WO2010079648A1 - Optical waveguide-type chemical sensor - Google Patents

Optical waveguide-type chemical sensor Download PDF

Info

Publication number
WO2010079648A1
WO2010079648A1 PCT/JP2009/068249 JP2009068249W WO2010079648A1 WO 2010079648 A1 WO2010079648 A1 WO 2010079648A1 JP 2009068249 W JP2009068249 W JP 2009068249W WO 2010079648 A1 WO2010079648 A1 WO 2010079648A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core layer
light
chemical sensor
type chemical
Prior art date
Application number
PCT/JP2009/068249
Other languages
French (fr)
Japanese (ja)
Inventor
伸和 根岸
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2010079648A1 publication Critical patent/WO2010079648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N21/774Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
    • G01N21/7743Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Definitions

  • the present invention relates to an optical waveguide type chemical sensor capable of measuring the concentration of a biological substance, an environmental substance, etc. with high accuracy by measuring light emission from a detection region provided in a part of a waveguide core. is there.
  • a sample adsorbed on an adsorption film or the like is placed on the exposed surface of the core layer of the planar optical waveguide, and an external light source is connected via a grating or the like. While the measurement light is incident on the core layer and the evanescent wave (evanescent wave) generated when the measurement light introduced into the core layer is reflected by the sample, or by the evanescent wave, the sample A method for measuring the concentration of a biological substance, an environmental substance, etc. by analyzing a spectrum of fluorescence, phosphorescence, etc. generated from the light is disclosed (see, for example, Patent Documents 1 to 3).
  • the fluorescence spectrum measurement used for the measurement of the concentration of biological substances, environmental substances, etc. is performed using a 10 mm square cell (quartz cell etc.) mainly in the solution system, and excitation light (from one direction to the square cell ( Monochromatic light) is emitted, and the spectrum of emission light (fluorescence) emitted from the direction perpendicular to the optical axis of the excitation light is analyzed.
  • the conventional biochemical sensor using the optical waveguide as described above requires a large amount of the optical system on the light source side and the spectroscopic side, and uses a weak evanescent wave.
  • the present invention has been studied by the inventor, and as a result, when light transmitted through the core layer of the optical waveguide is irradiated onto the sample existing in the optical waveguide, the present invention is unique to the sample.
  • the purpose of the present invention is to provide an optical waveguide type chemical sensor that can be measured with high sensitivity and high accuracy even with a small number of samples, and is compact and easy to handle.
  • an optical waveguide type chemical sensor of the present invention comprises an optical waveguide structure comprising a core layer having a long shape in the optical path direction and two clad layers sandwiching and encapsulating the core layer, and a light emitting means. And an opening for exposing a part of the core layer as a detection part, and the detection part has a hole-like structure for increasing the surface area of the detection part.
  • the light emitting means has a function of irradiating the sample disposed in the structure through the core layer with the emitted light, and the light receiving means emits light generated from the sample by the irradiation.
  • Adopt a configuration that has the function of measuring.
  • the “hole structure” of the detection unit in the present invention means that each of the three-dimensional structures does not communicate in the vertical and horizontal directions when viewed from the upper surface (exposed surface) of the detection unit.
  • This is a short configuration and includes all hole shapes regardless of the size, depth, opening shape, cross-sectional shape of the hole, and whether or not the bottom of the hole is penetrating / non-penetrating or having a bottom.
  • the “groove-like structure” of the detection unit in the present invention is a relatively long shape in which each of the three-dimensional structures extends in the vertical and horizontal directions when viewed from the upper surface (exposed surface) of the detection unit. This refers to the formed structure, and includes all groove shapes regardless of the groove length, depth, opening shape, cross-sectional shape and communication method, and whether or not the bottom of the groove penetrates or does not penetrate. It is.
  • the present invention relates to a chemical sensor or a biochemical sensor using an optical waveguide structure, in which a sample is sufficiently contained in a sample arrangement portion (detection unit) provided by exposing a part of the core layer of the optical waveguide.
  • An intended shape is achieved by forming a concavo-convex shape that can be captured in the sample and irradiating the sample captured in the concavo-convex shape directly with measurement light through the core layer.
  • an opening that exposes a part of the core layer as a detection portion is provided in one of the two clad layers that sandwich the core layer, and the other surface is exposed from the exposed surface of the core layer.
  • To the cladding layer at least one of a hole-like structure and a groove-like structure for increasing the surface area of the detection unit is drilled, a measurement sample is disposed therein, and the emitted light from the light emitting means is emitted.
  • the sample is fitted in the hole-shaped structure or the like, and the irradiated area (measurement target area) and measurement of the sample with respect to the measurement light irradiated through the core layer
  • the number of times of contact with light can be increased.
  • the amount of samples actually involved in the measurement can be increased.
  • the light emitting means is disposed at a position away from the detection unit in the optical path direction, is in contact with the outer surface of any one of the cladding layers, or instead of any one of the cladding layers,
  • the sensor can be configured compactly because the light emitting system is integrally provided around the optical waveguide structure.
  • the light receiving system when the light receiving means is disposed on the outer surface of the other cladding layer adjacent to the detection unit, the light receiving system is integrally disposed around the optical waveguide structure, It can be configured compactly.
  • the optical waveguide sensor device in which the light emitting means and the light receiving means are integrally provided so as to be in contact with the optical waveguide structure can be configured compactly.
  • the device does not require adjustment of the optical system on both the light emitting side and the light receiving side.
  • this optical waveguide sensor device is highly general, and measurement can be performed at any place as long as a power supply device is supplied to the device. Therefore, the optical waveguide sensor device using the present invention can easily cope with not only the inside of a laboratory but also an urgent measurement in the field such as medical treatment or disaster.
  • a sealing member is disposed in the opening of the one clad layer so that the detection unit is sealed before use, and peeled off during use to expose the detection unit.
  • impurities or the like enter the detection unit until just before using the sensor, and the detection unit can be kept clean. Therefore, in the optical waveguide type chemical sensor of the present invention, factors that reduce accuracy such as dust and impurities are eliminated as much as possible, and high measurement accuracy can be maintained over a long period of time.
  • FIG. 1 It is a typical sectional view of the length direction which shows the composition of the optical waveguide type chemical sensor in a 1st embodiment of the present invention. It is the side view which looked at the optical waveguide type chemical sensor of Drawing 1 from the arrow X direction.
  • Each of the drawings (a) to (e) is a top view showing a shape example of a “three-dimensional structure for increasing the surface area” formed in the detection unit of the optical waveguide type chemical sensor in the first embodiment.
  • (A) is a typical sectional view of the length direction showing a modification of the optical waveguide type chemical sensor in the first embodiment of the present invention, and (b) is a top view of this optical waveguide type chemical sensor. It is a typical sectional view of the length direction which shows the composition of the optical waveguide type chemical sensor in a 2nd embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view in the length (longitudinal) direction showing the configuration of the optical waveguide type chemical sensor according to the first embodiment of the present invention
  • FIG. 2 shows the optical waveguide type chemical sensor in FIG.
  • FIG. 3 is a top view of the optical waveguide type chemical sensor of FIG. 1 viewed from the direction of arrow Z.
  • the white arrow in each figure represents light transmission
  • the black arrow represents light emission.
  • 1 to 3 show the thickness of each member in an emphasized manner, and omit the illustration of a control unit, a power supply unit, and the like for operating this sensor.
  • the optical waveguide type chemical sensor in the present embodiment is for measuring the fluorescence intensity or the fluorescence spectrum of a sample arranged in the detection region, such as a chemical substance, a biological substance, and an environmental substance.
  • the chemical sensor of the present invention has a long strip shape in the optical axis (x-axis) direction, and includes a core layer 1 and two clad layers (an under clad layer 2 and an over clad).
  • Sensor device comprising an optical waveguide formed of layer 3), a detection unit 4 formed in an end region in the length direction of the core layer 1, and a light emitting means (light source 5) and a light receiving means (light receiving element 6). It is configured as.
  • the upper surface of the over clad layer 3 is an exposed surface exposed to the outside, and this exposed surface is usually covered with a seal member 10 disposed in the opening 3a. It is protected until the sensor is first used.
  • the detection unit 4 includes “at least one of a hole-like structure and a groove-like structure for increasing the surface area of the detection unit”, which will be described later (hereinafter collectively referred to as “three-dimensional structure for increasing the surface area”). Is formed from the upper surface toward the under cladding layer 2.
  • the seal member 10 is removed, the upper surface of the detection unit 4 is exposed, and the sample (usually liquid) is contained in the three-dimensional structure formed thereon to increase the surface area. Is injected using a dropper or the like. Next, light (excitation light) is emitted from the light source 5 to the core layer 1, and the light is irradiated onto the sample in the three-dimensional structure that increases the surface area.
  • the light receiving element 6 emits light such as fluorescence emitted from the sample. By receiving the light and measuring the amount of received light, the spectrum, and the like, the component in the sample is specified.
  • the optical waveguide used in the present invention is obtained by laminating a core layer 1 made of a photosensitive resin on an undercladding layer 2 made of a resin using a photolithography technique.
  • a resin over clad layer 3 is formed to sandwich and enclose the core layer 1. Further, another portion of the upper surface of the core layer 1 is exposed at a position away from the opening 3a for the detection unit 4 in the overcladding layer 3 in the optical path (optical axis of the core layer 1: x-axis) direction.
  • An opening 3b is provided, and a light source 5 described later is formed in the opening 3b.
  • a light receiving element 6 described later is disposed on the outer (lower) surface of the undercladding layer 2 adjacent to the detection unit 4, and the detection member 4 (vertical hole 41) is removed by removing the seal member 10.
  • the sample By irradiating the sample injected or filled with the light emitted from the light source 5 (excitation light) through the core layer 1, the sample is emitted in a direction perpendicular to the optical axis (x-axis) of the excitation light. Fluorescence can be measured.
  • the feature of the optical waveguide type chemical sensor in the present embodiment is that the detection unit 4 formed by the opening 3a of the over clad layer 3 communicates with the opening 3a and the "4" That is, a “three-dimensional structure that increases the surface area” is formed.
  • the exposed surface (opening 3a) of the core layer 1 extends to the under cladding layer 2 as shown in FIG. A plurality of vertical holes 41, 41, ... are provided.
  • FIGS. 3A to 3E is a shape example of a three-dimensional structure (hole structure, groove structure) that increases the surface area formed in the detection unit 4 of the optical waveguide type chemical sensor in the first embodiment.
  • FIG. 3 in order to make it easy to see the shape of the three-dimensional structure which increases these surface areas, illustration of the sealing member 10 which covers the detection part 4 is abbreviate
  • Each vertical hole 41 of the detection unit 4 has a simple vertical hole shape when viewed from the sensor side surface (y-axis direction) as shown in FIG. 1, but when viewed from the upper surface (z-axis direction), As shown in 3 (a) to (e), various shapes can be used.
  • these vertical holes 41A may be a “groove-like structure” that is continuous in a direction (y-axis direction) perpendicular to the optical axis (x-axis) direction of the core layer 1.
  • the vertical wall surface of each vertical hole 41B may be formed in a corrugated shape in order to further increase the surface area of the groove-like structure.
  • the vertical holes 41A and 41B constituting these groove-like structures reach the surface of the under cladding layer 2 from the upper surface (exposed surface) of the detection unit 4.
  • these vertical holes 41A and 41B may be formed to such a depth as to leave a part of the core layer 1 at the bottom.
  • these vertical holes 41 are “hole-shaped structures” in which intermittent hole rows are formed in a direction (y-axis direction) orthogonal to the optical axis direction of the core layer 1, for example, FIG. ) Or a columnar vertical hole 41D having a circular cross section as shown in FIG. 3D, or a prismatic vertical hole 41D having a polygonal cross section as shown in FIG.
  • the hole-like structure by the intermittent vertical holes 41 forms a matrix, the measurement light is uniformly irradiated to each of the vertical holes 41E as shown in FIG.
  • the phases of the adjacent vertical holes 41E with respect to the optical axis (x axis) may be staggered for each hole row (staggered lattice).
  • each of the vertical holes 41C, D, E constituting these hole-like structures may be formed to a depth that leaves a part of the core layer 1 at the bottom. Good. Further, only one of the groove-like structure and the hole-like structure of the detection unit 4 may be formed, or these may be used together to form the detection unit 4 at the same time. Further, the shape and depth of each of the vertical holes 41 (including 41A to 41E) can be freely set in a range not penetrating the under cladding layer 2 toward the light receiving element 6 according to the target sample. Can do.
  • the detection unit 4 may have a single large hole shape.
