WO2010081810A1 - Lower sealing valve unit for a blast furnace top charging system - Google Patents
Lower sealing valve unit for a blast furnace top charging system Download PDFInfo
- Publication number
- WO2010081810A1 WO2010081810A1 PCT/EP2010/050323 EP2010050323W WO2010081810A1 WO 2010081810 A1 WO2010081810 A1 WO 2010081810A1 EP 2010050323 W EP2010050323 W EP 2010050323W WO 2010081810 A1 WO2010081810 A1 WO 2010081810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lower sealing
- sealing valve
- valve unit
- unit according
- shaft
- Prior art date
Links
- 238000007789 sealing Methods 0.000 title claims abstract description 44
- 230000007246 mechanism Effects 0.000 claims abstract description 12
- 238000006073 displacement reaction Methods 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 15
- 238000003860 storage Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000013590 bulk material Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories or equipment specially adapted for furnaces of these types
- F27B1/20—Arrangements of devices for charging
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/18—Bell-and-hopper arrangements
- C21B7/20—Bell-and-hopper arrangements with appliances for distributing the burden
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/10—Charging directly from hoppers or shoots
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0073—Seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/10—Charging directly from hoppers or shoots
- F27D2003/105—Charging directly from hoppers or shoots using shutters
Definitions
- the present invention generally relates to a charging system for a blast furnace, and more specifically to a lower sealing valve unit as suitable e.g. for a Bell-Less TopTM charging system.
- Bell-Less TopTM charging systems have found widespread use in blast fur- naces around the world. They commonly comprise a rotary distribution device equipped with a distribution chute, which is rotatable about the vertical central axis of the furnace and pivotable about a horizontal axis perpendicular to the central axis.
- a rotary distribution device equipped with a distribution chute, which is rotatable about the vertical central axis of the furnace and pivotable about a horizontal axis perpendicular to the central axis.
- two or three storage hoppers are installed above the rotary distribution device with distribution chute.
- the hoppers serve as storage bins for bulk material to be distributed by the distribution device and as pressure locks avoiding the loss of pressure in the blast furnace by means upper and lower sealing valves.
- EP 1 811 045 presents a modern design of a blast furnace equipped with a Bell-Less TopTM charging system.
- Two charging hoppers are installed in "parallel hopper top” configuration above a distribution device (with rotatable and pivotable chute), itself arranged as top closure of the blast furnace throat.
- Each storage hopper has a material gate valve at its lower end that is located inside a respective material gate housing.
- the respective material gate valves comprise a cylindrically curved shutter element moveable along the discharge opening of a chute member that enables precise metering of bulk material by controlling the valve opening area. Operation of each shutter element is achieved by means of a respective, externally mounted actuator.
- a lower sealing valve housing is arranged between the material gate housings and the distribution device.
- This housing comprises one inlet per storage hopper to which a respective sealing valve (with flap and valve seat) is associated.
- Each flap is pivotable by means of an arm about a horizontal axis to be moved in and out of sealing engagement with the valve seat.
- Each flap arm is also connected to a respective actuator outside the sealing valve housing.
- this region of the blast furnace facility in-between the hopper bottoms and the blast furnace throat is densely equipped, featuring the material gates and sealing valves, corresponding actuators, as well as the rotary distribution device with its drive mechanism. From the design point of view, this region comprising numerous moving elements with their actuating mechanisms and mounting supports is critical in terms of reliability, manufacturing costs, accessibility, mounting, tolerances etc...
- the present invention provides a lower sealing valve unit of modified design as defined in claim 1.
- the lower sealing valve unit according to the present invention comprises: a housing having a pair of inlets and at least one outlet; a valve seat associated with each inlet; a flap associated with each valve seat and adapted for, in a closed posi- tion, engaging said valve seat to sealingly close said inlet, each flap being supported by a pivotable shaft allowing displacement between said closed position and an open position off the associated valve seat.
