WO2010077036A2 - Movable rotor blade structure for vertical wind-powered electricity generation - Google Patents

Movable rotor blade structure for vertical wind-powered electricity generation Download PDF

Info

Publication number
WO2010077036A2
WO2010077036A2 PCT/KR2009/007827 KR2009007827W WO2010077036A2 WO 2010077036 A2 WO2010077036 A2 WO 2010077036A2 KR 2009007827 W KR2009007827 W KR 2009007827W WO 2010077036 A2 WO2010077036 A2 WO 2010077036A2
Authority
WO
WIPO (PCT)
Prior art keywords
wing
wind
vertical
wing frame
frame
Prior art date
Application number
PCT/KR2009/007827
Other languages
French (fr)
Korean (ko)
Other versions
WO2010077036A3 (en
Inventor
노영규
Original Assignee
Rho Young Gyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rho Young Gyu filed Critical Rho Young Gyu
Publication of WO2010077036A2 publication Critical patent/WO2010077036A2/en
Publication of WO2010077036A3 publication Critical patent/WO2010077036A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a mobile rotary wing structure for vertical wind power generation, and more particularly, the wing is configured to be movable in the direction of the forward rotation from the direction of the reverse rotation with respect to the wind direction about the vertical axis of rotation to the forward rotational force against the wind
  • the present invention relates to a mobile rotary wing structure for vertical wind power generation that can maximize power production efficiency by wind power.
  • Wind power generation refers to a power generation method in which wind energy is converted into mechanical energy (rotational power) through a rotating shaft using a windmill, and the mechanical energy is converted into electrical energy by driving a generator to obtain power. It is not only the most economical among the new renewable energy sources, but also has the advantage of being able to generate power using the wind, a clean energy source for unlimited use, and actively invested not only in Europe where the wind power industry was developed but also in the Americas and Asia recently. It is happening.
  • wind power generation has cost-effective aspects such as improving the price competitiveness of electricity production costs and minimizing the required area of power generation systems, and the social and environmental aspects such as protecting the global environment such as alternative energy sources and fogging of fossil energy exhaustion.
  • the government is actively supporting the dissemination of wind power generation due to economic advantages such as stability of supply and reduction of dependence on energy imports. Accordingly, it is expected that the growth of wind power generation in Korea will increase in the future.
  • Such wind power generation can be classified into a horizontal wind power generator in which the rotating shaft is installed horizontally with respect to the ground and a vertical wind power generator in which the rotating shaft is installed perpendicular to the ground according to the direction of the rotation axis of the blade.
  • the horizontal wind power generator is more efficient and stable, so most of the commercial wind farms have been applied to the horizontal wind generator.
  • the above-described horizontal wind power generator has the advantage of realizing high power generation efficiency in the most general form, but it is difficult to smoothly generate power in areas where the wind direction is frequently changed, and expensive installation is possible because the main parts including the rotor are installed at a high level. Not only is it expensive, its maintenance is not easy, and it has a disadvantage that is structurally vulnerable to strong winds such as typhoons.
  • the vertical wind power generator can generate power regardless of the direction of the wind. Since the main components such as the gearbox and the generator are installed on the ground, the installation cost is low and the maintenance is performed. Has the advantage of being easy.
  • the horizontal power generator is preferred as described above because the vertical power generator is less efficient than the horizontal power generator.
  • the vertical wind power generator structurally converts the energy of the wind (W) to the mechanical rotational force of the rotating shaft (b) while one side (a1) of the rotary blade is rotated forward by the wind
  • the opposite side (a2) of the rotary blade to the reverse rotation with respect to the wind will act as a resistance to the rotation of the rotary shaft (b) will have to decrease the conversion efficiency of mechanical energy.
  • an object of the present invention is to move the blade so that the wing that receives the wind energy is converted into the mechanical rotational force of the vertical axis of rotation is always located only in the forward rotation side with respect to the wind power It is to provide a mobile rotary wing structure for vertical wind power generation that can increase the mechanical conversion efficiency by only the forward rotational force by the wind to the vertical rotation axis by controlling the.
  • Vertical rotary wind turbine movable rotary structure for achieving the above object, is fixed to the vertical axis of rotation for wind turbines and the wing frame is formed in the horizontal direction in the upper and lower ends, respectively, 1 / of the wing frame It has a length of 2, the movable blade is installed on the wing frame to be slidably movable along the rail, and when the wing frame is rotated by the wind, rotates in the reverse direction with respect to the wind direction about the vertical axis of rotation every 180 ° rotation angle Including a wing operation control unit for controlling the operation so that the moving wing is moved from the wing frame to the other side of the forward rotation of the opposite direction,
  • the moving wing is positioned only on the side of the wing frame which rotates in the forward direction with respect to the wind direction, so that only the forward rotational force by the wind is applied to the vertical rotation shaft.
  • the wing frame is formed in a pair is fixed to the vertical axis of rotation in the form of a cross, the vertical axis of rotation that the through-holes through which the moving blades are formed are formed at intervals of 90 ° corresponding to the wing frame respectively. desirable.
  • the wing operation control unit is coupled to the vertical rotation axis freely rotatable wind direction indicator and its position is automatically changed so as to be parallel to the wind direction, the wind direction indicator is provided, the rotating wing frame to the wind direction
  • An approach detection sensor for detecting proximity to a point switched from the forward direction to the reverse direction, and a wing driver for slidingly moving a moving wing positioned on the wing frame in proximity to the wing frame on the opposite side according to a detection signal of the approach detection sensor.
  • a pair of wing detection sensors installed at both ends of the wing frame to stop the operation of the wing driver when the moving wing is slid and moved.
  • the wing drive unit the rack gear is installed on one side of the movable blade along the longitudinal direction, a pair of pinion gear that can be engaged with the rack gear, and each of the wing frame around the vertical axis of rotation, respectively It is installed, and may include a pair of forward and reverse motors to rotate the pair of pinion gears respectively in response to the signal of the approach detection sensor and stop driving according to the signal of each wing detection sensor.
  • the proximity sensor may be provided in the wind direction so that 5 ⁇ 10 ° spaced apart from the direction of the direction of rotation of the wing frame from the wind direction.
  • the vane operation control unit is freely rotatably coupled to the vertical rotation axis, the wind direction indicating member whose position is automatically changed according to the wind direction, and hinged to the wind direction indicating member extends in the form of an arc, the vertical A wing movement guider is pressed by an elastic body to face the center of the rotation axis, the opening is formed on both side ends of the wing frame, the wing movement guider when the wing frame reaches a point to be converted from forward to reverse with respect to the wind direction
  • the pressure guide of the wing may be characterized in that the sliding movement toward the opposite wing frame.
  • the wind direction indicating member may be made of a pair of horizontal bars extending from the upper and lower sides of the wing frame longer than the rotation radius of the wing frame, and the inclined plate formed by bending at a predetermined angle at the ends of the pair of horizontal bars. have.
  • the wing frame has a pair of push protrusions protrudingly formed on the upper and lower sides of the opening portion
  • the wing movement guider is a wide guide body that is pressed in the direction of compressing the elastic body by the push protrusion
  • the guide It may be made of a narrow guide arm extending from the body and is guided by the restoring force of the compressed elastic body to guide the movement of the moving blade.
  • the wing frame may be formed to be inclined downward toward both side ends from the vertical axis of rotation.
  • the mobile rotary wing structure for vertical wind power generation according to the present invention
  • the wing receiving the wind is positioned only in the direction of forward rotation about the wind direction about the vertical axis of rotation, the resistance by the reverse rotation of the wing is minimized, thereby increasing the mechanical conversion efficiency against the wind.
  • FIG. 1 is a perspective view of a mobile rotary wing structure for vertical wind power generation according to an embodiment of the present invention
  • FIG. 2 is an enlarged plan sectional view near the vertical axis in FIG. 1;
  • Figure 3 is a cross-sectional view illustrating a movable wing slidably installed in the wing frame according to an embodiment of the present invention
  • FIG. 4 is an enlarged perspective view of a wing driving unit according to an embodiment of the present invention.
  • 5 to 9 is an operation example of the movable rotary wing structure for vertical wind power generation according to an embodiment of the present invention
  • FIG. 10 is a perspective view of a mobile rotary wing structure for vertical wind power generation according to another embodiment of the present invention.
  • 11 to 17 is an operation example of a movable rotary wing structure for vertical wind power generation according to another embodiment of the present invention.
  • FIG. 18 is an exemplary view illustrating a rotation state of the rotary blades for the wind power of a conventional vertical power generator.
  • FIG. 1 is a perspective view of a mobile rotary wing structure 1 for vertical wind power generation according to an embodiment of the present invention
  • Figure 2 is an enlarged planar cross-sectional view of the vicinity of the vertical axis 3 in Figure 1
  • Figure 3 is the present invention 4 is a cross-sectional view illustrating a movable wing 20 slidably installed in the wing frame 10 according to an embodiment of the present invention
  • FIG. 4 is an enlarged perspective view of the wing driving unit 50 according to an embodiment of the present invention.
  • the movable rotary wing structure 1 is a wing frame 10, and a movable wing installed to be slidably movable on the wing frame 10 ( 20) and the wing operation control unit for controlling the sliding operation of the movable blade (20).
  • the wing frame 10 is formed in a rectangular shape as a whole, the upper and lower ends are formed so that the rails 11 are opposed to each other in the horizontal direction.
  • a plurality of bending preventing reinforcement pieces 12 are coupled to the rail parts 11 along a longitudinal direction, and a plurality of reinforcing supports 12 are coupled between the rail parts 11.
  • the wing frame 10 is installed to be fixed to the vertical axis of rotation (3), divided into two parts are fixed in parallel to both sides of the vertical axis of rotation (3).
  • the wing frame 10 can be seen that if one wing frame rotates forward with respect to the wind direction, the other wing frame rotates in the reverse direction.
  • wing frame 10 is made of a pair is preferably installed to be orthogonal to each other in the form of a cross on the vertical axis of rotation (3).
  • a wing through hole 4 having a length corresponding to the separation interval of the rail portion 11 is formed on the vertical rotation shaft 3 on which the wing frame 10 is installed, and the wing through hole 4 crosses. It is preferable to be formed on the outer circumferential surface of the vertical rotation shaft 3 at 90 ° intervals corresponding to the wing frame 10 installed in the form.
  • the wing passage 4 is to function as a passage to pass through the vertical axis of rotation (3) during the movement of the moving blade 20 to be described later.
  • a cross-shaped wing passage 5 is formed in the vertical rotation shaft 3 so as to correspond to the wing passage 4 so that the moving blade 20 easily passes through the vertical rotation shaft 3. desirable.
  • the moving wing 20 is installed on the wing frame 10 to be slidable along the rail portion 11 of the wing frame 10.
  • the wing 20 is in the form of a square plate like the wing frame 10, it is preferable to have a length of about half of the entire length of the wing frame (10). That is, the length of the moving blade 20 corresponds to the length of any one of the wing frame 10 divided into two parts, accordingly from the two wing frame 10 fixed in parallel to both sides of the vertical axis of rotation (3) By movement, it can be selectively positioned on either side.
  • the moving wing 20 is also made in a pair to be installed on each wing frame 10.
  • the movable blade 20 is installed to be slidably moved along the rail portion 11, in one embodiment of the present invention, as illustrated in FIG. 3 for sliding movement of the movable blade 20.
  • the wing operation control unit performs a function of controlling the sliding movement of the movable blade 10 so that the movable blade 10 is located only on the wing frame 10 side that always rotates forward with respect to the wind direction even if the wing frame 10 is rotated. do.
  • the wing operation control unit may be made of a wind direction indicator 30, the approach detection sensor 40, the wing drive unit 50, the wing detection sensor 55.
  • the wind direction indicator 30 is coupled to the vertical rotation shaft 3 by the bearing rotation part 31 so that the direction can be changed freely according to the wind direction irrespective of the rotation of the vertical rotation shaft 3, and thus the wind direction indicator 30 is always located in parallel with the wind direction.
  • one wing frame 10 passes through the wind direction indicator 30 every 180 ° while rotating by the wind, so the wind direction indicator 30 is in a position parallel to the wind direction 30 wind direction indicator 30 It can be seen that each time the blade frame 10 is passed from the forward rotation to the reverse rotation with respect to the wind direction.
  • the approach sensor 40 is provided in the wind direction indicator 30 to approach the wind direction indicator 30 while rotating as described above to detect the wing frame 10 to be switched from the forward direction to the reverse direction to be described later It functions to operate the driving unit 50.
  • the approach detection sensor 40 needs to detect the wing frame 10 before it is switched from the forward direction to the reverse direction with respect to the wind direction to operate the wing drive unit 50.
  • the proximity sensor 40 is preferably provided in the wind direction indicator 10 so as to be spaced apart 5 ⁇ 10 ° in the opposite direction of rotation of the wing frame 10 from the wind direction indicator 30. .
  • the wing sensor (55) consists of a pair is installed on both ends of the wing frame (10), respectively.
  • Each wing detection sensor 55 is a function of detecting whether the movement of the moving wing 20 moving along the wing frame 10 is completed, respectively, moving wing 20 toward the wing frame 10 installed. Sliding movement by the operation of the wing drive unit 50 reaches the end of the wing frame 10 to detect this to stop the operation of the wing drive unit (50).
  • the wing drive unit 50 is operated according to the detection signal of the approach detection sensor 40 when the wing frame 10 is approached to the point that is switched in the reverse direction moving wing 20 located on the approach wing frame 10 side To function to move to the opposite wing frame 10 side.
  • the wing drive unit 50 is a rack gear 51 is installed on one side of the movable blade 20 along its length direction, and a pair of pinion gears that can be engaged with the rack gear 51, respectively ( 52 and a pair of forward and reverse motors 53 installed on each of the wing frames 10 on both sides of the vertical rotation shaft 3 to rotate the pinion gear 52 in the forward and reverse directions, respectively.
  • the stationary motor 53 is driven to rotate according to the detection signal of the approach detection sensor 40 to move the moving wing 10, and stops the rotation drive in accordance with the detection signal of the wing detection sensor (55).
  • the pair of forward and reverse motor 53 is the rotation angle of the wing frame 10 180 You must repeat the forward and reverse drive alternately every °.
  • the approach detection sensor 40 may access one wing frame and the other wing frame of the wing frame 10.
  • a pair of transmitters for differently detecting and transmitting different signals to one wing frame and the other wing frame of the wing frame 10 so as to drive the forward and reverse motor 53 forward or reversely accordingly. Not shown) can be installed.
  • FIG. 5 to 9 are cross-sectional views of the operation of the wing frame 10 of the movable rotary wing structure according to an embodiment of the present invention according to the progress of rotation.
  • the wing 20 is positioned on one wing frame 10a that rotates forward with respect to the wind, and the wing 20 is positioned on the other wing frame 10b that rotates against the wind.
  • the forward rotational force of the wind acts greatly on one side of the wing frame 10a on which the moving wing 20 is located, whereas the minute reverse rotational force (the wind force only affects the wing frame itself) is applied to the other wing frame 10b on the opposite side. ) Only a large forward rotational force is applied to the vertical axis (3) as a whole.
  • the stationary motor 53 of the wing drive unit 50 is operated according to the detection signal of the approach detection sensor 40, and the rotational movement of the pinion 52 is the rack gear 51 according to the operation of the stationary motor 53. Is converted to a linear motion of the wing 20 is to start the sliding movement toward the other wing frame (10b) on the opposite side from the approach one wing frame (10a).
  • Such movement of the wing 20 is to be made for each 180 ° rotation of each wing frame 10, through this operation is to remove the reverse resistance to the vertical axis of rotation (3) and only the forward rotational force is applied.
  • FIG. 10 is a perspective view showing a movable rotary wing structure 2 according to another embodiment of the present invention, as shown in the above drawings, the movable rotary wing structure 2 according to another embodiment of the present invention is
  • the pair of wing frames 10 fixed to the vertical rotation shaft 3 in the form of a cross, and the configuration of the movable wing 20 to be slidably movable on the wing frame 10 is the same as the above-described embodiment
  • the configuration of the wing operation control unit for moving the moving wing 20 toward the wing frame 10 for forward rotation when switching from the forward direction to the reverse direction with respect to the wind direction has a different feature.
  • the wing operation control unit includes a wind direction indicating member 60, a wing movement guider 70, and an elastic body 80.
  • the wind direction indicating member 60 is vertically rotated by a bearing rotating portion 61 so that the direction can be freely changed according to the wind direction regardless of the rotation of the vertical rotation shaft 3, similar to the wind direction indicator 30 of the embodiment. Coupled to (3).
  • the wind direction indicating member 60 extends longer than the rotation radius of the wing frame 10 in a pair of bearing rotating portions 61 respectively coupled to the upper and lower vertical rotation shafts 3 of the moving blades 20.
  • the pair of horizontal bars 62 and the inclined plate member 63 are bent at a predetermined angle at the ends of the pair of horizontal bars 62.
  • the wind direction indicator 30 of the above-described embodiment is located in parallel with the wind direction, but the wind direction indicator member 60 is the pair due to the inclined member 63 bent in the rotational direction of the wing frame 10 As shown in the figure, the horizontal bar 62 is positioned at a predetermined angle in a direction opposite to the rotation direction of the wing frame 10 with respect to the wind direction.
  • the wing movement guider 70 is hinged to the wind direction indicating member 60 extends in the form of an arc and functions to guide the moving wing 20 to move.
  • the wing movement guider 70 is hinged to the bent portion of the wind direction indicating member 60 and has a wide width of the guide body 71 and from the guide body 72 to the vicinity of the outer circumferential surface of the vertical axis of rotation 3. It is preferably composed of a narrow guide arm 72 extending.
  • the elastic body 80 is a function of pressing the wing movement guide 70 by the elastic main force is preferably installed to be coupled between the guide body 71 and the inclined plate material (63).
  • the elastic body 80 is pressed so that the end of the guide arm 72 toward the center of the vertical axis of rotation (3), that is, when the guide body 71 is pressed by the external force toward the inclined plate 72, the compression After the external force is removed, the guide arm 72 is pressed by the elastic restoring force to the original position in the center direction of the vertical rotation shaft 3.
  • the openings 15 are formed at both side ends of the wing frame 10, which is the guide arm This is because the guide arm 72 must be in direct contact with the movable blade 20 for the guidance of 72.
  • both ends of the movable blade 20 are inclined so that the movable blade 20 can be easily guided by the guide arm 72 so that the contact area with the guide arm 72 is large. It is desirable to.
  • a means for compressing the elastic body 80 is required by pressing the guide body 71 of the wing movement guide 70 toward the inclined plate 63, for this purpose, the opening 15 of the wing frame 10
  • a pair of push protrusions 16 are formed to protrude in the rotational direction of the wing frame 10 on the upper and lower sides, and the separation interval of the pair of push protrusions 16 is wider than the width of the guide arm 72. It is preferable to correspond to the width of the guide body (71).
  • the push protrusion 16 inclines the guide body 72 as the wing frame 10 approaches the wing movement guider 70 and first faces the guide body 72 while the wing frame 10 rotates.
  • the elastic body 80 is compressed by pushing toward the plate 62.
  • the wing frame 10 is preferably formed to be inclined downward toward both ends of the vertical rotation shaft 10, which is guided by the wing guide guide 70 In order to be able to be moved to the end by the gravity of the moving wing 20 in the last step of the movement when the moving wing 20 is moved from the wing frame 10 to the opposite direction from the wing frame 10 side to the reverse direction.
  • 11 to 17 are planar cross-sectional views illustrating an operating state of the wing moving guider 70 and a moving state of the wing 20 according to the rotation of the wing frame 10.
  • the wind direction indicating member 60 changes its position according to the wind direction so that the horizontal bar 61 is biased toward the opposite direction of rotation of the wing frame 10 than the position parallel to the wind direction. have.
  • the wing move guider 70 In the state before the one-side wing frame 10a which rotates in the forward direction with respect to the wind direction, the wing move guider 70 is pressed by the elastic body 80 so that the end of the guide arm 72 is in the center direction of the vertical rotation axis 3. Maintain an extended state.
  • the push protrusion 16 of the one wing frame (10a) is to push the guide body 71 toward the inclined plate (63). Accordingly, the wing movement guider 70 is rotated toward the inclined plate 63 to compress the elastic body 80.
  • the wing moving guider 70 is pressed by the elastic restoring force of the elastic body 80, and thus the wing wing guide 70 is returned to its original position. Receives a pressure guide of the will start to move toward the opposite wing frame (10).
  • the guide arm 72 gradually returns to the vicinity of the outer circumferential surface of the vertical rotation shaft 3 while the moving wing 20 is moved. You will be constantly guided to move.
  • the moving wing 20 is converted to the other wing which is converted from the reverse rotation to the forward rotation. It is located on the frame 10b side, and thus the wing frame 10 is continuously subjected to only forward rotational force by the wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a movable rotor blade structure for vertical wind-powered electricity generation. The invention comprises: a blade frame which is provided fixedly on a vertical rotational shaft for wind-powered electricity generation, and on the top and bottom edges of which are respectively formed horizontal rails; a movable blade which is half the length of the blade frame, and which is provided on the blade frame in such a way as to be able to move sliding along the rails; and a blade-operation controller for controlling the operation in such a way that, with every 180 degrees of rotation when the blade frame is rotating due to the force of the wind, the movable blade is moved from the blade frame on one side which is rotating backward against the wind centred on the vertical rotational shaft, and towards the blade frame on the other side which is rotating forward in the opposite direction. The invention has the advantageous effect that it can increase the mechanical conversion efficiency for wind power since blades experiencing a force from the wind are only ever positioned on the side rotating forward with the wind centred on the vertical rotational shaft, and the force of resistance due to backward rotation of the blade is minimised.