  • the shape of the detection unit 4 requires a larger amount of sample than the above-described optical waveguide type chemical sensor having a hole-like structure or a groove-like structure.
  • the method of forming the detection part 4 which has these groove-like structure or hole-like structure is not specifically limited, However, When forming the core layer 1 using the lithography method, it draws in the mask pattern beforehand. It can be created simultaneously with the formation of the optical waveguide. When forming by post-processing, fine processing by etching, laser, or the like may be used depending on the material of the core layer 1.
  • the optical waveguide used in the present embodiment a polymer-based optical waveguide that is lightweight and easy to finely process using photolithography is preferable.
  • the material for forming the clad layers 2 and 3 include epoxy resin, polyimide resin, acrylic resin, photopolymerizable resin, and photosensitive resin.
  • an epoxy resin is preferable from the viewpoint of transparency, heat resistance, and moisture resistance, and a mixed resin of a fluorene epoxy resin and an alicyclic epoxy resin is particularly preferable.
  • a photopolymerizable resin made of an epoxy resin, a polyimide resin, an acrylic resin or the like can be mentioned, and among them, from the viewpoint of satisfying all of transparency, heat resistance, and moisture resistance.
  • a mixed resin of a fluorene-based epoxy resin and an oxetane compound can be preferably used.
  • the light emitting means (light source 5) and the light receiving means (light receiving element 6), which are another feature of the optical waveguide type chemical sensor according to the present embodiment, will be described.
  • the light source 5 is spaced apart from the detection unit 4 in the over clad layer 3 in the optical path (optical axis: x-axis) direction separately from the opening 3 a for the detection unit 4. It is disposed in the opening 3b provided at the position, and is configured integrally with the optical waveguide structure.
  • a light emitting diode such as an LED (Light Emitting Diode) or an OLED (Organic Light Emitting Diode), a laser diode or a VCSEL (Vertical Cavity Surface Emitting Laser), a vertical cavity surface emitting semiconductor laser or the like. It can be used suitably.
  • the OLED can be formed in contact with the core layer 1 in the opening 3b of the over clad layer 3 provided for the light source 5, alignment of the light emitting element is unnecessary (alignment-free). This is preferable.
  • the light receiving element 6 is disposed on the outer (lower side in the drawing) surface of the under cladding layer 2 adjacent to the detection unit 4, and from the sample disposed in the “structure for increasing the surface area” of the detection unit 4.
  • the fluorescent light emitted in the direction orthogonal to the optical axis (x-axis) of the excitation light is positioned at a position where it can be measured efficiently.
  • an inorganic or organic photodiode or the like is used as the type of the light receiving element 6.
  • the organic photodiode can be formed in contact with the under cladding layer 2, alignment of the light receiving element is unnecessary (alignment free), which is preferable.
  • the optical waveguide chemical sensor according to the present embodiment can measure the fluorescence intensity or the fluorescence spectrum emitted from the target sample efficiently, with high sensitivity and high accuracy, even with a small number of samples.
  • the entire apparatus can be configured compactly. There is no need to adjust the optical system on both the light emitting side and the light receiving side. Therefore, the optical waveguide type chemical sensor according to the present embodiment has high generality, and measurement can be performed under various environments as long as a power supply device that supplies the device is prepared.
  • FIG. 5 is a schematic cross-sectional view in the length (longitudinal) direction showing the configuration of the optical waveguide type chemical sensor according to the second embodiment of the present invention.
  • the side view (end face) of the optical waveguide type chemical sensor according to this embodiment viewed from the X direction is the same as FIG. 2 of the first embodiment, and the “three-dimensional structure for increasing the surface area” formed on the detection unit 4.
  • the example of the shape is also the same as the respective drawings in FIG. 3 of the first embodiment, and the illustration thereof is omitted.
  • symbol is attached
  • the optical waveguide type chemical sensor according to the second embodiment differs from the first embodiment in that the width is intermittent in the depth direction (z-axis direction) of the detection unit 4 exposed by the opening 3a of the over clad layer 3. .., A three-dimensional structure that increases the surface area of the concavo-convex shape (corrugated shape) that changes with time, is formed.
  • An optical path conversion structure 45 ° micromirror 7) for converting the optical path of the excitation light emitted from the light source 5 is formed in a predetermined region of the core layer 1 corresponding to the lower side (lower side in the drawing) of the light source 5. Has been.
  • the optical waveguide type chemical sensor according to the present embodiment has a core layer that is further further than the optical waveguide type chemical sensor according to the first embodiment due to the vertical holes 42 whose width changes intermittently in the depth direction.
  • the irradiation area (measurement target area) of the sample with respect to the excitation light irradiated through 1 increases, and the amount of the sample actually involved in the measurement (effective volume as a sensor) increases.
  • the optical waveguide type chemical sensor of this embodiment can measure the fluorescence with high sensitivity and high accuracy even with a small number of samples.
  • each vertical hole 42 can be freely set in a range not penetrating the under cladding layer 2 to the light receiving element 6 side according to the target sample (see FIG. 3).
  • the method for forming the detection unit 4 having each of the vertical holes 42 is not particularly limited, but the lithography method as in the first embodiment cannot be used. Therefore, depending on the material of the core layer 1, etching, laser, etc. It is sufficient to use the fine processing by.
  • a method of forming the micromirror 7 in addition to a general dicing method, a method by lithography or laser processing may be used.
  • the film having the optical waveguide structure was produced as follows.
  • a clad layer forming material and a core layer forming material were prepared.
  • Component A 83 parts by weight of bisphenoxyethanol fluorene glycidyl ether which is a fluorene derivative
  • Component B 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate which is an alicyclic epoxy resin as a diluent (Daicel) 17 parts by weight of component C: 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate solution (manufactured by Chemical Industries, Celoxide 2021P) Acid generator) 1 part by weight
  • the above components A, B, and C were mixed to prepare materials for forming the under cladding layer 2 and the over cladding layer 3.
  • Component A 50 parts by weight of bisphenoxyethanol fluorene glycidyl ether as a fluorene derivative
  • Component D 50 parts by weight of bisphenol fluorenediglycidyl ether as a fluorene derivative
  • Component C 4,4′-bis [di ( ⁇ -hydroxyethoxy) phenylsulfur [Finio] Phenyl sulfide-bis-hexafluoroantimonate 50% propionate carbonate solution (photoacid generator) 1 part by weight
  • the above components A, B, and C were mixed to prepare a material for forming the core layer 1.
  • a clad layer and a core layer were formed by using the above forming material, and a film-like optical waveguide was produced.
  • the “cladding layer forming material” was applied by spin coating (1000 rpm: 15 sec) to form a coating layer. Then, the entire surface of the coating layer is irradiated with ultraviolet rays (mixed line: accumulated light quantity 1000 mJ / cm 2 ) using an ultra-high pressure mercury lamp, and then heated at 120 ° C. for 30 minutes to form an under cladding layer 2 having a thickness of 30 ⁇ m. did.
  • core layer forming material is applied to the upper surface of the undercladding layer 2 by a spin coating method (1500 rpm: 15 sec) and heated on a hot plate at 70 ° C. for 5 minutes to volatilize the solvent. A resin layer for formation was formed. The coating thickness of the core layer 1 is adjusted so that the film thickness becomes 50 ⁇ m after the solvent volatilization process. Next, the core layer shape and a photomask having a predetermined opening pattern having the shape of the detection unit 4 having the same “groove-like structure for increasing the surface area” as in the first embodiment (FIG. 3A) are used.
  • Exposure was performed by irradiating with ultraviolet rays (i-line: accumulated light quantity 2000 mJ / cm 2 on a 365 nm basis) using a high-pressure mercury lamp. Further, after heating for 10 minutes on a hot plate at 70 ° C. to complete the reaction, development was performed using a 10% by weight aqueous solution of ⁇ -butyrolactone, whereby unexposed portions were dissolved and removed. Then, the heat drying process for 120 degreeC x 10 minutes was performed, and the core layer 1 on the said under clad layer 2 was formed.
  • ultraviolet rays i-line: accumulated light quantity 2000 mJ / cm 2 on a 365 nm basis
  • the above “cladding layer forming material” is applied by spin coating (1500 rpm: 15 sec) so as to cover the core layer 1, and a hot plate at 70 ° C.
  • the solvent was volatilized by heating for 5 minutes above, and a resin layer for forming an overclad layer was formed.
  • ultraviolet rays cross-link: integrated light quantity
  • the exposure was performed by irradiating 2000 mJ / cm 2 ).
  • the film-type optical waveguide obtained above was peeled from the glass plate to form the light-emitting element and the light-receiving element 6 of the light source 5, and the optical waveguide-type chemical sensor of the present invention was produced.
  • Light emitting element As the light emitting element of the light source 5, an OLED composed of a transparent positive electrode, an organic compound layer, a metal cathode, or the like is used.
  • the transparent positive electrode one having a light transmittance of 70% or more in a visible light region of 400 to 700 nm, such as tin oxide, indium tin oxide (ITO), and indium zinc oxide is used.
  • the organic compound layer may have a single-layer structure composed only of a light emitting layer, or a laminated structure having a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a charge blocking intermediate layer, and the like. Also good.
  • Alq3 aluminum quinolinol complex
  • the metal cathode is made of an alkali metal such as Li or K having an excellent electron injection property and a low work function, an alkaline earth metal such as Mg or Ca, or a material such as Al or Ag which is not easily oxidized and is stable. desirable.
  • LiF / Al was used in a stacked manner.
  • the light-emitting element (light source 5) of this example formed using the above materials emits green light having a peak near 525 nm.
  • the OLED of this embodiment is formed in the opening 3b of the over clad layer 3 provided for the light source 5, it is not necessary to perform alignment (alignment) again.
  • An organic photodiode is used as the light receiving element 6.
  • the constituent material which comprises a photodetection layer, a formation method, and a film thickness, the thing similar to a conventionally well-known organic photodiode is used.
  • the photodetection layer is composed only of an organic thin film, and as an example of the element, like the light emitting element, a transparent positive electrode such as indium tin oxide (ITO), an organic compound layer, and a metal cathode such as LiF / Al.
  • ITO indium tin oxide
  • the light detection layer can be raised.
  • a layered layer of CuPc (copper phthalocyanine) and C60 (60 fullerene) was used as the organic compound layer.
  • the light receiving element 6 of the present embodiment formed using the above materials has a high sensitivity region in the vicinity of 550 to 700 nm. Further, the light receiving element 6 of the present embodiment can be made unnecessary (alignment free) by being formed on the outer surface of the under-cladding layer 2 adjacent to the detector 4.
  • Glucose advances the following reaction in the presence of glucose oxidase. ⁇ -D-glucose + O 2 + H 2 O ⁇ D-glucono-1,5-lactone + H 2 O 2 Further, the generated H 2 O 2 generates a fluorescent substance Resolfin by FluoroH 2 O 2 (Detection reagent) containing peroxidase. 2H 2 O 2 + Detection reagent (non-fluorescent) ⁇ Resolfin This Resolfin emits fluorescence of 590 to 600 nm by excitation light of 530 to 571 nm.
  • L-glutamate advances the following reaction in the presence of L-glutamate oxidase.
  • the generated H 2 O 2 generates a fluorescent substance Resolfin by FluoroH 2 O 2 (Detection reagent) containing peroxidase.
  • 2H 2 O 2 + Detection reagent (non-fluorescent) ⁇ Resolfin This Resolfin emits fluorescence of 590 to 600 nm by excitation light of 530 to 571 nm.
  • green light (excitation light) having a peak near 525 nm emitted from the light source 5 propagates in the core layer 1 in the optical axis (x-axis) direction, and the detection unit
  • the sample (reaction solution) arranged in the “structure for increasing the surface area” 4 is directly irradiated.
  • the fluorescence emitted from the Resolfin contained in the sample is incident on the light receiving element 6 disposed in a direction (z-axis direction) orthogonal to the optical axis, and is converted into a direct current by photoelectric conversion.
  • the optical waveguide type chemical sensor of the present invention can be used not only for quantitative or qualitative analysis of glucose or glutamic acid, but also for quantitative or qualitative analysis of substances that emit fluorescence directly or indirectly with a reagent or the like.
  • the optical waveguide type chemical sensor of the present invention can be used for various purposes in inspections where it is difficult to obtain many samples such as biological substances and environmental chemical substances. Moreover, the optical waveguide type chemical sensor of the present invention can be used not only for measurement in a laboratory but also for simple measurement or quick measurement at a production site, a medical site, a disaster site or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Disclosed is an optical waveguide-type chemical sensor that can realize high-sensitivity and high-accuracy measurement even in the use of a small amount of a sample, is compact, and is easy to handle.  The optical waveguide-type chemical sensor comprises an optical waveguide, a light emitting means (5), and a light receiving means (6).  The optical waveguide comprises a core layer (1) and two clad layers (2, 3) that hold and envelop the core layer (1) therebetween.  One of the clad layers (3) has an opening (3a) that exposes a part of the core layer (1) as a detection part (4).  In the detection part (4), at least one of a hole structure and a groove structure for increasing the surface area of the detection part (4) is provided by boring from the exposed surface of the core layer (1) toward the other clad layer (2) (vertical hole (41)).  The structure for increasing the surface area formed in the detection part (4) is used for sample placement.  The light emitting means (5) functions to apply light, emitted from the light emitting means (5), to the sample placed within the structure through the core layer (1).  The light receiving means (6) functions to measure luminescence produced from the sample upon the application of the light.

