WO2010079552A1 - Liquid crystal display apparatus and backlight - Google Patents

Liquid crystal display apparatus and backlight Download PDF

Info

Publication number
WO2010079552A1
WO2010079552A1 PCT/JP2009/006747 JP2009006747W WO2010079552A1 WO 2010079552 A1 WO2010079552 A1 WO 2010079552A1 JP 2009006747 W JP2009006747 W JP 2009006747W WO 2010079552 A1 WO2010079552 A1 WO 2010079552A1
Authority
WO
WIPO (PCT)
Prior art keywords
curved surface
liquid crystal
curvature
crystal display
display device
Prior art date
Application number
PCT/JP2009/006747
Other languages
French (fr)
Japanese (ja)
Inventor
臼倉奈留
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801542226A priority Critical patent/CN102272667A/en
Priority to US13/143,214 priority patent/US20110267560A1/en
Publication of WO2010079552A1 publication Critical patent/WO2010079552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a backlight and a liquid crystal display device that performs display using the backlight.
  • liquid crystal display devices are widely used as display devices in monitors, projectors, portable information terminals, mobile phones, and the like.
  • a liquid crystal display device displays images and characters by changing the transmittance (or reflectance) of a liquid crystal panel according to a drive signal and modulating the intensity of light from a light source irradiated on the liquid crystal panel.
  • the liquid crystal display device include a direct-view display device that directly observes an image displayed on a liquid crystal panel, and a projection display device (projector) that magnifies and projects the displayed image on a screen using a projection lens.
  • the liquid crystal display device changes the optical characteristics of the liquid crystal layer in each pixel by applying a driving voltage corresponding to the image signal to each of the pixels regularly arranged in a matrix, and polarized light arranged before and after that.
  • An element typically, a polarizing plate
  • this polarizing plate is usually directly bonded to each of a light incident side substrate (back substrate) and a light emission side substrate (front substrate or observer side substrate) of the liquid crystal panel.
  • the direct-view liquid crystal display device includes a reflective liquid crystal display device that displays light by reflecting light incident from the front substrate of the liquid crystal display panel by a reflective layer, and a liquid crystal layer that receives light from the backlight from the rear substrate side.
  • a transmissive liquid crystal display device that performs transmission for display. An example of a transmissive liquid crystal display device is described in Patent Document 1.
  • a light control sheet is disposed on the surface of the backlight on the liquid crystal panel side, and on the light emission side substrate of the liquid crystal panel.
  • a viewing angle adjustment sheet is arranged.
  • the light control sheet has concavo-convex rows arranged in one direction, and the viewing angle adjustment sheet has a plurality of lens portions arranged in the same direction as the concavo-convex rows of the light control sheet.
  • Incident light to the liquid crystal panel is condensed by the light control sheet to increase the front luminance, and the emitted light is diffused only in the vertical direction by the viewing angle adjustment sheet. As a result, a display with a wide viewing angle only in the vertical direction can be obtained.
  • Patent Document 2 describes a surface light source element arranged on the light emission side of a backlight in order to adjust viewing angle characteristics.
  • This surface light source element has a first prism sheet composed of a plurality of prisms extending in a predetermined direction and a second prism sheet composed of a plurality of prisms extending in a direction different from the predetermined direction.
  • the apex angle of each prism of the first prism sheet is 50 ° to 75 °
  • the apex angle of each prism of the second prism sheet is 110 ° to 150 °, thereby increasing the luminance in the normal direction of the substrate surface. It is said that a surface light source having a wide viewing angle range can be obtained.
  • Patent Document 3 describes a liquid crystal display used for a monitor display unit of a car navigation system.
  • FIG. 14 is a diagram used for explaining the problem of the in-vehicle liquid crystal display in Patent Document 3.
  • FIG. 14 is a diagram used for explaining the problem of the in-vehicle liquid crystal display in Patent Document 3.
  • the conventional liquid crystal display 4 used in a car navigation system or the like has not only the direction of the display light toward the driver 1 and the passenger seat, but also other wide azimuth directions and poles. Propagate in the angular direction with almost the same intensity. Therefore, in FIG. 14, display reflections 4 ⁇ / b> A and 4 ⁇ / b> B are generated on the front glass 5 or the door glass 6, and there is a problem that the driving by the driver 1 is hindered.
  • Patent Document 3 discloses light emitted from a display unit of a liquid crystal display by correcting the direction of light emitted from a backlight by a light emission direction correcting element composed of a prism array. A technique for providing directivity and providing a bright display only in a specific direction is described.
  • FIG. 15 is a perspective view showing the configuration of the backlight 200 similar to that disclosed in Patent Document 2.
  • the backlight 200 includes a light guide plate 201, a light source 202 disposed on one side of the light guide plate 201, a reflection plate 203 disposed under the light guide plate 201, and the light guide plate 201.
  • a prism sheet 205 disposed on the top.
  • the prism sheet 205 includes a first prism sheet 206 having a plurality of downwardly sharpened prisms and a second prism sheet 207 having a plurality of upwardly sharpened prisms.
  • Each prism of the first prism sheet 206 extends in the Y direction within a horizontal plane (a plane including the upper surface or the lower surface of the light guide plate), and each prism of the second prism sheet 207 extends in the X direction perpendicular to the Y direction within the horizontal plane. It extends.
  • FIG. 16 is a diagram illustrating an example of the viewing angle characteristic (polarity dependence of luminance) obtained by the backlight 200.
  • FIG. 16A shows the viewing angle characteristic in the X direction
  • FIG. The viewing angle characteristic in the Y direction is represented.
  • the polar angle is an angle in which the surface vertical direction (Z direction perpendicular to the horizontal plane) is 0 degree and the direction along the horizontal plane is ⁇ 90 ° or 90 °.
  • the first prism sheet 206 has a function of raising the light emitted from the light guide plate 201 in the surface vertical direction and mainly controlling the viewing angle in the X direction.
  • the apex angle of each prism of the first prism sheet 206 is preferably around 60 °, and by adjusting the apex angle, the half-value width (half-value polar angle width) Wx in the viewing angle characteristic in the X direction is ⁇ 5 to 20 °. It is possible to adjust within the range.
  • the second prism sheet 207 has a function of controlling the viewing angle mainly in the Y direction of the light emitted from the light guide plate 201.
  • the apex angle of each prism of the second prism sheet 207 is, for example, 120 °, there is an effect that the half-value width Wy in the viewing angle characteristic in the Y direction is narrowed by about 10 ° compared to the case where the prism sheet 207 is not provided.
  • the luminance directivity seen along the X direction is stronger than the luminance directivity seen along the Y direction.
  • Both directivity directions are directions with a polar angle of approximately 0 °.
  • light having “directivity” means that the emitted light has a strong intensity with respect to a specific direction, and the intensity of directivity, that is, with respect to a specific direction. How strong the directionality is is indicated by the half-value width angle in the intensity distribution of the emitted light. The direction indicated by the center value of the half-value width angle is defined as “direction of directivity”.
  • the viewing angle characteristics in the X direction and the Y direction can be made different.
  • a backlight 200 is not suitable for an in-vehicle liquid crystal display device. That is, if the viewing angle characteristic is adjusted by the prism sheet 205 of the backlight 200, the reflection as shown in FIG. 14 can be prevented. In that case, however, the polar angle is 0 ° for display by the liquid crystal display device. A strong luminance directivity in the direction appears.
  • the backlight 200 when the backlight 200 is disposed between the driver's seat and the passenger seat as shown in FIG. 14, if the left-right direction extending from the driver seat to the passenger seat is the X direction, the display by the backlight 200 is the driving A strong directivity is shown in the Z direction orthogonal to X from an intermediate position between the seat and the passenger seat, and only a relatively low luminance display can be provided to the driver and the passenger in the passenger seat. Further, in order to solve this problem, if the luminance of the direction of the driver or the like is increased by adjusting the apex angle of each prism in the prism sheet 205, the luminance in the central direction is further increased and the light use efficiency is lowered. At the same time, the light also leaks in the direction of the side mirror, causing reflection.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display with high light utilization efficiency in which luminance in a desired direction is high and luminance in an unnecessary direction is reduced. It is in. Another object of the present invention is to provide an in-vehicle liquid crystal display device or a light source that is suitably used for cars, airplanes, ships, and the like.
  • a liquid crystal display device having a plurality of pixels arranged in a matrix along a first direction and a second direction orthogonal to each other, and corresponding to the plurality of pixels.
  • a TFT substrate having a plurality of pixel electrodes arranged; a counter substrate having a counter electrode opposite to the pixel electrodes; a liquid crystal layer disposed between the TFT substrate and the counter substrate; and the TFT substrate
  • the liquid crystal display device including a plurality of lenticular lenses extending is provided.
  • the backlight includes a prism sheet disposed between the light guide plate and the optical element layer, and the prism sheets are respectively.
  • a liquid crystal display device including a plurality of prisms having a sharp apex angle toward the light guide plate and extending in the second direction.
  • each of the light receiving surfaces of the plurality of lenticular lenses has a first curved surface that swells toward the light guide plate, and the first curved surface.
  • the curvature of the first curved surface is a positive curvature
  • a liquid crystal display device in which each of the second and third curved surfaces has a negative curvature is provided. .
  • a liquid crystal display device in which the light receiving surface does not include a flat surface, and includes the first curved surface, the second curved surface, and the third curved surface. Is done.
  • a liquid crystal display device in which the second curved surface and the third curved surface have substantially the same curvature.
  • the absolute values of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150, respectively. % Or less is provided.
  • a cross section of the first curved surface in a plane perpendicular to the TFT substrate and including the second direction is A circumferential portion corresponding to a central angle of a curvature circle of the first curved surface of the curvature of 100 ° to 140 °, and a surface perpendicular to the TFT substrate and including the second direction.
  • a liquid crystal display device in which the cross section and the cross section of the third curved surface are circumferential portions corresponding to a central angle of 10 ° to 25 ° of a curvature circle of the curvature of the second curved surface and the curvature of the third curved surface, respectively.
  • a plurality of microlenses each extending in the second direction are provided between the TFT substrate and the optical film.
  • a liquid crystal display device in which a microlens array is disposed is provided.
  • an in-vehicle liquid crystal display device is provided.
  • a backlight for supplying display light to the liquid crystal display device, the light guide plate guiding light from the light source, and the light emitting plate on the light emitting surface.
  • An optical element layer disposed on the optical element layer, wherein the optical element layer has a light receiving surface that swells toward the light guide plate and includes a plurality of lenticular lenses extending in the first direction. .
  • the prism sheet is disposed between the light guide plate and the optical element layer, each apex angle sharpened toward the light guide plate side.
  • a backlight having a plurality of prisms extending in a second direction orthogonal to the first direction is provided.
  • each of the light receiving surfaces of the plurality of lenticular lenses is interposed between a first curved surface that swells toward the light guide plate and the first curved surface.
  • the first curved surface includes a second curved surface and a third curved surface sandwiched between the curved surfaces, the second curved surface and the third curved surface each have a negative curvature.
  • a backlight in which the light receiving surface does not include a flat surface, and includes the first curved surface, the second curved surface, and the third curved surface.
  • a backlight in which the second curved surface and the third curved surface have substantially the same curvature.
  • the absolute values of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150, respectively. % Or less backlight is provided.
  • a surface that is perpendicular to the light exit surface of the light guide plate and includes the second direction A section of the first curved surface is a circumferential portion corresponding to a central angle of a curvature circle of the curvature of the first curved surface of not less than 100 ° and not more than 140 °, and is a surface perpendicular to the emission surface and in the second direction
  • the cross section of the second curved surface and the cross section of the third curved surface in a plane including the circumference corresponding to the center angle of the curvature circle of the curvature of the second curved surface and the curvature of the third curved surface is 10 ° or more and 25 ° or less, respectively.
  • a partial backlight is provided.
  • the liquid crystal display device of the present invention it is possible to provide a display that is relatively uniform and high brightness in a specific direction and extremely low brightness in other directions, so that the light use efficiency is improved. . Further, according to the liquid crystal display device of the present invention, the intermediate luminance region between the region where the high luminance display is provided and the region where the low luminance display is provided can be narrowed, so that the required range is obtained. Therefore, a display with high light utilization efficiency can be provided in which the display light is concentrated. Further, when the liquid crystal display device of the present invention is used on a vehicle, it is possible to provide a high-quality display to the occupant and at the same time reduce the reflection on the side glass or the like.
  • FIG. 2 is a perspective view schematically showing a configuration of a liquid crystal display device 100.
  • FIG. 4 is a cross-sectional view schematically showing the shape of an optical sheet 70 in the liquid crystal display device 100.
  • FIG. (A) is sectional drawing which shows the shape of the lens 71 of the optical sheet 70 in the liquid crystal display device 100,
  • (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100.
  • (A) is sectional drawing which shows the shape of the lens 71b by the 1st modification of the optical sheet 70
  • (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71b. is there. It is a figure for demonstrating the shape of the light-receiving surface 73 of the lens 71b.
  • (A) is sectional drawing which shows the shape of the lens 71c by the 2nd modification of the optical sheet 70
  • (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71c. is there. It is a figure for demonstrating the shape of the light-receiving surface 74 of the lens 71c.
  • FIG. 1 is sectional drawing which shows the shape of the lens 71d by the 3rd modification of the optical sheet 70
  • (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71d. is there.
  • (A) is sectional drawing which shows the shape of the lens 71e by the reference example of the optical sheet 70
  • (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71e. It is sectional drawing which showed typically the structure of the liquid crystal display device 101 by Embodiment 2 of this invention.
  • 4 is a cross-sectional view schematically showing the shape of a microlens array 82 in the liquid crystal display device 101.
  • FIG. 11 is a perspective view illustrating a configuration of a backlight disclosed in Patent Document 2.
  • (A) And (b) is the figure which represented typically the viewing angle characteristic in the X direction and Y direction of the backlight disclosed by patent document 2, respectively.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the liquid crystal display device 100 according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view schematically showing the configuration of the liquid crystal display device 100
  • FIG. 2 is a cross-sectional view schematically showing the shape of an optical sheet 70 in the liquid crystal display device 100.
  • the liquid crystal display device 100 is a liquid crystal display device suitable for in-vehicle use, but its application is not limited to in-vehicle use.
  • the liquid crystal display device 100 is an active matrix transmission type liquid crystal display device (LCD).
  • the liquid crystal display device 100 may be a transflective liquid crystal display device.
  • the liquid crystal display device 100 includes a plurality of pixels arranged in a matrix along the X direction (second direction) and the Y direction (first direction) orthogonal to each other within the substrate surface.
  • the liquid crystal display device 100 includes a liquid crystal panel 10 and a backlight 50 disposed on the lower side of the liquid crystal panel 10 (the surface side opposite to the display surface).
  • the liquid crystal panel 10 includes a TFT substrate 12 including a TFT and a pixel electrode formed for each pixel, a counter substrate 14 which is a color filter substrate (CF substrate) including a counter electrode facing the pixel electrode, and a liquid crystal layer 16.
  • the liquid crystal layer 16 includes a liquid crystal material sealed between the TFT substrate 12 and the counter substrate 14. The liquid crystal material is sealed with a sealing material 18 provided on the outer periphery.
  • An optical film (front side optical film) 24 is attached to the upper surface (observer side surface) of the liquid crystal panel 10, and an optical film (back side optical film) 22 is attached to the lower surface.
