WO2010082283A1 - Apparatus and method of recycling resin crystalization flux - Google Patents

Apparatus and method of recycling resin crystalization flux Download PDF

Info

Publication number
WO2010082283A1
WO2010082283A1 PCT/JP2009/007306 JP2009007306W WO2010082283A1 WO 2010082283 A1 WO2010082283 A1 WO 2010082283A1 JP 2009007306 W JP2009007306 W JP 2009007306W WO 2010082283 A1 WO2010082283 A1 WO 2010082283A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
atmospheric gas
melamine
flux recovery
porous body
Prior art date
Application number
PCT/JP2009/007306
Other languages
French (fr)
Japanese (ja)
Inventor
サイ文豪
川上武彦
Original Assignee
株式会社タムラ製作所
株式会社タムラエフエーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 株式会社タムラエフエーシステム filed Critical 株式会社タムラ製作所
Priority to CN200980154654.7A priority Critical patent/CN102281980B/en
Publication of WO2010082283A1 publication Critical patent/WO2010082283A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor

Definitions

  • the present invention relates to a flux recovery apparatus that removes a flux component contained in an inert gas in a reflow furnace that heats and solders a circuit board on which electronic components are mounted in an inert gas such as nitrogen.
  • the present invention relates to a flux recovery method.
  • solder paste is a paste made by mixing cream-like flux and powdered solder. It is applied to the soldering part of the circuit board by printing or a dispenser, etc., and an electronic component is mounted on it. Then, the circuit board and the electronic component are soldered by heating and melting.
  • the solder paste flux removes the oxide film on the metal surface to be soldered, and prevents the metal surface from being reoxidized by heating during soldering.
  • the flux also acts as a coating material that reduces the surface tension of the solder and improves wetting.
  • solid components such as pine resin, thixotropic agent, and activator are dissolved in a solvent. Therefore, when the solder paste is heated and melted in a reflow furnace, these vaporize and become vapor. This vaporized flux component is liquefied by contact with the low temperature of the reflow furnace, adheres to the circuit board and causes poor soldering, or adheres to the movable part of the reflow furnace and hinders movement. There was a problem.
  • a reflow furnace is provided with a flux recovery device that recovers a flux component by cooling and liquefying the atmospheric gas.
  • Some flux collection devices include, for example, a heated atmospheric gas suction mechanism, a heat radiation unit including a plurality of thin pipes serving as cooling units, and a liquid flux collection container.
  • a heated atmospheric gas suction mechanism a heat radiation unit including a plurality of thin pipes serving as cooling units
  • a liquid flux collection container a liquid flux collection container.
  • this flux recovery apparatus when the sucked atmospheric gas passes through the pipe, it dissipates heat and the flux component is liquefied, and the liquid flux is dropped into the container and recovered.
  • the reason for providing a plurality of thin pipes is to increase the heat radiation efficiency of the atmospheric gas by diverting the heated atmospheric gas to each pipe.
  • Patent Document 1 a meandering passage is formed inside the flux collection box so that the flux particles collide with the wall surface and adhere easily, and then the flux collection box is cooled to cool the flux. Recovery is described. In this case as well, there is a problem that the meandering passage is immediately clogged with the powdery flux, so that the maintenance cycle is shortened.
  • the above flux recovery device is an example, and flux devices with various structures are used.
  • the basic principle of each is that the flux is liquefied and recovered by removing heat from the atmospheric gas, so the powdery flux adhering to the wall surface of the flux recovery device must be removed frequently. I must.
  • the inventors have found from the FT / IR measurement that the powdered flux contains melamine, whereas the liquid flux does not contain melamine.
  • the inventors have invented an apparatus that can collect the flux component mixed in the atmospheric gas as a powder at a high temperature and reduce the number of troublesome powder flux removal operations.
  • an object of the present invention is to provide a powder flux recovery device and a recovery method that can lengthen the maintenance interval and simplify maintenance work.
  • a first aspect of the flux recovery apparatus includes an opening into which an atmospheric gas containing a flux in a reflow furnace is injected, and a porous body provided on an inner wall surface where the atmospheric gas collides. It is characterized by providing.
  • the flux in the atmosphere gas is collected by causing the atmosphere gas containing the flux to collide with the porous body, thereby accumulating the powdery flux on the surface of the porous body. That is, even if the atmospheric gas containing the flux is not cooled or dissipated and remains at a high temperature, the flux can be recovered from the atmospheric gas in powder form.
  • Melamine resin may be used as a flame retardant and curing agent for circuit boards and solder resists. Accordingly, at this time, the melamine which is the main component of the melamine resin is also contained in the atmospheric gas containing the flux in the reflow furnace.
  • the atmospheric gas containing the flux and melamine collides with the porous body provided on the inner wall of the flux recovery device, the kinetic energy of the atmospheric gas is reduced, and first, the melamine nucleus becomes the surface of the porous body. It is thought that it is formed. This is because melamine has a sublimation property, and therefore, when kinetic energy is reduced on the surface of the porous body, the melamine gas directly changes into a solid and easily becomes a core of the powder.
  • Melamine has the property of dissolving with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux, so when the melamine nucleus is formed, these organic acid gases are adsorbed on the melamine nucleus. Melamine is further adsorbed on the adsorbed organic acid. In this way, by repeating the adsorption of melamine and the organic acid that is a constituent component of the flux on the porous body surface, the powder consisting of the melamine and the flux component grows around the nucleus of the melamine, The flux component in the atmospheric gas is recovered.
  • the use of the porous body improves the adsorption ability of melamine and organic acid contained in the atmospheric gas in addition to reducing the kinetic energy of the atmospheric gas by utilizing the large specific surface area. Because.
  • a second aspect of the flux recovery apparatus is characterized in that a flux adsorbent is attached to the porous body. Since the porous body to which the flux adsorbent is attached is used, the flux contained in the atmosphere gas of the reflow furnace is easily adsorbed to the porous body.
  • a third aspect of the flux recovery apparatus is characterized in that the flux adsorbent is melamine or an alkaline substance.
  • melamine is a flux adsorbent because it has a property of being soluble with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux.
  • Alkaline substances capture organic acids by neutralizing with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux, and the molecular weight of the reaction product increases. Since the force increases and the melting point of the reaction product is higher than that of the organic acid, the alkaline substance becomes an adsorbent that accumulates the flux as powder.
  • a fourth aspect of the flux collecting apparatus according to the present invention is characterized in that the alkaline substance is a hydroxide.
  • a fifth aspect of the flux collecting apparatus is characterized in that the inner wall surface is an inner wall surface of the bottom surface. Since the porous body is provided on the inner wall portion of the bottom surface of the flux recovery device, the recovered powdery flux is accumulated from the bottom surface of the flux recovery device.
  • a sixth aspect of the flux collecting apparatus is characterized by comprising a partition plate in which the flow path of the injected atmospheric gas is formed.
  • the internal space of the flux recovery device is partitioned by a partition plate, and the partition plate is provided with a hole serving as an atmosphere gas flow path.
  • a first aspect of the flux recovery method includes a step of injecting an atmosphere gas containing a flux in a reflow furnace into a flux recovery device, and the atmosphere gas is provided with a porous body. And a step of colliding with the inner wall surface of the recovery device.
  • the powdery flux is accumulated on the surface of the porous body, and the flux in the atmospheric gas is recovered.
  • a second aspect of the flux recovery method according to the present invention is characterized in that a flux adsorbent is attached to the porous body.
  • a third aspect of the flux recovery method according to the present invention is characterized in that the flux adsorbent is melamine or an alkaline substance.
  • a fourth aspect of the flux recovery method according to the present invention is characterized in that the alkaline substance is a hydroxide.
  • the inner wall surface is an inner wall surface of the bottom surface.
  • a sixth aspect of the flux recovery method according to the present invention is characterized by comprising a partition plate in which the flow path of the injected atmospheric gas is formed.
  • the first aspect of the flux recovery apparatus according to the present invention and the first aspect of the flux recovery method according to the present invention, by colliding the atmospheric gas containing the flux with the porous body, Since the powdery flux is accumulated on the surface, the accumulation part of the powdery flux can be appropriately selected, and the flow path of the atmospheric gas can be prevented from being clogged with the powdery flux. Further, since the powdery flux can be prevented from clogging the flow path, the maintenance cycle of the flux collecting apparatus can be greatly extended, and thus the production efficiency is improved.
  • the flux collection efficiency can be maintained regardless of whether the flux adheres to the flow path wall surface, and the atmospheric gas after removing the flux component with a small amount of energy Can be reheated and the production cost can be reduced.
  • the flux is recovered by repeating adsorption of melamine and organic acid, which is a constituent of the flux, on the porous body surface. At this time, the flux adhering to the inner wall may not be sufficiently wiped off, maintenance is simple, and workability is improved.
  • the flux adsorbent is attached to the porous body, the atmospheric gas in the reflow furnace Even if melamine is not mixed in, the powdery flux can be accumulated in the porous body.
  • the flux adsorbent is melamine or an alkaline substance, it has an excellent ability to adsorb powdery flux. Yes.
  • an alkaline substance is a hydroxide
  • the powder can be efficiently grown.
  • the hydroxide is inexpensive and easily available, the production cost can be suppressed.
  • the porous body is provided on the inner wall surface of the bottom surface, the bottom of the flux recovery apparatus As a result, powder flux is accumulated on the surface, and it is easy to secure a flow path for the atmospheric gas.
  • the interior of the flux recovery apparatus is partitioned by a partition plate, and the partition plate contains atmospheric gas. Since the holes serving as the flow paths are provided, the flow of the atmospheric gas is dispersed and collides with the porous body, so that the uneven distribution of the powder flux collecting portion can be suppressed. In addition, since the uneven distribution of the powdery flux can be suppressed, clogging of the flow path of the atmospheric gas with the powdery flux can be suppressed. Furthermore, by adjusting the height of the hole serving as the flow path, the accumulation capacity of the powdery flux can be changed, and the maintenance cycle can be adjusted.
  • FIG. 1 is a schematic cross-sectional view of a flux recovery apparatus according to a first embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of a flux recovery apparatus according to a second embodiment of the present invention
  • FIG. It is a conceptual diagram which shows a mode that a powdery flux is formed using a nucleus.
  • the flux recovery apparatus 21 includes a container portion 22 and a lid portion 23 as shown in FIG.
