WO2010078811A1 - 一种资源协作的方法及系统 - Google Patents

一种资源协作的方法及系统 Download PDF

Info

Publication number
WO2010078811A1
WO2010078811A1 PCT/CN2009/076121 CN2009076121W WO2010078811A1 WO 2010078811 A1 WO2010078811 A1 WO 2010078811A1 CN 2009076121 W CN2009076121 W CN 2009076121W WO 2010078811 A1 WO2010078811 A1 WO 2010078811A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time
cooperation
resources
cooperative
Prior art date
Application number
PCT/CN2009/076121
Other languages
English (en)
French (fr)
Inventor
毕峰
孙云锋
赵楠
朱常青
杨瑾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010078811A1 publication Critical patent/WO2010078811A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of communications, and in particular to a method and system for resource cooperation. Background technique
  • B3G/4G The research objectives of B3G/4G are: to integrate cellular, fixed wireless access, nomadic, wireless regional network and other access systems, combined with all-IP networks, to provide users with peak speeds of up to 100Mbps and 1Gbps in high-speed and low-speed mobile environments. Transmitting capabilities, and seamless integration of cellular communication systems, regional wireless networks, broadcast, and television satellite communications, ultimately enabling "anyone to communicate with anyone else in any way, anytime, anywhere.”
  • Relay technology can increase cell coverage and increase cell capacity, making relay technology an effective measure. The introduction of relay technology will lead to more problems, such as resource utilization, which is an issue that needs to be studied in depth.
  • Time-frequency resource management is very important for Orthogonal Frequency Division Multiplexing (OFDM) communication systems, especially for communication systems that introduce relay stations (RS, Relay Station).
  • OFDM Orthogonal Frequency Division Multiplexing
  • BS Base Station
  • RS Relay Station
  • the data transmitted by the user terminal (UT, User Terminal) is first transmitted by the base station (BS, Base Station) to the RS in the relay zone, and then the RS is connected.
  • the Access Zone is transmitted to the UT.
  • the time-frequency resources occupied are twice as large as the original, resulting in a decrease in resource utilization.
  • Collaborative technology is a macro or distributed MIMO (Multi-Input Multiple-Out-put) communication system in multi-hop communication systems, which can be applied to the access and downlink of access or relay.
  • the cooperation technique is similar to the macro diversity between adjacent BSs, which is realized by cooperative transmission between the BS and each RS in a base station (MR-BS, Multihop Relay Base Station) cell, by using different BS and RS transmissions. Antenna to send relevant Signals, achieving collaborative diversity.
  • MR-BS Multihop Relay Base Station
  • Antenna to send relevant Signals, achieving collaborative diversity.
  • spatial diversity can provide better BER, Bit Error Rate / Block Error Rate (BLER) performance, and spatial multiplexing can bring higher communication systems. Spectral efficiency.
  • Collaboration can be multiple sources, ie multiple points.
  • the resource cooperation within the BS that introduces the RS can be regarded as multi-point resource cooperation within the BS; resource cooperation between multiple BSs can be regarded as multi-point cooperation between BSs.
  • the inter-BS multi-point cooperation may include multi-point resource cooperation within the BS, that is, the BS introduces RS, that is, a combination of multi-point resource cooperation in the BS and multi-point resource cooperation between the BSs.
  • the main object of the present invention is to provide a method and system for resource cooperation, which effectively solves the problem of inaccurate CQI caused by frequency resource cooperation.
  • a method for resource cooperation includes: a cooperative resource and a non-cooperative resource adopt a time division form, each collaboration node has a time window of the same time length, and selects the same time resource in the time window to perform resource cooperation.
  • Time resources include:
  • the remaining time resources in the time window are non-cooperative time resources, and the method further includes:
  • the adjusted time ratio is used to configure the collaborative time resource in the time window. If no adjustment is needed, the original ratio is used to configure the collaborative time resource in the time window.
  • the time resource is a time unit in orthogonal frequency division multiplexing OFDM symbols, or time slots, or subframes, or radio frames, or superframes;
  • the ratio of the collaborative time resource to the non-cooperative time resource in the one time window is: a ratio of the number of time units for resource cooperation in the time window to the number of time units used for non-resource cooperation.
  • the resource cooperation is: multi-point resource cooperation in the BS, or multi-point resource cooperation between the BSs, or a combination of multi-point resource cooperation in the BS and multi-point resource cooperation between the BSs;
  • the multi-point resource cooperation in the BS is: the BS cooperates with resources between multiple RSs in the coverage of the BS, or the resources between multiple RSs in a coverage area of the BS;
  • the inter-BS multi-point resource cooperation is: time resource cooperation between multiple BSs.
  • the method further includes: dynamically, or semi-statically, or statically configuring the size of the time window.
  • a system for resource cooperation includes: at least two cooperative nodes, the cooperative resource and the non-cooperative resource adopt a time division form, each collaborative node has a time window of the same time length, and is used for selecting the same time resource in the time window for resource cooperation.
  • the collaboration node is further used to:
  • the collaborative time resource is selected by negotiation or according to the received high-level configuration notification; and/or, the ratio of the collaborative time resource to the non-cooperative time resource in a time window is adjusted by negotiation or according to the received high-level configuration notification.
  • the collaboration node at least includes: a processing module, configured to select, in a time window, the same time resource as the other collaboration nodes for resource cooperation.
  • the collaboration node further includes: a determination module and an adjustment module, wherein, in time, the adjustment module is notified to perform adjustment;
  • the adjusting module is configured to adaptively adjust a ratio of the collaborative time resource to the non-cooperative time resource in the time window;
  • the processing module is configured to select, according to the adjusted ratio, the same time resource in the time window as the other collaboration nodes to perform resource cooperation.
  • each collaboration node has a time window of the same length of time, and selects the same time resource in the time window to perform resource cooperation. Therefore, the collaborative resource and the non-cooperative resource are in a time division form, and the package provided by the present invention is easy to implement.
  • the solution, rationally dividing resources effectively solves the problem of inaccurate CQI caused by frequency resource cooperation, so that scheduling is no longer affected by inaccurate CQI.
  • Accurate CQI will make coding, modulation, resource mapping, etc. more suitable for link conditions, which improves the performance of single-point to single-point links and improves the throughput of the entire system.
  • FIG. 1 is a schematic diagram of resource cooperation in a specific embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of resource cooperation in a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of resource cooperation in a third embodiment of the present invention.
  • FIG. 4 is a schematic diagram of resource cooperation in a fourth embodiment of the present invention.
  • FIG. 5 is a flowchart of a cooperative resource configuration in the present invention.
  • FIG. 6 is a schematic structural diagram of a resource cooperation system according to the present invention. detailed description
  • the cooperative resource and the non-cooperative resource adopt a time division form, each collaboration node has a time window of the same length, and the same time resource in the time window is selected for resource cooperation.
  • the cooperative node may be a BS or an RS.
  • the resource cooperation can be coordinated by multiple resources in the BS or multi-point resources between the BSs. It can also be a combination of multi-point resource cooperation in the BS and multi-point resource cooperation between the BSs.
  • the multi-point resource cooperation in the BS is: the BS cooperates with resources between multiple RSs within the coverage of the BS, or the resource cooperation between multiple RSs within a coverage area of the BS.
  • the inter-BS multi-point resource cooperation is: resource cooperation between multiple BSs.
  • the time resources may be in units of time in OFDM symbols, or time slots, or subframes, or radio frames, or superframes, and the like.
  • each collaboration node When each collaboration node performs resource cooperation to select time resources, it can be selected according to the set rules; it can also be selected according to the negotiation result between the cooperation nodes; and can also be selected according to the high-level configuration.
  • a time resource for resource collaboration in a time window is called a collaborative time resource