Description

光導波路型ケミカルセンサOptical waveguide type chemical sensor
 本発明は、導波路コアの一部に設けた検出領域からの発光を計測することにより、生体物質や環境物質等の濃度等を高精度に測定することのできる光導波路型ケミカルセンサに関するものである。 The present invention relates to an optical waveguide type chemical sensor capable of measuring the concentration of a biological substance, an environmental substance, etc. with high accuracy by measuring light emission from a detection region provided in a part of a waveguide core. is there.
 従来、試料溶液や試料気体中に含まれる物質の濃度を高感度で測定するセンサとして、試料に照射した光の吸収,散乱,反射,屈折や、蛍光,発光等の光学的変化を測定するオプティカルバイオケミカルセンサが提案されている。 Conventionally, as a sensor that measures the concentration of substances contained in sample solutions and sample gases with high sensitivity, it measures optical changes such as absorption, scattering, reflection, refraction, fluorescence, and luminescence of the light irradiated on the sample. Biochemical sensors have been proposed.
 例えば、平面(プレーナ)型光導波路を用いたバイオケミカルセンサとしては、平面型光導波路のコア層の露出表面に吸着膜等に吸着させた試料を配置し、グレーティング等を介して外部光源からの測定光を上記コア層に入射させるとともに、該コア層内に導入された測定光が反射する際に生じるエバネッセント波(evanescent wave)の上記試料による吸収率や散乱強度、あるいは、エバネッセント波によって上記試料から発生する蛍光,りん光等のスペクトルを分析することにより、生体物質や環境物質等の濃度を測定する方法が開示されている(例えば、特許文献1~3等を参照)。 For example, as a biochemical sensor using a planar (planar) optical waveguide, a sample adsorbed on an adsorption film or the like is placed on the exposed surface of the core layer of the planar optical waveguide, and an external light source is connected via a grating or the like. While the measurement light is incident on the core layer and the evanescent wave (evanescent wave) generated when the measurement light introduced into the core layer is reflected by the sample, or by the evanescent wave, the sample A method for measuring the concentration of a biological substance, an environmental substance, etc. by analyzing a spectrum of fluorescence, phosphorescence, etc. generated from the light is disclosed (see, for example, Patent Documents 1 to 3).
 一方、生体物質や環境物質等の濃度の測定に利用される蛍光スペクトル測定は、溶液系を主に10mm角セル(石英セル等)を用いて行なわれ、上記角セルに一方方向から励起光(単色光)照射し、この励起光の光軸に直交する方向から、出射されるエミッション光(蛍光)のスペクトルを分析する。 On the other hand, the fluorescence spectrum measurement used for the measurement of the concentration of biological substances, environmental substances, etc. is performed using a 10 mm square cell (quartz cell etc.) mainly in the solution system, and excitation light (from one direction to the square cell ( Monochromatic light) is emitted, and the spectrum of emission light (fluorescence) emitted from the direction perpendicular to the optical axis of the excitation light is analyzed.
特開平9-61346号公報JP-A-9-61346 特開2004-43120号公報JP 2004-43120 A 特開2006-85212号公報JP 2006-85212 A
 しかしながら、上記のような光導波路を用いた従来のバイオケミカルセンサは、光源側および分光側の光学システムが大掛かりになってしまううえ、微弱なエバネッセント波を利用することから、試料の量もある程度必要なうえ、センサ感度の安定化や高感度化がむずかしいという問題があった。 However, the conventional biochemical sensor using the optical waveguide as described above requires a large amount of the optical system on the light source side and the spectroscopic side, and uses a weak evanescent wave. In addition, there is a problem that it is difficult to stabilize and increase the sensitivity of the sensor.
 また、従来の蛍光スペクトル測定は、角セルを用いることから、ある程度の試料の量(溶液にした状態で少なくとも2~3ml程度以上)が必要で、光学系を含めた装置全体も大きくなってしまう傾向にある。 In addition, since the conventional fluorescence spectrum measurement uses a square cell, a certain amount of sample (at least about 2 to 3 ml or more in a solution state) is required, and the entire apparatus including the optical system becomes large. There is a tendency.
 本発明は、このような問題を解決するため、本発明者が研究を重ねた結果、光導波路のコア層を透過する光を、その光導波路中に存在する試料に照射すると、その試料に特有な発光を生じることを見出してなされたもので、少ない試料でも高感度かつ高精度に測定でき、コンパクトで取り扱いも容易な光導波路型ケミカルセンサの提供をその目的とする。 In order to solve such problems, the present invention has been studied by the inventor, and as a result, when light transmitted through the core layer of the optical waveguide is irradiated onto the sample existing in the optical waveguide, the present invention is unique to the sample. The purpose of the present invention is to provide an optical waveguide type chemical sensor that can be measured with high sensitivity and high accuracy even with a small number of samples, and is compact and easy to handle.
 上記の目的を達成するため、本発明の光導波路型ケミカルセンサは、光路方向に長い形状のコア層およびこのコア層を挟持・被包する2つのクラッド層からなる光導波路構造と、発光手段と、受光手段とを備え、一方のクラッド層には、上記コア層の一部を検出部として露出させる開口が設けられ、上記検出部には、該検出部の表面積を増大させるための穴状構造および溝状構造の少なくとも一方が、上記コア層の露出面から他方のクラッド層に向かって穿設されているとともに、上記検出部に形成された穴状構造および溝状構造の少なくとも一方は試料配置用のものであり、上記発光手段は、その出射光を上記コア層を通じて上記構造内に配置される試料に照射する機能を有し、上記受光手段は、上記照射により上記試料から生じる発光を測定する機能を有するという構成をとる。 In order to achieve the above object, an optical waveguide type chemical sensor of the present invention comprises an optical waveguide structure comprising a core layer having a long shape in the optical path direction and two clad layers sandwiching and encapsulating the core layer, and a light emitting means. And an opening for exposing a part of the core layer as a detection part, and the detection part has a hole-like structure for increasing the surface area of the detection part. And at least one of the groove-like structures is drilled from the exposed surface of the core layer toward the other cladding layer, and at least one of the hole-like structure and groove-like structure formed in the detection section is a sample arrangement The light emitting means has a function of irradiating the sample disposed in the structure through the core layer with the emitted light, and the light receiving means emits light generated from the sample by the irradiation. Adopt a configuration that has the function of measuring.
 なお、本発明における検出部の「穴状構造」とは、上記検出部の上面(露出面)から見たときに、複数の立体構造の1つ1つが縦横方向に連通せず、独立して短く形成された構成をいい、その穴の大きさ,深さや開口形状,断面形状、および、穴の底部の貫通・非貫通や底の有無に関わらず、すべての穴形状を含む趣旨である。また、本発明における検出部の「溝状構造」とは、上記検出部の上面(露出面)から見たときに、複数の立体構造の1つ1つが、縦横方向に延びる比較的長い形状に形成された構成をいい、その溝の長さ,深さや開口形状,断面形状と連通の仕方、および、溝の底部の貫通・非貫通や底の有無に関わらず、すべての溝形状を含む趣旨である。 Note that the “hole structure” of the detection unit in the present invention means that each of the three-dimensional structures does not communicate in the vertical and horizontal directions when viewed from the upper surface (exposed surface) of the detection unit. This is a short configuration and includes all hole shapes regardless of the size, depth, opening shape, cross-sectional shape of the hole, and whether or not the bottom of the hole is penetrating / non-penetrating or having a bottom. The “groove-like structure” of the detection unit in the present invention is a relatively long shape in which each of the three-dimensional structures extends in the vertical and horizontal directions when viewed from the upper surface (exposed surface) of the detection unit. This refers to the formed structure, and includes all groove shapes regardless of the groove length, depth, opening shape, cross-sectional shape and communication method, and whether or not the bottom of the groove penetrates or does not penetrate. It is.
 本発明は、光導波路構造を利用したケミカルセンサまたはバイオケミカルセンサにおいて、その光導波路のコア層の一部を露出させて設けられた試料配置部位(検出部)に、試料を充分にコア層内に取り込むことのできる凹凸形状を形成し、この凹凸形状内に取り込まれた試料に、コア層を通じて測定光を直接照射することにより、所期の目的を達成するものである。 The present invention relates to a chemical sensor or a biochemical sensor using an optical waveguide structure, in which a sample is sufficiently contained in a sample arrangement portion (detection unit) provided by exposing a part of the core layer of the optical waveguide. An intended shape is achieved by forming a concavo-convex shape that can be captured in the sample and irradiating the sample captured in the concavo-convex shape directly with measurement light through the core layer.
 すなわち、本発明の光導波路型ケミカルセンサは、コア層を挟持する2つのクラッド層の一方に、上記コア層の一部を検出部として露出させる開口を設け、このコア層の露出面から他方のクラッド層に向かって、該検出部の表面積を増大させるための穴状構造および溝状構造の少なくとも一方を穿設し、そこに測定用の試料を配置するとともに、上記発光手段からの出射光を、コア層を通じて上記構造内の試料に直接照射し、上記試料から生じる発光を上記受光手段で測定する構成を採用することにより、直接光による高感度で高精度な測定が可能になる。したがって、本発明の光導波路型ケミカルセンサは、少ない試料でも、その発光を高感度かつ高精度に測定することができる。 That is, in the optical waveguide type chemical sensor of the present invention, an opening that exposes a part of the core layer as a detection portion is provided in one of the two clad layers that sandwich the core layer, and the other surface is exposed from the exposed surface of the core layer. To the cladding layer, at least one of a hole-like structure and a groove-like structure for increasing the surface area of the detection unit is drilled, a measurement sample is disposed therein, and the emitted light from the light emitting means is emitted. By adopting a configuration in which the sample in the structure is directly irradiated through the core layer, and the light emission generated from the sample is measured by the light receiving means, it is possible to perform highly sensitive and accurate measurement using direct light. Therefore, the optical waveguide type chemical sensor of the present invention can measure light emission with high sensitivity and high accuracy even with a small number of samples.
 特に、本発明では、試料の量が少ない場合でも、これら試料が上記穴状構造等の内に嵌まり込み、コア層を通じて照射される測定光に対する試料の被照射面積(測定対象面積)および測定光との接触回数を増大させることができる。また、少ない試料の中でも、測定に実際に関与する試料の量(センサとしての実効体積)を増加させることができる。 In particular, in the present invention, even when the amount of the sample is small, the sample is fitted in the hole-shaped structure or the like, and the irradiated area (measurement target area) and measurement of the sample with respect to the measurement light irradiated through the core layer The number of times of contact with light can be increased. In addition, among a small number of samples, the amount of samples actually involved in the measurement (effective volume as a sensor) can be increased.
 なかでも、特に、上記発光手段が、上記検出部から光路方向に距離を開けた位置に配置され、上記いずれかのクラッド層の外面に接するか、あるいは、上記いずれかのクラッド層に代えて、上記コア層に直接接触するように形成されているものは、発光系が光導波路構造の周辺に一体に配設されているため、センサをコンパクトに構成することができる。 Among them, in particular, the light emitting means is disposed at a position away from the detection unit in the optical path direction, is in contact with the outer surface of any one of the cladding layers, or instead of any one of the cladding layers, In the case where the light emitting system is formed so as to be in direct contact with the core layer, the sensor can be configured compactly because the light emitting system is integrally provided around the optical waveguide structure.
 同様に、上記受光手段が、上記検出部に隣接する他方のクラッド層の外側表面に配設されているものは、受光系が光導波路構造の周辺に一体に配設されているため、センサをコンパクトに構成することができる。 Similarly, when the light receiving means is disposed on the outer surface of the other cladding layer adjacent to the detection unit, the light receiving system is integrally disposed around the optical waveguide structure, It can be configured compactly.
 また、上記発光手段と上記受光手段のそれぞれを、ともに光導波路構造に当接するように一体に設けた光導波路型センサデバイスは、その装置全体をコンパクトに構成することが可能で、しかも、このセンサデバイスは、発光側・受光側とも光学システムの調整の必要がない。さらに、この光導波路型センサデバイスは過般性が高く、装置に供給する電源装置さえ用意すれば、どのような場所ででも測定を行なうことができる。したがって、本発明を利用した光導波路型センサデバイスは、研究室の中だけではなく、医療や災害等の現場における緊急を要する測定等にも、容易に対応することができる。 Further, the optical waveguide sensor device in which the light emitting means and the light receiving means are integrally provided so as to be in contact with the optical waveguide structure can be configured compactly. The device does not require adjustment of the optical system on both the light emitting side and the light receiving side. Furthermore, this optical waveguide sensor device is highly general, and measurement can be performed at any place as long as a power supply device is supplied to the device. Therefore, the optical waveguide sensor device using the present invention can easily cope with not only the inside of a laboratory but also an urgent measurement in the field such as medical treatment or disaster.
 一方、上記光導波路型ケミカルセンサにおいて、上記一方のクラッド層の開口に、使用前には上記検出部を密封し、使用時には剥がして上記検出部を露出させることのできるシール部材が配設されているものは、このセンサを使用する直前まで、上記検出部に不純物等が入り込むおそれが少なく、この検出部をクリーンな状態に保つことができる。したがって、本発明の光導波路型ケミカルセンサは、ゴミや不純物等、精度を低下させる要因が極力排除され、高い測定精度を長期にわたり維持することが可能になる。 On the other hand, in the optical waveguide type chemical sensor, a sealing member is disposed in the opening of the one clad layer so that the detection unit is sealed before use, and peeled off during use to expose the detection unit. In this case, there is little possibility that impurities or the like enter the detection unit until just before using the sensor, and the detection unit can be kept clean. Therefore, in the optical waveguide type chemical sensor of the present invention, factors that reduce accuracy such as dust and impurities are eliminated as much as possible, and high measurement accuracy can be maintained over a long period of time.
