WO2010079942A2 - Supercooling apparatus - Google Patents

Supercooling apparatus Download PDF

Info

Publication number
WO2010079942A2
WO2010079942A2 PCT/KR2010/000057 KR2010000057W WO2010079942A2 WO 2010079942 A2 WO2010079942 A2 WO 2010079942A2 KR 2010000057 W KR2010000057 W KR 2010000057W WO 2010079942 A2 WO2010079942 A2 WO 2010079942A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat source
supercooling
state
heat
Prior art date
Application number
PCT/KR2010/000057
Other languages
French (fr)
Korean (ko)
Other versions
WO2010079942A3 (en
Inventor
김철환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/143,020 priority Critical patent/US20120011861A1/en
Publication of WO2010079942A2 publication Critical patent/WO2010079942A2/en
Publication of WO2010079942A3 publication Critical patent/WO2010079942A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/363Freezing; Subsequent thawing; Cooling the materials not being transported through or in the apparatus with or without shaping, e.g. in form of powder, granules, or flakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments

Definitions

  • the present invention relates to a subcooling apparatus, and more particularly, to a subcooling apparatus in which a variation in energy applied to an object under cooling is reduced.
  • Subcooling means a phenomenon that no change occurs even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
  • Each substance has a stable state corresponding to the temperature at that time, so that the temperature can be gradually changed so that members of the substance can keep up with the temperature change while maintaining the stable state at each temperature.
  • the member cannot afford to change to the stable state according to each temperature, so that the state remains stable at the starting point temperature, or a portion thereof changes to the state at the end point temperature.
  • This technique uses a supercooling phenomenon, which refers to a phenomenon in which the melt or solid does not change even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
  • Such a technique includes the electrostatic field treatment method, the electrostatic field treatment apparatus, and electrodes used in them, which are disclosed in Korean Laid-Open Patent Publication No. 2000-0011081.
  • the metal shelf 7 installed in the interior of the storehouse has a two-stage structure, and on each stage, objects for thawing or freshness maintenance and ripening of vegetables, meat and fish are mounted.
  • the metal shelf 7 is insulated from the bottom of the furnace by the insulator 9.
  • the high voltage generator 3 can generate direct current and alternating voltage up to 0 to 5000 V, and the inside of the heat insulating material 2 is covered with an insulating plate 2a such as vinyl chloride.
  • the high voltage cable 4 for outputting the voltage of the high voltage generator 3 is connected to the metal shelf 7 through the outer wall 5 and the heat insulator 2.
  • FIG. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3.
  • AC 100V is supplied to the primary side of the voltage regulating transformer 15.
  • Reference numeral 11 denotes a power supply lamp
  • reference numeral 19 denotes a lamp indicating an operating state.
  • the relay 14 operates when the above-mentioned door 6 is closed and the safety switch 13 is turned on. This state is indicated by the relay operation lamp 12.
  • the relay contact ( 14a, 14b, and 14c are closed, and an AC 100V power source is applied to the primary side of the voltage regulating transformer 15.
  • the applied voltage is adjusted by the adjusting knob 15a on the secondary side of the voltage adjusting transformer 15, and the adjusted voltage value is displayed on the voltmeter.
  • the adjusting knob 15a is connected to the primary side of the secondary boosting transformer 17 of the voltage adjusting transformer 15.
  • the boosting voltage is boosted at a ratio of 1:50, for example.
  • One end O 1 of the secondary output of the boosting transformer 17 is connected to the metal shelf 7 insulated from the cold storage via the high voltage cable 4, and the other end O 2 of the output is earthed.
  • the outer wall 5 is earthed, even if the user of the cold storage 1 contacts the outer wall of the cold storage, electric shock will not occur.
  • the metal shelf 7 is exposed in the furnace in FIG. 1, since the metal shelf 7 needs to be kept insulated in the furnace, it is necessary to separate it from the walls of the furnace (air acts as an insulation). .
  • the object 8 protrudes from the metal shelf 7 and contacts the inner wall, current flows to the ground through the high wall.
  • such a device for generating an electric field or a magnetic field is additionally provided with a device (for example, an electric field or magnetic field shielding structure, a blocking device, etc.) for the safety of the user when the electric field or the magnetic field is generated, when the electric field or magnetic field is generated due to the high power. Should be.
  • a device for example, an electric field or magnetic field shielding structure, a blocking device, etc.
  • An object of the present invention is to provide a supercooling apparatus and method for more reliably preventing the formation of freezing tuberculosis in a supercooled state of an article.
  • an object of the present invention is to provide a supercooling apparatus and a method capable of maintaining an object in a supercooled state only by supplying power, even in a space where only cooling is performed.
  • an object of the present invention is to provide a subcooling apparatus and method for allowing a temperature deviation of an article maintained in a subcooled state to be reduced, thereby enabling a more stable subcooled state to be maintained.
  • an object of the present invention is to provide a supercooling apparatus and method for maintaining and controlling a supercooled state through an energy supply in which a deviation is significantly reduced in controlling the temperature of a package under cooling.
  • the supercooling apparatus of the present invention is provided in a storage compartment in which the cooling is performed, a storage compartment having a storage space for accommodating objects, a heat source supply unit installed in the storage chamber to supply heat or generate heat to the storage space, and a storage space.
  • the temperature sensor for sensing the temperature of the object and the heat source supply unit are operated on the basis of the temperature detected by the temperature sensor, so that the upper portion of the storage space is at a temperature higher than the maximum ice crystal generation temperature.
  • the control unit is configured to maintain a space or an enclosure in a subcooled state below a maximum ice crystal generation temperature, and to supply heat of a predetermined size or generate heat during the control of the subcooled state.
  • control unit preferably maintains the upper temperature of the storage space above the phase transition temperature.
  • the controller may maintain the lower temperature of the storage space or the temperature of the storage object at a predetermined subcooling temperature, so that the storage material is stored in the supercooling state.
  • control unit is a heat source supply unit preferably supplies heat or generate heat of a predetermined size range.
  • the heat source supply unit is preferably a first and second heat source supply unit formed independently on at least two or more surfaces of the storage space.
  • the first or second heat source supply unit is composed of at least two or more sub heat source supply units, at least one sub heat source supply unit is in an on state while performing control of a supercooled state, and the other sub heat source supply unit is in an on state and an off state. It is preferable to perform alternately.
  • the first or second heat source supply unit maintains an on-cooled state of the object by applying the voltage included in the voltage variable region higher than 0V to maintain the on state.
  • the temperature sensing unit preferably includes at least one or more temperature sensors mounted on or adjacent the side on which the heat source supply is formed.
  • control unit controls the heat source supply unit, it is preferable to independently control on the basis of the temperature of the temperature sensor formed on the same surface or the adjacent temperature sensor.
  • the controller may determine whether the supercooling state of the object is released according to the change of the sensed temperature from the temperature sensor.
  • the subcooling method of the present invention is a subcooling method in a cooling apparatus provided in a storage compartment in which a cooling is performed, and having a storage compartment provided with a storage space for storing an article. Cooling below the ice crystal formation temperature or the maximum ice crystal production temperature; And a heat source supply step of supplying heat to the storage space or generating heat, and performing a step of sensing a temperature of the storage space or the storage object, and based on the sensed temperature, at least one of a cooling step and a heat source supplying step.
  • the upper part of the storage space is brought to a temperature higher than the maximum ice crystal generation zone temperature, and the control of the supercooling state in which the storage space or the object is kept in the supercooled state below the maximum ice crystal generation temperature is performed.
  • the present invention has the effect of preventing the formation of freezing tuberculosis more reliably in the supercooled state of the package, and maintaining the supercooled state of the package for a long time and stably.
  • the present invention has the effect of preventing the formation of freezing tuberculosis and easy control of the supercooling temperature of the object, so that the object is kept in a desired state.
  • the present invention has the effect of keeping the objects in the supercooled state only by supplying power, even in a space where only cooling is performed, so that a simple structure and independent control are possible.
  • the present invention is to reduce the temperature deviation of the object to be kept in the supercooled state, there is an effect that it is possible to maintain a more stable supercooled state.
  • the present invention enables to more accurately and quickly determine the supercooled state of the object, there is an effect of maintaining the quality of the object stably.
  • the supercooled state in controlling the temperature of the object under cooling, the supercooled state is maintained and controlled through energy supply with a markedly reduced deviation, so that a more stable state of the object can be maintained.
  • FIG. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3.
  • FIG. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled.
  • FIG. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
  • FIG. 5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
  • FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5.
  • FIG. 7 is a block diagram of a subcooling system to which a subcooling device according to the present invention is applied.
  • FIG. 8 is a configuration diagram of a first embodiment of the subcooling apparatus of FIG. 7.
  • FIG. 9 is a layout view of a heat source supply unit of the subcooling device of FIG. 8.
  • FIG. 10 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 8.
  • FIG. 11 is a configuration diagram of a second embodiment of the supercooling apparatus of FIG. 7.
  • FIG. 12 is a graph of voltage applied to a heat source supply unit in the subcooling apparatus of FIG. 11.
  • FIG. 13 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 11.
  • FIG. 15 is a temperature graph at the time of subcooling of an object by supplying the heat source of FIG. 14.
  • FIG. 16 is a derivative graph of the sensing temperature of FIG. 15.
  • 17 is a graph of temperature change by the supercooling method of FIGS. 8 and 11.
  • FIG. 18 is a temperature graph at the time of releasing the supercooling of a package by the heat source supply of FIG.
  • 19 is a derivative graph of the sensing temperature of FIG. 18.
  • FIG. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled. As shown in FIG. 3, the container C which accommodates the liquid L (or the thing) is cooled in the storage S in which the cooling space was formed.
  • the cooling temperature of the cooling space is, for example, cooled from room temperature to 0 degrees (phase transition temperature of water) or below the phase transition temperature of the liquid L.
  • phase transition temperature of water for example, the temperature of the maximum ice crystal formation zone (-1 to -7 ° C) or less of the liquid (L) of water at which the maximum ice crystals are produced at about -1 to -7 ° C
  • the cooling temperature reaches or passes the temperature of the maximum ice crystal generation zone of the liquid L, it is formed as freeze tuberculosis F2 on the inner wall of the container or freeze tuberculosis F1 in the gas Lg.
  • condensation takes place at a portion where the surface Ls of the liquid L and the inner wall of the container C (which is substantially coincident with the cooling temperature of the cooling space) and such condensed liquid L are ice crystals.
  • Tuberculosis (F3) may be formed.
  • FIG. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
  • the temperature of the gas Lg or the surface Ls of the liquid L is applied to be higher than the temperature of the maximum ice crystal generation zone of the liquid L. More preferably, the phase transition temperature of the liquid L is equal to or higher than that of the liquid L. . In addition, the temperature of the surface Ls of the liquid L is set to the temperature of the maximum ice crystal generation zone of the liquid L so that the surface Ls of the liquid L does not freeze even if it contacts the inner wall of the container C. More preferably, the phase transition temperature of the liquid L is equal to or higher than that.
  • the liquid L in the container C is maintained in the supercooled state at or below the phase transition temperature or below the maximum ice crystal generation temperature of the liquid L.
  • the liquid L which is an object
  • the liquid L may be subjected to a supercooling state simply by applying energy only to the upper portion of the container C. Since it may not be able to hold
  • the energy applied to the upper portion of the vessel C is relatively larger than the energy applied to the lower portion of the vessel C, so that the upper temperature of the vessel C can be maintained higher than the phase transition temperature or the temperature of the maximum ice crystal generation zone. .
  • Receptacles herein can include meat, vegetables, fruits, other foods, and the like, as well as liquids.
  • the energy applied to the present invention may be applied to thermal energy, electric or magnetic energy, ultrasonic energy, light energy and the like.
  • FIG. 5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
  • the supercooling apparatus of FIG. 5 is mounted in a storage S in which cooling is performed, a case Sr having a storage space therein, a heating coil H1 mounted inside an upper surface of the case Sr, and generating heat;
  • the temperature sensor C1 for sensing the temperature of the upper portion of the storage space, the heating coil H2 mounted inside the lower surface of the case Sr to generate heat, and the temperature of the lower portion or the storage object P of the storage space. It is provided with a temperature sensor (C2) for sensing.
  • the supercooling device is installed in the storage S and, as cooling is performed, senses the temperature from the temperature sensor C1 and C2 so that the heating coils H1 and H2 perform the on operation.
  • heat is supplied to the storage space from the upper and lower portions of the storage space.
  • the amount of heat supplied is adjusted to control the upper portion of the storage space (or the air on the object P) to be higher than the maximum ice crystal generation temperature, more preferably higher than the phase transition temperature.
  • the positions of the heating coils H1 and H2 of FIG. 5 may be determined to be suitable positions for supplying heat (or energy) to the enclosure P and the storage space, and may be inserted into the side surface of the case Sr. Can be.
  • the storage space may be opened or closed by a drawer or the like.
  • FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5.
  • the graphs of FIG. 6 are temperature graphs measured with the principle according to FIGS. 4 and 5 applied when the liquid L is water.
  • line I is the cooling temperature curve of the cooling space
  • line II is the temperature curve of the gas Lg (air) on the water surface in the vessel C or the case Sr (or the vessel C).
  • the line III is the temperature of the lower portion of the container (C) or the case (Sr)
  • the temperature of the outer surface of the container (C) or the case (Sr) is the container (C) or It is substantially the same as the temperature of the water in the case Sr.
  • the temperature of the gas Lg on the water surface in the vessel C is about higher than the temperature of the maximum ice crystal generation zone of the water.
  • the supercooled state in which the liquid state is maintained stably is maintained for a long time while the temperature of the water in the vessel C is maintained at about -11 ° C, which is equal to or less than the temperature of the maximum ice crystal generation zone of the water. At this time, heat is supplied by the heating coils H1 and H2.
  • FIG. 7 is a configuration diagram of a supercooling system according to the present invention
  • FIG. 8 is a configuration diagram of a first embodiment of the subcooling apparatus of FIG.
  • the subcooling system includes a cooling device 100 and a subcooling device 200 mounted in the cooling device 100 and cooled by the cooling device 100.
  • the cooling device 100 includes a storage for storing the goods, a cooling cycle (ie, cooling means) 110 for cooling the storage, an input unit 120 for receiving a setting command from a user, and the cooling device.
  • the cooling cycle 110 is divided into a simple cooling type and a direct cooling type according to a method of cooling an object.
  • the intercooled cooling cycle includes a compressor for compressing a refrigerant, an evaporator for generating cold air for cooling the storage space or a storage object, a fan for forcibly flowing the cold air generated therein, an inlet duct for introducing cold air into the storage space, and a storage space. It consists of a discharge duct to guide the cold air passing through the evaporator.
  • the intercooled cooling cycle may include a condenser, a dryer, an expansion device, and the like.
  • the direct cooling cycle consists of a compressor for compressing the refrigerant and an evaporator installed in the case adjacent to the inner surface of the case forming the storage space to evaporate the refrigerant.
  • the direct cooling cooling cycle includes a condenser and an expansion valve.
  • the input unit 120 receives a temperature setting of a storage, an operation command of a supercooling device, a setting of a dispenser function, etc. from a user.
  • the input unit 120 may be a push button, a keyboard, a touch pad, or the like.
  • the operation command of the subcooling device may include, for example, a freezing command, a thin ice command, a subcool command, and the like.
  • the display unit 130 may basically display an operation performed by the cooling apparatus, for example, display of a temperature of a storage, display of a cooling temperature, and an operating state of a supercooling apparatus.
  • the display unit 130 may be implemented as a lcd display or a led display.
  • the main control unit 140 includes a power supply unit 142 that receives commercial power, and uses the power supply (for example, 5V, 12V, etc.) required for the cooling device 100 and the supercooling device 200. This device performs rectification, smoothing, and transformer.
  • the power supply unit 142 may be included in the main control unit 140 or may be provided as a separate element.
  • the power supply unit 142 is connected by the subcooling device 200 and the power line PL, and supplies necessary power to the subcooling device 200.
  • the main controller 140 controls the cooling cycle 110, the input unit 120, and the display unit 130 so that the cooling device 100 can perform a cooling operation, and the inside of the reservoir is at least at least the maximum ice crystal generation temperature. It is provided with a microcomputer 144 to maintain.
  • the main controller 140 has a storage unit (not shown) for storing necessary data.
  • the main control unit 140 (in particular, the microcomputer 144) may be connected to the subcooling device 200 through the communication line DL, and through the communication line DL, the main control unit 140 is connected to the subcooling device 200.
  • Data for example, the current operating state of the subcooling device 200, etc.
  • the communication line DL may be selectively provided.
  • the microcomputer 144 controls the temperature of the storage according to the temperature setting from the input unit 120, and controls the inside of the storage so that the supercooling control, the ice control, and the freezing control of the subcooling apparatus 200 can be independently performed. Is maintained at least below the maximum ice crystal generation temperature.
  • the supercooling apparatus 200 includes an independent storage room that accommodates an object in an internal storage space and is mounted and cooled in a storage, and supplies heat to the storage space or generates heat.
  • a heat source supply unit 210 a temperature sensing unit 220 that senses a temperature of an interior of an accommodation space or an enclosure, an input unit 230 that receives a command from a user, and a state or supercooling device 200 of the storage space or an enclosure;
  • Control the display unit 240 and the heat source supply unit 210 which is a temperature control means based on the detected temperature from the temperature sensing unit 220, to at least the supercooled state and freezing of the objects in the independent storage room. It consists of a sub-control unit 280 to be stored in one of the states.
  • the supercooling device 200 is operated by receiving a power source from the main control unit 140, and the wiring for the power supply (wiring connected to the power line PL) is connected to all components requiring power, but such a technology Is merely a degree recognized by those skilled in the art to which the present invention pertains, and a description thereof is omitted.
  • the heat source supply unit 210 corresponds to a temperature control means for adjusting the temperature in the storage space to maintain a temperature corresponding to each of the supercooled state control, the ice ice control, and the freezing control.
  • the heat source supply unit 210 is a means for applying energy to the storage space.
  • the heat source supply unit 210 may generate heat energy, electric or magnetic energy, ultrasonic energy, optical energy, microwave energy, and the like and apply the energy to the storage space.
  • the heat source supply unit 210 may supply energy to thaw the enclosure when the enclosure is frozen.
  • the heat source supply unit 210 is configured of a plurality of heat source supply units, and is mounted on the upper or lower side or the side of the storage space to supply energy to the storage space.
  • the heat source supply unit 210 is an upper heat source supply unit 210a formed inside the upper side of the independent storage chamber, which is the upper side of the storage space, and a lower heat source supply unit 210b formed inside the lower side of the independent storage chamber, which is the lower side of the storage space. Is done.
  • Each of the upper heat source supply unit 210a and the lower heat source supply unit 210b may be independently controlled by the sub controller 280 or may be integrally controlled.
  • the upper heat source supply unit 210a is turned on / off by the sub heat source supply unit HON1 and the sub controller 280 on / off control so as to always supply heat or generate heat while the supercooling device performs the supercooling control. It consists of the sub heat source supply part H1 controlled off.
  • the lower heat source supply unit 210b also controls on / off by the sub-heat source supply unit Hon2 and the sub-control unit 280 that turn on or off the heat while the supercooling apparatus performs the supercooling control. It consists of the sub heat source supply part H2.
  • the sub heat source supply unit Hon1 and Ho2 are controlled to the on state by the sub control unit 280, for example, like the PWM signal, the sub heat source supply unit Hon1 and Ho2 receive the control signal in the form of a pulse and thus the on state and the off state are maintained. Alternately, it should be recognized that even in this pulse control scheme, the on state is maintained by the duty ratio. It is also possible to receive signals that are always on.
  • the heat source supply part 210 supplies a predetermined amount or more of heat or generates heat during the subcooling control.
  • the sub controller 280 may additionally supply necessary heat according to the sensed temperature from the temperature detector 220.
  • the supercooling device 200 supplies the minimum heat or generates heat by the sub heat source supply units Hon1 and Ho2, and supplies the maximum heat by the ON control of all the heat source supply units 210a and 210b. Or generate heat. That is, the supercooling device 200 supplies or generates heat of a predetermined range greater than zero.
  • the temperature sensing unit 220 detects the temperature of the storage space or the temperature of the storage, and is formed on the sidewall of the storage space to sense the temperature of the air in the storage space, adjacent to the storage or in contact with the storage, This corresponds to a sensor that can accurately sense the temperature of an object.
  • the temperature sensor 220 applies a change value of a current value, a voltage value, or a resistance value corresponding to the temperature to the sub controller 280.
  • the temperature sensor 220 may recognize that the temperature of the object or the storage space rapidly rises when the phase transition of the object is made, thereby allowing the sub controller 280 to recognize the release of the supercooled state of the object. .
  • the temperature sensing unit 220 includes an upper sensing unit 220a formed in the upper side of the independent storage room, which is the upper side of the storage space, and a lower sensing unit 220b formed in the lower side of the independent storage room, which is the lower side of the storage space. It may be made of.
  • the upper sensing unit 220a and the lower sensing unit 220b are mounted on or adjacent to a surface on which the upper heat source supply unit 210a and the lower heat source supply unit 210b are formed.
  • the sub controller 280 may control the heat source supply unit 210 according to the sensed temperature from the temperature detector 220 to selectively perform the freezing control, the ice ice control, and the supercooling control.
  • the sub controller 280 controls the upper heat source supply unit 210a according to the sensing temperature from the upper sensing unit 220a and controls the lower heat source supply unit 210b according to the sensing temperature from the lower sensing unit 220b. You can also control each.
  • the input unit 230 is a on / off switch function of the supercooling device and means for allowing a user to select a command for freezing control, ice control, and supercooling control.
  • a push button, a keyboard, a touch pad, etc. may be used. will be.
  • the display unit 240 performs a display function of the on state / off state of the supercooling device and a function of displaying the control (refrigeration control, ice control, supercooling control) that is currently performed, such as an LCD display or a led display. .
  • the sub-control unit 280 controls the heat source supply unit 210 according to the sensed temperature by the temperature sensing unit 220 to control the refrigeration control, the ice control, and the supercooling control through the main control unit 140 and the cooling device ( 100) may be performed independently.
  • a storage unit for storing an algorithm for performing such control may be provided.
  • the refrigeration control is such that the supply of heat through the heat source supply unit 210 or the generation of heat is reduced or becomes extremely small, so that the contents in the independent storage room are frozen.
  • Such control may be performed by turning off the supercooling device.
  • the temperature is maintained at about the same temperature as the cooling temperature by the cooling device 100, and therefore, the temperature is at least below the maximum ice crystal generation temperature or is, for example, -20 ° C.
  • the supercooling control is such that the temperature of the object is, for example, -3 to -4 ° C so that the object is stored in a supercooled state.
  • a control is additionally performed to sense that the temperature of the packaged material rapidly rises at, for example, -4 ° C, while the packaged material maintains the supercooled state and freezes.
  • thawing is performed through the operation of the heat source supply unit 210, and after thawing is completed, control is performed to perform cooling again.
  • the sub controller 280 supplies a predetermined range of heat greater than zero to the storage space and the accommodation, or controls the heat source supply unit 210 to generate heat.
  • the thin ice control controls the heat source supply unit 210 so that the temperature of the stored object is lower than the temperature at the time of supercooling control, but is higher than the cooling temperature by the cooling apparatus 100, and the stored object is stored in a sub-freezing state and then taken out. To make cutting for knife, etc. easy.
  • the sub controller 280 may block the supply of power applied to each element according to the on / off switch input of the subcooling device from the input unit 230 so that the operation thereof may not be performed.
  • the sub controller 280 may receive at least three or more control commands from the input unit 230 and operate accordingly.
  • the input unit 230 additionally has a function of acquiring a thawing command, and the sub-control unit 280 operates the heat source supply unit 210 in response to the thawing command from the input unit 230 so that energy can be thawed. (Especially thermal energy).
  • FIG. 9 is a layout view of a heat source supply unit of the subcooling device of FIG. 8. Unlike the heat source supply part of FIG. 5, the heat source supply part of FIG. 9 is provided with sub heat source supply parts Hon1 and Hon2 that are always on, respectively, on the upper side and the lower side of the independent cooling chamber, and store a predetermined number of rows or more. Supply heat or allow it to generate heat.
  • sub heat source supply parts Hon1 and Hon2 that are always on, respectively, on the upper side and the lower side of the independent cooling chamber, and store a predetermined number of rows or more. Supply heat or allow it to generate heat.
  • FIG. 10 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 8.
  • step S51 the cooling apparatus 100 performs cooling, and the accommodation is accommodated in the independent storage chamber of the subcooling apparatus 200, so that the storage is cooled.
  • step S53 the sub-control unit 280 of the subcooling apparatus 200 performs the sub-heat source supply units H1, Hon2 (collectively Hon) of the heat source supply unit 210 when the current control to be performed is the supercooling control. In order to continuously supply a certain amount of energy (ie heat) to the receiving space and the enclosure.
  • a certain amount of energy ie heat
  • the sub controller 280 obtains the sensing temperature from the temperature sensor 220.
  • the sub controller 280 obtains a sensing temperature corresponding to each position from the upper sensing unit 220a and the lower sensing unit 220b.
  • the sub controller 280 determines whether an additional heat source is required based on the sensing temperatures of the upper sensing unit 220a and the lower sensing unit 220b. For example, when the temperature from the upper sensing unit 220a is lower than the phase transition temperature, or when the temperature from the lower lower sensing unit 220b is lower than the preset subcooling temperature (eg, -3 ° C), the step Proceeding to S59, otherwise proceeds to step S61.
  • the preset subcooling temperature eg, -3 ° C
  • step S59 the sub controller 280 supplies the heat source by controlling the sub heat source supply parts H1 and H2 (integratedly H) to each of the states independently according to a position where the heat source is required.
  • step S61 the sub controller 280 switches the sub heat source supply units H1 and H2 to the off state or maintains the off state when the sub heat source supply unit H1 or H2 is in the off state.
  • Steps S59 and S61 proceed to step S55, where the sub-control unit 280 continuously maintains the objects in the supercooled state.
  • the subcooling method of FIG. 10 may additionally perform a process of determining whether a package is frozen, and when the package is frozen, a thawing process may be performed as described above.
  • FIG. 11 is a configuration diagram of a second embodiment of the supercooling apparatus of FIG. 7.
  • the subcooling device 200a of FIG. 11 is similar to the subcooling device 200 of FIG. 8 except for the voltage variable parts 250a and 250b, the heat source supply part 211, and the sub control part 280a. do.
  • the voltage variable parts 250a and 250b are used voltages applied to the heat source supply part 211 (collectively referred to as the upper heat source supply part 211a and the lower heat source supply part 211b) under the control of the sub controller 280a. By varying the size of, the heat actually supplied from the heat source supply unit 211 is varied. For example, the magnitude of the use voltage may be set to a magnitude between 3V and 10V.
  • the voltage variable parts 250a and 250b may be implemented with, for example, a variable resistor or a transformer.
  • the upper heat source supply part 211a and the lower heat source supply part 211b include only the sub heat source supply parts Hon1 and Hon2 to maintain the ON state at all times. It should be appreciated that the magnitudes of the voltages applied by 250a and 250b vary. That is, the heat source supply part controlled to the on / off state like the sub heat source supply parts H1 and H2 in the subcooling device of FIG. 9 is not provided in the subcooling device 200a of FIG.
  • the sub control unit 280a In performing the subcooling control, the sub control unit 280a individually controls the voltage varying units 250a and 250b according to the sensing temperature of the upper part and the sensing temperature of the lower part from the temperature sensing unit 220. A minimum voltage higher than 0 V is applied to the heat source supply unit 211, but when additional heat is required according to the current sensing temperature, the applied voltage is varied within a predetermined range.
  • FIG. 12 is a graph of voltage applied to a heat source supply unit in the subcooling apparatus of FIG. 11. As shown in FIG. 12, the voltages applied to the upper heat source supply parts 211a and 211b by the voltage varying parts 250a and 250b are 3 to 10V, and a voltage of 3V or more is always applied. In addition, a certain amount of heat is generated or supplied.
  • FIG. 13 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 11.
  • variable voltage range is composed of only two stages, the first voltage being the minimum voltage and the second voltage being the highest voltage.
  • step S71 the cooling device 100 performs cooling, and the accommodation is accommodated in the independent storage chamber of the subcooling device 200a, so that the storage is cooled.
  • the sub-control unit 280a of the subcooling apparatus 200a determines that the first voltage, which is the minimum voltage, is the heat source through the voltage varying units 250a and 250b when the current control to be performed is the subcooling control. To be applied to the supply unit 211.
  • the sub controller 280a obtains a sensing temperature from the temperature sensor 220. More specifically, the sub controller 280a obtains a sensing temperature corresponding to each position from the upper sensing unit 220a and the lower sensing unit 220b.
  • the sub controller 280a determines whether an additional heat source is needed based on the sensing temperatures of the upper sensing unit 220a and the lower sensing unit 220b. For example, when the temperature from the upper sensing unit 220a is lower than the phase transition temperature, or when the temperature from the lower lower sensing unit 220b is lower than the preset subcooling temperature (eg, -3 ° C), the step Proceeding to S59, otherwise proceeds to step S61.
  • the preset subcooling temperature eg, -3 ° C
  • step S79 the sub controller 280a independently controls the voltage variable parts 250a and 250b according to a position where the heat source is required, so that the second voltage is applied to the upper heat source supply part 211a or the lower heat source supply part ( 211b) to supply a heat source.
  • step S81 the sub controller 280a controls the voltage varying units 250a and 250b to vary the magnitude of the voltage with the first voltage or to equalize the previous first voltage with the upper heat source supply unit 211a.
  • the heat source is supplied to the lower heat source supply unit 211b.
  • Steps S79 and S81 proceed to step S75 so that the sub-control unit 280a continuously maintains the supercooled state.
  • the subcooling method of FIG. 13 may additionally perform a process of determining whether a package is frozen, and when the package is frozen, a thawing process may be performed as described above.
  • FIG. 14 is a graph of temperature change by an on / off operation of a heat source supply unit.
  • the temperature graph I at the top of FIG.
  • the temperature of the storage space (temperature sensed by the temperature sensor C1) is largely changed by the ON operation and the OFF operation of the heat source supply units H1 and H2.
  • the heat source supplying parts H1 and H2 are in an all-on state and an operation in which the heat-off state is in the all-off state is performed, the deviation of heat applied or generated in the storage space can be seen in the temperature graph I. As it becomes, it becomes large.
  • FIG. 15 is a temperature graph at the time of subcooling of an object by supplying the heat source of FIG. 14.
  • the sensing temperature graph II is the temperature sensed by the temperature sensor C2
  • the temperature graph III is the temperature of the actual enclosure, and on / off of the heat source supply parts H1 and H2. Due to the effect of the operation, there is a considerable temperature deviation.
  • the sensing temperature is slightly changed, but is changed almost similar to the previous change form.
  • the sensing temperature is sensed to be smaller than the enclosure temperature.
  • the temperature of the package may be frozen without rising to the phase transition temperature.
  • FIG. 16 is a derivative graph of the sensing temperature of FIG. 15.
  • Curve A is the distribution of the first derivative of the sensing temperature
  • curve B is the distribution of the second derivative of the sensing temperature. Since curves (A) and (B) have almost similar variations, a considerable portion overlaps.
  • curves A and B change to smaller peak values compared to previous peak values, but such changes are included within the previous peak-peak values. Therefore, it is difficult for the subcooling device to determine whether the peak value at the subcooling release point Tsc is due to the change in the peak value due to the subcooling release.
  • FIG. 17 is a graph of temperature change by the supercooling method of FIGS. 8 and 11.
  • the heat source supply parts 210a, 210b, 211a, and 211b By the heat source supply parts 210a, 210b, 211a, and 211b, the minimum amount of heat Q1 is applied to or generated in the storage space and the enclosure, and the maximum amount of heat Qall is applied to or generated in the storage space and the enclosure. Since the change in the amount of heat is small, the temperature graph I sensed by the upper sensing unit 220a has a smaller change.
  • FIG. 18 is a temperature graph at the time of releasing the supercooling of a package by the heat source supply of FIG.
  • the deviation is also small in the sensing temperature graph II detected by the lower sensing unit 220b, and the temperature graph III of the stored object also has a temperature corresponding substantially to the sensing temperature graph II.
  • the sensing temperature of the lower sensing unit 220b has a form in which the deviation is relatively small.
  • curve A is the distribution of the first derivative of the sensing temperature
  • curve B is the distribution of the second derivative of the sensing temperature. Since curves (A) and (B) have almost the same form of change, a considerable portion overlaps.
  • the subcooling apparatus can accurately determine that the subcooling of the object is released when the derivative value at which the peak value at the subcooling release time point Tsc is outside the differential determination values (+ D, -D) for subcooling release is calculated. do.

Abstract

The present invention relates to a supercooling apparatus which can reduce a deviation of energy applied to a stored object. The supercooling apparatus includes a storage room provided in a storing unit where the cooling is performed and having a storing space therein to store or receive an object, a heat source supply unit installed in the storage room and supplying heat to the storing space or generating heat in the storing space; a temperature sensing unit sensing the temperature of the storing space or the stored object, and a control unit operating the heat source supply unit based on the temperature sensed by the temperature sensing unit to enable an upper portion of the storing space to have a temperature higher than a temperature of the maximum ice crystal formation zone, such that the storing space or the stored object is maintained in a supercooled state at a temperature below the maximum ice crystal formation zone, the control unit supplying or generating heat over a given magnitude during the supercooled-state control.