  • the container part 22 includes a rectangular bottom part 29 and four side wall parts 30 erected from each side of the bottom part 29, and is used by sealing the upper side of the container part 22 with a lid part 23.
  • the lid 23 is provided with an injection opening 31 that is an inlet for the high-temperature atmospheric gas 7 mixed with the flux component, and a discharge opening 32 that is an outlet for the atmospheric gas 7 from which the flux component has been removed. ing. Therefore, the flow 8 of the injected atmospheric gas 7 has a structure in which it first collides with the stainless wool 24 without passing through the bent flow path.
  • a suction device such as a blower unit
  • the atmosphere gas 7 is injected into the flux recovery device 21 from a reflow furnace (not shown), and further from the flux recovery device 21. Atmospheric gas 7 is discharged.
  • the container part 22 has a stainless steel wool 24, which is a porous body, laid on the inner wall surface of the bottom part 29, and a vertical partition plate 25 partitions the inside of the flux recovery apparatus 21 into a plurality of spaces.
  • the vertical partition plate 25 is provided with a hole 26 and serves as a flow path for the atmospheric gas 7 sucked from the reflow furnace.
  • the hole 26 is provided at a different height from the hole 26 provided in the adjacent vertical partition plate 25. Therefore, the flow 8 of the atmospheric gas 7 that has passed through the hole 26 collides with the next partition plate 25 in the vertical direction, a part of which is divided, and collides with the stainless wool 24 laid on the bottom 29.
  • the flow 8 of the atmospheric gas 7 that collides with the stainless wool 24 is reversed after the collision and passes through the hole 26 of the vertical partition plate 25 that collided.
  • three vertical partition plates 25 are erected from the bottom 29, and the bottom 29 on which the stainless wool 24 is laid is partitioned into four sections. At each vertical partition plate 25, the flow 8 of the atmospheric gas 7 collides and a part of the flow 8 collides with the stainless steel wool 24 on the bottom 29, so that the atmospheric gas 7 is substantially uniform on the stainless steel wool 24. collide.
  • Each of the vertical partition plates 25 has the same height as the side wall portion 30, and comes into contact with the inner wall of the lid portion 23 when the lid portion 23 is placed on the container portion 22. .
  • the bottom portion 29 of the container portion 22 is provided with the fan 11 so that the stainless wool 24 can be cooled as required.
  • the kinetic energy of the atmospheric gas 7 is reduced due to the large specific surface area of the stainless wool 24.
  • the melamine 12 derived from the circuit board contained in the atmospheric gas 7 forms a nucleus on the surface of the stainless wool 24. This is because melamine 12 has sublimability, and therefore, when kinetic energy is reduced, gaseous melamine 12 directly changes into a solid and becomes the core of the powder even at a high temperature.
  • melamine 12 has a property of dissolving with organic acids 13 such as abietic acid, pimaric acid, dehydroabietic acid and the like, which are constituents of the flux, when the nucleus of melamine 12 is formed, the gas of organic acid 13 becomes melamine. Adsorbed on 12 nuclei. Further, another melamine 12 is adsorbed on the adsorbed organic acid 13 and a powder having a flux component grows.
  • organic acids 13 such as abietic acid, pimaric acid, dehydroabietic acid and the like
  • the flux component in the atmosphere gas 7 is accumulated as a powder around the nucleus of the melamine 12 on the surface of the stainless wool 24, so that the flux component is powdered without cooling the atmosphere gas 7. Can be recovered as At this time, the removal of the powdery flux is continued until the powdery flux accumulated on the stainless wool 24 blocks the hole 26 provided at the lowermost part of the holes 26 of the vertical partition plate 25. You don't have to.
  • the flux recovery apparatus 1 is composed of a container part 2 and a lid part 3.
  • the container part 2 includes a rectangular bottom part 9 and four side wall parts 10 erected from each side of the bottom part 9, and is used by sealing the upper side of the container part 2 with a lid part 3.
  • the side wall 10 of the container 2 has an injection opening (not shown) that is an inlet for the high-temperature atmosphere gas 7 mixed with the flux component, and an outlet for the atmosphere gas 7 from which the flux component has been removed.
  • a discharge opening (not shown) is provided.
  • the atmosphere gas 7 is injected into the flux recovery device 1 from a reflow furnace (not shown), and further from the flux recovery device 1. Atmospheric gas 7 is discharged.
  • the container part 2 is laid with a porous stainless steel wool 4 on the inner wall surface of the bottom 9 thereof, and a vertical partition plate 5 partitions the inside of the flux recovery apparatus 1 into a plurality of spaces.
  • the vertical partition plate 5 is provided with a hole 6 and serves as a flow path for the atmospheric gas 7 sucked from the reflow furnace.
  • the hole 6 is provided at a different height from the hole 6 provided in the adjacent vertical partition 5. Therefore, the flow 8 of the atmospheric gas 7 that has passed through the hole 6 collides with the next partition plate 5 in the vertical direction, a part of which is divided, and collides with the stainless wool 4 laid on the bottom 9.
  • the flow 8 of the atmospheric gas 7 colliding with the stainless wool 4 is reversed after the collision and passes through the hole 6 of the vertical partition plate 5 which collided.
  • the bottom 9 on which the stainless wool 4 is laid is partitioned into six sections.
  • the flow 8 of the atmospheric gas 7 collides and a part of the flow 8 collides with the stainless steel wool 4 on the bottom 9, so that the atmospheric gas 7 is almost uniform on the stainless steel wool 4. collide.
  • a horizontal partition plate 5 ′ is installed on the upper end open portion of the vertical partition plate 5, and a flow path for guiding the atmospheric gas 7 sucked from the reflow furnace to collide with the stainless wool 4 is provided. Forming.
  • the bottom 9 of the container 2 is provided with a fan 11 so that the stainless wool 4 can be cooled as required.
  • the flux recovery apparatuses 1 and 21 are separate from the reflow furnace, and are provided so as to be connectable to the heating chamber of the reflow furnace.
  • An opening for injection of the flux recovery devices 1 and 21 is attached to the end of the forward path (not shown) of the atmospheric gas 7 extended from the heating chamber of the reflow furnace, and the return path (not shown) of the atmospheric gas 7 is attached.
  • the discharge openings of the flux collecting apparatuses 1 and 21 are attached in communication with the end of What is necessary is just to select the attachment quantity of the flux collection
  • the fan 11 may be operated to cool the stainless wool 4 and 24, and the kinetic energy of the atmospheric gas 7 may be further reduced.
  • the melamine 12 nuclei are formed on the stainless wool 4, 24, the flux component organic acid 13 is adsorbed on the melamine 12 nuclei, and the melamine 12 is further adsorbed on the adsorbed organic acid 13. Flux can be recovered by simply reducing the kinetic energy due to a collision without operating.
  • the collision of the atmospheric gas 7 on the stainless wool 4 and 24 can be made uniform by the vertical partition plates 5 and 25, uneven distribution of the powdery flux can be suppressed, and the flux collecting ability can be improved.
  • the maintenance of the removal of the powdery flux is performed until the powdery flux blocks the holes 6 and 26 at the bottom and the flow 8 of the atmospheric gas 7 is stagnated. You don't have to. Further, when removing the powdery flux accumulated on the bottoms 9 and 29, if the melamine 12 nucleus and the organic acid 13 are left on the surfaces of the stainless wool 4 and 24, then the flux recovery devices 1 and 21 are connected. When restarting, the remaining melamine 12 and the organic acid 13 are used as a foothold to facilitate the growth of the powdery flux and improve the flux recovery efficiency. Therefore, it is not necessary to carefully remove the flux.
  • the stainless wools 4 and 24 are used as they are, but a flux adsorbent may be added to the stainless wools 4 and 24 in advance.
  • the flux adsorbent may be a substance having a function of adsorbing flux, and melamine is preferable from the viewpoint of adsorptivity with an organic acid that is a flux component.
  • the flux adsorbent is also preferably an alkaline substance from the viewpoint of reactivity with the flux component, and in particular, in addition to the reactivity, the powder can be efficiently grown by hydrogen bonding with an organic acid. Hydroxides are preferred.
  • stainless wool 4 and 24 was used for the porous body, if it has a large specific surface area, it will not specifically limit, A particulate and powdery porous body may be sufficient.
  • the stainless wools 4 and 24 are provided on the bottoms 9 and 29.
  • the side walls are formed according to the structure of the flux recovery devices 1 and 21 and the position of the opening for injecting the atmospheric gas 7. 10 and 30 may be provided.
  • the holes 6 and 26 provided in the adjacent vertical partition plates 5 and 25 have different heights, but the positions of the holes 6 and 26 are shifted in the horizontal direction.
  • the atmospheric gas 7 may collide with the vertical partition plates 5 and 25, and the height 8 and the horizontal position are made the same so that the flow 8 of the atmospheric gas 7 is forced to the vertical partition plates 5 and 25. It is not necessary to make it collide.
  • the position, number, and size of the holes 6 and 26 may be appropriately selected according to the flow rate of the atmospheric gas 7 and the like. In particular, by adjusting the heights of the holes 6 and 26 which are the lowermost parts, the collection capacity of the flux collection devices 1 and 21 can be changed, and thus the maintenance period can be adjusted.
  • the fan 11 is provided to further reduce the kinetic energy of the atmospheric gas 7, but the fan 11 may not be provided.
  • a flux recovery experiment was performed using the flux recovery apparatus according to the first embodiment described above.
  • the dimensions of the flux recovery device of the present invention are 100 mm in length, 600 mm in width, and 400 mm in height.
  • the hole located at the bottom is 50 mm from the bottom inner wall. did.
  • size of the hole part was 100 mm x 50 mm, respectively.
  • stainless wool made by WY Spring Co., Ltd., trade name: Demister
  • the container part and lid part of the flux recovery apparatus were made of stainless steel.
  • the operation period of the reflow furnace was 8 weeks, and 60,000 circuit boards were soldered. In this case, since 2 g of solder paste is used per circuit board, 120 kg of solder paste is heated and melted in 8 weeks.
  • the powdery flux was on average about 10 mm on the stainless wool, and the bottom hole was not clogged and the atmosphere gas flow path was secured. Therefore, the operation of removing the powdery flux is unnecessary and the operation can be continued.
  • the heat radiating portion of the flux collecting apparatus was composed of four stainless steel pipes having an inner diameter of 35 mm and a length of 120 mm. Seven of these flux recovery devices were connected to a reflow furnace in parallel. A blower unit was used for the suction of atmospheric gas from the reflow furnace.
  • the operation period of the reflow furnace was one week, and 75,500 circuit boards were soldered. In this case, since 2 g of solder paste is used per circuit board, 15 kg of solder paste is heated and melted in one week.
  • the flux recovery apparatus according to the present invention was able to extend the maintenance cycle by 8 times or more compared with the conventional product.
  • the flux recovery device can greatly extend the maintenance cycle by preventing the flow path of the atmospheric gas from being clogged with the powdery flux. High utility value in the field of circuit board soldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided is an apparatus for recycling resin crystallization flux that has a longer interval of maintenance work and is easy to carry out the maintenance work.  A method is also provided.  The apparatus includes a chamber having an opening through which gas containing vaporized flux flows from a reflow furnace and a porous member disposed on the inner surface of the chamber wall such that the gas flow is directed toward the porous member.