本発明の第1実施形態における光導波路型ケミカルセンサの構成を示す長さ方向の模式的断面図である。It is a typical sectional view of the length direction which shows the composition of the optical waveguide type chemical sensor in a 1st embodiment of the present invention. 図1の光導波路型ケミカルセンサを矢印X方向から見た側面図である。It is the side view which looked at the optical waveguide type chemical sensor of Drawing 1 from the arrow X direction. (a)~(e)の各図は、第1実施形態における光導波路型ケミカルセンサの検出部に形成された「表面積を増大させる立体構造」の形状例を示す上面図である。Each of the drawings (a) to (e) is a top view showing a shape example of a “three-dimensional structure for increasing the surface area” formed in the detection unit of the optical waveguide type chemical sensor in the first embodiment. (a)は本発明の第1実施形態における光導波路型ケミカルセンサの変形例を示す長さ方向の模式的断面図であり、(b)はこの光導波路型ケミカルセンサの上面図である。(A) is a typical sectional view of the length direction showing a modification of the optical waveguide type chemical sensor in the first embodiment of the present invention, and (b) is a top view of this optical waveguide type chemical sensor. 本発明の第2実施形態における光導波路型ケミカルセンサの構成を示す長さ方向の模式的断面図である。It is a typical sectional view of the length direction which shows the composition of the optical waveguide type chemical sensor in a 2nd embodiment of the present invention.
 つぎに、本発明の実施の形態を、図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の第1実施形態における光導波路型ケミカルセンサの構成を示す長さ(縦)方向の模式的断面図であり、図2は図1の光導波路型ケミカルセンサを矢印X方向から見た側面(端面)図、図3は図1の光導波路型ケミカルセンサを矢印Z方向から見た上面図である。なお、各図中の白抜き矢印は光の透過を表し、黒塗り矢印は発光を表す。また、図1~図3の各図は、各部材の厚みを強調して図示しているとともに、このセンサを動作させるための制御部や電源部等の図示を省略している。 FIG. 1 is a schematic cross-sectional view in the length (longitudinal) direction showing the configuration of the optical waveguide type chemical sensor according to the first embodiment of the present invention, and FIG. 2 shows the optical waveguide type chemical sensor in FIG. FIG. 3 is a top view of the optical waveguide type chemical sensor of FIG. 1 viewed from the direction of arrow Z. In addition, the white arrow in each figure represents light transmission, and the black arrow represents light emission. 1 to 3 show the thickness of each member in an emphasized manner, and omit the illustration of a control unit, a power supply unit, and the like for operating this sensor.
 本実施形態における光導波路型ケミカルセンサは、化学物質や生体物質、環境物質等、その検出領域内に配置された試料の蛍光強度あるいは蛍光スペクトルを測定するためのものである。そして、本発明のケミカルセンサは、図1,2に示すように、光軸(x軸)方向に長い短冊形状をしていて、コア層1および2つのクラッド層(アンダークラッド層2とオーバークラッド層3)からなる光導波路と、上記コア層1の長さ方向の端部領域に形成された検出部4と、発光手段(光源5)および受光手段(受光素子6)を一体に備えるセンサデバイスとして構成されている。 The optical waveguide type chemical sensor in the present embodiment is for measuring the fluorescence intensity or the fluorescence spectrum of a sample arranged in the detection region, such as a chemical substance, a biological substance, and an environmental substance. As shown in FIGS. 1 and 2, the chemical sensor of the present invention has a long strip shape in the optical axis (x-axis) direction, and includes a core layer 1 and two clad layers (an under clad layer 2 and an over clad). Sensor device comprising an optical waveguide formed of layer 3), a detection unit 4 formed in an end region in the length direction of the core layer 1, and a light emitting means (light source 5) and a light receiving means (light receiving element 6). It is configured as.
 上記検出部4では、上記オーバークラッド層3の開口3aにより、その上面が外部に露出する露出面となっており、通常、この露出面は開口3aに配設されたシール部材10により被覆され、センサの使用開始まで保護されている。また、この検出部4には、後述する「検出部の表面積を増大させるための穴状構造および溝状構造の少なくとも一方」(以下、総称して「表面積を増大させる立体構造」と記述する)が、その上面からアンダークラッド層2に向かって形成されている。 In the detection unit 4, the upper surface of the over clad layer 3 is an exposed surface exposed to the outside, and this exposed surface is usually covered with a seal member 10 disposed in the opening 3a. It is protected until the sensor is first used. Further, the detection unit 4 includes “at least one of a hole-like structure and a groove-like structure for increasing the surface area of the detection unit”, which will be described later (hereinafter collectively referred to as “three-dimensional structure for increasing the surface area”). Is formed from the upper surface toward the under cladding layer 2.
 この光導波路型ケミカルセンサを使用するには、上記シール部材10を取り除き、検出部4の上面を露出させ、そこに形成された上記表面積を増大させる立体構造の中に、試料(通常は液状)をスポイト等を用いて注入する。ついで、光源5からコア層1に光(励起光)を出射し、その光が上記表面積を増大させる立体構造内の試料に照射され、この試料等から発せられる蛍光等の発光を受光素子6で受光し、その受光光量やスペクトル等を計測することにより、試料中の成分等を特定することが行なわれる。 In order to use this optical waveguide type chemical sensor, the seal member 10 is removed, the upper surface of the detection unit 4 is exposed, and the sample (usually liquid) is contained in the three-dimensional structure formed thereon to increase the surface area. Is injected using a dropper or the like. Next, light (excitation light) is emitted from the light source 5 to the core layer 1, and the light is irradiated onto the sample in the three-dimensional structure that increases the surface area. The light receiving element 6 emits light such as fluorescence emitted from the sample. By receiving the light and measuring the amount of received light, the spectrum, and the like, the component in the sample is specified.
 つぎに、本実施形態における光導波路型ケミカルセンサの構造を詳しく説明する。 Next, the structure of the optical waveguide type chemical sensor in the present embodiment will be described in detail.
 本発明に用いる光導波路は、樹脂からなるアンダークラッド層2の上に、感光性樹脂からなるコア層1をフォトリソグラフィの手法を用いて積層したものであり、このコア層1の上には、該コア層1を挟持・被包する樹脂製のオーバークラッド層3が形成されている。さらに、上記オーバークラッド層3における検出部4用の開口3aから光路(コア層1の光軸:x軸)方向に距離を開けた位置には、コア層1上面の一部を露出させる別の開口3bが設けられており、この開口3b内に、後述する光源5が形成されている。 The optical waveguide used in the present invention is obtained by laminating a core layer 1 made of a photosensitive resin on an undercladding layer 2 made of a resin using a photolithography technique. A resin over clad layer 3 is formed to sandwich and enclose the core layer 1. Further, another portion of the upper surface of the core layer 1 is exposed at a position away from the opening 3a for the detection unit 4 in the overcladding layer 3 in the optical path (optical axis of the core layer 1: x-axis) direction. An opening 3b is provided, and a light source 5 described later is formed in the opening 3b.
 そして、上記検出部4に隣接するアンダークラッド層2の外側(下側)表面には、後述する受光素子6が配設されており、上記シール部材10を取り除いて検出部4(縦孔41)に注入あるいは充填された試料に、上記光源5からの出射光(励起光)をコア層1を通じて照射することにより、この試料から上記励起光の光軸(x軸)に直交する方向に発せられる蛍光を測定することができる。 A light receiving element 6 described later is disposed on the outer (lower) surface of the undercladding layer 2 adjacent to the detection unit 4, and the detection member 4 (vertical hole 41) is removed by removing the seal member 10. By irradiating the sample injected or filled with the light emitted from the light source 5 (excitation light) through the core layer 1, the sample is emitted in a direction perpendicular to the optical axis (x-axis) of the excitation light. Fluorescence can be measured.
 本実施形態における光導波路型ケミカルセンサの特徴は、先に述べたように、オーバークラッド層3の開口3aによって形成された検出部4に、上記開口3aに連通して、該検出部4の「表面積を増大させる立体構造」が形成されている点である。この「表面積を増大させる立体構造」の具体例として、本実施形態の光導波路型ケミカルセンサでは、図1のように、上記コア層1の露出面(開口3a)からアンダークラッド層2にまで至る複数の縦孔41,41,・・・が設けられている。 As described above, the feature of the optical waveguide type chemical sensor in the present embodiment is that the detection unit 4 formed by the opening 3a of the over clad layer 3 communicates with the opening 3a and the "4" That is, a “three-dimensional structure that increases the surface area” is formed. As a specific example of the “three-dimensional structure for increasing the surface area”, in the optical waveguide type chemical sensor of the present embodiment, the exposed surface (opening 3a) of the core layer 1 extends to the under cladding layer 2 as shown in FIG. A plurality of vertical holes 41, 41, ... are provided.
 図3(a)~(e)の各図は、第1実施形態における光導波路型ケミカルセンサの検出部4に形成された表面積を増大させる立体構造(穴状構造,溝状構造)の形状例を示す図である。なお、図3の各図は、これら表面積を増大させる立体構造の形状を見易くするため、検出部4をカバーするシール部材10の図示を省略している。 Each of FIGS. 3A to 3E is a shape example of a three-dimensional structure (hole structure, groove structure) that increases the surface area formed in the detection unit 4 of the optical waveguide type chemical sensor in the first embodiment. FIG. In addition, in each figure of FIG. 3, in order to make it easy to see the shape of the three-dimensional structure which increases these surface areas, illustration of the sealing member 10 which covers the detection part 4 is abbreviate | omitted.
 上記検出部4の各縦孔41は、図1のようにセンサ側面(y軸方向)から見た場合はシンプルな縦穴状であるが、その上面(z軸方向)から見た場合は、図3(a)~(e)のように、種々の形状とすることができる。例えば、図3(a)のように、これら縦孔41Aを、コア層1の光軸(x軸)方向に直交する方向(y軸方向)に連続する「溝状構造」としてもよく、また、図3(b)のように、この溝状構造の表面積をさらに広げるべく、各縦孔41Bの縦壁面を波形に形成してもよい。 Each vertical hole 41 of the detection unit 4 has a simple vertical hole shape when viewed from the sensor side surface (y-axis direction) as shown in FIG. 1, but when viewed from the upper surface (z-axis direction), As shown in 3 (a) to (e), various shapes can be used. For example, as shown in FIG. 3A, these vertical holes 41A may be a “groove-like structure” that is continuous in a direction (y-axis direction) perpendicular to the optical axis (x-axis) direction of the core layer 1. As shown in FIG. 3B, the vertical wall surface of each vertical hole 41B may be formed in a corrugated shape in order to further increase the surface area of the groove-like structure.
 なお、図3(a)および(b)においては、これらの溝状構造を構成する各縦孔41A,Bが、検出部4の上面(露出面)からアンダークラッド層2の表面にまで到達しているが、これら各縦孔41A,Bは、その底部にコア層1の一部を残すような深さに形成してもよい。 3A and 3B, the vertical holes 41A and 41B constituting these groove-like structures reach the surface of the under cladding layer 2 from the upper surface (exposed surface) of the detection unit 4. However, these vertical holes 41A and 41B may be formed to such a depth as to leave a part of the core layer 1 at the bottom.
 また、これら縦孔41を、コア層1の光軸方向に直交する方向(y軸方向)に断続的な穴列が形成された「穴状構造」とする場合は、例えば、図3(c)のように横断面が円形の円柱状縦孔41Cとするか、あるいは、図3(d)のように横断面が多角形の角柱状縦孔41Dとすることができる。さらに、これら断続的な縦孔41による穴状構造が行列(マトリクス)を形成している場合は、図3(e)のように、各縦孔41Eのそれぞれに満遍なく測定光が照射されるように、隣接する縦孔41Eどうしの光軸(x軸)に対する位相が、穴列ごとに互い違い(千鳥格子)になるように配置してもよい。 Further, when these vertical holes 41 are “hole-shaped structures” in which intermittent hole rows are formed in a direction (y-axis direction) orthogonal to the optical axis direction of the core layer 1, for example, FIG. ) Or a columnar vertical hole 41D having a circular cross section as shown in FIG. 3D, or a prismatic vertical hole 41D having a polygonal cross section as shown in FIG. Furthermore, when the hole-like structure by the intermittent vertical holes 41 forms a matrix, the measurement light is uniformly irradiated to each of the vertical holes 41E as shown in FIG. In addition, the phases of the adjacent vertical holes 41E with respect to the optical axis (x axis) may be staggered for each hole row (staggered lattice).
 なお、上述の「溝状構造」と同様、これらの穴状構造を構成する各縦孔41C,D,Eは、その底部にコア層1の一部を残すような深さに形成してもよい。また、上記検出部4の溝状構造や穴状構造は、どちらか一方のみを形成してもよく、あるいは、これらを併用して同時に検出部4に形成してもよい。さらに、これらの各縦孔41(41A~41Eを含む)の形状や深さは、対象とする試料に応じて、アンダークラッド層2を受光素子6側に貫通しない範囲で、自由に設定することができる。 As with the above-mentioned “groove-like structure”, each of the vertical holes 41C, D, E constituting these hole-like structures may be formed to a depth that leaves a part of the core layer 1 at the bottom. Good. Further, only one of the groove-like structure and the hole-like structure of the detection unit 4 may be formed, or these may be used together to form the detection unit 4 at the same time. Further, the shape and depth of each of the vertical holes 41 (including 41A to 41E) can be freely set in a range not penetrating the under cladding layer 2 toward the light receiving element 6 according to the target sample. Can do.
 また、図4に示す第1実施形態の変形例のように、上記検出部4を1つの大きな穴形状としてもよい。ただし、この検出部4形状は、上述の穴状構造や溝状構造を形成した光導波路型ケミカルセンサより、多量の試料が必要とされる。 Further, as in the modification of the first embodiment shown in FIG. 4, the detection unit 4 may have a single large hole shape. However, the shape of the detection unit 4 requires a larger amount of sample than the above-described optical waveguide type chemical sensor having a hole-like structure or a groove-like structure.