Description

과냉각 장치Supercooling system
본 발명은 과냉각 장치에 관한 것으로서, 특히 냉각 중인 수납물에 인가되는 에너지의 편차가 적어지도록 하는 과냉각 장치에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a subcooling apparatus, and more particularly, to a subcooling apparatus in which a variation in energy applied to an object under cooling is reduced.
과냉각이란, 용융체 또는 고체가 평형상태에서의 상전이 온도 이하까지 냉각되어도 변화를 일으키지 않는 현상을 의미한다. 물질에는 각각 그때의 온도에 따른 안정상태가 있어서, 온도를 서서히 변화시켜 가면 이에 따라 그 물질의 구성원자가 각 온도에서 안정상태를 유지하면서 온도의 변화를 따라갈 수가 있다. 그러나 온도가 갑자기 변하면 구성원자가 각 온도에 따른 안정상태로 변화할 만한 여유가 없기 때문에, 출발점 온도에서의 안정상태를 그대로 지니거나, 또는 일부분이 종점 온도에서의 상태로 변화하다가 마는 현상이 일어난다. Subcooling means a phenomenon that no change occurs even when the melt or solid is cooled to below the phase transition temperature at equilibrium. Each substance has a stable state corresponding to the temperature at that time, so that the temperature can be gradually changed so that members of the substance can keep up with the temperature change while maintaining the stable state at each temperature. However, if the temperature suddenly changes, the member cannot afford to change to the stable state according to each temperature, so that the state remains stable at the starting point temperature, or a portion thereof changes to the state at the end point temperature.
예를 들어, 물을 서서히 냉각하면, 0℃ 이하의 온도가 되어도 일시적으로 응고하지 않는다. 그러나, 물체가 과냉각상태로 되면 일종의 준안정 상태가 되어, 사소한 자극에 의해서도 그 불안정한 평형상태가 깨져서 보다 안정된 상태로 옮아가기 쉽다. 즉, 과냉각된 액체에 그 물질의 작은 조각을 투입하거나, 액체를 갑자기 흔들면 즉시 응고하기 시작하여 액체의 온도가 응고점까지 올라가고, 그 온도에서 안정된 평형상태를 유지하게 된다.  For example, if water is gradually cooled, it will not temporarily solidify even if it reaches a temperature of 0 ° C or lower. However, when the object is in the supercooled state, it becomes a kind of metastable state, and the unstable equilibrium state is broken even by a slight stimulus, and it is easy to move to a more stable state. That is, when a small piece of material is added to the supercooled liquid or the liquid is suddenly shaken, the liquid starts to solidify immediately and the temperature of the liquid rises to the freezing point, thereby maintaining a stable equilibrium at that temperature.
종래에 정전장 분위기를 냉장고 내에 만들고, 이 냉장고 내에서 육류, 어류의 해동을 마이너스 온도에서 하는 것이 행해지고 있다. 또, 육류, 어류에 더하여 과일류의 선도를 유지하는 것이 행해지고 있다. BACKGROUND ART Conventionally, an electrostatic field atmosphere is created in a refrigerator, and thawing of meat and fish in the refrigerator is performed at a negative temperature. In addition to meat and fish, freshness of fruits is maintained.
이러한 기술은 과냉각(supercooling) 현상을 이용한 것으로, 이 과냉각 현상은 용융체 또는 고체가 평형상태에서의 상전이 온도 이하까지 냉각되어도 변화를 일으키지 않는 현상을 지칭한다.  This technique uses a supercooling phenomenon, which refers to a phenomenon in which the melt or solid does not change even when the melt or solid is cooled to below the phase transition temperature at equilibrium.
이러한 기술로서는, 국내공개특허공보 특2000-0011081호인 정전장 처리 방법, 정전장 처리장치 및 이들에 사용되는 전극이 있다.  Such a technique includes the electrostatic field treatment method, the electrostatic field treatment apparatus, and electrodes used in them, which are disclosed in Korean Laid-Open Patent Publication No. 2000-0011081.
도 1은 종래 기술에 의한 해동 및 선도유지장치의 실시의 형태를 나타낸 도면으로서, 보냉고(1)는 단열재(2), 외벽(5)에 의해 구성되고, 고내 온도조절기구(도시하지 않음)가 설치되어 있다. 고내에 설치된 금속선반(7)은 2단 구조이고, 각 단에 야채류, 육류, 어개류의 해동 또는 선도 유지 및 숙성 대상물이 탑재된다. 금속선반(7)은 절연체(9)에 의해 고의 바닥면으로부터 절연되어 있다. 그리고, 고전압 발생장치(3)는 직류 및 교류전압을 0∼5000V까지 발생시킬 수 있어, 단열재(2)의 내측은 염화 비닐 등의 절연판(2a)으로 피복되어 있다. 상기 고전압 발생장치(3)의 전압을 출력하는 고압 케이블(4)은 외벽(5), 단열재(2)를 관통하여 금속선반(7)에 접속되어 있다.  1 is a view showing an embodiment of a thawing and freshness holding device according to the prior art, wherein the cold storage 1 is constituted by a heat insulator 2 and an outer wall 5, and the internal temperature control mechanism (not shown). Is installed. The metal shelf 7 installed in the interior of the storehouse has a two-stage structure, and on each stage, objects for thawing or freshness maintenance and ripening of vegetables, meat and fish are mounted. The metal shelf 7 is insulated from the bottom of the furnace by the insulator 9. The high voltage generator 3 can generate direct current and alternating voltage up to 0 to 5000 V, and the inside of the heat insulating material 2 is covered with an insulating plate 2a such as vinyl chloride. The high voltage cable 4 for outputting the voltage of the high voltage generator 3 is connected to the metal shelf 7 through the outer wall 5 and the heat insulator 2.
보냉고(1)의 앞면에 설치된 도어(6)를 열면, 도시하지 않은 안전스위치(13)(도 2 참조)가 오프되어, 고전압 발생장치(3)의 출력이 차단되도록 되어 있다. When the door 6 provided on the front side of the cold storage 1 is opened, the safety switch 13 (refer FIG. 2) which is not shown in figure is turned off, and the output of the high voltage generator 3 is interrupted | blocked.
도 2는 고전압 발생장치(3)의 회로 구성을 나타낸 회로도이다. 전압조정트랜스(15)의 1차측에는 AC 100V가 공급된다. 부호 (11)은 전원램프, 부호 (19)는 작동상태를 나타낸 램프이다. 전술한 도어(6)가 닫혀 있고 안전스위치(13)가 온상태에서는 릴레이(14)가 작동하고 있으며, 이 상태가 릴레이동작램프(12)에 의해 표시되고 있다, 릴레이의 동작에 의해 릴레이 접점(14a,14b,14c)이 닫히고, AC 100V 전원이 전압조정트랜스(15)의 1차측에 인가된다. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3. AC 100V is supplied to the primary side of the voltage regulating transformer 15. Reference numeral 11 denotes a power supply lamp, and reference numeral 19 denotes a lamp indicating an operating state. The relay 14 operates when the above-mentioned door 6 is closed and the safety switch 13 is turned on. This state is indicated by the relay operation lamp 12. The relay contact ( 14a, 14b, and 14c are closed, and an AC 100V power source is applied to the primary side of the voltage regulating transformer 15.
인가전압은 전압조정트랜스(15)의 2차측의 조정노브(15a)에 의해 조정되고, 조정된 전압치는 전압계에 표시된다. 조정노브(15a)는 전압조정트랜스(15)의 2차측 승압트랜스(17)의 1차측에 접속되고, 이 승압트랜스(17)에서는, 예를 들면 1 : 50의 비율로 승압되어, 예를 들면 60V의 전압이 가해지면 3000V로 승압된다. The applied voltage is adjusted by the adjusting knob 15a on the secondary side of the voltage adjusting transformer 15, and the adjusted voltage value is displayed on the voltmeter. The adjusting knob 15a is connected to the primary side of the secondary boosting transformer 17 of the voltage adjusting transformer 15. In this boosting transformer 17, the boosting voltage is boosted at a ratio of 1:50, for example. When a voltage of 60V is applied, it is stepped up to 3000V.
승압트랜스(17)의 2차측 출력의 일단(O1)은 고압 케이블(4)을 통해 보냉고로부터 절연되어 있는 금속선반(7)에 접속되고, 출력의 타단(O2)는 어스된다. 또, 외벽(5)은 어스되므로, 보냉고(1)의 사용자가 보냉고의 외벽에 접촉해도 감전되는 것이 아니다. 또, 금속선반(7)은 도 1에서는 고내에서 노출되어 있으면,금속선반(7)은 고내에서 절연상태로 유지될 필요가 있으므로, 고내 벽으로부터 이간시킬 필요가 있다(공기가 절연작용을 함). 또, 금속선반(7)으로부터 대상물(8)이 돌출하여 고내 벽에 접하면 전류가 고벽을 통해 그라운드로 흐르므로, 상기 절연판(2a)을 내벽에 붙이면 인가되는 전압의 드롭이 방지된다. 그리고, 상기 금속선반(7)을 고내에서 노출시키지 않고 염화 비닐재 등으로 피복해도 고내 전체가 전장 분위기로 된다. One end O 1 of the secondary output of the boosting transformer 17 is connected to the metal shelf 7 insulated from the cold storage via the high voltage cable 4, and the other end O 2 of the output is earthed. Moreover, since the outer wall 5 is earthed, even if the user of the cold storage 1 contacts the outer wall of the cold storage, electric shock will not occur. In addition, if the metal shelf 7 is exposed in the furnace in FIG. 1, since the metal shelf 7 needs to be kept insulated in the furnace, it is necessary to separate it from the walls of the furnace (air acts as an insulation). . In addition, when the object 8 protrudes from the metal shelf 7 and contacts the inner wall, current flows to the ground through the high wall. Therefore, when the insulating plate 2a is attached to the inner wall, the drop of applied voltage is prevented. And even if the said metal shelf 7 is coat | covered with vinyl chloride material etc. without exposing in the inside, the whole inside of an interior becomes an electric field atmosphere.
이러한 종래 기술의 경우, 냉각 수납되는 수납물에 전기장 또는 자기장을 인가하여, 수납물이 과냉각 상태에 진입하도록 하기 때문에, 수납물의 과냉각 상태에서의 보관을 위해, 전기장 또는 자기장을 생성하기 위한 복잡한 장치가 구비되어야 하며, 이러한 전기장 또는 자기장의 생성을 위한 높은 전력소비가 요구된다. In the prior art, since an electric field or a magnetic field is applied to an object to be cooled and stored so that the object enters a supercooled state, a complicated device for generating an electric field or a magnetic field for storage in the supercooled state of the object is provided. High power consumption is required for the generation of such electric or magnetic fields.
또한, 이러한, 전기장 또는 자기장을 생성하는 장치는 고전력으로 인하여, 전기장 또는 자기장의 생성시, 차단시에 사용자의 안전을 위한 장치(예를 들면, 전기장 또는 자기장 차폐구조, 차단 장치 등)가 추가적으로 구비되어야 한다. In addition, such a device for generating an electric field or a magnetic field is additionally provided with a device (for example, an electric field or magnetic field shielding structure, a blocking device, etc.) for the safety of the user when the electric field or the magnetic field is generated, when the electric field or magnetic field is generated due to the high power. Should be.
또한, 이러한 전기장 또는 자기장을 생성하는 장치로 인하여, 인가되는 에너지가 장치의 온/오프에 따라 공급되는 에너지의 편차가 상당히 큰 문제점이 있다. In addition, due to the device generating such an electric or magnetic field, there is a problem in that the applied energy is significantly different in the energy supplied according to the on / off of the device.
본 발명은 수납물의 과냉각 상태에서, 빙결핵의 생성을 보다 신뢰성 높게 방지하는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a supercooling apparatus and method for more reliably preventing the formation of freezing tuberculosis in a supercooled state of an article.
또한, 본 발명은 빙결핵의 생성 방지와, 수납물의 과냉각 온도의 조절이 용이하도록 하는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a supercooling apparatus and a method for preventing the formation of ice tuberculosis and for easily adjusting the supercooling temperature of an article.
또한, 본 발명은 냉각만이 이루어지는 공간 내에서도, 전원의 공급만으로 수납물을 과냉각 상태로 유지할 수 있는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a supercooling apparatus and a method capable of maintaining an object in a supercooled state only by supplying power, even in a space where only cooling is performed.
또한, 본 발명은 과냉각 상태로 유지되는 수납물의 온도 편차가 감소되도록 하여, 보다 안정적인 과냉각 상태의 유지가 가능하도록 하는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a subcooling apparatus and method for allowing a temperature deviation of an article maintained in a subcooled state to be reduced, thereby enabling a more stable subcooled state to be maintained.
또한, 본 발명은 수납물의 과냉각 상태를 보다 정확하고 신속하게 판단할 수 있는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a supercooling apparatus and method that can more accurately and quickly determine the supercooled state of an article.
또한, 본 발명은 냉각 중인 수납물의 온도를 제어함에 있어서, 편차가 현저하게 감소된 에너지 공급을 통하여 과냉각 상태를 유지 및 제어하는 과냉각 장치 및 방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a supercooling apparatus and method for maintaining and controlling a supercooled state through an energy supply in which a deviation is significantly reduced in controlling the temperature of a package under cooling.
본 발명인 과냉각 장치는 냉각이 이루어지는 저장고 내에 설치되어, 수납물을 수납할 수 있는 수납공간이 구비된 보관실과, 보관실에 설치되어 수납공간에 열을 공급하거나 열이 발생되도록 하는 열원 공급부와, 수납공간 또는 수납물의 온도를 감지하는 온도 감지부와, 온도 감지부에 의해 감지된 온도를 기준으로 하여, 열원 공급부를 동작시켜, 수납공간의 상부를 최대빙결정생성대 온도보다 높은 온도가 되게 하여, 수납공간 또는 수납물이 최대빙결정생성온도 이하에서 과냉각 상태로 유지되도록 하되, 과냉각 상태의 제어 수행 중에, 일정 크기 이상의 열을 공급하거나 열이 발생되도록 하는 제어부를 구비한다. The supercooling apparatus of the present invention is provided in a storage compartment in which the cooling is performed, a storage compartment having a storage space for accommodating objects, a heat source supply unit installed in the storage chamber to supply heat or generate heat to the storage space, and a storage space. Alternatively, the temperature sensor for sensing the temperature of the object and the heat source supply unit are operated on the basis of the temperature detected by the temperature sensor, so that the upper portion of the storage space is at a temperature higher than the maximum ice crystal generation temperature. The control unit is configured to maintain a space or an enclosure in a subcooled state below a maximum ice crystal generation temperature, and to supply heat of a predetermined size or generate heat during the control of the subcooled state.
또한, 제어부는 수납공간의 상부 온도를 상전이 온도 이상으로 유지시키는 것이 바람직하다. In addition, the control unit preferably maintains the upper temperature of the storage space above the phase transition temperature.
또한, 제어부는 수납공간의 하부 온도 또는 수납물의 온도를 기설정된 과냉각 온도로 유지하여, 수납물이 과냉각 상태로 보관되도록 하는 것이 바람직하다. The controller may maintain the lower temperature of the storage space or the temperature of the storage object at a predetermined subcooling temperature, so that the storage material is stored in the supercooling state.
또한, 제어부는 열원 공급부가 일정 크기 범위의 열을 공급하거나 열이 발생되도록 하는 것이 바람직하다. In addition, the control unit is a heat source supply unit preferably supplies heat or generate heat of a predetermined size range.
또한, 열원 공급부는 수납공간의 적어도 2개 이상의 면에 각각 독립적으로 형성된 제1 및 제2 열원공급부인 것이 바람직하다. In addition, the heat source supply unit is preferably a first and second heat source supply unit formed independently on at least two or more surfaces of the storage space.
또한, 제1 또는 제2 열원 공급부는 적어도 2개 이상의 서브 열원 공급부로 이루어지며, 적어도 하나의 서브 열원 공급부는 과냉각 상태의 제어 수행 중에 온 상태이고, 다른 하나의 서브 열원 공급부는 온 상태와 오프 상태를 교번하여 수행하는 것이 바람직하다. In addition, the first or second heat source supply unit is composed of at least two or more sub heat source supply units, at least one sub heat source supply unit is in an on state while performing control of a supercooled state, and the other sub heat source supply unit is in an on state and an off state. It is preferable to perform alternately.
또한, 제1 또는 제2 열원 공급부는 0V보다 높은 전압 가변 영역에 포함되는 전압을 인가받아 온 상태를 유지하여, 수납물의 과냉각 상태를 유지시키는 것이 바람직하다. In addition, it is preferable that the first or second heat source supply unit maintains an on-cooled state of the object by applying the voltage included in the voltage variable region higher than 0V to maintain the on state.
또한, 온도 감지부는 열원 공급부가 형성된 면에 또는 면에 인접하여 장착된 적어도 하나 이상의 온도 센서를 포함하는 것이 바람직하다. In addition, the temperature sensing unit preferably includes at least one or more temperature sensors mounted on or adjacent the side on which the heat source supply is formed.