Description

樹脂結晶成長型のフラックス回収装置及びフラックス回収方法Resin crystal growth type flux recovery apparatus and flux recovery method
 本発明は、主に窒素など不活性ガスの中で電子部品を搭載した回路基板を加熱して半田付けを行うリフロー炉において、不活性ガスの中に含まれるフラックス成分を除去するフラックス回収装置及びフラックス回収方法に関する。 The present invention relates to a flux recovery apparatus that removes a flux component contained in an inert gas in a reflow furnace that heats and solders a circuit board on which electronic components are mounted in an inert gas such as nitrogen. The present invention relates to a flux recovery method.
 現在、種々の電子部品が回路基板の表面に搭載されて半田付けされたSMD(Surface Mounted Device)が電子機器に広く用いられている。この半田付けは、半田ペーストを用いて行う。半田ペーストは、クリーム状のフラックスと粉末半田とを混合してペースト状にしたもので、印刷またはディスペンサー等により回路基板の半田付け部に塗布し、その上に電子部品を搭載させてからリフロー炉で加熱溶融させることにより、回路基板と電子部品を半田付けする。 Currently, SMD (Surface Mounted Device) in which various electronic components are mounted on the surface of a circuit board and soldered is widely used in electronic devices. This soldering is performed using a solder paste. Solder paste is a paste made by mixing cream-like flux and powdered solder. It is applied to the soldering part of the circuit board by printing or a dispenser, etc., and an electronic component is mounted on it. Then, the circuit board and the electronic component are soldered by heating and melting.
 半田ペーストのフラックスは、半田付けされる金属表面の酸化膜を除去し、半田付け中に加熱で金属表面が再酸化するのを防止する。また、フラックスは、半田の表面張力を小さくして濡れを良くする塗布材の働きもする。半田ペーストのフラックスは、松脂、チキソ剤及び活性剤等の固形成分を溶剤で溶解させてあるため、リフロー炉で半田ペーストを加熱溶融させる際にこれらが気化し蒸気となる。この気化したフラックス成分は、リフロー炉の温度の低いところに接触して液化し、回路基板上に付着し半田付け不良を起こしたり、リフロー炉の可動部分に付着して動きが妨げられたりするという問題があった。 The solder paste flux removes the oxide film on the metal surface to be soldered, and prevents the metal surface from being reoxidized by heating during soldering. The flux also acts as a coating material that reduces the surface tension of the solder and improves wetting. In the solder paste flux, solid components such as pine resin, thixotropic agent, and activator are dissolved in a solvent. Therefore, when the solder paste is heated and melted in a reflow furnace, these vaporize and become vapor. This vaporized flux component is liquefied by contact with the low temperature of the reflow furnace, adheres to the circuit board and causes poor soldering, or adheres to the movable part of the reflow furnace and hinders movement. There was a problem.
 そこで、回路基板上に付着したフラックス成分が半田付け不良を起こさないように、不活性ガスを用いた雰囲気中で半田ペーストの加熱溶融を行うにあたり、このフラックス成分が混在した雰囲気ガスを吸引し、雰囲気ガスを冷却・液化することでフラックス成分を回収するフラックス回収装置が、リフロー炉に設けられている。 Therefore, in order to prevent the solder component from adhering on the circuit board from causing poor soldering, when the solder paste is heated and melted in an atmosphere using an inert gas, the atmosphere gas mixed with this flux component is sucked. A reflow furnace is provided with a flux recovery device that recovers a flux component by cooling and liquefying the atmospheric gas.
 フラックス回収装置には、例えば、加熱されている雰囲気ガスの吸引機構と、冷却部である複数本の細いパイプからなる放熱部と、液体状フラックス回収容器とを備えているものがある。このフラックス回収装置では、吸引された雰囲気ガスがパイプ内を通過する際に放熱してフラックス成分が液化し、液体状となったフラックスを容器内に滴下して回収する。なお、細いパイプを複数本設けるのは、加熱されている雰囲気ガスをそれぞれのパイプに分流させて、雰囲気ガスの放熱効率を高めるためである。 Some flux collection devices include, for example, a heated atmospheric gas suction mechanism, a heat radiation unit including a plurality of thin pipes serving as cooling units, and a liquid flux collection container. In this flux recovery apparatus, when the sucked atmospheric gas passes through the pipe, it dissipates heat and the flux component is liquefied, and the liquid flux is dropped into the container and recovered. The reason for providing a plurality of thin pipes is to increase the heat radiation efficiency of the atmospheric gas by diverting the heated atmospheric gas to each pipe.
 しかし、この装置の場合、図4に示すように、運転当初はパイプ41の内壁42がクリーンであり、放熱により液体状フラックスを順調に回収できる(図4(a))ものの、時間の経過とともに粉体状フラックス43が細いパイプ41の内壁42に付着していく(図4(b))ので、内壁42に付着した粉体状フラックス43の断熱効果により、放熱効率が低下してフラックスの回収が不十分となるという問題がある。また、粉体状フラックス43の付着がさらに進むと、最終的にはパイプ41が詰まってしまう(図4(c))ので、パイプ41の内壁42に付着した粉体状フラックス43を丁寧に除去しなければならず、煩雑なメンテナンスを頻繁に行う必要があるという問題もある。 However, in the case of this apparatus, as shown in FIG. 4, the inner wall 42 of the pipe 41 is clean at the beginning of operation, and the liquid flux can be collected smoothly by heat radiation (FIG. 4 (a)). Since the powdery flux 43 adheres to the inner wall 42 of the thin pipe 41 (FIG. 4 (b)), the heat dissipation effect is reduced due to the heat insulating effect of the powdery flux 43 attached to the inner wall 42, and the flux is recovered. There is a problem that becomes insufficient. Further, when the adhesion of the powdery flux 43 further proceeds, the pipe 41 is eventually clogged (FIG. 4C), so the powdery flux 43 attached to the inner wall 42 of the pipe 41 is carefully removed. There is also a problem that complicated maintenance needs to be performed frequently.
 また、特許文献1には、フラックス回収箱体内部に蛇行通路を形成することで、その壁面にフラックス粒子を衝突させて付着し易くしたうえで、フラックス回収箱体を冷却してフラックスを冷却し回収することが記載されている。この場合にも、蛇行通路が粉体状フラックスですぐに詰まってしまうので、メンテナンス周期が短くなってしまうという問題がある。 In Patent Document 1, a meandering passage is formed inside the flux collection box so that the flux particles collide with the wall surface and adhere easily, and then the flux collection box is cooled to cool the flux. Recovery is described. In this case as well, there is a problem that the meandering passage is immediately clogged with the powdery flux, so that the maintenance cycle is shortened.
 上記フラックス回収装置は一例であり、様々な構造のフラックス装置が使用されている。しかし、いずれもその基本原理は、雰囲気ガスから熱を奪うことでフラックスを液化、回収するという構成をとっているので、フラックス回収装置の壁面等に付着した粉体状フラックスを頻繁に除去しなければならない。 The above flux recovery device is an example, and flux devices with various structures are used. However, the basic principle of each is that the flux is liquefied and recovered by removing heat from the atmospheric gas, so the powdery flux adhering to the wall surface of the flux recovery device must be removed frequently. I must.
特開2003-179341JP 2003-179341 A
 そこで、発明者等は、様々な実験の結果、粉体状フラックスにはメラミンが含有されているのに対し、液体状フラックスにはメラミンが含有されていないことをFT/IR測定等から見出し、雰囲気ガス中に混在しているフラックス成分を高温のまま粉体として回収でき、面倒な粉体状フラックス除去作業の回数を低減できる装置を発明するに至った。 Thus, as a result of various experiments, the inventors have found from the FT / IR measurement that the powdered flux contains melamine, whereas the liquid flux does not contain melamine. The inventors have invented an apparatus that can collect the flux component mixed in the atmospheric gas as a powder at a high temperature and reduce the number of troublesome powder flux removal operations.
 上記事情に鑑み、本発明は、メンテナンスの間隔を長くすることができ、メンテナンス作業の簡易な粉体状フラックスの回収装置及び回収方法を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a powder flux recovery device and a recovery method that can lengthen the maintenance interval and simplify maintenance work.
 本発明に係るフラックス回収装置の第1の態様は、リフロー炉内のフラックスを含んだ雰囲気ガスが注入される開口部と、前記雰囲気ガスが衝突する内壁面に設けられた多孔質体と、を備えることを特徴とする。 A first aspect of the flux recovery apparatus according to the present invention includes an opening into which an atmospheric gas containing a flux in a reflow furnace is injected, and a porous body provided on an inner wall surface where the atmospheric gas collides. It is characterized by providing.
 上記第1の態様では、フラックスを含んだ雰囲気ガスを多孔質体に衝突させることで、多孔質体の表面上に粉体状フラックスを集積させて、雰囲気ガス中のフラックスを回収する。つまり、フラックスを含んだ雰囲気ガスを冷却または放熱させず高温のままであっても、雰囲気ガスからフラックスを粉体状にて回収できる。 In the first aspect, the flux in the atmosphere gas is collected by causing the atmosphere gas containing the flux to collide with the porous body, thereby accumulating the powdery flux on the surface of the porous body. That is, even if the atmospheric gas containing the flux is not cooled or dissipated and remains at a high temperature, the flux can be recovered from the atmospheric gas in powder form.
 回路基板やソルダーレジストなどには、難燃剤、硬化剤としてメラミン樹脂が使用されている場合がある。従って、このとき、リフロー炉内のフラックスを含んだ雰囲気ガスには、メラミン樹脂の主成分であるメラミンも含有されることとなる。このフラックスとメラミンとを含んだ雰囲気ガスが、フラックス回収装置の内壁に設けられた多孔質体に衝突すると、前記雰囲気ガスの運動エネルギーが減殺されて、まず、メラミンの核が、多孔質体表面に形成されると考えられる。これは、メラミンは昇華性を有するので、多孔質体表面にて運動エネルギーが減殺されると、メラミンガスは直接固体に相変化して粉体の核となりやすいからである。 Melamine resin may be used as a flame retardant and curing agent for circuit boards and solder resists. Accordingly, at this time, the melamine which is the main component of the melamine resin is also contained in the atmospheric gas containing the flux in the reflow furnace. When the atmospheric gas containing the flux and melamine collides with the porous body provided on the inner wall of the flux recovery device, the kinetic energy of the atmospheric gas is reduced, and first, the melamine nucleus becomes the surface of the porous body. It is thought that it is formed. This is because melamine has a sublimation property, and therefore, when kinetic energy is reduced on the surface of the porous body, the melamine gas directly changes into a solid and easily becomes a core of the powder.
 メラミンは、フラックスの構成成分であるアビエチン酸、ピマール酸、デヒドロアビエチン酸などの有機酸と溶け合う性質を有するので、メラミンの核が形成されると、これら有機酸のガスがメラミンの核に吸着し、吸着した有機酸にさらにメラミンが吸着していく。このように、多孔質体表面にて、メラミンとフラックスの構成成分である有機酸が吸着を繰り返すことで、メラミンの核を中心としてメラミンとフラックス成分からなる粉体が成長していくことで、雰囲気ガス中のフラックス成分が回収される。なお、多孔質体を使用するのは、その大きな比表面積を利用して雰囲気ガスの運動エネルギーを減殺させることに加えて、雰囲気ガス中に含有されているメラミンと有機酸の吸着能を向上させるためである。 Melamine has the property of dissolving with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux, so when the melamine nucleus is formed, these organic acid gases are adsorbed on the melamine nucleus. Melamine is further adsorbed on the adsorbed organic acid. In this way, by repeating the adsorption of melamine and the organic acid that is a constituent component of the flux on the porous body surface, the powder consisting of the melamine and the flux component grows around the nucleus of the melamine, The flux component in the atmospheric gas is recovered. The use of the porous body improves the adsorption ability of melamine and organic acid contained in the atmospheric gas in addition to reducing the kinetic energy of the atmospheric gas by utilizing the large specific surface area. Because.
 本発明に係るフラックス回収装置の第2の態様は、前記多孔質体に、フラックス吸着剤が付着されていることを特徴とする。フラックス吸着剤が付着した多孔質体を用いるので、リフロー炉の雰囲気ガスに含まれるフラックスが多孔質体に吸着され易くなる。 A second aspect of the flux recovery apparatus according to the present invention is characterized in that a flux adsorbent is attached to the porous body. Since the porous body to which the flux adsorbent is attached is used, the flux contained in the atmosphere gas of the reflow furnace is easily adsorbed to the porous body.