Description

수직형 풍력발전용 이동식 회전날개구조체Movable rotary wing structure for vertical wind power generation
본 발명은 수직형 풍력발전용 이동식 회전날개구조체에 관한 것으로서, 보다 상세하게는 날개가 수직회전축을 중심으로 풍향에 대해 역방향 회전하는 쪽에서 정방향 회전하는 쪽으로 이동 가능하도록 구성하여 날개가 풍력에 대해 정방향 회전력만을 받도록 함으로써 풍력에 의한 전력생산효율을 극대화할 수 있는 수직형 풍력발전용 이동식 회전날개구조체에 관한 것이다.The present invention relates to a mobile rotary wing structure for vertical wind power generation, and more particularly, the wing is configured to be movable in the direction of the forward rotation from the direction of the reverse rotation with respect to the wind direction about the vertical axis of rotation to the forward rotational force against the wind The present invention relates to a mobile rotary wing structure for vertical wind power generation that can maximize power production efficiency by wind power.
풍력발전이란 풍차를 이용해 바람이 가진 에너지를 회전축을 통한 기계적인 에너지(회전력)로 변환시키고, 이러한 기계적 에너지가 발전기를 구동함으로써 전기적인 에너지로 변환되어 전력을 얻는 발전 방식을 말하는 것으로서, 현재까지 개발된 신재생에너지원 중 가장 경제성이 높을 뿐 아니라 무한정, 무비용의 청정에너지원인 바람을 이용하여 발전할 수 있는 장점때문에 일찍이 풍력발전산업이 발달한 유럽은 물론 최근에는 미주와 아시아 등지에서도 적극적인 투자가 이뤄지고 있는 실정이다.Wind power generation refers to a power generation method in which wind energy is converted into mechanical energy (rotational power) through a rotating shaft using a windmill, and the mechanical energy is converted into electrical energy by driving a generator to obtain power. It is not only the most economical among the new renewable energy sources, but also has the advantage of being able to generate power using the wind, a clean energy source for unlimited use, and actively invested not only in Europe where the wind power industry was developed but also in the Americas and Asia recently. It is happening.
특히, 풍력발전은 전력생산단가의 가격경쟁력 향상 및 발전시스템 설치의 소요면적 최소화 등과 같은 원가적인 측면과, 화석에너지 고갈에 대한 대체에너지원과 온나화방지와 같은 지구환경보호라는 사회환경적 측면과 아울러 공급의 안정성 및 에너지 수입의 의존도 감소라는 경제적인 측면에서의 장점때문에 정부에서도 풍력발전의 보급을 적극 지원하고 있으며, 그에 따라 국내에서도 향후 풍력발전의 성장세가 본격화될 것으로 기대되고 있다.Particularly, wind power generation has cost-effective aspects such as improving the price competitiveness of electricity production costs and minimizing the required area of power generation systems, and the social and environmental aspects such as protecting the global environment such as alternative energy sources and fogging of fossil energy exhaustion. In addition, the government is actively supporting the dissemination of wind power generation due to economic advantages such as stability of supply and reduction of dependence on energy imports. Accordingly, it is expected that the growth of wind power generation in Korea will increase in the future.
이러한 풍력발전은 날개의 회전축의 방향에 따라 회전축이 지면에 대해 수평으로 설치되어 있는 수평형 풍력발전장치와, 회전축이 지면에 대해 수직으로 설치되어 있는 수직형 풍력발전장치로 구분할 수 있으며, 현재까지 수직형에 비해 수평형 풍력발전장치의 효율이 높고 안정적이어서 상업용 풍력발전단지에는 대부분 수평형 풍력발전기가 적용되고 있다.Such wind power generation can be classified into a horizontal wind power generator in which the rotating shaft is installed horizontally with respect to the ground and a vertical wind power generator in which the rotating shaft is installed perpendicular to the ground according to the direction of the rotation axis of the blade. Compared to the vertical type, the horizontal wind power generator is more efficient and stable, so most of the commercial wind farms have been applied to the horizontal wind generator.
상기한 수평형 풍력발전장치는 가장 일반적인 형태로 높은 발전효율을 구현할 수 있는 장점이 있으나, 바람의 방향이 자주 바뀌는 지역에서는 원활한 발전이 어려우며, 회전체를 비롯한 주요 부품들이 높은 곳에 설치되므로 고가의 설치비용이 소요될 뿐만 아니라 그 유지보수가 쉽지 않으며, 태풍 등의 강한 바람에 구조적으로 취약한 단점을 갖고 있다. The above-described horizontal wind power generator has the advantage of realizing high power generation efficiency in the most general form, but it is difficult to smoothly generate power in areas where the wind direction is frequently changed, and expensive installation is possible because the main parts including the rotor are installed at a high level. Not only is it expensive, its maintenance is not easy, and it has a disadvantage that is structurally vulnerable to strong winds such as typhoons.
이러한 수평형 풍력발전장치의 단점과 비교할 때 상기 수직형 풍력발전장치는 바람의 방향에 관계없이 발전이 가능하며, 증속기 및 발전기 등의 주요 부품들이 지상에 설치되므로 설치비용이 저렴하고 그 유지보수가 용이한 장점을 가지고 있다.Compared with the shortcomings of the horizontal wind power generator, the vertical wind power generator can generate power regardless of the direction of the wind. Since the main components such as the gearbox and the generator are installed on the ground, the installation cost is low and the maintenance is performed. Has the advantage of being easy.
그럼에도 불구하고 전술한 바와 같이 수평형 발전장치가 선호되는 것은 수직형 발전장치가 수평형 발전장치에 비해 그 발전효율이 떨어지기 때문이다.Nevertheless, the horizontal power generator is preferred as described above because the vertical power generator is less efficient than the horizontal power generator.
이것은 수직형 풍력발전장치의 구조적인 문제점으로서, 블레이드가 풍향에 대해 수직한 평면상에서 회전을 하게 되는 수평형 발전장치와 달리 회전날개가 풍향과 수평한 평면상에서 회전을 하게 되기 때문이다. This is a structural problem of the vertical wind power generator, because the blades rotate in a plane parallel to the wind direction, unlike a horizontal power generator in which the blade rotates on a plane perpendicular to the wind direction.
즉, 도 18에 도시된 바와 같이, 수직형 풍력발전장치는 구조적으로 회전날개의 한쪽(a1)은 풍력에 의해 정방향 회전을 하면서 바람(W)의 에너지를 회전축(b)의 기계적인 회전력으로 변환시키지만, 그 회전날개의 반대쪽(a2)은 풍력에 대해 역방향 회전을 하게 되기 때문에 회전축(b)의 회전에 저항으로 작용을 하게 되어 기계적인 에너지의 변환효율이 저하될 수 밖에 없는 것이다.That is, as shown in Figure 18, the vertical wind power generator structurally converts the energy of the wind (W) to the mechanical rotational force of the rotating shaft (b) while one side (a1) of the rotary blade is rotated forward by the wind However, since the opposite side (a2) of the rotary blade to the reverse rotation with respect to the wind will act as a resistance to the rotation of the rotary shaft (b) will have to decrease the conversion efficiency of mechanical energy.
이러한 수직형 풍력발전장치가 가지고 있는 발전효율의 문제점을 인식하여 기존에도 저항력을 감소시키기 위한 여러가지 기술개발이 이루어져 왔는데, 그 것은 주로 회전날개의 형상을 변형시켜 역방향 회전시 회전날개가 풍력의 영향을 적게 받도록 하는 것이었다.Recognizing the problems of power generation efficiency of the vertical wind turbine, various technologies have been developed to reduce the resistance. It was to receive less.
그러나, 이러한 기존 회전날개의 형상변형 기술은 저항을 감소시키는데 한계가 있어 발전효율을 크게 증대시키기 어려운 바, 보다 근본적으로 풍향에 대한 역저항을 제거할 수 있는 기술의 개발이 절실히 요구된다고 할 것이다.However, since the shape deformation technology of the existing rotary blade has a limitation in reducing the resistance, it is difficult to greatly increase the power generation efficiency. Therefore, it is urgently required to develop a technology capable of removing the reverse resistance to the wind direction.
본 발명은 상술한 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 풍력에너지를 전달받아 수직회전축의 기계적인 회전력으로 변환시키는 날개가 항상 풍력에 대해 정방향 회전하는 쪽에만 위치되도록 그 이동을 제어함으로써 수직회전축에 오로지 풍력에 의한 정방향 회전력만이 가해지도록 하여 기계적인 변환효율을 증대시킬 수 있는 수직형 풍력발전용 이동식 회전날개구조체를 제공하는 것이다.The present invention has been made to solve the above-mentioned conventional problems, an object of the present invention is to move the blade so that the wing that receives the wind energy is converted into the mechanical rotational force of the vertical axis of rotation is always located only in the forward rotation side with respect to the wind power It is to provide a mobile rotary wing structure for vertical wind power generation that can increase the mechanical conversion efficiency by only the forward rotational force by the wind to the vertical rotation axis by controlling the.
상기한 목적을 달성하기 위한 본 발명에 따른 수직형 풍력발전용 이동식 회전날개구조체는, 풍력발전용 수직회전축에 고정 설치되며 상하단에 수평방향으로 레일부가 각각 형성된 날개프레임과, 상기 날개프레임의 1/2 길이를 가지며, 상기 레일부를 따라 슬라이딩 이동 가능하게 상기 날개프레임에 설치되는 이동날개, 및 풍력에 의해 상기 날개프레임이 회전할 때, 회전각 180°마다 수직회전축을 중심으로 풍향에 대해 역방향 회전하는 일측 날개프레임으로부터 반대쪽의 정방향 회전하는 타측 날개프레임쪽으로 상기 이동날개가 이동되도록 작동을 제어하는 날개작동제어부를 포함하여,Vertical rotary wind turbine movable rotary structure according to the present invention for achieving the above object, is fixed to the vertical axis of rotation for wind turbines and the wing frame is formed in the horizontal direction in the upper and lower ends, respectively, 1 / of the wing frame It has a length of 2, the movable blade is installed on the wing frame to be slidably movable along the rail, and when the wing frame is rotated by the wind, rotates in the reverse direction with respect to the wind direction about the vertical axis of rotation every 180 ° rotation angle Including a wing operation control unit for controlling the operation so that the moving wing is moved from the wing frame to the other side of the forward rotation of the opposite direction,
상기 이동날개가 풍향에 대해 정방향 회전하는 날개프레임쪽에만 위치되도록 함으로써 상기 수직회전축에 풍력에 의한 정방향 회전력만이 가해지도록 하는 것을 특징으로 한다.The moving wing is positioned only on the side of the wing frame which rotates in the forward direction with respect to the wind direction, so that only the forward rotational force by the wind is applied to the vertical rotation shaft.