  • Each of the optical films 22 and 24 includes a polarizing plate (polarizing film).
  • the two polarizing plates of the optical films 22 and 24 are arranged in crossed Nicols so that the transmission axes (or absorption axes) are orthogonal to each other.
  • the optical films 22 and 24 may include optical elements such as a retardation plate and a light diffusion sheet.
  • the backlight 50 includes a light source 52 such as an LED or a cold cathode tube, a light guide plate 54 for propagating light emitted from the light source 52, and a reflector disposed under the light guide plate 54 (on the opposite side of the liquid crystal panel 10).
  • a prism sheet 60 disposed on the light exit surface of the light guide plate 54 (on the liquid crystal panel 10 side), and an optical sheet (optical element layer) 70 disposed on the prism sheet 60.
  • a groove is formed in a sawtooth shape below the light guide plate 54 facing the reflection plate 56, and a prism array 58 having a plurality of inclined surfaces with different inclination angles is formed.
  • the plurality of inclined surfaces of the prism array 58 are formed so that the inclination angle increases as the distance from the light source 52 increases.
  • the light emitted from the light source 52 is reflected by the inclined surface of the reflecting plate 56 or the prism array 58, then passes through the upper surface (emission surface) of the light guide plate 54, and the prism of the prism sheet 60 and the lens 71 of the optical sheet 70. Then, the light is emitted toward the liquid crystal panel 10.
  • the prism sheet 60 includes a plurality of prisms each extending in the X direction.
  • each of the plurality of prisms has a sharp apex angle toward the light guide plate 54 as shown in FIG.
  • the apex angle is preferably in the range of 45 ° to 75 °, whereby the half-value width in the viewing angle characteristic is 30 ° ( ⁇ 15 °) or less, in the Z direction (substrate plane (XY plane) It is possible to obtain outgoing light having a strong directivity in a direction perpendicular to).
  • the optical sheet 70 includes a plurality of lenticular lenses 71 (also simply referred to as lenses 71) each extending in the Y direction.
  • each of the plurality of lenses 71 has a light receiving surface that swells toward the light guide plate 54 as shown in FIGS.
  • FIG. 4A shows the cross-sectional shape of the lens 71a on the XZ plane
  • FIG. 4B shows the viewing angle characteristics (polarity dependence of luminance) of the liquid crystal display device 100 in the X direction.
  • the vertical axis represents the luminance in display
  • the horizontal axis represents the polar angle with the Z direction being 0 °.
  • the light receiving surface 72 of the lens 71a is a curved surface having a constant curvature (and a curvature radius).
  • the radius of curvature of the light receiving surface 72 is 24.5 ⁇ m.
  • the curvature radius of the light receiving surface 72 is preferably 10 ⁇ m or more and 200 ⁇ m or less. If the pole radius is smaller than 10 ⁇ m, the dimensional variation increases in the manufacturing process, which may be a problem. Also, if the polar radius is larger than 200 ⁇ m, the thickness of the device becomes too thick, and moire can easily occur in the display due to the pixel pitch.
  • the optical sheet 70 having the lens 71a having such a shape it is possible to obtain viewing angle characteristics with relatively little dependence on the polar angle 0 ° direction as shown in FIG. 4B.
  • the optical sheet 70 As can be seen from comparison with FIG. 16A, by using the optical sheet 70, the luminance in the polar angle 0 ° direction does not protrude more than when the prism sheet 205 is used, and the polar angle is ⁇ 40 ° or more. A characteristic with relatively uniform luminance can be obtained at 40 ° or less. Therefore, when the liquid crystal display device 100 is used while being mounted on the vehicle as shown in FIG. 14 (the left-right direction of the vehicle is the X direction), the luminance in the unnecessary direction is suppressed, and the driver and passenger on the passenger seat A display with high light use efficiency with sufficient luminance in the direction can be obtained. Also, with respect to the viewing angle characteristics in the Y direction, the use of the prism sheet 60 provides high brightness in the polar angle 0 ° direction and extremely low brightness of ⁇ 30 ° or less and 30 ° or more. Can be prevented from being reflected.
  • FIG. 5A illustrates a cross-sectional shape of the lens 71 (71b) of the optical sheet 70 of the first modification on the XZ plane
  • FIG. 5B includes the optical sheet 70 of the first modification.
  • the viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented.
  • the vertical axis represents luminance
  • the horizontal axis represents the polar angle with the Z direction being 0 °.
  • FIG. 6 is a diagram for explaining the shape of the light receiving surface 73 of the lens 71b.
  • the light receiving surface 73 of the lens 71b includes a curved surface 73b (first curved surface) that swells toward the backlight 50, a curved surface 73a (second curved surface) that sandwiches the curved surface 73b, and a curved surface. 73c (third curved surface).
  • the curved surface 73a and the curved surface 73c are curved surfaces that swell in the opposite direction to the curved surface 73b.
  • the curvature radius of the curved surface 73b is 24.5 ⁇ m
  • the curvature radius of the curved surface 73a and the curved surface 73c is ⁇ 24.5 ⁇ m.
  • the curved surfaces 73a and 73c have negative curvatures.
  • the widths A, B, and C in the X direction when the curved surfaces 73a, 73b, and 73c are projected onto the substrate surface are 14 ⁇ m, 28 ⁇ m, and 14 ⁇ m, respectively.
  • Each of the curvature circles is a circle having a radius of 24.5 ⁇ m.
  • the luminance is relatively uniform in the polar angle range of ⁇ 30 ° to 30 °, and ⁇ 30 When the angle is less than 30 ° or more than 30 °, a viewing angle characteristic with extremely small luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is suppressed, and a sufficient luminance is given in the direction of the driver and the passenger on the front passenger seat. Is obtained.
  • the luminance in the polar angle range of ⁇ 40 ° or more and 40 ° or less is increased relatively uniformly, and ⁇ 40 ° or less and 40 Above 0 °, it is preferable that the luminance is decreased rapidly. By doing so, it is possible to provide a very bright display to the driver and the passenger and to greatly reduce the reflection on the side glass.
  • liquid crystal display device 100 provided with the optical sheet 70 of the second modification described below, such a more preferable viewing angle characteristic can be obtained.
  • FIG. 7A shows a cross-sectional shape of the lens 71 (71c) of the optical sheet 70 of the second modified example on the XZ plane
  • FIG. 7B includes the optical sheet 70 of the second modified example.
  • the viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented.
  • the vertical axis represents luminance
  • the horizontal axis represents the polar angle with the Z direction being 0 °.
  • FIG. 8 is a diagram for explaining the shape of the light receiving surface 74 of the lens 71c.
  • the light receiving surface 74 of the lens 71c includes a curved surface 74b (first curved surface) that swells toward the backlight 50, a curved surface 74a (second curved surface) that sandwiches the curved surface 74b, and a curved surface. 74c (third curved surface).
  • the curved surface 74a and the curved surface 74c are curved surfaces that swell in the opposite direction to the curved surface 74b.
  • the curvature radius of the curved surface 74b is 24.5 ⁇ m
  • the curvature radius of the curved surface 74a and the curved surface 74c is ⁇ 24.5 ⁇ m.
  • the curved surfaces 74a and 74c have negative curvature.
  • the widths A, B, and C in the X direction when the curved surfaces 74a, 74b, and 74c are projected onto the substrate surface are 5 ⁇ m, 35 ⁇ m, and 5 ⁇ m, respectively.
  • Each of the curvature circles is a circle having a radius of 24.5 ⁇ m.
  • the half width of the luminance is ⁇ 42 °.
  • the luminance is extremely uniformly high within a polar angle range of ⁇ 40 ° to 40 °, and ⁇ 40 °. Below and above 40 °, viewing angle characteristics with extremely low luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is extremely suppressed, and sufficient luminance is provided in the direction of the driver and the passenger on the passenger seat, so that the light use efficiency is high. A display is obtained.
  • the curvature radii of the curved surfaces 74a, 74b, and 74c are preferably 10 ⁇ m or more and 200 ⁇ m or less, and the absolute values of the curvatures of the curved surface 74a and the curved surface 74c with respect to the absolute value of the curvature of the curved surface 74b are 50% or more and 150% or less, respectively. It is preferable.
  • the cross section of the curved surface 74b in the XZ plane is preferably a circumferential portion corresponding to the central angle of the curvature circle of the curvature of the curved surface 74b of 100 ° to 140 °, and the curved surface 74a and the curved surface in the XZ plane
  • the cross section 74c is preferably a circumferential portion corresponding to a central angle of 10 ° to 25 ° of the curvature circle of the curvature of the curved surface 74a and the curved surface 74c, respectively.
  • the light transmitted through the curved surfaces 74a and 74c is not emitted in the direction of unnecessary polar angles ⁇ 60 ° to 90 °, and the required polar angles ⁇ 30 ° to 40 °.
  • the light can be emitted in the direction of °. Accordingly, as shown in FIG. 7B, it is possible to obtain a viewing angle characteristic that is flat and high in luminance from ⁇ 40 ° to + 40 ° and extremely low in other cases.
  • light transmitted through both end portions of the light receiving surface 72 (an arc portion corresponding to a central angle of about 30 ° of the polar circle from both end portions) has a polar angle of ⁇ 40 ° to There is almost no heading in the + 40 ° direction.
  • the optical sheet 70 of the second modified example light that passes through both end portions of the lens can be emitted in a necessary direction, so that more preferable viewing angle characteristics can be obtained.
  • a light-receiving surface composed only of a curved surface is preferable because it is easier to manufacture than a light-receiving surface including a flat surface, and it is relatively easy to control viewing angle characteristics.
  • the light receiving surface includes a flat surface, extreme changes such as peaks and valleys are likely to occur in the viewing angle characteristics.
  • a light receiving surface consisting of only a curved surface is used, such extreme changes are unlikely to occur.
  • FIG. 9A shows the cross-sectional shape of the lens 71 (71d) of the optical sheet 70 of the third modified example on the XZ plane
  • FIG. 9B includes the optical sheet 70 of the third modified example.
  • the viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented.
  • the vertical axis represents luminance
  • the horizontal axis represents the polar angle with the Z direction being 0 °.
  • the light receiving surface 75 of the lens 71d includes a curved surface 75b that swells toward the backlight 50, and a flat surface 75a and a flat surface 75c that sandwich the curved surface 75b.
  • the curvature radius of the curved surface 75b is 24.5 ⁇ m
  • the plane 75a and the plane 75c are inclined by 45 ° with respect to the XY plane.
  • the widths A, B, and C in the X direction are 5 ⁇ m, 28 ⁇ m, and 5 ⁇ m, respectively.
  • the brightness is relatively uniform and high in the polar angle range of ⁇ 40 ° to 40 °, and is ⁇ 40 ° or less and 40 ° or more. Then, viewing angle characteristics with extremely low luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is extremely suppressed, and sufficient luminance is provided in the direction of the driver and the passenger on the passenger seat, so that the light use efficiency is high. A display is obtained. Even if the light receiving surface 75 of the lens 71d includes the flat surface 75a and the flat surface 75c as in the third modification, the ratio of the width A and the width B shown in FIG. 9A to the lens width (A + B + C) is 10 By setting it to about 15%, a relatively preferable viewing angle characteristic can be obtained.
  • FIG. 10A illustrates a cross-sectional shape of the lens 71 (71e) of the optical sheet 70 of the reference example on the XZ plane
  • FIG. 10B illustrates a liquid crystal display device 100 including the optical sheet 70 of the reference example.
  • the vertical axis represents luminance
  • the horizontal axis represents the polar angle with the Z direction being 0 °.
  • the light receiving surface 76 of the lens 71e includes a curved surface 76b that swells toward the backlight 50, and a plane 76a and a plane 76c that sandwich the curved surface 76b.
  • the radius of curvature of the curved surface 76b is 8.5 ⁇ m
  • the plane 76a and the plane 76c are inclined by 45 ° with respect to the XY plane.
  • the widths A, B, and C in the X direction when the flat surface 76a, the curved surface 76b, and the flat surface 76c are projected onto the substrate surface are 20 ⁇ m, 8.5 ⁇ m, and 20 ⁇ m, respectively.
  • the light receiving surface 76 of the lens 71e includes two relatively large planes sandwiching the curved surface, specific polar angles (in the modification, polar angles of ⁇ 30 ° and around 30 °) ) Is extremely concentrated, two peaks appear in the viewing angle characteristics, and the luminance between both peaks (near 0 °) is extremely reduced. Such concentration of light only at a specific polar angle is inappropriate in view angle characteristics. Therefore, it is preferable that the light receiving surface of the lens 71 of the optical sheet 70 is formed so as not to include a large plane as shown in the first embodiment and the modification.
  • the liquid crystal display device 100 includes the optical sheet 70, when viewed along the X direction, a relatively uniform and high-luminance display is provided in a specific polar angle range centered on a polar angle of 0 °. In other polar angle directions, a display with extremely low luminance can be provided. Further, it is possible to narrow an intermediate luminance region between a region where a high luminance display is provided and a region where a low luminance display is provided. Therefore, it is possible to provide a display with high light utilization efficiency that meets the need for an application that requires a display with high luminance only in a specific area, and has less light directed to an unnecessary area.
  • the viewing angle characteristic along the Y direction is appropriately adjusted by the prism sheet 60, and even when viewed along the Y direction, a high luminance display is provided in a specific polar angle range centered on a polar angle of 0 °. Is done.
  • liquid crystal display device 100 when used in-vehicle, it is possible to provide a high-quality display to the driver and passengers in the passenger seat and to reduce the reflection on the windshield and side glass.
  • the optical sheet 70 may be disposed on the light guide plate 54 side of the prism sheet 60.
  • an optical sheet having a shape of the lens 71 described above and including a plurality of lenses extending in the X direction can also be used.
  • a prism sheet composed of such an optical sheet and a plurality of prisms extending in the Y direction can be used in place of the prism sheet 60 and the optical sheet 70.
  • Embodiment 2 of the present invention a liquid crystal display device according to Embodiment 2 of the present invention will be described.
  • the same reference number is attached
  • FIG. 11 is a cross-sectional view schematically showing the configuration of the liquid crystal display device 101 according to the second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing the shape of the microlens array 82 in the liquid crystal display device 101.
  • FIG. 13 shows viewing angle characteristics in the Y direction obtained by the liquid crystal display device 101. The vertical axis in FIG. 13 represents the luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °.
  • the liquid crystal display device 101 is a transmissive or transflective liquid crystal display device using an active matrix method suitable for in-vehicle use, and is orthogonal to each other in the X direction (first 2 pixels) and a plurality of pixels arranged in a matrix along the Y direction (first direction).
  • the liquid crystal display device 101 includes a liquid crystal panel 80 and the same backlight 50 as that used in the first embodiment, which is disposed below the liquid crystal panel 80.
  • the liquid crystal panel 80 includes the same TFT substrate 12, counter substrate 14, liquid crystal layer 16, and sealing material 18 as those used in the first embodiment.
  • the optical film 24 is attached to the upper surface of the liquid crystal panel 80, and the optical film 22 is attached to the lower surface.
  • the liquid crystal panel 80 includes a microlens array 82 disposed between the TFT substrate 12 and the optical film 22.
  • the microlens array 82 includes a plurality of microlenses 84 as shown in FIG.
  • Each microlens 84 is a lenticular lens extending in the Y direction, and the width in the X direction corresponds to the width of the pixel.
  • the microlens array 82 can be formed of a photocurable resin.
  • the microlens 84 is formed in a self-aligned manner so as to correspond to each pixel. It is also possible to form the microlens 84 by, for example, taking a resin with a stamper.
  • the space between the microlens array 82 and the protective layer may be filled with a material having a refractive index different from that of the microlens array 82. By adopting such a configuration, the strength of the liquid crystal panel 80 can be increased.
  • the liquid crystal display device 101 Since the liquid crystal display device 101 has the same backlight 50 as in the first embodiment, basically the luminance is uniform and high in a necessary range as in the case of the liquid crystal display device 100 in the first embodiment, which is unnecessary. In the range, display with extremely low luminance and high light utilization efficiency can be obtained. However, since the liquid crystal display device 101 further includes the microlens array 82, a viewing angle characteristic asymmetric in the Y direction as shown in FIG. 13 can be obtained. Therefore, when the liquid crystal display device 101 is mounted on a vehicle, for example, it is possible to provide a display in which reflection on the windshield on the driver side is extremely prevented.
  • the viewing angle characteristic as shown in FIG. 13 is obtained by making the shape of each microlens 84 asymmetrical along the Y direction. Even if the microlens array 82 is not used, the light emitted from the backlight 50 may have some asymmetry in the Y direction, but the desired viewing angle can be added to the emitted light only by the reverse prism of the prism sheet 60. It is difficult to give characteristics. According to the liquid crystal display device of the second embodiment, since the viewing angle characteristic can be controlled also by the microlens array 82, a more preferable viewing angle characteristic can be obtained.
  • the present invention is suitably used for liquid crystal display devices for TVs, PCs, mobile devices, in-vehicle devices, and the like.