 本発明に係るフラックス回収装置の第3の態様は、前記フラックス吸着剤が、メラミンまたはアルカリ性物質であることを特徴とする。上記の通り、メラミンは、フラックスの構成成分であるアビエチン酸、ピマール酸、デヒドロアビエチン酸などの有機酸と溶け合う性質を有するので、フラックスの吸着剤となる。アルカリ性物質は、フラックスの構成成分であるアビエチン酸、ピマール酸、デヒドロアビエチン酸などの有機酸と中和反応をすることで、有機酸を捕捉し、さらに、反応生成物の分子量は大きくなって分子間力が増し、反応生成物の融点は有機酸より上昇するので、アルカリ性物質はフラックスを粉体として集積する吸着剤となる。 A third aspect of the flux recovery apparatus according to the present invention is characterized in that the flux adsorbent is melamine or an alkaline substance. As described above, melamine is a flux adsorbent because it has a property of being soluble with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux. Alkaline substances capture organic acids by neutralizing with organic acids such as abietic acid, pimaric acid, and dehydroabietic acid, which are constituents of the flux, and the molecular weight of the reaction product increases. Since the force increases and the melting point of the reaction product is higher than that of the organic acid, the alkaline substance becomes an adsorbent that accumulates the flux as powder.
 本発明に係るフラックス回収装置の第4の態様は、前記アルカリ性物質が、水酸化物であることを特徴とする。 A fourth aspect of the flux collecting apparatus according to the present invention is characterized in that the alkaline substance is a hydroxide.
 本発明に係るフラックス回収装置の第5の態様は、前記内壁面が、底面の内壁面であることを特徴とする。フラックス回収装置の底面の内壁部に多孔質体が設けられていることで、回収された粉体状フラックスは、フラックス回収装置の底面から積もっていく。 A fifth aspect of the flux collecting apparatus according to the present invention is characterized in that the inner wall surface is an inner wall surface of the bottom surface. Since the porous body is provided on the inner wall portion of the bottom surface of the flux recovery device, the recovered powdery flux is accumulated from the bottom surface of the flux recovery device.
 本発明に係るフラックス回収装置の第6の態様は、前記注入された雰囲気ガスの流路が穿設されている仕切り板を備えることを特徴とする。フラックス回収装置の内部空間は、仕切り板で仕切られており、この仕切り板には雰囲気ガスの流路となる孔部が設けられている。 A sixth aspect of the flux collecting apparatus according to the present invention is characterized by comprising a partition plate in which the flow path of the injected atmospheric gas is formed. The internal space of the flux recovery device is partitioned by a partition plate, and the partition plate is provided with a hole serving as an atmosphere gas flow path.
 本発明に係るフラックスの回収方法の第1の態様は、リフロー炉内のフラックスが含まれた雰囲気ガスをフラックス回収装置に注入する工程と、前記雰囲気ガスを、多孔質体が設けられた前記フラックス回収装置の内壁面に衝突させる工程と、を有することを特徴とする。この第1の態様では、フラックスを含んだ雰囲気ガスを多孔質体に衝突させる工程にて、多孔質体の表面上に粉体状フラックスを集積させて、雰囲気ガス中のフラックスを回収する。 A first aspect of the flux recovery method according to the present invention includes a step of injecting an atmosphere gas containing a flux in a reflow furnace into a flux recovery device, and the atmosphere gas is provided with a porous body. And a step of colliding with the inner wall surface of the recovery device. In the first aspect, in the step of causing the atmospheric gas containing the flux to collide with the porous body, the powdery flux is accumulated on the surface of the porous body, and the flux in the atmospheric gas is recovered.
 本発明に係るフラックスの回収方法の第2の態様は、前記多孔質体に、フラックス吸着剤が付着されていることを特徴とする。本発明に係るフラックスの回収方法の第3の態様は、前記フラックス吸着剤が、メラミンまたはアルカリ性物質であることを特徴とする。本発明に係るフラックスの回収方法の第4の態様は、前記アルカリ性物質が、水酸化物であることを特徴とする。本発明に係るフラックスの回収方法の第5の態様は、前記内壁面が、底面の内壁面であることを特徴とする。本発明に係るフラックスの回収方法の第6の態様は、前記注入された雰囲気ガスの流路が穿設されている仕切り板を備えることを特徴とする。 A second aspect of the flux recovery method according to the present invention is characterized in that a flux adsorbent is attached to the porous body. A third aspect of the flux recovery method according to the present invention is characterized in that the flux adsorbent is melamine or an alkaline substance. A fourth aspect of the flux recovery method according to the present invention is characterized in that the alkaline substance is a hydroxide. According to a fifth aspect of the flux collection method of the present invention, the inner wall surface is an inner wall surface of the bottom surface. A sixth aspect of the flux recovery method according to the present invention is characterized by comprising a partition plate in which the flow path of the injected atmospheric gas is formed.
 本発明に係るフラックス回収装置の第1の態様及び本発明に係るフラックスの回収方法の第1の態様によれば、フラックスを含んだ雰囲気ガスを多孔質体に衝突させることで、多孔質体の表面上に粉体状フラックスを集積させるので、粉体状フラックスの集積部位を適宜選択でき、雰囲気ガスの流路が粉体状フラックスで詰まるのを防止できる。また、粉体状フラックスが流路に詰まるのを防止できるので、フラックス回収装置のメンテナンス周期を大幅に延長でき、従って、生産効率が向上する。 According to the first aspect of the flux recovery apparatus according to the present invention and the first aspect of the flux recovery method according to the present invention, by colliding the atmospheric gas containing the flux with the porous body, Since the powdery flux is accumulated on the surface, the accumulation part of the powdery flux can be appropriately selected, and the flow path of the atmospheric gas can be prevented from being clogged with the powdery flux. Further, since the powdery flux can be prevented from clogging the flow path, the maintenance cycle of the flux collecting apparatus can be greatly extended, and thus the production efficiency is improved.
 さらに、フラックスを冷却または放熱させなくてもフラックスの回収が可能なので、流路壁面のフラックス付着の有無に係らずフラックスの回収効率を維持でき、また、少量のエネルギーでフラックス成分除去後の雰囲気ガスの再加熱が可能となって、生産コストを低減できる。また、雰囲気ガスにメラミンが含まれている場合、多孔質体表面にて、メラミンとフラックスの構成成分である有機酸が相互に吸着を繰り返すことでフラックスを回収するので、フラックス回収装置のメンテナンスの際に、内壁に付着したフラックスを十分に拭き取らなくてもよく、メンテナンスが簡易であり、作業性が向上する。 Furthermore, since flux can be collected without cooling or radiating the flux, the flux collection efficiency can be maintained regardless of whether the flux adheres to the flow path wall surface, and the atmospheric gas after removing the flux component with a small amount of energy Can be reheated and the production cost can be reduced. In addition, when the melamine is contained in the atmospheric gas, the flux is recovered by repeating adsorption of melamine and organic acid, which is a constituent of the flux, on the porous body surface. At this time, the flux adhering to the inner wall may not be sufficiently wiped off, maintenance is simple, and workability is improved.
 本発明に係るフラックス回収装置の第2の態様及び本発明に係るフラックスの回収方法の第2の態様によれば、多孔質体にフラックス吸着剤が付着されているので、リフロー炉内の雰囲気ガスにメラミンが混入されていなくても、多孔質体に粉体状フラックスを集積することができる。 According to the second aspect of the flux recovery apparatus according to the present invention and the second aspect of the flux recovery method according to the present invention, since the flux adsorbent is attached to the porous body, the atmospheric gas in the reflow furnace Even if melamine is not mixed in, the powdery flux can be accumulated in the porous body.
 本発明に係るフラックス回収装置の第3の態様及び本発明に係るフラックスの回収方法の第3の態様によれば、フラックス吸着剤がメラミンまたはアルカリ性物質なので、粉体状フラックスの吸着能に優れている。 According to the third aspect of the flux recovery apparatus according to the present invention and the third aspect of the flux recovery method according to the present invention, since the flux adsorbent is melamine or an alkaline substance, it has an excellent ability to adsorb powdery flux. Yes.
 本発明に係るフラックス回収装置の第4の態様及び本発明に係るフラックスの回収方法の第4の態様によれば、アルカリ性物質が水酸化物なので、中和反応に加えて有機酸との水素結合によって、効率的に粉体を成長させることができる。また、水酸化物は、安価であり入手も容易なので、生産コストを抑えることができる。 According to the 4th aspect of the flux collection | recovery apparatus which concerns on this invention, and the 4th aspect of the flux collection | recovery method which concerns on this invention, since an alkaline substance is a hydroxide, in addition to a neutralization reaction, a hydrogen bond with an organic acid Thus, the powder can be efficiently grown. Further, since the hydroxide is inexpensive and easily available, the production cost can be suppressed.
 本発明に係るフラックス回収装置の第5の態様及び本発明に係るフラックスの回収方法の第5の態様によれば、底面の内壁面に多孔質体が設けられているので、フラックス回収装置の底部に粉体状フラックスが集積されていき、雰囲気ガスの流路の確保が容易である。 According to the fifth aspect of the flux recovery apparatus according to the present invention and the fifth aspect of the flux recovery method according to the present invention, since the porous body is provided on the inner wall surface of the bottom surface, the bottom of the flux recovery apparatus As a result, powder flux is accumulated on the surface, and it is easy to secure a flow path for the atmospheric gas.
 本発明に係るフラックス回収装置の第6の態様及び本発明に係るフラックスの回収方法の第6の態様によれば、フラックス回収装置の内部は仕切り板で仕切られ、この仕切り板には雰囲気ガスの流路となる孔部が設けられているので、雰囲気ガスの流れが分散して多孔質体に衝突し、粉体状フラックスの集積部位の偏在を抑えることができる。また、粉体状フラックスの偏在を抑えることができるので、雰囲気ガスの流路が粉体状フラックスで詰まるのを抑えることができる。さらに、流路となる孔部の高さを調整することで、粉体状フラックスの蓄積容量を変えることができ、メンテナンス周期を調整することができる。 According to the sixth aspect of the flux recovery apparatus according to the present invention and the sixth aspect of the flux recovery method according to the present invention, the interior of the flux recovery apparatus is partitioned by a partition plate, and the partition plate contains atmospheric gas. Since the holes serving as the flow paths are provided, the flow of the atmospheric gas is dispersed and collides with the porous body, so that the uneven distribution of the powder flux collecting portion can be suppressed. In addition, since the uneven distribution of the powdery flux can be suppressed, clogging of the flow path of the atmospheric gas with the powdery flux can be suppressed. Furthermore, by adjusting the height of the hole serving as the flow path, the accumulation capacity of the powdery flux can be changed, and the maintenance cycle can be adjusted.
本発明の第1実施形態例に係るフラックス回収装置の概略断面図である。It is a schematic sectional drawing of the flux collection | recovery apparatus concerning the example of 1st Embodiment of this invention. 本発明の第2実施形態例に係るフラックス回収装置の概略断面図である。It is a schematic sectional drawing of the flux collection | recovery apparatus concerning the example of 2nd Embodiment of this invention. メラミンを核にして粉体状フラックスが形成される様子を示す概念図である。It is a conceptual diagram which shows a mode that a powdery flux is formed centering on melamine. 従来のフラックス回収装置が、粉体状フラックスで詰まっていく様子を示す概念図である。It is a conceptual diagram which shows a mode that the conventional flux collection | recovery apparatus is clogged with powdery flux.
1、21   フラックス回収装置
4、24   ステンレスウール
5、25   縦方向の仕切り板
6、26   孔部
7      雰囲気ガス
11     ファン
12     メラミン
13     有機酸
31     注入用開口部
32     排出用開口部
1, 21 Flux recovery device 4, 24 Stainless wool 5, 25 Vertical partition plate 6, 26 Hole 7 Atmospheric gas 11 Fan 12 Melamine 13 Organic acid 31 Injecting opening 32 Discharging opening
 つぎに、本発明の実施形態例に係るフラックス回収装置を図面に基づいて説明する。図1は、本発明の第1実施形態例に係るフラックス回収装置の概略断面図、図2は、本発明の第2実施形態例に係るフラックス回収装置の概略断面図、図3は、メラミンを核にして粉体状フラックスが形成される様子を示す概念図である。 Next, a flux recovery apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a flux recovery apparatus according to a first embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of a flux recovery apparatus according to a second embodiment of the present invention, and FIG. It is a conceptual diagram which shows a mode that a powdery flux is formed using a nucleus.