또한, 제어부는 열원 공급부를 제어하되, 동일한 면에 형성된 온도 센서 또는 인접하여 장착된 온도 센서의 온도를 기준으로 하여 독립적으로 제어하는 것이 바람직하다. In addition, the control unit controls the heat source supply unit, it is preferable to independently control on the basis of the temperature of the temperature sensor formed on the same surface or the adjacent temperature sensor.
또한, 제어부는 온도 감지부로부터의 감지 온도의 변화에 따라 수납물의 과냉각 상태가 해제되었는지를 판단하는 것이 바람직하다.In addition, the controller may determine whether the supercooling state of the object is released according to the change of the sensed temperature from the temperature sensor.
또한, 본 발명인 과냉각 방법은 냉각이 이루어지는 저장고 내에 설치되어, 수납물을 수납할 수 있는 수납공간이 구비된 보관실을 구비하는 냉각 장치에서의 과냉각 방법에 있어서, 과냉각 방법은: 수납물 또는 보관실을 최대빙결정생성대 온도 또는 최대빙결정생성대 온도보다 낮게 냉각하는 단계와; 수납공간에 열을 공급하거나 열이 발생되도록 하는 열원 공급 단계를 포함하며, 수납공간 또는 수납물의 온도를 감지하는 단계를 수행하고, 감지된 온도를 기준으로 하여, 냉각 단계 또는 열원 공급 단계 중의 적어도 하나 이상을 제어하여, 수납공간의 상부를 최대빙결정생성대 온도보다 높은 온도가 되게 하여, 수납공간 또는 수납물이 최대빙결정생성온도 이하에서 과냉각 상태로 유지하는 과냉각 상태의 제어를 수행한다. In addition, the subcooling method of the present invention is a subcooling method in a cooling apparatus provided in a storage compartment in which a cooling is performed, and having a storage compartment provided with a storage space for storing an article. Cooling below the ice crystal formation temperature or the maximum ice crystal production temperature; And a heat source supply step of supplying heat to the storage space or generating heat, and performing a step of sensing a temperature of the storage space or the storage object, and based on the sensed temperature, at least one of a cooling step and a heat source supplying step. By controlling the above, the upper part of the storage space is brought to a temperature higher than the maximum ice crystal generation zone temperature, and the control of the supercooling state in which the storage space or the object is kept in the supercooled state below the maximum ice crystal generation temperature is performed.
본 발명은 수납물의 과냉각 상태에서, 빙결핵의 생성을 보다 신뢰성 높게 방지하여, 수납물의 과냉각 상태를 장기간으로, 안정적으로 유지할 수 있는 효과가 있다.The present invention has the effect of preventing the formation of freezing tuberculosis more reliably in the supercooled state of the package, and maintaining the supercooled state of the package for a long time and stably.
또한, 본 발명은 빙결핵의 생성 방지와, 수납물의 과냉각 온도의 조절이 용이하도록 하여, 수납물이 원하는 상태로 보관 유지되도록 하는 효과가 있다.In addition, the present invention has the effect of preventing the formation of freezing tuberculosis and easy control of the supercooling temperature of the object, so that the object is kept in a desired state.
또한, 본 발명은 냉각만이 이루어지는 공간 내에서도, 전원의 공급만으로 수납물을 과냉각 상태로 유지하여, 단순한 구조와, 독립적인 제어가 가능하도록 하는 효과가 있다.In addition, the present invention has the effect of keeping the objects in the supercooled state only by supplying power, even in a space where only cooling is performed, so that a simple structure and independent control are possible.
또한, 본 발명은 과냉각 상태로 유지되는 수납물의 온도 편차가 감소되도록 하여, 보다 안정적인 과냉각 상태의 유지가 가능하도록 하는 효과가 있다.In addition, the present invention is to reduce the temperature deviation of the object to be kept in the supercooled state, there is an effect that it is possible to maintain a more stable supercooled state.
또한, 본 발명은 수납물의 과냉각 상태를 보다 정확하고 신속하게 판단할 수 있도록 하여, 수납물의 품질 등을 안정적으로 유지하는 효과가 있다. In addition, the present invention enables to more accurately and quickly determine the supercooled state of the object, there is an effect of maintaining the quality of the object stably.
또한, 본 발명은 냉각 중인 수납물의 온도를 제어함에 있어서, 편차가 현저하게 감소된 에너지 공급을 통하여 과냉각 상태를 유지 및 제어하여, 보다 안정적인 수납물 상태의 유지가 가능하다.In addition, in the present invention, in controlling the temperature of the object under cooling, the supercooled state is maintained and controlled through energy supply with a markedly reduced deviation, so that a more stable state of the object can be maintained.
도 1은 종래 기술에 의한 해동 및 선도유지장치의 실시의 형태를 나타낸 도면이다. BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows embodiment of the thawing and freshness holding | maintenance apparatus by a prior art.
도 2는 고전압 발생장치(3)의 회로 구성을 나타낸 회로도이다. 2 is a circuit diagram showing the circuit configuration of the high voltage generator 3.
도 3은 냉각 중인 액체에 빙결핵이 생성되는 과정을 나타내는 도면이다. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled.
도 4는 본 발명에 따른 과냉각 장치에 적용되는 빙결핵 생성을 방지하는 과정을 나타내는 도면이다. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
도 5는 본 발명에 따른 과냉각 장치의 개략 구성도이다.5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
도 6은 도 5의 과냉각 장치에 따른 물의 과냉각 상태 그래프이다. FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5.
도 7은 본 발명에 따른 과냉각 장치가 적용된 과냉각 시스템의 구성도이다. 7 is a block diagram of a subcooling system to which a subcooling device according to the present invention is applied.
도 8은 도 7의 과냉각 장치의 제1실시예의 구성도이다. 8 is a configuration diagram of a first embodiment of the subcooling apparatus of FIG. 7.
도 9는 도 8의 과냉각 장치의 열원 공급부 배치도이다.FIG. 9 is a layout view of a heat source supply unit of the subcooling device of FIG. 8.
도 10은 도 8의 과냉각 장치에 의한 과냉각 방법의 순서도이다. FIG. 10 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 8.
도 11은 도 7의 과냉각 장치의 제2실시예의 구성도이다. 11 is a configuration diagram of a second embodiment of the supercooling apparatus of FIG. 7.
도 12는 도 11의 과냉각 장치에서 열원 공급부로 인가하는 전압의 그래프이다. FIG. 12 is a graph of voltage applied to a heat source supply unit in the subcooling apparatus of FIG. 11.
도 13은 도 11의 과냉각 장치에 의한 과냉각 방법의 순서도이다. FIG. 13 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 11.
도 14는 열원 공급부의 온/오프 동작에 의한 온도 변화 그래프이다. 14 is a graph of temperature change by an on / off operation of a heat source supply unit.
도 15는 도 14의 열원 공급에 의한 수납물의 과냉각 해제 시의 온도 그래프이다. FIG. 15 is a temperature graph at the time of subcooling of an object by supplying the heat source of FIG. 14.
도 16은 도 15의 감지 온도의 미분값 그래프이다.FIG. 16 is a derivative graph of the sensing temperature of FIG. 15.
도 17은 도 8 및 도 11에 의한 과냉각 방법에 의한 온도 변화 그래프이다. 17 is a graph of temperature change by the supercooling method of FIGS. 8 and 11.
도 18은 도 17의 열원 공급에 의한 수납물의 과냉각 해제 시의 온도 그래프이다.FIG. 18 is a temperature graph at the time of releasing the supercooling of a package by the heat source supply of FIG.
도 19는 도 18의 감지 온도의 미분값 그래프이다. 19 is a derivative graph of the sensing temperature of FIG. 18.
이하에서, 본 발명은 바람직한 실시예들과, 도면을 통하여 설명된다. In the following, the invention is described with reference to preferred embodiments and drawings.
도 3은 냉각 중인 액체에 빙결핵이 생성되는 과정을 나타내는 도면이다. 도 3에 도시된 바와 같이, 냉각 공간이 형성된 저장고(S) 내에 액체(L)(또는 수납물)를 수용하는 용기(C)가 냉각된다. 3 is a view showing a process in which ice tuberculosis is generated in the liquid being cooled. As shown in FIG. 3, the container C which accommodates the liquid L (or the thing) is cooled in the storage S in which the cooling space was formed.
냉각 공간의 냉각 온도가 예를 들면, 상온에서부터 0도(물의 상전이 온도) 또는 액체(L)의 상전이 온도 이하로 냉각된다고 가정한다. 이러한 냉각이 진행될 때, 예를 들면, 물의 경우 -1 ~ -7℃ 정도에서 얼음 결정이 최대로 생성되는 물의 최대 빙결정 생성대의 온도(-1 ~ -7℃) 이하에서 또는 액체(L)의 최대 빙결정 생성대 이하에서의 냉각 온도에서도 물 또는 액체(L)(또는 수납물)의 과냉각 상태를 유지시키려 한다. It is assumed that the cooling temperature of the cooling space is, for example, cooled from room temperature to 0 degrees (phase transition temperature of water) or below the phase transition temperature of the liquid L. When such cooling proceeds, for example, in the case of water, the temperature of the maximum ice crystal formation zone (-1 to -7 ° C) or less of the liquid (L) of water at which the maximum ice crystals are produced at about -1 to -7 ° C It is intended to maintain the supercooled state of water or liquid L (or containment) even at cooling temperatures below the maximum ice crystal generation zone.
이러한 냉각 중에 액체(L)로부터 증발이 이루어져서, 수증기(W1)가 용기(C) 내의 기체(또는 공간)(Lg) 내로 유입된다. 용기(C)가 폐쇄된 경우, 증발된 수증기(W1)로 인하여, 기체(Cg)는 과포화 상태가 될 수 있다. Evaporation takes place from the liquid L during this cooling, so that the water vapor W1 flows into the gas (or space) Lg in the vessel C. When the vessel C is closed, due to the vaporized water vapor W1, the gas Cg may be in a supersaturated state.
냉각 온도가 액체(L)의 최대 빙결정 생성대의 온도에 도달하거나 통과하면서 기체(Lg) 내의 빙결핵(F1) 또는 용기의 내측벽에 빙결핵(F2)으로 형성된다. 또는, 액체(L)의 표면(Ls)과, 용기(C)의 내측벽(냉각 공간의 냉각 온도에 거의 일치함)이 접하는 부분에서 응축이 일어나고 이러한 응축된 액체(L)가 얼음 결정인 빙결핵(F3)으로 형성될 수 있다. As the cooling temperature reaches or passes the temperature of the maximum ice crystal generation zone of the liquid L, it is formed as freeze tuberculosis F2 on the inner wall of the container or freeze tuberculosis F1 in the gas Lg. Alternatively, condensation takes place at a portion where the surface Ls of the liquid L and the inner wall of the container C (which is substantially coincident with the cooling temperature of the cooling space) and such condensed liquid L are ice crystals. Tuberculosis (F3) may be formed.
예를 들면, 기체(Lg) 내의 빙결핵(F1)이 하강하여 액체(L)의 표면(Ls)을 통하여 액체(L)에 침투하게 되면, 액체(L)의 과냉각 상태가 해제되어, 액체(L)에 결빙 현상이 야기되어, 액체(L)의 과냉각이 해제된다. For example, when the frozen tuberculosis F1 in the gas Lg descends and penetrates into the liquid L through the surface Ls of the liquid L, the supercooled state of the liquid L is released and the liquid ( A freezing phenomenon is caused in L), and the supercooling of the liquid L is released.
또는, 빙결핵(F3)이 액체(L)의 표면(Ls)과 접하게 됨으로써, 액체(L)의 과냉각 상태가 해제되어, 액체(L)에 결빙 현상이 야기된다. Alternatively, when the frozen tuberculosis F3 comes into contact with the surface Ls of the liquid L, the supercooled state of the liquid L is released, thereby causing a freezing phenomenon in the liquid L. FIG.
상술된 바와 같이, 빙결핵(F1 내지 F3)이 생성되는 과정을 살펴보면, 액체(L)가 액체(L)의 최대 빙결정 생성대의 온도 이하에서 보관될 때, 액체(L)로부터 증발되어, 액체(L)의 표면(Ls) 상에 있는 수증기의 결빙과, 액체(L)의 표면(Ls) 부근의 용기(C)의 내측벽에서의 결빙으로 인하여, 액체(L)의 과냉각 상태의 해제가 야기된다. As described above, looking at the process of formation of freezing tubers F1 to F3, when the liquid L is stored below the temperature of the maximum ice crystal generation zone of the liquid L, it is evaporated from the liquid L, and the liquid Due to freezing of water vapor on the surface Ls of (L) and freezing at the inner wall of the container C near the surface Ls of the liquid L, the release of the supercooled state of the liquid L is prevented. Is caused.
도 4는 본 발명에 따른 과냉각 장치에 적용되는 빙결핵 생성을 방지하는 과정을 나타내는 도면이다. 4 is a view showing a process for preventing the formation of ice tuberculosis applied to the supercooling apparatus according to the present invention.
도 4는 기체(Lg) 내의 수증기(W1)의 결빙을 방지하여, 즉, 지속적으로 수증기(W1) 상태가 유지되도록, 적어도 기체(Lg) 또는 액체(L)의 표면(Ls) 상에 에너지를 인가하여, 기체(Lg) 또는 액체(L)의 표면(Ls)상의 온도를 액체(L)의 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 액체(L)의 상전이 온도 이상으로 한다. 또한, 액체(L)의 표면(Ls)이 용기(C)의 내측벽에 접촉하더라도 결빙이 되지 않도록, 액체(L)의 표면(Ls)의 온도를 액체(L)의 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 액체(L)의 상전이 온도 이상으로 한다. 4 shows energy at least on the surface Ls of the gas Lg or the liquid L so as to prevent the freezing of the water vapor W1 in the gas Lg, ie to maintain the water vapor W1 state continuously. The temperature of the gas Lg or the surface Ls of the liquid L is applied to be higher than the temperature of the maximum ice crystal generation zone of the liquid L. More preferably, the phase transition temperature of the liquid L is equal to or higher than that of the liquid L. . In addition, the temperature of the surface Ls of the liquid L is set to the temperature of the maximum ice crystal generation zone of the liquid L so that the surface Ls of the liquid L does not freeze even if it contacts the inner wall of the container C. More preferably, the phase transition temperature of the liquid L is equal to or higher than that.
이에 따라, 용기(C) 내의 액체(L)가 상전이 온도 이하에서, 또는 액체(L)의 최대 빙결정 생성대 온도 이하에서도 과냉각 상태를 유지하게 된다. As a result, the liquid L in the container C is maintained in the supercooled state at or below the phase transition temperature or below the maximum ice crystal generation temperature of the liquid L.
또한, 저장고(S) 내의 냉각 온도가 예를 들면, -20℃와 같이, 상당히 저온일 경우, 용기(C)의 상부에만 에너지를 인가하는 것만으로는, 수납물인 액체(L)가 과냉각 상태를 유지할 수 없을 수도 있기에, 용기(C)의 하부에도 어느 정도의 에너지를 공급할 필요가 있다. 용기(C)의 상부에 인가되는 에너지가 용기(C)의 하부에 인가되는 에너지에 비하여 상대적으로 크게 하여, 용기(C)의 상부 온도를 상전이 온도 또는 최대빙결정 생성대의 온도보다 높게 유지할 수 있다. 또한, 이러한 용기(C)의 하부에 인가되는 에너지와, 용기(C)의 상부에 인가되는 에너지에 의해 액체(L)의 과냉각 상태에서의 온도를 조절할 수 있게 된다. In addition, when the cooling temperature in the storage S is very low, for example, -20 ° C, the liquid L, which is an object, may be subjected to a supercooling state simply by applying energy only to the upper portion of the container C. Since it may not be able to hold | maintain, it is necessary to supply some energy also to the lower part of the container C. The energy applied to the upper portion of the vessel C is relatively larger than the energy applied to the lower portion of the vessel C, so that the upper temperature of the vessel C can be maintained higher than the phase transition temperature or the temperature of the maximum ice crystal generation zone. . In addition, it is possible to control the temperature in the supercooled state of the liquid (L) by the energy applied to the lower portion of the container (C) and the energy applied to the upper portion of the container (C).
상술된 도 3 및 4의 경우, 액체(L)의 경우를 예시적으로 설명하였으나, 액체를 포함하는 수납물의 경우에도 수납물 내의 액체를 지속적으로 과냉각시킴으로써 수납물의 신선한 장기 보관이 가능하게 되므로, 위의 과정을 적용하여 수납물이 상전이 온도 이하에서 과냉각 상태로 유지될 수 있다. 여기에서의 수납물은 액체 뿐만 아니라, 육류, 야채, 과일, 기타 식품 등을 포함할 수 있다. 3 and 4 described above, the case of the liquid (L) has been exemplarily described, but even in the case of the case containing the liquid, the fresh long-term storage of the object is possible by continuously supercooling the liquid in the object, By applying the process of the enclosure may be maintained in the supercooled state below the phase transition temperature. Receptacles herein can include meat, vegetables, fruits, other foods, and the like, as well as liquids.
또한, 본 발명에 적용되는 에너지는 열 에너지, 전기 또는 자기 에너지, 초음파 에너지, 광 에너지 등의 적용될 수 있다. In addition, the energy applied to the present invention may be applied to thermal energy, electric or magnetic energy, ultrasonic energy, light energy and the like.
도 5는 본 발명에 따른 과냉각 장치의 개략 구성도이다.5 is a schematic configuration diagram of a supercooling apparatus according to the present invention.