여기서, 상기 날개프레임은 한 쌍을 이루어 상기 수직회전축에 십자 형태로 고정 설치되며, 상기 수직회전축에는 상기 이동날개의 통과가 가능한 날개관통구가 상기 날개프레임에 대응하여 90°간격으로 각각 형성되는 것이 바람직하다.Here, the wing frame is formed in a pair is fixed to the vertical axis of rotation in the form of a cross, the vertical axis of rotation that the through-holes through which the moving blades are formed are formed at intervals of 90 ° corresponding to the wing frame respectively. desirable.
본 발명에 따른 상기 날개작동제어부는, 상기 수직회전축에 자유회전 가능하게 결합되어 풍향에 평행하도록 그 위치가 자동 변경되는 풍향지시대와, 상기 풍향지시대에 구비되며, 회전하는 날개프레임이 풍향에 대해 정방향에서 역방향으로 전환되는 지점에 근접함을 감지하는 접근감지센서, 및 상기 접근감지센서의 감지신호에 따라 근접된 상기 날개프레임쪽에 위치된 이동날개를 반대쪽의 날개프레임쪽으로 슬라이딩 이동시키는 날개구동부를 포함하며, 상기 날개프레임의 양쪽 끝단에 설치되어 슬라이딩 이동된 상기 이동날개가 감지되면 상기 날개구동부의 작동을 중지시키는 한 쌍의 날개감지센서를 더 포함할 수 있다.The wing operation control unit according to the present invention is coupled to the vertical rotation axis freely rotatable wind direction indicator and its position is automatically changed so as to be parallel to the wind direction, the wind direction indicator is provided, the rotating wing frame to the wind direction An approach detection sensor for detecting proximity to a point switched from the forward direction to the reverse direction, and a wing driver for slidingly moving a moving wing positioned on the wing frame in proximity to the wing frame on the opposite side according to a detection signal of the approach detection sensor. And a pair of wing detection sensors installed at both ends of the wing frame to stop the operation of the wing driver when the moving wing is slid and moved.
여기서, 상기 날개구동부는, 상기 이동날개의 일측면에 그 길이방향을 따라 설치되는 랙기어와, 상기 랙기어와 치합 가능한 한 쌍의 피니언기어, 및 상기 수직회전축을 중심으로 양쪽의 날개프레임에 각각 설치되며, 상기 접근감지센서의 신호에 따라 상기 한 쌍의 피니언기어를 각각 회전 구동시키고 상기 각 날개감지센서의 신호에 따라 구동을 중지하는 한 쌍의 정역모터를 포함하여 이루어질 수 있다.Here, the wing drive unit, the rack gear is installed on one side of the movable blade along the longitudinal direction, a pair of pinion gear that can be engaged with the rack gear, and each of the wing frame around the vertical axis of rotation, respectively It is installed, and may include a pair of forward and reverse motors to rotate the pair of pinion gears respectively in response to the signal of the approach detection sensor and stop driving according to the signal of each wing detection sensor.
또한, 상기 접근감지센서는 상기 풍향지시대로부터 날개프레임의 회전방향 반대쪽으로 5 ~ 10°이격되도록 상기 풍향지시대에 구비될 수 있다.In addition, the proximity sensor may be provided in the wind direction so that 5 ~ 10 ° spaced apart from the direction of the direction of rotation of the wing frame from the wind direction.
본 발명에 따른 상기 날개작동제어부는, 상기 수직회전축에 자유 회전 가능하게 결합되어 풍향에 따라 그 위치가 자동 변경되는 풍향지시부재, 및 상기 풍향지시부재에 힌지 결합되어 원호 형태로 연장되며, 상기 수직회전축의 중심을 향하도록 탄성체에 의해 가압되는 날개이동가이더를 포함하며, 상기 날개프레임의 양 측단에는 개방부가 형성되어, 상기 날개프레임이 풍향에 대해 정방향에서 역방향으로 전환되는 지점에 이르면 상기 날개이동가이더의 가압 안내에 따라 이동날개가 반대쪽 날개프레임쪽으로 슬라이딩 이동되는 것을 특징으로 할 수 있다.The vane operation control unit according to the present invention is freely rotatably coupled to the vertical rotation axis, the wind direction indicating member whose position is automatically changed according to the wind direction, and hinged to the wind direction indicating member extends in the form of an arc, the vertical A wing movement guider is pressed by an elastic body to face the center of the rotation axis, the opening is formed on both side ends of the wing frame, the wing movement guider when the wing frame reaches a point to be converted from forward to reverse with respect to the wind direction According to the pressure guide of the wing may be characterized in that the sliding movement toward the opposite wing frame.
여기서, 상기 풍향지시부재는 상기 날개프레임의 상하측에서 상기 날개프레임의 회전반경보다 길게 연장되는 한 쌍의 수평바와, 상기 한 쌍의 수평바 끝단에서 일정 각도로 절곡되어 형성되는 경사판재로 이루어질 수 있다.Here, the wind direction indicating member may be made of a pair of horizontal bars extending from the upper and lower sides of the wing frame longer than the rotation radius of the wing frame, and the inclined plate formed by bending at a predetermined angle at the ends of the pair of horizontal bars. have.
또한, 상기 날개프레임에는 상기 개방부의 상하측에 한 쌍의 푸쉬돌기가 돌출 형성되고, 상기 날개이동가이더는 상기 푸쉬돌기에 의해 상기 탄성체를 압축하는 방향으로 눌려지는 넓은 폭의 가이드몸체와, 상기 가이드몸체에서 연장되며 상기 압축된 탄성체의 복원력에 의해 원위치되면서 상기 이동날개의 이동을 가압 안내하는 좁은 폭의 가이드암으로 이루어질 수 있다.In addition, the wing frame has a pair of push protrusions protrudingly formed on the upper and lower sides of the opening portion, the wing movement guider is a wide guide body that is pressed in the direction of compressing the elastic body by the push protrusion, and the guide It may be made of a narrow guide arm extending from the body and is guided by the restoring force of the compressed elastic body to guide the movement of the moving blade.
또한, 상기 날개프레임은 상기 수직회전축쪽에서 양 측단으로 갈수록 하향 경사지게 형성될 수 있다.In addition, the wing frame may be formed to be inclined downward toward both side ends from the vertical axis of rotation.
본 발명에 따른 수직형 풍력발전용 이동식 회전날개구조체는,The mobile rotary wing structure for vertical wind power generation according to the present invention,
풍력을 받는 날개가 수직회전축을 중심으로 풍향에 대해 정방향 회전하는 쪽에만 위치하게 되어 날개의 역회전에 의한 저항력이 최소화되므로 풍력에 대한 기계적인 변환효율을 증대시킬 수 있는 효과가 있다.Since the wing receiving the wind is positioned only in the direction of forward rotation about the wind direction about the vertical axis of rotation, the resistance by the reverse rotation of the wing is minimized, thereby increasing the mechanical conversion efficiency against the wind.
도 1은 본 발명의 일 실시예에 따른 수직형 풍력발전용 이동식 회전날개구조체의 사시도, 1 is a perspective view of a mobile rotary wing structure for vertical wind power generation according to an embodiment of the present invention,
도 2는 도 1에서 수직회전축 부근의 확대 평면단면도, FIG. 2 is an enlarged plan sectional view near the vertical axis in FIG. 1;
도 3은 본 발명의 일 실시예에 따른 날개프레임에 슬라이딩 가능하게 설치되는 이동날개를 예시한 단면도, Figure 3 is a cross-sectional view illustrating a movable wing slidably installed in the wing frame according to an embodiment of the present invention,
도 4는 본 발명의 일 실시예에 따른 날개구동부의 확대사시도,4 is an enlarged perspective view of a wing driving unit according to an embodiment of the present invention;
도 5 내지 도 9는 본 발명의 일 실시예에 따른 수직형 풍력발전용 이동식 회전날개구조체의 작동예시도,5 to 9 is an operation example of the movable rotary wing structure for vertical wind power generation according to an embodiment of the present invention,
도 10은 본 발명의 다른 실시예에 따른 수직형 풍력발전용 이동식 회전날개구조체의 사시도,10 is a perspective view of a mobile rotary wing structure for vertical wind power generation according to another embodiment of the present invention;
도 11 내지 도 17은 본 발명의 다른 실시예에 따른 수직형 풍력발전용 이동식 회전날개구조체의 작동예시도,11 to 17 is an operation example of a movable rotary wing structure for vertical wind power generation according to another embodiment of the present invention,
도 18은 통상의 수직형 발전장치의 풍력에 대한 회전날개의 회전상태를 예시한 예시도이다.18 is an exemplary view illustrating a rotation state of the rotary blades for the wind power of a conventional vertical power generator.
이하에서, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하기로 한다. 본 발명을 설명하는 데 있어서, 원칙적으로 관련된 공지의 기능이나 공지의 구성과 같이 이미 당해 기술분야의 통상의 기술자에게 자명한 사항으로서 본 발명의 기술적 특징을 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention. In the following description of the present invention, if it is determined that the technical features of the present invention may be unnecessarily obscured as a matter already known to those skilled in the art, such as a known function or a known configuration, in detail The description will be omitted.
도 1은 본 발명의 일 실시예에 따른 수직형 풍력발전용 이동식 회전날개구조체(1)의 사시도이고, 도 2는 도 1에서 수직회전축(3) 부근의 확대 평면단면도이며, 도 3은 본 발명의 일 실시예에 따른 날개프레임(10)에 슬라이딩 가능하게 설치되는 이동날개(20)를 예시한 단면도이고, 도 4는 본 발명의 일 실시예에 따른 날개구동부(50)의 확대사시도이다. 1 is a perspective view of a mobile rotary wing structure 1 for vertical wind power generation according to an embodiment of the present invention, Figure 2 is an enlarged planar cross-sectional view of the vicinity of the vertical axis 3 in Figure 1, Figure 3 is the present invention 4 is a cross-sectional view illustrating a movable wing 20 slidably installed in the wing frame 10 according to an embodiment of the present invention, and FIG. 4 is an enlarged perspective view of the wing driving unit 50 according to an embodiment of the present invention.
상기한 도면들에 도시되어 있는 바와 같이, 본 발명의 일 실시예에 따른 이동식 회전날개구조체(1)는 날개프레임(10)과, 상기 날개프레임(10)에 슬라이딩 이동 가능하게 설치되는 이동날개(20)와, 상기 이동날개(20)의 슬라이딩 작동을 제어하는 날개작동제어부를 포함하여 이루어진다.As shown in the drawings, the movable rotary wing structure 1 according to an embodiment of the present invention is a wing frame 10, and a movable wing installed to be slidably movable on the wing frame 10 ( 20) and the wing operation control unit for controlling the sliding operation of the movable blade (20).
상기 날개프레임(10)은 전체적으로 사각형의 형태를 이루며, 그 상단과 하단에는 각각 수평방향으로 레일부(11)가 상호 대향되도록 형성된다.The wing frame 10 is formed in a rectangular shape as a whole, the upper and lower ends are formed so that the rails 11 are opposed to each other in the horizontal direction.