 本発明の第1実施形態例に係るフラックス回収装置21は、図1に示すように、容器部22と蓋部23とから構成されている。容器部22は、四角形の底部29と底部29の各辺からそれぞれ立設されている4つの側壁部30とからなり、蓋部23で容器部22の上側を封止して使用される。 The flux recovery apparatus 21 according to the first embodiment of the present invention includes a container portion 22 and a lid portion 23 as shown in FIG. The container part 22 includes a rectangular bottom part 29 and four side wall parts 30 erected from each side of the bottom part 29, and is used by sealing the upper side of the container part 22 with a lid part 23.
 蓋部23には、フラックス成分の混在した高温の雰囲気ガス7の注入口である注入用開口部31と、フラックス成分の除去された雰囲気ガス7の排出口である排出用開口部32が設けられている。従って、注入された雰囲気ガス7の流れ8は、屈曲した流路を経ずにステンレスウール24に最初の衝突をする構造となっている。なお、本実施形態例では、ブロアユニット等の吸引装置(図示せず)を用いることで、リフロー炉(図示せず)からフラックス回収装置21に雰囲気ガス7を注入し、さらにフラックス回収装置21から雰囲気ガス7を排出している。 The lid 23 is provided with an injection opening 31 that is an inlet for the high-temperature atmospheric gas 7 mixed with the flux component, and a discharge opening 32 that is an outlet for the atmospheric gas 7 from which the flux component has been removed. ing. Therefore, the flow 8 of the injected atmospheric gas 7 has a structure in which it first collides with the stainless wool 24 without passing through the bent flow path. In this embodiment, by using a suction device (not shown) such as a blower unit, the atmosphere gas 7 is injected into the flux recovery device 21 from a reflow furnace (not shown), and further from the flux recovery device 21. Atmospheric gas 7 is discharged.
 容器部22には、その底部29の内壁面に多孔質体であるステンレスウール24が敷設されており、縦方向の仕切り板25がフラックス回収装置21内部を複数の空間に仕切っている。縦方向の仕切り板25には、孔部26が設けられ、リフロー炉から吸引された雰囲気ガス7の流路となっている。この孔部26は、隣接する縦方向の仕切り板25に設けられた孔部26に対して、異なる高さに設けられている。従って、孔部26を通過した雰囲気ガス7の流れ8は、次の縦方向の仕切り板25に衝突してその一部が分流し、底部29に敷設されているステンレスウール24に衝突する。このステンレスウール24に衝突した雰囲気ガス7の流れ8は、衝突後反転して前記衝突した縦方向の仕切り板25の孔部26を通過する。 The container part 22 has a stainless steel wool 24, which is a porous body, laid on the inner wall surface of the bottom part 29, and a vertical partition plate 25 partitions the inside of the flux recovery apparatus 21 into a plurality of spaces. The vertical partition plate 25 is provided with a hole 26 and serves as a flow path for the atmospheric gas 7 sucked from the reflow furnace. The hole 26 is provided at a different height from the hole 26 provided in the adjacent vertical partition plate 25. Therefore, the flow 8 of the atmospheric gas 7 that has passed through the hole 26 collides with the next partition plate 25 in the vertical direction, a part of which is divided, and collides with the stainless wool 24 laid on the bottom 29. The flow 8 of the atmospheric gas 7 that collides with the stainless wool 24 is reversed after the collision and passes through the hole 26 of the vertical partition plate 25 that collided.
 第1実施形態例では、底部29から縦方向の仕切り板25が3枚立設されており、ステンレスウール24が敷設された底部29は、4つの区域に仕切られている。それぞれの縦方向の仕切り板25のところで雰囲気ガス7の流れ8が衝突してその一部が分流し、底部29のステンレスウール24に衝突するので、雰囲気ガス7はステンレスウール24上を略均一に衝突する。なお、縦方向の仕切り板25は、それぞれ側壁部30と同じ高さを有しており、蓋部23を容器部22に載置したときに蓋部23の内壁に当接するようになっている。 In the first embodiment, three vertical partition plates 25 are erected from the bottom 29, and the bottom 29 on which the stainless wool 24 is laid is partitioned into four sections. At each vertical partition plate 25, the flow 8 of the atmospheric gas 7 collides and a part of the flow 8 collides with the stainless steel wool 24 on the bottom 29, so that the atmospheric gas 7 is substantially uniform on the stainless steel wool 24. collide. Each of the vertical partition plates 25 has the same height as the side wall portion 30, and comes into contact with the inner wall of the lid portion 23 when the lid portion 23 is placed on the container portion 22. .
 また、容器部22の底部29にはファン11が備えられており、必要に応じてステンレスウール24を冷却することができる構成となっている。 Further, the bottom portion 29 of the container portion 22 is provided with the fan 11 so that the stainless wool 24 can be cooled as required.
 そして、雰囲気ガス7の流れ8がステンレスウール24に衝突すると、ステンレスウール24の比表面積の大きさゆえに、雰囲気ガス7の運動エネルギーが減殺される。すると、図3に示すように、まず、雰囲気ガス7に含有されている回路基板由来のメラミン12がステンレスウール24の表面で核を形成する。これは、メラミン12は昇華性を有するので、運動エネルギーが減殺されると、気体状のメラミン12は高温状態であっても直接固体に相変化して粉体の核となるからである。さらに、メラミン12は、フラックスの構成成分であるアビエチン酸、ピマール酸、デヒドロアビエチン酸などの有機酸13と溶け合う性質を有するので、メラミン12の核が形成されると、有機酸13のガスがメラミン12の核に吸着する。そして、吸着した有機酸13にさらに別のメラミン12が吸着して、フラックス成分を有する粉体が成長していく。 When the flow 8 of the atmospheric gas 7 collides with the stainless wool 24, the kinetic energy of the atmospheric gas 7 is reduced due to the large specific surface area of the stainless wool 24. Then, as shown in FIG. 3, first, the melamine 12 derived from the circuit board contained in the atmospheric gas 7 forms a nucleus on the surface of the stainless wool 24. This is because melamine 12 has sublimability, and therefore, when kinetic energy is reduced, gaseous melamine 12 directly changes into a solid and becomes the core of the powder even at a high temperature. Furthermore, since melamine 12 has a property of dissolving with organic acids 13 such as abietic acid, pimaric acid, dehydroabietic acid and the like, which are constituents of the flux, when the nucleus of melamine 12 is formed, the gas of organic acid 13 becomes melamine. Adsorbed on 12 nuclei. Further, another melamine 12 is adsorbed on the adsorbed organic acid 13 and a powder having a flux component grows.
 このように、ステンレスウール24の表面にて、雰囲気ガス7中のフラックス成分がメラミン12の核を中心に粉体として集積されていくことで、雰囲気ガス7を冷却しなくともフラックス成分を粉体として回収できる。このとき、ステンレスウール24上に積もっていく粉体状フラックスが、縦方向の仕切り板25の孔部26のうち最下部に設けられた孔部26を塞ぐまで、粉体状フラックスの除去作業を行わなくてよい。 As described above, the flux component in the atmosphere gas 7 is accumulated as a powder around the nucleus of the melamine 12 on the surface of the stainless wool 24, so that the flux component is powdered without cooling the atmosphere gas 7. Can be recovered as At this time, the removal of the powdery flux is continued until the powdery flux accumulated on the stainless wool 24 blocks the hole 26 provided at the lowermost part of the holes 26 of the vertical partition plate 25. You don't have to.
 つぎに、本発明の第2実施形態例に係るフラックス回収装置1について説明する。図2に示すように、フラックス回収装置1は、容器部2と蓋部3とから構成されている。容器部2は、四角形の底部9と底部9の各辺からそれぞれ立設されている4つの側壁部10とからなり、蓋部3で容器部2の上側を封止して使用される。 Next, the flux collection apparatus 1 according to the second embodiment of the present invention will be described. As shown in FIG. 2, the flux recovery apparatus 1 is composed of a container part 2 and a lid part 3. The container part 2 includes a rectangular bottom part 9 and four side wall parts 10 erected from each side of the bottom part 9, and is used by sealing the upper side of the container part 2 with a lid part 3.
 容器部2の側壁部10には、フラックス成分の混在した高温の雰囲気ガス7の注入口である注入用開口部(図示せず)と、フラックス成分の除去された雰囲気ガス7の排出口である排出用開口部(図示せず)が設けられている。 The side wall 10 of the container 2 has an injection opening (not shown) that is an inlet for the high-temperature atmosphere gas 7 mixed with the flux component, and an outlet for the atmosphere gas 7 from which the flux component has been removed. A discharge opening (not shown) is provided.
 なお、本実施形態例でも、ブロアユニット等の吸引装置(図示せず)を用いることで、リフロー炉(図示せず)からフラックス回収装置1に雰囲気ガス7を注入し、さらにフラックス回収装置1から雰囲気ガス7を排出している。 In this embodiment as well, by using a suction device (not shown) such as a blower unit, the atmosphere gas 7 is injected into the flux recovery device 1 from a reflow furnace (not shown), and further from the flux recovery device 1. Atmospheric gas 7 is discharged.
 容器部2には、その底部9の内壁面に多孔質体であるステンレスウール4が敷設されており、縦方向の仕切り板5がフラックス回収装置1内部を複数の空間に仕切っている。縦方向の仕切り板5には、孔部6が設けられ、リフロー炉から吸引された雰囲気ガス7の流路となっている。この孔部6は、隣接する縦方向の仕切り5に設けられた孔部6に対して、異なる高さに設けられている。従って、孔部6を通過した雰囲気ガス7の流れ8は、次の縦方向の仕切り板5に衝突してその一部が分流し、底部9に敷設されているステンレスウール4に衝突する。このステンレスウール4に衝突した雰囲気ガス7の流れ8は、衝突後反転して前記衝突した縦方向の仕切り板5の孔部6を通過する。 The container part 2 is laid with a porous stainless steel wool 4 on the inner wall surface of the bottom 9 thereof, and a vertical partition plate 5 partitions the inside of the flux recovery apparatus 1 into a plurality of spaces. The vertical partition plate 5 is provided with a hole 6 and serves as a flow path for the atmospheric gas 7 sucked from the reflow furnace. The hole 6 is provided at a different height from the hole 6 provided in the adjacent vertical partition 5. Therefore, the flow 8 of the atmospheric gas 7 that has passed through the hole 6 collides with the next partition plate 5 in the vertical direction, a part of which is divided, and collides with the stainless wool 4 laid on the bottom 9. The flow 8 of the atmospheric gas 7 colliding with the stainless wool 4 is reversed after the collision and passes through the hole 6 of the vertical partition plate 5 which collided.
 第2実施形態例では、底部9から縦方向の仕切り板5が5枚立設されており、ステンレスウール4が敷設された底部9は、6つの区域に仕切られている。それぞれの縦方向の仕切り板5のところで雰囲気ガス7の流れ8が衝突してその一部が分流し、底部9のステンレスウール4に衝突するので、雰囲気ガス7はステンレスウール4上を略均一に衝突する。また、横方向の仕切り板5′が、縦方向の仕切り板5の上端開放部に架設されており、リフロー炉から吸引された雰囲気ガス7が、ステンレスウール4に衝突するよう誘導する流路を形成している。 In the second embodiment, five vertical partition plates 5 are erected from the bottom 9, and the bottom 9 on which the stainless wool 4 is laid is partitioned into six sections. At each vertical partition plate 5, the flow 8 of the atmospheric gas 7 collides and a part of the flow 8 collides with the stainless steel wool 4 on the bottom 9, so that the atmospheric gas 7 is almost uniform on the stainless steel wool 4. collide. In addition, a horizontal partition plate 5 ′ is installed on the upper end open portion of the vertical partition plate 5, and a flow path for guiding the atmospheric gas 7 sucked from the reflow furnace to collide with the stainless wool 4 is provided. Forming.
 さらに、容器部2の底部9にはファン11が備えられており、必要に応じてステンレスウール4を冷却することができる構成となっている。 Furthermore, the bottom 9 of the container 2 is provided with a fan 11 so that the stainless wool 4 can be cooled as required.
 つぎに、本発明に係るフラックス回収装置の使用方法を説明する。フラックス回収装置1、21はリフロー炉とは別体であり、リフロー炉の加熱室と接続可能に設けられる。リフロー炉の加熱室から延長される雰囲気ガス7の往路(図示せず)の端部に、フラックス回収装置1、21の注入用開口部が連通して取り付けられ、雰囲気ガス7の復路(図示せず)の端部に、フラックス回収装置1、21の排出用開口部が連通して取り付けられる。フラックス回収装置1、21の取付数量は、リフロー炉の雰囲気ガス量に応じて適宜選択すればよい。 Next, a method for using the flux recovery apparatus according to the present invention will be described. The flux recovery apparatuses 1 and 21 are separate from the reflow furnace, and are provided so as to be connectable to the heating chamber of the reflow furnace. An opening for injection of the flux recovery devices 1 and 21 is attached to the end of the forward path (not shown) of the atmospheric gas 7 extended from the heating chamber of the reflow furnace, and the return path (not shown) of the atmospheric gas 7 is attached. The discharge openings of the flux collecting apparatuses 1 and 21 are attached in communication with the end of What is necessary is just to select the attachment quantity of the flux collection | recovery apparatuses 1 and 21 suitably according to the atmospheric gas amount of a reflow furnace.
