WO2010076946A1 - Nanoparticulates, complex nanoparticulates, and manufacturing method thereof - Google Patents

Nanoparticulates, complex nanoparticulates, and manufacturing method thereof Download PDF

Info

Publication number
WO2010076946A1
WO2010076946A1 PCT/KR2009/005880 KR2009005880W WO2010076946A1 WO 2010076946 A1 WO2010076946 A1 WO 2010076946A1 KR 2009005880 W KR2009005880 W KR 2009005880W WO 2010076946 A1 WO2010076946 A1 WO 2010076946A1
Authority
WO
WIPO (PCT)
Prior art keywords
gadolinium oxide
particles
coated
biocompatible ligand
nano
Prior art date
Application number
PCT/KR2009/005880
Other languages
French (fr)
Korean (ko)
Inventor
이강호
장용민
김태정
박자영
우승태
최은숙
김주현
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080136752A external-priority patent/KR101072666B1/en
Priority claimed from KR1020090093463A external-priority patent/KR101126940B1/en
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2010076946A1 publication Critical patent/WO2010076946A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin

Definitions

  • the present invention relates to a nano-particle itself, a composite nano-particle itself, and a method for producing the same.
  • Magnetic Resonance Imaging is a method of acquiring anatomical, physiological, and biochemical information images of a body using spin relaxation of hydrogen atoms in a magnetic field. It is a noninvasive method of obtaining human or animal body organs It is an excellent imaging device that can be imaged in real time.
  • contrast agents In life sciences and medicine, we use a method to increase the image contrast by injecting materials from outside in order to make various and precise use of MRI. Such materials are called contrast agents.
  • the contrast between tissues on the MRI image is due to the different tissues' different relaxation of the water molecule nuclear spin in the tissue to equilibrium, which affects the relaxation It causes the difference in the degree of relaxation between the tissues and induces a change in the MRI signal, thereby making the contrast between the tissues clearer.
  • Contrast agents differ in their characteristics and functions depending on the constituents of the constituent materials, and there is a difference in utilization and precision depending on the target to be injected.
  • Enhanced contrast using contrast agents is achieved by increasing or decreasing the perimeter and imaging signal of a particular organ or tissue to produce more vivid imaging.
  • the contrast agent that makes the image signal of the body part which wants to obtain the MRI image relatively bright is called a positive contrast agent, and the contrast agent which makes it relatively darker than the surrounding is called a negative contrast agent.
  • paramagnetic nanoparticles used for the contrast agent include manganese (Mn) and gadolinium (Gd). These paramagnetic nanoparticles have problems such as insolubility or toxicity, and in order to solve this problem, There is an attempt to coat.
  • BBB blood-brain barrier
  • U.S. Patent No. 6,638,494 relates to a superpowder nanoparticle containing a metal such as iron oxide, and attaches a specific carboxylic acid to the surface of the nanoparticle to prevent aggregation and precipitation of the nanoparticle due to gravity or magnetic field Is disclosed.
  • the specific carboxylic acid is an aliphatic dicarboxylic acid such as maleic acid, tartaric acid or glutaric acid or an aliphatic polydicarboxylic acid such as citric acid, cyclohexane or tricarboxylic acid .
  • the above-mentioned contrast agent is a method for attaching a carboxylic acid to the surface of a metal particle to prevent agglomeration of the nanoparticle.
  • the method of bonding the carboxylic acid to the nanoparticle is simple, It is not verified that the nanoparticles to which the carboxylic acid is bound are bio-toxic, and it can not be used as a contrast agent for diagnosing brain diseases.
  • a contrast agent having low bio-toxicity is required, while the size of the contrast medium is small so that it is not collected in the liver and exists at a high concentration in the blood and can sufficiently pass through the broken cerebral blood vessel barrier.
  • the present invention provides a nano-particle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
  • the biocompatible ligand may have an antibody or protein bound thereto.
  • the biocompatible ligand may be polyethylene glycol, lactobionic acid or D-glucuronic acid.
  • the diameter of the gadolinium oxide nanoparticles is preferably 0.5 to 9 nm, more preferably 0.5 to 2.5 nm.
  • the diameter of the biocompatible ligand-coated gadolinium oxide nanoparticle itself is preferably 0.5 to 10 nm, more preferably 0.5 to 3 nm.
  • a method for preparing a nanoparticle comprising: 1) adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture; 2) stirring the mixture of step 1) at a high temperature while supplying air to obtain a reactant; And 3) adding an organic solvent to the reactant to obtain a final product;
  • the polar organic solvent in the step 1) may be triethylene glycol, tripropylene glycol, or the like.