그리고 상기 레일부(11)들에는 길이방향을 따라 다수의 휨방지용 보강편(12)이 결합되고 레일부(11)들 사이에는 다수의 보강지지대(12)들이 결합됨이 바람직하다.In addition, a plurality of bending preventing reinforcement pieces 12 are coupled to the rail parts 11 along a longitudinal direction, and a plurality of reinforcing supports 12 are coupled between the rail parts 11.
상기 날개프레임(10)은 수직회전축(3)에 고정되도록 설치되는데, 두 부분으로 구분되어 상기 수직회전축(3)의 양쪽에 각각 평행하게 고정된다. 여기서 상기 날개프레임(10)은 그 일측 날개프레임이 풍향에 대해 정방향 회전을 한다면 나머지 타측 날개프레임은 역방향을 회전을 하게 됨을 알 수 있다.The wing frame 10 is installed to be fixed to the vertical axis of rotation (3), divided into two parts are fixed in parallel to both sides of the vertical axis of rotation (3). Here, the wing frame 10 can be seen that if one wing frame rotates forward with respect to the wind direction, the other wing frame rotates in the reverse direction.
그리고 이러한 날개프레임(10)은 한 쌍으로 이루어져 상기 수직회전축(3)에 십자 형태로 상호 직교하도록 설치됨이 바람직하다.And the wing frame 10 is made of a pair is preferably installed to be orthogonal to each other in the form of a cross on the vertical axis of rotation (3).
여기서, 상기 날개프레임(10)이 설치되는 수직회전축(3)에는 상기 레일부(11)의 이격 간격에 대응하는 길이의 날개관통구(4)가 형성되며, 상기 날개관통구(4)는 십자 형태로 설치되는 상기 날개프레임(10)에 대응하여 90°간격으로 수직회전축(3)의 외주면 상에 형성됨이 바람직하다. 상기 날개관통구(4)는 후술할 이동날개(20)의 이동시 수직회전축(3)을 통과할 수 있도록 하는 통로로 기능하게 된다.Here, a wing through hole 4 having a length corresponding to the separation interval of the rail portion 11 is formed on the vertical rotation shaft 3 on which the wing frame 10 is installed, and the wing through hole 4 crosses. It is preferable to be formed on the outer circumferential surface of the vertical rotation shaft 3 at 90 ° intervals corresponding to the wing frame 10 installed in the form. The wing passage 4 is to function as a passage to pass through the vertical axis of rotation (3) during the movement of the moving blade 20 to be described later.
또한, 상기 수직회전축(3)의 내부에는 상기 이동날개(20)가 수직회전축(3) 내부를 용이하게 통과하도록 상기 날개관통구(4)에 대응하여 십자 형태의 날개통로(5)가 형성됨이 바람직하다.In addition, a cross-shaped wing passage 5 is formed in the vertical rotation shaft 3 so as to correspond to the wing passage 4 so that the moving blade 20 easily passes through the vertical rotation shaft 3. desirable.
상기 이동날개(20)는 상기 날개프레임(10)의 레일부(11)를 따라 슬라이딩 가능하도록 상기 날개프레임(10)에 설치된다.The moving wing 20 is installed on the wing frame 10 to be slidable along the rail portion 11 of the wing frame 10.
상기 이동날개(20)는 날개프레임(10)과 같이 사각판의 형태이며, 날개프레임(10) 전체 길이의 1/2 정도 길이를 갖는 것이 바람직하다. 즉, 상기 이동날개(20)의 길이는 두 부분으로 구분된 날개프레임(10) 중 어느 하나의 길이에 대응되며, 그에 따라 수직회전축(3) 양쪽에 평형하게 고정된 양쪽 날개프레임(10) 중에서 이동에 의해 선택적으로 어느 한쪽에만 위치될 수 있게 된다.The wing 20 is in the form of a square plate like the wing frame 10, it is preferable to have a length of about half of the entire length of the wing frame (10). That is, the length of the moving blade 20 corresponds to the length of any one of the wing frame 10 divided into two parts, accordingly from the two wing frame 10 fixed in parallel to both sides of the vertical axis of rotation (3) By movement, it can be selectively positioned on either side.
상기 날개프레임(10)이 상호 직교하는 한 쌍으로 이루어지기 때문에 각 날개프레임(10)에 설치되기 위해 상기 이동날개(20)도 한 쌍으로 이루어짐을 알 수 있다.Since the wing frame 10 is made of a pair of orthogonal to each other it can be seen that the moving wing 20 is also made in a pair to be installed on each wing frame 10.
상기 이동날개(20)는 상기 레일부(11)를 따라 슬라이딩 이동이 가능하도록 설치되는데, 본 발명의 일 실시예에서는 상기 이동날개(20)의 슬라이딩 이동을 위해 도 3에 도시된 바와 같이 레일부(11)를 따라 마찰을 최소화하면서 회전이동을 할 수 있는 회전휠(21)을 상기 이동날개(20)에 결합시켰는바, 이러한 이동날개(20)의 슬라이딩 이동을 위한 방식은 상기 실시예로 제한되지 않으며, 당해 기술분야에 공지된 다양한 슬라이딩 방식의 채택이 가능하다. The movable blade 20 is installed to be slidably moved along the rail portion 11, in one embodiment of the present invention, as illustrated in FIG. 3 for sliding movement of the movable blade 20. (11) coupled to the rotary blade 21 to the rotary blade 21 that can be rotated while minimizing the friction, the method for sliding movement of the movable blade 20 is limited to the above embodiment However, various sliding schemes known in the art are possible.
상기 날개작동제어부는 날개프레임(10)이 회전되더라도 상기 이동날개(10)가 항상 풍향에 대해 정방향 회전하는 날개프레임(10)쪽에만 위치되도록 이동날개(10)의 슬라이딩 이동을 제어하는 기능을 수행한다.The wing operation control unit performs a function of controlling the sliding movement of the movable blade 10 so that the movable blade 10 is located only on the wing frame 10 side that always rotates forward with respect to the wind direction even if the wing frame 10 is rotated. do.
이를 위한 일 실시예로서, 상기 날개작동제어부는 풍향지시대(30)와, 접근감지센서(40)와, 날개구동부(50)와, 날개감지센서(55)로 이루어질 수 있다.As an embodiment for this purpose, the wing operation control unit may be made of a wind direction indicator 30, the approach detection sensor 40, the wing drive unit 50, the wing detection sensor 55.
상기 풍향지시대(30)는 상기 수직회전축(3)의 회전과 무관하게 풍향에 따라 자유롭게 방향을 바꿀 수 있도록 베어링회전부(31)에 의해 수직회전축(3)에 결합되며, 그에 따라 상기 풍향지시대(30)는 항상 풍향과 평행선상에 위치하게 된다.The wind direction indicator 30 is coupled to the vertical rotation shaft 3 by the bearing rotation part 31 so that the direction can be changed freely according to the wind direction irrespective of the rotation of the vertical rotation shaft 3, and thus the wind direction indicator 30 is always located in parallel with the wind direction.
여기서, 하나의 날개프레임(10)은 바람에 의해 회전하면서 180°마다 풍향지시대(30)를 통과하게 되는데, 이렇게 풍향지시대(30)가 풍향과 평행한 위치에 있게 되므로 풍향지시대(30)를 통과할 때마다 상기 날개프레임(10)은 풍향에 대해 정방향 회전에서 역방향 회전으로 전환됨을 알 수 있다.Here, one wing frame 10 passes through the wind direction indicator 30 every 180 ° while rotating by the wind, so the wind direction indicator 30 is in a position parallel to the wind direction 30 wind direction indicator 30 It can be seen that each time the blade frame 10 is passed from the forward rotation to the reverse rotation with respect to the wind direction.
상기 접근감지센서(40)는 상기 풍향지시대(30)에 구비되어 상기한 것과 같이 회전하면서 풍향지시대(30)에 접근하여 정방향에서 역방향으로 전환되는 날개프레임(10)을 감지하여 후술할 날개구동부(50)를 작동시키는 기능을 한다.The approach sensor 40 is provided in the wind direction indicator 30 to approach the wind direction indicator 30 while rotating as described above to detect the wing frame 10 to be switched from the forward direction to the reverse direction to be described later It functions to operate the driving unit 50.
여기서, 이동날개(20)의 이동시간을 고려해야 하기 때문에 상기 접근감지센서(40)는 날개프레임(10)이 풍향에 대해 정방향에서 역방향으로 전환되기 전에 이를 감지하여 날개구동부(50)를 작동시킬 필요가 있으며, 이를 위하여 상기 접근감지센서(40)는 상기 풍향지시대(30)로부터 날개프레임(10)의 회전방향 반대쪽으로 5 ~ 10°이격되도록 상기 풍향지시대(10)에 구비되는 것이 바람직하다.Here, since the moving time of the moving wing 20 should be taken into consideration, the approach detection sensor 40 needs to detect the wing frame 10 before it is switched from the forward direction to the reverse direction with respect to the wind direction to operate the wing drive unit 50. For this purpose, the proximity sensor 40 is preferably provided in the wind direction indicator 10 so as to be spaced apart 5 ~ 10 ° in the opposite direction of rotation of the wing frame 10 from the wind direction indicator 30. .
상기 날개감지센서(55)는 한 쌍으로 이루어져 상기 날개프레임(10)의 양쪽 끝단에 각각 설치된다. 상기 각 날개감지센서(55)는 날개프레임(10)을 따라 이동하는 상기 이동날개(20)의 이동이 완료되었는가를 감지하는 기능을 하는 것으로서, 각각 설치된 날개프레임(10)쪽으로 이동날개(20)가 상기 날개구동부(50)의 작동에 의해 슬라이딩 이동을 하여 날개프레임(10)의 끝단에 이르게 되면 이를 감지하여 상기 날개구동부(50)의 작동을 중지시키게 된다.The wing sensor (55) consists of a pair is installed on both ends of the wing frame (10), respectively. Each wing detection sensor 55 is a function of detecting whether the movement of the moving wing 20 moving along the wing frame 10 is completed, respectively, moving wing 20 toward the wing frame 10 installed. Sliding movement by the operation of the wing drive unit 50 reaches the end of the wing frame 10 to detect this to stop the operation of the wing drive unit (50).
상기 날개구동부(50)는 상기 접근감지센서(40)의 감지신호에 따라 작동되어 날개프레임(10)이 역방향으로 전환되는 지점에 접근하면 접근된 날개프레임(10)쪽에 위치된 이동날개(20)를 반대쪽의 날개프레임(10)쪽으로 이동시키는 기능을 하게 된다.The wing drive unit 50 is operated according to the detection signal of the approach detection sensor 40 when the wing frame 10 is approached to the point that is switched in the reverse direction moving wing 20 located on the approach wing frame 10 side To function to move to the opposite wing frame 10 side.
이를 위하여, 상기 날개구동부(50)는 상기 이동날개(20)의 일측면에 그 길이방향을 따라 설치되는 랙기어(51)와, 상기 랙기어(51)와 각각 치합 가능한 한 쌍의 피니언기어(52)와, 상기 수직회전축(3)을 중심으로 양쪽의 날개프레임(10) 각각에 설치되며, 상기 피니언기어(52)를 각각 정역방향으로 회전구동시키는 한 쌍의 정역모터(53)로 이루어진다.To this end, the wing drive unit 50 is a rack gear 51 is installed on one side of the movable blade 20 along its length direction, and a pair of pinion gears that can be engaged with the rack gear 51, respectively ( 52 and a pair of forward and reverse motors 53 installed on each of the wing frames 10 on both sides of the vertical rotation shaft 3 to rotate the pinion gear 52 in the forward and reverse directions, respectively.
