WO2010083991A2 - Method for operating a load - Google Patents
Method for operating a load Download PDFInfo
- Publication number
- WO2010083991A2 WO2010083991A2 PCT/EP2010/000304 EP2010000304W WO2010083991A2 WO 2010083991 A2 WO2010083991 A2 WO 2010083991A2 EP 2010000304 W EP2010000304 W EP 2010000304W WO 2010083991 A2 WO2010083991 A2 WO 2010083991A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydraulic
- drive
- motor
- output shaft
- drive shaft
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/46—Automatic regulation in accordance with output requirements
- F16H61/47—Automatic regulation in accordance with output requirements for achieving a target output speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/20—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/06—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for stopping, starting, idling or no-load operation
- F04C14/065—Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/08—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H39/00—Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution
- F16H39/02—Rotary fluid gearing using pumps and motors of the volumetric type, i.e. passing a predetermined volume of fluid per revolution with liquid motors at a distance from liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/38—Control of exclusively fluid gearing
- F16H61/40—Control of exclusively fluid gearing hydrostatic
- F16H61/44—Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
- F16H61/444—Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation by changing the number of pump or motor units in operation
Definitions
- the invention relates to a method for operating a consumer by means of a hydraulic motor, which is supplied by a pumping device with fluid.
- Hydraulic drives are used to transfer power from electric or diesel drives to slow-speed shafts with high torques.
- Conventional hydraulic actuators consist of: a) a drive motor for constant speed electric drives; b) a pump that pumps hydraulic oil to c) the hydraulic motor connected to d) hydraulic lines connecting the pump to the motors and e) various ancillary equipment, such as Oil reservoir that collects the leakage current, and a pump that pumps the leak oil back into the main circuit.
- the hydraulic motor is connected to the hydraulic lines with flexible hoses.
- a major advantage of this drive system is that the hydraulic motor is flexibly mounted on the output shaft. This is particularly advantageous because the output axis z. B. by thermal expansion of the consumer during operation shifts.
- the hydraulic motor is relatively lightweight and can be mounted on the output shaft usually without additional support.
- Another advantage of this drive concept is that very short and extreme load fluctuations (vibrations) in the hydraulic oil are damped, thus preventing damage to the bearing and the output shaft.
- the pump unit can also be installed at some distance from the output shaft, which is particularly beneficial for consumers at risk of exfoliation.
- the hydraulic motor has a constant displacement per revolution. Since the hydraulic pressures in the supply line at nominal and maximum conditions are usually standardized in order to standardize components, automatically results in a specific torque for each hydraulic motor, which must be taken into account in the design.
- the maximum transferable capacity corresponds to the hydraulic pressure gradient times the volume flow of hydraulic oil. Since the engine speed at constant engine displacement is proportional to the volume flow of hydraulic oil (the oil is approximately compressible) and the hydraulic pressure of the engine is approximately constant, the hydraulic pressure in the engine intake is a representative quantity to describe the torque. Since this hydraulic pressure can be limited by means of a pressure relief valve, it is possible with simple means to protect the output shaft from too high a torque load.
- Another advantage of the hydrodrive is that you can distribute the torque to several hydraulic motors. This is how the output shaft of drive both sides with simple means. With two identical hydraulic motors, the drive torque is half that of a double-sided motor on one drive side. It is also often the case that the consumption of the torque on the output shaft takes place uniformly over a large part of the length. Then the shaft is additionally relieved of hydraulic motors, which are mounted on both sides, and the shaft deflection due to the load decreases.
- the stroke volume of the pump is varied in conventional systems.
- the hydraulic pressure in the supply line is kept constant by the consuming hydraulic motor.As the oil consumption in the line increases, the stroke volume of the pump is adjusted automatically so that the pressure does not drop, and vice versa.
- the advantage of this control concept is that you can install any number of hydraulic motors for a pump station system that has an intake and an exhaust manifold for all hydraulic motors, but the torque for all hydraulic motors is then constant.
- the stroke of the pump is kept constant and the hydraulic pressure of the motor supply line is allowed to vary.
- This control concept means that each output shaft has its own pumping system, as otherwise the torques of the different output axles would be interfered with Since the stroke of the pump is kept constant, the speed of the output shaft also remains constant. If the hydraulic motors are very large, a pump to operate is no longer sufficient.
- the largest axial piston pumps currently available on the market have a stroke of 1000 cc. Up to 500 cc, the pumps can be operated at 1800 rpm, in addition, these pumps must be operated at a lower speed. Therefore, the achievable pumping volume of a 1000 cc pump is not twice as high as that of a 500 cc pump.
- the maximum continuous speed of a pump with 1000 cc is for example 1200 rpm, which also does not correspond to the electrical mains frequency. It is therefore necessary to have a gearbox for this pump in order to get from the mains speed of 50 Hz (1500 rpm) or 60 Hz (1800 rpm) to 1200 rpm, or one must use a lower-pole electric motor.
- Hydromotors are always considerably better than the pumps. It is therefore not only wasted electrical energy, but it must also be strongly cooled the oil circuit. This cooling performance is often underestimated, which limits the flexibility of the drive system.
- the pumping stations must be connected to each other via manifolds and then to the engine.
- the piping effort, especially for drives with high power is very high.
- the line length increases at several pumping stations for a drive and thus also the power loss due to friction dissipation in the lines. It does not make sense, therefore Pumping stations too far away from the hydraulic motor to install. Since the pumping stations are very large and take up a lot of space, that is a disadvantage.
- Oil quantity elastically compressed and the oil flow rate at the engine decreases or decreases. This leads to speed fluctuations on the output shaft.
- Torque is the inertia (moment of inertia) of the shaft and the
- the object of the invention is to find a method of the type mentioned above, large hydraulic drives for rotating shafts, the large amounts of circulating Hydraulic oil need to be realized with little effort on hydraulic pump units, the method or a corresponding device provides a speed control with minimized speed fluctuations of the output shaft.
- the pumping means is associated with a drive shaft and a speed control of an output shaft for the consumer takes place via a speed control of the drive shaft and / or the pumping device has a constant displacement per revolution.
- the described disadvantages of the hydraulic drive at high powers are inventively improved so that the pump stations are replaced by hydraulic motors that act as pumps.
- These pump hydraulic motors are mounted on the drive axle and connected via a transmission gearbox with an electric motor or diesel engine.
- the electric or diesel drive has a variable speed z. B. with frequency converter. In a diesel engine then makes a diesel-electric drive with frequency converter sense.
- the Pumphydromotoren have a much larger displacement per revolution than axial piston pumps.
- the nominal speed of these pumped-motor motors is most advantageously around 300 rpm, with a usual rotational speed of the output shaft of 30 rpm.
- the torque of the drive shaft of the pumped motor is 10 times smaller than that of the output shaft.
- This translation corresponds to a gearbox that covers the high, mechanically heavily loaded torque range of the drive.