 フラックス回収装置1、21の使用当初は、メラミン12の核の形成を容易にするために、ステンレスウール4、24の大きな比表面積を利用して雰囲気ガス7の運動エネルギーを減殺させるだけでなく、必要に応じて、ファン11を稼動させてステンレスウール4、24を冷却し、雰囲気ガス7の運動エネルギーをより一層減殺させてもよい。ステンレスウール4、24上にメラミン12の核が形成されると、フラックス成分の有機酸13がメラミン12の核に吸着され、吸着した有機酸13にさらにメラミン12が吸着していくので、ファン11を稼動させず衝突による運動エネルギーの減殺だけでも、フラックスの回収が可能である。また、縦方向の仕切り板5、25により、ステンレスウール4、24上における雰囲気ガス7の衝突を均一化できるので、粉体状フラックスの偏在が抑えられ、フラックスの回収能も向上する。 At the beginning of use of the flux recovery devices 1 and 21, not only the kinetic energy of the atmosphere gas 7 is reduced by using the large specific surface area of the stainless wool 4 and 24 in order to facilitate the formation of the nucleus of the melamine 12, If necessary, the fan 11 may be operated to cool the stainless wool 4 and 24, and the kinetic energy of the atmospheric gas 7 may be further reduced. When the melamine 12 nuclei are formed on the stainless wool 4, 24, the flux component organic acid 13 is adsorbed on the melamine 12 nuclei, and the melamine 12 is further adsorbed on the adsorbed organic acid 13. Flux can be recovered by simply reducing the kinetic energy due to a collision without operating. Moreover, since the collision of the atmospheric gas 7 on the stainless wool 4 and 24 can be made uniform by the vertical partition plates 5 and 25, uneven distribution of the powdery flux can be suppressed, and the flux collecting ability can be improved.
 本発明に係るフラックス回収装置1、21では、粉体状フラックスが、最下部にある孔部6、26を塞いで雰囲気ガス7の流れ8が滞ってしまうまで、粉体状フラックス除去のメンテナンスをしなくて済む。また、底部9、29に積もった粉体状フラックスを除去する際に、ステンレスウール4、24の表面にメラミン12の核と有機酸13を残存させておくと、その後フラックス回収装置1、21を再稼動させるときに、残存したメラミン12と有機酸13が足がかりとなって粉体状フラックスの成長が容易となり、フラックスの回収効率が向上するので、フラックス除去作業は入念である必要はない。 In the flux collecting apparatuses 1 and 21 according to the present invention, the maintenance of the removal of the powdery flux is performed until the powdery flux blocks the holes 6 and 26 at the bottom and the flow 8 of the atmospheric gas 7 is stagnated. You don't have to. Further, when removing the powdery flux accumulated on the bottoms 9 and 29, if the melamine 12 nucleus and the organic acid 13 are left on the surfaces of the stainless wool 4 and 24, then the flux recovery devices 1 and 21 are connected. When restarting, the remaining melamine 12 and the organic acid 13 are used as a foothold to facilitate the growth of the powdery flux and improve the flux recovery efficiency. Therefore, it is not necessary to carefully remove the flux.
 つぎに、本発明の他の実施形態例を説明する。上記実施形態例では、ステンレスウール4、24をそのまま用いたが、ステンレスウール4、24にあらかじめフラックス吸着剤を添加してもよい。フラックス吸着剤は、フラックスを吸着する機能を有する物質であればよく、フラックス成分である有機酸との吸着性の点からメラミンが好ましい。また、フラックス吸着剤には、フラックス成分との反応性の点からアルカリ性物質も好ましく、特に、反応性に加えて有機酸との水素結合によって効率的に粉体を成長させることができる点で、水酸化物が好ましい。また、上記実施形態例では、多孔質体にステンレスウール4、24を用いたが、比表面積の大きいものであれば特に限定されず、粒子状・粉体状の多孔質体でもよい。 Next, another embodiment of the present invention will be described. In the above embodiment, the stainless wools 4 and 24 are used as they are, but a flux adsorbent may be added to the stainless wools 4 and 24 in advance. The flux adsorbent may be a substance having a function of adsorbing flux, and melamine is preferable from the viewpoint of adsorptivity with an organic acid that is a flux component. In addition, the flux adsorbent is also preferably an alkaline substance from the viewpoint of reactivity with the flux component, and in particular, in addition to the reactivity, the powder can be efficiently grown by hydrogen bonding with an organic acid. Hydroxides are preferred. Moreover, in the said embodiment, although stainless wool 4 and 24 was used for the porous body, if it has a large specific surface area, it will not specifically limit, A particulate and powdery porous body may be sufficient.
 また、上記実施形態例では、ステンレスウール4、24を底部9、29に設けたが、この代わりにフラックス回収装置1、21の構造や雰囲気ガス7の注入用開口部の位置に応じて側壁部10、30に設けてもよい。さらに、第1実施形態例では、縦方向の仕切り板25は3枚であり、第2実施形態例では、縦方向の仕切り板5は5枚であったが、仕切り板5、25の枚数は適宜選択可能である。上記実施形態例では、隣接する縦方向の仕切り板5、25に設けられた孔部6、26について、その高さが異なる構成としたが、横方向に孔部6、26の位置をずらすことで縦方向の仕切り板5、25に雰囲気ガス7を衝突させてもよく、また、高さ、横方向の位置を同じにして縦方向の仕切り板5、25に雰囲気ガス7の流れ8を強いて衝突させなくてもよい。孔部6、26の位置、数、大きさについても、雰囲気ガス7の流量等に応じて適宜選択すればよい。特に、最下部となる孔部6、26の高さを調節することで、フラックス回収装置1、21の回収容量を変えることができ、ひいては、メンテナンス期間を調節することが可能となる。また、上記実施形態例では、雰囲気ガス7の運動エネルギーをより一層減殺させるためにファン11を設けているが、ファン11は備えなくてもよい。 In the above embodiment, the stainless wools 4 and 24 are provided on the bottoms 9 and 29. Instead, the side walls are formed according to the structure of the flux recovery devices 1 and 21 and the position of the opening for injecting the atmospheric gas 7. 10 and 30 may be provided. Furthermore, in the first embodiment, there are three vertical partition plates 25, and in the second embodiment, there are five vertical partition plates 5, but the number of partition plates 5, 25 is It can be selected as appropriate. In the above embodiment, the holes 6 and 26 provided in the adjacent vertical partition plates 5 and 25 have different heights, but the positions of the holes 6 and 26 are shifted in the horizontal direction. The atmospheric gas 7 may collide with the vertical partition plates 5 and 25, and the height 8 and the horizontal position are made the same so that the flow 8 of the atmospheric gas 7 is forced to the vertical partition plates 5 and 25. It is not necessary to make it collide. The position, number, and size of the holes 6 and 26 may be appropriately selected according to the flow rate of the atmospheric gas 7 and the like. In particular, by adjusting the heights of the holes 6 and 26 which are the lowermost parts, the collection capacity of the flux collection devices 1 and 21 can be changed, and thus the maintenance period can be adjusted. In the above embodiment, the fan 11 is provided to further reduce the kinetic energy of the atmospheric gas 7, but the fan 11 may not be provided.
 上記した第1実施形態例に係るフラックス回収装置を用いてフラックスの回収実験を行った。本発明のフラックス回収装置の寸法は、縦100mm、横600mm、高さ400mmとし、縦方向の仕切り板に設けた孔部うち、最下部に位置する孔部は、底面内壁部から50mmの高さとした。また、孔部の大きさは、それぞれ100mm×50mmとした。さらに、フラックス回収装置の底面内壁部一面に、ステンレスウール(ワイ・スプリング社製、商品名:デミスター)を敷いた。フラックス回収装置の容器部と蓋部はステンレス製とした。このフラックス回収装置をリフロー炉に3台並列に接続し、リフロー炉からの雰囲気ガスの吸引には、ブロアユニットを用いた。なお、運転開始から6時間後までは、フラックス回収装置底部に設置したファンを稼動させ、その後はファンを停止させた。 A flux recovery experiment was performed using the flux recovery apparatus according to the first embodiment described above. The dimensions of the flux recovery device of the present invention are 100 mm in length, 600 mm in width, and 400 mm in height. Of the holes provided in the partition plate in the vertical direction, the hole located at the bottom is 50 mm from the bottom inner wall. did. Moreover, the magnitude | size of the hole part was 100 mm x 50 mm, respectively. Further, stainless wool (made by WY Spring Co., Ltd., trade name: Demister) was laid on the entire inner surface of the bottom surface of the flux collecting apparatus. The container part and lid part of the flux recovery apparatus were made of stainless steel. Three of these flux recovery devices were connected in parallel to a reflow furnace, and a blower unit was used for suction of atmospheric gas from the reflow furnace. It should be noted that the fan installed at the bottom of the flux recovery apparatus was operated until 6 hours after the start of operation, and then the fan was stopped.
 リフロー炉の運転期間は8週間とし、6万枚の回路基板を半田付けした。この場合、1枚の回路基板あたり2gの半田ペーストが使用されているので、8週間で120kgの半田ペーストが加熱溶融されたこととなる。 The operation period of the reflow furnace was 8 weeks, and 60,000 circuit boards were soldered. In this case, since 2 g of solder paste is used per circuit board, 120 kg of solder paste is heated and melted in 8 weeks.
 その結果、フラックス成分が付着して半田付け不良を起こした回路基板は発生しなかった。また、粉体状フラックスはステンレスウール上に平均して約10mm積もった状態であり、最下部の孔部は詰まっておらず雰囲気ガスの流路は確保された状態であった。従って、粉体状フラックスの除去作業は不必要であり、さらに運転を続けることが可能であった。 As a result, there was no circuit board on which the flux component adhered and caused poor soldering. In addition, the powdery flux was on average about 10 mm on the stainless wool, and the bottom hole was not clogged and the atmosphere gas flow path was secured. Therefore, the operation of removing the powdery flux is unnecessary and the operation can be continued.
 つぎに、従来のフラックス回収装置(複数のパイプにて雰囲気ガスを放熱させる形式のもの)を用いて比較実験を行った。このフラックス回収装置の放熱部は、内径35mm、長さ120mmのステンレス製パイプ4本からなる構成とした。このフラックス回収装置をリフロー炉に7台並列に接続した。リフロー炉からの雰囲気ガスの吸引には、ブロアユニットを用いた。 Next, a comparative experiment was performed using a conventional flux recovery apparatus (a type that dissipates atmospheric gas using a plurality of pipes). The heat radiating portion of the flux collecting apparatus was composed of four stainless steel pipes having an inner diameter of 35 mm and a length of 120 mm. Seven of these flux recovery devices were connected to a reflow furnace in parallel. A blower unit was used for the suction of atmospheric gas from the reflow furnace.
 リフロー炉の運転期間は1週間とし、7千5百枚の回路基板を半田付けした。この場合、1枚の回路基板あたり2gの半田ペーストが使用されているので、1週間で15kgの半田ペーストが加熱溶融されたこととなる。 The operation period of the reflow furnace was one week, and 75,500 circuit boards were soldered. In this case, since 2 g of solder paste is used per circuit board, 15 kg of solder paste is heated and melted in one week.
 その結果、フラックス成分が付着して半田付け不良を起こした回路基板は発生しなかったが、各ステンレス製パイプは、粉体状フラックスで詰まっていた。従って、リフロー炉をとめて粉体状フラックスの除去作業をしない限り、これ以上の運転はできない状態であった。 As a result, there was no circuit board in which the flux component adhered and caused poor soldering, but each stainless steel pipe was clogged with powdery flux. Therefore, no further operation was possible unless the reflow furnace was stopped and the powder flux was removed.
 上記の通り、本発明に係るフラックス回収装置は、従来品と比較して、メンテナンス周期を8倍以上に延長することが可能であった。 As described above, the flux recovery apparatus according to the present invention was able to extend the maintenance cycle by 8 times or more compared with the conventional product.
 本発明に係るフラックス回収装置は、雰囲気ガスの流路が粉体状フラックスで詰まるのを防止することにより、メンテナンス周期を大幅に延長することができ、さらに、メンテナンス作業も簡易なので、リフロー炉による回路基板の半田付け分野で利用価値が高い。 The flux recovery device according to the present invention can greatly extend the maintenance cycle by preventing the flow path of the atmospheric gas from being clogged with the powdery flux. High utility value in the field of circuit board soldering.

