistical tests [SriO2b]: different statistical tests are proposed for the detection of AOT. • Method of the Laplacian probability relation [MarO6]: Given a signal model that includes noise and alternation, the maximum probability estimator (MLE) and the generalized probability relation test (GLRT) can be used for Ia alternation estimation and detection. It is shown that the probability density function of physiological noise corresponds to a Laplacian distribution. The MLE and GLRT for this model are based on median filters.
Los métodos descritos en el estado de Ia técnica para Ia detección de AOT deben hacer frente a dos efectos principales inherentes a las señales ECG. Estos dos efectos son, el ruido de Ia señal ECG y Ia variabilidad de Ia frecuencia cardiaca.The methods described in the state of the art for the detection of AOT must cope with two main effects inherent in ECG signals. These two effects are the noise of the ECG signal and the variability of the heart rate.
• El ruido sobre Ia señal ECG es uno, de los principales problemas para la detección de AOT, especialmente cuando Ia potencia de éste es del mismo orden de magnitud que el de Ia potencia de Ia alternancia. En este caso, puede ocurrir que el ruido oculte las pequeñas variaciones asociadas con Ia AOT. Éste hecho es común para todos los métodos de detección propuestos, no habiéndose dado más solución que Ia inclusión de etapas de pre-procesado para Ia eliminación de ruido.• The noise on the ECG signal is one of the main problems for the detection of AOT, especially when its power is of the same order of magnitude as that of the power of the alternation. In this case, it can happen that the noise conceals the small variations associated with the AOT. This fact is common for all the proposed detection methods, no more solution having been given than the inclusion of preprocessing stages for the elimination of noise.
• La variabilidad de Ia frecuencia cardiaca es otro problema principal en Ia detección de AOT en el sentido de que algunos de los métodos descritos están diseñados con Ia condición necesaria de que Ia señal ECG analizada presente condiciones de estacionaridad en Ia frecuencia cardiaca. Al ser Ia señal ECG una señal de frecuencia variable los métodos de detección requieren Ia obtención de dicha condiciones de proximidad a Ia. periodicidad, mediante acciones externas al análisis de AOT. Las soluciones adaptadas para conseguir estas condiciones consisten en Ia administración de fármacos, como son Ia atropina o Ia dobutamina, o en Ia realización de pruebas de esfuerzo monitorizadas por personal médico. Este factor de variabilidad de Ia frecuencia cardiaca se magnifica cuando el método de detección de AOT necesita un elevado número de latidos para el análisis del ECG ya que se hace complicado que dichas condiciones estacionarias se mantengan en el tiempo. Las técnicas descritas anteriormente utilizan tramas de longitud elevada de al menos 64 a 128 latidos. Estos dos efectos prevalecen en el caso de deterrnu rαuαs seπaies corno suri ios registros Holter o las pruebas de esfuerzo o registros de ergometría.• The variability of the heart rate is another main problem in the detection of AOT in the sense that some of the methods described are designed with the necessary condition that the analyzed ECG signal has stationary conditions in the heart rate. Since the ECG signal is a variable frequency signal, the detection methods require obtaining said conditions of proximity to Ia. periodicity, through actions external to the AOT analysis. The solutions adapted to achieve these conditions consist in the administration of drugs, such as atropine or dobutamine, or in the performance of stress tests monitored by medical personnel. This heart rate variability factor is magnified when the AOT detection method requires a high number of beats for the ECG analysis since it becomes difficult for said stationary conditions to be maintained over time. The techniques described above use frames of high length of at least 64 to 128 beats. These two effects prevail in the case of certain r seu rs as Holter records or stress tests or ergometry records.
La presente invención presenta una nueva técnica de detección, de cuantificación y dé cálculo de Ia forma de onda alternante en él análisis de Ia alternancia de Ia onda T de una señal ECG. Respecto a las técnicas referidas anteriormente, esta invención tiene las siguientes propiedades:The present invention presents a new technique of detection, quantification and calculation of the alternating waveform in the analysis of the alternation of the T wave of an ECG signal. With respect to the techniques referred to above, this invention has the following properties:
- Procesa el ECG en el dominio del tiempo.- Processes the ECG in the time domain.
- Se basa en análisis espectral, pero en lugar de procesar series temporales extraídas del ECG utiliza el ECG como señal original en el análisis.- It is based on spectral analysis, but instead of processing time series extracted from the ECG it uses the ECG as the original signal in the analysis.
- Utiliza un número reducido de latidos en el análisis, 8 a 32, disminuyendo el efecto de variabilidad de Ia frecuencia cardiaca, mejorando Ia resolución del análisis y reduciendo el coste computacional haciéndolo válido para su impϊementación en cualquier dispositivo existente, incluyendo dispositivos portátiles o implantables.- It uses a reduced number of beats in the analysis, 8 to 32, reducing the effect of heart rate variability, improving the resolution of the analysis and reducing the computational cost making it valid for its implantation in any existing device, including portable or implantable devices .
- Es robusto frente al ruido, siendo el método válido para el análisis de cualquier tipo de señal eléctrica del corazón procedente de cualquier fuente o dispositivo existente, entre los cuales se pueden citar, los registros Holter de larga duración, señales procedentes de pruebas de esfuerzo, dispositivos de monitorización cardiaca o señales intracavitarias procedentes de estudios electrofisiológicos o aparatos implantables.- It is robust against noise, being the valid method for the analysis of any type of electrical signal of the heart from any existing source or device, among which we can mention, the long-term Holter registers, signals from stress tests , cardiac monitoring devices or intracavitary signals from electrophysiological studies or implantable devices.
- Además de estimar el nivel de alternancia de Ia señal, permite recuperar Ia forma de onda de Ia alternancia y definir los instantes temporales del ECG sobre los que aparece.- In addition to estimating the level of alternation of the signal, it allows recovering the waveform of the alternation and defining the temporal moments of the ECG on which it appears.
BIBLIOGRAFÍABIBLIOGRAPHY
[Ada81] D. R. Adams, S. Akselrod, and R. J. Cohén, "Estimation of ventricular vulnerability to fibrillation through T-wave time series analisys," Computers in Cardiology, vol. 8, pp. 307-310, 1981.[Ada81] D. R. Adams, S. Akselrod, and R. J. Cohen, "Estimation of ventricular vulnerability to fibrillation through T-wave time series analyzes," Computers in Cardiology, vol. 8, pp. 307-310, 1981.
[Ada84] D. R. Adam, J. M. Smith, S. Akselrod, S. Nyberg, A. O. Powell, and R. J. Cohén, "Fluctuation in T-wave morphology and susceptibility to ventricular fibrillation," Journal of Electrocardiology, vol. 17, pp. 209-218, 1984.[Ada84] D. R. Adam, J. M. Smith, S. Akselrod, S. Nyberg, A. O. Powell, and R. J. Cohen, "Fluctuation in T-wave morphology and susceptibility to ventricular fibrillation," Journal of Electrocardiology, vol. 17, pp. 209-218, 1984.
[Ada99] K. Adachi, Y. Ohnishi, T. Shima, K. Yamashiro, A. Takei, N. Tamura and[Ada99] K. Adachi, Y. Ohnishi, T. Shima, K. Yamashiro, A. Takei, N. Tamura and
M. Yokoyama, "Determinant of microvolt-level T-wave altérnans in patients with dilated cardiomyopathy," Journal of the American College of Cardiology, vol. 34, no 2, pp. 374-380, August 1999.M. Yokoyama, "Determinant of microvolt-level T-wave altérnans in patients with dilated cardiomyopathy, "Journal of the American College of Cardiology, vol. 34, no 2, pp. 374-380, August 1999.
[Ala96] R F. Alajaji, N. Phamdo, and T. Fuja, "Channels codes that éxploit the residual redundancy in CELP-encoded signáis," IEEE Transactions on Speech and[Ala96] R F. Alajaji, N. Phamdo, and T. Fuja, "Channels codes that exeploit the residual redundancy in CELP-encoded mean," IEEE Transactions on Speech and
Audio Processing, vol. 4, no. 5, pp. 325-336, September 1996.Audio Processing, vol. 4, no. 5, pp. 325-336, September 1996.
[Ber97] Berger R et al., Beat-to-Beát QT Interval Variability: Novel Evidence for Repolarizatioh Ability in Ischemic and Non-lschemlc Dilated Cardiomyopathy, Circulation 96:1557-1565; 1997.[Ber97] Berger R et al., Beat-to-Beát QT Interval Variability: Novel Evidence for Repolarizatioh Ability in Ischemic and Non-lschemlc Dilated Cardiomyopathy, Circulation 96: 1557-1565; 1997
[Bur97] L. Buratini, W. Zareba, J. P. Couderc, E. L. Titlebaum, and A. J. Moss, "Computer detection of nonstationary T-wave altemañs using a new correlative method," Computers in Cardiology, vol. 24, pp. 657-660, 1997.[Bur97] L. Buratini, W. Zareba, J. P. Couderc, E. L. Titlebaum, and A. J. Moss, "Computer detection of nonstationary T-wave altemañs using a new correlative method," Computers in Cardiology, vol. 24, pp. 657-660, 1997.
[Bur99] L. Buratini, W. Zareba, and A. J. Moss, "Correlation method for detection of transient T-wave alternans in digital Holter ECG recording," Annals of Noninvasive Electrocardiology, vol. 4, no 4, pp. 416-426, 1999.[Bur99] L. Buratini, W. Zareba, and A. J. Moss, "Correlation method for detection of transient T-wave alternans in digital Holter ECG recording," Annals of Noninvasive Electrocardiology, vol. 4, not 4, pp. 416-426, 1999.
[Cou99] Couderc JP et al., Beat-to-Beat Repolarization Variability in LQTS Patients with the SCN5A Sodium Channel Gene Mutation, PACE 22, 1581-1592; 1999[Cou99] Couderc JP et al., Beat-to-Beat Repolarization Variability in LQTS Patients with the SCN5A Sodium Channel Gene Mutation, PACE 22, 1581-1592; 1999
[Gar75] W. A. Gardner and L E. Franks, "Characterization of cyclostationary random signal processes," IEEE Transactions on Information Theory, vol. 21 , no. 1 , pp. 4-14, Jan. 1975.[Gar75] W. A. Gardner and L E. Franks, "Characterization of cyclostationary random signal processes," IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 4-14, Jan. 1975.
[GehO5] A. K. Gehi, R. H. Stein, L. D. Metz, and J. A. Gomes, "Microvolt T-wave alternans for the risk stratification of ventricular tachyarrithmic events," Journal of the American College of Cárdiológy, vol. 46, no. 1 , pp. 75-82, Mar 2005. [Est97] N. A. M. Esteslll, G. Michaud, D. P. Zipes, N. El-Sherif, F. J. Venditti, D. S. Rosenbaum, P. Albrecht, P. J, Wang, and R. J. Cohén, "Electrical Alternans During Rest and Exercise as Predictors of Vulnerability to Ventricular Arrhythmias," The[GehO5] A. K. Gehi, R. H. Stein, L. D. Metz, and J. A. Gomes, "Microvolt T-wave alternans for the risk stratification of ventricular tachyarrithmic events," Journal of the American College of Cárdiologíay, vol. 46, no. 1, pp. 75-82, Mar 2005. [Est97] NAM Esteslll, G. Michaud, DP Zipes, N. El-Sherif, FJ Venditti, DS Rosenbaum, P. Albrecht, P. J, Wang, and RJ Cohen, "Electrical Alternans During Rest and Exercise as Predictors of Vulnerability to Ventricular Arrhythmias, "The
American Journal of Cardiology, vol. 80, no 10, pp. 1314-1318, November 1997.American Journal of Cardiology, vol. 80, no 10, pp. 1314-1318, November 1997.
[Hua01] NE Huang, Z Shen, SR Long, MC Wu, EH Shih, Q Zheng, "The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysls", Proceedings of the Royal Society of London, 0962-8452 vol: 454 [Hjo70] B. Hjorth, "EEG analysis básed on time domain," Electroencephalography and Clinical Neurolophysiology, vol. 29, pp. 306-310, 1970.[Hua01] NE Huang, Z Shen, SR Long, MC Wu, EH Shih, Q Zheng, "The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysls", Proceedings of the Royal Society of London, 0962- 8452 vol: 454 [Hjo70] B. Hjorth, "EEG analysis based on time domain," Electroencephalography and Clinical Neurolophysiology, vol. 29, pp. 306-310, 1970.
[Hjo73] B. Hjorth, "The physical significance of time domain descriptors in . EEG analysis," Electroencephalography and Clinical Neurolophysiology, vol. 34, pp. 321-[Hjo73] B. Hjorth, "The physical significance of time domain descriptors in. EEG analysis," Electroencephalography and Clinical Neurolophysiology, vol. 34, pp. 321-
325, 1973. .325, 1973..