- the number of required Pumphydromotoren is one to two per hydraulic motor on the output axis and thus by a factor of two to three lower. Only one electric motor per output shaft is needed, because the pump hydraulic motors can be mounted on a drive shaft. The distance between these pump hydraulic motors is lower and the piping effort is considerably reduced. Also reduced is the noise level of the hydro drive. Hydromotors cause comparatively little noise, while axial rotary lobe pumps produce considerable noise.
- Another advantage of the inventive method is that the frequency converter can react very quickly to load fluctuations. Thus, it is possible to compensate for the oil volume flow fluctuations at the inlet of the hydraulic motor on the output shaft by the load adjustments of the electric motor. This is only partially possible with axial piston pumps, since the control here is hydraulic and therefore relatively sluggish.
- Another advantage of the inventive drive concept is that the speed control of the drive by a frequency converter, the
- Electric motor is fed, realized and this frequency converter can be installed relatively far away from the electric motor, without affecting the efficiency of the electric motor
- Another advantage of the inventive drive concept is that the hydraulic efficiency of the drive is much higher than in the conventional hydro drive. Thus, the required cooling capacity of the hydraulic circuit is smaller and less electrical energy is consumed.
- Figure 1 is a block diagram representation of a hydraulic drive according to the prior art
- Figure 2 is a block diagram representation of an electrical drive of a consumer
- Figure 3 is a block diagram representation of a drive of a consumer with hydraulic speed control
- Figure 4 is a block diagram representation of an inventive electro-hydraulic drive concept for a consumer.
- three hydraulic piston pumps 1.1 to 1.3 are connected via a collecting line 2 to a hydraulic motor 3.
- This hydraulic motor 3 attacks a consumer 4.
- the piston pumps 1.1 to 1.3 are operated by means of electric motors 9.1 to 9.3, so that hydraulic oil is pumped by the piston pumps 1.1 to 1.3 through the manifold 2 to the hydraulic motor 3. A return flow of the oil goes back to the piston pumps 1.1 to 1.3, which takes place via a common supply line 10.
- a possible leakage flow flows into a reservoir 5 and is fed back via a pump 6, which in turn is driven by a motor 7, via a heat exchanger 8 in the collecting supply line 10.
- the motors 9.1 to 9.3 or 7 rotate with constant uncontrolled speed.
- the required amount of oil is adjusted by changing the stroke of a piston rod of the piston pumps 1.1 to 1.3.
- an electric motor 9 is provided according to Figure 2, to which a frequency converter 11 is assigned. This sets the frequency for the electric motor 9, wherein the phase angle of the drive axle is measured and used in the frequency converter computationally.
- a cooling 17 is provided for the frequency converter 11 is still a cooling 17 is provided
- a drive axle 12 drives a transmission 13 for setting a speed range.
- An output shaft 14, which leads to the load 4 must be screened against expansion by means of a corresponding compensating device 15, furthermore, a safety clutch 16 is provided, which protects the output shaft 14 in case of overload.
- an electric motor 9 with a constant and uncontrolled speed drives a hydraulic transmission 18.
- a speed of an output shaft 14 can be adjusted, wherein a speed range is adjusted via the transmission 13.
- the output shaft 14 must in turn be protected by a compensation device 15 against expansion and a safety clutch 16 against overload. It drives the consumer 4.
- the hydraulic transmission 18 must still be cooled by means of a cooling 17.
- FIG. 4 shows an electrohydraulic drive concept according to the present invention.
- a frequency converter 11 ensures the power frequency for an electric motor 9, wherein the phase angle of the drive axle is measured and used in the frequency converter 11 computationally.
- the drive axle 12 drives the transmission 13 to set a speed range.
- a hydraulic motor 20 sits on the drive axle, which consists in the present embodiment of two hydraulic pumps 21.2 and 21.2 with constant displacement.
- the amount of oil from the hydraulic motor 20 is supplied via the manifold 2 to the hydraulic motor 3, which operates the consumer 4.
- a return line 22 connects the hydraulic motor 3 to the hydraulic motor 20.
- a leakage flow flows into the reservoir 5 and is pumped back via the pump 6, which in turn is driven by the motor 7, via the heat exchanger 8 in the oil circuit.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Abstract
In a method for operating a load (4) by means of a hydraulic motor (3) that is supplied with fluid by a pump device (20), a drive shaft (12) is to be associated with the pump device (20) and a speed control of a drive shaft for the load (4) is to be carried out by a speed control of the drive shaft (12) and/or the pump device (20) is to have a constant displacement volume per revolution.
Description
Verfahren zum Betreiben eines Verbrauchers Method of operating a consumer
Die Erfindung betrifft ein Verfahren zum Betreiben eines Verbrauchers mittels eines hydraulischen Motors, der von einer Pumpeinrichtung mit Fluid versorgt wird.The invention relates to a method for operating a consumer by means of a hydraulic motor, which is supplied by a pumping device with fluid.
Stand der TechnikState of the art
Hydraulische Antriebe dienen der Kraftübertragung von elektrischen oder Dieselantrieben auf langsam laufende Wellen mit hohen Drehmomenten. Konventionelle Hydraulikantriebe bestehen aus a) an einem Antriebsmotor für elektrische Antriebe mit konstanter Drehzahl b) einer Pumpe, die Hydrauliköl zum c) Hydraulikmotor pumpt verbunden mit d) Hydraulikleitungen, die die Pumpe mit den Motoren verbindet und e) diversem Zusatzequipment, wie ein
Ölreservoir, der den Leckstrom auffängt, und eine Pumpe, die das Lecköl zurück in den Hauptkreislauf pumpt.Hydraulic drives are used to transfer power from electric or diesel drives to slow-speed shafts with high torques. Conventional hydraulic actuators consist of: a) a drive motor for constant speed electric drives; b) a pump that pumps hydraulic oil to c) the hydraulic motor connected to d) hydraulic lines connecting the pump to the motors and e) various ancillary equipment, such as Oil reservoir that collects the leakage current, and a pump that pumps the leak oil back into the main circuit.
Der Hydraulikmotor ist mit flexiblen Schläuchen mit den Hydraulikleitungen verbunden. Ein grosser Vorteil dieses Antriebssystems ist, dass der Hydromotor flexibel auf der Abtriebsachse montiert ist. Dies ist besonders von Vorteil, weil sich die Abtriebsachse z. B. durch thermische Ausdehnungen des Verbrauchers während des Betriebes verschiebt. Der Hydromotor ist relativ leichtgewichtig und kann in der Regel ohne zusätzliche Abstützung auf die Abtriebsachse montiert werden. Ein weiterer Vorteil dieses Antriebskonzepts ist, dass sehr kurze und extreme Lastschwankungen (Vibrationen) im Hydrauliköl gedämpft und somit Schäden der Lagerung und der Abtriebsachse verhindern werden. Das Pumpenaggregat kann auch in einiger Entfernung von der Abtriebswelle installiert werden, was vor allem bei expfosionsgefährdeten Verbrauchern von Vorteil ist.The hydraulic motor is connected to the hydraulic lines with flexible hoses. A major advantage of this drive system is that the hydraulic motor is flexibly mounted on the output shaft. This is particularly advantageous because the output axis z. B. by thermal expansion of the consumer during operation shifts. The hydraulic motor is relatively lightweight and can be mounted on the output shaft usually without additional support. Another advantage of this drive concept is that very short and extreme load fluctuations (vibrations) in the hydraulic oil are damped, thus preventing damage to the bearing and the output shaft. The pump unit can also be installed at some distance from the output shaft, which is particularly beneficial for consumers at risk of exfoliation.