상기 정역모터(53)는 상기 접근감지센서(40)의 감지신호에 따라 회전 구동하여 이동날개(10)를 이동시키고, 상기 날개감지센서(55)의 감지신호에 따라 회전 구동을 중지하게 된다.The stationary motor 53 is driven to rotate according to the detection signal of the approach detection sensor 40 to move the moving wing 10, and stops the rotation drive in accordance with the detection signal of the wing detection sensor (55).
한편, 상기 이동날개(20)는 날개프레임(10)을 따라 그 회전각 180°마다 왕복 이동을 하는 것이므로, 이를 위해 상기 한 쌍의 정역모터(53)는 상기 날개프레임(10)의 회전각 180°마다 교대로 정회전 구동과 역회전 구동을 반복해야만 한다. On the other hand, since the moving blade 20 is to reciprocate every 180 degrees of the rotation angle along the wing frame 10, for this purpose, the pair of forward and reverse motor 53 is the rotation angle of the wing frame 10 180 You must repeat the forward and reverse drive alternately every °.
이러한 정역모터(53)의 정역 구동을 위해서는 다양한 제어방식을 채택할 수 있는데, 일 실시예로서, 상기 접근감지센서(40)가 상기 날개프레임(10) 중 일측 날개프레임과 타측 날개프레임의 접근을 구별하여 감지하고, 그에 따라 상기 정역모터(53)를 정회전 또는 역회전 구동시킬 수 있도록 날개프레임(10) 중 일측 날개프레임과 타측 날개프레임에 각각 상이한 신호를 발신하는 한 쌍의 발신부(도면 미도시)를 설치할 수 있다.Various control schemes may be adopted for the forward and reverse driving of the forward and reverse motors 53. As an embodiment, the approach detection sensor 40 may access one wing frame and the other wing frame of the wing frame 10. A pair of transmitters for differently detecting and transmitting different signals to one wing frame and the other wing frame of the wing frame 10 so as to drive the forward and reverse motor 53 forward or reversely accordingly. Not shown) can be installed.
상술한 구성으로 이루어진 본 발명의 일 실시예에 따른 이동식 회전날개구조체(1)의 작동에 대해 설명하면 다음과 같다.Referring to the operation of the movable rotary wing structure 1 according to an embodiment of the present invention made of the above-described configuration is as follows.
도 5 내지 도 9는 본 발명의 일 실시예에 따른 이동식 회전날개구조체의 날개프레임(10)의 회전 진행에 따른 작동단면도들이다.5 to 9 are cross-sectional views of the operation of the wing frame 10 of the movable rotary wing structure according to an embodiment of the present invention according to the progress of rotation.
도 5에 도시되어 있는 바와 같이 풍력에 대해 정방향 회전하는 일측 날개프레임(10a)에 이동날개(20)가 위치되어 있으며, 풍력에 대해 역방향 회전하는 반대쪽의 타측 날개프레임(10b)에는 이동날개(20)가 없다.As shown in FIG. 5, the wing 20 is positioned on one wing frame 10a that rotates forward with respect to the wind, and the wing 20 is positioned on the other wing frame 10b that rotates against the wind. )
따라서, 이 때에는 이동날개(20)가 위치된 일측 날개프레임(10a)쪽에는 풍력의 정방향 회전력이 크게 작용을 하는 반면, 반대쪽의 타측 날개프레임(10b)에는 미세한 역방향 회전력(날개프레임 자체에만 미치는 풍력)만이 작용하여 전체적으로 수직회전축(3)에는 큰 정방향 회전력만이 인가된다.Therefore, in this case, the forward rotational force of the wind acts greatly on one side of the wing frame 10a on which the moving wing 20 is located, whereas the minute reverse rotational force (the wind force only affects the wing frame itself) is applied to the other wing frame 10b on the opposite side. ) Only a large forward rotational force is applied to the vertical axis (3) as a whole.
그리고 도 6에 도시된 바와 같이 날개프레임(10)이 더욱 회전하여 정방향 회전력을 받는 일측 날개프레임(10a)이 풍향에 대해 평행하게 위치된 풍향지시대(30) 근처에 접근하게 되면, 접근감지센서(40)에서 상기 날개프레임(10a)의 접근을 감지하게 된다. 이 때, 접근감지센서(40)가 5 ~ 10° 전방에 이격되어 있기 때문에 날개프레임(10a)이 풍향지시대(30)와 평행한 위치에 이르기 전에 감지된다.And as shown in Figure 6, when the wing frame 10 is further rotated closer to the wind direction indicator 30 is located near the direction of the wind vane frame 10a is subjected to the forward rotation force, the wind direction approach sensor At 40, the approach of the wing frame 10a is detected. At this time, since the approach detection sensor 40 is spaced 5 to 10 ° in front of the wing frame 10a is detected before reaching the position parallel to the wind direction indicator (30).
상기 접근감지센서(40)의 감지신호에 따라 날개구동부(50)의 정역모터(53)가 작동을 하게 되며, 정역모터(53)의 작동에 따라 피니언(52)의 회전운동이 랙기어(51)의 직선운동으로 변환되어 이동날개(20)가 상기 접근된 일측 날개프레임(10a)로부터 반대쪽의 타측 날개프레임(10b)쪽으로 슬라이딩 이동을 시작하게 된다.The stationary motor 53 of the wing drive unit 50 is operated according to the detection signal of the approach detection sensor 40, and the rotational movement of the pinion 52 is the rack gear 51 according to the operation of the stationary motor 53. Is converted to a linear motion of the wing 20 is to start the sliding movement toward the other wing frame (10b) on the opposite side from the approach one wing frame (10a).
그리고 도 7 내지 도 9에 도시된 바와 같이 기존에 정방향 회전하던 일측 날개프레임(10a)이 풍향지시대(30)를 통과하여 역방향 회전으로 전환될 때, 이동날개(20)는 기존에 역방향 회전에서 정방향 회전으로 전환되는 타측 날개프레임(10b)쪽에 위치하게 되며, 그에 따라 상기 날개프레임(10)에는 계속적으로 풍력에 의한 정방향 회전력만이 가해지게 된다.7 to 9, when the one-side wing frame 10a, which was previously rotated in the forward direction, is converted to reverse rotation through the wind direction indicator 30, the moving blade 20 is conventionally rotated in the reverse direction. It is located on the other wing frame (10b) side is converted to the forward rotation, so that only the forward rotational force by the wind is continuously applied to the wing frame (10).
이와 같은 이동날개(20)의 이동이 각 날개프레임(10)의 180°회전마다 이루어지게 되는 것이며, 이러한 작동을 통해 수직회전축(3)에는 역저항이 제거되고 정방향 회전력만이 가해지는 것이다.Such movement of the wing 20 is to be made for each 180 ° rotation of each wing frame 10, through this operation is to remove the reverse resistance to the vertical axis of rotation (3) and only the forward rotational force is applied.
도 10은 본 발명의 다른 실시예에 따른 이동식 회전날개구조체(2)를 나타내는 사시도로서, 상기한 도면들에 도시되어 있는 바와 같이, 본 발명의 다른 실시예에 따른 이동식 회전날개구조체(2)는 수직회전축(3)에 십자 형태로 고정 설치되는 한 쌍의 날개프레임(10)과, 상기 날개프레임(10)에 슬라이딩 이동 가능하게 설치되는 이동날개(20)의 구성은 전술한 일 실시예와 동일하되, 풍향에 대해 정방향에서 역방향으로 전환시 상기 이동날개(20)를 정방향 회전하는 날개프레임(10)쪽으로 이동시키는 날개작동제어부의 구성이 상이한 특징을 갖고 있다.10 is a perspective view showing a movable rotary wing structure 2 according to another embodiment of the present invention, as shown in the above drawings, the movable rotary wing structure 2 according to another embodiment of the present invention is The pair of wing frames 10 fixed to the vertical rotation shaft 3 in the form of a cross, and the configuration of the movable wing 20 to be slidably movable on the wing frame 10 is the same as the above-described embodiment However, the configuration of the wing operation control unit for moving the moving wing 20 toward the wing frame 10 for forward rotation when switching from the forward direction to the reverse direction with respect to the wind direction has a different feature.
따라서, 이하에서는 전술한 일 실시예와 다른 구성부분을 위주로 상세하게 설명하기로 하며, 전술한 일 실시예와 동일한 구성요소에 대해서는 동일한 부호를 사용하기로 하며 그 자세한 설명은 생략하기로 한다.Therefore, hereinafter, components different from those of the above-described embodiment will be described in detail, and the same reference numerals will be used for the same elements as those of the above-described embodiment, and a detailed description thereof will be omitted.
본 발명의 다른 실시예에 따른 날개작동제어부는 풍향지시부재(60)와, 날개이동가이더(70)와, 탄성체(80)를 포함하여 이루어진다.The wing operation control unit according to another embodiment of the present invention includes a wind direction indicating member 60, a wing movement guider 70, and an elastic body 80.
상기 풍향지시부재(60)는 상기 일 실시예의 풍향지시대(30)와 동일하게 상기 수직회전축(3)의 회전과 무관하게 풍향에 따라 자유롭게 방향을 바꿀 수 있도록 베어링회전부(61)에 의해 수직회전축(3)에 결합된다.The wind direction indicating member 60 is vertically rotated by a bearing rotating portion 61 so that the direction can be freely changed according to the wind direction regardless of the rotation of the vertical rotation shaft 3, similar to the wind direction indicator 30 of the embodiment. Coupled to (3).
이러한 상기 풍향지시부재(60)는 상기 이동날개(20)의 상하측 수직회전축(3)에 각각 결합된 한 쌍의 베어링회전부(61)에서 상기 날개프레임(10)의 회전반경보다 길게 연장되는 한 쌍의 수평바(62)와, 상기 한 쌍의 수평바(62) 끝단에서 일정 각도로 절곡되어 형성되는 경사판재(63)로 이루어짐이 바람직하다.As long as the wind direction indicating member 60 extends longer than the rotation radius of the wing frame 10 in a pair of bearing rotating portions 61 respectively coupled to the upper and lower vertical rotation shafts 3 of the moving blades 20. Preferably, the pair of horizontal bars 62 and the inclined plate member 63 are bent at a predetermined angle at the ends of the pair of horizontal bars 62.
전술한 일 실시예의 풍향지시대(30)는 풍향과 평행선상에 위치하게 되지만, 상기 풍향지시부재(60)는 날개프레임(10)의 회전방향쪽으로 절곡된 경사부재(63)로 인해 상기 한 쌍의 수평바(62)가 도면에 도시된 것과 같이 풍향에 대해 날개프레임(10)의 회전방향 반대쪽으로 일정각도 치우친 지점에 위치하게 된다.The wind direction indicator 30 of the above-described embodiment is located in parallel with the wind direction, but the wind direction indicator member 60 is the pair due to the inclined member 63 bent in the rotational direction of the wing frame 10 As shown in the figure, the horizontal bar 62 is positioned at a predetermined angle in a direction opposite to the rotation direction of the wing frame 10 with respect to the wind direction.
상기 날개이동가이더(70)는 상기 풍향지시부재(60)에 힌지 결합되어 원호 형태로 연장되며 이동날개(20)가 이동되도록 안내하는 기능을 한다.The wing movement guider 70 is hinged to the wind direction indicating member 60 extends in the form of an arc and functions to guide the moving wing 20 to move.