[JyhO1] Jyh-Jong Wei, Chuang-Jan Chang, Nai-Kuan Chou, and Gwo-Jen Jan, "ECG Data Compression Using Truncated Singular Valué Decomposition" IEEE Trahsactions on Information Technology In Biomedicine, VoI. 5, No. 4, December[JyhO1] Jyh-Jong Wei, Chuang-Jan Chang, Nai-Kuan Chou, and Gwo-Jen Jan, "ECG Data Compression Using Truncated Singular Valué Decomposition" IEEE Trahsactions on Information Technology In Biomedicine, VoI. 5, No. 4, December
2001.2001
[Lag96] P. Laguna,, M. Ruiz, G. B. Moody, and R. G. Mark, "Repolarization alternans detection using the KL transform and the beatquency spectrum," Computers in Cardiology, vol. 23, pp. 673-676, 1996.[Lag96] P. Laguna ,, M. Ruiz, G. B. Moody, and R. G. Mark, "Repolarization alternans detection using the KL transform and the beatquency spectrum," Computers in Cardiology, vol. 23, pp. 673-676, 1996.
[MarOO] J, P. Martínez, S. Olmos, and P. Laguna, "Simulation study and performance evaluatíon of T-wave alternans detectors," Proceedings of 22πd Conf. IEEE EMBS (CD-ROM), 2000.[MarOO] J, P. Martínez, S. Olmos, and P. Laguna, "Simulation study and performance evaluation of T-wave alternans detectors," Proceedings of 22 πd Conf. IEEE EMBS (CD-ROM), 2000.
[MarO5] J. P. Martínez and S. Olmos, "Methodological principies of T wave alternans analisys: A unified framework," IEEE Transactions on Biomedical Engineering, vol. 52, no 4, pp. 599-613, Apr 2005.[MarO5] J. P. Martínez and S. Olmos, "Methodological principies of T wave alternans analisys: A unified framework," IEEE Transactions on Biomedical Engineering, vol. 52, no 4, pp. 599-613, Apr 2005.
[MarO6] J. P. Martínez, S. Olmos, G. Wagner, and P' Laguna, "Characterization of[MarO6] JP Martínez, S. Olmos, G. Wagner, and P ' Laguna, "Characterization of
Repolarization alternans during ischemia: Time-course and spatial analysis," IEEE Transactions on Biomedical Engineering, vol. 53, no 4, pp. 701-711, Apr 2006.Repolarization alternans during ischemia: Time-course and spatial analysis, "IEEE Transactions on Biomedical Engineering, vol. 53, no 4, pp. 701-711, Apr 2006.
[Nea91] B. D. Nearing, A. H. Huang, and R. L. Verier, "Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wáve," Science, no 252, pp. 437-[Nea91] B. D. Nearing, A. H. Huang, and R. L. Verier, "Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wáve," Science, no 252, pp. 437-
440, 1991.440, 1991.
[Nea93] B. D. Nearing and R. L. Verier, "Personal computer system for tracking cardiac vulnerability by complex demodulation of the T-wave," Journal of Applied Physiology, vol. 74, no 5, pp. 2606-2612, 1993. [NeaO2] B. D. Nearing and R. L. Verrier, "Modified moving average analysis of T- wave altemans to predict ventricular fibrillation with high accuracy," Journal of Applied Physiology, vol. 92, pp. 541-549, 2002.[Nea93] BD Nearing and RL Verier, "Personal computer system for tracking cardiac vulnerability by complex demodulation of the T-wave," Journal of Applied Physiology, vol. 74, no 5, pp. 2606-2612, 1993. [NeaO2] BD Nearing and RL Verrier, "Modified moving average analysis of T-wave altemans to predict ventricular fibrillation with high accuracy," Journal of Applied Physiology, vol. 92, pp. 541-549, 2002.
[Ram97] A. G. Ramakrishnán, and Supratim Sana, "ECG Coding by Wavelet- Based Linear Prediction", IEEE Transactions on Biomedical Engineering, vol. 44, no. 12, december 1997.[Ram97] A. G. Ramakrishnan, and Supratim Sana, "ECG Coding by Wavelet- Based Linear Prediction", IEEE Transactions on Biomedical Engineering, vol. 44, no. 12, December 1997.
[Ros94] D. S. Rosembaum, L. E. Jackson, J. M. Smith, H. Garan, J. N. Rushin, and R. J. Cohén, "Electrical alternans and vulnerability to ventricular arrhytmias," New England Journal of Medicine, vol. 330, no 4, pp. 235-241, Jan 1994.[Ros94] D. S. Rosembaum, L. E. Jackson, J. M. Smith, H. Garan, J. N. Rushin, and R. J. Cohen, "Electrical alternans and vulnerability to ventricular arrhytmias," New England Journal of Medicine, vol. 330, no 4, pp. 235-241, Jan 1994.
[Ros96] D. S. Rosembaum, L E. Jackson, and R. J. Cohén, "Predicting sudden cardiac death from T wave alternans of the surface electrocardiogram: promise and pitfalls," Journal of Cardiovascular Electrophisiology, vol. 7, no 11, pp. 1095-1111 , Nov 1996.[Ros96] D. S. Rosembaum, L. Jackson, and R. J. Cohen, "Predicting sudden cardiac death from T wave alternans of the surface electrocardiogram: promise and pitfalls," Journal of Cardiovascular Electrophisiology, vol. 7, no 11, pp. 1095-1111, Nov 1996.
[SalO7] K. E. Salber, "Ethical issues in defibrillator patients' quaüty of life," IEEE[SalO7] K. E. Salber, "Ethical issues in defibrillator patients' quaüty of life," IEEE
Engineering in Medicine and Biology Magazine, May/June 2007.Engineering in Medicine and Biology Magazine, May / June 2007.
[Smi98] J. M. Smith, E. A. Clancy, C. R. Valeri, J. N. Rushin, and R. J. Cohén, "Electrical alternans and cardiac electrical instability," Circulation, vol. 77, no 1, pp. 110-121 ,1998.[Smi98] J. M. Smith, E. A. Clancy, C. R. Valeri, J. N. Rushin, and R. J. Cohen, "Electrical alternans and cardiac electrical instability," Circulation, vol. 77, no 1, pp. 110-121, 1998.
[Sor05] L. Sδmmo and P. Laguna, Bioelectrical signal processing ¡n cardiac and neurological applications. Elsevier Academic Press, 2005.[Sor05] L. Sδmmo and P. Laguna, Bioelectrical signal processing ¡n cardiac and neurological applications. Elsevier Academic Press, 2005.
[SriO2a] T. Srikanth, D. Lin, N. Kanaan, and H. Gu, "Estimation of low level alternans using périodicity transform simulation and european ST-T datábase results," Proceédings of 24th Conf. IEEE EMBS, pp. 1407-1408, 2002.[SriO2a] T. Srikanth, D. Lin, N. Kanaan, and H. Gu, "Estimation of low level alternans using périodicity transform simulation and european ST-T data results," Proceedings of 24th Conf. IEEE EMBS, pp. 1407-1408, 2002.
[Sr¡02b] T. Srikanth, D. Lin, N. Kanaan, and H. Gu, "Presence of T-wave alternans in the statistícal context-Á new approach to low amplitude alternans measurement,"[Sr¡02b] T. Srikanth, D. Lin, N. Kanaan, and H. Gu, "Presence of T-wave alternans in the statistícal context-Á new approach to low amplitude alternans measurement,"
Computers in Cardiology, vol. 29, pp. 681-684, 2002. [StrO2] P. Strumillo and J. Ruta, "Poincaré mapping for detecting abnormal dynamics of cardiac. repolarization," IEEE Engineering ¡n Medicine and Biology Magazine, vol. 21 , no 1, pp. 62-65, 2002.Computers in Cardiology, vol. 29, pp. 681-684, 2002. [StrO2] P. Strumillo and J. Ruta, "Poincaré mapping for detecting abnormal dynamics of cardiac. Repolarization," IEEE Engineering in Medicine and Biology Magazine, vol. 21, no 1, pp. 62-65, 2002.
[Tap01] J. M. Tapanainén, A. M. Still, K. E. Airaksinen, and H. V. Huikuri, "Pronostic significance of risk stratifiers of mortality, including T wave alternans, after acute myocardial infarction: Results of a prospective follow-up study," Journal of Cardiovascular Eletrophysiology, vol. 12, no. 6, pp. 645-652, June 2001.[Tap01] JM Tapanainén, AM Still, KE Airaksinen, and HV Huikuri, "Pronostic significance of risk stratifiers of mortality, including T wave alternans, after acute myocardial infarction: Results of a prospective follow-up study," Journal of Cardiovascular Eletrophysiology, vol. 12 no. 6, pp. 645-652, June 2001.
[VerO3] R. L. Verrier, B. D. Nearlng, M. T. Ia Rovere, G. D. Pinna, M. A. Mittieman, J. T. Bigger, and P. J. Schwartz, "Ambulatory electrocardiogram-based tracking of T wave alternans in postmyocardial infarctio^ patients to asses risk of cardiac arrest of arrhytmic death," Journal of Cardiovascular Electrophysiology, vol. 14, pp.[VerO3] RL Verrier, BD Nearlng, MT Ia Rovere, GD Pinna, MA Mittieman, JT Bigger, and PJ Schwartz, "Ambulatory electrocardiogram-based tracking of T wave alternans in postmyocardial infarctio ^ patients to asses risk of cardiac arrest of arrhytmic death , "Journal of Cardiovascular Electrophysiology, vol. 14, pp.
705-711 , JuIy 2003.705-711, June 2003.
EXPLICACIÓN DE LA INVENCIÓN La invención descrita tiene como objetivo Ia detección de Alternancia de Onda T (AOT) mediante el análisis de las componentes frecuenciales preferiblemente a Ia mitad de Ia frecuencia de, latido. Los métodos de detección que se proponen se aplican sobre bloques de señal ECG formados por varios latidos. .Para modelar cada uno de estos bloques de señal cardiaca se consideran dos propiedades: proximidad a condiciones de periodicidad y proximidad a condiciones estacionarias. Con el fin de conseguir dichas condiciones el funcionamiento de Ia invención se basa en el análisis de bloques con una cantidad reducida de latidos (Fig. 2). Por un lado se consigue disminuir Ia variabilidad de frecuencia cardiaca del bloque favoreciendo así condiciones próximas a la periodicidad. Por otro lado se consigue que Ia sucesión de ondas PQRST de cada latido sea estacionaria (Fig. 3).EXPLANATION OF THE INVENTION The described invention aims at the detection of T Wave Alternation (AOT) by analyzing the frequency components preferably at half of the heartbeat frequency. The proposed detection methods are applied on ECG signal blocks formed by several beats. To model each of these heart signal blocks, two properties are considered: proximity to periodicity conditions and proximity to stationary conditions. In order to achieve said conditions, the operation of the invention is based on the analysis of blocks with a reduced amount of beats (Fig. 2). On the one hand it is possible to reduce the heart rate variability of the block thus favoring conditions close to periodicity. On the other hand it is achieved that the succession of PQRST waves of each beat is stationary (Fig. 3).
El método que se propone en Ia invención está basado en Ia relación teórica existente entre Ia frecuencia cardiaca y Ia frecuencia de las ondas de Ia alternancia. Se considera que el ECG consiste en una señal estacionaria. Sea fc Ia frecuencia cardiaca media en un instante determinado del ECG. En estas condiciones Ia aparición de un suceso de AOT, que se manifiesta de manera periódica cada dos latidos, se reflejará en el espectro de frecuencias a Ia mitad de Ia frecuencia media cardiaca f</2. El método propuesto en Ia invención realiza el tratamiento del ECG directamente en el dominio del tiempo. EI análisis se realiza sobre bloques segmentados de L latidos. La descripción de Ia señal ECG, po(t), se basa en un modelo aditivo que se obtiene a partir de Ia repetición periódica de un único latido q(t). De este modo bloque de L latidos, para todo L par y sin pérdida de generalidad, se expresa como: po(t) = ∑q(t-ιτb),The method proposed in the invention is based on the theoretical relationship between the heart rate and the frequency of the alternating waves. The ECG is considered to consist of a stationary signal. Let f c be the average heart rate at a given time of the ECG. Under these conditions, the occurrence of an AOT event, which is manifested periodically every two beats, will be reflected in the frequency spectrum at half of the average heart rate f < / 2. The method proposed in the invention performs the ECG treatment directly in the time domain. The analysis is performed on segmented blocks of L beats. The description of the ECG signal, p or (t), is based on an additive model that is obtained from the periodic repetition of a single beat q (t). In this way block of L beats, for all L even and without loss of generality, it is expressed as: p o (t) = ∑q (t-ιτ b ),
;=o donde Tb- es el periodo del bloque de latidos. Por ser p(t) una función periódica su espectro de frecuencias P0(O)) consiste en un tren de pulsos en las frecuencias múltiplos de Ia frecuencia media de latido. PQ(ω) = 2π∑ ak -δ(ω --£-) , k=-∞ J- b donde ak son los coeficientes del desarrollo en serie de Fourier de pϋ(t) .; = or where T b - is the period of the heartbeat block. Since p (t) is a periodic function, its frequency spectrum P 0 (O)) consists of a train of pulses at the multiple frequencies of the average beat frequency. P Q (ω) = 2π∑ a k -δ (ω - £ -), k = -∞ J- b where a k are the Fourier series development coefficients of p ϋ (t).