  • the metal precursor of the step 1) may be GdCl 3 .6H 2 O or Gd (NO 3) 3.
  • the diameter of the metal precursor is preferably 0.5 to 9 nm, more preferably 0.5 to 2.5 nm.
  • the biocompatible ligand of step 1) may be bound to an antibody or protein.
  • the biocompatible ligand of step 1) may be polyethylene glycol, lactobionic acid or D-glucuronic acid.
  • the metal precursor and the biocompatible ligand of step 1) may be added in a molar ratio of 1: 0.5 to 0.5: 1.
  • the air in the step 2) preferably contains 5 to 50% or more of oxygen.
  • the high temperature of step 2) is preferably 200 to 300 ° C.
  • stirring is preferably performed for 20 to 30 hours.
  • the organic solvent in step 3) may be acetone, methyl ethyl ketone or the like.
  • the diameter of the nanoparticle itself coated with the biocompatible ligand is preferably 0.5 to 10 nm, more preferably 0.5 to 3 nm.
  • an MRI contrast agent comprising a nano-particle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
  • the present invention also provides a composite nano-particle itself in which a biocompatible ligand is bound to a composite particle obtained by coating gadolinium oxide particles with manganese oxide.
  • the biocompatible ligand may be D-glucuronic acid, polyethylene glycol or lactobionic acid.
  • the diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
  • a method of preparing a composite nano-particle itself comprising the steps of: 1) preparing gadolinium oxide particles using a gadolinium precursor; 2) coating the gadolinium oxide particles with a manganese precursor to prepare composite particles; And 3) binding the biocompatible ligand to the composite particle; .
  • the method for producing the gadolinium oxide particles of the step 1) is characterized in that the gadolinium precursor is mixed with distilled water and reacted at 200 to 300 ° C.
  • the method for preparing the composite particles of the step 2) comprises: adding a manganese precursor to a solution containing the gadolinium oxide particles of the step 1) and reacting the mixture at a temperature of 200 to 300 ° C to form a gadolinium oxide particle It is characterized by being coated.
  • the step 3) is characterized in that a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid is added to the solution containing the composite particles of step 2), and the reaction is carried out at 130 to 170 ° C.
  • a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid
  • the diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
  • a composite nano-particle itself, wherein a biocompatible ligand is bound to a composite particle wherein gadolinium oxide particles are coated with manganese oxide.
  • the diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
  • the nanoparticles coated with the biocompatible ligand on the oxidized gadolinium nanoparticles according to the present invention are coated with a biocompatible ligand in order to prepare gadolinium oxide in nanoscale and to neutralize the toxicity of gadolinium oxide, , Can be transmitted to the brain through the blood-brain barrier, and thus can be used as a contrast agent for diagnosing brain diseases.
  • the method for preparing nanoparticles according to the present invention is a method for adding a biocompatible ligand to a gadolinium precursor solution and then reacting the biocompatible ligand to bind the biocompatible ligand to the gadolinium oxide nanoparticle. And it is easy to manufacture the nano-particles themselves by a simple method.
  • the contrast agent containing the composite nano-particles according to the present invention can be produced by preparing composite particles in which gadolinium oxide particles are coated with manganese oxide using gadolinium oxide and manganese oxide, which are conventionally used as main components of the contrast agent, By combining the biocompatible ligand with the complex nano-particle itself, the biomedical toxicity can be reduced while maximizing the contrast effect.
  • the nano-particles themselves and the composite nano-particles themselves have superior imaging effects and can be used in medical diagnosis fields.
  • 1 is an electron micrograph of a nano-particle itself coated with a biocompatible ligand, polyethylene glycol, on gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
  • FIG. 2 is an electron micrograph of a nano-particle itself coated with lactobionic acid, which is a biocompatible ligand, on gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
  • FIG. 3 is an electron micrograph of a nano-particle itself coated with a biocompatible ligand, D-glucuronic acid, on the gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
  • FIG. 4 is an electron micrograph of a composite nano-particle itself prepared according to an embodiment of the present invention.
  • FIG. 5 is a graph showing characteristics of nano-particles manufactured according to the present invention in accordance with changes in absolute temperature and magnetic field.
  • FIG. 6 shows the FT-IR spectrum of the nano-particles themselves prepared according to the present invention.
  • FIG. 7 is a view showing the binding state of a biocompatible ligand to a composite nano-particle itself prepared according to an embodiment of the present invention.
  • FIG. 8 shows a map image according to the concentration of the nano-particles themselves prepared according to the present invention.
  • Figure 9 relates to the relaxation according to the concentration of the nano-particles themselves prepared according to the present invention.