Abstract

Disclosed is a display which has a high light utilization efficiency and which increases the brightness in a desired direction. A liquid crystal display apparatus has a plurality of pixels which are arranged in a matrix along a first direction and a second direction orthogonal thereto. The LCD apparatus comprises a liquid crystal display panel (10) having a liquid crystal layer arranged between a TTL substrate and another substrate opposed thereto, an optical film (22) including a polarizer arranged on a surface of the TTL substrate opposite to the liquid crystal layer, and a backlight arranged on a surface of the optical film opposite to the TTL substrate. The backlight has an optical element layer (70) arranged on an optical film side of a light guide plate (54). The optical element layer includes a plurality of lenticular lenses, each having a light receiving surface protruding toward the light guide plate and extending in the first direction.

Description

液晶表示装置及びバックライトLiquid crystal display device and backlight
 本発明は、バックライト、及びバックライトを利用して表示を行う液晶表示装置に関する。 The present invention relates to a backlight and a liquid crystal display device that performs display using the backlight.
 近年、モニター、プロジェクタ、携帯情報端末、携帯電話などにおける表示装置として液晶表示装置が広く利用されている。液晶表示装置は、一般に、液晶パネルの透過率(又は反射率)を駆動信号によって変化させ、液晶パネルに照射される光源からの光の強度を変調して画像や文字を表示する。液晶表示装置には、液晶パネルに表示された画像などを直接観察する直視型表示装置や、表示された画像等を投影レンズによってスクリーン上に拡大投影する投影型表示装置(プロジェクタ)などがある。 In recent years, liquid crystal display devices are widely used as display devices in monitors, projectors, portable information terminals, mobile phones, and the like. In general, a liquid crystal display device displays images and characters by changing the transmittance (or reflectance) of a liquid crystal panel according to a drive signal and modulating the intensity of light from a light source irradiated on the liquid crystal panel. Examples of the liquid crystal display device include a direct-view display device that directly observes an image displayed on a liquid crystal panel, and a projection display device (projector) that magnifies and projects the displayed image on a screen using a projection lens.
 液晶表示装置は、マトリクス状に規則的に配列された画素のそれぞれに画像信号に対応した駆動電圧を印加することによって、各画素における液晶層の光学特性を変化させ、その前後に配置された偏光素子(典型的には偏光板)により、液晶層の光学特性に合わせて、透過する光を調光することで、画像や文字などを表示する。この偏光板は、直視型液晶表示装置では、通常、液晶パネルの光入射側基板(背面基板)及び光出射側基板(前面基板または観察者側基板)のそれぞれに直接貼り合わされる。 The liquid crystal display device changes the optical characteristics of the liquid crystal layer in each pixel by applying a driving voltage corresponding to the image signal to each of the pixels regularly arranged in a matrix, and polarized light arranged before and after that. An element (typically, a polarizing plate) displays images, characters, and the like by dimming the transmitted light in accordance with the optical characteristics of the liquid crystal layer. In a direct-view liquid crystal display device, this polarizing plate is usually directly bonded to each of a light incident side substrate (back substrate) and a light emission side substrate (front substrate or observer side substrate) of the liquid crystal panel.
 直視型液晶表示装置には、液晶表示パネルの前面基板から入射した光を反射層によって反射して表示を行う反射型液晶表示装置や、バックライトからの光を背面基板側から入射し液晶層を透過させて表示を行う透過型液晶表示装置がある。透過型液晶表示装置の例が特許文献1に記載されている。 The direct-view liquid crystal display device includes a reflective liquid crystal display device that displays light by reflecting light incident from the front substrate of the liquid crystal display panel by a reflective layer, and a liquid crystal layer that receives light from the backlight from the rear substrate side. There is a transmissive liquid crystal display device that performs transmission for display. An example of a transmissive liquid crystal display device is described in Patent Document 1.
 特許文献1の液晶表示装置では、TN型液晶表示装置の上下方向の視野角を広げるために、バックライトの液晶パネル側の面に光制御シートが配置され、液晶パネルの光出射側基板上に視野角調整シートが配置されている。光制御シートは一方向に並ぶ凹凸列を有し、視野角調整シートは光制御シートの凹凸列と同方向に並ぶ複数のレンズ部を有している。液晶パネルへの入射光は光制御シートによって集光されて正面輝度が高められ、出射光は視野角調整シートによって上下方向のみに拡散される。これにより、上下方向のみ視野角が広がった表示が得られるとされている。 In the liquid crystal display device of Patent Document 1, in order to widen the viewing angle in the vertical direction of the TN type liquid crystal display device, a light control sheet is disposed on the surface of the backlight on the liquid crystal panel side, and on the light emission side substrate of the liquid crystal panel. A viewing angle adjustment sheet is arranged. The light control sheet has concavo-convex rows arranged in one direction, and the viewing angle adjustment sheet has a plurality of lens portions arranged in the same direction as the concavo-convex rows of the light control sheet. Incident light to the liquid crystal panel is condensed by the light control sheet to increase the front luminance, and the emitted light is diffused only in the vertical direction by the viewing angle adjustment sheet. As a result, a display with a wide viewing angle only in the vertical direction can be obtained.
 特許文献2には、視野角特性を調整するためにバックライトの光出射側に配置される面光源素子が記載されている。この面光源素子は、所定の方向に延びる複数のプリズムからなる第1プリズムシートと、該所定の方向と異なる方向に延びる複数のプリズムからなる第2プリズムシートを有している。第1プリズムシートの各プリズムの頂角は50°~75°であり、第2プリズムシートの各プリズムの頂角は110°~150°とされ、これにより、基板面法線方向の輝度が高く、かつ視野角範囲の広い面光源が得られるとされている。 Patent Document 2 describes a surface light source element arranged on the light emission side of a backlight in order to adjust viewing angle characteristics. This surface light source element has a first prism sheet composed of a plurality of prisms extending in a predetermined direction and a second prism sheet composed of a plurality of prisms extending in a direction different from the predetermined direction. The apex angle of each prism of the first prism sheet is 50 ° to 75 °, and the apex angle of each prism of the second prism sheet is 110 ° to 150 °, thereby increasing the luminance in the normal direction of the substrate surface. It is said that a surface light source having a wide viewing angle range can be obtained.
 特許文献3には、カーナビゲーションシステムのモニタ表示部等に用いられる液晶ディスプレイが記載されている。図14は、特許文献3において車載用液晶ディスプレイの問題点を説明するために用いられた図である。 Patent Document 3 describes a liquid crystal display used for a monitor display unit of a car navigation system. FIG. 14 is a diagram used for explaining the problem of the in-vehicle liquid crystal display in Patent Document 3. In FIG.
 図14を用いて説明されているように、カーナビゲーションシステム等に用いられる従来の液晶ディスプレイ4は、表示光を、ドライバー1及び助手席に向かう方向のみならず、他の広い方位角方向及び極角方向にもほぼ同様の強度で伝播させる。したがって、図14において、フロントグラス5またはドアグラス6に表示の映り込み4A及び4Bが発生し、ドライバー1による運転の妨げになるという問題があった。 As described with reference to FIG. 14, the conventional liquid crystal display 4 used in a car navigation system or the like has not only the direction of the display light toward the driver 1 and the passenger seat, but also other wide azimuth directions and poles. Propagate in the angular direction with almost the same intensity. Therefore, in FIG. 14, display reflections 4 </ b> A and 4 </ b> B are generated on the front glass 5 or the door glass 6, and there is a problem that the driving by the driver 1 is hindered.
 このような問題を解決するために、特許文献3には、バックライトから出射された光の方向をプリズム列からなる光出射方向修正素子によって修正して、液晶ディスプレイの表示部から出射される光に指向性を与え、特定の方向にのみ明るい表示を提供する技術が記載されている。 In order to solve such a problem, Patent Document 3 discloses light emitted from a display unit of a liquid crystal display by correcting the direction of light emitted from a backlight by a light emission direction correcting element composed of a prism array. A technique for providing directivity and providing a bright display only in a specific direction is described.
特開平9-50029号公報Japanese Patent Laid-Open No. 9-50029 特開2000-56106号公報JP 2000-56106 A 特開平7-306411号公報JP 7-306411 A
 図15は、特許文献2に開示されたものと同様のバックライト200の構成を表した斜視図である。図15に示すように、バックライト200は、導光板201と、導光板201の1つの側面に配置された光源202と、導光板201の下に配置された反射板203と、導光板201の上に配置されたプリズムシート205とを備えている。プリズムシート205は、下方向に尖った複数のプリズムを有する第1プリズムシート206、及び上方向に尖った複数のプリズムを有する第2プリズムシート207からなっている。第1プリズムシート206の各プリズムは水平面(導光板の上面または下面を含む面)内でY方向に延びており、第2プリズムシート207の各プリズムは水平面内でY方向に垂直なX方向に延びている。 FIG. 15 is a perspective view showing the configuration of the backlight 200 similar to that disclosed in Patent Document 2. FIG. As shown in FIG. 15, the backlight 200 includes a light guide plate 201, a light source 202 disposed on one side of the light guide plate 201, a reflection plate 203 disposed under the light guide plate 201, and the light guide plate 201. And a prism sheet 205 disposed on the top. The prism sheet 205 includes a first prism sheet 206 having a plurality of downwardly sharpened prisms and a second prism sheet 207 having a plurality of upwardly sharpened prisms. Each prism of the first prism sheet 206 extends in the Y direction within a horizontal plane (a plane including the upper surface or the lower surface of the light guide plate), and each prism of the second prism sheet 207 extends in the X direction perpendicular to the Y direction within the horizontal plane. It extends.
 図16は、バックライト200によって得られる視野角特性(輝度の極角依存性)の一例を表した図であり、図16(a)はX方向における視野角特性を、図16(b)はY方向における視野角特性を表している。ここで極角とは、面鉛直方向(水平面に鉛直なZ方向)を0度とし、水平面に沿った方向を-90°または90°として表した角度である。 FIG. 16 is a diagram illustrating an example of the viewing angle characteristic (polarity dependence of luminance) obtained by the backlight 200. FIG. 16A shows the viewing angle characteristic in the X direction, and FIG. The viewing angle characteristic in the Y direction is represented. Here, the polar angle is an angle in which the surface vertical direction (Z direction perpendicular to the horizontal plane) is 0 degree and the direction along the horizontal plane is −90 ° or 90 °.
 図15のような構成のバックライトにおいては、臨界角を超えた光が導光板201から出射されるため、X方向の指向性が強くなる。第1プリズムシート206は、導光板201から出射された光を面鉛直方向に立ち上げ、主にX方向の視野角をコントロールする機能を有する。第1プリズムシート206の各プリズムの頂角は60°前後であることが好ましく、頂角を調整することによりX方向の視野角特性における半値幅(半値極角度幅)Wxを±5~20°の範囲内で調整することができる。また、第2プリズムシート207は、導光板201から出射される光の主にY方向の視野角をコントロールする機能を有している。第2プリズムシート207の各プリズムの頂角が例えば120°である場合、プリズムシート207が無い場合に比べて、Y方向の視野角特性における半値幅Wyを10°前後狭める効果がある。このような構成により、X方向に沿って見た輝度の指向性が、Y方向に沿って見た場合の輝度の指向性よりも強くなる。指向性の方向はどちらもほぼ極角0°の方向である。 In the backlight having the configuration as shown in FIG. 15, since the light exceeding the critical angle is emitted from the light guide plate 201, the directivity in the X direction becomes strong. The first prism sheet 206 has a function of raising the light emitted from the light guide plate 201 in the surface vertical direction and mainly controlling the viewing angle in the X direction. The apex angle of each prism of the first prism sheet 206 is preferably around 60 °, and by adjusting the apex angle, the half-value width (half-value polar angle width) Wx in the viewing angle characteristic in the X direction is ± 5 to 20 °. It is possible to adjust within the range. The second prism sheet 207 has a function of controlling the viewing angle mainly in the Y direction of the light emitted from the light guide plate 201. When the apex angle of each prism of the second prism sheet 207 is, for example, 120 °, there is an effect that the half-value width Wy in the viewing angle characteristic in the Y direction is narrowed by about 10 ° compared to the case where the prism sheet 207 is not provided. With such a configuration, the luminance directivity seen along the X direction is stronger than the luminance directivity seen along the Y direction. Both directivity directions are directions with a polar angle of approximately 0 °.
 なお、本明細書において光が「指向性を有する」とは、出射される光がある特定の方向に対して強い強度を有することを表して、指向性の強さ、すなわち特定の方向に対してどの程度強い方向性を有するかは、出射光の強度分布における半値幅角によって示される。その半値幅角の中心値によって示される方向を「指向性の方向」と定義する。 In the present specification, light having “directivity” means that the emitted light has a strong intensity with respect to a specific direction, and the intensity of directivity, that is, with respect to a specific direction. How strong the directionality is is indicated by the half-value width angle in the intensity distribution of the emitted light. The direction indicated by the center value of the half-value width angle is defined as “direction of directivity”.
 上述したように、バックライト200によれば、X方向とY方向の視野角特性を異ならせることができる。しかしながら、このようなバックライト200は車載用の液晶表示装置には適していない。つまり、バックライト200のプリズムシート205によって視野角特性を調整すれば、図14に示したような映り込みを防止することはできるものの、その場合、液晶表示装置による表示には、極角0°方向への強い輝度の指向性が現れることになる。 As described above, according to the backlight 200, the viewing angle characteristics in the X direction and the Y direction can be made different. However, such a backlight 200 is not suitable for an in-vehicle liquid crystal display device. That is, if the viewing angle characteristic is adjusted by the prism sheet 205 of the backlight 200, the reflection as shown in FIG. 14 can be prevented. In that case, however, the polar angle is 0 ° for display by the liquid crystal display device. A strong luminance directivity in the direction appears.
 したがって、図14に示されるようにバックライト200が運転席と助手席との間に配置された場合、運転席から助手席へと延びる左右方向をX方向とすると、バックライト200による表示は運転席と助手席との中間の位置からXに直交するZ方向に向かって強い指向性を示し、運転者や助手席の搭乗者に対しては比較的低い輝度の表示しか提供することができない。また、この問題を解決するために、プリズムシート205における各プリズムの頂角を調整して運転者等の方向の輝度を高めようとすると、中央方位の輝度が更に高くなり光の利用効率が低下すると共に、サイドミラー方向にも光が漏れて映り込みが発生する。 Therefore, when the backlight 200 is disposed between the driver's seat and the passenger seat as shown in FIG. 14, if the left-right direction extending from the driver seat to the passenger seat is the X direction, the display by the backlight 200 is the driving A strong directivity is shown in the Z direction orthogonal to X from an intermediate position between the seat and the passenger seat, and only a relatively low luminance display can be provided to the driver and the passenger in the passenger seat. Further, in order to solve this problem, if the luminance of the direction of the driver or the like is increased by adjusting the apex angle of each prism in the prism sheet 205, the luminance in the central direction is further increased and the light use efficiency is lowered. At the same time, the light also leaks in the direction of the side mirror, causing reflection.
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、所望の方向への輝度が高く、不必要な方向への輝度は低下した、光利用効率の高い表示を提供することにある。また、本発明の目的は、車、飛行機、船などに好適に用いられる車載用の液晶表示装置または光源を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a display with high light utilization efficiency in which luminance in a desired direction is high and luminance in an unnecessary direction is reduced. It is in. Another object of the present invention is to provide an in-vehicle liquid crystal display device or a light source that is suitably used for cars, airplanes, ships, and the like.
 本発明の第1の態様によれば、互いに直交する第1方向および第2方向に沿ってマトリクス状に配置された複数の画素を有する液晶表示装置であって、前記複数の画素に対応して配置された複数の画素電極を備えたTFT基板と、前記画素電極に対向する対向電極を備えた対向基板と、前記TFT基板と前記対向基板との間に配置された液晶層と、前記TFT基板の前記液晶層とは反対側の面の上に配置された偏光板を含む光学フィルムと、前記光学フィルムの前記TFT基板とは反対側に配置されたバックライトと、を備え、前記バックライトは、光源からの光を導光する導光板と、前記導光板の前記光学フィルム側に配置された光学素子層とを有し、前記光学素子層は、それぞれが前記導光板側に膨らんだ受光面を有して前記第1方向に延びる複数のレンチキュラーレンズを含む液晶表示装置が提供される。 According to the first aspect of the present invention, there is provided a liquid crystal display device having a plurality of pixels arranged in a matrix along a first direction and a second direction orthogonal to each other, and corresponding to the plurality of pixels. A TFT substrate having a plurality of pixel electrodes arranged; a counter substrate having a counter electrode opposite to the pixel electrodes; a liquid crystal layer disposed between the TFT substrate and the counter substrate; and the TFT substrate An optical film including a polarizing plate disposed on a surface opposite to the liquid crystal layer, and a backlight disposed on the opposite side of the optical film from the TFT substrate, the backlight comprising: A light guide plate for guiding light from the light source, and an optical element layer disposed on the optical film side of the light guide plate, each of the optical element layers swelled toward the light guide plate side Having the first direction The liquid crystal display device including a plurality of lenticular lenses extending is provided.