Der Hydromotor hat ein konstantes Schluckvolumen pro Umdrehung. Da die Hydraulikdrücke in der Zuleitung bei Nominal- wie Maximalbedingungen üblicherweise genormt sind, um Komponenten standardisieren zu können, ergibt sich automatisch ein spezifisches Drehmoment für jeden Hydromotor, das bei der Auslegung berücksichtigt werden muss. Die maximal übertragbare Leistung entspricht dem hydraulischen Druckgefälle mal dem Volumenstrom an Hydrauliköl. Da die Drehzahl bei konstantem Schluckvolumen des Motors proportional dem Volumenstrom an Hydrauliköl ist (das Öl ist annähernd imkompressibel) und der Hydraulikdruck des Motorlaufs annährend konstant ist, ist der Hydraulikdruck im Motorzulauf eine repräsentative Grösse, um das Drehmoment zu beschreiben. Da sich dieser Hydraulikdruck mit Hilfe eines Druckablassventils beschränken lässt, kann man mit einfachen Mitteln die Abtriebsachse vor einer zu hohen Drehmomentsbelastung bewahren.The hydraulic motor has a constant displacement per revolution. Since the hydraulic pressures in the supply line at nominal and maximum conditions are usually standardized in order to standardize components, automatically results in a specific torque for each hydraulic motor, which must be taken into account in the design. The maximum transferable capacity corresponds to the hydraulic pressure gradient times the volume flow of hydraulic oil. Since the engine speed at constant engine displacement is proportional to the volume flow of hydraulic oil (the oil is approximately compressible) and the hydraulic pressure of the engine is approximately constant, the hydraulic pressure in the engine intake is a representative quantity to describe the torque. Since this hydraulic pressure can be limited by means of a pressure relief valve, it is possible with simple means to protect the output shaft from too high a torque load.
Ein weiterer Vorteil des Hydroantriebs ist, dass man das Drehmoment auf mehrere Hydromotoren verteilen kann. So lässt sich die Abtriebswelle von
beiden Seiten mit einfachen Mitteln antreiben. Das Antriebsmoment ist bei zwei identischen Hydromotoren jeweils die Hälfte im Vergleich zu einem doppelt so starken Motor auf einer Antriebsseite. Häufig ist es auch so, dass der Verbrauch des Drehmoments auf der Abtriebsachse über einen Grossteil der Länge gleichmässig stattfindet. Dann wird die Welle zusätzlich bei Hydromotoren, die beidseitig montiert werden, entlastet, und die Wellendurchbiegung durch die Belastung nimmt ab.Another advantage of the hydrodrive is that you can distribute the torque to several hydraulic motors. This is how the output shaft of drive both sides with simple means. With two identical hydraulic motors, the drive torque is half that of a double-sided motor on one drive side. It is also often the case that the consumption of the torque on the output shaft takes place uniformly over a large part of the length. Then the shaft is additionally relieved of hydraulic motors, which are mounted on both sides, and the shaft deflection due to the load decreases.
Ein ähnliches Prinzip wird benutzt, wenn die Abtriebswelle wegen gestiegener Anforderungen nachgerüstet werden soll. Dann lässt sich der Antrieb mit einfachen Mitteln nachrüsten, da ein zusätzlicher Hydromotor „Huckepack" auf dem bestehenden Motor montiert werden kann.A similar principle is used when the output shaft is to be retrofitted because of increased requirements. Then the drive can be retrofitted with simple means, as an additional hydromotor "piggyback" can be mounted on the existing engine.
Um den Ölverbrauch dem Bedarf anpassen zu können, wird in konventionellen Systemen das Hubvolumen der Pumpe variiert. Es gibt zwei meistgebräuchliche Regelkonzepte. Bei der „volumenkompensierten" Steuerung wird der Hydraulikdruck in der Zuleitung vom verbrauchenden Hydromotor konstant gehalten. Nimmt der Verbrauch an Öl in der Leitung zu, wird das Hubvolumen der Pumpe automatisch angepasst, so dass der Druck nicht abfällt, und umgekehrt. Der Vorteil dieses Regelkonzepts ist, dass man beliebig viele Hydromotoren für ein Pumpstationssystem, das eine Zu- und eine Abölsammelleitung für alle Hydromotoren besitzt, installieren kann. Das Drehmoment für alle Hydromotoren ist dann allerdings konstant.In order to be able to adapt the oil consumption to the demand, the stroke volume of the pump is varied in conventional systems. There are two most common control concepts. In the case of the "volume compensated" control, the hydraulic pressure in the supply line is kept constant by the consuming hydraulic motor.As the oil consumption in the line increases, the stroke volume of the pump is adjusted automatically so that the pressure does not drop, and vice versa.The advantage of this control concept is that you can install any number of hydraulic motors for a pump station system that has an intake and an exhaust manifold for all hydraulic motors, but the torque for all hydraulic motors is then constant.
Bei der „druckkompensierten" Steuerung wird der Hub der Pumpe konstant gehalten, wobei der Hydraulikdruck der Motorzuleitung variieren darf. Bei diesem Steuerungskonzept besitzt jede Abtriebsachse ihr eigenes Pumpsystem, weil es sonst zu Interferenzen zwischen den Drehmomenten der verschiedenen Abtriebsachsen kommen würde. Diese Ausführungsform betrachtet im besonderen das vorliegende Antriebssystem. Da der Hub der Pumpe konstant gehalten wird, bleibt auch die Drehzahl der Abtriebswelle konstant.