Claims (12)

  1.  リフロー炉内のフラックスを含んだ雰囲気ガスが注入される開口部と、
     前記雰囲気ガスが衝突する内壁面に設けられた多孔質体と、を備えることを特徴とするフラックス回収装置。
    An opening into which atmospheric gas containing flux in the reflow furnace is injected;
    And a porous body provided on an inner wall surface with which the atmospheric gas collides.
  2.  前記多孔質体に、フラックス吸着剤が付着されていることを特徴とする請求項1に記載のフラックス回収装置。 The flux recovery apparatus according to claim 1, wherein a flux adsorbent is attached to the porous body.
  3.  前記フラックス吸着剤が、メラミンまたはアルカリ性物質であることを特徴とする請求項2に記載のフラックス回収装置。 The flux recovery apparatus according to claim 2, wherein the flux adsorbent is melamine or an alkaline substance.
  4. 前記アルカリ性物質が、水酸化物であることを特徴とする請求項3に記載のフラックス回収装置。 The flux recovery apparatus according to claim 3, wherein the alkaline substance is a hydroxide.
  5. 前記内壁面が、底面の内壁面であることを特徴とする請求項1に記載のフラックス回収装置。 The flux recovery apparatus according to claim 1, wherein the inner wall surface is an inner wall surface of a bottom surface.
  6. 前記注入された雰囲気ガスの流路が穿設されている仕切り板を備えることを特徴とする請求項1に記載のフラックス回収装置。 The flux recovery apparatus according to claim 1, further comprising a partition plate in which the flow path of the injected atmospheric gas is formed.
  7. リフロー炉内のフラックスが含まれた雰囲気ガスをフラックス回収装置に注入する工程と、
    前記雰囲気ガスを、多孔質体が設けられた前記フラックス回収装置の内壁面に衝突させる工程と、を有することを特徴とするフラックスの回収方法。
    Injecting the atmospheric gas containing the flux in the reflow furnace into the flux recovery device;
    And a step of causing the atmospheric gas to collide with an inner wall surface of the flux recovery device provided with a porous body.
  8.  前記多孔質体に、フラックス吸着剤が付着されていることを特徴とする請求項7に記載のフラックスの回収方法。 The flux recovery method according to claim 7, wherein a flux adsorbent is attached to the porous body.
  9.  前記フラックス吸着剤が、メラミンまたはアルカリ性物質であることを特徴とする請求項8に記載のフラックスの回収方法。 9. The flux recovery method according to claim 8, wherein the flux adsorbent is melamine or an alkaline substance.
  10. 前記アルカリ性物質が、水酸化物であることを特徴とする請求項9に記載のフラックス回収装置。 The flux recovery apparatus according to claim 9, wherein the alkaline substance is a hydroxide.
  11. 前記内壁面が、底面の内壁面であることを特徴とする請求項7に記載のフラックスの回収方法。 The flux collecting method according to claim 7, wherein the inner wall surface is an inner wall surface of a bottom surface.
  12. 前記注入された雰囲気ガスの流路が穿設されている仕切り板を備えることを特徴とする請求項7に記載のフラックスの回収方法。 The flux recovery method according to claim 7, further comprising a partition plate in which the flow path of the injected atmospheric gas is formed.
PCT/JP2009/007306 2009-01-16 2009-12-25 Apparatus and method of recycling resin crystalization flux WO2010082283A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980154654.7A CN102281980B (en) 2009-01-16 2009-12-25 Apparatus and method of recycling resin crystalization flux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009007729A JP5280872B2 (en) 2009-01-16 2009-01-16 Resin crystal growth type flux recovery apparatus and flux recovery method
JP2009-007729 2009-01-16