 前記第1の態様に基づく本発明の第2の態様によれば、前記バックライトが、前記導光板と前記光学素子層との間に配置されたプリズムシートを有し、前記プリズムシートは、それぞれが前記導光板側に尖った頂角を有して前記第2方向に延びる複数のプリズムを含む液晶表示装置が提供される。 According to a second aspect of the present invention based on the first aspect, the backlight includes a prism sheet disposed between the light guide plate and the optical element layer, and the prism sheets are respectively There is provided a liquid crystal display device including a plurality of prisms having a sharp apex angle toward the light guide plate and extending in the second direction.
 前記第1または第2の態様に基づく本発明の第3の態様によれば、前記複数のレンチキュラーレンズのそれぞれの前記受光面が、前記導光板側に膨らんだ第1曲面と、前記第1曲面を間に挟む第2及び第3曲面とを含み、前記第1曲面の曲率を正の曲率とした場合、前記第2及び第3曲面のそれぞれが負の曲率を有する液晶表示装置が提供される。 According to a third aspect of the present invention based on the first or second aspect, each of the light receiving surfaces of the plurality of lenticular lenses has a first curved surface that swells toward the light guide plate, and the first curved surface. When the curvature of the first curved surface is a positive curvature, a liquid crystal display device in which each of the second and third curved surfaces has a negative curvature is provided. .
 前記第3の態様に基づく本発明の第4の態様によれば、前記受光面が平坦面を含まず、前記第1曲面、前記第2曲面、及び前記第3曲面からなる液晶表示装置が提供される。 According to a fourth aspect of the present invention based on the third aspect, there is provided a liquid crystal display device in which the light receiving surface does not include a flat surface, and includes the first curved surface, the second curved surface, and the third curved surface. Is done.
 前記第3または第4の態様に基づく本発明の第5の態様によれば、前記第2曲面と前記第3曲面が実質的に同じ曲率を有する液晶表示装置が提供される。 According to the fifth aspect of the present invention based on the third or fourth aspect, there is provided a liquid crystal display device in which the second curved surface and the third curved surface have substantially the same curvature.
 前記第5の態様に基づく本発明の第6の態様によれば、前記第1曲面の曲率の絶対値に対する前記第2曲面の曲率及び第3曲面の曲率の絶対値が、それぞれ50%以上150%以下である液晶表示装置が提供される。 According to the sixth aspect of the present invention based on the fifth aspect, the absolute values of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150, respectively. % Or less is provided.
 前記第3から第6のいずれかの態様に基づく本発明の第7の態様によれば、前記TFT基板に垂直な面であって前記第2方向を含む面における前記第1曲面の断面が、前記第1曲面の曲率の曲率円の中心角100°以上140°以下に相当する円周部分であり、前記TFT基板に垂直な面であって前記第2方向を含む面における前記第2曲面の断面及び前記第3曲面の断面が、それぞれ前記第2曲面の曲率及び前記第3曲面の曲率の曲率円の中心角10°以上25°以下に相当する円周部分である液晶表示装置が提供される。 According to a seventh aspect of the present invention based on any one of the third to sixth aspects, a cross section of the first curved surface in a plane perpendicular to the TFT substrate and including the second direction is A circumferential portion corresponding to a central angle of a curvature circle of the first curved surface of the curvature of 100 ° to 140 °, and a surface perpendicular to the TFT substrate and including the second direction. There is provided a liquid crystal display device in which the cross section and the cross section of the third curved surface are circumferential portions corresponding to a central angle of 10 ° to 25 ° of a curvature circle of the curvature of the second curved surface and the curvature of the third curved surface, respectively. The
 前記第1から第7のいずれかの態様に基づく本発明の第8の態様によれば、前記TFT基板と前記光学フィルムとの間に、それぞれが前記第2方向に延びる複数のマイクロレンズを有するマイクロレンズアレイが配置されている液晶表示装置が提供される。 According to an eighth aspect of the present invention based on any one of the first to seventh aspects, a plurality of microlenses each extending in the second direction are provided between the TFT substrate and the optical film. A liquid crystal display device in which a microlens array is disposed is provided.
 前記第1から第8のいずれかの態様に基づく本発明の第9の態様によれば、車載用の液晶表示装置が提供される。 According to the ninth aspect of the present invention based on any one of the first to eighth aspects, an in-vehicle liquid crystal display device is provided.
 本発明の第10の態様によれば、液晶表示装置に表示用の光を供給するためのバックライトであって、光源からの光を導光する導光板と、前記導光板の出射面の上に配置された光学素子層と、を備え、前記光学素子層は、それぞれが前記導光板側に膨らんだ受光面を有して第1方向に延びる複数のレンチキュラーレンズを含むバックライトが提供される。 According to the tenth aspect of the present invention, there is provided a backlight for supplying display light to the liquid crystal display device, the light guide plate guiding light from the light source, and the light emitting plate on the light emitting surface. An optical element layer disposed on the optical element layer, wherein the optical element layer has a light receiving surface that swells toward the light guide plate and includes a plurality of lenticular lenses extending in the first direction. .
 前記第10の態様に基づく本発明の第11の態様によれば、前記導光板と前記光学素子層との間に配置されたプリズムシートであって、それぞれが前記導光板側に尖った頂角を有して前記第1方向に直交する第2方向に延びる複数のプリズムを備えるバックライトが提供される。 According to an eleventh aspect of the present invention based on the tenth aspect, the prism sheet is disposed between the light guide plate and the optical element layer, each apex angle sharpened toward the light guide plate side. A backlight having a plurality of prisms extending in a second direction orthogonal to the first direction is provided.
 前記第11の態様に基づく本発明の第12の態様によれば、前記複数のレンチキュラーレンズのそれぞれの前記受光面が、前記導光板側に膨らんだ第1曲面と、前記第1曲面を間に挟む第2及び第3曲面とを含み、前記第1曲面の曲率を正の曲率とした場合、前記第2及び第3曲面のそれぞれが負の曲率を有するバックライトが提供される。 According to a twelfth aspect of the present invention based on the eleventh aspect, each of the light receiving surfaces of the plurality of lenticular lenses is interposed between a first curved surface that swells toward the light guide plate and the first curved surface. When the first curved surface includes a second curved surface and a third curved surface sandwiched between the curved surfaces, the second curved surface and the third curved surface each have a negative curvature.
 前記第12の態様に基づく本発明の第13の態様によれば、前記受光面が平坦面を含まず、前記第1曲面、前記第2曲面、及び前記第3曲面からなるバックライトが提供される。 According to a thirteenth aspect of the present invention based on the twelfth aspect, there is provided a backlight in which the light receiving surface does not include a flat surface, and includes the first curved surface, the second curved surface, and the third curved surface. The
 前記第12または第13の態様に基づく本発明の第14の態様によれば、前記第2曲面と前記第3曲面が実質的に同じ曲率を有するバックライトが提供される。 According to the fourteenth aspect of the present invention based on the twelfth or thirteenth aspect, there is provided a backlight in which the second curved surface and the third curved surface have substantially the same curvature.
 前記第14の態様に基づく本発明の第15の態様によれば、前記第1曲面の曲率の絶対値に対する前記第2曲面の曲率及び第3曲面の曲率の絶対値が、それぞれ50%以上150%以下であるバックライトが提供される。 According to the fifteenth aspect of the present invention based on the fourteenth aspect, the absolute values of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150, respectively. % Or less backlight is provided.
 前記第12から第15のいずれかの態様に基づく本発明の第16の態様によれば、ある実施形態では、前記導光板の前記出射面に垂直な面であって前記第2方向を含む面における前記第1曲面の断面が、前記第1曲面の曲率の曲率円の中心角100°以上140°以下に相当する円周部分であり、前記出射面に垂直な面であって前記第2方向を含む面における前記第2曲面の断面及び前記第3曲面の断面が、それぞれ前記第2曲面の曲率及び前記第3曲面の曲率の曲率円の中心角10°以上25°以下に相当する円周部分であるバックライトが提供される。 According to a sixteenth aspect of the present invention based on any one of the twelfth to fifteenth aspects, in one embodiment, a surface that is perpendicular to the light exit surface of the light guide plate and includes the second direction A section of the first curved surface is a circumferential portion corresponding to a central angle of a curvature circle of the curvature of the first curved surface of not less than 100 ° and not more than 140 °, and is a surface perpendicular to the emission surface and in the second direction The cross section of the second curved surface and the cross section of the third curved surface in a plane including the circumference corresponding to the center angle of the curvature circle of the curvature of the second curved surface and the curvature of the third curved surface is 10 ° or more and 25 ° or less, respectively. A partial backlight is provided.
 本発明の液晶表示装置によれば、特定の方向には比較的均一かつ高輝度であり、それ以外の方向には極めて輝度の低い表示を提供することができるので、光の利用効率が向上する。また、本発明の液晶表示装置によれば、高輝度の表示が提供される領域と低輝度の表示が提供される領域との間の中間輝度領域を狭めることができるので、必要とされる範囲に表示光が集中した、光の利用効率が高い表示が提供され得る。さらに、本発明の液晶表示装置を車載して使用した場合には、搭乗者に高品質の表示を提供することができ、同時にサイドガラス等への映り込みを低減させることができる。 According to the liquid crystal display device of the present invention, it is possible to provide a display that is relatively uniform and high brightness in a specific direction and extremely low brightness in other directions, so that the light use efficiency is improved. . Further, according to the liquid crystal display device of the present invention, the intermediate luminance region between the region where the high luminance display is provided and the region where the low luminance display is provided can be narrowed, so that the required range is obtained. Therefore, a display with high light utilization efficiency can be provided in which the display light is concentrated. Further, when the liquid crystal display device of the present invention is used on a vehicle, it is possible to provide a high-quality display to the occupant and at the same time reduce the reflection on the side glass or the like.
本発明の実施形態1による液晶表示装置100の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the liquid crystal display device 100 by Embodiment 1 of this invention. 液晶表示装置100の構成を模式的に示した斜視図である。2 is a perspective view schematically showing a configuration of a liquid crystal display device 100. FIG. 液晶表示装置100における光学シート70の形状を模式的に示した断面図である。4 is a cross-sectional view schematically showing the shape of an optical sheet 70 in the liquid crystal display device 100. FIG. (a)は液晶表示装置100における光学シート70のレンズ71の形状を示す断面図であり、(b)は液晶表示装置100のX方向に沿った視野角特性を示す図である。(A) is sectional drawing which shows the shape of the lens 71 of the optical sheet 70 in the liquid crystal display device 100, (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100. FIG. (a)は光学シート70の第1変形例によるレンズ71bの形状を示す断面図であり、(b)はレンズ71bを用いた液晶表示装置100のX方向に沿った視野角特性を示す図である。(A) is sectional drawing which shows the shape of the lens 71b by the 1st modification of the optical sheet 70, (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71b. is there. レンズ71bの受光面73の形状を説明するための図である。It is a figure for demonstrating the shape of the light-receiving surface 73 of the lens 71b. (a)は光学シート70の第2変形例によるレンズ71cの形状を示す断面図であり、(b)はレンズ71cを用いた液晶表示装置100のX方向に沿った視野角特性を示す図である。(A) is sectional drawing which shows the shape of the lens 71c by the 2nd modification of the optical sheet 70, (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71c. is there. レンズ71cの受光面74の形状を説明するための図である。It is a figure for demonstrating the shape of the light-receiving surface 74 of the lens 71c. (a)は光学シート70の第3変形例によるレンズ71dの形状を示す断面図であり、(b)はレンズ71dを用いた液晶表示装置100のX方向に沿った視野角特性を示す図である。(A) is sectional drawing which shows the shape of the lens 71d by the 3rd modification of the optical sheet 70, (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71d. is there. (a)は光学シート70の参考例によるレンズ71eの形状を示す断面図であり、(b)はレンズ71eを用いた液晶表示装置100のX方向に沿った視野角特性を示す図である。(A) is sectional drawing which shows the shape of the lens 71e by the reference example of the optical sheet 70, (b) is a figure which shows the viewing angle characteristic along the X direction of the liquid crystal display device 100 using the lens 71e. 本発明の実施形態2による液晶表示装置101の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the liquid crystal display device 101 by Embodiment 2 of this invention. 液晶表示装置101におけるマイクロレンズアレイ82の形状を模式的に示した断面図である。4 is a cross-sectional view schematically showing the shape of a microlens array 82 in the liquid crystal display device 101. FIG. 液晶表示装置101のY軸に沿った視野角特性を示す図である。It is a figure which shows the viewing angle characteristic along the Y-axis of the liquid crystal display device. 特許文献3において車載用液晶ディスプレイの問題点を説明するために用いられた図である。It is the figure used in order to demonstrate the problem of the vehicle-mounted liquid crystal display in patent document 3. FIG. 特許文献2に開示されたバックライトの構成を表した斜視図である。FIG. 11 is a perspective view illustrating a configuration of a backlight disclosed in Patent Document 2. (a)及び(b)は、特許文献2に開示されたバックライトのそれぞれX方向及びY方向における視野角特性を模式的に表した図である。(A) And (b) is the figure which represented typically the viewing angle characteristic in the X direction and Y direction of the backlight disclosed by patent document 2, respectively.
 以下、図面を参照しながら、本発明による液晶表示装置の実施形態について説明する。 Hereinafter, embodiments of a liquid crystal display device according to the present invention will be described with reference to the drawings.
 (実施形態1)
 図1は、本発明の実施形態1による液晶表示装置100の構成を模式的に示した断面図であり、図2は、液晶表示装置100の構成を模式的に示した斜視図、図3は、液晶表示装置100における光学シート70の形状を模式的に示した断面図である。液晶表示装置100は車載用に適した液晶表示装置であるが、その用途は車載用に限られない。
(Embodiment 1)
FIG. 1 is a cross-sectional view schematically showing the configuration of the liquid crystal display device 100 according to Embodiment 1 of the present invention, FIG. 2 is a perspective view schematically showing the configuration of the liquid crystal display device 100, and FIG. 2 is a cross-sectional view schematically showing the shape of an optical sheet 70 in the liquid crystal display device 100. FIG. The liquid crystal display device 100 is a liquid crystal display device suitable for in-vehicle use, but its application is not limited to in-vehicle use.
 液晶表示装置100は、アクティブマトリクス方式による透過型の液晶表示装置(LCD)である。液晶表示装置100は、半透過型(透過反射型)の液晶表示装置であってもよい。液晶表示装置100は、基板面内で互いに直交するX方向(第2方向)及びY方向(第1方向)に沿ってマトリクス状に配置された複数の画素を有する。 The liquid crystal display device 100 is an active matrix transmission type liquid crystal display device (LCD). The liquid crystal display device 100 may be a transflective liquid crystal display device. The liquid crystal display device 100 includes a plurality of pixels arranged in a matrix along the X direction (second direction) and the Y direction (first direction) orthogonal to each other within the substrate surface.
 図1及び図2に示すように、液晶表示装置100は、液晶パネル10と、液晶パネル10の下側(表示面と反対側の面側)に配置されたバックライト50とを備えている。液晶パネル10は、画素毎に形成されたTFT及び画素電極を含むTFT基板12と、画素電極に対向する対向電極を含むカラーフィルタ基板(CF基板)である対向基板14と、液晶層16とを備えている。液晶層16は、TFT基板12と対向基板14との間に封入された液晶材料を含む。液晶材料は外周部に設けられたシール材18によって密閉されている。 As shown in FIGS. 1 and 2, the liquid crystal display device 100 includes a liquid crystal panel 10 and a backlight 50 disposed on the lower side of the liquid crystal panel 10 (the surface side opposite to the display surface). The liquid crystal panel 10 includes a TFT substrate 12 including a TFT and a pixel electrode formed for each pixel, a counter substrate 14 which is a color filter substrate (CF substrate) including a counter electrode facing the pixel electrode, and a liquid crystal layer 16. I have. The liquid crystal layer 16 includes a liquid crystal material sealed between the TFT substrate 12 and the counter substrate 14. The liquid crystal material is sealed with a sealing material 18 provided on the outer periphery.
 液晶パネル10の上面(観察者側の面)には光学フィルム(前面側光学フィルム)24が、また、下面には光学フィルム(背面側光学フィルム)22がそれぞれ貼り付けられている。光学フィルム22及び24は、それぞれ、偏光板(偏光フィルム)を含んでいる。光学フィルム22及び24の2つの偏光板は、透過軸(あるいは吸収軸)が互いに直交するようにクロスニコルに配置されている。光学フィルム22及び24は、位相差板、光拡散シート等の光学素子を含むこともあり得る。 An optical film (front side optical film) 24 is attached to the upper surface (observer side surface) of the liquid crystal panel 10, and an optical film (back side optical film) 22 is attached to the lower surface. Each of the optical films 22 and 24 includes a polarizing plate (polarizing film). The two polarizing plates of the optical films 22 and 24 are arranged in crossed Nicols so that the transmission axes (or absorption axes) are orthogonal to each other. The optical films 22 and 24 may include optical elements such as a retardation plate and a light diffusion sheet.