La aparición de AOT se modela como una componente aditiva ε(t) de una función de onda alternante que se supone de morfología, duración y amplitud arbitrarias. Esta función se repite cada par de latidos, por Io que su frecuencia es Ia mitad de Ia frecuencia cardiaca. Añadiendo dicha función al modelo de señal ECG propuesto se obtiene Ia siguiente función:The appearance of AOT is modeled as an additive component ε (t) of an alternating wave function that is assumed to arbitrary morphology, duration and amplitude. This function is repeated every couple of beats, so its frequency is half of the heart rate. Adding said function to the proposed ECG signal model, the following function is obtained:
L L 12L L 12
Jp(0 = ∑?(í-/2;) + ∑6(í-2/réX - I e Z, L par, J p (0 = ∑ ? (Í- / 2;) + ∑6 (í-2 / r é X - I e Z, L par,
/=0 Z=O cuya transformada de Fourier es:
Figure imgf000012_0001
Donde bk que son ios coeficientes del desarrollo én serie de Fourier de Ia extensión periódica de Ia función de onda alternante. La AOT se manifiesta en el espectro como funciones impulso que se repiten en las frecuencias múltiplo de Ia mitad de Ia frecuencia de latido. El objetivo del método propuesto en Ia invención es el de extraer Ia información de los coeficientes bk de Ia onda alternante respecto al resto de Ia señal de ECG junto con el ruido que pudiera existir. Para ello el método de Ia invención debe incrementar Ia significancia de los armónicos de Ia AOT en relación con los armónicos principales de Ia señal y del ruido.
/ = 0 Z = O whose Fourier transform is:
Figure imgf000012_0001
Where b k are the coefficients of the Fourier series development of the periodic extension of the alternating wave function. The AOT is manifested in the spectrum as impulse functions that are repeated at frequencies multiple of half of the beat frequency. The objective of the method proposed in the invention is to extract the information of the coefficients b k of the alternating wave with respect to the rest of the ECG signal together with the noise that could exist. For this, the method of the invention must increase the significance of the harmonics of the AOT in relation to the main harmonics of the signal and the noise.
El método propuesto en Ia invención se adapta a diferentes modos de funcionamiento o implementaciones. Estas implementaciones pueden ser dispositivos materiales fijos, portátiles o ¡mplantables. Se definen tres tipos de modos de operación aplicables a los tres tipos de implementación de Ia invención. Estos son, funcionamiento en modo normal, funcionamiento en modo ruidoso y funcionamiento en tiempo real. El funcionamiento en modo normal se propone para el análisis de señales en condiciones estables como puede ser el caso de registros de ECG tomados en centros médicos en condiciones de bajo nivel de ruido. Los resultados clínicos de este método son Ia potencia de alternancia estimada y Ia forma de onda de Ia alternancia.The method proposed in the invention adapts to different modes of operation or implementations. These implementations can be fixed, portable or implantable material devices. Three types of modes of operation applicable to the three types of implementation of the invention. These are, operation in normal mode, operation in noisy mode and operation in real time. The operation in normal mode is proposed for the analysis of signals in stable conditions such as ECG records taken in medical centers under low noise conditions. The clinical results of this method are the estimated alternating power and the alternating waveform.
El funcionamiento en modo ruidoso se propone para el análisis de señales en condiciones inestables con alto nivel de ruido, como pueden ser señales provenientes de registros Holter de larga duración o de pruebas de esfuerzo. El resultado clínico de este modo de operación es Ia potencia de alternancia estimada.The operation in noisy mode is proposed for the analysis of signals in unstable conditions with high noise level, such as signals from long-term Holter registers or stress tests. The clinical result of this mode of operation is the estimated alternating power.
El funcionamiento en tiempo real se propone para Ia implementación de dispositivos en los cuales Ia detección de Ia AOT se debe realizar en un intervalo de tiempo conocido Io suficientemente pequeño para Ia toma de decisiones. Este modo está indicado en implementaciones de dispositivos implantables, como el caso de desfibriladores implantables y los marcapasos, en los cuales el nivel de ruido de Ia señal intracavitaria es bajo. La detección de AOT se utiliza como un parámetro añadido en Ia detección de fenómenos de fibrilación ventricular y muerte súbita cardiaca.The real-time operation is proposed for the implementation of devices in which the detection of the AOT must be carried out in a known time interval that is sufficiently small for decision making. This mode is indicated in implementations of implantable devices, such as the case of implantable defibrillators and pacemakers, in which the noise level of the intracavitary signal is low. The detection of AOT is used as an added parameter in the detection of ventricular fibrillation phenomena and sudden cardiac death.
Las posibles implementaciones de Ia invención pueden incluir una o varias de las siguientes características:The possible implementations of the invention may include one or more of the following characteristics:
- Un mecanismo para Ia extracción de señales ECG implementado en el propio dispositivo o un mecanismo que permita obtener las señales desde otro dispositivo capacitado para ello (195).- A mechanism for the extraction of ECG signals implemented in the device itself or a mechanism that allows obtaining the signals from another device capable of doing so (195).
- Uno o varios dispositivos de presentación gráfica que permitan Ia visualización de Ia señal fisiológica capturada con una o varias derivaciones así como de los resultados del análisis, como por ejemplo una pantalla o cualquier medio de impresión (215, 220, 210, 225, 235). - Uno o varios mecanismos de comunicación que permitan el envío de comandos de control del dispositivo o Ia transmisión de información a otro dispositivo basado en cualquier sistema de comunicación conocido inalámbrico o mediante cable (235).- One or several graphic presentation devices that allow the visualization of the physiological signal captured with one or more leads as well as the results of the analysis, such as a screen or any printing medium (215, 220, 210, 225, 235 ). - One or several communication mechanisms that allow the sending of control commands of the device or the transmission of information to another device based on any known wireless or cable communication system (235).
- Uno o varios dispositivos de almacenamiento de datos basado en discos de estado sólido o magnético (185), extraíbles o no, que permitan almacenar señales, resultados, o datos de ejecución necesarios en Ia operación del dispositivo. - Un interfaz de operación basado en un teclado (200), ratón (205) o botones de operación (230).- One or more data storage devices based on solid or magnetic state disks (185), removable or not, that allow storing signals, results, or execution data necessary in the operation of the device. - An operation interface based on a keyboard (200), mouse (205) or operation buttons (230).
Los resultados mostrados para Ia estimación de Ia AOT pueden ser uno o varios de los siguientes:The results shown for the estimation of the AOT can be one or more of the following:
El valor de Ia estimación de potencia, que puede, darse en unidades de voltaje como por ejemplo voltios o de potencia como por ejemplo vatios (220).The value of the power estimate, which can be given in voltage units such as volts or power such as watts (220).
La zona del ECG en Ia que aparece Ia alternancia de manera superpuesta al ECG en el eje de tiempos. Ya que Ia amplitud de Ia onda alternante es despreciable respecto a Ia potencia de Ia señal, ésta superposición se representará con un color diferente. Para disponer de Ia información de Ia potencia de Ia onda se incluyen gradientes de color que permitan diferenciar los instantes temporales en los qué haya mayor potencia de Ia onda alternante de aquellos que tienen una potencia menor (225).The zone of the ECG in which the alternation appears superimposed on the ECG in the time axis. Since the amplitude of the alternating wave is negligible with respect to the power of the signal, this superposition will be represented with a different color. To have the information on the power of the wave, color gradients are included that allow differentiating the temporal instants in which there is greater power of the alternating wave from those with a lower power (225).
La forma de onda estimada de Ia onda alterante correspondiente (215).The estimated waveform of the corresponding alterating wave (215).
La presentación de los resultados comentados en el dispositivo puede ser conjunta con otros datos fisiológicos de Ia señal o del paciente que se estimen oportunos (210). Entre ellos, a modo de ejemplo se incluyen, Ia estimación del nivel de ruido de Ia señal, el ritmo cardiaco, el ritmo respiratorio, los valores de variabilidad cardiaca, presión sanguínea, datos referentes a Ia pruebas de gasometría, etc.The presentation of the results commented on the device can be combined with other physiological data of the signal or of the patient that are considered appropriate (210). Among them, by way of example, the estimation of the noise level of the signal, the heart rate, the respiratory rate, the values of cardiac variability, blood pressure, data referring to the gasometry tests, etc. are included.
DESCIPCIÓN DE LAS FIGURAS: Figura 1: se muestra un ejemplo esquemático con Ia sucesión, de patrones ABABA... sobre el segmento de repolarización que ilustra un episodio de AOT. Figura 2: con el fin de caracterizar Ia variabilidad de Ia frecuencia cardiaca, se muestran los histogramas de Ia desviación estándar de Ia frecuencia cardiaca para un mismo grupo de señales ECG procedentes de pruebas de ergometría para bloques de longitudes de 8, 16, 32, 64 y 128 latidos. En el eje de ordenadas se muestran los valores de desviación estándar de Ia frecuencia cardiaca y en el eje de abscisas el número de veces que aparecen dichos valores de desviación. Las escalas en el eje de ordenadas de Ia gráfica anterior son diferentes para poder apreciar las distribuciones de los casos de 64 y 128 latidos. Como se puede comprobar, para un menor bloque de latidos Ia desviación estándar de Ia frecuencia cardiaca es menor. En estas condiciones de análisis con el uso de bloques de latidos con longitudes de 8, 16 e incluso 32 latidos se obtienen variabilidades sobre Ia frecuencia menores por Io que. se suponen condiciones de proximidad a Ia periodicidad.DISCUSSION OF THE FIGURES: Figure 1: a schematic example with the sequence of ABABA patterns is shown ... on the repolarization segment that illustrates an AOT episode. Figure 2: in order to characterize the heart rate variability, the histograms of the standard deviation of the heart rate are shown for the same group of ECG signals from ergometry tests for blocks of lengths of 8, 16, 32, 64 and 128 beats. In the ordinate axis the standard deviation values of the heart rate are shown and in the abscissa axis the number of times said deviation values appear. The scales in the axis of ordinates of the previous graph are different to be able to appreciate the distributions of the cases of 64 and 128 beats. As can be seen, for a smaller heartbeat block the standard deviation of the heart rate is smaller. Under these conditions of analysis with the use of heartbeat blocks with lengths of 8, 16 e even 32 beats, lower frequency variabilities are obtained by what. conditions of proximity to the periodicity are assumed.
Figura 3: se muestran 128 latidos aislados procedentes de un registro Holter alineados a partir del complejo QRS. Como puede apreciarse Ia morfología de las ondas no tiene una gran variación. Por Io tanto se puede suponer que Ia señal cardiaca consiste en una forma de onda que se repite en determinados instantes temporales para dar lugar a un latido cardiaco. Figure 3: 128 isolated beats from a Holter register aligned from the QRS complex are shown. As can be seen, the morphology of the waves does not have a great variation. Therefore, it can be assumed that the cardiac signal consists of a waveform that is repeated at certain time points to give rise to a heartbeat.
Figura 4: se muestra un ejemplo de ventana utilizada para Ia extracción de Ia información de AOT. Esta ventana se sintetiza a partir de Ia repetición periódica de unFigure 4: an example of a window used for the extraction of AOT information is shown. This window is synthesized from the periodic repetition of a
T - , pulso cuadrado con un ciclo de trabajo variable (20, 25) de — — - 100%.T -, square pulse with a variable duty cycle (20, 25) of - - - 100%.