Sind die Hydromotoren sehr gross, ist eine Pumpe zum Betreiben nicht mehr ausreichend. Die grössten Axialkolbenpumpen, die es auf dem Markt zur Zeit gibt, haben einen Hub von 1000 ccm. Bis 500 ccm können die Pumpen mit 1800 Upm betrieben werden, darüber hinaus müssen diese Pumpen mit niedrigerer Drehzahl betrieben werden. Daher ist das erreichbare Pumpvolumen einer Pumpe mit 1000 ccm nicht doppelt so gross, wie bei einer Pumpe mit 500 ccm. Die maximale Dauerdrehzahl einer Pumpe mit 1000 ccm ist z.B. 1200 Upm, was auch nicht mit der elektrischen Netzfrequenz übereinstimmt. Man braucht für diese Pumpe daher ein Getriebe, um von der Netzdrehzahl 50 Hz (1500 Upm) oder 60 Hz (1800 Upm) auf 1200 Upm zu kommen, oder man muss einen niedrigpoligeren Elektromotor benutzen.In the case of the "pressure compensated" control, the stroke of the pump is kept constant and the hydraulic pressure of the motor supply line is allowed to vary.This control concept means that each output shaft has its own pumping system, as otherwise the torques of the different output axles would be interfered with Since the stroke of the pump is kept constant, the speed of the output shaft also remains constant. If the hydraulic motors are very large, a pump to operate is no longer sufficient. The largest axial piston pumps currently available on the market have a stroke of 1000 cc. Up to 500 cc, the pumps can be operated at 1800 rpm, in addition, these pumps must be operated at a lower speed. Therefore, the achievable pumping volume of a 1000 cc pump is not twice as high as that of a 500 cc pump. The maximum continuous speed of a pump with 1000 cc is for example 1200 rpm, which also does not correspond to the electrical mains frequency. It is therefore necessary to have a gearbox for this pump in order to get from the mains speed of 50 Hz (1500 rpm) or 60 Hz (1800 rpm) to 1200 rpm, or one must use a lower-pole electric motor.
Die einzige Möglichkeit hohe Leistungen mit Pumpen zu realisieren, ist die Anzahl der Pumpen zu multiplizieren. Es lassen sich mehrere Pumpen auf einer Antriebsachse installieren, bei grossen Antrieben aber typischerweise nicht mehr als zwei. Damit sind für einen Antrieb von z.B. 3 MW acht Pumpen mit 500 ccm Hub erforderlich (1500 Upm) und vier Elektromotoren. Ein Nachteil dieses Antriebsystems ist daher die Anzahl der erforderlichen (Verschleiss-) Teile und damit des erforderlichen Wartungsaufwandes. Ein weiterer Nachteil dieses Pumpensystems ist, dass der hydraulische Wirkungsgrad derThe only way to realize high performance with pumps is to multiply the number of pumps. Several pumps can be installed on one drive axle, but typically not more than two for large drives. Thus, for a drive of e.g. 3 MW eight pumps with 500 cc stroke required (1500 rpm) and four electric motors. A disadvantage of this drive system is therefore the number of required (wear) parts and thus the required maintenance. Another disadvantage of this pump system is that the hydraulic efficiency of the
Axialkolbenpumpen bei Teillast stark abnimmt. Der Wirkungsgrad derAxial piston pumps at part load decreases sharply. The efficiency of
Hydromotoren ist immer erheblich besser als der der Pumpen. Es wird daher nicht nur elektrische Energie verschwendet, sondern es muss auch der Ölkreislauf stark gekühlt werden. Diese Kühlleistung wird häufig unterschätzt, womit die Flexibilität des Antriebsystems eingeschränkt wird.Hydromotors are always considerably better than the pumps. It is therefore not only wasted electrical energy, but it must also be strongly cooled the oil circuit. This cooling performance is often underestimated, which limits the flexibility of the drive system.
Die Pumpstationen müssen über Sammelleitungen miteinander und dann mit dem Motor verbunden werden. Der Verrohrungsaufwand gerade bei Antrieben mit hoher Leistung ist sehr hoch. Die Leitungslänge nimmt bei mehreren Pumpstationen für einen Antrieb zu und damit auch die Verlustleistung durch Reibungsdissipation in den Leitungen. Es ist daher auch nicht sinnvoll die
Pumpstationen zu weit weg vom Hydromotor zu installieren. Da die Pumpstationen sehr gross sind und viel Platz wegnehmen, ist das ein Nachteil.The pumping stations must be connected to each other via manifolds and then to the engine. The piping effort, especially for drives with high power is very high. The line length increases at several pumping stations for a drive and thus also the power loss due to friction dissipation in the lines. It does not make sense, therefore Pumping stations too far away from the hydraulic motor to install. Since the pumping stations are very large and take up a lot of space, that is a disadvantage.
Ein weiterer Nachteil ist, dass mit langen Zuleitungen das Ölvolumen zunimmt. Kommt es zu Drehmomentsschwankungen auf der Abtriebswelle, wird dieseAnother disadvantage is that with long feed lines, the volume of oil increases. If there are torque fluctuations on the output shaft, this will
Ölmenge elastisch komprimiert und der Ölvolumenstrom am Motor nimmt ab oder zu. Dies führt zu Drehzahlschwankungen an der Abtriebswelle. DieOil quantity elastically compressed and the oil flow rate at the engine decreases or decreases. This leads to speed fluctuations on the output shaft. The
Abweichung von der mittleren Drehzahl ist dabei proportional derDeviation from the average speed is proportional to the
Druckänderung, nicht des Druckniveaus in der Zuleitung. Damit besteht kein direkter Zusammenhang der Drehzahl der Abtriebswelle mit demPressure change, not the pressure level in the supply line. Thus there is no direct relationship between the speed of the output shaft and the
Drehmomeηtniveau. Eine Entlastung der Drehmomentbelastung durchDrehmomeηtniveau. A relief of the torque load by
Abbremsen der Welle findet daher nicht statt.Braking the shaft therefore does not take place.
Durch die Entschleunigung der Abtriebswelle wird zudem zusätzliches Drehmoment frei, welches sich zum Drehmoment des Antriebs addiert. DiesesBy deceleration of the output shaft also additional torque is released, which adds to the torque of the drive. This
Drehmoment ist das Inertiemoment (Trägheitsmoment) der Welle und desTorque is the inertia (moment of inertia) of the shaft and the
Hydromotors. Wenn auch die Inertie des Hydromotors klein ist und sich damit wenig Inertie zur Abtriebswelle addiert im Vergleich zum Direktantrieb mitHydraulic motor. Although the inertia of the hydraulic motor is small and thus adds little inertia to the output shaft in comparison to the direct drive with
Getriebe, ist die Entschleunigung beim Hydroantrieb sehr hoch und entsprechend das Inertiemoment nicht vernächlässigbar. Dieses Inertiemoment ist gemäss der oben erwähnten Beschreibung proportional der Krümmung derGearbox, the deceleration of the hydro drive is very high and accordingly the inert torque is not negligible. This inertia moment is proportional to the curvature of. According to the above-mentioned description
Hydraulikdruckkurve. Die stärkste Krümmung stimmt mit denHydraulic pressure curve. The strongest curvature agrees with the
Drehmomentspitzen überein. Damit wird die Wellenverbindung desTorque peaks match. Thus the wave connection of the
Hydromotors zur Abtriebsachse durch diesen Effekt entlastet, aber es werden die Drehmomentspitzen nicht wirklich 100 % durch den Hydraulikdruck wiedergegeben. Dies schwächt die Effizienz der Hydraulikdruckbegrenzung, umHydraulic engine to the output axle relieved by this effect, but the torque peaks are not really 100% represented by the hydraulic pressure. This weakens the efficiency of the hydraulic pressure limitation to
Schäden der Abtriebswelle im Eingriff des Verbrauchers abzuwenden.Avert damage to the output shaft in the intervention of the consumer.