 バックライト50は、LEDや冷陰極管等の光源52と、光源52から発せられた光を伝播させる導光板54と、導光板54の下(液晶パネル10の反対側)に配置された反射板56と、導光板54の出射面の上(液晶パネル10の側)に配置されたプリズムシート60と、プリズムシート60の上に配置された光学シート(光学素子層)70とを備えている。反射板56に面する導光板54の下部には鋸歯状に溝が掘られており、傾斜角度が異なる複数の傾斜面を有するプリズムアレイ58が形成されている。ここでプリズムアレイ58の複数の傾斜面は、光源52から離れるに従って傾斜角度が大きくなるように形成されている。 The backlight 50 includes a light source 52 such as an LED or a cold cathode tube, a light guide plate 54 for propagating light emitted from the light source 52, and a reflector disposed under the light guide plate 54 (on the opposite side of the liquid crystal panel 10). 56, a prism sheet 60 disposed on the light exit surface of the light guide plate 54 (on the liquid crystal panel 10 side), and an optical sheet (optical element layer) 70 disposed on the prism sheet 60. A groove is formed in a sawtooth shape below the light guide plate 54 facing the reflection plate 56, and a prism array 58 having a plurality of inclined surfaces with different inclination angles is formed. Here, the plurality of inclined surfaces of the prism array 58 are formed so that the inclination angle increases as the distance from the light source 52 increases.
 光源52から出射された光は、反射板56またはプリズムアレイ58の傾斜面で反射された後、導光板54の上面(出射面)を通過し、プリズムシート60のプリズム及び光学シート70のレンズ71によって屈折された後、液晶パネル10に向けて出射される。 The light emitted from the light source 52 is reflected by the inclined surface of the reflecting plate 56 or the prism array 58, then passes through the upper surface (emission surface) of the light guide plate 54, and the prism of the prism sheet 60 and the lens 71 of the optical sheet 70. Then, the light is emitted toward the liquid crystal panel 10.
 光源52から発せられた光のうち、プリズムアレイ58の面及び導光板54の上面に臨界角(Critical Angle)以上の角度で入射した光は、これらの面によって全反射される。一方、臨界角よりも小さい角度で入射した光は、その一部が反射され、残りは屈折して底面又は上面から出射される。底面から出射した光は、反射板56で反射して再び導光板54に入射し、上面から出射した光はプリズムシート60へと向かう。このような仕組みにより、導光板54を伝播する光は反射及び屈折を繰り返しながら、徐々にプリズムシート60に向けて出射されていく。 Of the light emitted from the light source 52, light incident on the surface of the prism array 58 and the upper surface of the light guide plate 54 at an angle equal to or greater than the critical angle is totally reflected by these surfaces. On the other hand, a part of the light incident at an angle smaller than the critical angle is reflected, and the rest is refracted and emitted from the bottom surface or the top surface. The light emitted from the bottom surface is reflected by the reflecting plate 56 and enters the light guide plate 54 again, and the light emitted from the top surface goes to the prism sheet 60. With such a mechanism, light propagating through the light guide plate 54 is gradually emitted toward the prism sheet 60 while repeating reflection and refraction.
 プリズムシート60は、それぞれがX方向に延びる複数のプリズムを含んでいる。プリズムシート60をY-Z平面における断面で見た場合、複数のプリズムのそれぞれは、図1に示すように、導光板54の側に尖った頂角を有している。頂角の角度は45°以上75°以下の範囲であることが望ましく、これにより、視野角特性における半値幅が30°(±15°)以下である、Z方向(基板面(X-Y平面)に垂直な方向)に指向性の強い出射光を得ることができる。 The prism sheet 60 includes a plurality of prisms each extending in the X direction. When the prism sheet 60 is viewed in a cross section in the YZ plane, each of the plurality of prisms has a sharp apex angle toward the light guide plate 54 as shown in FIG. The apex angle is preferably in the range of 45 ° to 75 °, whereby the half-value width in the viewing angle characteristic is 30 ° (± 15 °) or less, in the Z direction (substrate plane (XY plane) It is possible to obtain outgoing light having a strong directivity in a direction perpendicular to).
 光学シート70は、図3に示すように、それぞれがY方向に延びる複数のレンチキュラーレンズ71(単にレンズ71とも呼ぶ)を含んでいる。光学シート70をX-Z平面における断面で見た場合、複数のレンズ71のそれぞれは、図2及び図3に示すように、導光板54の側に膨らんだ受光面を有している。 As shown in FIG. 3, the optical sheet 70 includes a plurality of lenticular lenses 71 (also simply referred to as lenses 71) each extending in the Y direction. When the optical sheet 70 is viewed in a cross section in the XZ plane, each of the plurality of lenses 71 has a light receiving surface that swells toward the light guide plate 54 as shown in FIGS.
 次に、図4を用いて光学シート70のレンズ71(71a)のより詳細な説明を行なう。図4(a)はレンズ71aのX-Z面における断面形状を表しており、図4(b)は液晶表示装置100のX方向方向の視野角特性(輝度の極角依存性)を表している。図4(b)の縦軸は表示における輝度を、横軸はZ方向を0°とした極角を表している。 Next, the lens 71 (71a) of the optical sheet 70 will be described in more detail with reference to FIG. 4A shows the cross-sectional shape of the lens 71a on the XZ plane, and FIG. 4B shows the viewing angle characteristics (polarity dependence of luminance) of the liquid crystal display device 100 in the X direction. Yes. In FIG. 4B, the vertical axis represents the luminance in display, and the horizontal axis represents the polar angle with the Z direction being 0 °.
 図4(a)に示すように、レンズ71aの受光面72は曲率(及び曲率半径)が一定の曲面からなる。本実施形態における受光面72の曲率半径は24.5μmである。受光面72の曲率半径は10μm以上200μm以下であることが好ましい。極率半径を10μmよりも小さくすると、製造過程において寸法のバラツキが大きくなり問題となり得る。また、極率半径を200μmよりも大きくすると、装置の厚みが厚くなり過ぎ、また画素ピッチの関係上表示にモアレが発生しやすくなり得る。このような形状のレンズ71aを有する光学シート70を用いることにより、図4(b)に示すような、極角0°方向の依存性が比較的少ない視野角特性を得ることができる。 As shown in FIG. 4A, the light receiving surface 72 of the lens 71a is a curved surface having a constant curvature (and a curvature radius). In this embodiment, the radius of curvature of the light receiving surface 72 is 24.5 μm. The curvature radius of the light receiving surface 72 is preferably 10 μm or more and 200 μm or less. If the pole radius is smaller than 10 μm, the dimensional variation increases in the manufacturing process, which may be a problem. Also, if the polar radius is larger than 200 μm, the thickness of the device becomes too thick, and moire can easily occur in the display due to the pixel pitch. By using the optical sheet 70 having the lens 71a having such a shape, it is possible to obtain viewing angle characteristics with relatively little dependence on the polar angle 0 ° direction as shown in FIG. 4B.
 図16(a)と比較して分かるように、光学シート70を用いることにより、プリズムシート205を用いた場合に比べてより極角0°方向の輝度が突出せず、極角-40°以上40°以下において輝度が比較的均一な特性を得ることができる。したがって、図14に示したように液晶表示装置100を車載して使用した場合(車両の左右方向をX方向とする)、不必要な方向の輝度が抑えられ、運転者及び助手席搭乗者の方向には十分な輝度が与えられた、光の利用効率の高い表示が得られる。また、Y方向の視野角特性については、プリズムシート60の使用により、極角0°方向の輝度が高く、-30°以下及び30°以上の輝度が極めて低い特性が得られるので、フロントガラスへの映り込みを防止することができる。 As can be seen from comparison with FIG. 16A, by using the optical sheet 70, the luminance in the polar angle 0 ° direction does not protrude more than when the prism sheet 205 is used, and the polar angle is −40 ° or more. A characteristic with relatively uniform luminance can be obtained at 40 ° or less. Therefore, when the liquid crystal display device 100 is used while being mounted on the vehicle as shown in FIG. 14 (the left-right direction of the vehicle is the X direction), the luminance in the unnecessary direction is suppressed, and the driver and passenger on the passenger seat A display with high light use efficiency with sufficient luminance in the direction can be obtained. Also, with respect to the viewing angle characteristics in the Y direction, the use of the prism sheet 60 provides high brightness in the polar angle 0 ° direction and extremely low brightness of −30 ° or less and 30 ° or more. Can be prevented from being reflected.
 次に、図5から図9を用いて実施形態1に適用され得る光学シート70の変形例について説明する。 Next, modified examples of the optical sheet 70 that can be applied to the first embodiment will be described with reference to FIGS.
 図5(a)は第1変形例の光学シート70のレンズ71(71b)のX-Z面における断面形状を表しており、図5(b)は第1変形例の光学シート70を備えた液晶表示装置100のX方向の視野角特性を表している。図5(b)の縦軸は輝度を、横軸はZ方向を0°とした極角を表している。図6は、レンズ71bの受光面73の形状を説明するための図である。 FIG. 5A illustrates a cross-sectional shape of the lens 71 (71b) of the optical sheet 70 of the first modification on the XZ plane, and FIG. 5B includes the optical sheet 70 of the first modification. The viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented. In FIG. 5B, the vertical axis represents luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °. FIG. 6 is a diagram for explaining the shape of the light receiving surface 73 of the lens 71b.
 図5(a)に示すように、レンズ71bの受光面73は、バックライト50の側に膨らんだ曲面73b(第1曲面)と、曲面73bを間に挟む曲面73a(第2曲面)及び曲面73c(第3曲面)とからなる。曲面73a及び曲面73cは曲面73bとは逆の方向に膨らんだ曲面である。曲面73bの曲率半径は24.5μmであり、曲面73a及び曲面73cの曲率半径は-24.5μmである。このように、曲面73bの曲率を正とした場合、曲面73a及び73cは負の曲率を有する。曲面73a、73b、及び73cを基板面に投射した場合のX方向の幅A、B、及びCは、それぞれ14μm、28μm、及び14μmである。 As shown in FIG. 5A, the light receiving surface 73 of the lens 71b includes a curved surface 73b (first curved surface) that swells toward the backlight 50, a curved surface 73a (second curved surface) that sandwiches the curved surface 73b, and a curved surface. 73c (third curved surface). The curved surface 73a and the curved surface 73c are curved surfaces that swell in the opposite direction to the curved surface 73b. The curvature radius of the curved surface 73b is 24.5 μm, and the curvature radius of the curved surface 73a and the curved surface 73c is −24.5 μm. Thus, when the curvature of the curved surface 73b is positive, the curved surfaces 73a and 73c have negative curvatures. The widths A, B, and C in the X direction when the curved surfaces 73a, 73b, and 73c are projected onto the substrate surface are 14 μm, 28 μm, and 14 μm, respectively.
 図6における円a、b、及びcは、それぞれ曲面73a、73b、及び73cの曲率円を表している。いずれの曲率円も半径24.5μmの円である。曲面73a、73b、及び73cのX-Z面おける断面は、それぞれに対応する曲率円の中心角θ1=45°、θ2=90°、及びθ3=45°の円周に対応している。 6 represent circles of curvature of curved surfaces 73a, 73b, and 73c, respectively. Each of the curvature circles is a circle having a radius of 24.5 μm. The cross sections of the curved surfaces 73a, 73b, and 73c in the XZ plane correspond to the circumferences of the central angles θ1 = 45 °, θ2 = 90 °, and θ3 = 45 ° of the corresponding curvature circles.
 このような形状を有するレンズ71bからなる光学シート70を用いることにより、図5(b)に示すように、極角-30°以上30°以下の範囲において輝度が比較的均一であり、-30°以下及び30°以上では輝度が極めて小さくなる視野角特性が得られる。したがって、液晶表示装置100を車載して使用した場合、不必要な方向の輝度が抑えられ、運転者及び助手席搭乗者の方向には十分な輝度が与えられた、光の利用効率の高い表示が得られる。 By using the optical sheet 70 composed of the lens 71b having such a shape, as shown in FIG. 5B, the luminance is relatively uniform in the polar angle range of −30 ° to 30 °, and −30 When the angle is less than 30 ° or more than 30 °, a viewing angle characteristic with extremely small luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is suppressed, and a sufficient luminance is given in the direction of the driver and the passenger on the front passenger seat. Is obtained.
 ただし、より車載に適した液晶表示装置にするためには、X方向の視野角特性において、極角-40°以上40°以下の範囲における輝度を比較的均一に高め、-40°以下及び40°以上では輝度が急激に小さくすることが好ましい。こうすることにより、運転者および搭乗者には極めて明るい表示を提供し、かつサイドガラスへの写り込みを極めて低減させることができる。 However, in order to obtain a liquid crystal display device more suitable for in-vehicle use, in the viewing angle characteristics in the X direction, the luminance in the polar angle range of −40 ° or more and 40 ° or less is increased relatively uniformly, and −40 ° or less and 40 Above 0 °, it is preferable that the luminance is decreased rapidly. By doing so, it is possible to provide a very bright display to the driver and the passenger and to greatly reduce the reflection on the side glass.
 次に説明する第2変形例の光学シート70を備えた液晶表示装置100によれば、そのようなより好ましい視野角特性が得られる。 According to the liquid crystal display device 100 provided with the optical sheet 70 of the second modification described below, such a more preferable viewing angle characteristic can be obtained.
 図7(a)は第2変形例の光学シート70のレンズ71(71c)のX-Z面における断面形状を表しており、図7(b)は第2変形例の光学シート70を備えた液晶表示装置100のX方向の視野角特性を表している。図7(b)の縦軸は輝度を、横軸はZ方向を0°とした極角を表している。図8は、レンズ71cの受光面74の形状を説明するための図である。 FIG. 7A shows a cross-sectional shape of the lens 71 (71c) of the optical sheet 70 of the second modified example on the XZ plane, and FIG. 7B includes the optical sheet 70 of the second modified example. The viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented. In FIG. 7B, the vertical axis represents luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °. FIG. 8 is a diagram for explaining the shape of the light receiving surface 74 of the lens 71c.
 図7(a)に示すように、レンズ71cの受光面74は、バックライト50の側に膨らんだ曲面74b(第1曲面)と、曲面74bを間に挟む曲面74a(第2曲面)及び曲面74c(第3曲面)とからなる。曲面74a及び曲面74cは曲面74bとは逆の方向に膨らんだ曲面である。曲面74bの曲率半径は24.5μmであり、曲面74a及び曲面74cの曲率半径は-24.5μmである。このように、曲面74bの曲率を正とした場合、曲面74a及び74cは負の曲率を有する。曲面74a、74b、及び74cを基板面に投射した場合のX方向の幅A、B、及びCは、それぞれ5μm、35μm、及び5μmである。 As shown in FIG. 7A, the light receiving surface 74 of the lens 71c includes a curved surface 74b (first curved surface) that swells toward the backlight 50, a curved surface 74a (second curved surface) that sandwiches the curved surface 74b, and a curved surface. 74c (third curved surface). The curved surface 74a and the curved surface 74c are curved surfaces that swell in the opposite direction to the curved surface 74b. The curvature radius of the curved surface 74b is 24.5 μm, and the curvature radius of the curved surface 74a and the curved surface 74c is −24.5 μm. Thus, when the curvature of the curved surface 74b is positive, the curved surfaces 74a and 74c have negative curvature. The widths A, B, and C in the X direction when the curved surfaces 74a, 74b, and 74c are projected onto the substrate surface are 5 μm, 35 μm, and 5 μm, respectively.
 図8における円a、b、及びcは、それぞれ曲面74a、74b、及び74cの曲率円を表している。いずれの曲率円も半径24.5μmの円である。曲面74a、74b、及び74cのX-Z面おける断面は、それぞれ曲率円の中心角θ1=15°、θ2=120°、及びθ3=15°の円周に対応している。この場合の輝度の半値幅は±42°である。 8 represent circles of curvature of curved surfaces 74a, 74b, and 74c, respectively. Each of the curvature circles is a circle having a radius of 24.5 μm. The cross sections of the curved surfaces 74a, 74b, and 74c in the XZ plane correspond to the circumferences of the central angles θ1 = 15 °, θ2 = 120 °, and θ3 = 15 ° of the curvature circle, respectively. In this case, the half width of the luminance is ± 42 °.
 このような形状を有するレンズ71cからなる光学シート70を用いることにより、図7(b)に示すように、極角-40°以上40°以下の範囲において輝度が極めて均一に高く、-40°以下及び40°以上では輝度が極めて小さい視野角特性が得られる。したがって、液晶表示装置100を車載して使用した場合、不必要な方向の輝度が極めて抑えられ、運転者及び助手席搭乗者の方向には十分な輝度が与えられた、光の利用効率の高い表示が得られる。 By using the optical sheet 70 composed of the lens 71c having such a shape, as shown in FIG. 7 (b), the luminance is extremely uniformly high within a polar angle range of −40 ° to 40 °, and −40 °. Below and above 40 °, viewing angle characteristics with extremely low luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is extremely suppressed, and sufficient luminance is provided in the direction of the driver and the passenger on the passenger seat, so that the light use efficiency is high. A display is obtained.
 曲面74a、74b、及び74cの曲率半径は10μm以上200μm以下であることが好ましく、曲面74bの曲率の絶対値に対する曲面74a及び曲面74cの曲率の絶対値は、それぞれ50%以上150%以下であることが好ましい。また、X-Z面における曲面74bの断面は、曲面74bの曲率の曲率円の中心角100°以上140°以下に相当する円周部分であることが好ましく、X-Z面における曲面74a及び曲面74cの断面が、それぞれ曲面74a及び曲面74cの曲率の曲率円の中心角10°以上25°以下に相当する円周部分であることが好ましい。このような範囲内に各曲面の曲率又は中心角を設定することにより、必要な範囲においては輝度が均一に高く、不必要な範囲においては輝度が極めて低い、光利用効率の高い表示が得られる。 The curvature radii of the curved surfaces 74a, 74b, and 74c are preferably 10 μm or more and 200 μm or less, and the absolute values of the curvatures of the curved surface 74a and the curved surface 74c with respect to the absolute value of the curvature of the curved surface 74b are 50% or more and 150% or less, respectively. It is preferable. The cross section of the curved surface 74b in the XZ plane is preferably a circumferential portion corresponding to the central angle of the curvature circle of the curvature of the curved surface 74b of 100 ° to 140 °, and the curved surface 74a and the curved surface in the XZ plane The cross section 74c is preferably a circumferential portion corresponding to a central angle of 10 ° to 25 ° of the curvature circle of the curvature of the curved surface 74a and the curved surface 74c, respectively. By setting the curvature or center angle of each curved surface within such a range, a display with high light utilization efficiency can be obtained in which the brightness is uniformly high in the required range and extremely low in the unnecessary range. .
 第2変形例の光学シート70によれば、曲面74a及び74cを透過した光を、不必要な極角±60°~90°方向に出射させず、必要とされる極角±30°~40°の方向に出射させることができる。これにより、図7(b)に示すように、-40°~+40°において平坦かつ高輝度であり、それ以外では輝度が極めて低い視野角特性を得ることができる。 According to the optical sheet 70 of the second modification, the light transmitted through the curved surfaces 74a and 74c is not emitted in the direction of unnecessary polar angles ± 60 ° to 90 °, and the required polar angles ± 30 ° to 40 °. The light can be emitted in the direction of °. Accordingly, as shown in FIG. 7B, it is possible to obtain a viewing angle characteristic that is flat and high in luminance from −40 ° to + 40 ° and extremely low in other cases.