Figura 5: se muestra el espectro correspondiente a un bloque de 32 latidos con una frecuencia de 71.2 latidos por minuto (1.8 Hz). Como puede apreciarse los armónicos que reflejan Ia AOT están situados en los múltiplos impares de Ia mitad de Ia frecuencia de latido de 0.6 Hz (40, 45, 50, 55). La señal utilizada en Ia simulación ha sido creada utilizando ruido fisiológico aditivo. Para el ejemplo se ha utilizado un pulso periódico rectangular a Ia frecuencia de latido con un ciclo de trabajo del 25%. Figura 6: se muestra el algoritmo secuencial de funcionamiento. Se diferencian las etapas de Extracción y/o almacenamiento del ECG (80), adecuación de Ia señal, y eliminación d© ruido y artefactos (85), extracción de Ia información de AOT mediante Ia síntesis de una ventana periódica y enventanado de Ia señal (90), post-procesado para Ia mejora de detección de AOT (95), detección de AOT a partir del cálculo del RAOT. Y para finalizar las etapas que se pueden implementar de manera conjunta o por separado para Ia presentación de resultados (110) y el envío de datos a Ia interfaz de salida (105). Figura 7: se muestra el algoritmo que permite Ia extracción de Ia información relacionada con Ia AOT mediante él enventanado de una función periódica. Para ello se calcula Ia frecuencia media del bloque de latidos (115, 120) y se sintetiza una ventana periódica que será multiplicada por el bloque (125, 35, 20, 25, 140). Con el fin de aumentar Ia resolución y Ia sensibilidad en Ia detección, el enventanado se realiza con un número variable de ventanas que consisten en versiones desplazadas en el tiempo de Ia original (135). El número de ventanas utilizadas dependerá de las condiciones de Ia señal así como de las características, de procesamiento y memoria del dispositivo físico donde se implemente el procedimiento. Figura 8: se muestra un esquema de diseño de Ia etapa para Ia mejora de Ia detección de AOT. Esta etapa aumenta Ia significancia de Ia información que identifica Ia AOT. Las acciones tomadas son Ia siguientes: eliminación de ruido, artefactos y del EQG de fondo (145, 155) y estimación de Ia tendencia de Ia señal (150). Figura 9: se muestra el esquema de diseño de Ia etapa destinada a Ia detección de Ia AOT, a partir de Ia estimación de Ia densidad espectral de potencia de las. señales enventanadas (160) se calcula Ia relación de alternancia de onda T (RAOT) (165, 170) sobre el cual se toma Ia decisión de existencia o no de AOT (175). .Figure 5: the spectrum corresponding to a block of 32 beats with a frequency of 71.2 beats per minute (1.8 Hz) is shown. As can be seen, the harmonics that reflect the AOT are located in the odd multiples of half of the beat frequency of 0.6 Hz (40, 45, 50, 55). The signal used in the simulation has been created using additive physiological noise. For the example, a periodic periodic pulse has been used at the beat frequency with a 25% duty cycle. Figure 6: the sequential operation algorithm is shown. The stages of Extraction and / or storage of the ECG (80), adaptation of the signal , and elimination of noise and artifacts (85), extraction of the AOT information by means of the synthesis of a periodic and poisoned window of the signal are differentiated (90), post-processing for the improvement of AOT detection (95), detection of AOT from the calculation of RAOT. And to finalize the stages that can be implemented jointly or separately for the presentation of results (110) and the sending of data to the output interface (105). Figure 7: the algorithm that allows the extraction of information related to the AOT through it poisoned from a periodic function is shown. For this, the average frequency of the heartbeat block (115, 120) is calculated and a periodic window that will be multiplied by the block (125, 35, 20, 25, 140) is synthesized. In order to increase the resolution and the sensitivity in the detection, the poisoning is performed with a variable number of windows consisting of versions displaced in time from the original (135). The number of windows used will depend on the conditions of the signal as well as the characteristics, processing and memory of the physical device where the procedure is implemented. Figure 8: a design scheme of the stage for the improvement of AOT detection is shown. This stage increases the significance of the information that identifies the AOT. The actions taken are the following: elimination of noise, artifacts and the background EQG (145, 155) and estimation of the trend of the signal (150). Figure 9: the design scheme of the stage destined to the detection of AOT is shown, based on the estimation of the power spectral density of the. Poisoned signals (160), the T wave alternation ratio (RAOT) (165, 170) on which the decision of existence or not of AOT (175) is calculated is calculated. .
Figura 10: se muestra un bloque de latidos con una arritmia en el cuarto latido que provoca una desviación de la frecuencia media en el bloque. Se puede apreciar que Ia ventana periódica w(t) ajusta correctamente con los complejos ST-T de los primeros latidos pero que no se sincroniza a partir de dicho suceso patológico. En este caso Ia extracción de la información de alternancia no se hace de manera correcta por Io que se pueden producir fallos en Ia detección. Figura 11 : se muestra el método para Ia normalización de frecuencia por periodo truncado (180), a partir del cual se obtiene una señal ECG periódica a partir de una frecuencia elegida. Este método se utiliza para mejorar Ia detección de ÁOT cuando Ia variabilidad de Ia frecuencia cardiaca del bloque de latidos es elevada. Figura 12: se muestran las posibles implementaciones físicas del dispositivo de Ia invención y los elementos que los componen. Existen dos tipos de implementaciones, un dispositivo con pantalla para el análisis de los datos (190) y otra versión válida para un dispositivo implantable (240) como puede ser un desfibrilador. Figura 13: se muestra una interfaz de representación gráfica de Ia alternancia basada en Ia visualización de Ia información de AOT en el tiempo. Se utilizan diferentes colores sobre el segmento de repolarización en Ia representación del ECG sin necesidad de cambiar su morfología (255). Este resultado se obtiene a partir de los algoritmos de diseño paralelo y su resolución depende del número de ventanas utilizadas. La representación se obtiene promediando y ponderando de manera temporal los bloques de señal que mayor RAOT han obtenido. Las potencias elevadas se identifican, con un color y las bajas con otro (245, 250).Figure 10: A heartbeat block is shown with an arrhythmia in the fourth heartbeat that causes a deviation from the average frequency in the block. It can be seen that the periodic window w (t) correctly adjusts with the ST-T complexes of the first beats but does not synchronize from said pathological event. In this case, the extraction of the alternation information is not done correctly because of which failures can occur in the detection. Figure 11: the method for frequency normalization per truncated period (180) is shown, from which a periodic ECG signal is obtained from a chosen frequency. This method is used to improve the detection of AOT when the heart rate variability of the heartbeat block is high. Figure 12: the possible physical implementations of the device of the invention and the elements that compose them are shown. There are two types of implementations, a device with a screen for data analysis (190) and another version valid for an implantable device (240) such as a defibrillator. Figure 13: a graphical representation interface of the alternation based on the visualization of the AOT information in time is shown. Different colors are used on the repolarization segment in the representation of the ECG without changing its morphology (255). This result is obtained from the parallel design algorithms and its resolution depends on the number of windows used. The representation is obtained by averaging and temporarily weighing the signal blocks that have obtained the highest RAOT. High powers are identified, with one color and low with another (245, 250).
Figura 14: se muestra el esquema resumido de funcionamiento del dispositivo, se incluyen los modos de funcionamiento adaptativos a las condiciones de Ia señal y las acciones tomadas en cuanto a variabilidad cardiaca (250) y ruido (265). También se muestra la fase de recuperación de Ia señal de alternancia (295) y junto con las fases "de presentación y/o transmisión de los resultados (300).Figure 14: the summary scheme of operation of the device is shown, adaptive modes of operation are included to the conditions of the signal and the actions taken regarding cardiac variability (250) and noise (265). I also know shows the recovery phase of the alternation signal (295) and together with the phases " of presentation and / or transmission of the results (300).
MODO DE REALIZACIÓN En el modelo de ECG descrito con anterioridad no se ha incluido ruido. Para el caso de un escenario ruidoso, se considera Ia introducción de ruido aditivo V(Y) de función de densidad de probabilidad y potencia arbitrarias. Incluyendo el ruido, el modelo de ECG propuesto es entonces x(i) = p(t) + v(f), y su espectro:MODE OF EMBODIMENT No noise has been included in the ECG model described above. In the case of a noisy scenario, the introduction of additive noise V (Y) of arbitrary probability and power density function is considered. Including the noise, the proposed ECG model is then x (i) = p (t) + v (f), and its spectrum:
X(ώ)=P(ώ)+V(ώ). Previo al análisis de AOT el método realiza una etapa de pre-procesado con el objetivo de extraer dicha información. En primer lugar se realiza un enventanado sobre los complejos ST-T de. Ia función x(f) mediante una ventana periódica w(f) con un cicloX (ώ) = P (ώ) + V (ώ). Prior to the AOT analysis, the method performs a preprocessing stage with the objective of extracting said information. First a poisoning is performed on the ST-T complexes of. The function x (f) through a periodic window w (f) with a cycle
Tw de trabajo arbitrario de —-100% . Esta ventana se sintetiza a partir de Ia repeticiónT w of arbitrary work of —-100%. This window is synthesized from the repetition
periódica de un pulso de forma de onda arbitraria. El periodo escogido de Ia ventana w(t) es igual al periodo medio de Ia señal ECG, es decir Tb . La anchura del pulso está definida por Ia variable Tw. Eligiendo diferentes valores de anchura se Obtienen diferentes ciclos de trabajo. La función densidad espectral de potencia Sw (ω) de Ia ventana periódica ~w(i) para el caso de Ia repetición periódica de una ventana rectangular (Fig. 4) es:
Figure imgf000017_0001
donde . sin(kωbTw) _ ck - , K e¿, kπ y
periodic of an arbitrary waveform pulse. The chosen period of the window w (t) is equal to the average period of the ECG signal, that is, T b . The pulse width is defined by the variable T w . Choosing different width values you get different work cycles. The power spectral density function S w (ω) of the periodic window ~ w (i) in the case of the periodic repetition of a rectangular window (Fig. 4) is:
Figure imgf000017_0001
where . sin (kω b T w ) _ c k -, K e ¿ , kπ y
b τb. Como resultado del enventandado producido por Ia multiplicación del ECG periódico con ruido aditivo x(t) y el pulso periódico w{f) se obtiene el ECG enventanado xw(t) que puede expresarse como: χw (0 = χ(t) Ht) = P(0 w(t) + v(0 w(t).b τ b . As a result of the poisoning produced by the multiplication of the periodic ECG with additive noise x (t) and the periodic pulse w {f), the poisoned ECG x w (t) is obtained, which can be expressed as: χ w (0 = χ (t) Ht) = P (0 w (t) + v (0 w (t).
Con el fin de eliminar información redundante o innecesaria, como el ECG de fondo o artefactos de ruido de baja frecuencia, como es el caso del ruido de línea de base, se aplica una etapa de post-procesado de manera inmediatamente posterior al enventandado. Entre las posibles acciones, tomadas se realiza una etapa consistente en Ia substracción de los segmentos consecutivos de repolarización extraídos, obteniendo de esta forma el ECG diferencial envéntanado:In order to eliminate redundant or unnecessary information, such as background ECG or low frequency noise artifacts, such as baseline noise, a post-processing stage is applied immediately after poisoned Among the possible actions, a stage consisting in the subtraction of the consecutive repolarization segments extracted is obtained, thus obtaining the differential ECG entangled:
. x(t) = xy,(t)- xy,(t - Tb) = pwdW + Vrt(t), . donde,
Figure imgf000018_0001
y - , . vwd(O = vd(O-w(O = [v(O-v(í-7¡)}w(O.
. x (t) = x y , (t) - x y , (t - T b ) = p wd W + Vr t (t),. where,
Figure imgf000018_0001
Y - , . v wd (O = v d (Ow (O = [v (Ov (í-7¡)} w (O.
El ruido es Ia variable que principalmente puede enmascarar Ia detección de AOT. Una vez eliminado el ECG de fondo, se analiza Ia dependencia de Ia señal diferencial enventanada respecto al ruido con el fin de evaluar el rendimiento del método propuesto. Para ello se analizan las propiedades estadísticas de Ia función de ruido diferencial enventanada descrita anteriormente. Si se asume un proceso estacionario en sentido amplio, Ia función de autocorrelación R1^ (T) del ruido diferencial vd{f) es tal y como se muestra a continuación:The noise is the variable that can mainly mask the detection of AOT. Once the background ECG has been eliminated, the dependence of the poisoned differential signal on the noise is analyzed in order to evaluate the performance of the proposed method. For this, the statistical properties of the poisoned differential noise function described above are analyzed. If a stationary process is assumed broadly, the autocorrelation function R 1 ^ (T) of the differential noise v d {f) is as shown below:
.Rv/r)=2R,(r)-R,(τ+ri)-R,(r-rδ), siendo Rv(τ) Ia función de autocorrelación del ruido. La función densidad espectral de potencia se obtiene a partir de Ia densidad espectral del ruido Sv(ω) como Ia transformada de Fourier de Rv (τ).R v / r) = 2R, (r) -R, (τ + r i ) -R, (rr δ ), where R v (τ) is the noise autocorrelation function. The power spectral density function is obtained from the spectral density of the noise S v (ω) as the Fourier transform of R v (τ)
SVd (α>) = 2Sv(ω) - Sv(ω)(eJωT> + e laT^ . = 2^(O) - (I - COsCiOr4))S Vd (α>) = 2S v (ω) - S v (ω) (e JωT> + e laT ^. = 2 ^ (O) - (I - COsCiOr 4 ))
= 4 Sv(ω) • sin2 [ω ^J.= 4 S v (ω) • without 2 [ω ^ J.