이러한 날개이동가이더(70)는 상기 풍향지시부재(60)의 절곡부위에 힌지 결합되며 넓은 폭을 갖는 가이드몸체(71)와, 상기 가이드몸체(72)에서 대략 수직회전축(3)의 외주면 부근까지 연장되는 좁은 폭의 가이드암(72)으로 이루어짐이 바람직하다.The wing movement guider 70 is hinged to the bent portion of the wind direction indicating member 60 and has a wide width of the guide body 71 and from the guide body 72 to the vicinity of the outer circumferential surface of the vertical axis of rotation 3. It is preferably composed of a narrow guide arm 72 extending.
상기 탄성체(80)는 상기 날개이동가이더(70)를 탄성본원력에 의해 가압하는 기능을 하는 것으로서 상기 가이드몸체(71)와 상기 경사판재(63) 사이에 결합되도록 설치됨이 바람직하다.The elastic body 80 is a function of pressing the wing movement guide 70 by the elastic main force is preferably installed to be coupled between the guide body 71 and the inclined plate material (63).
이러한 탄성체(80)는 상기 가이드암(72)의 끝단이 수직회전축(3)의 중심을 향하도록 가압하게 되는데, 즉 상기 가이드몸체(71)가 경사판재(72)쪽으로 외력에 의해 눌리게 되면 압축되었다가 외력이 제거되면 탄성복원력에 의해 상기 가이드암(72)이 수직회전축(3)의 중심방향으로 원위치되도록 가압을 하는 것이다.The elastic body 80 is pressed so that the end of the guide arm 72 toward the center of the vertical axis of rotation (3), that is, when the guide body 71 is pressed by the external force toward the inclined plate 72, the compression After the external force is removed, the guide arm 72 is pressed by the elastic restoring force to the original position in the center direction of the vertical rotation shaft 3.
한편, 상기한 구성의 날개이동가이더(70)에 의한 이동날개(20)의 이동을 원활하게 위해 상기 날개프레임(10)의 양 측단에는 개방부(15)가 형성됨이 바람직한데, 이는 상기 가이드암(72)의 안내를 위해 상기 가이드암(72)이 상기 이동날개(20)와 직접 접촉을 해야 하기 때문이다.On the other hand, in order to facilitate the movement of the moving wing 20 by the wing movement guider 70 of the above configuration, it is preferable that the openings 15 are formed at both side ends of the wing frame 10, which is the guide arm This is because the guide arm 72 must be in direct contact with the movable blade 20 for the guidance of 72.
또한, 상기 이동날개(20)가 상기 가이드암(72)에 의해 안내를 용이하게 받을 수 있도록 상기 이동날개(20)의 양쪽 끝단부가 경사지게 형성되어 상기 가이드암(72)과의 접촉면적이 크도록 하는 것이 바람직하다.In addition, both ends of the movable blade 20 are inclined so that the movable blade 20 can be easily guided by the guide arm 72 so that the contact area with the guide arm 72 is large. It is desirable to.
또한, 상기 날개이동가이더(70)의 가이드몸체(71)를 경사판재(63)쪽으로 눌러 상기 탄성체(80)를 압축시키기 위한 수단이 필요한 바, 이를 위하여 상기 날개프레임(10)의 개방부(15) 상하측에 한 쌍의 푸쉬돌기(16)가 날개프레임(10)의 회전방향쪽으로 돌출 형성되며, 상기 한 쌍의 푸쉬돌기(16)의 이격 간격은 상기 가이드암(72)의 폭보다 넓으며 상기 가이드몸체(71)의 폭에 대응되도록 함이 바람직하다.In addition, a means for compressing the elastic body 80 is required by pressing the guide body 71 of the wing movement guide 70 toward the inclined plate 63, for this purpose, the opening 15 of the wing frame 10 A pair of push protrusions 16 are formed to protrude in the rotational direction of the wing frame 10 on the upper and lower sides, and the separation interval of the pair of push protrusions 16 is wider than the width of the guide arm 72. It is preferable to correspond to the width of the guide body (71).
이러한 푸쉬돌기(16)는 날개프레임(10)이 상기 날개이동가이더(70)에 접근하면, 먼저 가이드몸체(72)와 대면하면서 날개프레임(10)의 회전 진행에 따라 가이드몸체(72)를 경사판재(62)쪽으로 밀어내어 탄성체(80)를 압축시키게 된다.The push protrusion 16 inclines the guide body 72 as the wing frame 10 approaches the wing movement guider 70 and first faces the guide body 72 while the wing frame 10 rotates. The elastic body 80 is compressed by pushing toward the plate 62.
또한, 이동날개(10)의 원활한 이동을 위해서 상기 날개프레임(10)은 상기 수직회전축(10)쪽에서 양 측단으로 갈수록 하향 경사지게 형성되는 것이 바람직한데, 이는 상기 날개이동가이더(70)의 안내에 의해 이동날개(20)가 역방향으로 전환되는 날개프레임(10)쪽에서 반대쪽의 날개프레임(10)쪽으로 이동할 때 이동의 마지막단계에서는 이동날개(20)의 중력에 의해 끝까지 이동될 수 있도록 하기 위함이다.In addition, in order to smoothly move the wing 10, the wing frame 10 is preferably formed to be inclined downward toward both ends of the vertical rotation shaft 10, which is guided by the wing guide guide 70 In order to be able to be moved to the end by the gravity of the moving wing 20 in the last step of the movement when the moving wing 20 is moved from the wing frame 10 to the opposite direction from the wing frame 10 side to the reverse direction.
상술한 바와 같은 구성으로 이루어진 본 발명의 다른 실시예에 따른 이동식 회전날개구조체(2)의 작동을 설명하면 다음과 같다.Referring to the operation of the movable rotary wing structure 2 according to another embodiment of the present invention made of a configuration as described above are as follows.
도 11내지 도 17은 날개프레임(10)의 회전 진행에 따른 날개이동가이더(70)의 작동상태 및 이동날개(20)의 이동상태를 예시한 평면단면도들이다.11 to 17 are planar cross-sectional views illustrating an operating state of the wing moving guider 70 and a moving state of the wing 20 according to the rotation of the wing frame 10.
도 11에 도시된 바와 같이, 풍향지시부재(60)는 풍향에 따라 그 위치가 변화되어 수평바(61)가 풍향에 평행한 위치보다 날개프레임(10)의 회전방향 반대쪽으로 치우쳐있음을 알 수 있다.As shown in FIG. 11, the wind direction indicating member 60 changes its position according to the wind direction so that the horizontal bar 61 is biased toward the opposite direction of rotation of the wing frame 10 than the position parallel to the wind direction. have.
그리고 풍향에 대해 정방향 회전하는 일측 날개프레임(10a)이 접근하기 전 상태에서는 상기 날개이동가이더(70)가 탄성체(80)에 의해 가압되어 가이드암(72)의 끝단이 수직회전축(3) 중심방향으로 연장된 상태를 유지한다.In the state before the one-side wing frame 10a which rotates in the forward direction with respect to the wind direction, the wing move guider 70 is pressed by the elastic body 80 so that the end of the guide arm 72 is in the center direction of the vertical rotation axis 3. Maintain an extended state.
이러한 상태에서, 정방향 회전하는 일측 날개프레임(10a)이 회전하면서 날개이동가이더(70)에 접근하면, 도 12에 도시된 바와 같이 먼저 일측 날개프레임(10a)에 돌출 형성된 푸쉬돌기(16)가 가이드몸체(71)와 접촉하게 된다.In this state, when one wing frame 10a that rotates forward approaches the wing mover 70 while rotating, the push protrusion 16 protruding from the wing frame 10a first guides as shown in FIG. 12. It comes into contact with the body 71.
그리고 도 13에 도시된 바와 같이, 일측 날개프레임(10a)의 푸쉬돌기(16)가 가이드몸체(71)를 경사판재(63)쪽으로 밀어주게 된다. 이에 따라 날개이동가이더(70)는 경사판재(63)쪽으로 회전되면서 탄성체(80)를 압축시키게 된다.And, as shown in Figure 13, the push protrusion 16 of the one wing frame (10a) is to push the guide body 71 toward the inclined plate (63). Accordingly, the wing movement guider 70 is rotated toward the inclined plate 63 to compress the elastic body 80.
그리고 날개프레임(10)의 회전이 계속 진행되어 상기 푸쉬돌기(16)가 가이드몸체(63)를 통과하게 되면, 이 때에는 상기 푸쉬돌기(16)의 폭이 가이드암(72)의 폭 보다 넓기 때문에 푸쉬돌기(16)에 의한 밀어주는 힘이 제거된다.And if the rotation of the wing frame 10 is to continue the push projection 16 passes through the guide body 63, at this time the width of the push projection 16 is wider than the width of the guide arm 72 The pushing force by the push protrusion 16 is removed.
따라서, 도 14에 도시된 바와 같이 탄성체(80)의 탄성복원력에 의해 가압되어 상기 날개이동가이더(70)가 원위치로 복귀하는 힘을 받게 되며, 그에 따라 이동날개(20)는 가이드암(72)의 가압 안내를 받게 되면서 반대쪽의 날개프레임(10)쪽으로 이동을 시작하게 된다.Accordingly, as shown in FIG. 14, the wing moving guider 70 is pressed by the elastic restoring force of the elastic body 80, and thus the wing wing guide 70 is returned to its original position. Receives a pressure guide of the will start to move toward the opposite wing frame (10).
그리고 도 15와 도 16에 도시된 바와 같이, 날개프레임(10)의 회전 진행이 계속됨에 따라 상기 가이드암(72)은 점차적으로 수직회전축(3)의 외주면 부근으로 원위치되면서 이동날개(20)가 이동되도록 계속적으로 안내를 하게 된다.As shown in FIGS. 15 and 16, as the rotation progress of the wing frame 10 continues, the guide arm 72 gradually returns to the vicinity of the outer circumferential surface of the vertical rotation shaft 3 while the moving wing 20 is moved. You will be constantly guided to move.
그리고 도 16에 도시된 것과 같이 날개이동가이더(70)가 완전히 원위치된 후 에는, 상기 이동날개(20)의 관성과, 하향 경사진 날개프레임(10)으로 인한 중력작용, 날개프레임(10)의 회전에 의한 원심력 등에 의해 상기 이동날개(20)의 이동이 계속 진행되어 완전하게 반대쪽 날개프레임(10)으로 이동을 완료하게 된다.And after the wing movement guider 70 is completely in place as shown in Figure 16, the inertia of the moving wing 20, the gravity action due to the downwardly inclined wing frame 10, of the wing frame 10 The movement of the movable blade 20 continues by centrifugal force due to rotation, thereby completing the movement to the opposite wing frame 10 completely.
상기한 작동과정을 통해 기존에 정방향 회전하던 일측 날개프레임(10a)이 역방향 회전으로 전환될 때, 도 17에 도시된 것과 같이 이동날개(20)는 기존에 역방향 회전에서 정방향 회전으로 전환되는 타측 날개프레임(10b)쪽에 위치하게 되며, 그에 따라 상기 날개프레임(10)에는 계속적으로 풍력에 의한 정방향 회전력만이 가해지게 되는 것이다.When the one wing frame 10a that was previously rotated forward through the above-described operation process is converted to reverse rotation, as shown in FIG. 17, the moving wing 20 is converted to the other wing which is converted from the reverse rotation to the forward rotation. It is located on the frame 10b side, and thus the wing frame 10 is continuously subjected to only forward rotational force by the wind.
이상으로 본 발명을 설명하였는데, 본 발명의 기술적 범위는 상술한 실시예에 기재된 내용으로 한정되는 것은 아니며, 해당 기술분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 본 발명의 기술적 사상의 범위를 벗어나지 않는 것이라 할 것이다.Although the present invention has been described above, the technical scope of the present invention is not limited to the contents described in the above-described embodiments, and equivalent configurations modified or changed by those skilled in the art may be described. It will be said that it does not go beyond the scope of thought.