 例えば図4(a)に示したレンズ71では、受光面72の両端部分(両端部から極率円の中心角30°程度に相当する円弧部分)を透過した光は、極角-40°~+40°方向に向かうことはほとんどない。第2変形例の光学シート70によれば、レンズの両端部分を透過する光を必要な方向に出射させることができるので、より好ましい視野角特性が得られる。また、曲面のみからなる受光面は、平面を含む受光面よりも製作しやすく、また、それによって視野角特性をコントロールすることも比較的容易であるため好ましい。受光面が平面を含む場合、視野角特性にピークや谷間といった極端な変化が生じやすいが、曲面のみからなる受光面を用いた場合、そのような極端な変化は生じにくい。 For example, in the lens 71 shown in FIG. 4A, light transmitted through both end portions of the light receiving surface 72 (an arc portion corresponding to a central angle of about 30 ° of the polar circle from both end portions) has a polar angle of −40 ° to There is almost no heading in the + 40 ° direction. According to the optical sheet 70 of the second modified example, light that passes through both end portions of the lens can be emitted in a necessary direction, so that more preferable viewing angle characteristics can be obtained. In addition, a light-receiving surface composed only of a curved surface is preferable because it is easier to manufacture than a light-receiving surface including a flat surface, and it is relatively easy to control viewing angle characteristics. When the light receiving surface includes a flat surface, extreme changes such as peaks and valleys are likely to occur in the viewing angle characteristics. However, when a light receiving surface consisting of only a curved surface is used, such extreme changes are unlikely to occur.
 次に、第3変形例の光学シート70を有する液晶表示装置について説明する。 Next, a liquid crystal display device having the optical sheet 70 of the third modification will be described.
 図9(a)は第3変形例の光学シート70のレンズ71(71d)のX-Z面における断面形状を表しており、図9(b)は第3変形例の光学シート70を備えた液晶表示装置100のX方向の視野角特性を表している。図9(b)の縦軸は輝度を、横軸はZ方向を0°とした極角を表している。 FIG. 9A shows the cross-sectional shape of the lens 71 (71d) of the optical sheet 70 of the third modified example on the XZ plane, and FIG. 9B includes the optical sheet 70 of the third modified example. The viewing angle characteristic of the X direction of the liquid crystal display device 100 is represented. In FIG. 9B, the vertical axis represents luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °.
 図9(a)に示すように、レンズ71dの受光面75は、バックライト50の側に膨らんだ曲面75bと、曲面75bを間に挟む平面75a及び平面75cとからなる。曲面75bの曲率半径は24.5μmであり、平面75a及び平面75cはX-Y面に対して45°傾斜している。平面75a、曲面75b、及び平面75cを基板面に投射した場合のX方向の幅A、B、及びCは、それぞれ5μm、28μm、及び5μmである。このような形状を有するレンズ71dからなる光学シート70を用いることにより、図9(b)に示す視野角特性が得られる。 As shown in FIG. 9A, the light receiving surface 75 of the lens 71d includes a curved surface 75b that swells toward the backlight 50, and a flat surface 75a and a flat surface 75c that sandwich the curved surface 75b. The curvature radius of the curved surface 75b is 24.5 μm, and the plane 75a and the plane 75c are inclined by 45 ° with respect to the XY plane. When the plane 75a, the curved surface 75b, and the plane 75c are projected onto the substrate surface, the widths A, B, and C in the X direction are 5 μm, 28 μm, and 5 μm, respectively. By using the optical sheet 70 composed of the lens 71d having such a shape, the viewing angle characteristic shown in FIG. 9B can be obtained.
 第3変形例の光学シート70によれば、図9(b)に示すように、極角-40°以上40°以下の範囲において比較的輝度が均一で高く、-40°以下及び40°以上では輝度が極めて小さい視野角特性が得られる。したがって、液晶表示装置100を車載して使用した場合、不必要な方向の輝度が極めて抑えられ、運転者及び助手席搭乗者の方向には十分な輝度が与えられた、光の利用効率の高い表示が得られる。第3変形例のように、レンズ71dの受光面75が平面75a及び平面75cを含んでいても、図9(a)に示した幅A及び幅Bそれぞれのレンズ幅(A+B+C)に対する割合を10~15%程度とすることにより、比較的好ましい視野角特性が得られる。 According to the optical sheet 70 of the third modified example, as shown in FIG. 9 (b), the brightness is relatively uniform and high in the polar angle range of −40 ° to 40 °, and is −40 ° or less and 40 ° or more. Then, viewing angle characteristics with extremely low luminance can be obtained. Therefore, when the liquid crystal display device 100 is used in a vehicle, the luminance in an unnecessary direction is extremely suppressed, and sufficient luminance is provided in the direction of the driver and the passenger on the passenger seat, so that the light use efficiency is high. A display is obtained. Even if the light receiving surface 75 of the lens 71d includes the flat surface 75a and the flat surface 75c as in the third modification, the ratio of the width A and the width B shown in FIG. 9A to the lens width (A + B + C) is 10 By setting it to about 15%, a relatively preferable viewing angle characteristic can be obtained.
 図10(a)は参考例の光学シート70のレンズ71(71e)のX-Z面における断面形状を表しており、図10(b)は参考例の光学シート70を備えた液晶表示装置100のX方向の視野角特性を表している。図10(b)の縦軸は輝度を、横軸はZ方向を0°とした極角を表している。 10A illustrates a cross-sectional shape of the lens 71 (71e) of the optical sheet 70 of the reference example on the XZ plane, and FIG. 10B illustrates a liquid crystal display device 100 including the optical sheet 70 of the reference example. Represents the viewing angle characteristics in the X direction. In FIG. 10B, the vertical axis represents luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °.
 図10(a)に示すように、レンズ71eの受光面76は、バックライト50の側に膨らんだ曲面76bと、曲面76bを間に挟む平面76a及び平面76cとからなる。曲面76bの曲率半径は8.5μmであり、平面76a及び平面76cはX-Y面に対して45°傾斜している。平面76a、曲面76b、及び平面76cを基板面に投射した場合のX方向の幅A、B、及びCは、それぞれ20μm、8.5μm、及び20μmである。このような形状を有するレンズ71eからなる光学シート70を用いることにより、図10(b)に示す視野角特性が得られる。 As shown in FIG. 10A, the light receiving surface 76 of the lens 71e includes a curved surface 76b that swells toward the backlight 50, and a plane 76a and a plane 76c that sandwich the curved surface 76b. The radius of curvature of the curved surface 76b is 8.5 μm, and the plane 76a and the plane 76c are inclined by 45 ° with respect to the XY plane. The widths A, B, and C in the X direction when the flat surface 76a, the curved surface 76b, and the flat surface 76c are projected onto the substrate surface are 20 μm, 8.5 μm, and 20 μm, respectively. By using the optical sheet 70 composed of the lens 71e having such a shape, the viewing angle characteristic shown in FIG. 10B is obtained.
 参考例の光学シート70を用いた場合、レンズ71eの受光面76が曲面を挟む比較的大きな2つの平面を含んでいるため、特定の極角(変形例では極角-30°及び30°付近)に光が極端に集中し、視野角特性に2つのピークが現れると共に、両ピークの間(0°付近)の輝度が極めて低下する。このように特定の極角のみに光が集中することは、視野角特性の点で不適当である。従って、光学シート70のレンズ71の受光面は、実施形態1及び変形例において示したように、大きな平面を含まないように形成することが好ましい。 When the optical sheet 70 of the reference example is used, since the light receiving surface 76 of the lens 71e includes two relatively large planes sandwiching the curved surface, specific polar angles (in the modification, polar angles of −30 ° and around 30 °) ) Is extremely concentrated, two peaks appear in the viewing angle characteristics, and the luminance between both peaks (near 0 °) is extremely reduced. Such concentration of light only at a specific polar angle is inappropriate in view angle characteristics. Therefore, it is preferable that the light receiving surface of the lens 71 of the optical sheet 70 is formed so as not to include a large plane as shown in the first embodiment and the modification.
 液晶表示装置100は光学シート70を備えているので、X方向に沿って見た場合、極角0°を中心とした特定の極角範囲に比較的均一かつ高輝度の表示が提供され、それ以外の極角方向には極めて輝度の低い表示が提供され得る。また、高輝度の表示が提供される領域と低輝度の表示が提供される領域との間の中間輝度領域を狭めることができる。したがって、特定の領域にのみ輝度の高い表示が必要とされる用途に対して、その必要に応えるとともに、不必要な領域に向かう光が少ない、光利用効率の高い表示が提供され得る。さらに、Y方向に沿った視野角特性はプリズムシート60によって適切に調整され、Y方向に沿ってみた場合にも、極角0°を中心とした特定の極角範囲に高輝度の表示が提供される。 Since the liquid crystal display device 100 includes the optical sheet 70, when viewed along the X direction, a relatively uniform and high-luminance display is provided in a specific polar angle range centered on a polar angle of 0 °. In other polar angle directions, a display with extremely low luminance can be provided. Further, it is possible to narrow an intermediate luminance region between a region where a high luminance display is provided and a region where a low luminance display is provided. Therefore, it is possible to provide a display with high light utilization efficiency that meets the need for an application that requires a display with high luminance only in a specific area, and has less light directed to an unnecessary area. Furthermore, the viewing angle characteristic along the Y direction is appropriately adjusted by the prism sheet 60, and even when viewed along the Y direction, a high luminance display is provided in a specific polar angle range centered on a polar angle of 0 °. Is done.
 したがって、液晶表示装置100を車載して使用した場合、運転手及び助手席の搭乗者には高品質の表示を提供するとともに、フロントガラス及びサイドガラスへの映り込みを低減させることができる。 Therefore, when the liquid crystal display device 100 is used in-vehicle, it is possible to provide a high-quality display to the driver and passengers in the passenger seat and to reduce the reflection on the windshield and side glass.
 プリズムシート60の導光板54の側に光学シート70を配置してもよい。プリズムシート60の代わりに、上述したレンズ71の形状を有し、X方向に延びる複数のレンズからなる光学シートを用いることもできる。また、そのような光学シートとY方向に延びる複数のプリズムからなるプリズムシートを、プリズムシート60と光学シート70の代わりに用いることも可能である。 The optical sheet 70 may be disposed on the light guide plate 54 side of the prism sheet 60. Instead of the prism sheet 60, an optical sheet having a shape of the lens 71 described above and including a plurality of lenses extending in the X direction can also be used. Further, a prism sheet composed of such an optical sheet and a plurality of prisms extending in the Y direction can be used in place of the prism sheet 60 and the optical sheet 70.
 次に、本発明の実施形態2による液晶表示装置を説明する。なお、実施形態1と同じ構成要素には同じ参照番号を付し、その説明を省略する。 Next, a liquid crystal display device according to Embodiment 2 of the present invention will be described. In addition, the same reference number is attached | subjected to the same component as Embodiment 1, and the description is abbreviate | omitted.
 (実施形態2)
 図11は、本発明の実施形態2による液晶表示装置101の構成を模式的に示した断面図であり、図12は、液晶表示装置101におけるマイクロレンズアレイ82の形状を模式的に示した断面図である。図13は、液晶表示装置101によって得られるY方向の視野角特性を表している。図13の縦軸は輝度を、横軸はZ方向を0°とした極角を表している。
(Embodiment 2)
FIG. 11 is a cross-sectional view schematically showing the configuration of the liquid crystal display device 101 according to the second embodiment of the present invention. FIG. 12 is a cross-sectional view schematically showing the shape of the microlens array 82 in the liquid crystal display device 101. FIG. FIG. 13 shows viewing angle characteristics in the Y direction obtained by the liquid crystal display device 101. The vertical axis in FIG. 13 represents the luminance, and the horizontal axis represents the polar angle with the Z direction being 0 °.
 液晶表示装置101は、実施形態1の液晶表示装置100と同様、車載用に適したアクティブマトリクス方式による透過型または半透過型の液晶表示装置であり、基板面内で互いに直交するX方向(第2方向)及びY方向(第1方向)に沿ってマトリクス状に配置された複数の画素を有する。 Similar to the liquid crystal display device 100 of the first embodiment, the liquid crystal display device 101 is a transmissive or transflective liquid crystal display device using an active matrix method suitable for in-vehicle use, and is orthogonal to each other in the X direction (first 2 pixels) and a plurality of pixels arranged in a matrix along the Y direction (first direction).
 図11に示すように、液晶表示装置101は、液晶パネル80と、液晶パネル80の下側に配置された実施形態1で用いたものと同じバックライト50とを備えている。液晶パネル80は、実施形態1で用いたものと同様の、TFT基板12、対向基板14、液晶層16、及びシール材18を備えている。液晶パネル80の上面には光学フィルム24が、下面には光学フィルム22がそれぞれ貼り付けられている。 As shown in FIG. 11, the liquid crystal display device 101 includes a liquid crystal panel 80 and the same backlight 50 as that used in the first embodiment, which is disposed below the liquid crystal panel 80. The liquid crystal panel 80 includes the same TFT substrate 12, counter substrate 14, liquid crystal layer 16, and sealing material 18 as those used in the first embodiment. The optical film 24 is attached to the upper surface of the liquid crystal panel 80, and the optical film 22 is attached to the lower surface.
 液晶パネル80は、TFT基板12と光学フィルム22との間に配置されたマイクロレンズアレイ82を備えている。マイクロレンズアレイ82は、図12に示すように複数のマイクロレンズ84を含んでいる。各マイクロレンズ84は、Y方向に延びるレンチキュラーレンズであり、そのX方向の幅は画素の幅に対応している。 The liquid crystal panel 80 includes a microlens array 82 disposed between the TFT substrate 12 and the optical film 22. The microlens array 82 includes a plurality of microlenses 84 as shown in FIG. Each microlens 84 is a lenticular lens extending in the Y direction, and the width in the X direction corresponds to the width of the pixel.
 マイクロレンズアレイ82は、光硬化性樹脂によって形成され得る。液晶パネル80の製造工程において光硬化性樹脂に画素の開口部を介して光を照射することにより、各画素に対応するようにマイクロレンズ84が自己整合的に形成される。マイクロレンズ84を、例えば、スタンパによって樹脂を型取りすることにより形成することも可能である。マイクロレンズアレイ82と保護層との間をマイクロレンズアレイ82とは異なる屈折率を有する材料で埋めてもよい。このような構成を採ることにより、液晶パネル80の強度を上げることができる。 The microlens array 82 can be formed of a photocurable resin. In the manufacturing process of the liquid crystal panel 80, by irradiating the photocurable resin with light through the opening of the pixel, the microlens 84 is formed in a self-aligned manner so as to correspond to each pixel. It is also possible to form the microlens 84 by, for example, taking a resin with a stamper. The space between the microlens array 82 and the protective layer may be filled with a material having a refractive index different from that of the microlens array 82. By adopting such a configuration, the strength of the liquid crystal panel 80 can be increased.
 液晶表示装置101は、実施形態1と同じバックライト50を有しているので、基本的には実施形態1の液晶表示装置100と同様、必要な範囲においては輝度が均一に高く、不必要な範囲においては輝度が極めて低い、光利用効率の高い表示が得られる。ただし、液晶表示装置101は、さらにマイクロレンズアレイ82を備えているため、図13に示すような、Y方向おいて非対称な視野角特性が得られる。したがって、液晶表示装置101を車載した場合、例えば、運転者側のフロントガラスへの映り込みが極めて防止された表示を提供することが可能となる。 Since the liquid crystal display device 101 has the same backlight 50 as in the first embodiment, basically the luminance is uniform and high in a necessary range as in the case of the liquid crystal display device 100 in the first embodiment, which is unnecessary. In the range, display with extremely low luminance and high light utilization efficiency can be obtained. However, since the liquid crystal display device 101 further includes the microlens array 82, a viewing angle characteristic asymmetric in the Y direction as shown in FIG. 13 can be obtained. Therefore, when the liquid crystal display device 101 is mounted on a vehicle, for example, it is possible to provide a display in which reflection on the windshield on the driver side is extremely prevented.
 なお、図13に示すような視野角特性は、各マイクロレンズ84の形状をY方向に沿って非対称とすることにより得られている。マイクロレンズアレイ82を用いない場合であっても、バックライト50からの出射光は、Y方向において多少の非対称性を持ち得るが、プリズムシート60の逆プリズムだけで、出射光に所望の視野角特性を与えることは難しい。実施形態2の液晶表示装置によれば、マイクロレンズアレイ82によっても視野角特性のコントロールを行うことができるので、より好ましい視野角特性が得られる。 Note that the viewing angle characteristic as shown in FIG. 13 is obtained by making the shape of each microlens 84 asymmetrical along the Y direction. Even if the microlens array 82 is not used, the light emitted from the backlight 50 may have some asymmetry in the Y direction, but the desired viewing angle can be added to the emitted light only by the reverse prism of the prism sheet 60. It is difficult to give characteristics. According to the liquid crystal display device of the second embodiment, since the viewing angle characteristic can be controlled also by the microlens array 82, a more preferable viewing angle characteristic can be obtained.
 本発明は、TV、PC、モバイル装置、車載機器等のための液晶表示装置に好適に用いられる。 The present invention is suitably used for liquid crystal display devices for TVs, PCs, mobile devices, in-vehicle devices, and the like.
 10、80  液晶パネル
 12  TFT基板
 14  対向基板
 16  液晶層
 18  シール材
 22  光学フィルム(背面側光学フィルム)
 24  光学フィルム(前面側光学フィルム)
 50  バックライト
 52  光源
 54  導光板
 56  反射板
 58  プリズムアレイ
 60  プリズムシート
 70  光学シート(光学素子層)
 71  レンズ
 72、73、74、75、76  受光面
 82  マイクロレンズアレイ
 84  マイクロレンズ
 100、101  液晶表示装置
10, 80 Liquid crystal panel 12 TFT substrate 14 Counter substrate 16 Liquid crystal layer 18 Sealing material 22 Optical film (back side optical film)
24 Optical film (front side optical film)
50 Backlight 52 Light Source 54 Light Guide Plate 56 Reflector Plate 58 Prism Array 60 Prism Sheet 70 Optical Sheet (Optical Element Layer)
71 Lens 72, 73, 74, 75, 76 Light-receiving surface 82 Micro lens array 84 Micro lens 100, 101 Liquid crystal display device