La autocorrelación de Ia función de ruido diferencial enventanada Rwd (t, t — τ) se puede calcular a partir de Ia función diferencial teniendo en cuenta c\μevwd{f) = vd(t)- w{t). v Tras el envéntanado el proceso resultante no es estacionario si no cicloestacionario [Gar75]. De este modo:The autocorrelation of the poisoned differential noise function R wd (t, t - τ) can be calculated from the differential function taking into account c \ μev wd {f) = v d (t) - w {t). v After wrapping, the resulting process is not stationary but cyclo-stationary [Gar75]. In this way:
RVwd(t,t- τ)
Figure imgf000018_0002
τ)}w{t)-w(t- τ)
Figure imgf000018_0003
y Ia función de densidad espectral de potencia se calcula como Ia transformada de Fourier del promedio de Ia autocorrelación sobre Ia variable tiempo.
Figure imgf000019_0001
que en el dominio de Fourier equivale a Ia convolución:
R Vwd (t, t- τ)
Figure imgf000018_0002
τ)} w {t) -w (t- τ)
Figure imgf000018_0003
and the power spectral density function is calculated as the Fourier transform of the average autocorrelation over the time variable.
Figure imgf000019_0001
which in the Fourier domain is equivalent to the convolution:
5Uω) = ¿ 2ΛΓ'{5v>)*S w >)] 5 U ω) = ¿2ΛΓ ' { 5 v> ) * S w > ) ]
= 4^|ct| -Sv(ω - kωb)-sϊn2[ — -ω - kπ \.= 4 ^ | c t | -S v (ω - kω b ) -sϊn 2 [- -ω - kπ \.
Figure imgf000019_0002
Figure imgf000019_0002
Él numerador de Ia expresión anterior impone ceros en el origen y en todos los armónicos de Ia frecuencia de latido. Por otro lado el ciclo de trabajo del pulso periódico w(t) se puede elegir de acuerdo a determinados criterios que permitan afinar Ia detección de AOT, con valores comprendidos entre el 5% y el 45%. Una buena solución de compromiso, a modo de ejemplo, puede ser Ia utilización de un ciclo de trabajo del 25% (Tw = Tb /4) . En este caso, todos los coeficientes impares del ECG diferencial enventanado se cancelan:The numerator of the previous expression imposes zeros in the origin and in all the harmonics of the beat frequency. On the other hand, the work cycle of the periodic pulse w (t) can be chosen according to certain criteria that allow fine-tuning the detection of AOT, with values between 5% and 45%. A good compromise solution, by way of example, may be the use of a 25% duty cycle (T w = T b / 4). In this case, all odd coefficients of the poisoned differential ECG are canceled:
+ l - , donde n es un entero.
Figure imgf000019_0003
+ l -, where n is an integer.
Figure imgf000019_0003
La detección de los sucesos de AOT queda supeditada a Ia búsqueda de los picos frecuenciales en los armónicos de las frecuencias múltiplo de Ia onda alternante (Fig. 5), es decir, f,/2 (40), siendo fc
Figure imgf000019_0004
y todos sus múltiplos impares que se comparan con el ruido en sus proximidades. Como resultado de este análisis se obtiene una Relación de Alternancia de Onda T (RAOT) sobre el cual se establecerán los criterios que permitan diferenciar Ia existencia o no de AOT en el bloque de latidos analizado. Esta detección se puede realizar mediante umbralización, técnicas de detección de picos, utilización de redes neuronales,. etc.
The detection of AOT events is subject to the search for the frequency peaks in the harmonics of the multiple frequencies of the alternating wave (Fig. 5), that is, f, / 2 (40), where f c
Figure imgf000019_0004
and all its odd multiples that compare with the noise in its vicinity. As a result of this analysis, a T Wave Alternation Ratio (RAOT) is obtained on which the criteria that differentiate the existence or not of AOT in the analyzed heartbeat block will be established. This detection can be performed by thresholding, peak detection techniques, use of neural networks ,. etc.
Una vez establecida Ia existencia o no de AOT, se llevara a cabo Ia fase de presentación de resultados donde, el dispositivo de Ia invención puede calcular una forma de onda estimada de Ia onda de alternancia mediante una transformación inversa y filtrado de Ia densidad espectral de potencia calculada. El esquema de diseño propuesto en Ia invención se sucede en cinco etapas secuenciales diferenciadas (Fig. 6), que se enumeran en orden de aplicación: i Extracción y/o almacenamiento del ECG (80).Once the existence or not of AOT is established, the results presentation phase will be carried out where, the device of the invention can calculate a Estimated waveform of the alternating wave by an inverse transformation and filtering of the calculated power spectral density. The design scheme proposed in the invention occurs in five different sequential stages (Fig. 6), which are listed in order of application: i Extraction and / or storage of the ECG (80).
2 Adecuación de Ia señal y eliminación de ruido. y artefactos (85).2 Adaptation of the signal and elimination of noise. and artifacts (85).
3 Extracción de Ia información de AOT mediante Ia síntesis de una ventana periódica y enventanado de la señal (90).3 Extraction of the AOT information by means of the synthesis of a periodic and poisoned window of the signal (90).
4 Postprocesado para Ia mejora de detección de AOT (95). 5 Detección de AOT a partir del cálculo del RAOT (100).4 Postprocessed for the improvement of AOT detection (95). 5 Detection of AOT from the calculation of RAOT (100).
6 Presentación de resultados (110).6 Presentation of results (110).
7 Interfaz de salida (105).7 Output interface (105).
A continuación se describen cada una de las etapas descritas y los bloques de diseño que las conforman: 1 Extracción y/o almacenamiento del ECG (80).Each of the described steps and the design blocks that comprise them are described below: 1 Extraction and / or storage of the ECG (80).
Su función es Ia de capturar Ia señal ECG que puede constar de una o varias derivaciones. Este mecanismo de captura está implementado en el propio dispositivo (195). En caso contrario se encargará de adaptar fas señales tomadas por cualquier otro dispositivo capacitado para ello mediante Ia lectura física de los datos o de su recepción vía cualquier medio de transmisión.Its function is to capture the ECG signal that can consist of one or more leads. This capture mechanism is implemented in the device itself (195). Otherwise, it will be responsible for adapting the signals taken by any other device capable of doing so by means of the physical reading of the data or its reception via any means of transmission.
2 Adecuación de Ia señal y eliminación de ruido y artefactos (85):2 Adaptation of the signal and elimination of noise and artifacts (85):
Su función es Ia de adecuar Ia señal de entrada para facilitar su análisis, elimina el ruido y artefactos como por ejemplo el ruido de Ia línea de base. Puede implemeηtarse mediante cualquier método existente en el estado de Ia técnica como puede ser el filtrado lineal, filtrado no lineal o procesamiento multitasa.Its function is to adapt the input signal to facilitate its analysis, eliminates noise and artifacts such as baseline noise. It can be implemented by any method existing in the state of the art such as linear filtering, nonlinear filtering or multitasking processing.
v 3 Extracción de Ia información de AOT mediante enventanado w(t) (90): Su función es Ia de procesar el bloque de latidos a Ia entrada para discriminar v 3 Extraction of the AOT information by poisoning w (t) (90): Its function is to process the heartbeat block at the input to discriminate
Ia información espectral ajena a Ia AÓT. Esta etapa se desarrolla en paralelo con el fin de mejorar Ia resolución del método. EI esquema de diseño se basa en el promediado de los espectros a través del enventanado en diferentes áreas de Ia señal. Cuando el ciclo de trabajo de Ia ventana es pequeño (valores inferiores al 25%), el área de barrido sobre el complejo ST-T disminuye y se puede dar el caso dé cubrir zonas del segmento de repolarización ventricular en las cuáles no existe AOT pudiendo existir en zonas adyacentes. Con dicho objetivo, la presente invención analiza Ia señal mediante diferentes versiones desplazadas de Ia ventana periódica, calculando el espectro medio resultante del producto de cada una de ellas con el bloque ECG. Este esquema, además de aportar mayor robustez frente al ruido, aumenta Ia resolución de Ia detección, eliminando el. efecto que puede provocar el uso de ventanas con ciclo de trabajo pequeño. Esta etapa está subdividida en los siguientes bloques a implementar:The spectral information outside the AOT. This stage is carried out in parallel in order to improve the resolution of the method. The design scheme is based on the average of the spectra through the poisoning in different areas of the signal. When the window's duty cycle is small (values below 25%), the scanning area on the ST-T complex decreases and it may be the case to cover areas of the ventricular repolarization segment in which there is no AOT being able to exist in adjacent areas. With said objective, the present invention analyzes the signal by means of different displaced versions of the periodic window, calculating the resulting average spectrum of the product of each of them with the ECG block. This scheme, in addition to providing greater robustness against noise, increases the resolution of the detection, eliminating the. effect that can cause the use of windows with small duty cycle. This stage is subdivided into the following blocks to be implemented:
• Detección QRS (115): .• QRS detection (115):.
Su misión es Ia de detectar los complejos QRS del bloque de latidos. Se puede utilizar en su ¡mplementación cualquier método existente en el estado de Ia técnica, como por ejemplo, el uso de filtros adaptativos o transformada wavelet.Its mission is to detect the QRS complexes of the heartbeat block. Any method existing in the state of the art can be used in its implementation, such as the use of adaptive filters or wavelet transform.
• Cálculo de r6(120): - . , '• Calculation of r 6 (120): -. , '
Se calcula Ia frecuencia y desviación típica de Ia frecuencia cardiaca. • Síntesis de Ia ventana (125):The frequency and standard deviation of the heart rate is calculated. • Synthesis of the window (125):
Sü función es Ia de sintetizar Ia ventana que se utiliza para extraer Ia información de Ia AOT. Para ello se sintetiza una señal periódica a partir de un pulso con un periodo igual al de Ia frecuencia media de latido Tb (25) y un ciclo de trabajo entre el 5% y el 45%. La elección del ciclo de trabajo se determina en función de Ia resolución requerida eligiendo un valor de Tw Its function is to synthesize the window that is used to extract the information from the AOT. For this, a periodic signal is synthesized from a pulse with a period equal to that of the average heartbeat frequency T b (25) and a duty cycle between 5% and 45%. The choice of the duty cycle is determined based on the required resolution by choosing a value of T w
(20). El enventanado del ECG "con ciclos de trabajo pequeños extrae una menor cantidad de información del complejo ST-T y se ve afectado por el ruido en menor medida, mientras que el enventanado con ciclos de trabajo mayores se ve más afectado por este. Respecto a Ia morfología del pulso (3p) a partir del cual se sintetiza Ia ventana, tiene una forma de onda arbitraria, como por ejemplo ventanas hamming, hanning, triangulares, rectangulares, de Kaiser, etc. O también se pueden utilizar formas de onda no parametrizadas como es el caso de ventanas adaptadas con formas de onda similares al complejo ST-T. • Retardo (130):(twenty). The poisoned ECG " with small work cycles extracts a smaller amount of information from the ST-T complex and is affected by noise to a lesser extent, while the poisoned with larger work cycles is more affected by it. The pulse morphology (3p) from which the window is synthesized, has an arbitrary waveform, such as, for example, hamming, hanning, triangular, rectangular, Kaiser windows, etc. Or non-parametrized waveforms can also be used as is the case of windows adapted with waveforms similar to the ST-T complex. • Delay (130):
Su función es Ia de generar una versión desplazada de Ia ventana periódica sintetizada. Este bloque se encarga de introducir un retardo r de duración arbitraria. Para retardos r pequeños se incrementa Ia resolución del método y su robustez frente al ruido. La elección del número de versiones desplazadas de Ia ventana dependerá de las condiciones de Ia señal y de las características de Ia unidad central de procesamiento (CPU) y memoria del dispositivo físico a implementar. • Enventanado (140):Its function is to generate a displaced version of the periodic window synthesized. This block is responsible for introducing a delay r of arbitrary duration. For small r delays, the resolution of the method and its robustness against noise are increased. The choice of the number of displaced versions of the window will depend on the conditions of the signal and the characteristics of the central processing unit (CPU) and memory of the physical device to be implemented. • Wrapped (140):
Es un bloque destinado a realizar el producto de Ia señal con Ia versión desplazada de Ia ventana periódica que Ie corresponda.It is a block destined to realize the product of the signal with the displaced version of the corresponding periodic window.