도 5의 과냉각 장치는 냉각이 이루어지는 저장고(S) 내에 장착되며, 내부에 수납 공간을 지닌 케이스(Sr)와, 케이스(Sr)의 상면 내측에 장착되어 열을 발생하는 발열 코일(H1)과, 수납 공간의 상부의 온도를 감지하는 온도센서(C1)과, 케이스(Sr)의 하면 내측에 장착되어 열을 발생하는 발열 코일(H2)과, 수납 공간의 하부 또는 수납물(P)의 온도를 감지하는 온도센서(C2)를 구비한다. The supercooling apparatus of FIG. 5 is mounted in a storage S in which cooling is performed, a case Sr having a storage space therein, a heating coil H1 mounted inside an upper surface of the case Sr, and generating heat; The temperature sensor C1 for sensing the temperature of the upper portion of the storage space, the heating coil H2 mounted inside the lower surface of the case Sr to generate heat, and the temperature of the lower portion or the storage object P of the storage space. It is provided with a temperature sensor (C2) for sensing.
과냉각 장치는 저장고(S) 내에 설치되어, 냉각이 이루어지게 됨에 따라, 온도센서(C1)과, (C2)로부터의 온도를 감지하여, 발열 코일(H1), (H2)이 온 동작을 수행하도록 하여, 열을 수납 공간의 상부 및 하부에서 수납공간으로 공급하게 된다. 이러한 열의 공급량을 조절하여, 수납 공간의 상부(또는 수납물(P)의 상의 공기)를 최대 빙결정 생성대의 온도보다 높도록, 더욱 바람직하게는, 상전이 온도보다 높게 제어한다. The supercooling device is installed in the storage S and, as cooling is performed, senses the temperature from the temperature sensor C1 and C2 so that the heating coils H1 and H2 perform the on operation. Thus, heat is supplied to the storage space from the upper and lower portions of the storage space. The amount of heat supplied is adjusted to control the upper portion of the storage space (or the air on the object P) to be higher than the maximum ice crystal generation temperature, more preferably higher than the phase transition temperature.
도 5의 발열 코일(H1), (H2)의 위치는 수납물(P) 및 수납 공간에 열(또는 에너지)를 공급하기 적절한 위치로 결정될 수 있으며, 케이스(Sr)의 측면 내부에도 삽입 형성될 수 있다. The positions of the heating coils H1 and H2 of FIG. 5 may be determined to be suitable positions for supplying heat (or energy) to the enclosure P and the storage space, and may be inserted into the side surface of the case Sr. Can be.
또한, 수납공간은 서랍 등에 의해 개폐될 수도 있다.In addition, the storage space may be opened or closed by a drawer or the like.
도 6은 도 5의 과냉각 장치에 따른 물의 과냉각 상태 그래프이다. 도 6의 그래프는 액체(L)가 물인 경우에, 도 4 및 도 5에 따른 원리가 적용된 상태에서 측정된 온도 그래프들이다. FIG. 6 is a graph illustrating a supercooling state of water according to the subcooling apparatus of FIG. 5. The graphs of FIG. 6 are temperature graphs measured with the principle according to FIGS. 4 and 5 applied when the liquid L is water.
도 6에 도시되 바와 같이, I선은 냉각 공간의 냉각온도 곡선이고, II선은 용기(C) 또는 케이스(Sr) 내의 물 표면 상의 기체(Lg)(공기)의 온도 곡선(또는 용기(C)의 상부 온도, 케이스(Sr)의 상부 온도)이고, III선은 용기(C) 또는 케이스(Sr) 하부의 온도로, 용기(C) 또는 케이스(Sr) 외면의 온도는 용기(C) 또는 케이스(Sr)내부의 물의 온도와 실질적으로 동일하다. As shown in FIG. 6, line I is the cooling temperature curve of the cooling space, and line II is the temperature curve of the gas Lg (air) on the water surface in the vessel C or the case Sr (or the vessel C). ), The upper temperature of the case (Sr)), the line III is the temperature of the lower portion of the container (C) or the case (Sr), the temperature of the outer surface of the container (C) or the case (Sr) is the container (C) or It is substantially the same as the temperature of the water in the case Sr.
도시된 바와 같이, 냉각온도가 약 -19~ -20℃로 유지되는 경우(I선 참조), 용기(C) 내의 물 표면 상의 기체(Lg)의 온도를 물의 최대 빙결정 생성대의 온도보다 높은 약 4-6℃로 유지하면, 용기(C) 내의 물의 온도가 물의 최대 빙결정 생성대의 온도 이하인 약 -11℃를 유지하면서도, 액체 상태가 유지되는 과냉각 상태가 장시간 안정적으로 유지된다. 이때, 발열 코일(H1), (H2)에 의한 열 공급이 이루어진다. As shown, when the cooling temperature is maintained at about −19 to −20 ° C. (see line I), the temperature of the gas Lg on the water surface in the vessel C is about higher than the temperature of the maximum ice crystal generation zone of the water. When maintained at 4-6 ° C, the supercooled state in which the liquid state is maintained stably is maintained for a long time while the temperature of the water in the vessel C is maintained at about -11 ° C, which is equal to or less than the temperature of the maximum ice crystal generation zone of the water. At this time, heat is supplied by the heating coils H1 and H2.
또한, 도 6에서, 냉각이 진행됨에 따라, 물의 온도가 최대 빙결정 생성대의 온도에 도달하기 이전에, 더욱 바람직하게는, 상전이 온도에 도달하기 이전에, 물 표면 또는 표면 상의 기체(Lg) 상으로의 에너지 인가를 시작하여, 물이 보다 안정적으로 과냉각 상태로 진입하여 유지되도록 한다. In addition, in FIG. 6, as the cooling proceeds, before the temperature of the water reaches the temperature of the maximum ice crystal formation zone, more preferably, before the phase transition temperature is reached, the gas (Lg) phase on the water surface or on the surface The application of energy to the furnace is started, so that the water enters and maintains the supercooled state more stably.
도 7은 본 발명에 따른 과냉각 시스템의 구성도이고, 도 8은 도 7의 과냉각 장치의 제1실시예의 구성도이다. 7 is a configuration diagram of a supercooling system according to the present invention, and FIG. 8 is a configuration diagram of a first embodiment of the subcooling apparatus of FIG.
과냉각 시스템은 냉각 장치(100)와, 냉각 장치(100) 내에 장착 되어, 냉각 장치(100)에 의해 냉각되는 과냉각 장치(200)로 이루어진다. The subcooling system includes a cooling device 100 and a subcooling device 200 mounted in the cooling device 100 and cooled by the cooling device 100.
냉각 장치(100)는 수납물을 저장하는 저장고를 구비하며, 저장고를 냉각시키는 냉각 사이클(즉, 냉각 수단)(110)과, 사용자로부터의 설정 명령 등을 입력받는 입력부(120)와, 냉각 장치의 온도 상태 등을 표시하는 표시부(130)와, 외부 상용전원(또는 기타 전원)을 인가받아, 저장고 내의 온도를 적어도 최대빙결정 생성대 온도 이하로 유지하도록 냉각 사이클(110)을 제어하는 메인 제어부(140)를 구비한다. The cooling device 100 includes a storage for storing the goods, a cooling cycle (ie, cooling means) 110 for cooling the storage, an input unit 120 for receiving a setting command from a user, and the cooling device. A main control unit for controlling the cooling cycle 110 to receive a display unit 130 for displaying a temperature state of the light and an external commercial power source (or other power source) to maintain the temperature in the reservoir at least below the maximum ice crystal generation temperature. 140.
냉각 사이클(110)은 수납물을 냉각시키는 방법에 따라 간냉식과 직냉식으로 구분된다. The cooling cycle 110 is divided into a simple cooling type and a direct cooling type according to a method of cooling an object.
간냉식 냉각 사이클은 냉매를 압축하는 압축기와, 수납공간 또는 수납물을 냉각시키는 냉기를 발생하는 증발기와, 이렇게 발생된 냉기를 강제 유동시키는 팬과, 수납공간으로 냉기를 유입시키는 유입덕트와, 수납공간을 통과한 냉기를 증발기로 유도하는 토출덕트로 이루어진다. 이외에도, 간냉식 냉각 사이클은 응축기, 건조기, 팽창장치 등을 구비할 수 있다.  The intercooled cooling cycle includes a compressor for compressing a refrigerant, an evaporator for generating cold air for cooling the storage space or a storage object, a fan for forcibly flowing the cold air generated therein, an inlet duct for introducing cold air into the storage space, and a storage space. It consists of a discharge duct to guide the cold air passing through the evaporator. In addition, the intercooled cooling cycle may include a condenser, a dryer, an expansion device, and the like.
직냉식 냉각 사이클은 냉매를 압축하는 압축기와, 수납공간을 형성하는 케이스 내면에 인접하여 케이스 내에 설치되어 냉매를 증발시키는 증발기로 이루어진다. 다만, 직냉식 냉각 사이클은 응축기와 팽창밸브 등을 포함하여 구성된다.  The direct cooling cycle consists of a compressor for compressing the refrigerant and an evaporator installed in the case adjacent to the inner surface of the case forming the storage space to evaporate the refrigerant. However, the direct cooling cooling cycle includes a condenser and an expansion valve.
입력부(120)는 사용자로부터의 저장고의 온도 설정, 과냉각 장치의 동작 명령, 디스펜서 기능의 설정 등을 입력받는 것으로, 예를 들면, 푸시버튼, 키보드, 터치패드 등이 가능할 것이다. 과냉각 장치의 동작 명령은 예를 들면, 냉동 명령, 살얼음 명령, 과냉각 명령 등으로 이루어질 수 있다.  The input unit 120 receives a temperature setting of a storage, an operation command of a supercooling device, a setting of a dispenser function, etc. from a user. For example, the input unit 120 may be a push button, a keyboard, a touch pad, or the like. The operation command of the subcooling device may include, for example, a freezing command, a thin ice command, a subcool command, and the like.
표시부(130)는 기본적으로 냉각 장치가 수행하는 동작, 예를 들면, 저장고의 온도의 표시, 냉각 온도의 표시 및 과냉각 장치의 동작 상태 등을 표시할 수 있다. 이러한 표시부(130)는 lcd 디스플레이 또는 led 디스플레이 등으로 구현될 수 있다. The display unit 130 may basically display an operation performed by the cooling apparatus, for example, display of a temperature of a storage, display of a cooling temperature, and an operating state of a supercooling apparatus. The display unit 130 may be implemented as a lcd display or a led display.
메인 제어부(140)는 본 실시예에서, 상용전원을 인가받는 전원부(142)를 구비하여, 냉각 장치(100) 및 과냉각 장치(200)에 필요한 사용전원(예를 들면, 5V, 12V 등)으로의 정류 및 평활, 변압 등을 수행하는 소자이다. 이 전원부(142)는 메인 제어부(140)에 포함되어 구비될 수도 있고, 별도의 소자로 구비될 수도 있다. 이 전원부(142)는 과냉각 장치(200)와 전력선(PL)에 의해 연결되어, 필요한 사용전원을 과냉각 장치(200)에 공급한다. In the present embodiment, the main control unit 140 includes a power supply unit 142 that receives commercial power, and uses the power supply (for example, 5V, 12V, etc.) required for the cooling device 100 and the supercooling device 200. This device performs rectification, smoothing, and transformer. The power supply unit 142 may be included in the main control unit 140 or may be provided as a separate element. The power supply unit 142 is connected by the subcooling device 200 and the power line PL, and supplies necessary power to the subcooling device 200.
메인 제어부(140)는 냉각 장치(100)가 냉각 동작을 수행할 수 있도록 냉각 사이클(110)과 입력부(120) 및 표시부(130)를 제어하며, 저장고 내부가 적어도 적어도 최대빙결정 생성대 온도 이하로 유지하도록 하는 마이컴(144)을 구비한다. 이 메인 제어부(140)는 필요한 데이터를 저장하는 저장부(미도시)를 구비한다. The main controller 140 controls the cooling cycle 110, the input unit 120, and the display unit 130 so that the cooling device 100 can perform a cooling operation, and the inside of the reservoir is at least at least the maximum ice crystal generation temperature. It is provided with a microcomputer 144 to maintain. The main controller 140 has a storage unit (not shown) for storing necessary data.
메인 제어부(140)(특히, 마이컴(144))은 과냉각 장치(200)와 통신선(DL)을 통하여 연결될 수도 있으며, 이러한 통신선(DL)을 통하여, 메인 제어부(140)가 과냉각 장치(200)로부터 데이터(예를 들면, 과냉각 장치(200)의 현재 동작 상태 등)를 수신하여, 저장하거나 표시부(130)에 표시할 수 있다. 이러한 통신선(DL)은 선택적으로 구비될 수 있다. The main control unit 140 (in particular, the microcomputer 144) may be connected to the subcooling device 200 through the communication line DL, and through the communication line DL, the main control unit 140 is connected to the subcooling device 200. Data (for example, the current operating state of the subcooling device 200, etc.) may be received, stored, or displayed on the display unit 130. The communication line DL may be selectively provided.
마이컴(144)은 입력부(120)로부터의 온도 설정에 따라, 저장고의 온도를 제어하며, 과냉각 장치(200)의 과냉각 제어, 살얼음 제어, 냉동 제어 등의 제어가 독립적으로 수행될 수 있도록, 저장고 내부가 적어도 최대빙결정 생성대 온도 이하로 유지되도록 한다. The microcomputer 144 controls the temperature of the storage according to the temperature setting from the input unit 120, and controls the inside of the storage so that the supercooling control, the ice control, and the freezing control of the subcooling apparatus 200 can be independently performed. Is maintained at least below the maximum ice crystal generation temperature.
도 8에 도시된 바와 같이, 과냉각 장치(200)는 내부의 수납 공간에 수납물을 수납하고, 저장고 내에 장착되어 냉각되는 독립보관실을 구비하고, 수납공간 내부에 열을 공급하거나, 열이 발생되도록 하는 열원 공급부(210)와, 수납공간 내부 또는 수납물의 온도를 감지하는 온도 감지부(220)와, 사용자로부터의 명령을 입력받는 입력부(230)와, 수납공간 또는 수납물의 상태 또는 과냉각 장치(200)의 동작을 표시하는 표시부(240)와, 온도 감지부(220)로부터의 감지 온도를 기준으로 하여 온도 조절수단인 열원 공급부(210)를 제어하여, 독립보관실 내의 수납물을 적어도 과냉각 상태 및 냉동 상태 중에서 하나의 상태로 보관되도록 하는 서브 제어부(280)로 이루어진다. As shown in FIG. 8, the supercooling apparatus 200 includes an independent storage room that accommodates an object in an internal storage space and is mounted and cooled in a storage, and supplies heat to the storage space or generates heat. A heat source supply unit 210, a temperature sensing unit 220 that senses a temperature of an interior of an accommodation space or an enclosure, an input unit 230 that receives a command from a user, and a state or supercooling device 200 of the storage space or an enclosure; Control the display unit 240 and the heat source supply unit 210, which is a temperature control means based on the detected temperature from the temperature sensing unit 220, to at least the supercooled state and freezing of the objects in the independent storage room. It consists of a sub-control unit 280 to be stored in one of the states.
이 과냉각 장치(200)는 메인 제어부(140)로부터 사용전원을 인가받아 동작하며, 이러한 전원 공급을 위한 배선(전력선(PL)에 연결되는 배선)은 전원이 필요한 모든 구성요소에 연결되나, 이러한 기술은 본 발명이 속하는 기술분야에 익숙한 사람에게는 당연히 인식되는 정도에 불과하여, 그 설명이 생략된다.  The supercooling device 200 is operated by receiving a power source from the main control unit 140, and the wiring for the power supply (wiring connected to the power line PL) is connected to all components requiring power, but such a technology Is merely a degree recognized by those skilled in the art to which the present invention pertains, and a description thereof is omitted.
열원 공급부(210)는 수납공간 내의 온도를 조절하여, 과냉각 상태의 제어, 살얼음 제어, 냉동 제어의 각각에 대응하는 온도가 유지되도록 하는 온도 조절수단에 해당된다. 이 열원 공급부(210)는 수납공간에 에너지를 인가하는 수단으로, 열 에너지, 전기 또는 자기 에너지, 초음파 에너지, 광 에너지, 마이크로파 에너지 등을 생성하여 수납공간에 인가할 수 있다. 또한, 열원 공급부(210)는 수납물이 동결된 경우, 수납물을 해동하기 위해 에너지를 공급할 수도 있다.  The heat source supply unit 210 corresponds to a temperature control means for adjusting the temperature in the storage space to maintain a temperature corresponding to each of the supercooled state control, the ice ice control, and the freezing control. The heat source supply unit 210 is a means for applying energy to the storage space. The heat source supply unit 210 may generate heat energy, electric or magnetic energy, ultrasonic energy, optical energy, microwave energy, and the like and apply the energy to the storage space. In addition, the heat source supply unit 210 may supply energy to thaw the enclosure when the enclosure is frozen.
열원 공급부(210)는 복수개의 열원 공급부로 구성되어, 수납 공간의 상부 또는 하부, 또는 측면 등에 장착되어, 수납 공간에 에너지를 공급한다. 본 실시예에서는, 열원 공급부(210)가 수납 공간의 상측인 독립보관실의 상측 내부에 형성된 상부 열원 공급부(210a)와, 수납 공간의 하측인 독립보관실의 하측 내부에 형성된 하부 열원 공급부(210b)로 이루어진다. 각 상부 열원 공급부(210a)와, 하부 열원 공급부(210b)는 서브 제어부(280)에 의해 독립적으로 제어되거나, 통합적으로 제어될 수 있다.  The heat source supply unit 210 is configured of a plurality of heat source supply units, and is mounted on the upper or lower side or the side of the storage space to supply energy to the storage space. In the present embodiment, the heat source supply unit 210 is an upper heat source supply unit 210a formed inside the upper side of the independent storage chamber, which is the upper side of the storage space, and a lower heat source supply unit 210b formed inside the lower side of the independent storage chamber, which is the lower side of the storage space. Is done. Each of the upper heat source supply unit 210a and the lower heat source supply unit 210b may be independently controlled by the sub controller 280 or may be integrally controlled.