- a common structure is mounted to one side of the housing and comprises a pair of driving mechanisms, each connected to one of the pivotable shafts for independent actuation thereof. Furthermore, the shafts are arranged to coaxially pass through the same housing side and are supported by the common structure.
- the present invention provides for a simplified mounting and ac- tuation of the lower sealing valves in a two-hopper charging system, due namely to the use of a coaxial shaft arrangement for pivoting the flaps, which traverses the housing wall at a single location to be supported by the common support structure, on a same side of the housing.
- Employing a single, common support structure for both sealing flaps clearly reduces manufacturing costs.
- the number of components arranged in this region below the storage hoppers are also reduced, which allows for a more compact design of the blast furnace charging system.
- the coaxial shaft arrangement is preferably formed by one hollow pivotable shaft in which the other pivotable shaft is concentrically arranged to be freely rotatable.
- the inner shaft may protrude at both ends of the hollow shaft for ease of connection.
- the common structure comprises a mounting flange that supports the coxial shaft arrangement and is fixed to the outside side-wall of the housing and centred with respect to a corresponding opening therein.
- the mounting flange comprises a centring member having a cross-sectional shape matching the cross-section of the opening in the housing.
- each flap is preferably supported by an arm, which is connected to the respective pivotable shaft and rotationally integral therewith.
- the valve seats may be attached at the extremity of a respective sleeve projecting from each inlets inside the housing. This allows for an offset sealing of the inlets that facilitates the arrangements of the flap support and drive means.
- each drive mechanism comprises a linear actuator coupled to its respective shaft via a respective lever. Each lever is rotationally integral with the pivotable shaft and hinged to the actuating member of the linear actuator. The linear actuators are pivotally supported in a respective cradle affixed to the mounting flange.
- Such cradle preferably comprises a pair of parallel brackets fixed to an extension of the mounting flange, the brackets being provided in their top edge with a vertical slot.
- the linear actuators are then provided at their periphery with a pair of diametrically opposite radial pins (trunnions) that fit into the vertical slots.
- a stuffing box may be arranged about the coaxial shaft arrangement in the region of the mounting flange.
- the present invention provides a lower sealing valve unit for a top charging system, especially of the Bell Less TopTM type, of a blast/shaft furnace equipped that has many advantageous aspects.
- a common structure with coaxial shaft arrangement of simple structure can be used for controlling the lower sealing valves of a set of two storage hoppers.
- This particular mounting using a single mounting flange for two lower sealing valves reduces the number of components in the lower region of the hoppers, and thus facilitates accessibility and permits improving compactness.
- this design allows lowering the height and reducing the size of the housing, which also implies a more centred flow of charge material in the lower sealing valve housing;
- a single mounting flange at one side reduces manufacturing costs of such cast piece requiring machining and finishing as well as precise positioning/alignment in the housing side-wall; - the support and drive mechanisms of the flaps being organised on a common support, it is easily accessible and dismountable;
- the common structure being installed on one side of the housing, it is easier to install it so that it does not interfere with the other mecha- nisms in this region of the top charging system, e.g. the planetary gearbox of the rotary distribution device.
- FIG. 1 is a principle drawing of a preferred embodiment of the present lower sealing valve unit, with the valves closed;
- FIG. 2 is a top view of the embodiment of Fig.1 , without the cover portion;
- FIG. 3 is a side view of the valves and common support structure only, with one open valve;
- FIG. 4 is a top view of Fig.3 (only the open valve being shown).
- Fig.1 schematically illustrates, in a side view, a preferred embodiment of a lower sealing valve unit 10 for a charging system of a shaft furnace.
- the present unit 10 finds particular application in a Bell-Less TopTM charging system for a blast furnace.
- a lower sealing valve unit is used, in Bell-Less TopTM systems, to isolate the bottom region of the storage hoppers from the top of the blast furnace in order to avoid pressure losses.
- the present lower sealing valve unit 10 is designed for use with a charging installation comprising two hoppers in a "parallel hopper top” configuration, and will typically be arranged between the region of the material gates at the hoppers bottoms and the conventional rotary distribution device closing the blast/shaft furnace throat.