Claims (16)

  1.  互いに直交する第1方向および第2方向に沿ってマトリクス状に配置された複数の画素を有する液晶表示装置であって、
     前記複数の画素に対応して配置された複数の画素電極を備えたTFT基板と、
     前記画素電極に対向する対向電極を備えた対向基板と、
     前記TFT基板と前記対向基板との間に配置された液晶層と、
     前記TFT基板の前記液晶層とは反対側の面の上に配置された偏光板を含む光学フィルムと、
     前記光学フィルムの前記TFT基板とは反対側に配置されたバックライトと、を備え、
     前記バックライトは、光源からの光を導光する導光板と、前記導光板の前記光学フィルム側に配置された光学素子層とを有し、
     前記光学素子層は、それぞれが前記導光板側に膨らんだ受光面を有して前記第1方向に延びる複数のレンチキュラーレンズを含む、液晶表示装置。
    A liquid crystal display device having a plurality of pixels arranged in a matrix along a first direction and a second direction orthogonal to each other,
    A TFT substrate comprising a plurality of pixel electrodes arranged corresponding to the plurality of pixels;
    A counter substrate including a counter electrode facing the pixel electrode;
    A liquid crystal layer disposed between the TFT substrate and the counter substrate;
    An optical film including a polarizing plate disposed on a surface of the TFT substrate opposite to the liquid crystal layer;
    A backlight disposed on the opposite side of the optical film from the TFT substrate,
    The backlight includes a light guide plate that guides light from a light source, and an optical element layer disposed on the optical film side of the light guide plate,
    The optical element layer includes a plurality of lenticular lenses each having a light receiving surface swelled toward the light guide plate and extending in the first direction.
  2.  前記バックライトが、前記導光板と前記光学素子層との間に配置されたプリズムシートを有し、
     前記プリズムシートは、それぞれが前記導光板側に尖った頂角を有して前記第2方向に延びる複数のプリズムを含む、請求項1に記載の液晶表示装置。
    The backlight has a prism sheet disposed between the light guide plate and the optical element layer,
    2. The liquid crystal display device according to claim 1, wherein each of the prism sheets includes a plurality of prisms each having a sharp apex angle toward the light guide plate and extending in the second direction.
  3.  前記複数のレンチキュラーレンズのそれぞれの前記受光面が、前記導光板側に膨らんだ第1曲面と、前記第1の曲面を間に挟む第2及び第3曲面とを含み、
     前記第1曲面の曲率を正の曲率とした場合、前記第2及び第3曲面のそれぞれが負の曲率を有する、請求項1または2に記載の液晶表示装置。
    Each of the light receiving surfaces of the plurality of lenticular lenses includes a first curved surface that swells toward the light guide plate, and second and third curved surfaces that sandwich the first curved surface,
    3. The liquid crystal display device according to claim 1, wherein when the curvature of the first curved surface is a positive curvature, each of the second and third curved surfaces has a negative curvature.
  4.  前記受光面が平坦面を含まず、前記第1曲面、前記第2曲面、及び前記第3曲面からなる、請求項3に記載の液晶表示装置。 The liquid crystal display device according to claim 3, wherein the light receiving surface does not include a flat surface, and includes the first curved surface, the second curved surface, and the third curved surface.
  5.  前記第2曲面と前記第3曲面が実質的に同じ曲率を有する、請求項3または4に記載の液晶表示装置。 The liquid crystal display device according to claim 3 or 4, wherein the second curved surface and the third curved surface have substantially the same curvature.
  6.  前記第1曲面の曲率の絶対値に対する前記第2曲面の曲率及び第3曲面の曲率の絶対値が、それぞれ50%以上150%以下である、請求項5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein the absolute values of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150% or less, respectively.
  7.  前記TFT基板に垂直な面であって前記第2方向を含む面における前記第1曲面の断面が、前記第1曲面の曲率の曲率円の中心角100°以上140°以下に相当する円周部分であり、
     前記TFT基板に垂直な面であって前記第2方向を含む面における前記第2曲面の断面及び前記第3曲面の断面が、それぞれ前記第2曲面の曲率及び前記第3曲面の曲率の曲率円の中心角10°以上25°以下に相当する円周部分である、請求項3から6のいずれかに記載の液晶表示装置。
    A circumferential portion in which a cross section of the first curved surface in a plane perpendicular to the TFT substrate and including the second direction corresponds to a central angle of a curvature circle of the curvature of the first curved surface of 100 ° to 140 ° And
    A section of the second curved surface and a section of the third curved surface in a plane perpendicular to the TFT substrate and including the second direction are a curvature circle of the curvature of the second curved surface and the curvature of the third curved surface, respectively. The liquid crystal display device according to claim 3, which is a circumferential portion corresponding to a central angle of 10 ° to 25 °.
  8.  前記TFT基板と前記光学フィルムとの間に、それぞれが前記第2方向に延びる複数のマイクロレンズを有するマイクロレンズアレイが配置された、請求項1から7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, wherein a microlens array having a plurality of microlenses each extending in the second direction is disposed between the TFT substrate and the optical film.
  9.  前記液晶表示装置が車載用の液晶表示装置である、請求項1から8のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the liquid crystal display device is an in-vehicle liquid crystal display device.
  10.  液晶表示装置に表示用の光を供給するためのバックライトであって、
     光源からの光を導光する導光板と、
     前記導光板の出射面の上に配置された光学素子層と、を備え、
     前記光学素子層は、それぞれが前記導光板側に膨らんだ受光面を有して第1方向に延びる複数のレンチキュラーレンズを含む、バックライト。
    A backlight for supplying display light to a liquid crystal display device,
    A light guide plate for guiding light from the light source;
    An optical element layer disposed on the exit surface of the light guide plate, and
    The optical element layer includes a plurality of lenticular lenses each having a light receiving surface swelled toward the light guide plate and extending in the first direction.
  11.  前記導光板と前記光学素子層との間に配置されたプリズムシートであって、それぞれが前記導光板側に尖った頂角を有して前記第1方向に直交する第2方向に延びる複数のプリズムを備えた、請求項10に記載のバックライト。 A plurality of prism sheets arranged between the light guide plate and the optical element layer, each having a sharp apex angle toward the light guide plate side and extending in a second direction orthogonal to the first direction. The backlight according to claim 10, comprising a prism.
  12.  前記複数のレンチキュラーレンズのそれぞれの前記受光面が、前記導光板側に膨らんだ第1曲面と、前記第1の曲面を間に挟む第2及び第3曲面とを含み、
     前記第1曲面の曲率を正の曲率とした場合、前記第2及び第3曲面のそれぞれが負の曲率を有する、請求項11に記載のバックライト。
    Each of the light receiving surfaces of the plurality of lenticular lenses includes a first curved surface that swells toward the light guide plate, and second and third curved surfaces that sandwich the first curved surface,
    The backlight according to claim 11, wherein each of the second and third curved surfaces has a negative curvature when the curvature of the first curved surface is a positive curvature.
  13.  前記受光面が平坦面を含まず、前記第1曲面、前記第2曲面、及び前記第3曲面からなる、請求項12に記載のバックライト。 The backlight according to claim 12, wherein the light receiving surface does not include a flat surface and includes the first curved surface, the second curved surface, and the third curved surface.
  14.  前記第2曲面と前記第3曲面が実質的に同じ曲率を有する、請求項12または13に記載のバックライト。 The backlight according to claim 12 or 13, wherein the second curved surface and the third curved surface have substantially the same curvature.
  15.  前記第1曲面の曲率の絶対値に対する前記第2曲面の曲率及び第3曲面の曲率の絶対値が、それぞれ50%以上150%以下である、請求項14に記載のバックライト。 15. The backlight according to claim 14, wherein the absolute value of the curvature of the second curved surface and the curvature of the third curved surface with respect to the absolute value of the curvature of the first curved surface are 50% or more and 150% or less, respectively.
  16.  前記導光板の前記出射面に垂直な面であって前記第2方向を含む面における前記第1曲面の断面が、前記第1曲面の曲率の曲率円の中心角100°以上140°以下に相当する円周部分であり、
     前記出射面に垂直な面であって前記第2方向を含む面における前記第2曲面の断面及び前記第3曲面の断面が、それぞれ前記第2曲面の曲率及び前記第3曲面の曲率の曲率円の中心角10°以上25°以下に相当する円周部分である、請求項12から15のいずれかに記載のバックライト。
    A cross section of the first curved surface in a plane perpendicular to the emission surface of the light guide plate and including the second direction corresponds to a central angle of a curvature circle of the curvature of the first curved surface of 100 ° to 140 °. The circumferential part to be
    A cross section of the second curved surface and a cross section of the third curved surface in a plane perpendicular to the emission surface and including the second direction are a curvature circle of the curvature of the second curved surface and the curvature of the third curved surface, respectively. The backlight according to claim 12, which is a circumferential portion corresponding to a central angle of 10 ° to 25 °.
PCT/JP2009/006747 2009-01-09 2009-12-10 Liquid crystal display apparatus and backlight WO2010079552A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801542226A CN102272667A (en) 2009-01-09 2009-12-10 Liquid crystal display apparatus and backlight
US13/143,214 US20110267560A1 (en) 2009-01-09 2009-12-10 Liquid crystal display apparatus and backlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009004092 2009-01-09
JP2009-004092 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010079552A1 true WO2010079552A1 (en) 2010-07-15