또한, 상부 열원 공급부(210a)는 과냉각 장치가 과냉각 제어를 수행하는 중에는 항상 열을 공급하거나 열이 발생되도록 하는 서브 열원 공급부(Hon1)과, 서브 제어부(280)의 온/오프 제어에 의해 온/오프 제어되는 서브 열원 공급부(H1)으로 이루어진다. 하부 열원 공급부(210b)도 과냉각 장치가 과냉각 제어를 수행하는 중에는 항상 열을 공급하거나 열이 발생되도록 하는 서브 열원 공급부(Hon2)과, 서브 제어부(280)의 온/오프 제어에 의해 온/오프 제어되는 서브 열원 공급부(H2)으로 이루어진다. In addition, the upper heat source supply unit 210a is turned on / off by the sub heat source supply unit HON1 and the sub controller 280 on / off control so as to always supply heat or generate heat while the supercooling device performs the supercooling control. It consists of the sub heat source supply part H1 controlled off. The lower heat source supply unit 210b also controls on / off by the sub-heat source supply unit Hon2 and the sub-control unit 280 that turn on or off the heat while the supercooling apparatus performs the supercooling control. It consists of the sub heat source supply part H2.
이들 서브 열원 공급부(Hon1), (Hon2)는 서브 제어부(280)에 의해 온 상태로 제어될 때도, 예를 들면, PWM 신호와 같이, 펄스 형태의 제어 신호를 수신하여 온상태와, 오프 상태가 교번할 수 있으나, 이러한 펄스 제어 방식에서도 듀티비에 의해서 온 상태가 유지되는 것으로 인식되어야 한다. 또한, 항상 온 상태의 신호를 수신할 수도 있다.  Even when the sub heat source supply unit Hon1 and Ho2 are controlled to the on state by the sub control unit 280, for example, like the PWM signal, the sub heat source supply unit Hon1 and Ho2 receive the control signal in the form of a pulse and thus the on state and the off state are maintained. Alternately, it should be recognized that even in this pulse control scheme, the on state is maintained by the duty ratio. It is also possible to receive signals that are always on.
따라서, 서브 열원 공급부(Hon1), (Hon2)에 의해, 열원 공급부(210)는 과냉각 제어 중에 일정한 양 이상의 열을 공급하거나 열이 발생되도록 한다.  Therefore, by the sub heat source supply parts Hon1 and Hon2, the heat source supply part 210 supplies a predetermined amount or more of heat or generates heat during the subcooling control.
또한, 서브 열원 공급부(H1), (H2)를 제어함으로써, 서브 제어부(280)는 온도 감지부(220)로부터의 감지 온도에 따라 필요한 열을 추가적으로 공급할 수 있다. 과냉각 장치(200)는 서브 열원 공급부(Hon1), (Hon2)에 의한 최소한의 열을 공급하거나 열이 발생되도록 하고, 전체 열원 공급부(210a), (210b)의 온 제어에 의해 최대의 열을 공급하거나 열이 발생되도록 한다. 즉, 과냉각 장치(200)는 0 보다 큰 일정 범위의 열을 공급하거나 발생되도록 한다.  In addition, by controlling the sub heat source supply units H1 and H2, the sub controller 280 may additionally supply necessary heat according to the sensed temperature from the temperature detector 220. The supercooling device 200 supplies the minimum heat or generates heat by the sub heat source supply units Hon1 and Ho2, and supplies the maximum heat by the ON control of all the heat source supply units 210a and 210b. Or generate heat. That is, the supercooling device 200 supplies or generates heat of a predetermined range greater than zero.
또한, 온도 감지부(220)는 수납 공간의 온도 또는 수납물의 온도를 감지하는 것으로, 수납 공간의 측벽에 형성되어, 수납공간 내의 공기의 온도를 감지하거나, 수납물에 인접하거나 수납물에 접하여, 수납물의 온도를 정확하게 감지할 수도 있는 센서에 해당된다. 이러한 온도 감지부(220)는 온도에 대응하는 전류값, 전압값 또는 저항값의 변화값 등을 서브 제어부(280)에 인가한다. 온도 감지부(220)는 수납물 또는 수납공간의 온도가 수납물의 상전이가 이루어질 때, 급격하게 상승하는 점을 인식할 수 있어, 수납물의 과냉각 상태의 해제를 서브 제어부(280)로 하여금 인식하도록 한다.  In addition, the temperature sensing unit 220 detects the temperature of the storage space or the temperature of the storage, and is formed on the sidewall of the storage space to sense the temperature of the air in the storage space, adjacent to the storage or in contact with the storage, This corresponds to a sensor that can accurately sense the temperature of an object. The temperature sensor 220 applies a change value of a current value, a voltage value, or a resistance value corresponding to the temperature to the sub controller 280. The temperature sensor 220 may recognize that the temperature of the object or the storage space rapidly rises when the phase transition of the object is made, thereby allowing the sub controller 280 to recognize the release of the supercooled state of the object. .
본 실시예에서, 온도 감지부(220)는 수납 공간의 상측인 독립보관실의 상측 내부에 형성된 상부 감지부(220a)와, 수납 공간의 하측인 독립보관실의 하측 내부에 형성된 하부 감지부(220b)로 이루어질 수 있다. 상부 감지부(220a) 및 하부 감지부(220b)는 상부 열원 공급부(210a) 및 하부 열원 공급부(210b)가 형성된 면에 또는 면에 인접하여 장착된다.  In the present embodiment, the temperature sensing unit 220 includes an upper sensing unit 220a formed in the upper side of the independent storage room, which is the upper side of the storage space, and a lower sensing unit 220b formed in the lower side of the independent storage room, which is the lower side of the storage space. It may be made of. The upper sensing unit 220a and the lower sensing unit 220b are mounted on or adjacent to a surface on which the upper heat source supply unit 210a and the lower heat source supply unit 210b are formed.
서브 제어부(280)는 온도 감지부(220)로부터의 감지 온도에 따라 열원 공급부(210)를 제어하여, 냉동 제어, 살얼음 제어, 과냉각 제어를 선택적으로 수행할 수 있다. 특히, 서브 제어부(280)는 상부 감지부(220a)로부터의 감지 온도에 따라, 상부 열원 공급부(210a)를 제어하고, 하부 감지부(220b)로부터의 감지 온도에 따라 하부 열원 공급부(210b)를 각각 제어할 수도 있다.  The sub controller 280 may control the heat source supply unit 210 according to the sensed temperature from the temperature detector 220 to selectively perform the freezing control, the ice ice control, and the supercooling control. In particular, the sub controller 280 controls the upper heat source supply unit 210a according to the sensing temperature from the upper sensing unit 220a and controls the lower heat source supply unit 210b according to the sensing temperature from the lower sensing unit 220b. You can also control each.
입력부(230)는 과냉각 장치의 온/오프 스위치 기능과, 사용자가 냉동 제어, 살얼음 제어, 과냉각 제어에 대한 명령을 선택할 수 있도록 하는 수단으로, 예를 들면, 푸시버튼, 키보드, 터치패드 등이 가능할 것이다.  The input unit 230 is a on / off switch function of the supercooling device and means for allowing a user to select a command for freezing control, ice control, and supercooling control. For example, a push button, a keyboard, a touch pad, etc. may be used. will be.
표시부(240)는 과냉각 장치의 온 상태/오프 상태의 표시 기능과, 현재 수행하는 제어(냉동 제어, 살얼음 제어, 과냉각 제어)를 표시하는 기능을 수행하는 것으로 lcd 디스플레이, led 디스플레이 등이 사용될 수 있다.  The display unit 240 performs a display function of the on state / off state of the supercooling device and a function of displaying the control (refrigeration control, ice control, supercooling control) that is currently performed, such as an LCD display or a led display. .
서브 제어부(280)는 상술된 바와 같이, 온도 감지부(220)에 의한 감지 온도에 따라 열원 공급부(210)을 제어하여, 냉동 제어, 살얼음 제어, 과냉각 제어를 메인 제어부(140) 및 냉각 장치(100)에 대하여 독립적으로 수행할 수 있다. 이러한 독립적인 제어를 위해, 이러한 제어를 수행하기 위한 알고리즘 등을 저장하는 저장부를 구비할 수 있다.  As described above, the sub-control unit 280 controls the heat source supply unit 210 according to the sensed temperature by the temperature sensing unit 220 to control the refrigeration control, the ice control, and the supercooling control through the main control unit 140 and the cooling device ( 100) may be performed independently. For such independent control, a storage unit for storing an algorithm for performing such control may be provided.
여기서, 냉동 제어는 열원 공급부(210)를 통한 열의 공급이나 열의 발생이 없거나 극히 적어지도록 하여, 독립보관실 내의 수납물이 동결되도록 제어하는 것이다. 이러한 제어는 과냉각 장치의 오프에 의해 수행될 수도 있다. 이러한 냉동 제어시는 냉각 장치(100)에 의한 냉각 온도와 거의 동일한 온도로 유지하게 되므로, 적어도 최대빙결정생성대 온도 이하가 되거나, 예를 들면, -20℃이다.  In this case, the refrigeration control is such that the supply of heat through the heat source supply unit 210 or the generation of heat is reduced or becomes extremely small, so that the contents in the independent storage room are frozen. Such control may be performed by turning off the supercooling device. In this refrigeration control, the temperature is maintained at about the same temperature as the cooling temperature by the cooling device 100, and therefore, the temperature is at least below the maximum ice crystal generation temperature or is, for example, -20 ° C.
과냉각 제어는 수납물의 온도가 예를 들면, -3~-4℃로, 수납물이 과냉각 상태로 보관되도록 하는 것이다. 이러한 과냉각 제어시에는 수납물이 과냉각 상태를 유지하다가 결빙되는 것을 수납물의 온도가 예를 들면, -4℃에서 급격히 상승하게 되는 현상으로 감지하는 제어를 추가적으로 수행한다. 아울러, 이러한 과냉각 상태의 해제시에, 열원 공급부(210)의 동작을 통하여 해동을 수행하고, 해동이 완료된 이후에, 다시 냉각이 이루어지도록 하는 제어를 수행한다.  The supercooling control is such that the temperature of the object is, for example, -3 to -4 ° C so that the object is stored in a supercooled state. In the supercooling control, a control is additionally performed to sense that the temperature of the packaged material rapidly rises at, for example, -4 ° C, while the packaged material maintains the supercooled state and freezes. In addition, during the release of the supercooled state, thawing is performed through the operation of the heat source supply unit 210, and after thawing is completed, control is performed to perform cooling again.
특히, 서브 제어부(280)는 과냉각 제어를 수행함에 있어서, 0보다 큰 일정 범위의 열을 수납공간 및 수납물에 공급하거나, 열이 발생될 수 있도록 열원 공급부(210)를 제어한다.  In particular, in performing the subcooling control, the sub controller 280 supplies a predetermined range of heat greater than zero to the storage space and the accommodation, or controls the heat source supply unit 210 to generate heat.
살얼음 제어는 수납물의 온도가 과냉각 제어시의 온도보다 낮되, 냉각 장치(100)에 의한 냉각 온도보다는 높도록 열원 공급부(210)를 제어하여, 수납물이 sub-freezing 상태로 보관되어, 취출된 후, 칼 등에 위한 절단 등이 용이하도록 한다.  The thin ice control controls the heat source supply unit 210 so that the temperature of the stored object is lower than the temperature at the time of supercooling control, but is higher than the cooling temperature by the cooling apparatus 100, and the stored object is stored in a sub-freezing state and then taken out. To make cutting for knife, etc. easy.
서브 제어부(280)은 입력부(230)로부터의 과냉각 장치의 온/오프 스위치 입력에 따라, 각 소자들에 인가되는 전원의 공급이 차단되도록 하여 그 동작이 수행되지 않도록 할 수 있다.  The sub controller 280 may block the supply of power applied to each element according to the on / off switch input of the subcooling device from the input unit 230 so that the operation thereof may not be performed.
또한, 서브 제어부(280)는 입력부(230)로부터 상술된 적어도 3가지 이상의 제어 명령을 입력받아, 그에 따라 동작할 수 있다.  In addition, the sub controller 280 may receive at least three or more control commands from the input unit 230 and operate accordingly.
입력부(230)는 추가적으로 해동 명령을 획득하는 기능을 구비하여, 서브 제어부(280)는 입력부(230)로부터의 해동 명령에 대응하여, 열원 공급부(210)를 동작시켜 수납물이 해동될 수 있도록 에너지(특히, 열 에너지)를 가하게 한다. The input unit 230 additionally has a function of acquiring a thawing command, and the sub-control unit 280 operates the heat source supply unit 210 in response to the thawing command from the input unit 230 so that energy can be thawed. (Especially thermal energy).
도 9는 도 8의 과냉각 장치의 열원 공급부 배치도이다. 도 9의 열원 공급부는 도 5의 열원 공급부와 달리, 항상 온 상태를 유지하는 서브 열원 공급부(Hon1), (Hon2)가 독립 냉각실의 상측과, 하측에 각각 형성되어, 일정 이상의 열을 수납공간에 공급하거나 열이 발생되도록 한다. FIG. 9 is a layout view of a heat source supply unit of the subcooling device of FIG. 8. Unlike the heat source supply part of FIG. 5, the heat source supply part of FIG. 9 is provided with sub heat source supply parts Hon1 and Hon2 that are always on, respectively, on the upper side and the lower side of the independent cooling chamber, and store a predetermined number of rows or more. Supply heat or allow it to generate heat.
도 10은 도 8의 과냉각 장치에 의한 과냉각 방법의 순서도이다. FIG. 10 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 8.
단계(S51)에서, 냉각 장치(100)가 냉각을 수행하고, 과냉각 장치(200)의 독립 보관실 내에 수납물이 수용되어, 이 수납물이 냉각되게 된다. In step S51, the cooling apparatus 100 performs cooling, and the accommodation is accommodated in the independent storage chamber of the subcooling apparatus 200, so that the storage is cooled.
단계(S53)에서, 과냉각 장치(200)의 서브 제어부(280)는 현재의 수행해야 할 제어가 과냉각 제어인 경우, 열원 공급부(210)의 서브 열원 공급부(Hon1, Hon2)(통합적으로 Hon)을 동작시켜, 수용공간 및 수납물에 일정 이상의 에너지(즉, 열)가 지속적으로 공급되도록 한다. In step S53, the sub-control unit 280 of the subcooling apparatus 200 performs the sub-heat source supply units H1, Hon2 (collectively Hon) of the heat source supply unit 210 when the current control to be performed is the supercooling control. In order to continuously supply a certain amount of energy (ie heat) to the receiving space and the enclosure.
단계(S55)에서, 서브 제어부(280)는 온도 감지부(220)로부터 감지 온도를 획득한다. 더 상세하게는, 서브 제어부(280)는 상부 감지부(220a)와, 하부 감지부(220b)로부터 각 위치에 대응하는 감지 온도를 획득한다. In operation S55, the sub controller 280 obtains the sensing temperature from the temperature sensor 220. In more detail, the sub controller 280 obtains a sensing temperature corresponding to each position from the upper sensing unit 220a and the lower sensing unit 220b.
단계(S57)에서, 서브 제어부(280)는 각 상부 감지부(220a), 하부 감지부(220b)로부터의 감지 온도에 의해, 추가적인 열원이 필요한지 판단한다. 예를 들면, 상부 감지부(220a)로부터의 온도가 상전이 온도보다 낮은 경우, 또는 하부 하부 감지부(220b)로부터의 온도가 기설정된 과냉각 온도(예를 들면, -3℃)보다 낮은 경우, 단계(S59)로 진행하고, 그렇지 않으면 단계(S61)로 진행한다. In operation S57, the sub controller 280 determines whether an additional heat source is required based on the sensing temperatures of the upper sensing unit 220a and the lower sensing unit 220b. For example, when the temperature from the upper sensing unit 220a is lower than the phase transition temperature, or when the temperature from the lower lower sensing unit 220b is lower than the preset subcooling temperature (eg, -3 ° C), the step Proceeding to S59, otherwise proceeds to step S61.
단계(S59)에서, 서브 제어부(280)는 열원이 필요한 위치에 따라, 서브 열원공급부(H1), (H2)(통합적으로 H)를 독립적으로 각각 온 상태로 제어하여, 열원을 공급한다. In step S59, the sub controller 280 supplies the heat source by controlling the sub heat source supply parts H1 and H2 (integratedly H) to each of the states independently according to a position where the heat source is required.
단계(S61)에서, 서브 제어부(280)는 서브 열원 공급부(H1), (H2)를 오프 상태로 변환시키거나, 현재 오프 상태인 경우, 그 오프 상태를 유지한다. In step S61, the sub controller 280 switches the sub heat source supply units H1 and H2 to the off state or maintains the off state when the sub heat source supply unit H1 or H2 is in the off state.
단계(S59) 및 (S61)의 단계는 단계(S55)로 진행하여, 지속적으로 서브 제어부(280)는 수납물이 과냉각 상태를 유지하도록 한다. Steps S59 and S61 proceed to step S55, where the sub-control unit 280 continuously maintains the objects in the supercooled state.