Post-procesado para mejorar Ia detección de AOT (95):Post-processing to improve the detection of AOT (95):
Esta etapa tiene como misión incrementar Ia significancia de Ia alternancia sobre el ruido de Ia señal mediante un procesado de manera que Ia detección de AOT se vea favorecida. Los bloques a implementar serán uno o varios de los siguientes: • Eliminación del ECG de fondo (145).This stage has the mission of increasing the significance of the alternation on the noise of the signal by means of a processing so that the detection of AOT is favored. The blocks to be implemented will be one or more of the following: • Elimination of the background ECG (145).
Se elimina el ECG de fondo junto con artefactos de ruido de baja frecuencia, por medio de Ia substracción de los segmentos consecutivos de repolarización extraídos.The background ECG is eliminated together with low frequency noise artifacts, by means of the subtraction of the consecutive repolarization segments extracted.
• Estimación de Ia tendencia (150): Esta sub-etapa calcula Ia tendencia de Ia señal discriminando en parte los cambios que tiene Ia señal de los producidos por artefactos de ruido, de manera que se realza Ia información de Ia AOT en Ia siguiente etapa de detección. Con dicho fin, se utilizan métodos hábiles para tal propósito, como es el caso de Ia descomposición empírica de modos (EMD: Empirical Mode Decomposition) [HuaO1] que consigue separar Ia información útil correspondiente a Ia repolarización ventricular del ruido y artefactos. La presente invención propone un método de estimación de Ia tendencia a partir de Ia separación que se realiza mediante Ia reconstrucción parcial de Ia señal obtenida como Ia suma de las funciones intrínsecas de modo (IMFs: Intrinsic Mode Functions) que no han sido identificadas como ruido. El problema principal para llevar a cabo esta separación consiste en identificar las componentes útiles. En Ia presente invención, Ia información útil se determina en el dominio EMD utilizando los descriptores Hjorth [Hjo70, Hjo73] y el índice de pureza espectral (SPI: Spectrai Purity Index) [Sor05]. Considérese x[n], n=1, ...,N-1, un complejo ST-T aislado. El modelo que describe esta parte del latido se considera aditivo: x[n]= s[n]+ v[n], O ≤ n ≤ N- 1 donde s[n] es el complejo ST-T válido que contiene Ia información correspondiente a Ia repolarización ventricular y v[n] agrupa el resto de componentes indeseables. La señal s[n] representa Ia tendencia del complejo ST-T original y se corresponde con una señal de variación lenta, mientras que v[n] se caracteriza por ser una señal que varía rápidamente, asociada a componentes de más alta frecuencia. Mediante Ia técnica de descomposición EMD se representa Ia señal original:• Estimation of the trend (150): This sub-stage calculates the trend of the signal by partially discriminating the changes that the signal has caused by noise artifacts, so that the information of the AOT is enhanced in the next stage detection. To this end, skillful methods are used for this purpose, as is the case of the empirical mode decomposition (EMD: Empirical Mode Decomposition) [HuaO1] that manages to separate the useful information corresponding to the ventricular repolarization of noise and artifacts. The present invention proposes a method of estimating the trend from the separation that is carried out by means of the partial reconstruction of the signal obtained as the sum of the intrinsic mode functions (MFIs: Intrinsic Mode Functions) that have not been identified as noise . The main problem in carrying out this separation is to identify the useful components. In the present invention, useful information is determined in the EMD domain using the descriptors Hjorth [Hjo70, Hjo73] and the spectral purity index (SPI: Spectrai Purity Index) [Sor05]. Consider x [n], n = 1, ..., N-1, an isolated ST-T complex. The model that describes this part of the heartbeat is considered additive: x [n] = s [n] + v [n], O ≤ n ≤ N- 1 where s [n] is the valid ST-T complex that contains the information corresponding to the ventricular repolarization and v [n] groups the rest of undesirable components. The signal s [n] represents the tendency of the original ST-T complex and corresponds to a slow variation signal, while v [n] is characterized as a rapidly varying signal, associated with higher frequency components. The original signal is represented by the EMD decomposition technique:
L x[n]= ∑c,[/i]+ é¿ [n] ; L x [n] = ∑c, [/ i] + é¿ [n] ;
'=1 donde c¡[rí\ son los IMFs en el dominio EMD y qL[n] el residuo. Se emplea Ia suma parcial de IMFs para separar Ia señal x[n] en sus dos componentes aditivas como sigue:
Figure imgf000023_0001
donde:
'= 1 where c¡ [r \ \ are the MFIs in the EMD domain and q L [n] the residue. The partial sum of MFIs is used to separate the signal x [n] into its two additive components as follows:
Figure imgf000023_0001
where:
Y-
Figure imgf000023_0002
Y-
Figure imgf000023_0002
Los IMFs Cj[n] de oscilaciones más rápidas, desde el de primer orden, C1In], hasta el de orden (P-1), cP.i[n], se consideran como componentes no relevantes para describir Ia repolarización ventricular. El procedimiento para determinar el índice P se basa en el análisis del índice de pureza espectral. Este parámetro se calcula como:The MFIs Cj [n] of faster oscillations, from the first order, C 1 In], to the order (P-1), c P .i [n], are considered as non-relevant components to describe Ia ventricular repolarization. The procedure for determining the P index is based on the analysis of the spectral purity index. This parameter is calculated as:
SPI = ^- m0m4 donde m¡ representa el momento espectral /-ésimo del espectro de potencia de Ia señal x[n]. El índice SPI indica en qué medida una. señal se puede describir mediante una única frecuencia. En nuestro caso, el índice P se identifica como el primer IMF que no presenta características oscilatorias, comenzando por los IMFs de orden mayor: En otras palabras, el orden P del P-ésimo IMF se obtiene cuando el valor del índice de pureza espectral para ese modo toma un determinado valor.SPI = ^ - m 0 m 4 where m¡ represents the spectral / -th moment of the power spectrum of the signal x [n]. The SPI index indicates the extent to which one. Signal can be described by a single frequency. In our case, the P index is identified as the first MFI that does not have oscillatory characteristics, starting with higher order MFIs: In other words, the P order of the P-th MFI is obtained when the value of the spectral purity index for That mode takes a certain value.
• Eliminación de ruido (155):• Noise Elimination (155):
Dentro de este bloque se elimina ruido mediante técnicas de filtrado.Within this block, noise is eliminated by filtering techniques.
Detección de AOT: cálculo de RAOT y decisión (100): • Estimación de Ia densidad espectral de potencia (160): Su. misión es Ia de calcular el espectro total de Ia señal, en particular en las proximidades a Ia frecuencia de latido (0 - 5 Hz). Cualquier método existente en el estado de Ia técnica, tanto paramétrico como no paramétrico, es válido para su ¡mplementacíón. • Búsqueda y análisis de picos en los armónicos de /¿/2 (165):AOT Detection: RAOT calculation and decision (100): • Estimation of the power spectral density (160): Its. mission is to calculate the total spectrum of the signal, in particular in the vicinity of the heartbeat frequency (0-5 Hz). Any method existing in the state of the art, both parametric and non-parametric, is valid for implementation. • Search and analysis of peaks in the harmonics of / ¿/ 2 (165):
Es el bloque encargado de extraer los parámetros que identifican Ia AOT da las frecuencias f¿2 (40), 3f</2 (45), 5f</2 (50), 7f</2 (55),..., y del ruido en sus proximidades (60, 65, 70, 75).It is the block responsible for extracting the parameters that identify the AOT of the frequencies f¿2 (40), 3f </ 2 (45), 5f < / 2 (50), 7f < / 2 (55), ..., and noise in its vicinity (60, 65, 70, 75).
• Cálculo de RAOT (170): A partir de los parámetros extraídos se calcula el RAOT se evalúa Ia• Calculation of RAOT (170): Based on the extracted parameters, the RAOT is calculated.
> existencia de AOT.> existence of AOT.
• Decisión de AOT (175):• Decision of AOT (175):
La decisión sobre Ia detección de Ia AOT se toma a partir del valor de RAOTThe decision on the detection of the AOT is taken from the value of RAOT
. calculado y se puede tomar mediante criterios de umbralización o mediante Ia utilización de cualquier técnica de discriminación de patrones como son las máquinas de vector de soporte, sistemas expertos, algoritmos genéticos, redes neuronales, etc.. calculated and can be taken through thresholding criteria or through the use of any pattern discrimination technique such as support vector machines, expert systems, genetic algorithms, neural networks, etc.
Presentación de resultados (110): Los resultados mostrados para Ia estimación de Ia ÁOT pueden ser uno o varios de los siguientes:Presentation of results (110): The results shown for the estimation of the AOT can be one or more of the following:
• El valor de Ia estimación de potencia, que puede darse en unidades voltaje como por ejemplo voltios o de potencia como por ejemplo vatios (220).• The value of the power estimate, which can be given in voltage units such as volts or power such as watts (220).
• La zona del ECG en Ia que aparece Ia alternancia de manera superpuesta al ECG en el eje de tiempos (250,255). Ya que Ia amplitud de Ia onda alternante es despreciable respecto a Ia potencia de Ia señal. Ésta superposición se representará con un color diferente. Para disponer de Ia información de Ia potencia de Ia onda se incluyen gradientes de color (245) que permitan diferenciar los instantes temporales en los que haya mayor potencia de Ia onda alternante de aquellos que tienen una potencia menor• The zone of the ECG in which the alternation appears superimposed on the ECG in the time axis (250,255). Since the amplitude of the alternating wave is negligible with respect to the power of the signal. This overlay will be represented with a different color. To have the information of the power of the wave, color gradients (245) are included that allow differentiating the temporal instants in which there is greater power of the alternating wave from those that have a lower power
(225).(225).
• La forma de onda estimada de Ia onda alternante correspondiente (215).• The estimated waveform of the corresponding alternating wave (215).
Interfaz de salida: Es el interfaz que transmite Ia información a un usuario; a otra etapa de procesamiento o a un dispositivo, acerca de Ia existencia o no existencia de AOT en Ia señal. ' Output Interface: It is the interface that transmits the information to a user; to another processing stage or to a device, about the existence or non-existence of AOT in the signal. '
Los esquemas de diseño propuestos se basan en condiciones del ECG próximas a Ia periodicidad para la detección de AOT. Estas condiciones son difíciles de conseguir en algunos casos. Una señal con alta variabilidad de Ia frecuencia cardiaca, puede producir una falta de sincronización entre Ia señal ECG y Ia ventana w(t) haciendo que Ia extracción de Ia información de Ia AOT sea infructuosa (Fig. 10). Es necesario generalizar el modelo de señal presentado, al inicio con el fin de corregir este posible efecto de falta de sincronización entre Ia ventana y el ECG. En esta extensión se mantienen las condiciones de proximidad a Ia estacionariedad de cada latido. La variabilidad de Ia frecuencia cardiaca se introduce al modelo a partir de Ia sucesión de tiempos interlatido Tk, k=1, 2,..., L, formada por Ia serie de tiempos transcurridos entre dos ondas R consecutivas {TRR). Los elementos de Ia sucesión consisten en Ia duración de cada latido. Suponiendo que los latidos tiene una forma de onda estacionaria el ECG se define como:
Figure imgf000025_0001
The proposed design schemes are based on ECG conditions close to the periodicity for the detection of AOT. These conditions are difficult to achieve in some cases. A signal with high heart rate variability can cause a lack of synchronization between the ECG signal and the window w (t) making the extraction of information from the AOT unsuccessful (Fig. 10). It is necessary to generalize the presented signal model, at the beginning in order to correct this possible lack of synchronization effect between the window and the ECG. In this extension the conditions of proximity to the stationarity of each beat are maintained. The variability of the heart rate is introduced to the model from the sequence of interlaced times T k , k = 1, 2, ..., L, formed by the series of times elapsed between two consecutive R waves {T RR ). The elements of the sequence consist of the duration of each beat. Assuming that the beats have a standing waveform, the ECG is defined as:
Figure imgf000025_0001
Este modelo generalizado de ECG se corresponde con el modelo descrito con anterioridad en el caso de muestras con poca dispersión sobre Ia frecuencia cardiaca, es decir con una desviación estándar pequeña respecto a Ia frecuencia cardiaca media. En este caso se pueden suponer condiciones próximas a Ia periodicidad y porThis generalized ECG model corresponds to the model described above in the case of samples with little dispersion over the heart rate, that is, with a small standard deviation with respect to the average heart rate. In this case, conditions close to the periodicity and by
Io tanto, el modelo de ECG se corresponde con el modelo descrito inicialmente.Therefore, the ECG model corresponds to the initially described model.