Aufgabetask
Aufgabe der Erfindung ist es, ein Verfahren der o. g. Art zu finden, grosse Hydraulikantriebe für drehende Wellen, die grosse Mengen an umlaufendem
Hydrauliköl benötigen, mit geringem Aufwand an hydraulischen Pumpenaggregaten zu verwirklichen, wobei das Verfahren bzw. eine entsprechende Vorrichtung eine Drehzahlsteuerung mit minimierten Drehzahlschwankungen der Abtriebswelle vorsieht.The object of the invention is to find a method of the type mentioned above, large hydraulic drives for rotating shafts, the large amounts of circulating Hydraulic oil need to be realized with little effort on hydraulic pump units, the method or a corresponding device provides a speed control with minimized speed fluctuations of the output shaft.
Lösung der AufgabeSolution of the task
Zur Lösung der Aufgabe führt, dass der Pumpeinrichtung eine Antriebswelle zugeordnet ist und eine Drehzahlsteuerung einer Abtriebswelle für den Verbraucher über eine Drehzahlsteuerung der Antriebswelle erfolgt und/oder die Pumpeinrichtung ein konstantes Hubvolumen pro Umdrehung hat.To achieve the object that the pumping means is associated with a drive shaft and a speed control of an output shaft for the consumer takes place via a speed control of the drive shaft and / or the pumping device has a constant displacement per revolution.
Die beschriebenen Nachteile des Hydroantriebes bei hohen Leistungen werden erfindungsgemäss so verbessert, dass die Pumpenstationen durch Hydromotoren ersetzt werden, die als Pumpen agieren. Diese Pumpenhydromotoren werden auf die Antriebsachse montiert und über ein Übersetzungsgetriebe mit einem elektrischen Motor oder Dieselmotor verbunden. Der Elektro- oder Dieselantrieb hat eine variable Drehzahl z. B. mit Frequenzumformer. Bei einem Dieselantrieb macht dann ein dieselelektrischer Antrieb mit Frequenzumformer Sinn.The described disadvantages of the hydraulic drive at high powers are inventively improved so that the pump stations are replaced by hydraulic motors that act as pumps. These pump hydraulic motors are mounted on the drive axle and connected via a transmission gearbox with an electric motor or diesel engine. The electric or diesel drive has a variable speed z. B. with frequency converter. In a diesel engine then makes a diesel-electric drive with frequency converter sense.
Die Pumphydromotoren haben ein sehr viel grosseres Schluckvolumen pro Umdrehung als Axialkolbenpumpen. Die Nominaldrehzahl dieser Pumphydromotoren ist erfindungsgemäss am vorteilhaftesten um die 300 Upm, bei einer üblichen Drehzahl der Abtriebswelle von 30 Upm. Damit ist das Drehmoment der Antriebswelle des Pumphydromotors um den Faktor 10 kleiner als das der Abtriebswelle. Diese Übersetzung entspricht einem Getriebe, das den hohen, mechanisch stark belastenden Drehmomentbereich des Antriebs abdeckt. Dies ist ein weiterer Vorteil dieses Antriebskonzepts gemäss dieser Erfindung. Die Anzahl der notwendigen Pumphydromotoren ist ein bis zwei pro Hydromotor auf der Abtriebsachse und damit um den Faktor zwei bis drei geringer. Es wird nur ein Elektromotor pro Abtriebswelle benötigt,
da die Pumpenhydromotoren auf einer Antriebswelle montiert werden können. Die Distanz zwischen diesen Pumpenhydromotoren ist geringer und der Verrohrungsaufwand erheblich reduziert. Ebenfalls reduziert ist der Geräuschpegel des Hydroantriebs. Hydromotoren verursachen vergleichsweise wenig Lärm, während Axialdrehkolbenpumpen erheblichen Lärm produzieren.The Pumphydromotoren have a much larger displacement per revolution than axial piston pumps. According to the invention, the nominal speed of these pumped-motor motors is most advantageously around 300 rpm, with a usual rotational speed of the output shaft of 30 rpm. Thus, the torque of the drive shaft of the pumped motor is 10 times smaller than that of the output shaft. This translation corresponds to a gearbox that covers the high, mechanically heavily loaded torque range of the drive. This is another advantage of this drive concept according to this invention. The number of required Pumphydromotoren is one to two per hydraulic motor on the output axis and thus by a factor of two to three lower. Only one electric motor per output shaft is needed, because the pump hydraulic motors can be mounted on a drive shaft. The distance between these pump hydraulic motors is lower and the piping effort is considerably reduced. Also reduced is the noise level of the hydro drive. Hydromotors cause comparatively little noise, while axial rotary lobe pumps produce considerable noise.
Ein weiterer Vorteil der erfindungsgemässen Methode ist, dass der Frequenzumformer sehr schnell auf Lastschwankungen reagieren kann. Somit ist es möglich die Ölvolumenstromschwankungen am Eintritt des Hydromotors auf der Abtriebswelle durch die Lastanpassungen des Elektromotors auszugleichen. Dies ist nur bedingt bei Axialkolbenpumpen möglich, da die Steuerung hier hydraulisch und damit relativ träge ist.Another advantage of the inventive method is that the frequency converter can react very quickly to load fluctuations. Thus, it is possible to compensate for the oil volume flow fluctuations at the inlet of the hydraulic motor on the output shaft by the load adjustments of the electric motor. This is only partially possible with axial piston pumps, since the control here is hydraulic and therefore relatively sluggish.
Ein weiterer Vorteil des erfindungsgemässen Antriebskonzeptes ist, dass die Drehzahlregelung des Antriebs durch einen Frequenzumformer, der denAnother advantage of the inventive drive concept is that the speed control of the drive by a frequency converter, the
Elektromotor speist, realisiert wird und dieser Frequenzumformer relativ weit weg vom Elektromotor installiert werden kann, ohne dass die Effizienz desElectric motor is fed, realized and this frequency converter can be installed relatively far away from the electric motor, without affecting the efficiency of the electric motor
Antriebs wesentlich verschlechtert würde. Damit nimmt der Platzbedarf anDrive would deteriorate significantly. This takes up the space required
Antriebsequipment in der Nähe der Abtriebswelle ab und Probleme des Explosionsschutzes werden umgangen.Drive equipment near the output shaft and problems of explosion protection are bypassed.
Ein weiterer Vorteil des erfindungsgemässen Antriebskonzepts ist, dass die hydraulische Effizienz des Antriebs sehr viel höher als beim konventionellen Hydroantrieb ist. Somit ist die erforderliche Kühlleistung des Hydrokreislaufes kleiner, und es wird weniger elektrische Energie verbraucht.