  • FIG. 11 is a brain MRI photograph of a mouse for experimental administration of a contrast agent containing nano-particles prepared according to the present invention.
  • FIG. 12 is a MRI photograph of a contrast agent prepared in accordance with an embodiment of the present invention and administered to an animal.
  • the present applicant has been studying a contrast agent for the diagnosis of brain diseases using gadolinium oxide.
  • the inventors of the present invention have found that when a biocompatible polymer such as polyethylene glycol, lactobionic acid or D-glucuronic acid is coated with gadolinium oxide, Coated with a biocompatible polymer, and that the composite nano-particles coated with the biocompatible polymer can pass through the cerebral blood vessel barrier, and that the contrast effect is excellent.
  • the present invention has been completed.
  • the present invention provides a nanoparticle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
  • the gadolinium oxide nanoparticle is a portion constituting the core of the nano-particles according to the present invention, and the diameter of the gadolinium oxide nanoparticles is preferably 0.5 to 9 nm.
  • the diameter of the nanoparticles of the present invention exceeds 9 nm, the size of the nanoparticle according to the present invention is not easily controlled, and the nanoparticle itself may not easily pass through the blood vessel barrier.
  • the biocompatible ligand according to the present invention may be bound to an antibody or protein.
  • the antibody is not particularly limited, it is also possible to use a mutated variable region or constant region in order to increase the affinity for a specific region in a living body.
  • the protein is not particularly limited, a therapeutic protein or a protein hormone can be used. The protein may be mutated to increase the affinity for a specific site in a living body.
  • the biocompatible ligand is not particularly limited, but it is not limited as long as it is a biocompatible polymer.
  • polyethylene glycol, lactobionic acid, D-glucuronic acid and the like can be used alone or in combination.
  • the diameter of the nano-particles having the biocompatible ligand coated on the gadolinium oxide nanoparticles is preferably 0.5 to 10 nm. If the gadolinium oxide nano-particle itself is more than 10 nm, it is difficult to pass through the cerebral blood vessel and it is difficult to use it as a contrast agent for diagnosis of brain diseases.
  • step 2) stirring the mixture of step 1) at a high temperature while supplying air to obtain a reactant
  • the step 1) is a step of adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture.
  • the polar organic solvent in the step 1) is not particularly limited and is not limited as long as it is a polar organic solvent capable of inducing the reaction of the metal precursor and the biocompatible ligand.
  • a polar organic solvent capable of inducing the reaction of the metal precursor and the biocompatible ligand Preferably, triethylene glycol, tripropylene glycol, have.
  • the metal precursor is not particularly limited, and preferably a gadolinium precursor can be used. More preferably, GdCl 3 .6H 2 O and Gd (NO 3) 3 can be used.
  • the diameter of the metal precursor is preferably 0.5 to 9 nm. When the diameter of the nanoparticles used in the present invention exceeds 9 nm, it is difficult to control the size of the nanoparticles according to the present invention, and the nanoparticles themselves may not easily pass through the blood vessel barrier have.
  • the biocompatible ligand according to the present invention may be conjugated with an antibody or protein.
  • the antibody is not particularly limited, it is also possible to use a mutated variable region or constant region in order to increase the affinity for a specific region in a living body.
  • the protein is not particularly limited, a therapeutic protein or a protein hormone can be used. The protein may be mutated to increase the affinity for a specific site in a living body.
  • the biocompatible ligand is not particularly limited, and is not limited as long as it is a biocompatible polymer.
  • polyethylene glycol, lactobionic acid, D-glucuronic acid and the like can be used singly or in combination.
  • the metal precursor and the biocompatible ligand may be mixed at a molar ratio of 1: 0.5: 0.5 to 1 to coat the metal precursor with the biocompatible ligand.
  • the step 2) is a step of obtaining a reactant by stirring at a high temperature while supplying air to the mixture of the step 1).
  • the air is not particularly limited, and air in the air may be used. Preferably 5 to 50% of oxygen may be used. In the reaction, oxygen contained in the air reacts with the gadolinium metal precursor to produce gadolinium oxide.
  • the method of supplying the air is not particularly limited, but it is preferable to bubble the reaction solution to supply air.
  • the step of supplying air may be carried out simultaneously with the preparation of the mixture, but may be performed after the mixture has an appropriate reaction time.
  • the high temperature is 200-300 ⁇ ⁇ if the metal precursor has a temperature capable of coating the biocompatible ligand.
  • the reaction may be carried out by stirring for 20 to 30 hours to facilitate the reaction.