  • Each coordinated collaboration node may adaptively adjust the ratio of the collaborative time resource to the non-coordinated time resource according to the high-level configuration; or may adaptively adjust the ratio of the collaborative time resource to the non-cooperative time resource according to the negotiation result between the coordinated nodes; Can be self-applied according to the set rules Adjust the ratio of collaboration time resources to non-collaboration time resources.
  • adaptive adjustment refers to configuring the cooperative time resources in units of time.
  • the ratio of the collaborative time resource to the non-cooperative time resource in a time window refers to the ratio of the number of time units used for resource cooperation in the time window to the number of time units used for non-resource cooperation.
  • the size of the time window can also be dynamic, or semi-static, or statically configured, and the specific configuration is implemented by higher layers.
  • one subframe is used as a time unit of time resources.
  • FIG. 1 is a schematic diagram of resource cooperation in a specific embodiment of the present invention.
  • a resource is coordinated between a BS and multiple RSs in the coverage area of the BS, and two RSs are included in the coverage area of the BS. , ie RS1, RS2.
  • the BS, the RSI, and the RS2 may directly select the first subframe in the time window for resource cooperation according to the setting rule; or the BS may determine the first subframe in the selected time window for resource cooperation, and then notify the RS1 by signaling.
  • the RS2 is used for resource cooperation time resources; the first subframe in the selection time window may be determined by the negotiation between the BS, the RSI, and the RS2 for resource cooperation; and the first sub-time in the selection time window may be determined by the upper layer.
  • the frame is used for resource cooperation, and then the BS, RSI, and RS2 are notified of the time resources for resource cooperation. In this way, BS, RSI, and RS2 all allocate the first subframe in the time window for resource cooperation, and other subframes do not perform resource cooperation.
  • FIG. 2 is a schematic diagram of resource cooperation in a second embodiment of the present invention.
  • resource cooperation is performed between multiple RSs in a coverage area of a BS, and three RSs are included in a BS coverage area, that is, RS1. , RS2, RS3. RS1, RS2, and RS3 may directly select the second subframe in the time window for resource cooperation according to the setting rule; or the BS may determine the second subframe in the selected time window for resource cooperation, and then notify the RS1 by signaling.
  • RS2, RS3 are used for time resources of resource cooperation; or may be determined by negotiation between RS1, RS2, and RS3 to select a time window.
  • the second subframe in the port is used for resource cooperation; the second subframe in the selected time window may be determined by the upper layer for resource cooperation, and then RS1, RS2, and RS3 are notified for the time resource for resource cooperation. In this way, RSI, RS2, and RS3 all allocate the second subframe in the time window for resource cooperation, and the other subframes do not perform resource cooperation.
  • FIG. 3 is a schematic diagram of resource cooperation in a third embodiment of the present invention.
  • resource cooperation is performed between multiple BSs, that is, BSs, BS1, BS2, and BS3.
  • BS1, BS2, and BS3 may directly select the third subframe in the time window for resource cooperation according to the setting rule; or may determine, by BS1, BS2, and BS3, the third subframe in the selected time window for the resource.
  • the third subframe in the selection time window may also be determined by the upper layer for resource cooperation, and then the BS1, BS2, and BS3 are notified of the time resources for resource cooperation.
  • BS1, BS2, and BS3 all allocate the third subframe in the time window for resource cooperation, and other subframes do not perform resource cooperation.
  • FIG. 4 is a schematic diagram of resource cooperation in a fourth embodiment of the present invention.
  • the BSs and between the RSs in the coverage of the corresponding BS, the BS, and the RSs in the coverage of the BS.
  • Resource cooperation is carried out jointly.
  • BS1, RS11, RS12, BS2, and RS21 may directly select the first subframe in the time window for resource cooperation according to the setting rule; or may determine the first subframe in the selected time window by negotiation between BS1 and BS2.
  • the first subframe in the selection time window may be determined by the upper layer for resource cooperation, and then the BS1, RS11, RS12, BS2, and RS21 are respectively notified for the time resources for resource cooperation.
  • BS1, RS11, RS12, BS2, and RS21 all allocate the first subframe in the time window for resource cooperation, and the other subframes do not perform resource cooperation.
  • FIG. 5 is a flowchart of configuring a collaborative resource according to the present invention, as shown in FIG.
  • the specific processing procedure includes the following steps: If adjustment is needed, step 502 is performed; if adjustment is not required, step 503 is performed.
  • the cooperative nodes may determine whether the ratio of the cooperative time resource to the non-cooperative time resource needs to be adjusted according to the negotiation result; or may determine whether it is needed according to the signaling from the upper layer.
  • Step 502 Configure the collaborative time resource in the time window by using the adjusted ratio.
  • the ratio of the cooperative time resource to the non-cooperative time resource may be determined by negotiation between the cooperative nodes, or may be determined according to signaling from the upper layer.
  • the location of the collaboration time resource configuration in the time window can be selected according to the set rules; it can also be selected according to the negotiation result between the collaboration nodes; it can also be selected according to the high-level configuration.
  • Step 503 Configure the collaborative time resource in the time window by using the original ratio.
  • Collaboration Time resource location in the time window can be selected according to the set rules; it can also be selected according to the negotiation result between the collaboration nodes; it can also be selected according to the high-level configuration.
  • the size of the set time window is 3 subframes, and the ratio of the cooperative time resource to the non-cooperative time resource is 1:2.
  • other sizes of the time window may also be defined.
  • the size of the time window may be 10 subframes, 32 subframes, and the like.
  • the time window size is 10 subframes
  • the unit of the subframe is lms
  • the cooperative time resource and the non-cooperative time resource are in the first time window.
  • the ratio is 2:8; in the second time window, the ratio of collaborative time resources to non-cooperative time resources is 3:7.
  • the second subframe and the seventh subframe in the time window are selected as the cooperation time resources, other subframes in the time window do not perform resource cooperation; in the second time window, BS, RS1, and RS2 adopt 3: The ratio of 7 configures the cooperative time resource, and selects the second subframe, the sixth subframe, and the ninth subframe in the time window as the cooperation time resource, and the other subframes in the time window do not perform resource cooperation.
  • selecting a sub-frame as a collaborative time resource it can be selected according to the setting rules; it can also be selected according to the negotiation result between the cooperative nodes; and can also be selected according to the high-level configuration.
  • FIG. 6 is a schematic structural diagram of a resource cooperation system according to the present invention.
  • the system includes: at least two collaboration nodes, such as a first collaboration node and a second collaboration node, each collaboration node having a time window of the same length of time. Used to select the same time resource in the time window for resource collaboration.
  • Each collaboration node is further configured to: select a collaboration time resource by negotiation or according to the received high-level configuration notification; and/or adjust the collaboration time resource and the non-collaboration time in a time window by negotiation or according to the received high-level configuration notification.
  • the proportion of resources is further configured to: select a collaboration time resource by negotiation or according to the received high-level configuration notification; and/or adjust the collaboration time resource and the non-collaboration time in a time window by negotiation or according to the received high-level configuration notification. The proportion of resources.
  • the collaboration node includes at least: a processing module, configured to select, in a time window, the same time resource as other collaboration nodes for resource cooperation.
  • the collaboration node further includes: when the determining module and the adjustment are to be adjusted, notifying the adjustment module to perform adjustment; the adjusting module is configured to adaptively adjust the ratio of the cooperative time resource to the non-cooperative time resource in the time window; and the processing module is configured to adjust according to the The proportions in the time window select the same time resources as other collaboration nodes for resource collaboration.