Publications (1)

Publication Number Publication Date
WO2010082283A1 true WO2010082283A1 (en) 2010-07-22

Family

ID=42339553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007306 WO2010082283A1 (en) 2009-01-16 2009-12-25 Apparatus and method of recycling resin crystalization flux

Country Status (3)

Country Link
JP (1) JP5280872B2 (en)
CN (1) CN102281980B (en)
WO (1) WO2010082283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033577A (en) * 2010-07-28 2012-02-16 Tamura Seisakusho Co Ltd Flux recovery apparatus and flux recovery method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108262543A (en) * 2016-12-30 2018-07-10 上海朗仕电子设备有限公司 A kind of scaling powder for reflow soldering is collected and cooling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356357A (en) * 1991-05-31 1992-12-10 Tamura Seisakusho Co Ltd Atomized flux collecting device
JPH0679451A (en) * 1992-09-02 1994-03-22 Nippon Dennetsu Keiki Kk Atomized flux collecting device
JPH06232546A (en) * 1993-02-02 1994-08-19 Senju Metal Ind Co Ltd Reflow oven and cooling apparatus used therefor
JP2003332726A (en) * 2002-05-13 2003-11-21 Furukawa Electric Co Ltd:The Reflow furnace, flux recovering device connected to the furnace, and method of operating the device
JP2006295024A (en) * 2005-04-14 2006-10-26 Oanesu:Kk Reflow soldering machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5611476C1 (en) * 1996-01-18 2002-02-26 Btu Int Solder reflow convection furnace employing flux handling and gas densification systems
US6527164B1 (en) * 2000-05-31 2003-03-04 Advanced Micro Devices, Inc. Removing flux residue from reflow furnace using active gaseous solvent
JP2003179341A (en) * 2001-12-11 2003-06-27 Tamura Seisakusho Co Ltd Cooling device for reflow and reflow device
US6694637B2 (en) * 2002-01-18 2004-02-24 Speedline Technologies, Inc. Flux collection method and system
JP4319646B2 (en) * 2005-06-30 2009-08-26 株式会社タムラ古河マシナリー Reflow furnace
JP2007067061A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Flux recovery system
CN101115357A (en) * 2006-07-26 2008-01-30 有限会社横田技术 Counter-current welding equipment and welding flux reclaiming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356357A (en) * 1991-05-31 1992-12-10 Tamura Seisakusho Co Ltd Atomized flux collecting device
JPH0679451A (en) * 1992-09-02 1994-03-22 Nippon Dennetsu Keiki Kk Atomized flux collecting device
JPH06232546A (en) * 1993-02-02 1994-08-19 Senju Metal Ind Co Ltd Reflow oven and cooling apparatus used therefor
JP2003332726A (en) * 2002-05-13 2003-11-21 Furukawa Electric Co Ltd:The Reflow furnace, flux recovering device connected to the furnace, and method of operating the device
JP2006295024A (en) * 2005-04-14 2006-10-26 Oanesu:Kk Reflow soldering machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033577A (en) * 2010-07-28 2012-02-16 Tamura Seisakusho Co Ltd Flux recovery apparatus and flux recovery method

Also Published As

Publication number Publication date
CN102281980B (en) 2014-07-30
JP5280872B2 (en) 2013-09-04
JP2010162584A (en) 2010-07-29
CN102281980A (en) 2011-12-14

Similar Documents

Publication Publication Date Title
EP1867424B1 (en) Method for removing fume in reflow furnace and reflow furnace
CN106029276B (en) The Flux management and method of the pollutant removal of wave solder
CN103079739B (en) For discharge chambe and the correlation technique of reflow ovens heating
US8128720B2 (en) Method and apparatus for removing contaminants from a reflow apparatus
US9744613B2 (en) Flux recovery device and soldering device
US6749655B2 (en) Filtration of flux contaminants
JP5280872B2 (en) Resin crystal growth type flux recovery apparatus and flux recovery method
JP2007053158A (en) Reflow soldering device and flux removing device
JP5485828B2 (en) Flux collection device and flux collection method
WO2023164343A1 (en) Exhaust gas purification system
CN110090514A (en) Gas cleaning plant, method for gas purification and delivery heating device
JP2006095350A (en) Method and apparatus for recovering sublimate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154654.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838253

Country of ref document: EP

Kind code of ref document: A1