 そして、これら溝状構造や穴状構造を有する検出部4を形成する方法は、特に限定されないが、コア層1をリソグラフィ法を用いて形成する場合は、そのマスクパターンに予め描いておくことで、光導波路の形成と同時に作成することができる。後加工で形成する場合は、コア層1の材料に応じて、エッチングやレーザ等による微細加工を用いればよい。 And the method of forming the detection part 4 which has these groove-like structure or hole-like structure is not specifically limited, However, When forming the core layer 1 using the lithography method, it draws in the mask pattern beforehand. It can be created simultaneously with the formation of the optical waveguide. When forming by post-processing, fine processing by etching, laser, or the like may be used depending on the material of the core layer 1.
 さらに、本実施形態で用いる光導波路としては、軽量で、かつ、フォトリソグラフィを利用した微細加工の容易な、ポリマー系光導波路が好ましい。クラッド層2,3の形成材料としては、エポキシ樹脂,ポリイミド樹脂,アクリル樹脂,光重合性樹脂,感光性樹脂等があげられる。なかでも、透明性,耐熱性,耐湿性の観点からエポキシ樹脂が好ましく、特に、フルオレン系エポキシ樹脂と脂環式エポキシ樹脂の混合樹脂がより好ましい。 Further, as the optical waveguide used in the present embodiment, a polymer-based optical waveguide that is lightweight and easy to finely process using photolithography is preferable. Examples of the material for forming the clad layers 2 and 3 include epoxy resin, polyimide resin, acrylic resin, photopolymerizable resin, and photosensitive resin. Of these, an epoxy resin is preferable from the viewpoint of transparency, heat resistance, and moisture resistance, and a mixed resin of a fluorene epoxy resin and an alicyclic epoxy resin is particularly preferable.
 また、コア層1の形成材料としては、通常、エポキシ樹脂,ポリイミド樹脂またはアクリル樹脂等からなる光重合性樹脂があげられ、なかでも、透明性,耐熱性,耐湿性の全てを満足する観点から、フルオレン系エポキシ樹脂とオキセタン化合物の混合樹脂を好適に用いることができる。 Moreover, as a forming material of the core layer 1, usually, a photopolymerizable resin made of an epoxy resin, a polyimide resin, an acrylic resin or the like can be mentioned, and among them, from the viewpoint of satisfying all of transparency, heat resistance, and moisture resistance. A mixed resin of a fluorene-based epoxy resin and an oxetane compound can be preferably used.
 つぎに、本実施形態における光導波路型ケミカルセンサのもう一つの特徴である、発光手段(光源5)と受光手段(受光素子6)について説明する。 Next, the light emitting means (light source 5) and the light receiving means (light receiving element 6), which are another feature of the optical waveguide type chemical sensor according to the present embodiment, will be described.
 光源5は、先に述べたように、検出部4用の開口3aとは別に、上記オーバークラッド層3における検出部4から光路(コア層1の光軸:x軸)方向に距離を開けた位置に設けられた開口3b内に配設され、光導波路構造と一体に構成されている。光源5の発光素子としては、LED(Light Emitting Diode)やOLED(Organic Light Emitting Diode)等の発光ダイオード、レーザーダイオードやVCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)等の半導体レーザを好適に用いることができる。 As described above, the light source 5 is spaced apart from the detection unit 4 in the over clad layer 3 in the optical path (optical axis: x-axis) direction separately from the opening 3 a for the detection unit 4. It is disposed in the opening 3b provided at the position, and is configured integrally with the optical waveguide structure. As a light emitting element of the light source 5, a light emitting diode such as an LED (Light Emitting Diode) or an OLED (Organic Light Emitting Diode), a laser diode or a VCSEL (Vertical Cavity Surface Emitting Laser), a vertical cavity surface emitting semiconductor laser or the like. It can be used suitably.
 なかでも、特に、OLEDは、光源5用に設けられたオーバークラッド層3の開口3b内に、上記コア層1に当接して形成することができるため、発光素子の位置合わせが不要(アライメントフリー)となり、好ましい。 In particular, since the OLED can be formed in contact with the core layer 1 in the opening 3b of the over clad layer 3 provided for the light source 5, alignment of the light emitting element is unnecessary (alignment-free). This is preferable.
 また、受光素子6は、検出部4に隣接するアンダークラッド層2の外側(図示下側)表面に配置されており、上記検出部4の「表面積を増大させる構造」内に配置された試料から、上記励起光の光軸(x軸)に直交する方向に発せられる蛍光を、効率的に測定できる位置に位置決めされている。受光素子6の種類としては、無機または有機フォトダイオード等が用いられる。 In addition, the light receiving element 6 is disposed on the outer (lower side in the drawing) surface of the under cladding layer 2 adjacent to the detection unit 4, and from the sample disposed in the “structure for increasing the surface area” of the detection unit 4. The fluorescent light emitted in the direction orthogonal to the optical axis (x-axis) of the excitation light is positioned at a position where it can be measured efficiently. As the type of the light receiving element 6, an inorganic or organic photodiode or the like is used.
 なかでも、有機フォトダイオードは、上記アンダークラッド層2に当接して形成することができるため、受光素子の位置合わせが不要(アライメントフリー)で、好ましい。 Especially, since the organic photodiode can be formed in contact with the under cladding layer 2, alignment of the light receiving element is unnecessary (alignment free), which is preferable.
 以上の構成により、本実施形態における光導波路型ケミカルセンサは、少ない試料でも効率的に、かつ、高感度・高精度に、対象試料から発せられる蛍光強度あるいは蛍光スペクトルを測定することができる。 With the above configuration, the optical waveguide chemical sensor according to the present embodiment can measure the fluorescence intensity or the fluorescence spectrum emitted from the target sample efficiently, with high sensitivity and high accuracy, even with a small number of samples.
 また、上記光導波路型ケミカルセンサは、光源5と受光素子6とが、ともに光導波路構造に当接するように一体に設けられていることから、その装置全体をコンパクトに構成することができ、しかも、発光側・受光側とも光学システムの調整の必要がない。したがって、本実施形態における光導波路型ケミカルセンサは、過般性が高く、装置に供給する電源装置さえ用意すれば、種々の環境下において測定を行なうことができる。 Further, since the light guide type chemical sensor is provided integrally with the light source 5 and the light receiving element 6 so as to come into contact with the light guide structure, the entire apparatus can be configured compactly. There is no need to adjust the optical system on both the light emitting side and the light receiving side. Therefore, the optical waveguide type chemical sensor according to the present embodiment has high generality, and measurement can be performed under various environments as long as a power supply device that supplies the device is prepared.
 つぎに、本発明の第2実施形態を説明する。
 図5は、本発明の第2実施形態における光導波路型ケミカルセンサの構成を示す長さ(縦)方向の模式的断面図である。なお、本実施形態における光導波路型ケミカルセンサをX方向から見た側面(端面)図は、第1実施形態の図2と同様であり、検出部4に形成された「表面積を増大させる立体構造」の形状例も、第1実施形態の図3各図と同様であるため、これらの図示を省略する。また、第1実施形態と同様の機能を有する構成部材には同じ符号を付して、その詳細な説明を省略する。
Next, a second embodiment of the present invention will be described.
FIG. 5 is a schematic cross-sectional view in the length (longitudinal) direction showing the configuration of the optical waveguide type chemical sensor according to the second embodiment of the present invention. The side view (end face) of the optical waveguide type chemical sensor according to this embodiment viewed from the X direction is the same as FIG. 2 of the first embodiment, and the “three-dimensional structure for increasing the surface area” formed on the detection unit 4. The example of the shape is also the same as the respective drawings in FIG. 3 of the first embodiment, and the illustration thereof is omitted. Moreover, the same code | symbol is attached | subjected to the structural member which has the same function as 1st Embodiment, and the detailed description is abbreviate | omitted.
 本第2実施形態における光導波路型ケミカルセンサが、第1実施形態と異なる点は、オーバークラッド層3の開口3aによって露出する検出部4に、その深さ方向(z軸方向)に幅が断続的に変化する凹凸形状(波形)の「表面積を増大させる立体構造」縦孔42,42,・・・が形成されている点である。また、光源5の下側(図示下方)位置に相当するコア層1の所定領域には、上記光源5から出射される励起光の光路を変換する光路変換構造(45°マイクロミラー7)が形成されている。 The optical waveguide type chemical sensor according to the second embodiment differs from the first embodiment in that the width is intermittent in the depth direction (z-axis direction) of the detection unit 4 exposed by the opening 3a of the over clad layer 3. .., A three-dimensional structure that increases the surface area of the concavo-convex shape (corrugated shape) that changes with time, is formed. An optical path conversion structure (45 ° micromirror 7) for converting the optical path of the excitation light emitted from the light source 5 is formed in a predetermined region of the core layer 1 corresponding to the lower side (lower side in the drawing) of the light source 5. Has been.
 上記の構成により、本実施形態における光導波路型ケミカルセンサは、深さ方向にその幅が断続的に変化する縦孔42によって、上記第1実施形態における光導波路型ケミカルセンサよりもさらに、コア層1を通じて照射される励起光に対する試料の被照射面積(測定対象面積)が増大し、測定に実際に関与する試料の量(センサとしての実効体積)が増加する。 With the configuration described above, the optical waveguide type chemical sensor according to the present embodiment has a core layer that is further further than the optical waveguide type chemical sensor according to the first embodiment due to the vertical holes 42 whose width changes intermittently in the depth direction. The irradiation area (measurement target area) of the sample with respect to the excitation light irradiated through 1 increases, and the amount of the sample actually involved in the measurement (effective volume as a sensor) increases.
 また、光源5の下側に形成されたマイクロミラー7の全反射により、コア層1から漏出する光が抑えられ、より光量の高い励起光を試料に直接照射することができるようになる。したがって、本実施形態の光導波路型ケミカルセンサは、少ない試料でも、その蛍光を高感度かつ高精度に測定することができる。 Also, light leaking from the core layer 1 is suppressed by the total reflection of the micromirror 7 formed on the lower side of the light source 5, and the sample can be directly irradiated with a higher amount of excitation light. Therefore, the optical waveguide type chemical sensor of this embodiment can measure the fluorescence with high sensitivity and high accuracy even with a small number of samples.
 なお、上記検出部4の溝状構造や穴状構造は、上述の第1実施形態と同様、どちらか一方のみを形成してもよく、あるいは、これらを併用して同時に検出部4に形成してもよい。これらの各縦孔42の形状や深さは、対象とする試料に応じて、アンダークラッド層2を受光素子6側に貫通しない範囲で、自由に設定することができる(図3参照)。 In addition, the groove-like structure or the hole-like structure of the detection unit 4 may be formed in either one of them as in the first embodiment described above or may be formed in the detection unit 4 at the same time by using these together. May be. The shape and depth of each vertical hole 42 can be freely set in a range not penetrating the under cladding layer 2 to the light receiving element 6 side according to the target sample (see FIG. 3).
 また、これら各縦孔42を有する検出部4を形成する方法は、特に限定されないが、第1実施形態のようなリソグラフィ法は使用できないため、コア層1の材料に応じて、エッチングやレーザ等による微細加工を用いればよい。 In addition, the method for forming the detection unit 4 having each of the vertical holes 42 is not particularly limited, but the lithography method as in the first embodiment cannot be used. Therefore, depending on the material of the core layer 1, etching, laser, etc. It is sufficient to use the fine processing by.
 さらに、上記マイクロミラー7を形成する方法としては、一般的なダイシングによる方法の他、リソグラフィあるいはレーザ加工等による方法を用いればよい。 Furthermore, as a method of forming the micromirror 7, in addition to a general dicing method, a method by lithography or laser processing may be used.
 つぎに、本発明の実施例について説明する。ただし、本発明は、この実施例に限定されるものではない。 Next, examples of the present invention will be described. However, the present invention is not limited to this embodiment.
 光導波路構造を有するフィルムは、つぎのようにして作製した。 The film having the optical waveguide structure was produced as follows.
 まず、クラッド層の形成材料およびコア層の形成材料を準備した。
〔クラッド層の形成材料〕
 成分A:フルオレン誘導体であるビスフェノキシエタノールフルオレンジグリシジルエーテル 83重量部
 成分B:希釈剤として、脂環式エポキシ樹脂である3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学工業社製、セロキサイド2021P) 17重量部
 成分C:4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド-ビス-ヘキサフルオロアンチモネートの50%プロピオンカーボネート溶液(光酸発生剤) 1重量部
上記成分A,B,Cを混合することにより、アンダークラッド層2およびオーバークラッド層3の形成材料を調製した。
First, a clad layer forming material and a core layer forming material were prepared.
[Clad layer forming material]
Component A: 83 parts by weight of bisphenoxyethanol fluorene glycidyl ether which is a fluorene derivative Component B: 3 ′, 4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate which is an alicyclic epoxy resin as a diluent (Daicel) 17 parts by weight of component C: 4,4′-bis [di (β-hydroxyethoxy) phenylsulfinio] phenyl sulfide-bis-hexafluoroantimonate solution (manufactured by Chemical Industries, Celoxide 2021P) Acid generator) 1 part by weight The above components A, B, and C were mixed to prepare materials for forming the under cladding layer 2 and the over cladding layer 3.
〔コア層の形成材料〕
 成分A:フルオレン誘導体であるビスフェノキシエタノールフルオレンジグリシジルエーテル 50重量部
 成分D:フルオレン誘導体であるビスフェノールフルオレンジグリシジルエーテル 50重量部
 成分C:4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド-ビス-ヘキサフルオロアンチモネートの50%プロピオンカーボネート溶液(光酸発生剤) 1重量部
上記成分A,B,Cを混合することにより、コア層1の形成材料を調製した。
[Material for forming the core layer]
Component A: 50 parts by weight of bisphenoxyethanol fluorene glycidyl ether as a fluorene derivative Component D: 50 parts by weight of bisphenol fluorenediglycidyl ether as a fluorene derivative Component C: 4,4′-bis [di (β-hydroxyethoxy) phenylsulfur [Finio] Phenyl sulfide-bis-hexafluoroantimonate 50% propionate carbonate solution (photoacid generator) 1 part by weight The above components A, B, and C were mixed to prepare a material for forming the core layer 1.