Con el objetivo de resolver los problemas de detección que se originan por Ia falta de sincronización entre Ia ventana y el bloque de señal debidos a Ia variabilidad de Ia frecuencia cardiaca, Ia presente invención incluye una modificación adicional del método mediante Ia aplicación de un proceso de normalización de periodo de Ia señalWith the aim of solving the detection problems that are caused by the lack of synchronization between the window and the signal block due to the variability of the heart rate, the present invention includes a further modification of the method by means of the application of a process of signal period normalization
ECG. 'ECG '
Existen técnicas de normalización de periodo con el objetivo de mantener el periodo de Ia señal constante a partir de compresiones y expansiones temporales. Entre las descritas en el estado de Ia técnica se encuentran [Ram97] y [JyhO1] basadas en transformaciones multitasa. Ambas tienen Ia ventaja de ser invertibles pudiéndose recuperar Ia señal original a partir de Ia normalizada mediante Ia aplicación de una transformación multitasa inversa. Las transformaciones multitasa en el espectro de frecuencias se corresponden con transformaciones de ensanchado y compresión en el tiempo y en caso de afectar a los complejos ST-T pueden dar lugar a distorsiones que enmascaren o introduzcan falsos episodios de AOT. Por Io tanto, estas técnicas pueden no ser apropiadas para Ia detección de AOT. Por ejemplo, Ia aparición de una alternancia sobre Ia anchura del. complejo ST-T podría desaparecer si todos los complejos se normalizan con Ia misma anchura temporal. La solución propuesta en esta invención se realiza mediante Ia normalización de Ia frecuencia cardiaca mediante el truncado de periodo (180), que consiste en Ia imposición de un período constante para el bloque de latidos. Este truncado cambia las componentes frecuenciales de Ia señal pero no modifica Ia información temporal de. Ia alternancia ya que no modifica Ia morfología del complejo ST-T que se mantiene intacta. Sea Tmax el periodo impuesto en el bloque dé latidos tomado como el máximo de. los tiempos interlatido de Ia sucesión de tiempos T\¿There are period normalization techniques in order to keep the period of the signal constant from compressions and temporary expansions. Among those described in the state of the art are [Ram97] and [JyhO1] based on multitasking transformations. Both have the advantage of being invertible being able to recover the original signal from the normalized one by means of the application of an inverse multitasking transformation. Multitask transformations in the frequency spectrum correspond to widening and compression transformations over time and, if they affect ST-T complexes, they can lead to distortions that mask or introduce false AOT episodes. Therefore, these techniques may not be appropriate for the detection of AOT. For example, the appearance of an alternation on the width of the. ST-T complex could disappear if all the complexes are normalized with the same temporal width. The solution proposed in this invention is carried out by normalizing the heart rate by truncating the period (180), which consists in the imposition of a constant period for the heartbeat block. This truncation changes the frequency components of the signal but does not modify the temporal information of. The alternation since it does not modify the morphology of the ST-T complex that remains intact. Let T max be the period imposed in the heartbeat block taken as the maximum of. the interlaced times of the sequence of times T \ ¿
T „ = max {Tk }. maX VÍ€[1,L] 1 k -> - T „= max {T k }. m aX SAW € [1, L] 1k -> -
A partir del cual se puede construir Ia siguiente señal con periodo constante:From which the following signal can be constructed with a constant period:
1=01 = 0
En esta señal se ha eliminado el efecto de Ia variabilidad de Ia frecuencia cardiaca, afectando únicamente Ia componente de ruido. Sobre esta señal de periodo normalizado se aplican los prodecimientos y etapas descritas con anterioridad. En primer lugar se extrae Ia información de Ia AOT mediante el enventanado: xWwm (t) = x(t)-w(t) = pnom(t) -w(t) + v(t)-w(t), Posteriormente con el fin de eliminar artefactos se restan los segmentos de repolarización ventricular consecutivos:
Figure imgf000026_0001
In this signal the effect of the heart rate variability has been eliminated, affecting only the noise component. The procedures and steps described above apply to this standardized period signal. First, the information of the AOT is extracted by means of the poisoning: x Wwm (t) = x (t) -w (t) = p nom (t) -w (t) + v (t) -w (t) Subsequently, in order to eliminate artifacts, the consecutive ventricular repolarization segments are subtracted:
Figure imgf000026_0001
La decisión sobre Ia existencia o no existencia de AOT se realiza de Ia misma manera mediante el análisis del espectro de xwd (t) . En este caso los armónicos de IaThe decision about the existence or non-existence of AOT is made in the same way by analyzing the spectrum of x wd (t). In this case the harmonics of Ia
alternancia aparecerán en los múltiplos de Hz.alternation will appear in multiples of Hz.
Se ha propuesto Ia elección del periodo truncado de Tmax con el fin de conseguir que todos los latidos se ajusten por duración dentro del periodo normalizado y para conseguir que el enventanado del pulso periódico abarque una mayor parte del. complejo ST-T. De manera alternativa, en función de las especificaciones de operación de Ia invención, se puede elegir el valor del periodo truncado de manera arbitraria, por ejemplo tomando un valor fijo y constante para todo el análisis, pudiendo ser un valor configurable por el usuario del dispositivo. Por ejemplo en el caso de operación en tiempo real, el periodo utilizado en Ia normalización deberá ser un valor por defecto introducido como parámetro de entrada, del dispositivo o como valor de entrada introducido por el usuario del dispositivo en función de las características del paciente en cualquier rango de valores que permitan frecuencias cardiacas Io suficientemente elevadas. La etapa de normalización del periodo descrita se aplica en los casos en los que Ia variabilidad de Ia frecuencia cardiaca del ECG es alta (250) y se, realiza de. manera posterior a Ia (120) al enventanado, sintetizando w(t) (125) a partir del periodo Tmax elegido. Esta ampliación del método de Ia invención, al eliminar el efecto de Ia variabilidad de Ia frecuencia cardíaca, consigue una mayor robustez en Ia detección de AOT y permite dar cabida y solución a los diferentes escenarios de operación e implementaciones descritos. The choice of the truncated period of T max has been proposed in order to ensure that all beats are adjusted for duration within the normalized period and to ensure that the periodic pulse poisoning covers a greater part of the. ST-T complex. Alternatively, depending on the operating specifications of the invention, the value of the truncated period can be chosen arbitrarily, for example taking a fixed and constant value for the entire analysis, and it can be a user configurable value of the device. . For example, in the case of real-time operation, the period used in the normalization must be a default value entered as an input parameter, of the device or as an input value entered by the user of the device depending on the characteristics of the patient in any range of values that allow high enough heart rates. The normalization stage of the described period is applied in cases in which the ECG heart rate variability is high (250) and is performed. subsequent to Ia (120) to the poisoned, synthesizing w (t) (125) from the period T max chosen. This extension of the method of the invention, by eliminating the effect of the heart rate variability, achieves greater robustness in the detection of AOT and allows to accommodate and solve the different operating scenarios and implementations described.

Claims

REIVINDICACIONES
1. Método para Ia detección de Ia alternancia de Ia repolarización ventricular cardiaca caracterizado por Ia extracción de Ia información de Ia repolarización ventricular mediante el enventanado en tiempo continuo de bloques de latidos de longitud variable de una señal bioeléctrica del corazón, ECG, donde el enventanado se realiza con una ventana definida por una señal periódica de ciclo de trabajo ajustable.1. Method for the detection of the alternation of the cardiac ventricular repolarization characterized by the extraction of the information of the ventricular repolarization by means of the continuous time poisoning of heartbeat blocks of variable length of a bioelectric signal of the heart, ECG, where the poisoning it is performed with a window defined by a periodic signal of adjustable duty cycle.
2. Método, según Ia reivindicación 1 , caracterizado porque el proceso de enventanado (140) está definido como el producto de Ia ventana periódica (30) y el bloque de señal.2. Method, according to claim 1, characterized in that the poisoning process (140) is defined as the product of the periodic window (30) and the signal block.
3. Método, según cualquiera de las reivindicaciones anteriores, donde el proceso de enventanado de un mismo bloque de ECG se realiza con diferentes versiones de Ia ventana periódica (30) desplazadas (130) con los siguientes retardos: 0, T1 2τ,3. Method, according to any of the preceding claims, wherein the poisoning process of the same ECG block is carried out with different versions of the displaced periodic window (30) (130) with the following delays: 0, T 1 2τ,
3τ,..., mr, siendo r y de m valores prefijados o parámetros introducidos por el usuario y no pudiendo superar el valor máximo del retardo de la duración del segmento dé repolarización.3τ, ..., mr, where r and m are preset values or parameters entered by the user and cannot exceed the maximum delay value of the repolarization segment duration.
4. Método, según cualquiera de las reivindicaciones anteriores, caracterizado por una ventana periódica (30) con los siguientes aspectos:4. Method according to any of the preceding claims, characterized by a periodic window (30) with the following aspects:
• El periodo de Ia ventana (25) puede ser un valor fijo elegido o puede ser el periodo medio del bloque de latidos que se enventana.• The period of the window (25) can be a fixed value chosen or it can be the average period of the heartbeat block that is poisoned.
• El ciclo de trabajo de Ia ventana periódica es variable y está comprendido entre el 15-45% (20, 25)• The duty cycle of the periodic window is variable and is between 15-45% (20, 25)
• La ventana periódica (30) se sintetiza como Ia repetición periódica de un pulso• The periodic window (30) is synthesized as the periodic repetition of a pulse
(35).(35).
• El ciclo de trabajo de Ia ventana periódica se calcula a partir del periodo medio de Ia señal ECG, Tb (20), y del tiempo de pulso de Ia ventana, Tw (25), como• The duty cycle of the periodic window is calculated from the average period of the ECG signal, T b (20), and the pulse time of the window, T w (25), as
- ^ -100%.- ^ -100%.
Tb T b
5. Método según Ia reivindicación 4, donde Ia forma de onda del pulso (35) puede utilizar cualquier forma de onda parametrizada a modo de ventana para extraer Ia información, como por ejemplo el uso de ventanas hamming, hamming, triangulares, rectangulares, de kaiser o también se pueden utilizar formas de onda no parametrizadas como es el caso de ventanas adaptadas con Ia formas de onda similares al complejo ST-T.5. Method according to claim 4, wherein the pulse waveform (35) can use any parameterized waveform as a window to extract the information, such as the use of hamming, hamming, triangular, rectangular, kaiser or also non-parametrized waveforms can be used as is the case of windows adapted with the waveforms similar to the ST-T complex.
6. Método, según cualquiera de las reivindicaciones anteriores, caracterizado por una técnica para reducir el efecto de Ia variabilidad de Ia frecuencia cardiaca mediante un procedimiento para Ia normalización de frecuencia cardiaca mediante- Ia utilización de un periodo truncado (180).6. Method, according to any of the preceding claims, characterized by a technique to reduce the effect of the heart rate variability by means of a procedure for the normalization of heart rate by means of the use of a truncated period (180).
7. Métodp, según cualquiera de las reivindicaciones anteriores, donde se realizan una serie dé acciones de post-procesado de Ia señal enventanada (95) con el fin de resaltar Ia información correspondiente a Ia alternancia en relación con el ruido.7. Method according to any of the preceding claims, where a series of post-processing actions of the poisoned signal (95) are carried out in order to highlight the information corresponding to the alternation in relation to the noise.
8. Método, según cualquiera de las reivindicaciones anteriores, en el que se utiliza un procedimiento que resta latidos consecutivos (145) con el fin de eliminar el ruidoMethod according to any of the preceding claims, in which a method that subtracts consecutive beats (145) is used in order to eliminate noise
ECG de fondo y artefactos de baja frecuencia.Background ECG and low frequency artifacts.
9. Método, según cualquiera de las reivindicaciones anteriores, en el que se calcula Ia tendencia del segmento ST-T (150) para separar lá información de Ia alternancia de Ia onda T, AOT, de Ia información no deseada.9. Method according to any of the preceding claims, in which the trend of the ST-T segment (150) is calculated to separate the information of the alternation of the T wave, AOT, from the unwanted information.
10. Método, según cualquiera de las reivindicaciones anteriores, en el que se utiliza un procedimiento que mediante el filtrado de Ia señal elimina artefactos de ruido (155).10. Method according to any of the preceding claims, in which a method is used that by filtering the signal eliminates noise artifacts (155).