- the present lower sealing valve unit 10 can for example be used in place of the one used in the Bell-Less TopTM system shown in Figs. 2 or 4 of EP 1 811 045.
- the present lower sealing valve unit 10 comprises a housing 12 of conventional shape, i.e. it includes a rectangular top part 14 and a funnel shaped bottom part 16 (seen in vertical cross-section), preferably connected to one another by welding.
- This housing 12 defines a closed volume and has a pair of inlets 18 provided in a cover 20 of the top part 14, each in communication with a respective storage hopper (not shown) of the charging system through a respective material gate (not shown).
- An outlet 22 is provided at the bottom of the lower, funnel shaped part 16, through which bulk material falls into the rotary distribution device (not shown).
- the lower sealing valve housing 12 is conventionally fixed to the support structure (not shown) of the top charging system that further holds the storage hoppers above the blast furnace.
- compensa- tors e.g. bellows compensators, (not shown) can be used to connect the inlets to the respective material gates (material gate housings) and to connect the housing outlet 22 to the distribution device.
- the inlets 18 in the cover 20 of the housing 12 can be selectively and independently closed by means of a pair of sealing valves 24, 24' arranged in the housing top region, each valve comprising a flap 26, 26' and associated valve seat 28, 28'.
- the valve seats 28, 28' are each attached in a sleeve 30, 30' projecting downwardly from the inlets 18 into the housing 12.
- Each flap 26, 26' is adapated for engaging its respective valve seat 28, 28' to sealingly close the latter in a closed position, and is supported by a pivotable shaft 32, respec- tively 34, for its actuactuation between the closed position (Fig.1 ) and an open position off the valve seat 28, resp. 28'.
- shafts 32 and 34 are arranged in a coaxial manner to pass through the same housing side-wall 36 and are supported by a common structure, generally indicated 38, mounted to the side-wall 36 and further supporting drive mechanisms for the shafts 32, 34.
- shaft 34 is hollow while the other shaft 32 is concentrically arranged inside hollow shaft 34 and protrudes at both ends thereof for connection purposes.
- the inner shaft 32 is advantageously supported by one, two or more bearings (e.g. roller bearings) inside the hollow shaft 34.
- each flap 26, 26' is attached at one end of an arm 40, resp. 40', which has its other end fixedly connected to a respective pivotable shaft 34, resp. 32, so as to be integral in rotation therewith.
- the shafts 32 and 34 are independently pivotable/rotatable about a common axis 42 and their respective rotation allows moving the flaps 26, 26' in and out of sealing engagement with the valve seats 28, 28'.
- the common structure 38 comprises a mounting flange 44 that rotatably supports the coaxial shaft arrangement. Typically it may comprise one or more bearings (e.g. roller bearings) that permit the pivoting of the outer shaft 34 about itself.
- This mounting flange 44 is fixed (e.g. screwed) to the outer side of side-wall 36 and centered with respect to a corresponding opening 46 therein.
- the mounting flange 44 comprises a centering member 48 that has a cross-sectional shape matching the cross-section of opening 46 in side-wall 36.
- the centering member 48 is circular and its outer diameter corresponds to the diameter of opening 46.
- each drive mechanism 50, 50' comprises a linear actuator 52, 52', e.g. a hydraulic or screw jack, having its actuating rod 54, 54' coupled to a respective shaft 32, 34 by means of a lever 56, 56'.
- Each lever 56, resp. 56' is rigidly coupled to its respective shaft 32, 34 so as to be integral in rotation therewith, while at its opposite end it is hingedly coupled to the actuating rod 54, 54' of the linear actuator 52, 52'.
- the linear actuators 52, 52' are each supported in a respective cradle 61 , 61 ' comprising a pair of parallel brackets 62, 62' extending perpendicularly to the shafts 32, 34 and having each a vertical slot 63, 63' in their upper edge.