Claims (10)

  1. 수직회전축의 회전력에 의해 발전을 하는 수직형 풍력발전장치에 있어서,In the vertical wind power generator that generates power by the rotational force of the vertical axis,
    상기 수직회전축에 고정 설치되며 상하단에 수평방향으로 레일부가 각각 형성된 날개프레임;A wing frame fixed to the vertical rotation shaft and having rail portions formed in horizontal directions at upper and lower ends thereof;
    상기 날개프레임의 1/2 길이를 가지며, 상기 레일부를 따라 슬라이딩 이동 가능하게 상기 날개프레임에 설치되는 이동날개; 및A moving wing having a half length of the wing frame and installed on the wing frame to be slidably movable along the rail portion; And
    풍력에 의해 상기 날개프레임이 회전할 때, 회전각 180°마다 수직회전축을 중심으로 풍향에 대해 역방향 회전하는 일측 날개프레임으로부터 반대쪽의 정방향 회전하는 타측 날개프레임쪽으로 상기 이동날개가 이동되도록 작동을 제어하는 날개작동제어부;를 포함하여,When the wing frame is rotated by wind power, the movement of the wing to move toward the other wing frame of the opposite direction from the other wing frame rotates in the reverse direction with respect to the wind direction about the vertical axis of rotation every 180 ° to control the operation Including; wing operation control unit,
    상기 이동날개가 풍향에 대해 정방향 회전하는 날개프레임쪽에만 위치되도록 함으로써 상기 수직회전축에 풍력에 의한 정방향 회전력만이 가해지도록 하는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.The movable wing structure for a vertical wind power generation, characterized in that only the forward rotational force by the wind is applied to the vertical axis of rotation by positioning the moving wing to only the wing frame side that rotates forward with respect to the wind direction.
  2. 제 1항에 있어서,The method of claim 1,
    상기 날개프레임은 한 쌍을 이루어 상기 수직회전축에 십자 형태로 고정 설치되며, 상기 수직회전축에는 상기 이동날개의 통과가 가능한 날개관통구가 상기 날개프레임에 대응하여 90°간격으로 각각 형성되는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체. The wing frame is formed in a pair is fixed to the vertical axis of rotation in the form of a cross, the vertical axis of rotation through the wing through which the movable blades are characterized in that formed at 90 ° intervals corresponding to the wing frame, respectively Movable rotary wing structure for vertical wind power generation.
  3. 제 1항에 있어서,The method of claim 1,
    상기 날개작동제어부는,The wing operation control unit,
    상기 수직회전축에 자유회전 가능하게 결합되어 풍향에 평행하도록 그 위치가 자동 변경되는 풍향지시대;A wind direction indicator coupled to the vertical rotation axis to be freely rotatable and its position is automatically changed to be parallel to the wind direction;
    상기 풍향지시대에 구비되며, 회전하는 날개프레임이 풍향에 대해 정방향에서 역방향으로 전환되는 지점에 근접함을 감지하는 접근감지센서; 및An approach detection sensor provided in the wind direction indicator and detecting a proximity of a rotating wing frame to a point where the rotating wing frame is converted from the forward direction to the reverse direction; And
    상기 접근감지센서의 감지신호에 따라 근접된 상기 날개프레임쪽에 위치된 이동날개가 반대쪽의 날개프레임쪽으로 슬라이딩 이동되도록 작동하는 날개구동부;를 포함하는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체. And a wing drive unit operable to move the movable wing positioned toward the wing frame adjacent to the wing frame adjacent to the wing frame in accordance with a detection signal of the approach detection sensor.
  4. 제 3항에 있어서,The method of claim 3,
    상기 날개프레임의 양쪽 끝단에 설치되어 슬라이딩 이동된 상기 이동날개가 감지되면 상기 날개구동부의 작동을 중지시키는 한 쌍의 날개감지센서;를 더 포함하는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.A pair of wing detection sensors for stopping the operation of the wing drive unit is installed on both ends of the wing frame when the sliding movement of the sliding movement is detected; further comprising a vertical wind turbine movable rotary wing structure .
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 날개구동부는,The wing drive unit,
    상기 이동날개의 일측면에 그 길이방향을 따라 설치되는 랙기어;A rack gear installed on one side of the movable blade along its longitudinal direction;
    상기 랙기어와 치합 가능한 한 쌍의 피니언기어; 및A pair of pinion gears meshable with the rack gears; And
    상기 수직회전축을 중심으로 양쪽의 날개프레임에 각각 설치되며, 상기 접근감지센서의 신호에 따라 상기 한 쌍의 피니언기어를 각각 회전 구동시키고 상기 각 날개감지센서의 신호에 따라 구동을 중지하는 한 쌍의 정역모터;를 포함하는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.A pair of vanes installed on each of the wing frames about the vertical axis of rotation, each of which rotates the pair of pinion gears according to the signal of the approach detection sensor and stops driving according to the signals of the respective wing detection sensors; Stationary motor; vertical rotary wind power mobile rotary wing structure comprising a.
  6. 제 3항에 있어서,The method of claim 3,
    상기 접근감지센서는 상기 풍향지시대로부터 날개프레임의 회전방향 반대쪽으로 5 ~ 10°이격되도록 상기 풍향지시대에 구비되는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체. The approach detection sensor is a vertical wind turbine movable rotary wing structure, characterized in that provided in the wind direction so that 5 to 10 degrees away from the direction of the rotation direction of the wing frame.
  7. 제 1항에 있어서,The method of claim 1,
    상기 날개작동제어부는,The wing operation control unit,
    상기 수직회전축에 자유 회전 가능하게 결합되어 풍향에 따라 그 위치가 자동 변경되는 풍향지시부재; 및A wind direction indicating member coupled to the vertical rotation shaft to be freely rotatable and whose position is automatically changed according to the wind direction; And
    상기 풍향지시부재에 힌지 결합되어 원호 형태로 연장되며, 상기 수직회전축의 중심을 향하도록 탄성체에 의해 가압되는 날개이동가이더;를 포함하며,And a wing movement guider hinged to the wind direction indicating member, extending in an arc shape, and pressed by an elastic body toward the center of the vertical rotation axis.
    상기 날개프레임의 양 측단에는 개방부가 형성되어,Opening portions are formed at both side ends of the wing frame,
    상기 날개프레임이 풍향에 대해 정방향에서 역방향으로 전환되는 지점에 이르면 상기 날개이동가이더의 가압 안내에 따라 이동날개가 반대쪽 날개프레임쪽으로 슬라이딩 이동되는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체. When the wing frame reaches a point that is converted from the forward direction to the reverse direction with respect to the wind direction, the movable wing structure for the vertical type wind turbines, characterized in that the moving wing is moved to the opposite wing frame in accordance with the pressure guide of the wing guide guide.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 풍향지시부재는 상기 날개프레임의 상하측에서 상기 날개프레임의 회전반경보다 길게 연장되는 한 쌍의 수평바와, 상기 한 쌍의 수평바 끝단에서 일정 각도로 절곡되어 형성되는 경사판재로 이루어지는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.The wind direction indicating member comprises a pair of horizontal bars extending from the upper and lower sides of the wing frame longer than the rotation radius of the wing frame, and the inclined plate formed by bending at a predetermined angle at the ends of the pair of horizontal bars. Movable rotary wing structure for vertical wind power generation.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 날개프레임에는 상기 개방부의 상하측에 한 쌍의 푸쉬돌기가 돌출 형성되고,The wing frame has a pair of push protrusions protruding from the upper and lower sides of the opening,
    상기 날개이동가이더는 상기 푸쉬돌기에 의해 상기 탄성체를 압축하는 방향으로 눌려지는 넓은 폭의 가이드몸체와, 상기 가이드몸체에서 연장되며 상기 압축된 탄성체의 복원력에 의해 원위치되면서 상기 이동날개의 이동을 가압 안내하는 좁은 폭의 가이드암으로 이루어지는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.The wing movement guider is a guide body having a wide width pressed in the direction of compressing the elastic body by the push protrusion, and extends from the guide body and is in the original position by the restoring force of the compressed elastic body to guide the movement of the moving blades The portable rotary wing structure for vertical wind power generation, characterized in that consisting of a narrow guide arm.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 날개프레임은 상기 수직회전축쪽에서 양 측단으로 갈수록 하향 경사지게 형성되는 것을 특징으로 하는 수직형 풍력발전용 이동식 회전날개구조체.The wing frame is a movable rotary wing structure for vertical wind turbines, characterized in that formed inclined downward toward both side ends from the vertical axis of rotation.
PCT/KR2009/007827 2008-12-29 2009-12-28 Movable rotor blade structure for vertical wind-powered electricity generation WO2010077036A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0135275 2008-12-29
KR1020080135275A KR101016473B1 (en) 2008-12-29 2008-12-29 Movable rectangular blade for vertical wind power generation