Family

ID=42316331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006747 WO2010079552A1 (en) 2009-01-09 2009-12-10 Liquid crystal display apparatus and backlight

Country Status (3)

Country Link
US (1) US20110267560A1 (en)
CN (1) CN102272667A (en)
WO (1) WO2010079552A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8338199B2 (en) * 2010-08-27 2012-12-25 Quarkstar Llc Solid state light sheet for general illumination
US8198109B2 (en) * 2010-08-27 2012-06-12 Quarkstar Llc Manufacturing methods for solid state light sheet or strip with LEDs connected in series for general illumination
US8192051B2 (en) 2010-11-01 2012-06-05 Quarkstar Llc Bidirectional LED light sheet
US8410726B2 (en) 2011-02-22 2013-04-02 Quarkstar Llc Solid state lamp using modular light emitting elements
US8314566B2 (en) 2011-02-22 2012-11-20 Quarkstar Llc Solid state lamp using light emitting strips
US9025112B2 (en) * 2012-02-02 2015-05-05 Apple Inc. Display with color mixing prevention structures
US11145838B2 (en) * 2013-05-21 2021-10-12 Samsung Display Co., Ltd. Organic light emitting diode display and method of manufacturing the same
CN108169949A (en) * 2016-12-07 2018-06-15 群创光电股份有限公司 Show equipment
GB2566973A (en) * 2017-09-29 2019-04-03 Flexenable Ltd Display device
JP7236801B2 (en) * 2017-11-09 2023-03-10 恵和株式会社 Protective sheet for polarizing plate, polarizing plate, and liquid crystal display device
DE102021113573A1 (en) 2021-05-26 2022-12-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung BACKLIGHT UNIT

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221529A (en) * 1997-02-07 1998-08-21 Konica Corp Surface light source device
JP2001312915A (en) * 2000-04-28 2001-11-09 Kuraray Co Ltd Surface light source element and display device using the same
JP2007072044A (en) * 2005-09-06 2007-03-22 Sanyo Epson Imaging Devices Corp Liquid crystal apparatus and electronic equipment
JP2007298757A (en) * 2006-04-28 2007-11-15 Hitachi Maxell Ltd Lens sheet, backlight using the same, and display device
JP2008502001A (en) * 2004-06-03 2008-01-24 イーストマン コダック カンパニー Brightness enhancement film with condensing device
JP2008203281A (en) * 2005-06-03 2008-09-04 Sharp Corp Linear light source backlight system and planar display device
WO2008155878A1 (en) * 2007-06-18 2008-12-24 Sharp Kabushiki Kaisha Liquid crystal display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995288A (en) * 1997-04-22 1999-11-30 Dai Nippon Printing Co., Ltd. Optical sheet optical sheet lamination light source device, and light-transmissive type display apparatus
WO2001009869A1 (en) * 1999-08-02 2001-02-08 Comoc Corporation Microlens array and display comprising microlens array
US6648485B1 (en) * 2000-11-13 2003-11-18 International Business Machines Corporation Highly collimating tapered light guide for uniform illumination of flat panel displays
US6600528B2 (en) * 2000-12-19 2003-07-29 International Business Machines Corporation Integrated prism sheet for improved viewing angle in direct view color filterless liquid crystal displays
KR20060116033A (en) * 2004-02-27 2006-11-13 샤프 가부시키가이샤 Display apparatus and electronic device
TWI364600B (en) * 2004-04-12 2012-05-21 Kuraray Co An illumination device an image display device using the illumination device and a light diffusing board used by the devices
CN101128696A (en) * 2005-02-08 2008-02-20 富士胶片株式会社 Light guide plate, and planar lighting device and liquid crystal display device using such light guide plate
JP2007017485A (en) * 2005-07-05 2007-01-25 Fujifilm Holdings Corp Liquid crystal display device and liquid crystal projector
TWI274215B (en) * 2005-08-10 2007-02-21 Ind Tech Res Inst Direct type backlight module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221529A (en) * 1997-02-07 1998-08-21 Konica Corp Surface light source device
JP2001312915A (en) * 2000-04-28 2001-11-09 Kuraray Co Ltd Surface light source element and display device using the same
JP2008502001A (en) * 2004-06-03 2008-01-24 イーストマン コダック カンパニー Brightness enhancement film with condensing device
JP2008203281A (en) * 2005-06-03 2008-09-04 Sharp Corp Linear light source backlight system and planar display device
JP2007072044A (en) * 2005-09-06 2007-03-22 Sanyo Epson Imaging Devices Corp Liquid crystal apparatus and electronic equipment
JP2007298757A (en) * 2006-04-28 2007-11-15 Hitachi Maxell Ltd Lens sheet, backlight using the same, and display device
WO2008155878A1 (en) * 2007-06-18 2008-12-24 Sharp Kabushiki Kaisha Liquid crystal display device

Also Published As

Publication number Publication date
US20110267560A1 (en) 2011-11-03
CN102272667A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2010079552A1 (en) Liquid crystal display apparatus and backlight
US5555476A (en) Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same
CN101382693B (en) Liquid crystal display device
CN101815965B (en) Light diffusion sheet and liquid crystal display device
JP4788314B2 (en) Light diffusion sheet, transmissive screen, rear projection display device, and liquid crystal display device
US20030072080A1 (en) Optical sheet and display device having the optical sheet
US8246188B2 (en) Illuminating device and display unit
KR20080033872A (en) Method for manufacturing optical element
JP3544349B2 (en) Liquid crystal display
WO2009141953A1 (en) Liquid crystal display device
JP2014085666A (en) Liquid crystal display device having backlight unit capable of performing viewing angle control
CN112334831B (en) Reflective screen and image display device
US8279377B2 (en) Liquid crystal display device
WO2013061875A1 (en) Liquid crystal display device
US20100283941A1 (en) Liquid crystal display panel, liquid crystal display device and manufacturing method of liquid crystal display panel
JP4402111B2 (en) Liquid crystal display panel and liquid crystal display device
JPH0772809A (en) Microlens array sheet for liquid crystal display and liquid crystal display using the same
JP2016145956A (en) Optical device, head-mounted type image display apparatus including the same and imaging apparatus
JP2001183664A (en) Liquid crystal display device used for reflection as well as transmission
WO2010140397A1 (en) Light emission angle adjusting sheet, display panel, display device, and method for manufacturing light emission angle adjusting sheet
JPH07120743A (en) Method for mounting microlens array sheet
JP3746403B2 (en) Liquid crystal display
WO2020017591A1 (en) Reflective screen and image display device
CN113167933A (en) Reflective transparent screen and image display system
CN116413907A (en) Display device, head-up display and traffic equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154222.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837442

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13143214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09837442

Country of ref document: EP

Kind code of ref document: A1