- a pivotal mounting of the linear actuators 52, 52' is achieved by means of trunnions 58, 58' fitted over the actuator's body that fit into the slots 63, 63'.
- the brackets 62, 62' are fixed by their lower parts to a half-tubular extension 64 protruding from the mounting flange 44.
- a stuffing box is preferably arranged about the outer shaft 34 at the interface with the support 38 to provide for a sealed pivoting of the coaxial shaft arrangement.
- mounting flange 44 with its centering member 48 and half-tubular extension 64 together with the parallel brackets 62, 62' may typically be manufactured in one piece, e.g. by casting from steel or cast iron.
- the present lower sealing valve unit 10 is advantageous in that it requires only one such cast support 44 per pair of inlet valves. This reduces manufacturing costs, since only one cast support is required, also saving on machining/finishing of such cast iron piece and reducing problems of mounting and tolerances.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Blast Furnaces (AREA)
- Sliding Valves (AREA)
- Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
- Lift Valve (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011129852/02A RU2524870C2 (en) | 2009-01-14 | 2010-01-13 | Assembly of bottom seal valve for system of loading via blast furnace mouth |
CN2010800040704A CN102272336B (en) | 2009-01-14 | 2010-01-13 | Lower sealing valve unit for a blast furnace top charging system |
UAA201109325A UA105199C2 (en) | 2009-01-14 | 2010-01-13 | LoWEr seal valve Unit for shaft furnace loading system, Material loading system through mouth for shaft furnace and blast furnace |
US13/144,305 US8777539B2 (en) | 2009-01-14 | 2010-01-13 | Lower sealing valve unit for a blast furnace top charging system |
BRPI1007136A BRPI1007136A2 (en) | 2009-01-14 | 2010-01-13 | bottom sealing valve unit for a tank oven loading system, loading system and oven |
EP10700542A EP2387619A1 (en) | 2009-01-14 | 2010-01-13 | Lower sealing valve unit for a blast furnace top charging system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU91511A LU91511B1 (en) | 2009-01-14 | 2009-01-14 | Lower sealing valve unit for a blast furnace top charging system |
LU91511 | 2009-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010081810A1 true WO2010081810A1 (en) | 2010-07-22 |
Family
ID=40792826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/050323 WO2010081810A1 (en) | 2009-01-14 | 2010-01-13 | Lower sealing valve unit for a blast furnace top charging system |
Country Status (9)
Country | Link |
---|---|
US (1) | US8777539B2 (en) |
EP (1) | EP2387619A1 (en) |
KR (1) | KR101574609B1 (en) |
CN (2) | CN201548035U (en) |
BR (1) | BRPI1007136A2 (en) |
LU (1) | LU91511B1 (en) |
RU (1) | RU2524870C2 (en) |
UA (1) | UA105199C2 (en) |
WO (1) | WO2010081810A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU91822B1 (en) * | 2011-06-08 | 2012-12-10 | Wurth Paul Sa | Flap and flap assembly for a tank furnace charging installation |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU91511B1 (en) * | 2009-01-14 | 2010-07-15 | Wurth Paul Sa | Lower sealing valve unit for a blast furnace top charging system |
LU91583B1 (en) * | 2009-07-03 | 2011-01-04 | Wurth Paul Sa | Sealing valve arrangement for a shaft furnace charging installation |
CN103953757A (en) * | 2014-04-19 | 2014-07-30 | 包头职业技术学院 | Lower sealing valve of parallel-tank bell-less furnace top |
LU92837B1 (en) * | 2015-09-25 | 2017-04-03 | Wurth Paul Sa | Sealing valve arrangement for a shaft furnace charging installation |
US20180127221A1 (en) * | 2016-11-07 | 2018-05-10 | Transload Equipment, LLC | Systems and methods for transferring granular material |