 つぎに、上記形成材料を用いて、クラッド層およびコア層を形成し、フィルム状の光導波路を作製した。 Next, a clad layer and a core layer were formed by using the above forming material, and a film-like optical waveguide was produced.
〔アンダークラッド層の作製〕
 ガラス板上に、上記「クラッド層の形成材料」をスピンコート法(1000rpm:15sec)により塗布し、塗布層を形成した。そして、塗布層の全面に超高圧水銀灯を用いて紫外線(混線:積算光量1000mJ/cm)を照射し、ついで、120℃で30分間加熱することにより、膜厚30μmのアンダークラッド層2を形成した。
[Preparation of underclad layer]
On the glass plate, the “cladding layer forming material” was applied by spin coating (1000 rpm: 15 sec) to form a coating layer. Then, the entire surface of the coating layer is irradiated with ultraviolet rays (mixed line: accumulated light quantity 1000 mJ / cm 2 ) using an ultra-high pressure mercury lamp, and then heated at 120 ° C. for 30 minutes to form an under cladding layer 2 having a thickness of 30 μm. did.
〔コア層の作製〕
 上記アンダークラッド層2の上面に、上記「コア層の形成材料」をスピンコート法(1500rpm:15sec)により塗布し、70℃のホットプレート上で5分間加熱することにより溶媒を揮発させ、コア層形成用の樹脂層を形成した。なお、コア層1の塗布厚は、上記溶媒揮発処理を行なった後に膜厚が50μmとなるように調整している。ついで、コア層形状および第1実施形態(図3(a))と同様の「表面積を増大させる溝状構造」を有する検出部4の形状を備える所定の開口パターンのフォトマスクを介して、超高圧水銀灯を用いて紫外線(i線:365nm基準で積算光量2000mJ/cm)を照射して露光を行なった。そして、さらに70℃のホットプレート上で10分間加熱し、反応を完了させたうえで、γ-ブチロラクトンの10重量%水溶液を用いて現像することにより、未露光部分を溶解除去した。その後、120℃×10分間の加熱乾燥処理を行って、上記アンダークラッド層2上のコア層1を形成した。
[Production of core layer]
The above “core layer forming material” is applied to the upper surface of the undercladding layer 2 by a spin coating method (1500 rpm: 15 sec) and heated on a hot plate at 70 ° C. for 5 minutes to volatilize the solvent. A resin layer for formation was formed. The coating thickness of the core layer 1 is adjusted so that the film thickness becomes 50 μm after the solvent volatilization process. Next, the core layer shape and a photomask having a predetermined opening pattern having the shape of the detection unit 4 having the same “groove-like structure for increasing the surface area” as in the first embodiment (FIG. 3A) are used. Exposure was performed by irradiating with ultraviolet rays (i-line: accumulated light quantity 2000 mJ / cm 2 on a 365 nm basis) using a high-pressure mercury lamp. Further, after heating for 10 minutes on a hot plate at 70 ° C. to complete the reaction, development was performed using a 10% by weight aqueous solution of γ-butyrolactone, whereby unexposed portions were dissolved and removed. Then, the heat drying process for 120 degreeC x 10 minutes was performed, and the core layer 1 on the said under clad layer 2 was formed.
〔オーバークラッド層の作製〕
 上記アンダークラッド層2上のコア層1の上面に、このコア層1を被覆するように、上記「クラッド層の形成材料」をスピンコート法(1500rpm:15sec)により塗布し、70℃のホットプレート上で5分間加熱することにより溶媒を揮発させ、オーバークラッド層形成用の樹脂層を形成した。ついで、オーバークラッド層層形状と、検出部4用の開口3a形状および光源5用の開口3b形状を備える所定の開口パターンのフォトマスクを介して、超高圧水銀灯を用いて紫外線(混線:積算光量2000mJ/cm)を照射して露光を行なった。そして、さらに80℃のホットプレート上で10分間加熱し、反応を完了させたうえで、γ-ブチロラクトンの10重量%水溶液を用いて現像することにより、未露光部分を溶解除去した。その後、120℃×15分間の加熱乾燥処理を行って、上記コア層1上のオーバークラッド層3(膜厚:20μm)を形成した。
[Preparation of overclad layer]
On the upper surface of the core layer 1 on the under clad layer 2, the above “cladding layer forming material” is applied by spin coating (1500 rpm: 15 sec) so as to cover the core layer 1, and a hot plate at 70 ° C. The solvent was volatilized by heating for 5 minutes above, and a resin layer for forming an overclad layer was formed. Next, ultraviolet rays (cross-link: integrated light quantity) are used using a super high pressure mercury lamp through a photomask having a predetermined opening pattern having an overcladding layer layer shape, an opening 3a shape for the detector 4 and an opening 3b shape for the light source 5. The exposure was performed by irradiating 2000 mJ / cm 2 ). Further, after heating for 10 minutes on a hot plate at 80 ° C. to complete the reaction, development was performed using a 10% by weight aqueous solution of γ-butyrolactone, whereby unexposed portions were dissolved and removed. Thereafter, a heat drying treatment at 120 ° C. for 15 minutes was performed to form an over clad layer 3 (film thickness: 20 μm) on the core layer 1.
 上記得られたフィルム型光導波路をガラス板から剥離して、光源5の発光素子および受光素子6を形成し、本発明の光導波路型ケミカルセンサを作製した。 The film-type optical waveguide obtained above was peeled from the glass plate to form the light-emitting element and the light-receiving element 6 of the light source 5, and the optical waveguide-type chemical sensor of the present invention was produced.
[発光素子]
 光源5の発光素子としては、透明陽電極,有機化合物層,金属陰極等からなるOLEDを利用する。
[Light emitting element]
As the light emitting element of the light source 5, an OLED composed of a transparent positive electrode, an organic compound layer, a metal cathode, or the like is used.
 上記透明陽電極は、酸化スズ,酸化スズインジウム(ITO),酸化亜鉛インジウム等の400~700nmの可視光領域において70%以上の光透過率を有するものを使用する。 As the transparent positive electrode, one having a light transmittance of 70% or more in a visible light region of 400 to 700 nm, such as tin oxide, indium tin oxide (ITO), and indium zinc oxide is used.
 上記有機化合物層は、発光層からのみからなる単層構造であってもよいし、他にホール注入層,ホール輸送層,電子注入層,電子輸送層,電荷ブロック中間層等を有する積層構造としてもよい。本実施例においては、特に、発光層の発光材料として、Alq3(アルミニウムキノリノール錯体)を用いた。 The organic compound layer may have a single-layer structure composed only of a light emitting layer, or a laminated structure having a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, a charge blocking intermediate layer, and the like. Also good. In this example, in particular, Alq3 (aluminum quinolinol complex) was used as the light emitting material of the light emitting layer.
 上記金属陰極は、電子注入性に優れ仕事関数の低いLi,K等のアルカリ金属,Mg,Ca等のアルカリ土類金属や、酸化されにくく安定なAl,Ag等の材料から構成されるのが望ましい。本実施例においては、LiF/Alを積層して用いた。 The metal cathode is made of an alkali metal such as Li or K having an excellent electron injection property and a low work function, an alkaline earth metal such as Mg or Ca, or a material such as Al or Ag which is not easily oxidized and is stable. desirable. In this example, LiF / Al was used in a stacked manner.
 以上の材料を用いて形成された本実施例の発光素子(光源5)は、525nm付近にピークを有する緑色光を発光する。また、本実施例のOLEDは、光源5用に設けられたオーバークラッド層3の開口3b内に形成したため、改めてその位置合わせ(アライメント)を行なう必要がない。 The light-emitting element (light source 5) of this example formed using the above materials emits green light having a peak near 525 nm. In addition, since the OLED of this embodiment is formed in the opening 3b of the over clad layer 3 provided for the light source 5, it is not necessary to perform alignment (alignment) again.
[受光素子]
 受光素子6としては、有機フォトダイオードを利用する。なお、光検出層を構成する構成材料,形成方法および膜厚については、従来公知の有機フォトダイオードと同様のものを用いる。
[Light receiving element]
An organic photodiode is used as the light receiving element 6. In addition, about the constituent material which comprises a photodetection layer, a formation method, and a film thickness, the thing similar to a conventionally well-known organic photodiode is used.
 上記光検出層は、有機薄膜からのみ構成され、素子の一例としては、上記発光素子と同様、酸化スズインジウム(ITO)等の透明陽電極,有機化合物層,LiF/Al等の金属陰極からなる光検出層をあげることができる。なお、本実施例においては、有機化合物層として、CuPc(銅フタロシアニン)とC60(60フラーレン)とを積層したものを用いた。 The photodetection layer is composed only of an organic thin film, and as an example of the element, like the light emitting element, a transparent positive electrode such as indium tin oxide (ITO), an organic compound layer, and a metal cathode such as LiF / Al. The light detection layer can be raised. In this example, a layered layer of CuPc (copper phthalocyanine) and C60 (60 fullerene) was used as the organic compound layer.
 以上の材料を用いて形成された本実施例の受光素子6は、550~700nm付近に高感度領域を有する。また、本実施例の受光素子6は、上記検出部4に隣接するアンダークラッド層2の外側表面に積層して形成することにより、その位置合わせを不要(アライメントフリー)とすることができる。 The light receiving element 6 of the present embodiment formed using the above materials has a high sensitivity region in the vicinity of 550 to 700 nm. Further, the light receiving element 6 of the present embodiment can be made unnecessary (alignment free) by being formed on the outer surface of the under-cladding layer 2 adjacent to the detector 4.
 このようにして構成された光導波路型ケミカルセンサを用いて、グルコースおよびグルタミン酸の蛍光測定を行なった結果を示す。 The results of fluorescence measurement of glucose and glutamic acid using the optical waveguide type chemical sensor configured as described above will be shown.
[グルコースの反応機構]
 グルコースは、グルコースオキシターゼの存在下で以下の反応を進める。
β-D-glucose+O+HO → 
       D-glucono-1,5-lactone+H
さらに、発生したHは、ペルオキシターゼを含むFluoroH(Detection reagent)により蛍光物質Resolfinを生成する。
2H+Detection reagent(non-fluorescent) → Resolfin
このResolfinは、530~571nmの励起光により590~600nmの蛍光を発する。
[Reaction mechanism of glucose]
Glucose advances the following reaction in the presence of glucose oxidase.
β-D-glucose + O 2 + H 2 O →
D-glucono-1,5-lactone + H 2 O 2
Further, the generated H 2 O 2 generates a fluorescent substance Resolfin by FluoroH 2 O 2 (Detection reagent) containing peroxidase.
2H 2 O 2 + Detection reagent (non-fluorescent) → Resolfin
This Resolfin emits fluorescence of 590 to 600 nm by excitation light of 530 to 571 nm.
[グルタミン酸の反応機構]
 L-グルタミン酸は、L-グルタミン酸オキシターゼの存在下で以下の反応を進める。
L-Glutamic acid+O+HO → 
     D-ketoglutamic acid+NH+H
さらに、発生したHは、ペルオキシターゼを含むFluoroH(Detection reagent)により蛍光物質Resolfinを生成する。
2H+Detection reagent(non-fluorescent) → Resolfin
このResolfinは、530~571nmの励起光により590~600nmの蛍光を発する。
[Reaction mechanism of glutamic acid]
L-glutamate advances the following reaction in the presence of L-glutamate oxidase.
L-Glutamic acid + O 2 + H 2 O →
D-ketoglutamic acid + NH 3 + H 2 O 2
Further, the generated H 2 O 2 generates a fluorescent substance Resolfin by FluoroH 2 O 2 (Detection reagent) containing peroxidase.
2H 2 O 2 + Detection reagent (non-fluorescent) → Resolfin
This Resolfin emits fluorescence of 590 to 600 nm by excitation light of 530 to 571 nm.
 本実施例における光導波路型ケミカルセンサは、上記光源5から出射された525nm付近にピークを有する緑色光(励起光)が、コア層1内を光軸(x軸)方向に伝播し、検出部4の「表面積を増大させる構造」内に配置された試料(反応溶液)に直接照射される。このとき、試料に含まれる上記Resolfinが発する蛍光が、上記光軸と直交する方向(z軸方向)に配設された受光素子6に入射し、光電変換によって直流電流に変換される。そして、この電流値(電圧値)の各波長ごとの増減や絶対値を、別途設けた制御部(図示省略)で計測・記録することにより、上述のグルコースまたはグルタミン酸の定量・定性分析を、高感度かつ高精度に行なうことができた。 In the optical waveguide type chemical sensor of the present embodiment, green light (excitation light) having a peak near 525 nm emitted from the light source 5 propagates in the core layer 1 in the optical axis (x-axis) direction, and the detection unit The sample (reaction solution) arranged in the “structure for increasing the surface area” 4 is directly irradiated. At this time, the fluorescence emitted from the Resolfin contained in the sample is incident on the light receiving element 6 disposed in a direction (z-axis direction) orthogonal to the optical axis, and is converted into a direct current by photoelectric conversion. Then, by measuring and recording the increase / decrease and absolute value of each current value (voltage value) for each wavelength by a separately provided control unit (not shown), the above-described quantitative or qualitative analysis of glucose or glutamic acid can be performed. It was possible to carry out with high sensitivity and high accuracy.
 なお、本発明の光導波路型ケミカルセンサは、上記グルコースまたはグルタミン酸の定量・定性分析だけではなく、直接あるいは試薬等により間接的に蛍光を発する物質の定量・定性分析に用いることができる。 The optical waveguide type chemical sensor of the present invention can be used not only for quantitative or qualitative analysis of glucose or glutamic acid, but also for quantitative or qualitative analysis of substances that emit fluorescence directly or indirectly with a reagent or the like.
 本発明の光導波路型ケミカルセンサは、生体物質や環境化学物質等、多くの試料が入手しにくい検査に、多用途に利用することができる。また、本発明の光導波路型ケミカルセンサは、研究室の中の測定だけではなく、生産現場や医療,災害等の現場における簡易な測定や素早い測定等にも用いることができる。 The optical waveguide type chemical sensor of the present invention can be used for various purposes in inspections where it is difficult to obtain many samples such as biological substances and environmental chemical substances. Moreover, the optical waveguide type chemical sensor of the present invention can be used not only for measurement in a laboratory but also for simple measurement or quick measurement at a production site, a medical site, a disaster site or the like.
 1 コア層
 2 アンダークラッド層
 3 オーバークラッド層
 3a 開口
 3b 開口
 4 検出部
 41 縦孔
 41A 縦孔
 41B 縦孔
 41C 縦孔
 41D 縦孔
 41E 縦孔
 42 縦孔
 5 光源
 6 受光素子
 7 マイクロミラー
 10 シール部材
 x 光軸
DESCRIPTION OF SYMBOLS 1 Core layer 2 Under clad layer 3 Over clad layer 3a Opening 3b Opening 4 Detection part 41 Vertical hole 41A Vertical hole 41B Vertical hole 41C Vertical hole 41D Vertical hole 41E Vertical hole 42 Vertical hole 5 Light source 6 Light receiving element 7 Micromirror 10 Seal member x Optical axis