아울러, 도 10의 과냉각 방법은 수납물의 동결 여부를 판단하는 과정을 추가적으로 수행하여, 수납물이 동결된 경우, 상술된 바와 같이 해동 과정을 수행할 수도 있다. In addition, the subcooling method of FIG. 10 may additionally perform a process of determining whether a package is frozen, and when the package is frozen, a thawing process may be performed as described above.
도 11은 도 7의 과냉각 장치의 제2실시예의 구성도이다. 11 is a configuration diagram of a second embodiment of the supercooling apparatus of FIG. 7.
도 11의 과냉각 장치(200a)는 전압가변부(250a), (250b), 열원 공급부(211), 및 서브 제어부(280a)를 제외하고, 다른 구성요소는 도 8의 과냉각 장치(200)와 유사한다. The subcooling device 200a of FIG. 11 is similar to the subcooling device 200 of FIG. 8 except for the voltage variable parts 250a and 250b, the heat source supply part 211, and the sub control part 280a. do.
전압가변부(250a), (250b)는 서브 제어부(280a)의 제어에 의해, 열원 공급부(211)(상부 열원공급부(211a)와, 하부 열원 공급부(211b)를 통칭함)로 인가되는 사용전압의 크기를 가변하여, 실제로 열원 공급부(211)에서 공급되는 열이 가변되도록 한다. 예를 들면, 사용전압의 크기는 3V~10V 사이의 크기로 설정될 수 있다. 이러한 전압 가변부(250a), (250b)는 예를 들면, 가변 저항이나, 변압기 등으로 구현될 수 있다. The voltage variable parts 250a and 250b are used voltages applied to the heat source supply part 211 (collectively referred to as the upper heat source supply part 211a and the lower heat source supply part 211b) under the control of the sub controller 280a. By varying the size of, the heat actually supplied from the heat source supply unit 211 is varied. For example, the magnitude of the use voltage may be set to a magnitude between 3V and 10V. The voltage variable parts 250a and 250b may be implemented with, for example, a variable resistor or a transformer.
상부 열원 공급부(211a)와, 하부 열원 공급부(211b)는 도 8의 열원 공급부(210)와 달리, 서브 열원 공급부(Hon1), (Hon2)만을 구비하여, 항상 온 상태를 유지하되, 전압 가변부(250a), (250b)에 의해 인가되는 전압의 크기가 가변되는 것으로 인식되어야 한다. 즉, 도 9의 과냉각 장치에서의 서브 열원 공급부(H1), (H2)와 같이 온 상태/오프 상태로 제어되는 열원 공급부가 도 11의 과냉각 장치(200a)에 구비되지 않는다. Unlike the heat source supply part 210 of FIG. 8, the upper heat source supply part 211a and the lower heat source supply part 211b include only the sub heat source supply parts Hon1 and Hon2 to maintain the ON state at all times. It should be appreciated that the magnitudes of the voltages applied by 250a and 250b vary. That is, the heat source supply part controlled to the on / off state like the sub heat source supply parts H1 and H2 in the subcooling device of FIG. 9 is not provided in the subcooling device 200a of FIG.
서브 제어부(280a)는 과냉각 제어를 수행함에 있어서, 온도 감지부(220)로부터의 상부의 감지 온도, 하부의 감지 온도에 따라, 전압 가변부(250a), (250b)를 개별적으로 제어하여, 적어도 0V보다 높은 최소 전압이 열원 공급부(211)에 인가되도록 하되, 현재의 감지 온도에 따라 추가적인 열의 공급이 요구되는 경우, 인가되는 전압을 일정 범위 이내에서 가변하게 된다. In performing the subcooling control, the sub control unit 280a individually controls the voltage varying units 250a and 250b according to the sensing temperature of the upper part and the sensing temperature of the lower part from the temperature sensing unit 220. A minimum voltage higher than 0 V is applied to the heat source supply unit 211, but when additional heat is required according to the current sensing temperature, the applied voltage is varied within a predetermined range.
도 12는 도 11의 과냉각 장치에서 열원 공급부로 인가하는 전압의 그래프이다. 도 12에 도시된 바와 같이, 전압 가변부(250a), (250b)에 의해, 상부 열원 공급부(211a), (211b)로 인가되는 전압의 범위는 3~10V로 항상, 3V 이상의 전압이 인가되어, 일정 양 이상의 열이 발생하거나 공급되도록 한다. FIG. 12 is a graph of voltage applied to a heat source supply unit in the subcooling apparatus of FIG. 11. As shown in FIG. 12, the voltages applied to the upper heat source supply parts 211a and 211b by the voltage varying parts 250a and 250b are 3 to 10V, and a voltage of 3V or more is always applied. In addition, a certain amount of heat is generated or supplied.
도 13은 도 11의 과냉각 장치에 의한 과냉각 방법의 순서도이다. FIG. 13 is a flowchart illustrating a subcooling method by the subcooling apparatus of FIG. 11.
본 순서도에서는 가변 전압의 범위가 최소 전압인 제1전압과, 최고 전압인 제2전압의 2단계로만 구성된 경우이다. In this flowchart, the variable voltage range is composed of only two stages, the first voltage being the minimum voltage and the second voltage being the highest voltage.
단계(S71)에서, 냉각 장치(100)가 냉각을 수행하고, 과냉각 장치(200a)의 독립 보관실 내에 수납물이 수용되어, 이 수납물이 냉각되게 된다. In step S71, the cooling device 100 performs cooling, and the accommodation is accommodated in the independent storage chamber of the subcooling device 200a, so that the storage is cooled.
단계(S73)에서, 과냉각 장치(200a)의 서브 제어부(280a)는 현재의 수행해야 할 제어가 과냉각 제어인 경우, 최소전압인 제1전압이 전압 가변부(250a), (250b)를 통하여 열원 공급부(211)에 인가되도록 한다. In operation S73, the sub-control unit 280a of the subcooling apparatus 200a determines that the first voltage, which is the minimum voltage, is the heat source through the voltage varying units 250a and 250b when the current control to be performed is the subcooling control. To be applied to the supply unit 211.
단계(S75)에서, 서브 제어부(280a)는 온도 감지부(220)로부터 감지 온도를 획득한다. 더 상세하게는, 서브 제어부(280a)는 상부 감지부(220a)와, 하부 감지부(220b)로부터 각 위치에 대응하는 감지 온도를 획득한다. In operation S75, the sub controller 280a obtains a sensing temperature from the temperature sensor 220. More specifically, the sub controller 280a obtains a sensing temperature corresponding to each position from the upper sensing unit 220a and the lower sensing unit 220b.
단계(S77)에서, 서브 제어부(280a)는 각 상부 감지부(220a), 하부 감지부(220b)로부터의 감지 온도에 의해, 추가적인 열원이 필요한지 판단한다. 예를 들면, 상부 감지부(220a)로부터의 온도가 상전이 온도보다 낮은 경우, 또는 하부 하부 감지부(220b)로부터의 온도가 기설정된 과냉각 온도(예를 들면, -3℃)보다 낮은 경우, 단계(S59)로 진행하고, 그렇지 않으면 단계(S61)로 진행한다. In operation S77, the sub controller 280a determines whether an additional heat source is needed based on the sensing temperatures of the upper sensing unit 220a and the lower sensing unit 220b. For example, when the temperature from the upper sensing unit 220a is lower than the phase transition temperature, or when the temperature from the lower lower sensing unit 220b is lower than the preset subcooling temperature (eg, -3 ° C), the step Proceeding to S59, otherwise proceeds to step S61.
단계(S79)에서, 서브 제어부(280a)는 열원이 필요한 위치에 따라, 전압 가변부(250a), (250b)를 독립적으로 제어하여, 제2전압이 상부 열원 공급부(211a) 또는 하부 열원 공급부(211b)로 인가되도록 하여, 열원을 공급한다. In step S79, the sub controller 280a independently controls the voltage variable parts 250a and 250b according to a position where the heat source is required, so that the second voltage is applied to the upper heat source supply part 211a or the lower heat source supply part ( 211b) to supply a heat source.
단계(S81)에서, 서브 제어부(280a)는 전압 가변부(250a), (250b)를 제어하여, 제1전압으로 전압 크기를 가변하거나, 이전의 제1전압을 동일하게 상부 열원 공급부(211a) 또는 하부 열원 공급부(211b)로 인가되도록 하여, 열원을 공급한다. In step S81, the sub controller 280a controls the voltage varying units 250a and 250b to vary the magnitude of the voltage with the first voltage or to equalize the previous first voltage with the upper heat source supply unit 211a. Alternatively, the heat source is supplied to the lower heat source supply unit 211b.
단계(S79) 및 (S81)의 단계는 단계(S75)로 진행하여, 지속적으로 서브 제어부(280a)는 수납물이 과냉각 상태를 유지하도록 한다. Steps S79 and S81 proceed to step S75 so that the sub-control unit 280a continuously maintains the supercooled state.
아울러, 도 13의 과냉각 방법은 수납물의 동결 여부를 판단하는 과정을 추가적으로 수행하여, 수납물이 동결된 경우, 상술된 바와 같이 해동 과정을 수행할 수도 있다. In addition, the subcooling method of FIG. 13 may additionally perform a process of determining whether a package is frozen, and when the package is frozen, a thawing process may be performed as described above.
도 14는 열원 공급부의 온/오프 동작에 의한 온도 변화 그래프이다. 도 5와 같은 과냉각 장치에서, 즉, 열원 공급부(H1, H2)가 온/오프 동작에 의해 수납물에 열을 공급하거나, 열이 생성되도록 하는 경우에는, 도 14의 상단에 있는 온도 그래프(I)와 같이 수납공간의 온도(온도 센서(C1)에 의해 감지된 온도)가 열원 공급부(H1, H2)의 온 동작 및 오프 동작에 의해 크게 가변하게 된다. 도 14의 하단과 같이, 열원 공급부(H1, H2)는 전체 온 상태가 되고, 전체 오프 상태가 되는 동작이 수행되므로, 수납 공간에 인가되거나 발생되는 열의 편차가 온도 그래프(I)에서 알 수 있는 바와 같이, 크게 된다. 14 is a graph of temperature change by an on / off operation of a heat source supply unit. In the supercooling apparatus as illustrated in FIG. 5, that is, when the heat source supply units H1 and H2 supply heat to the enclosure or generate heat by the on / off operation, the temperature graph I at the top of FIG. The temperature of the storage space (temperature sensed by the temperature sensor C1) is largely changed by the ON operation and the OFF operation of the heat source supply units H1 and H2. As shown in the lower part of FIG. 14, since the heat source supplying parts H1 and H2 are in an all-on state and an operation in which the heat-off state is in the all-off state is performed, the deviation of heat applied or generated in the storage space can be seen in the temperature graph I. As it becomes, it becomes large.
도 15는 도 14의 열원 공급에 의한 수납물의 과냉각 해제 시의 온도 그래프이다. 도 15에 도시된 바와 같이, 감지 온도 그래프(II)는 온도 센서(C2)에 의해 감지된 온도이고, 온도 그래프(III)는 실제 수납물의 온도로, 열원 공급부(H1, H2)의 온/오프 동작에 의한 영향에 의해, 온도 편차가 상당히 존재하게 된다. 특히, 과냉각 해제 시점(Tsc)에서 수납물이 과냉각이 해제되어 온도가 상승된 시점에서, 감지 온도도 다소 변화가 있으나, 이전의 변화 형태와 거의 유사하게 변하고 있다. 다만, 감지 온도가 수납물 온도보다 낮은 크기로 감지되고 있다. 도 15와 같이, 수납물의 과냉각이 해제되더라도, 예를 들면 육류와 같은 경우에는 수납물의 온도가 상전이 온도까지 상승하지 않고, 동결될 수 있다. FIG. 15 is a temperature graph at the time of subcooling of an object by supplying the heat source of FIG. 14. As shown in FIG. 15, the sensing temperature graph II is the temperature sensed by the temperature sensor C2, and the temperature graph III is the temperature of the actual enclosure, and on / off of the heat source supply parts H1 and H2. Due to the effect of the operation, there is a considerable temperature deviation. In particular, when the temperature is raised due to the release of the subcooling at the subcooling release point Tsc, the sensing temperature is slightly changed, but is changed almost similar to the previous change form. However, the sensing temperature is sensed to be smaller than the enclosure temperature. As shown in FIG. 15, even when the supercooling of the package is released, for example, in the case of meat, the temperature of the package may be frozen without rising to the phase transition temperature.
도 16은 도 15의 감지 온도의 미분값 그래프이다. 곡선(A)는 감지 온도의 1차 미분값의 분포이고, 곡선(B)는 감지 온도의 2차 미분값의 분포이다. 곡선(A)와, (B)는 거의 유사한 변화 형태를 지니고 있기에, 상당한 부분이 중첩되고 있다. FIG. 16 is a derivative graph of the sensing temperature of FIG. 15. Curve A is the distribution of the first derivative of the sensing temperature, and curve B is the distribution of the second derivative of the sensing temperature. Since curves (A) and (B) have almost similar variations, a considerable portion overlaps.
특히, 과냉각 해제 시점(Tsc)에서, 곡선(A)와, (B)는 이전의 피크값에 비하여 작은 피크값으로 변화하지만, 이러한 변화는 이전의 피크-피크 값 이내에 포함된다. 따라서, 과냉각 장치가 과냉각 해제 시점(Tsc)에서의 피크값이 과냉각 해제로 인한 피크값의 변화에 의한 것인지 판단하기 어렵다.In particular, at the subcooling release point Tsc, curves A and B change to smaller peak values compared to previous peak values, but such changes are included within the previous peak-peak values. Therefore, it is difficult for the subcooling device to determine whether the peak value at the subcooling release point Tsc is due to the change in the peak value due to the subcooling release.
도 17은 도 8 및 도 11에 의한 과냉각 방법에 의한 온도 변화 그래프이다. 열원 공급부(210a, 210b, 211a, 211b)에 의해, 최소의 열량(Q1)이 수납공간 및 수납물에 인가되거나 발생되며, 최대의 열량(Qall)이 수납공간 및 수납물에 인가되거나 발생된다. 이러한 열량의 변화 폭이 적기 때문에, 상부 감지부(220a)에 의해 감지되는 온도 그래프(I)는 그 변화 폭이 적게 된다. 17 is a graph of temperature change by the supercooling method of FIGS. 8 and 11. By the heat source supply parts 210a, 210b, 211a, and 211b, the minimum amount of heat Q1 is applied to or generated in the storage space and the enclosure, and the maximum amount of heat Qall is applied to or generated in the storage space and the enclosure. Since the change in the amount of heat is small, the temperature graph I sensed by the upper sensing unit 220a has a smaller change.
도 18은 도 17의 열원 공급에 의한 수납물의 과냉각 해제 시의 온도 그래프이다. 도 18에 도시된 바와 같이, 하부 감지부(220b)에 의해 감지된 감지 온도 그래프(II)에서도 그 편차가 적게 되며, 수납물의 온도 그래프(III)도 감지 온도 그래프(II)에 거의 대응하는 온도 변화를 지닌다. 특히, 과냉각 해제 시점(Tsc)에서, 수납물의 온도가 급격히 상승하더라도, 하부 감지부(220b)에 의한 감지 온도를 그 편차가 상대적으로 작은 형태를 지속적으로 지닌다. FIG. 18 is a temperature graph at the time of releasing the supercooling of a package by the heat source supply of FIG. As shown in FIG. 18, the deviation is also small in the sensing temperature graph II detected by the lower sensing unit 220b, and the temperature graph III of the stored object also has a temperature corresponding substantially to the sensing temperature graph II. Have a change. In particular, even at the time of the supercooling release time Tsc, even if the temperature of the stored article rapidly increases, the sensing temperature of the lower sensing unit 220b has a form in which the deviation is relatively small.
도 19는 도 18의 감지 온도의 미분값 그래프이다. 곡선(A)는 감지 온도의 1차 미분값의 분포이고, 곡선(B)는 감지 온도의 2차 미분값의 분포이다. 곡선(A)와, (B)는 거의 동일한 변화 형태를 지니고 있기에, 상당한 부분이 중첩되고 있다. 19 is a derivative graph of the sensing temperature of FIG. 18. Curve A is the distribution of the first derivative of the sensing temperature, and curve B is the distribution of the second derivative of the sensing temperature. Since curves (A) and (B) have almost the same form of change, a considerable portion overlaps.
특히, 과냉각 해제 시점(Tsc)에서, 곡선(A)와, (B)는 이전의 피크값에 비하여 상당히 큰 피크값으로 변화하고, 이러한 변화는 이전의 피크-피크 값보다 현저게 크게 된다. 따라서, 과냉각 장치는 과냉각 해제 시점(Tsc)에서의 피크값이 과냉각 해제를 위한 미분 판단값(+D, -D)을 벗어나는 미분값이 연산되는 때, 정확하게 수납물의 과냉각이 해제되었음을 판단할 수 있게 된다. In particular, at the subcooling release point Tsc, curves A and B change to a significantly larger peak value than the previous peak value, and this change becomes significantly larger than the previous peak-peak value. Therefore, the subcooling apparatus can accurately determine that the subcooling of the object is released when the derivative value at which the peak value at the subcooling release time point Tsc is outside the differential determination values (+ D, -D) for subcooling release is calculated. do.
이상에서, 본 발명은 본 발명의 실시예 및 첨부도면에 기초하여 예로 들어 상세하게 설명하였다. 그러나 이상의 실시 예들 및 도면에 의해 본 발명의 범위가 제한되지는 않으며, 본 발명의 범위는 후술한 특허청구범위에 기재된 내용에 의해서만 제한될 것이다.In the above, the present invention has been described in detail by way of examples based on the embodiments of the present invention and the accompanying drawings. However, the scope of the present invention is not limited by the above embodiments and drawings, and the scope of the present invention will be limited only by the contents described in the claims below.