Abstract

本发明公开了一种资源协作的方法及系统。本发明方案中,各协作节点具有相同时间长度的时间窗口,选择时间窗口中的相同时间资源进行资 源协作,因此,协作资源与非协作资源是时分形式的,通过本发明提供的简单易行的方案,合理划分资源,有效地解决了频率资源协作所导致的 CQI不准确的问题,使得调度不再受不准确 CQI的影响。准确的 CQI将使得编码、调制、资源映射等更加适合链路情况,既提高了单点到单点的链路性 能,也提高了整个系统的吞吐量。

Description

一种资源协作的方法及系统 技术领域
本发明涉及通信领域, 特别是指一种资源协作的方法及系统。 背景技术
B3G/4G的研究目标是: 汇集蜂窝、 固定无线接入、 游牧、 无线区域网 络等接入系统, 结合全 IP网络, 在高速和低速移动环境下分别为用户提供 峰值速率达 100Mbps及 lGbps的无线传输能力, 并且实现蜂窝通信系统、 区域性无线网络、 广播、 电视卫星通信的无缝衔接, 最终实现 "任何人在 任何时间、 任何地点与其他任何人进行任何方式的通信"。 中继(Relay )技 术既可以增加小区覆盖也可以增加小区容量, 使得中继技术可以作为一项 有效的措施应用起来。 引入中继技术后, 会引发比较多的问题, 如资源利 用便是需要深入研究的问题。
时频资源管理对于正交频分复用 ( OFDM , Orthogonal Frequency Division Multiplexing )通信系统非常重要, 特别是对于引入中继站(RS, Relay Station )的通信系统。在两跳通信系统中,一般情况下为用户终端( UT , User Terminal )传输的数据,首先由基站( BS , Base Station )在中继区( Relay Zone )发射给 RS , 再由该 RS在接入区 ( Access Zone )发射给 UT。 这样, 所占用的时频资源是原来的两倍, 导致了资源利用率的下降。
协作技术是多跳通信系统中一种宏观的或分布式的多输入多输出 ( MIMO , Multiple-Input Multiple- Out-put ) 通信系统, 可以应用于接入 ( Access )或中继的上下行链路中。协作技术类似于相邻 BS之间的宏分集, 是在基地台( MR-BS, Multihop Relay Base Station )小区中利用 BS与各 RS 之间的协作发射实现的, 通过利用不同 BS和 RS的发射天线来发送相关的 信号, 实现协作分集。 通过协作技术, 空间分集作用可以为链路提供更好 的误码率( BER, Bit Error Rate ) /误块率( BLER, Block Error Rate )性能, 同时空间复用可以为通信系统带来更高的频谱效率。
协作可以是多个发射源, 即多点。 对于引入 RS的 BS内的资源协作可 以看作是 BS内多点资源协作; 对于多个 BS间的资源协作可以看作是 BS 间多点协作。 BS间多点协作中可以包括 BS内多点资源协作, 即其中的 BS 引入了 RS, 也就是 BS内多点资源协作与 BS间多点资源协作的组合。
目前, 对于 BS和 RS的研究是一个热点,但对于 BS与 RS之间、 多个 RS之间、 多个 BS之间的资源协作的研究较少。 目前的通信系统都是基于 频率进行资源协作的方案, 但对于频率资源存在信道质量信息 (CQI , Channel Quality Indicator )反馈准确性和调度的问题, 也就是说, 对于协作 的频率资源内的 CQI并不能真实反映信道条件, 而非协作的频率资源内的 CQI 能够反映信道条件, 这导致通信系统在进行下次调度的时候不能依据 CQI准确地进行资源分配。 发明内容
有鉴于此, 本发明的主要目的在于提供一种资源协作的方法及系统, 有效解决频率资源协作导致的 CQI不准确的问题。
为解决上述技术问题, 本发明的技术方案是这样实现的:
一种资源协作的方法, 该方法包含: 协作资源与非协作资源采用时分 形式, 各协作节点具有相同时间长度的时间窗口, 选择时间窗口中的相同 时间资源进行资源协作。 作时间资源包括:
根据设定规则选择协作时间资源; 或者,
根据协作节点之间的协商结果选择协作时间资源; 或者, 根据高层配置选择协作时间资源。
Figure imgf000005_0001
, 时间窗口中的其余时 间资源为非协作时间资源, 该方法进一步包括:
A、对时间窗口
Figure imgf000005_0002
否需要调整, 如果需要调整, 采用调整后的比例在时间窗口中进行协作时 间资源的配置; 如果不需要调整, 采用原有比例在时间窗口中进行协作时 间资源的配置。
Figure imgf000005_0003
, 包括: 根据协作节点之间的协商结果来确定是否需要对协作时间资源与非协 作时间资源的比例进行调整; 或者,
根据来自高层的信令确定是否需要对协作时间资源与非协作时间资源 的比例进行调整; 或者,
根据设定规则确定是否需要对协作时间资源与非协作时间资源的比例 进行调整。