LU93298B1 (en) * | 2016-11-10 | 2018-06-13 | Wurth Paul Sa | Sealing Valve Arrangement For A Shaft Furnace Charging Installation |
CN110023660B (en) * | 2016-12-02 | 2021-12-21 | 应用材料公司 | Low particle protected flapper valve |
CN107606166B (en) * | 2017-09-27 | 2024-08-30 | 河南省中利工矿设备制造有限公司 | Sealing device suitable for rotary feeder |
CN111750676B (en) * | 2020-06-09 | 2023-04-18 | 江西恒泰铝材有限公司 | Universal safety smelting device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955693A (en) * | 1972-09-20 | 1976-05-11 | S.A. Des Anciens Etablissements Paul Wurth | Method and apparatus for cooling and cleaning the sealing surface of a valve |
JPS5544577A (en) * | 1978-09-25 | 1980-03-28 | Kawasaki Steel Corp | Raw material distribution controlling method in blast furnace top |
EP1811045A1 (en) | 2006-01-20 | 2007-07-25 | Paul Wurth S.A. | Multiple hopper charging installation for a shaft furnace |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU64909A1 (en) * | 1972-03-06 | 1972-07-06 | ||
US4089429A (en) * | 1977-05-09 | 1978-05-16 | Stock Equipment Company | Apparatus for introducing particulate material into a vessel |
LU83279A1 (en) * | 1981-04-03 | 1983-03-24 | Wurth Paul Sa | LOADING SYSTEM FOR A TANK OVEN |
LU84890A1 (en) * | 1983-06-29 | 1985-03-29 | Wurth Paul Sa | MECHANISM FOR OPERATING A DOSING VALVE |
LU86495A1 (en) * | 1986-06-30 | 1988-01-20 | Wurth Paul Sa | DEVICE FOR CLOSING AN UPPER CENTRAL OPENING OF AN ENCLOSURE AND APPLICATION TO A STORAGE HOPPER OF A LOADING INSTALLATION OF A TANK OVEN |
LU86680A1 (en) * | 1986-11-21 | 1988-06-13 | Wurth Paul Sa | MECHANISM FOR OPERATING A DOSING VALVE |
RU2100444C1 (en) * | 1996-06-20 | 1997-12-27 | Акционерное общество "Гипромез" | Gas-tight valve for blast furnace charging apparatus |
LU90294B1 (en) * | 1998-10-06 | 2000-04-07 | Wurth Paul Sa | Bulk material distribution device |
RU2164950C1 (en) * | 2000-08-04 | 2001-04-10 | Закрытое акционерное общество "Научно-производственный и коммерческий центр "ТОТЕМ" | Gas-tight valve of charging apparatus of blast furnace |
EP1811044A1 (en) * | 2006-01-20 | 2007-07-25 | Paul Wurth S.A. | Three hopper charging installation for a shaft furnace |
LU91511B1 (en) * | 2009-01-14 | 2010-07-15 | Wurth Paul Sa | Lower sealing valve unit for a blast furnace top charging system |
-
2009
- 2009-01-14 LU LU91511A patent/LU91511B1/en active
- 2009-04-21 CN CN2009201457979U patent/CN201548035U/en not_active Expired - Lifetime
-
2010
- 2010-01-13 BR BRPI1007136A patent/BRPI1007136A2/en not_active IP Right Cessation
- 2010-01-13 EP EP10700542A patent/EP2387619A1/en not_active Withdrawn
- 2010-01-13 KR KR1020117018762A patent/KR101574609B1/en not_active IP Right Cessation
- 2010-01-13 WO PCT/EP2010/050323 patent/WO2010081810A1/en active Application Filing
- 2010-01-13 US US13/144,305 patent/US8777539B2/en not_active Expired - Fee Related
- 2010-01-13 CN CN2010800040704A patent/CN102272336B/en not_active Expired - Fee Related
- 2010-01-13 UA UAA201109325A patent/UA105199C2/en unknown
- 2010-01-13 RU RU2011129852/02A patent/RU2524870C2/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3955693A (en) * | 1972-09-20 | 1976-05-11 | S.A. Des Anciens Etablissements Paul Wurth | Method and apparatus for cooling and cleaning the sealing surface of a valve |
JPS5544577A (en) * | 1978-09-25 | 1980-03-28 | Kawasaki Steel Corp | Raw material distribution controlling method in blast furnace top |