Claims (4)

  1.  光路方向に長い形状のコア層およびこのコア層を挟持・被包する2つのクラッド層からなる光導波路構造と、発光手段と、受光手段とを備え、一方のクラッド層には、上記コア層の一部を検出部として露出させる開口が設けられ、上記検出部には、該検出部の表面積を増大させるための穴状構造および溝状構造の少なくとも一方が、上記コア層の露出面から他方のクラッド層に向かって穿設されているとともに、上記検出部に形成された穴状構造および溝状構造の少なくとも一方は試料配置用のものであり、上記発光手段は、その出射光を上記コア層を通じて上記構造内に配置される試料に照射する機能を有し、上記受光手段は、上記照射により上記試料から生じる発光を測定する機能を有することを特徴とする光導波路型ケミカルセンサ。 An optical waveguide structure comprising a core layer having a long shape in the optical path direction and two clad layers sandwiching and encapsulating the core layer, a light emitting means, and a light receiving means. One clad layer includes the core layer An opening that exposes a part of the detection part as a detection part is provided, and the detection part has at least one of a hole-like structure and a groove-like structure for increasing the surface area of the detection part from the exposed surface of the core layer to the other. At least one of a hole-like structure and a groove-like structure formed in the detection part is provided for sample placement, and the light emitting means transmits the emitted light to the core layer. An optical waveguide type chemical sensor characterized in that it has a function of irradiating a sample disposed in the structure through the light receiving means, and the light receiving means has a function of measuring luminescence generated from the sample by the irradiation.
  2.  上記発光手段が、上記検出部から光路方向に距離を開けた位置に配置され、上記いずれかのクラッド層の外面に接するか、あるいは、上記いずれかのクラッド層に代えて、上記コア層に直接接触するように形成されている、請求項1に記載の光導波路型ケミカルセンサ。 The light emitting means is disposed at a position away from the detection unit in the optical path direction and is in contact with the outer surface of any one of the cladding layers, or directly on the core layer instead of any one of the cladding layers. The optical waveguide type chemical sensor according to claim 1, wherein the optical waveguide type chemical sensor is formed so as to come into contact with each other.
  3.  上記受光手段が、上記検出部に隣接する他方のクラッド層の外側表面に配設されている、請求項1または2記載の光導波路型ケミカルセンサ。 The optical waveguide type chemical sensor according to claim 1 or 2, wherein the light receiving means is disposed on an outer surface of the other cladding layer adjacent to the detection unit.
  4.  上記一方のクラッド層の開口に、使用前には上記検出部を密封し、使用時には剥がして上記検出部を露出させることのできるシール部材が配設されている、請求項1~3のいずれか一項に記載の光導波路型ケミカルセンサ。 The sealing member according to any one of claims 1 to 3, wherein a seal member is provided in the opening of the one clad layer so as to seal the detection unit before use and to peel off the detection unit during use to expose the detection unit. The optical waveguide type chemical sensor according to one item.
PCT/JP2009/068249 2009-01-09 2009-10-23 Optical waveguide-type chemical sensor WO2010079648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-003193 2009-01-09
JP2009003193A JP2010160087A (en) 2009-01-09 2009-01-09 Optical waveguide type chemical sensor