所述时间资源以正交频分复用 OFDM符号、 或时隙、 或子帧、 或无线 帧、 或超帧为时间单位;
所述一个时间窗口中协作时间资源与非协作时间资源的比例, 是: 所 述时间窗口中用于资源协作的时间单位数量与用于非资源协作的时间单位 数量的比值。
所述资源协作为: BS内多点资源协作, 或 BS间多点资源协作, 或 BS 内多点资源协作与 BS间多点资源协作的组合;
所述 BS内多点资源协作为: BS与该 BS覆盖范围内的多个 RS间的资 源协作, 或者, 一个 BS覆盖范围内的多个 RS间的资源协作; 所述 BS间多点资源协作为: 多个 BS间的时间资源协作。
该方法进一步包括: 动态、 或半静态、 或静态配置所述时间窗口的大 小。
一种资源协作的系统, 该系统包括: 至少两个协作节点, 协作资源与 非协作资源采用时分形式, 各协作节点具有相同时间长度的时间窗口, 用 于选择时间窗口中的相同时间资源进行资源协作。
所述协作节点进一步用于:
通过协商或根据收到的高层配置通知选择协作时间资源; 和 /或, 通过协商或根据收到的高层配置通知调整一个时间窗口中协作时间资 源与非协作时间资源的比例。
所述协作节点至少包括: 处理模块, 用于在时间窗口中选择与其他协 作节点相同的时间资源进行资源协作。
所述协作节点进一步包括: 判断模块和调整模块, 其中, 整时, 通知调整模块进行调整;
所述调整模块用于对时间窗口中协作时间资源与非协作时间资源的比 例进行自适应调整;
所述处理模块, 用于根据调整后的比例在时间窗口中选择与其他协作 节点相同的时间资源进行资源协作。
本发明方案中, 各协作节点具有相同时间长度的时间窗口, 选择时间 窗口中的相同时间资源进行资源协作, 因此, 协作资源与非协作资源是时 分形式的, 通过本发明提供的筒单易行的方案, 合理划分资源, 有效地解 决了频率资源协作所导致的 CQI不准确的问题,使得调度不再受不准确 CQI 的影响。 准确的 CQI将使得编码、 调制、 资源映射等更加适合链路情况, 既提高了单点到单点的链路性能, 也提高了整个系统的吞吐量。 附图说明
图 1为本发明具体实施例一中资源协作示意图;
图 2为本发明具体实施例二中资源协作示意图;
图 3为本发明具体实施例三中资源协作示意图;
图 4为本发明具体实施例四中资源协作示意图;
图 5为本发明中协作资源配置流程图;
图 6为本发明中资源协作系统结构示意图。 具体实施方式
本发明中, 协作资源与非协作资源采用时分形式, 各协作节点具有相 同时间长度的时间窗口, 选择时间窗口中的相同时间资源进行资源协作。 所述协作节点可以为 BS, 也可以为 RS。 资源协作可以为 BS内多点资源协 作, 也可以为 BS间多点资源协作; 还可以为 BS内多点资源协作与 BS间 多点资源协作的组合。 所述 BS内多点资源协作为: BS与该 BS覆盖范围 内的多个 RS间的资源协作, 或者, 一个 BS覆盖范围内的多个 RS间的资 源协作。 所述 BS间多点资源协作为: 多个 BS间的资源协作。 所述时间资 源可以以 OFDM符号、 或时隙、 或子帧、 或无线帧、 或超帧等为时间单位。
各协作节点进行资源协作选择时间资源时, 可以根据设定规则进行选 择; 也可以根据协作节点之间的协商结果进行选择; 还可以根据高层配置 进行选择。
将一个时间窗口中用于资源协作的时间资源称为协作时间资源; 一个
协作的各协作节点可以根据高层配置进行自适应调整协作时间资源与非协 作时间资源的比例; 也可以根据协作节点之间的协商结果进行自适应调整 协作时间资源与非协作时间资源的比例; 还可以根据设定规则进行自适用 调整协作时间资源与非协作时间资源的比例。 时间资源以 OFDM符号、 或 时隙、 或子帧、 或无线帧、 或超帧等为时间单位时, 自适应调整是指以时 间单位对协作时间资源进行配置。 一个时间窗口中协作时间资源与非协作 时间资源的比例是指该时间窗口中用于资源协作的时间单位数量与用于非 资源协作的时间单位数量的比值。
另外, 时间窗口的大小也可以是动态、 或半静态、 或静态配置的, 具 体的配置由高层实现。
下面通过几个具体实施例对本发明方案的具体实现进行更进一步地详 细描述, 各实施例中以一个子帧作为时间资源的时间单位。
图 1为本发明具体实施例一中资源协作示意图, 如图 1所示, 该具体 实施例中 BS与该 BS覆盖范围内的多个 RS之间进行资源协作, BS覆盖范 围内有 2个 RS , 即 RS1、 RS2。 BS、 RSI , RS2可以直接根据设定规则选 择时间窗口中的第 1个子帧用于资源协作;也可以由 BS确定选择时间窗口 中的第 1个子帧用于资源协作, 然后通过信令通知 RS1、 RS2用于资源协 作的时间资源; 也可以由 BS、 RSI , RS2之间进行协商确定选择时间窗口 中的第 1 个子帧用于资源协作; 还可以由高层确定选择时间窗口中的第 1 个子帧用于资源协作, 然后通知 BS、 RSI , RS2用于资源协作的时间资源。 这样, BS、 RSI , RS2均分配出时间窗口中的第 1 个子帧用于资源协作, 其他子帧不进行资源协作。