EP1811045A1 (en) | 2006-01-20 | 2007-07-25 | Paul Wurth S.A. | Multiple hopper charging installation for a shaft furnace |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU91822B1 (en) * | 2011-06-08 | 2012-12-10 | Wurth Paul Sa | Flap and flap assembly for a tank furnace charging installation |
WO2012168227A1 (en) | 2011-06-08 | 2012-12-13 | Paul Wurth S.A. | Assembly of a flap and a valve for equipment for loading a shaft kiln |
JP2014518949A (en) * | 2011-06-08 | 2014-08-07 | ポール ワース エス.アー. | Door and valve assembly for blast furnace charging equipment |
TWI509078B (en) * | 2011-06-08 | 2015-11-21 | Wurth Paul Sa | A hatch and valve arrangement for a charging installation of a shaft furnace |
US9217606B2 (en) | 2011-06-08 | 2015-12-22 | Paul Wurth S.A. | Door and valve assembly for a charging installation of a shaft furnace |
RU2594926C2 (en) * | 2011-06-08 | 2016-08-20 | Поль Вурт С.А. | Shutter unit and valve for shaft furnace loading device |
Also Published As
Publication number | Publication date |
---|---|
US8777539B2 (en) | 2014-07-15 |
BRPI1007136A2 (en) | 2016-02-23 |
KR20110106926A (en) | 2011-09-29 |
RU2011129852A (en) | 2013-01-27 |
CN102272336B (en) | 2013-06-26 |
CN201548035U (en) | 2010-08-11 |
UA105199C2 (en) | 2014-04-25 |
LU91511B1 (en) | 2010-07-15 |
KR101574609B1 (en) | 2015-12-04 |
RU2524870C2 (en) | 2014-08-10 |
US20110274519A1 (en) | 2011-11-10 |
CN102272336A (en) | 2011-12-07 |
EP2387619A1 (en) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8777539B2 (en) | Lower sealing valve unit for a blast furnace top charging system | |
SU1251811A3 (en) | Shaft furnace charging arrangement | |
EP1974059B1 (en) | Three hopper charging installation for a shaft furnace | |
EP1977018B1 (en) | Multiple hopper charging installation for a shaft furnace | |
RU2241183C2 (en) | Loading device for shaft furnace | |
EP2307578A1 (en) | Lower sealing valve assembly for a shaft furnace charging installation and valve actuation mechanism therefore | |
RU2491352C2 (en) | Charging installation of high furnace and unit of lower gas sealing valve | |
KR20150034269A (en) | Rotary charging device for shaft furnace | |
US9217606B2 (en) | Door and valve assembly for a charging installation of a shaft furnace | |
TWI682999B (en) | Sealing valve arrangement for a shaft furnace charging installation | |
EP4010501B1 (en) | Seal valve for a pci system of a blast furnace | |
WO2000023733A1 (en) | Flowrate control valve for powder and granular material | |
CN202063931U (en) | Compact discharge valve | |
JPH02263563A (en) | Rotary slide type valve device | |
CN109022655A (en) | Ultra low type bell-less BF tep feeding device | |
RU2006146940A (en) | CENTRIFUGAL MILL FOR GRINDING BULK MATERIAL | |
CN116398647A (en) | Sintering machine bellows valve and device that induced drafts | |
CN208907500U (en) | It is a kind of can hand-operated pneumatic execute valve actuator | |
JP2024059193A (en) | Damper device in powder and granular material feeder | |
CN116498764A (en) | Material control valve and shaft furnace discharging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080004070.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10700542 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5104/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13144305 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011129852 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: a201109325 Country of ref document: UA |
|
ENP | Entry into the national phase |
Ref document number: 20117018762 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010700542 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1007136 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1007136 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110713 |