Claims (17)

  1. 냉각이 이루어지는 저장고 내에 설치되어, 수납물을 수납할 수 있는 수납공간이 구비된 보관실과;A storage room installed in a storage room in which cooling is performed, and having a storage space in which storage items can be stored;
    보관실에 설치되어 수납공간에 열을 공급하거나 열이 발생되도록 하는 열원 공급부와; A heat source supply unit installed in the storage room to supply heat to the storage space or generate heat;
    수납공간 또는 수납물의 온도를 감지하는 온도 감지부와; A temperature sensor for sensing a temperature of the storage space or the storage object;
    온도 감지부에 의해 감지된 온도를 기준으로 하여, 열원 공급부를 동작시켜, 수납공간의 상부를 최대빙결정생성대 온도보다 높은 온도가 되게 하여, 수납공간 또는 수납물이 최대빙결정생성온도 이하에서 과냉각 상태로 유지되도록 하되, 과냉각 상태의 제어 수행 중에, 일정 크기 이상의 열을 공급하거나 열이 발생되도록 하는 제어부를 구비하는 것을 특징으로 하는 과냉각 장치.On the basis of the temperature sensed by the temperature sensing unit, the heat source supply unit is operated to bring the upper portion of the storage space to a temperature higher than the maximum ice crystal generation temperature, so that the storage space or the storage object is below the maximum ice crystal production temperature. A supercooling apparatus comprising: a control unit configured to maintain the supercooling state and to supply heat of a predetermined size or generate heat during the control of the supercooling state.
  2. 제1항에 있어서, The method of claim 1,
    제어부는 수납공간의 상부 온도를 상전이 온도 이상으로 유지시키는 것을 특징으로 하는 과냉각 장치.The control unit is a supercooling apparatus, characterized in that to maintain the upper temperature of the storage space above the phase transition temperature.
  3. 제1항에 있어서, The method of claim 1,
    제어부는 수납공간의 하부 온도 또는 수납물의 온도를 기설정된 과냉각 온도로 유지하여, 수납물이 과냉각 상태로 보관되도록 하는 것을 특징으로 하는 과냉각 장치.The control unit maintains the lower temperature of the storage space or the temperature of the storage object at a preset supercooling temperature, the supercooling apparatus, characterized in that the storage is stored in a supercooled state.
  4. 제1항 내지 제3항 중의 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    제어부는 열원 공급부가 일정 크기 범위의 열을 공급하거나 열이 발생되도록 하는 것을 특징으로 하는 과냉각 장치.The control unit is a super-cooling apparatus, characterized in that the heat source supply unit to supply heat of a predetermined size range or to generate heat.
  5. 제4항에 있어서, The method of claim 4, wherein
    열원 공급부는 수납공간의 적어도 2개 이상의 면에 각각 독립적으로 형성된 제1 및 제2 열원공급부인 것을 특징으로 하는 과냉각 장치.The heat source supply unit is a supercooling device, characterized in that the first and second heat source supply unit formed independently on at least two or more surfaces of the storage space.
  6. 제5항에 있어서, The method of claim 5,
    제1 또는 제2 열원 공급부는 적어도 2개 이상의 서브 열원 공급부로 이루어지며, 적어도 하나의 서브 열원 공급부는 과냉각 상태의 제어 수행 중에 온 상태이고, 다른 하나의 서브 열원 공급부는 온 상태와 오프 상태를 교번하여 수행하는 것을 특징으로 하는 과냉각 장치.The first or second heat source supply unit is composed of at least two sub heat source supply units, at least one sub heat source supply unit is in an on state while performing control of a supercooled state, and the other sub heat source supply unit alternates an on state and an off state. Subcooling apparatus, characterized in that performed by.
  7. 제5항에 있어서, The method of claim 5,
    제1 또는 제2 열원 공급부는 0V보다 높은 전압 가변 영역에 포함되는 전압을 인가받아 온 상태를 유지하여, 수납물의 과냉각 상태를 유지시키는 것을 특징으로 하는 과냉각 장치.The first or second heat source supply unit is a subcooling device, characterized in that to maintain the state of receiving the voltage contained in the voltage variable region higher than 0V to maintain the supercooled state of the object.
  8. 제5항에 있어서, The method of claim 5,
    온도 감지부는 열원 공급부가 형성된 면에 또는 면에 인접하여 장착된 적어도 하나 이상의 온도 센서를 포함하는 것을 특징으로 하는 과냉각 장치.The temperature sensing unit comprises at least one temperature sensor mounted on or adjacent to the surface on which the heat source supply is formed.
  9. 제8항에 있어서, The method of claim 8,
    제어부는 열원 공급부를 제어하되, 동일한 면에 형성된 온도 센서 또는 인접하여 장착된 온도 센서의 온도를 기준으로 하여 독립적으로 제어하는 것을 특징으로 하는 과냉각 장치.The control unit controls the heat source supply unit, the subcooling apparatus characterized in that the independent control based on the temperature of the temperature sensor formed on the same surface or the adjacent temperature sensor.
  10. 제4항에 있어서, The method of claim 4, wherein
    제어부는 온도 감지부로부터의 감지 온도의 변화에 따라 수납물의 과냉각 상태가 해제되었는지를 판단하는 것을 특징으로 하는 과냉각 장치.The control unit determines whether the supercooling state of the object is released according to the change in the sensed temperature from the temperature sensing unit.
  11. 냉각이 이루어지는 저장고 내에 설치되어, 수납물을 수납할 수 있는 수납공간이 구비된 보관실을 구비하는 냉각 장치에서의 과냉각 방법에 있어서, 과냉각 방법은:A supercooling method in a cooling apparatus provided in a storage compartment in which a cooling is performed, and having a storage compartment having a storage space for accommodating an article, the subcooling method comprising:
    수납물 또는 보관실을 최대빙결정생성대 온도 또는 최대빙결정생성대 온도보다 낮게 냉각하는 단계와; Cooling the enclosure or storage room below the maximum ice crystal generation temperature or the maximum ice crystal production temperature;
    수납공간에 열을 공급하거나 열이 발생되도록 하는 열원 공급 단계를 포함하며, A heat source supplying step of supplying heat or generating heat to the storage space,
    수납공간 또는 수납물의 온도를 감지하는 단계를 수행하고, 감지된 온도를 기준으로 하여, 냉각 단계 또는 열원 공급 단계 중의 적어도 하나 이상을 제어하여, 수납공간의 상부를 최대빙결정생성대 온도보다 높은 온도가 되게 하여, 수납공간 또는 수납물이 최대빙결정생성온도 이하에서 과냉각 상태로 유지하는 과냉각 상태의 제어를 수행하는 것을 특징으로 하는 과냉각 방법.Sensing the temperature of the storage space or the storage object and controlling at least one of the cooling step and the heat source supplying step on the basis of the sensed temperature so that the upper portion of the storage space is above the maximum ice crystal generation temperature; And control of the supercooling state in which the storage space or the article is kept in the supercooling state below the maximum ice crystal generation temperature.
  12. 제11항에 있어서, The method of claim 11,
    열원 공급 단계는 과냉각 상태의 제어 수행 중에, 일정 크기 이상의 열을 공급하거나 열이 발생되도록 하는 것을 특징으로 하는 과냉각 방법.The heat source supplying step is a subcooling method, characterized in that to supply heat or a predetermined amount of heat or more during the control of the subcooling state.
  13. 제11항에 있어서, The method of claim 11,
    과냉각 상태의 제어는 수납공간의 상부 온도를 상전이 온도 이상으로 유지시키는 것을 특징으로 하는 과냉각 방법.The control of the supercooling state is characterized by maintaining the upper temperature of the storage space above the phase transition temperature.
  14. 제11항에 있어서, The method of claim 11,
    과냉각 상태의 제어는 수납공간의 하부 온도 또는 수납물의 온도를 기설정된 과냉각 온도로 유지하여, 수납물이 과냉각 상태로 보관되도록 하는 것을 특징으로 하는 과냉각 방법.The control of the supercooling state maintains the lower temperature of the storage space or the temperature of the storage object at the preset supercooling temperature, so that the storage material is stored in the supercooling state.
  15. 제11항 내지 제14항 중의 어느 한 항에 있어서, The method according to any one of claims 11 to 14,
    열원 공급 단계는 일정 크기 범위의 열을 공급하거나 열이 발생되도록 하는 것을 특징으로 하는 과냉각 방법.The heat source supplying step is a subcooling method characterized in that the supply of heat of a certain size range or to generate heat.
  16. 제15항에 있어서, The method of claim 15,
    열원 공급 단계는 서로 상이한 위치에 설치된 제1 및 제2 열원 공급부에 의해 수행되며, 열원 공급 단계는 과냉각 상태의 제어 수행 중에 제1 열원 공급부를 온 상태로 유지하는 제1 하부 열원 공급 단계와, 제2 열원 공급부의 온 상태와 오프 상태를 교번하여 수행하는 제2하부 열원 공급 단계를 동시에 수행하는 것을 특징으로 하는 과냉각 방법.The heat source supplying step is performed by the first and second heat source supplying units installed at different positions, and the heat source supplying step comprises: a first lower heat source supplying step of keeping the first heat source supplying part on during the control of the supercooling state; 2 heat source At the same time, a second lower heat source supply step of alternately performing the on state and the off state of the supply unit is performed. Subcooling method characterized in that performed.
  17. 제11항에 있어서, The method of claim 11,
    과냉각 방법은 제어부는 온도 감지부로부터의 감지 온도의 변화에 따라 수납물의 과냉각 상태가 해제되었는지를 판단하는 단계를 포함하는 것을 특징으로 하는 과냉각 방법.The supercooling method includes the control unit determining whether the supercooling state of the object is released according to the change of the sensed temperature from the temperature sensing unit.
PCT/KR2010/000057 2009-01-08 2010-01-06 Supercooling apparatus WO2010079942A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/143,020 US20120011861A1 (en) 2009-01-08 2010-01-06 Supercooling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0001662 2009-01-08
KR1020090001662A KR101573929B1 (en) 2009-01-08 2009-01-08 Supercooling apparatus