Another advantage of the inventive drive concept is that the hydraulic efficiency of the drive is much higher than in the conventional hydro drive. Thus, the required cooling capacity of the hydraulic circuit is smaller and less electrical energy is consumed.
FIGURENBESCHREIBUNGDESCRIPTION OF THE FIGURES
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt inFurther advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawing; this shows in
Figur 1 eine blockschaltbildliche Darstellung eines hydraulischen Antriebs gemäss dem Stand der Technik;Figure 1 is a block diagram representation of a hydraulic drive according to the prior art;
Figur 2 eine blockschaltbildliche Darstellung eines elektrischen Antriebs eines Verbrauchers;Figure 2 is a block diagram representation of an electrical drive of a consumer;
Figur 3 eine blockschaltbildliche Darstellung eines Antriebs eines Verbrauchers mit hydraulischer Drehzahlregelung;Figure 3 is a block diagram representation of a drive of a consumer with hydraulic speed control;
Figur 4 eine blockschaltbildliche Darstellung eines erfindungsgemässen elektrohydraulischen Antriebskonzepts für einen Verbraucher.Figure 4 is a block diagram representation of an inventive electro-hydraulic drive concept for a consumer.
Gemäss Figur 1 sind drei hydraulische Kolbenpumpen 1.1 bis 1.3 über eine Sammelleitung 2 mit einem hydraulischen Motor 3 verbunden. Dieser hydraulische Motor 3 greift einen Verbraucher 4 an.According to FIG. 1, three hydraulic piston pumps 1.1 to 1.3 are connected via a collecting line 2 to a hydraulic motor 3. This hydraulic motor 3 attacks a consumer 4.
Betrieben werden die Kolbenpumpen 1.1 bis 1.3 mittels Elektromotoren 9.1 bis 9.3, sodass hydraulisches Öl von den Kolbenpumpen 1.1 bis 1.3 durch die Sammelleitung 2 zum hydraulischen Motor 3 gepumpt wird. Ein Rückstrom des Öls geht wieder zu den Kolbenpumpen 1.1 bis 1.3 zurück, was über eine Sammelzuleitung 10 erfolgt.The piston pumps 1.1 to 1.3 are operated by means of electric motors 9.1 to 9.3, so that hydraulic oil is pumped by the piston pumps 1.1 to 1.3 through the manifold 2 to the hydraulic motor 3. A return flow of the oil goes back to the piston pumps 1.1 to 1.3, which takes place via a common supply line 10.
Ein möglicher Leckagefluss fliesst in ein Reservoir 5 und wird über eine Pumpe 6, die wiederum von einem Motor 7 angetrieben wird, über einen Wärmetauscher 8 in die Sammelzuleitung 10 zurückgespeist.
Die Motoren 9.1 bis 9.3 bzw. 7 drehen mit konstanter ungeregelter Drehzahl. Die erforderliche Ölmenge wird durch Veränderung des Hubs einer Kolbenstange der Kolbenpumpen 1.1 bis 1.3 eingestellt.A possible leakage flow flows into a reservoir 5 and is fed back via a pump 6, which in turn is driven by a motor 7, via a heat exchanger 8 in the collecting supply line 10. The motors 9.1 to 9.3 or 7 rotate with constant uncontrolled speed. The required amount of oil is adjusted by changing the stroke of a piston rod of the piston pumps 1.1 to 1.3.
Für den elektrischen Antrieb eines Verbrauchers 4 ist gemäss Figur 2 ein Elektromotor 9 vorgesehen, dem ein Frequenzumformer 11 zugeordnet ist. Dieser stellt die Frequenz für den Elektromotor 9, wobei der Phasenwinkel der Antriebsachse gemessen und rechnerisch im Frequenzumformer verwendet wird. Für den Frequenzumformer 11 ist noch eine Kühlung 17 vorgesehenFor the electrical drive of a consumer 4, an electric motor 9 is provided according to Figure 2, to which a frequency converter 11 is assigned. This sets the frequency for the electric motor 9, wherein the phase angle of the drive axle is measured and used in the frequency converter computationally. For the frequency converter 11 is still a cooling 17 is provided
Eine Antriebsachse 12 treibt ein Getriebe 13 zum Einstellen eines Drehzahlbereiches an. Eine Abtriebswelle 14, die zum Verbraucher 4 führt, muss gegen Ausdehnung mittels einer entsprechenden Kompensationseinrichtung 15 abgeschirmt werden, ferner ist eine Sicherheitskupplung 16 vorgesehen, welche die Abtriebswelle 14 bei Überlast schützt.A drive axle 12 drives a transmission 13 for setting a speed range. An output shaft 14, which leads to the load 4, must be screened against expansion by means of a corresponding compensating device 15, furthermore, a safety clutch 16 is provided, which protects the output shaft 14 in case of overload.
Gemäss Figur 3 treibt bei einem Antrieb mit hydraulischer Drehzahlregelung ein Elektromotor 9 mit konstanter und ungeregelter Drehzahl ein hydraulisches Getriebe 18 an. Dabei kann eine Drehzahl einer Abtriebswelle 14 eingestellt werden, wobei ein Drehzahlbereich über das Getriebe 13 angepasst wird. Die Abtriebswelle 14 muss wiederum durch eine Kompensationseinrichtung 15 gegen Ausdehnung und über eine Sicherheitskupplung 16 gegen Überlast geschützt werden. Sie treibt den Verbraucher 4 an. Das hydraulische Getriebe 18 muss noch mittels einer Kühlung 17 gekühlt werden.According to FIG. 3, in the case of a drive with hydraulic speed control, an electric motor 9 with a constant and uncontrolled speed drives a hydraulic transmission 18. In this case, a speed of an output shaft 14 can be adjusted, wherein a speed range is adjusted via the transmission 13. The output shaft 14 must in turn be protected by a compensation device 15 against expansion and a safety clutch 16 against overload. It drives the consumer 4. The hydraulic transmission 18 must still be cooled by means of a cooling 17.
In Figur 4 ist ein elektrohydraulisches Antriebskonzept gemäss der vorliegenden Erfindung dargestellt. Auch hier stellt ein Frequenzumformer 11 die Netzfrequenz für einen Elektromotor 9 sicher, wobei der Phasenwinkel der Antriebsachse gemessen und rechnerisch im Frequenzumformer 11 verwendet wird. Die Antriebsachse 12 treibt das Getriebe 13 zum Einstellen eines Drehzahlbereiches an. Ferner sitzt ein Hydromotor 20 auf der Antriebsachse,
der im vorliegenden Ausführungsbeispiel aus zwei Hydraulikpumpen 21.2 und 21.2 mit konstantem Hubvolumen besteht.FIG. 4 shows an electrohydraulic drive concept according to the present invention. Again, a frequency converter 11 ensures the power frequency for an electric motor 9, wherein the phase angle of the drive axle is measured and used in the frequency converter 11 computationally. The drive axle 12 drives the transmission 13 to set a speed range. Furthermore, a hydraulic motor 20 sits on the drive axle, which consists in the present embodiment of two hydraulic pumps 21.2 and 21.2 with constant displacement.