Publications (2)

Publication Number Publication Date
WO2010077036A2 true WO2010077036A2 (en) 2010-07-08
WO2010077036A3 WO2010077036A3 (en) 2010-10-28

Family

ID=42310358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007827 WO2010077036A2 (en) 2008-12-29 2009-12-28 Movable rotor blade structure for vertical wind-powered electricity generation

Country Status (2)

Country Link
KR (1) KR101016473B1 (en)
WO (1) WO2010077036A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193172A1 (en) * 2015-05-30 2016-12-08 Dyulgerski Aleksey Slavov Rotary converter of wind energy with a vertical axis of rotation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101314777B1 (en) * 2011-08-05 2013-10-08 노영규 Variable length type vertical wind power generation
KR101518787B1 (en) 2012-11-12 2015-05-11 박혜경 Wing assembly
WO2016036170A1 (en) * 2014-09-04 2016-03-10 주식회사 한국에너지개발 Hydroelectric power generator using opening/closing windows
WO2016036169A1 (en) * 2014-09-04 2016-03-10 주식회사 한국에너지개발 Wind power generator using opening/closing windows
KR102499754B1 (en) * 2022-07-13 2023-02-14 이범석 Wind power generation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133550A (en) * 2003-10-28 2005-05-26 Mitsunori Kitagawa Rotation control mechanism of vertical shaft opening and closing vane type wind mill
JP2008504487A (en) * 2004-07-02 2008-02-14 ヴィマック Vertical axis wind turbine
JP2008255977A (en) * 2007-03-30 2008-10-23 Takashi Akiyama Wind power generator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868850B1 (en) * 2002-04-24 2008-11-14 주식회사 케이티 Method of analyzing LOS for wireless network planning system
KR200383987Y1 (en) 2004-11-15 2005-05-11 함영식 Variable rotor blade for vertical axis wind power generator
KR20090080416A (en) * 2008-01-21 2009-07-24 강화구 Vertical Shaft Type Windmill with Rotatable Wings
KR101087223B1 (en) * 2008-08-20 2011-11-29 김다원 Butterfly type wing for a wind power generator
KR101010049B1 (en) * 2008-12-12 2011-01-27 백 희 원 Wind direction and wind speed's change adjustable wind power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133550A (en) * 2003-10-28 2005-05-26 Mitsunori Kitagawa Rotation control mechanism of vertical shaft opening and closing vane type wind mill
JP2008504487A (en) * 2004-07-02 2008-02-14 ヴィマック Vertical axis wind turbine
JP2008255977A (en) * 2007-03-30 2008-10-23 Takashi Akiyama Wind power generator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016193172A1 (en) * 2015-05-30 2016-12-08 Dyulgerski Aleksey Slavov Rotary converter of wind energy with a vertical axis of rotation
CN107923367A (en) * 2015-05-30 2018-04-17 阿列克谢·斯拉沃夫·久尔格斯基 Wind energy rotation converter with vertical rotating shaft
CN107923367B (en) * 2015-05-30 2019-10-01 阿列克谢·斯拉沃夫·久尔格斯基 Wind energy rotation converter with vertical rotating shaft
EA033366B1 (en) * 2015-05-30 2019-10-31 Aleksey Slavov Dyulgerski Rotary converter of wind energy with a vertical axis of rotation
US11174836B2 (en) 2015-05-30 2021-11-16 Aleksey Slavov DYULGERSKI Rotary converter of wind energy with a vertical axis of rotation

Also Published As

Publication number Publication date
KR20100077358A (en) 2010-07-08
WO2010077036A3 (en) 2010-10-28
KR101016473B1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
WO2010077036A2 (en) Movable rotor blade structure for vertical wind-powered electricity generation
CN202712349U (en) Full-automatic cell installing machine
WO2011065720A2 (en) Tilting rotor blade system for a vertical wind turbine
CN112350174B (en) Outdoor rainproof heat dissipation type switch cabinet
CN101968366B (en) Automatic zeroing method and equipment for incremental sensor
CN211617442U (en) Track traffic pantograph and contact net electric arc monitoring suppression device
CN218714453U (en) Green building energy-saving photovoltaic roof device
CN110763691A (en) Wind-powered electricity generation blade detecting system
CN206313519U (en) A kind of long distance electric fault diagnosis system
CN209709816U (en) A kind of low temperature resistant motor
WO2012023745A2 (en) Self-generation apparatus
CN211014685U (en) Wind-resistant meteorological sensor
CN220810854U (en) Belt running state monitoring device
CN218777330U (en) Quick switching device of upset switch
CN212564983U (en) Monitoring device for vacuum circuit breaker based on Internet of things
CN218993033U (en) Monitoring mechanism of power equipment
CN219492485U (en) Wind power monitoring device based on multidimensional sensor
CN220488736U (en) Camera installing support is used in fan detection
CN221003016U (en) Fan blade monitoring device
CN216672742U (en) Durable explosion-proof hollow cup motor
CN220762416U (en) Rotating mechanism and detection equipment
CN218334891U (en) Quick locking equipment of block terminal
CN217335512U (en) Portable photovoltaic board
CN217009929U (en) Power distribution terminal cabinet with dehumidification function
CN207960837U (en) A kind of control panel assembly for wind-power electricity generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836357

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836357

Country of ref document: EP

Kind code of ref document: A2