图 2为本发明具体实施例二中资源协作示意图, 如图 2所示, 该具体 实施例中 BS覆盖范围内的多个 RS之间进行资源协作, BS覆盖范围内有 3 个 RS, 即 RS1、 RS2、 RS3。 RS1、 RS2、 RS3可以直接根据设定规则选择 时间窗口中的第 2个子帧用于资源协作;也可以由 BS确定选择时间窗口中 的第 2个子帧用于资源协作, 然后通过信令通知 RS1、 RS2、 RS3用于资源 协作的时间资源; 也可以由 RS1、 RS2、 RS3之间进行协商确定选择时间窗 口中的第 2个子帧用于资源协作;还可以由高层确定选择时间窗口中的第 2 个子帧用于资源协作,然后通知 RS1、 RS2、 RS3用于资源协作的时间资源。 这样, RSI、 RS2、 RS3均分配出时间窗口中的第 2个子帧用于资源协作, 其他子帧不进行资源协作。
图 3为本发明具体实施例三中资源协作示意图, 如图 3所示, 该具体 实施例中多个 BS之间进行资源协作, 3个 BS, 即 BS1、 BS2、 BS3。 BS1、 BS2、 BS3可以直接根据设定规则选择时间窗口中的第 3个子帧用于资源协 作; 也可以由 BS1、 BS2、 BS3之间进行协商确定选择时间窗口中的第 3个 子帧用于资源协作; 还可以由高层确定选择时间窗口中的第 3 个子帧用于 资源协作,然后通知 BS1、 BS2、 BS3用于资源协作的时间资源。这样, BS1、 BS2、 BS3均分配出时间窗口中的第 3个子帧用于资源协作, 其他子帧不进 行资源协作。
图 4为本发明具体实施例四中资源协作示意图, 如图 4所示, 该具体 实施例中各 BS之间、 及相应 BS覆盖范围内的 RS之间、 BS与该 BS覆盖 范围内的 RS之间共同进行资源协作, BS1覆盖范围内有 2个 RS,即 RS11、 RS12; BS2覆盖范围内有 1个 RS , 即 RS21。 BS1、 RS11、 RS12、 BS2、 RS21可以直接根据设定规则选择时间窗口中的第 1个子帧用于资源协作; 也可以由 BS1、 BS2之间进行协商确定选择时间窗口中的第 1个子帧用于 资源协作,然后分别通过信令通知覆盖范围内的 RS用于资源协作的时间资 源; 也可以由各 BS1、 RS11、 RS12、 BS2、 RS21之间进行协商确定选择时 间窗口中的第 1 个子帧用于资源协作; 还可以由高层确定选择时间窗口中 的第 1个子帧用于资源协作, 然后分别通知 BS1、 RS11、 RS12、 BS2、 RS21 用于资源协作的时间资源。 这样, BS1、 RS11、 RS12、 BS2、 RS21均分配 出时间窗口中的第 1个子帧用于资源协作, 其他子帧不进行资源协作。
图 5为本发明中协作资源配置流程图, 如图 5所示, 实现协作资源配 置的具体处理过程包括以下步骤: 如果需要调整, 则执行步骤 502; 如果不需要调整, 则执行步骤 503。
协作节点之间可以根据协商结果来确定是否需要对协作时间资源与非 协作时间资源的比例进行调整; 也可以根据来自高层的信令确定是否需要
步骤 502: 采用调整后的比例在时间窗口中进行协作时间资源的配置。 协作时间资源与非协作时间资源的比例可以由各协作节点之间的协商 来确定, 也可以根据来自高层的信令来确定。 协作时间资源配置在时间窗 口中的位置, 可以根据设定规则进行选择; 也可以根据协作节点之间的协 商结果进行选择; 还可以根据高层配置进行选择。
步骤 503: 采用原有比例在时间窗口中进行协作时间资源的配置。协作 时间资源配置在时间窗口中的位置, 可以根据设定规则进行选择; 也可以 根据协作节点之间的协商结果进行选择; 还可以根据高层配置进行选择。
图 1至图 4的 4种场景中, 设置时间窗口的大小为 3个子帧, 协作时 间资源与非协作时间资源的比例均为 1 :2。 实际应用中, 也可以定义时间窗 口的其他大小, 例如, 时间窗口的大小可以是 10个子帧、 32个子帧等等,
2:8、 10:22等。
例如, 如果某个 BS覆盖范围内有 2个 RS, 即 RS1、 RS2, 时间窗口大 小为 10个子帧, 子帧的单位为 lms, 并且在第 1个时间窗口中协作时间资 源与非协作时间资源的比例为 2:8; 在第 2个时间窗口中协作时间资源与非 协作时间资源的比例为 3:7。 这样, BS、 RSI , RS2进行资源协作时, 在第 1个时间窗口中, BS、 RSI , RS2采用 2:8的比例对协作时间资源进行配置, 如选择该时间窗口中的第 2个子帧和第 7个子帧作为协作时间资源, 该时 间窗口中的其他子帧不进行资源协作; 在第 2个时间窗口中, BS、 RS1、 RS2采用 3:7的比例对协作时间资源进行配置,选择该时间窗口中的第 2个 子帧、 第 6个子帧和第 9个子帧作为协作时间资源, 该时间窗口中的其他 子帧不进行资源协作。 选择作为协作时间资源的子帧时, 可以根据设定规 则进行选择; 也可以根据协作节点之间的协商结果进行选择; 还可以根据 高层配置进行选择。