11. Método, según cualquiera de las reivindicaciones anteriores, en el que se estima Ia densidad espectral de potencia (160) de Ia señal enventanada (90) y post- procesada (95). , : 11. Method according to any of the preceding claims, wherein the power spectral density (160) of the poisoned signal (90) and postprocessed (95) is estimated. , :
12. Método, según (a reivindicación 11, en el que a partir de Ia búsqueda y análisis de " picos en los armónicos de /i/2 (165) se obtiene el coeficiente de relación de alternancia de Ia onda T, RAOT (170), siendo fc Ia frecuencia media de Ia señal ECG. 12. Method according to (to claim 11, in which from the search and analysis of "peaks in the harmonics of / i / 2 (165) the coefficient of alternation ratio of the T wave, RAOT (170) is obtained ), where f c is the average frequency of the ECG signal.
1.3. Método, según las reivindicaciones.11 y 12, en el que a partir de Ia relación entre los armónicos impares de /j/2 (40, 45, 50-, 55) y el ruido en sus proximidades (60, 65, 70, 75) se calcula el coeficiente RAOT.1.3. Method, according to claims 11 and 12, in which from the relationship between the odd harmonics of / j / 2 (40, 45, 50-, 55) and the noise in its vicinity (60, 65, 70, 75) RAOT coefficient is calculated.
14. Método, según cualquiera de las reivindicaciones anteriores, que determina Ia existencia o no de alternancia de repolarización ventricular a partir del coeficiente RAOT (175).14. Method, according to any of the preceding claims, which determines the existence or not of alternating ventricular repolarization from the RAOT coefficient (175).
15. Método, según cualquiera de las reivindicaciones anteriores, que calcula los resultados sobre Ia existencia de alternancia de repolarizacion a partir de Ia densidad espectral de potencia de Ia señal enventanada y post-procesada (165) y el coeficiente RAOT (170).15. Method, according to any of the preceding claims, which calculates the results on the existence of alternating repolarization from the power spectral density of the poisoned and post-processed signal (165) and the RAOT coefficient (170).
16. Método según Ia reivindicación 15, caracterizado porque se calcula y visualiza Ia estimación de Ia señal que corresponde con Ia forma de onda alternante, ε(t), . obtenida mediante un filtrado del espectro enventanado a partir de los armónicos impares (40, 45, 50, 55) situados en los múltiplos de Ia mitad de Ia frecuencia elegida en Ia ventana periódica (20).16. Method according to claim 15, characterized in that the estimation of the signal corresponding to the alternating waveform, ε (t), is calculated and visualized. obtained by filtering the poisoned spectrum from the odd harmonics (40, 45, 50, 55) located in multiples of half of the frequency chosen in the periodic window (20).
17. Método, según cualquiera de las reivindicaciones anteriores, en el que cuando Ia duración de los intervalos RR, es decir los intervalos entre ondas R consecutivas, de los latidos de un bloque supere un determinado tanto por ciento del valor medio de Ia duración de todos los intervalos, se realiza Ia normalización del periodo del bloque (180) de latidos.17. Method according to any of the preceding claims, wherein when the duration of the RR intervals, that is to say the intervals between consecutive R waves, of the beats of a block exceeds a certain percentage of the average value of the duration of the all the intervals, the normalization of the period of the heartbeat block (180) is performed.
18. Método según Ia reivindicación 17, en el que el tanto por ciento a partir del cual se realiza Ia normalización es del 10%.18. Method according to claim 17, wherein the percentage from which normalization is performed is 10%.
19. Método, según las reivindicaciones 17 y 18, en el que se elige el periodo de normalización como el máximo de los intervalos RR del bloque de latidos o como un valor fijo que debe ser superior a 0.65 segundos y que puede ser introducido por el usuario del dispositivo (180). 19. Method according to claims 17 and 18, wherein the normalization period is chosen as the maximum of the RR intervals of the heartbeat block or as a fixed value that must be greater than 0.65 seconds and which can be entered by the device user (180).
20. Método, según cualquiera de las reivindicaciones anteriores, en el que se utiliza una técnica de descomposición empírica de modos que permite separar las componentes que caracterizan a Ia AOT de las componentes dé ruido (140).20. Method according to any of the preceding claims, in which an empirical decomposition technique is used that allows the components that characterize the AOT to be separated from the noise components (140).
21. Método, según Ia reivindicación 20, en el que se opera mediante Ia caracterización de Ia señal como suma de funciones intrínsecas de modo.21. Method, according to claim 20, in which the characterization of the signal is operated as the sum of intrinsic mode functions.
22. Método, según Ia reivindicación 20, en el que se separa Ia señal de las componentes ruidosas mediante los descriptores Hjorth y el índice de pureza espectral.22. Method according to claim 20, wherein the signal is separated from the noisy components by means of the Hjorth descriptors and the spectral purity index.
23. Dispositivo para Ia detección de Ia alternancia de Ia repolarización ventricular cardiaca caracterizado por incluir medios para Ia extracción de Ia información de Ia repolarización ventricular mediante el enventanado en tiempo continuo de bloques de latidos de longitud variable de una señal bioeléctrica del corazón, ECG, donde el enventanado se realiza con una ventana definida por una señal periódica de ciclo de trabajo ajustable.23. Device for the detection of the alternation of the cardiac ventricular repolarization characterized by including means for the extraction of the information of the ventricular repolarization by means of the continuous time poisoning of heartbeat blocks of variable length of a bioelectric signal of the heart, ECG, where the poisoning is done with a window defined by a periodic signal of adjustable work cycle.
24. Dispositivo para Ia detección de Ia alternancia de ia repolarización ventricular cardiaca según Ia reivindicación 23, caracterizado por incluir medios para realizar los pasos del método según cualquiera de las reivindicaciones 2-22.24. Device for detecting the alternation of cardiac ventricular repolarization according to claim 23, characterized by including means for performing the steps of the method according to any of claims 2-22.
25. .Disposjtivo, según Ia reivindicación 23, caracterizado por operar de manera adaptativa o prefijada en función del escenario de operación en el que se encuentre y de sus requisitos de funcionamiento, siendo Io modos de operación: 25. Device, according to claim 23, characterized by operating in an adaptive or predetermined manner depending on the operating scenario in which it is located and its operating requirements, the operation modes being:
• Funcionamiento en modo normal, destinado al análisis de señales o bloques de señal con bajo nivel de ruido y condiciones estables de variabilidad de Ia frecuencia cardiaca, en el que Ia ventana periódica se genera a Ia frecuencia media de latido. ' • Funcionamiento en modo ruidoso, destinado al análisis de señales o bloques de señal con alto nivel de ruido, en el que se realiza Ia normalización de periodo (180) tomando Ia frecuencia de normalización como el máximo intervalo RR del bloque de señal analizado .• Normal mode operation, intended for the analysis of signals or signal blocks with low noise level and stable conditions of heart rate variability, in which the periodic window is generated at the average heartbeat frequency. '• Operation in noisy mode, intended for the analysis of signals or signal blocks with high noise level, in which the period normalization (180) is performed taking the normalization frequency as the maximum RR interval of the analyzed signal block.
• Funcionamiento en modo de tiempo real. • Operation in real time mode.
PCT/ES2009/000296 2009-01-20 2009-05-28 Device and method for detecting alternation of ventricular repolarisation using windowing WO2010084211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200900153A ES2343054B2 (en) 2009-01-20 2009-01-20 DEVICE AND METHOD FOR THE DETECTION OF THE ALTERNANCE OF VENTRICULAR REPOLARIZATION THROUGH WINDING.
ESP200900153 2009-01-20

Publications (1)

Publication Number Publication Date
WO2010084211A1 true WO2010084211A1 (en) 2010-07-29

Family

ID=42313366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000296 WO2010084211A1 (en) 2009-01-20 2009-05-28 Device and method for detecting alternation of ventricular repolarisation using windowing

Country Status (2)

Country Link
ES (1) ES2343054B2 (en)
WO (1) WO2010084211A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026158A1 (en) * 2021-08-23 2023-03-02 Analytics For Life Inc. Methods and systems for engineering conduction deviation features from biophysical signals for use in characterizing physiological systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005879A2 (en) * 2001-07-13 2003-01-23 Cardiac Science, Inc. Method and apparatus for monitoring cardiac patients for t-wave alternans
US20050234363A1 (en) * 2004-04-15 2005-10-20 Ge Medical Systems Information Technologies, Inc. Method and apparatus for determining alternans data of an ECG signal
WO2005096925A2 (en) * 2004-03-30 2005-10-20 Quinton Cardiology, Inc. Methods and apparatuses for determining t-wave alternans
US20080082133A1 (en) * 2006-09-29 2008-04-03 Xiaohong Zhou Method and apparatus for induced t-wave alternans assessment
EP2052680A1 (en) * 2007-10-24 2009-04-29 Ela Medical Electrocardiology diagnosis assistance device, in particular for diagnosing Brugada syndrome and ERS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003005879A2 (en) * 2001-07-13 2003-01-23 Cardiac Science, Inc. Method and apparatus for monitoring cardiac patients for t-wave alternans
WO2005096925A2 (en) * 2004-03-30 2005-10-20 Quinton Cardiology, Inc. Methods and apparatuses for determining t-wave alternans
US20050234363A1 (en) * 2004-04-15 2005-10-20 Ge Medical Systems Information Technologies, Inc. Method and apparatus for determining alternans data of an ECG signal
US20080082133A1 (en) * 2006-09-29 2008-04-03 Xiaohong Zhou Method and apparatus for induced t-wave alternans assessment
EP2052680A1 (en) * 2007-10-24 2009-04-29 Ela Medical Electrocardiology diagnosis assistance device, in particular for diagnosing Brugada syndrome and ERS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CUESTA-FRAU D. ET AL.: "T-wave alternans analysis improvement by means of curve alligment prior to distance calculation", ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, 2007, PISCATAWAY, NJ, USA, pages 690 - 693 *
KLINGEHEBEN T. ET AL.: "T-Wellen-Alternans in Mikrovoltbereich als neuer Indikator einer gestorten ventrikulären Repolarisation: Pathophysiologie, Methodik, klinische Ergebnisse", ZEITSCHRIFT FÜR KARDIOLOGIE, GERMANY, vol. 88, no. 12, December 1999 (1999-12-01), pages 974 - 981 *
MORENO MARTTINEZ E. ET AL.: "Enhanced spectral method for T-wave alternans", IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING 2007, 2007, PISCATAWAY, NJ, USA, pages 849 - 854 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026158A1 (en) * 2021-08-23 2023-03-02 Analytics For Life Inc. Methods and systems for engineering conduction deviation features from biophysical signals for use in characterizing physiological systems

Also Published As

Publication number Publication date
ES2343054A1 (en) 2010-07-21
ES2343054B2 (en) 2011-02-07

Similar Documents

Publication Publication Date Title
García et al. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation
Lenis et al. Comparison of baseline wander removal techniques considering the preservation of ST changes in the ischemic ECG: a simulation study
Castells et al. Principal component analysis in ECG signal processing
Agrawal et al. Fractal and EMD based removal of baseline wander and powerline interference from ECG signals
Clifford et al. ECG statistics, noise, artifacts, and missing data
US8923958B2 (en) System and method for evaluating an electrophysiological signal
Sayadi et al. Synthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model
KR101366101B1 (en) System and method for classificating normal signal of personalized ecg
Tiinanen et al. ECG-derived respiration methods: Adapted ICA and PCA
Al-Ani ECG waveform classification based on P-QRS-T wave recognition
Islam et al. A morphology alignment method for resampled heartbeat signals
Lamesgin et al. Extraction of fetal ECG from abdominal ECG and heart rate variability analysis
Burri et al. Wavelet transform for analysis of heart rate variability preceding ventricular arrhythmias in patients with ischemic heart disease
Alcaraz et al. Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation
Rapalis et al. Estimation of blood pressure variability during orthostatic test using instantaneous photoplethysmogram frequency and pulse arrival time
Ródenas et al. Combined nonlinear analysis of atrial and ventricular series for automated screening of atrial fibrillation
ES2343054B2 (en) DEVICE AND METHOD FOR THE DETECTION OF THE ALTERNANCE OF VENTRICULAR REPOLARIZATION THROUGH WINDING.
Jacquemet et al. Extraction and Analysis of $\hbox {T} $ Waves in Electrocardiograms During Atrial Flutter
Elmansouri et al. New Electrocardiogram signal analysis in a research laboratory using LabVIEW
Llinares et al. A fixed point algorithm for extracting the atrial activity in the frequency domain
Zeiler et al. Empirical mode decomposition techniques for biomedical time series analysis
Rizzi et al. Fast parallelized algorithm for ECG analysis
Arvinti et al. Effective wavelet algorithm for an automatic detection of atrial fibrillation
Tobón et al. Improved heart rate variability measurement based on modulation spectral processing of noisy electrocardiogram signals
Goyal et al. Study of HRV dynamics and comparison using wavelet analysis and Pan Tompkins algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838689

Country of ref document: EP

Kind code of ref document: A1