Die ölmenge aus dem Hydromotor 20 wird über die Sammelleitung 2 dem hydraulischen Motor 3 zugeführt, der den Verbraucher 4 bedient. Eine Rückleitung 22 verbindet den hydraulischen Motor 3 mit dem Hydromotor 20.The amount of oil from the hydraulic motor 20 is supplied via the manifold 2 to the hydraulic motor 3, which operates the consumer 4. A return line 22 connects the hydraulic motor 3 to the hydraulic motor 20.
Ein Leckagefluss fliesst in das Reservoir 5 und wird über die Pumpe 6, die wiederum von dem Motor 7 angetrieben wird, über den Wärmetauscher 8 in den Ölkreislauf zurückgepumpt.
A leakage flow flows into the reservoir 5 and is pumped back via the pump 6, which in turn is driven by the motor 7, via the heat exchanger 8 in the oil circuit.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Claims
1. Verfahren zum Betreiben eines Verbrauchers (4) mittels einem hydraulischen Motor (3), der von einer Pumpeinrichtung (20) mit Fluid versorgt wird,Method for operating a consumer (4) by means of a hydraulic motor (3) which is supplied with fluid by a pump device (20)
dadurch gekennzeichnet,characterized,
dass der Pumpeinrichtung (20) eine Antriebswelle (12) zugeordnet und eine Drehzahlsteuerung einer Abtriebswelle für den Verbraucher (4) über eine Drehzahlsteuerung der Antriebswelle (12) erfolgt und/oder die Pumpeinrichtung (20) ein konstantes Hubvolumen pro Umdrehung hat.in that the pumping device (20) is assigned a drive shaft (12) and a rotational speed control of an output shaft for the consumer (4) takes place via a rotational speed control of the drive shaft (12) and / or the pumping device (20) has a constant displacement volume per revolution.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Antriebswelle (12) von einem Elektromotor (9) angetrieben wird.2. The method according to claim 1, characterized in that the drive shaft (12) by an electric motor (9) is driven.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Drehzahlschwankungen der Antriebswelle (12), die durch Lastwechsel der Abtriebswelle induziert werden, durch Anpassen der induzierten3. The method according to claim 1 or 2, characterized in that speed fluctuations of the drive shaft (12), which are induced by load changes of the output shaft, by adjusting the induced
Leistung der Antriebsachse (12) ausgeglichen werden, so dass die Drehzahl der Abtriebsachse annähernd konstant bleibt.Power of the drive axle (12) are compensated, so that the speed of the output shaft remains approximately constant.
4. Vorrichtung zum Betreiben eines Verbrauchers (4) mittels einem hydraulischen Motor (3), der von einer Pumpeinrichtung (20) mit Fluid versorgbar ist, dadurch gekennzeichnet, dass die Pumpeinrichtung (20) auf einer Antriebswelle (12) sitzt.4. Device for operating a consumer (4) by means of a hydraulic motor (3), which is supplied by a pumping device (20) with fluid, characterized in that the pumping device (20) on a drive shaft (12) sits.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Pumpeinrichtung (20) aus einem oder mehreren Hydromotoren (21.1 ,5. Apparatus according to claim 4, characterized in that the pumping device (20) consists of one or more hydraulic motors (21.1,
21.2) besteht. 21.2).
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der/die Hydromotor/en auf einer Antriebsachse (12) liegt/en und damit nur einen drehzahlgesteuerten Antriebsmotor (9) benötigen.6. The device according to claim 5, characterized in that the / the hydraulic motor / s on a drive axle (12) is / s and thus only need a speed-controlled drive motor (9).
7. Vorrichtung nach wenigstens einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Antriebswelle (12) mit einem Elektromotor (9) verbunden ist.7. Device according to at least one of claims 4 to 6, characterized in that the drive shaft (12) with an electric motor (9) is connected.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass dem Motor (9) ein Frequenzumformer (11) zugeordnet ist.8. Apparatus according to claim 7, characterized in that the motor (9) is associated with a frequency converter (11).
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Frequenzumformer (11) gekühlt ist.9. Apparatus according to claim 8, characterized in that the frequency converter (11) is cooled.
10. Vorrichtung nach wenigstens einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass zwischen Motor (9) und Pumpeinrichtung (20) ein Getriebe (13) angeordnet ist. 10. The device according to at least one of claims 7 to 9, characterized in that between the motor (9) and pumping means (20) a transmission (13) is arranged.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH852009A CH700301A2 (en) | 2009-01-20 | 2009-01-20 | Hydraulic method of speed-controlled power transmission to rotating shafts. |
CH85/09 | 2009-01-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010083991A2 true WO2010083991A2 (en) | 2010-07-29 |
WO2010083991A3 WO2010083991A3 (en) | 2010-11-04 |
Family
ID=42356258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/000304 WO2010083991A2 (en) | 2009-01-20 | 2010-01-20 | Method for operating a load |
Country Status (2)
Country | Link |
---|---|
CH (1) | CH700301A2 (en) |
WO (1) | WO2010083991A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3149362A4 (en) * | 2014-06-02 | 2018-02-21 | Project Phoenix LLC | Hydrostatic transmission assembly and system |
US10294936B2 (en) | 2014-04-22 | 2019-05-21 | Project Phoenix, Llc. | Fluid delivery system with a shaft having a through-passage |
US10465721B2 (en) | 2014-03-25 | 2019-11-05 | Project Phoenix, LLC | System to pump fluid and control thereof |
US10539134B2 (en) | 2014-10-06 | 2020-01-21 | Project Phoenix, LLC | Linear actuator assembly and system |
US10544810B2 (en) | 2014-06-02 | 2020-01-28 | Project Phoenix, LLC | Linear actuator assembly and system |
US10598176B2 (en) | 2014-07-22 | 2020-03-24 | Project Phoenix, LLC | External gear pump integrated with two independently driven prime movers |
US10677352B2 (en) | 2014-10-20 | 2020-06-09 | Project Phoenix, LLC | Hydrostatic transmission assembly and system |
US10808732B2 (en) | 2014-09-23 | 2020-10-20 | Project Phoenix, LLC | System to pump fluid and control thereof |
US10865788B2 (en) | 2015-09-02 | 2020-12-15 | Project Phoenix, LLC | System to pump fluid and control thereof |