图 6为本发明中资源协作系统结构示意图, 如图 6所示, 该系统包括: 至少两个协作节点, 如第一协作节点和第二协作节点, 各协作节点具有相 同时间长度的时间窗口, 用于选择时间窗口中的相同时间资源进行资源协 作。
各协作节点进一步用于: 通过协商或根据收到的高层配置通知选择协 作时间资源; 和 /或, 通过协商或才艮据收到的高层配置通知调整一个时间窗 口中协作时间资源与非协作时间资源的比例。
协作节点至少包括: 处理模块, 用于在时间窗口中选择与其他协作节 点相同的时间资源进行资源协作。 协作节点进一步包括: 判断模块和调整 要调整时, 通知调整模块进行调整; 调整模块用于对时间窗口中协作时间 资源与非协作时间资源的比例进行自适应调整; 处理模块, 用于根据调整 后的比例在时间窗口中选择与其他协作节点相同的时间资源进行资源协 作。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种资源协作的方法, 其特征在于, 该方法包含:
协作资源与非协作资源采用时分形式, 各协作节点具有相同时间长度 的时间窗口, 选择时间窗口中的相同时间资源进行资源协作。
2、 根据权利要求 1所述的方法, 其特征在于, 进行资源协作的所述时 间资源为协作时间资源, 选择时间窗口中的协作时间资源包括:
根据设定规则选择协作时间资源; 或者,
根据协作节点之间的协商结果选择协作时间资源; 或者,
根据高层配置选择协作时间资源。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 进行资源协作的所 述时间资源为协作时间资源, 时间窗口中的其余时间资源为非协作时间资 源, 该方法进一步包括:
4、 根据权利要求 3所述的方法, 其特征在于, 所述步骤 A具体包括: 采用调整后的比例在时间窗口中进行协作时间资源的配置; 如果不需要调 整, 采用原有比例在时间窗口中进行协作时间资源的配置。
5、 根据权利要求 3所述的方法, 其特征在于, 所述判断协作时间资源 与非协作时间资源的比例是否需要调整, 包括:
根据协作节点之间的协商结果来确定是否需要对协作时间资源与非协 作时间资源的比例进行调整; 或者,
根据来自高层的信令确定是否需要对协作时间资源与非协作时间资源 的比例进行调整; 或者,
根据设定规则确定是否需要对协作时间资源与非协作时间资源的比例 进行调整。
6、 根据权利要求 3所述的方法, 其特征在于,
所述时间资源以正交频分复用 OFDM符号、 或时隙、 或子帧、 或无线 帧、 或超帧为时间单位;
所述一个时间窗口中协作时间资源与非协作时间资源的比例, 是: 所 述时间窗口中用于资源协作的时间单位数量与用于非资源协作的时间单位 数量的比值。
7、 根据权利要求 1或 2所述的方法, 其特征在于,
所述资源协作为: BS内多点资源协作, 或 BS间多点资源协作, 或 BS 内多点资源协作与 BS间多点资源协作的组合;
所述 BS内多点资源协作为: BS与该 BS覆盖范围内的多个 RS间的资 源协作, 或者, 一个 BS覆盖范围内的多个 RS间的资源协作;
所述 BS间多点资源协作为: 多个 BS间的时间资源协作。
8、根据权利要求 1或 2所述的方法,其特征在于,该方法进一步包括: 动态、 或半静态、 或静态配置所述时间窗口的大小。
9、 一种资源协作的系统, 其特征在于, 该系统包括: 至少两个协作节 点, 协作资源与非协作资源采用时分形式,
各协作节点具有相同时间长度的时间窗口, 用于选择时间窗口中的相 同时间资源进行资源协作。
10、 根据权利要求 9所述的系统, 其特征在于, 所述协作节点进一步 用于:
通过协商或根据收到的高层配置通知选择协作时间资源; 和 /或, 通过协商或根据收到的高层配置通知调整一个时间窗口中协作时间资 源与非协作时间资源的比例。
11、 根据权利要求 9或 10所述的系统, 其特征在于, 所述协作节点至少包括: 处理模块, 用于在时间窗口中选择与其他协 作节点相同的时间资源进行资源协作。
12、 根据权利要求 11所述的系统, 其特征在于, 所述协作节点进一步 包括: 判断模块和调整模块, 其中, 整时, 通知调整模块进行调整;
所述调整模块用于对时间窗口中协作时间资源与非协作时间资源的比 例进行自适应调整;
所述处理模块, 用于根据调整后的比例在时间窗口中选择与其他协作 节点相同的时间资源进行资源协作。
PCT/CN2009/076121 2009-01-09 2009-12-28 一种资源协作的方法及系统 WO2010078811A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910076597.7A CN101778390B (zh) 2009-01-09 2009-01-09 一种资源协作的方法及系统
CN200910076597.7 2009-01-09