Publications (2)

Publication Number Publication Date
WO2010079942A2 true WO2010079942A2 (en) 2010-07-15
WO2010079942A3 WO2010079942A3 (en) 2011-07-07

Family

ID=42316967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000057 WO2010079942A2 (en) 2009-01-08 2010-01-06 Supercooling apparatus

Country Status (3)

Country Link
US (1) US20120011861A1 (en)
KR (1) KR101573929B1 (en)
WO (1) WO2010079942A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087859A1 (en) * 2013-12-12 2015-06-18 東レ株式会社 Method for producing touch sensor member, and touch sensor member
DE112015005172B4 (en) * 2015-07-23 2022-01-05 Nippon Micrometal Corporation Bonding wire for semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094549A1 (en) * 2006-02-15 2007-08-23 Lg Electronics, Inc. Apparatus for supercooling, and method of operating the same
EP1980808A2 (en) * 2007-04-06 2008-10-15 Samsung Electronics Co., Ltd. Refrigerator and method to control the same
WO2009038425A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Apparatus for supercooling

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3243527B2 (en) * 1999-12-28 2002-01-07 東京工業大学長 Supercooling water coagulation device
KR101140710B1 (en) * 2006-01-14 2012-05-03 삼성전자주식회사 Refrigerator and cooling control method thereof
JP2007271154A (en) 2006-03-31 2007-10-18 Hitachi Appliances Inc Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094549A1 (en) * 2006-02-15 2007-08-23 Lg Electronics, Inc. Apparatus for supercooling, and method of operating the same
EP1980808A2 (en) * 2007-04-06 2008-10-15 Samsung Electronics Co., Ltd. Refrigerator and method to control the same
WO2009038425A2 (en) * 2007-09-21 2009-03-26 Lg Electronics, Inc. Apparatus for supercooling

Also Published As

Publication number Publication date
KR20100082257A (en) 2010-07-16
WO2010079942A3 (en) 2011-07-07
US20120011861A1 (en) 2012-01-19
KR101573929B1 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2010079945A2 (en) Supercooling system
WO2010076983A2 (en) Non-freezing storage unit and refrigerator including the same
WO2010079946A2 (en) Supercooling system
WO2016117942A1 (en) Refrigerator and method for controlling the same
KR20090031077A (en) Supercooling apparatus
WO2019045306A1 (en) Refrigerator and control method therefor
WO2010079942A2 (en) Supercooling apparatus
WO2010079943A2 (en) Non-freezing storage unit
WO2010079947A2 (en) Supercooling system
WO2010071324A2 (en) Refrigerator
KR20100082261A (en) Supercooling system
KR101127183B1 (en) Non-freezing chamber
WO2010071322A2 (en) Cooling control apparatus
JP2004308993A (en) Operation and control method for antisweating heater of refrigerating and freezing showcase
KR20100011329A (en) Supercooling system
WO2010071326A2 (en) Refrigerator
KR100844604B1 (en) Refrigerator
KR100857328B1 (en) Non-freezing chamber
KR100961794B1 (en) Supercooling apparatus
KR100844623B1 (en) Supercooling apparatus
KR20100082260A (en) Refregerating room for supercooling and refrigerator having the same
KR101143974B1 (en) Refrigerator
KR101052701B1 (en) Freeze Storage
KR20090028361A (en) Apparatus for supercooling
WO2010079973A2 (en) Cooling apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729284

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13143020

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729284

Country of ref document: EP

Kind code of ref document: A2