US11085440B2 (en) | 2015-09-02 | 2021-08-10 | Project Phoenix, LLC | System to pump fluid and control thereof |
US11118581B2 (en) | 2014-02-28 | 2021-09-14 | Project Phoenix, LLC | Pump integrated with two independently driven prime movers |
US20220290545A1 (en) * | 2019-08-13 | 2022-09-15 | Spm Oil & Gas Inc. | Hydraulic Drive Train for a Frac Pump |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3953787A (en) * | 1974-03-07 | 1976-04-27 | Edward Helbling | Drive system |
US5141402A (en) * | 1991-01-29 | 1992-08-25 | Vickers, Incorporated | Power transmission |
US5778671A (en) * | 1996-09-13 | 1998-07-14 | Vickers, Inc. | Electrohydraulic system and apparatus with bidirectional electric-motor/hydraulic-pump unit |
JP3892840B2 (en) * | 2002-12-25 | 2007-03-14 | 一義 福地 | Hydraulic drive device using electric motor |
-
2009
- 2009-01-20 CH CH852009A patent/CH700301A2/en not_active Application Discontinuation
-
2010
- 2010-01-20 WO PCT/EP2010/000304 patent/WO2010083991A2/en active Application Filing
Non-Patent Citations (1)
Title |
---|
None |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11713757B2 (en) | 2014-02-28 | 2023-08-01 | Project Phoenix, LLC | Pump integrated with two independently driven prime movers |
US12060883B2 (en) | 2014-02-28 | 2024-08-13 | Project Phoenix, LLC | Pump integrated with two independently driven prime movers |
US11118581B2 (en) | 2014-02-28 | 2021-09-14 | Project Phoenix, LLC | Pump integrated with two independently driven prime movers |
US10465721B2 (en) | 2014-03-25 | 2019-11-05 | Project Phoenix, LLC | System to pump fluid and control thereof |
US10294936B2 (en) | 2014-04-22 | 2019-05-21 | Project Phoenix, Llc. | Fluid delivery system with a shaft having a through-passage |
US11280334B2 (en) | 2014-04-22 | 2022-03-22 | Project Phoenix, LLC | Fluid delivery system with a shaft having a through-passage |
US10544861B2 (en) | 2014-06-02 | 2020-01-28 | Project Phoenix, LLC | Hydrostatic transmission assembly and system |
US10544810B2 (en) | 2014-06-02 | 2020-01-28 | Project Phoenix, LLC | Linear actuator assembly and system |
EP3149362A4 (en) * | 2014-06-02 | 2018-02-21 | Project Phoenix LLC | Hydrostatic transmission assembly and system |
US11867203B2 (en) | 2014-06-02 | 2024-01-09 | Project Phoenix, LLC | Linear actuator assembly and system |
US10738799B2 (en) | 2014-06-02 | 2020-08-11 | Project Phoenix, LLC | Linear actuator assembly and system |
US11060534B2 (en) | 2014-06-02 | 2021-07-13 | Project Phoenix, LLC | Linear actuator assembly and system |
US11067170B2 (en) | 2014-06-02 | 2021-07-20 | Project Phoenix, LLC | Hydrostatic transmission assembly and system |
US10598176B2 (en) | 2014-07-22 | 2020-03-24 | Project Phoenix, LLC | External gear pump integrated with two independently driven prime movers |
US10995750B2 (en) | 2014-07-22 | 2021-05-04 | Project Phoenix, LLC | External gear pump integrated with two independently driven prime movers |
US11512695B2 (en) | 2014-07-22 | 2022-11-29 | Project Phoenix, LLC | External gear pump integrated with two independently driven prime movers |
US10808732B2 (en) | 2014-09-23 | 2020-10-20 | Project Phoenix, LLC | System to pump fluid and control thereof |
US11408442B2 (en) | 2014-09-23 | 2022-08-09 | Project Phoenix, LLC | System to pump fluid and control thereof |
US10539134B2 (en) | 2014-10-06 | 2020-01-21 | Project Phoenix, LLC | Linear actuator assembly and system |
US11242851B2 (en) | 2014-10-06 | 2022-02-08 | Project Phoenix, LLC | Linear actuator assembly and system |
US10677352B2 (en) | 2014-10-20 | 2020-06-09 | Project Phoenix, LLC | Hydrostatic transmission assembly and system |
US11054026B2 (en) | 2014-10-20 | 2021-07-06 | Project Phoenix, LLC | Hydrostatic transmission assembly and system |
US11846283B2 (en) | 2015-09-02 | 2023-12-19 | Project Phoenix, LLC | System to pump fluid and control thereof |
US10865788B2 (en) | 2015-09-02 | 2020-12-15 | Project Phoenix, LLC | System to pump fluid and control thereof |
US12060878B2 (en) | 2015-09-02 | 2024-08-13 | Project Phoenix, LLC | System to pump fluid and control thereof |
US11085440B2 (en) | 2015-09-02 | 2021-08-10 | Project Phoenix, LLC | System to pump fluid and control thereof |
US20220290545A1 (en) * | 2019-08-13 | 2022-09-15 | Spm Oil & Gas Inc. | Hydraulic Drive Train for a Frac Pump |
Also Published As
Publication number | Publication date |
---|---|
WO2010083991A3 (en) | 2010-11-04 |
CH700301A2 (en) | 2010-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010083991A2 (en) | Method for operating a load | |
EP2503160B1 (en) | Hydraulic drive system | |
EP2181221B1 (en) | Rotation system of an excavator with a hydraulic drive. | |
EP2267317B1 (en) | Hydraulic system | |
EP2474730B1 (en) | Vehicle powertrain with a retarder and an expansion machine | |
EP2914812B1 (en) | Rotary piston pump having direct drive | |
DE102014211964A1 (en) | pumping device | |
EP2452069B1 (en) | Hydrostatic drive of a wind turbine | |
DE1951234A1 (en) | Hydrostatic machine working in a closed circuit | |
DE102014112182A1 (en) | Aircraft and method for operating an aircraft engine | |
WO2009083223A2 (en) | Drive system | |
DE102009033272B4 (en) | Hydrostatic drive of a wind energy plant | |
EP3504435B1 (en) | Hydrostatic system and pumping station for an oil or gas pipeline | |
WO2014161769A1 (en) | Steering engine | |
DE202009009696U1 (en) | Hydrostatic drive of a wind energy plant | |
EP2046623B1 (en) | System with a compressor and with a consumer in a motor vehicle | |
DE102011121271B4 (en) | Hydrostatic circuit with secondary control | |
EP2584192A1 (en) | Pitch adjustment device | |
WO2009121691A1 (en) | Control housing for a hydraulic retarder control system | |
EP2166254B1 (en) | Power train in a vehicle | |
DE102015222672A1 (en) | Method for operating an electro-hydraulic axis and electro-hydraulic axis | |
DE102013213202B4 (en) | Cooling system with integrated hydrodynamic machine | |
WO2012003939A1 (en) | Hydraulic arrangement | |
DE102016223386A1 (en) | Pump system, automatic transmission and motor vehicle | |
DE102014204246A1 (en) | Hydrostatic transmission Method for controlling the hydrostatic transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10731711 Country of ref document: EP Kind code of ref document: A2 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10731711 Country of ref document: EP Kind code of ref document: A2 |