Publications (1)

Publication Number Publication Date
WO2010078811A1 true WO2010078811A1 (zh) 2010-07-15

Family

ID=42316245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076121 WO2010078811A1 (zh) 2009-01-09 2009-12-28 一种资源协作的方法及系统

Country Status (2)

Country Link
CN (1) CN101778390B (zh)
WO (1) WO2010078811A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155622A (zh) * 2010-10-07 2013-06-12 日本电气株式会社 用于协作多点发送/接收的调度方法和系统
CN106797641A (zh) * 2014-06-09 2017-05-31 艾尔瓦纳有限合伙公司 在无线电接入网络中调度相同的资源
US10455597B2 (en) 2013-02-07 2019-10-22 Commscope Technologies Llc Radio access networks
US10764846B2 (en) 2013-02-07 2020-09-01 Commscope Technologies Llc Radio access networks
US10798667B2 (en) 2018-06-08 2020-10-06 Commscope Technologies Llc Automatic transmit power control for radio points of a centralized radio access network that primarily provide wireless service to users located in an event area of a venue
US11102663B2 (en) 2013-02-07 2021-08-24 Commscope Technologies Llc Radio access networks
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
US11678358B2 (en) 2017-10-03 2023-06-13 Commscope Technologies Llc Dynamic downlink reuse in a C-RAN