Publications (1)

Publication Number Publication Date
WO2010079648A1 true WO2010079648A1 (en) 2010-07-15

Family

ID=42316421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068249 WO2010079648A1 (en) 2009-01-09 2009-10-23 Optical waveguide-type chemical sensor

Country Status (2)

Country Link
JP (1) JP2010160087A (en)
WO (1) WO2010079648A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628062A (en) * 2015-12-25 2016-06-01 中南大学 Optical sensor based on planar waveguide resonance coupling, modulator and manufacturing method thereof
US20180031476A1 (en) * 2015-02-27 2018-02-01 Ldip, Llc Waveguide-based detection system with scanning light source
US20190250140A1 (en) * 2018-02-14 2019-08-15 Beijing Boe Optoelectronics Technology Co., Ltd. Biological detection chip and detecting method thereof
CN111855573A (en) * 2020-07-29 2020-10-30 京东方科技集团股份有限公司 Lighting test device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423397B2 (en) 2006-03-10 2016-08-23 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US9976192B2 (en) 2006-03-10 2018-05-22 Ldip, Llc Waveguide-based detection system with scanning light source
US9528939B2 (en) 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
JP5503505B2 (en) * 2010-11-15 2014-05-28 日東電工株式会社 Colorimetric sensor cell, colorimetric sensor and method for producing colorimetric sensor cell
KR101145669B1 (en) 2010-11-22 2012-05-24 전자부품연구원 The continuous glucose monitoring sensor
US10018566B2 (en) 2014-02-28 2018-07-10 Ldip, Llc Partially encapsulated waveguide based sensing chips, systems and methods of use
WO2015131056A2 (en) * 2014-02-28 2015-09-03 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
WO2015146499A1 (en) 2014-03-28 2015-10-01 テルモ株式会社 Fluorescent light sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502967A (en) * 1998-02-05 2002-01-29 ノバルティス アクチエンゲゼルシャフト Method and apparatus for measuring luminescence
JP2003532123A (en) * 2000-04-28 2003-10-28 エッジライト バイオサイエンシズ インコーポレイテッド Microarray evanescent wave fluorescence detector
JP2004069397A (en) * 2002-08-02 2004-03-04 Nec Corp Analysis chip and analytical apparatus
JP2005140682A (en) * 2003-11-07 2005-06-02 Sekisui Chem Co Ltd Optical measurement apparatus and optical measurement method of specific binding material using the same
JP2008014732A (en) * 2006-07-04 2008-01-24 Tohoku Univ Surface plasmon resonance measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502967A (en) * 1998-02-05 2002-01-29 ノバルティス アクチエンゲゼルシャフト Method and apparatus for measuring luminescence
JP2003532123A (en) * 2000-04-28 2003-10-28 エッジライト バイオサイエンシズ インコーポレイテッド Microarray evanescent wave fluorescence detector
JP2004069397A (en) * 2002-08-02 2004-03-04 Nec Corp Analysis chip and analytical apparatus
JP2005140682A (en) * 2003-11-07 2005-06-02 Sekisui Chem Co Ltd Optical measurement apparatus and optical measurement method of specific binding material using the same
JP2008014732A (en) * 2006-07-04 2008-01-24 Tohoku Univ Surface plasmon resonance measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180031476A1 (en) * 2015-02-27 2018-02-01 Ldip, Llc Waveguide-based detection system with scanning light source
US11181479B2 (en) * 2015-02-27 2021-11-23 Ldip, Llc Waveguide-based detection system with scanning light source
CN105628062A (en) * 2015-12-25 2016-06-01 中南大学 Optical sensor based on planar waveguide resonance coupling, modulator and manufacturing method thereof
US20190250140A1 (en) * 2018-02-14 2019-08-15 Beijing Boe Optoelectronics Technology Co., Ltd. Biological detection chip and detecting method thereof
CN111855573A (en) * 2020-07-29 2020-10-30 京东方科技集团股份有限公司 Lighting test device

Also Published As

Publication number Publication date
JP2010160087A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2010079648A1 (en) Optical waveguide-type chemical sensor
CN100498395C (en) Light waveguide and fluorescent sensor using the light waveguide
JP4933271B2 (en) Handheld device with a disposable element for chemical analysis of multiple specimens
JP3638611B2 (en) Optical fluorescent sensor
WO2012056989A1 (en) Fluorescence sensor
EP0834735A2 (en) A sensor
Wojciechowski et al. Organic photodiodes for biosensor miniaturization
JP2017505915A (en) Analysis equipment
EP2557415A1 (en) Fluorescence sensor
US20140017126A1 (en) Spr sensor cell and spr sensor
Asquini et al. Integrated evanescent waveguide detector for optical sensing
Yi et al. A double-tapered fibre array for pixel-dense gamma-ray imaging
WO2013080432A1 (en) Chemical sensor, chemical sensor module, chemical substance detector, and chemical substance detection method
JP3934090B2 (en) Optical multiplexer / demultiplexer for fluorescence analysis, optical module for fluorescence analysis, fluorescence analyzer, and fluorescence / photothermal conversion spectrometer
JP6416879B2 (en) Fluorescent sensor
Morioka et al. Development of a fluorescence microplate reader using an organic photodiode array with a large light receiving area
US20190293561A1 (en) Apparatus for optically exciting and detecting fluorescence
EP2767822A1 (en) Point-of-care testing device and reader
US20080258086A1 (en) Optical Detector
WO2017198709A1 (en) Device for optically exciting fluorescence
US11313798B2 (en) Optical measuring device, light guide member, and optical measuring method
KR101240294B1 (en) Biosensor module using silicon nano-wire
JP2002267664A (en) Measuring apparatus for immunochromatographic test piece
Lamprecht et al. Integrated waveguide sensor platform utilizing organic photodiodes
Alaeddini et al. Sub-ppm Evanescent Waveguide Sensor for Heavy Metal Detection in Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837534

Country of ref document: EP

Kind code of ref document: A1