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107124764B (zh) * 2016-02-24 2019-11-19 大唐移动通信设备有限公司 一种协作资源确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748383A (zh) * 2002-12-16 2006-03-15 北方电讯网络有限公司 带有经协调的移动终端的上行链路空-时编码的通信系统
CN1798319A (zh) * 2004-12-30 2006-07-05 中兴通讯股份有限公司 一种共享频谱的数字电视广播系统与无线通信系统的资源调度方法
WO2007108299A1 (en) * 2006-03-16 2007-09-27 Mitsubishi Electric Corporation System and method for communicating information in wireless cooperative relay network of nodes
WO2008038895A2 (en) * 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute Apparatus and method for relaying between a base station and a mobile station, and the base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748383A (zh) * 2002-12-16 2006-03-15 北方电讯网络有限公司 带有经协调的移动终端的上行链路空-时编码的通信系统
CN1798319A (zh) * 2004-12-30 2006-07-05 中兴通讯股份有限公司 一种共享频谱的数字电视广播系统与无线通信系统的资源调度方法
WO2007108299A1 (en) * 2006-03-16 2007-09-27 Mitsubishi Electric Corporation System and method for communicating information in wireless cooperative relay network of nodes
WO2008038895A2 (en) * 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute Apparatus and method for relaying between a base station and a mobile station, and the base station

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103155622A (zh) * 2010-10-07 2013-06-12 日本电气株式会社 用于协作多点发送/接收的调度方法和系统
US11102663B2 (en) 2013-02-07 2021-08-24 Commscope Technologies Llc Radio access networks
US11445455B2 (en) 2013-02-07 2022-09-13 Commscope Technologies Llc Radio access networks
US11729758B2 (en) 2013-02-07 2023-08-15 Commscope Technologies Llc Radio access networks
US10764846B2 (en) 2013-02-07 2020-09-01 Commscope Technologies Llc Radio access networks
US11706640B2 (en) 2013-02-07 2023-07-18 Commscope Technologies Llc Radio access networks
US10904897B2 (en) 2013-02-07 2021-01-26 Commscope Technologies Llc Radio access networks
US10455597B2 (en) 2013-02-07 2019-10-22 Commscope Technologies Llc Radio access networks
US11122447B2 (en) 2013-02-07 2021-09-14 Commscope Technologies Llc Radio access networks
US11700602B2 (en) 2013-02-07 2023-07-11 Commscope Technologies Llc Radio access networks
CN106797641A (zh) * 2014-06-09 2017-05-31 艾尔瓦纳有限合伙公司 在无线电接入网络中调度相同的资源
US11082997B2 (en) 2014-06-09 2021-08-03 Commscope Technologies Llc Radio access networks in which mobile devices can be scheduled to use the same time-frequency resource
US10536959B2 (en) 2014-06-09 2020-01-14 Commscope Technologies Llc Radio access networks in which remote units are configured to perform at least some baseband processing
US11678358B2 (en) 2017-10-03 2023-06-13 Commscope Technologies Llc Dynamic downlink reuse in a C-RAN
US11304213B2 (en) 2018-05-16 2022-04-12 Commscope Technologies Llc Dynamic uplink reuse in a C-RAN
US10798667B2 (en) 2018-06-08 2020-10-06 Commscope Technologies Llc Automatic transmit power control for radio points of a centralized radio access network that primarily provide wireless service to users located in an event area of a venue

Also Published As

Publication number Publication date
CN101778390B (zh) 2014-07-16
CN101778390A (zh) 2010-07-14

Similar Documents

Publication Publication Date Title
US10530555B2 (en) Apparatus and method for cancelling inter-cell interference in communication system
US11166222B2 (en) Communication by a repeater system including a network of radio frequency (RF) repeater devices
WO2010078811A1 (zh) 一种资源协作的方法及系统
US8824355B2 (en) Communication system, communication apparatus, communication method and computer program product
CN103053196B (zh) 协同多点传输的节点关联方法
Song et al. Resource allocation in full-duplex communications for future wireless networks
JP6336485B2 (ja) 無線通信システムにおいて、チャネル状態情報を報告する方法及び装置
US8160013B2 (en) Method of transmitting data in multi-cell cooperative wireless communication system
KR102147682B1 (ko) 셀룰러 이동 통신 시스템에서 협력 통신을 위한 채널 추정 방법 및 장치
GB2499786A (en) Indication of a preferred duplex operating mode
CN103139913B (zh) 一种配置上行探测参考信号的方法以及lte 异构网络
Zhao et al. Massive MIMO in 5G networks: selected applications
CN115066919B (zh) 跨多个波束的联合预编码
JP6903827B2 (ja) マルチキャスト/ブロードキャスト送信のためのグループcsiフィードバック
WO2014114106A1 (zh) 无线收发设备的上行数据接收方法和装置
JP2010056652A (ja) 無線通信システム、基地局およびスケジューリング方法
KR20140107956A (ko) 새로운 반송파 형식에서의 간섭 측정 방법 및 장치
JP2008193340A (ja) 無線基地局装置、無線端末装置、無線通信システム、及びチャネルクオリティインジケータ推定方法
CN105519157A (zh) 小区间干扰抑制的方法及装置
CN117280820A (zh) 用于设备内共存干扰的技术
Bestak et al. An interference cancellation scheme for D2D multi-link communication underlaying cellular network
US20230261772A1 (en) Relay characteristic reporting and control
Schellmann et al. V2X Radio Interface
JP2017513259A (ja) チャネル品質フィードバックのためのシステム及び方法
CN117856839A (zh) 数据发送的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837368

Country of ref document: EP

Kind code of ref document: A1