  • the temperature is less than 200 ° C, it is difficult to induce a reaction to coat the biocompatible ligand with the metal precursor.
  • the temperature exceeds 300 ° C, the reaction rate does not increase with increasing temperature.
  • the stirring is not limited as long as the reactant can be easily produced.
  • the reaction product produced in this step may be a state where the biocompatible ligand is bound or coated on the surface of the gadolinium oxide nanoparticles and the biocompatible ligand is somewhat unstable due to the high temperature. Therefore, there is a need for additional steps as follows to obtain it.
  • step 3) is a step of adding an organic solvent to the reactant to obtain a final product.
  • the organic solvent may be precipitated using ketones such as acetone and methyl ethyl ketone, while the stability of the reactant in step 2) is enhanced, and the organic solvent is not limited as long as it is an organic solvent capable of precipitating.
  • the temperature of the added organic solvent is not particularly limited, and an organic solvent at room temperature may be added to lower the temperature of the reactant, or may be added after the reactant is cooled.
  • the reaction product may be cooled to obtain an appropriate final product.
  • the method of cooling the reaction product is not limited as long as it is a method for obtaining an appropriate final product. However, the reaction product can be slowly cooled at room temperature or quenched.
  • the final product produced in this step is a precipitate of the nano-particles themselves, to which the biocompatible ligand, which is a reactant in step 2), is added.
  • the precipitate is added to a solution suitable for use as distilled water or other contrast agent, It is a form that can be easily used as a contrast agent.
  • the preparation of the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticle is described in detail.
  • a gadolinium precursor and an organic solvent such as polyethylene glycol, lactobionic acid or D-glucurononic acid are added to an organic solvent such as triethylene glycol.
  • an organic solvent such as triethylene glycol.
  • the reaction product after the above synthesis step may include a nano-particle itself coated with a biocompatible ligand on the gadolinium oxide nanoparticles, and a polar organic solvent and an unreacted material depending on the amount of the reactant used. From this reaction product, a separation step is carried out to separate and obtain the nanoparticle itself coated with the biocompatible ligand on the oxidized gadolinium nanoparticle.
  • the separation step may be performed by using a membrane filtration method or the like to separate and obtain the nano-particles themselves coated with the biocompatible ligand from the reaction product, preferably the precipitation separation method.
  • a precipitant is added to the reaction product to precipitate the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticles.
  • the supernatant is removed from the reactor to separate and obtain a precipitate (nano-particle itself coated with biocompatible ligand on gadolinium oxide nanoparticles).
  • ketones such as acetone or methyl ethyl ketone can be used.
  • the biocompatible ligand-coated gadolinium oxide precipitate can be dried to produce a powdery product.
  • the dried powder can be made into a liquid product by dissolving in distilled water or the like, and the dried powder has excellent dispersibility in distilled water.
  • the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticles by a single synthesis step is simply produced. That is, as noted above, the synthesis step involving the reaction oxidizes the metal precursor to the metal oxide of the nanoscale particles, while at the same time coating the biocompatible ligand on the surface of the metal oxide.
  • the final product according to the present invention is advantageous in that it is manufactured in an ultrafine size, has quick absorption of human body, and has a low manufacturing cost.
  • mass production can be achieved by designing the reactor scale to be large.
  • the gadolinium oxide nanoparticle according to the present invention has a core-shell structure in which a biocompatible ligand is coated on the surface of a metal oxide.
  • the diameter of the gadolinium oxide nano-particles themselves according to the present invention is preferably 0.5 to 10 nm.
  • the gadolinium oxide nanoparticles according to the present invention are not particularly limited but can be used for various purposes such as MRI contrast agent and drug delivery system. Since the metal oxide constituting the core is gadolinium oxide, it is useful as a T1 contrast agent in MRI Can be used.
  • Gadolinium-based contrast agents do not pass through the cerebral blood vessels and some are toxic and are not suitable as contrast agents for brain diseases.
  • the contrast agent of the present invention is a biocompatible ligand used to reduce toxicity, such as polyethylene glycol, coated with nano-sized gadolinium oxide, resulting in a slow metabolism of the liver, through biocompatible ligand coating Resulting in reduced toxicity of the contrast agent.
  • gadolinium is the most suitable element to be used as a T1 contrast agent, but the use of the human body due to toxicity was limited.
  • the present invention overcomes these shortcomings of gadolinium and completed the contrast agent for brain diseases.
  • An auxiliary component may be added to enhance the stability of the active ingredient of the MRI contrast agent containing the gadolinium oxide nanoparticle itself, which is produced by the production method according to the present invention, as an active ingredient.
  • suitable auxiliary components include sodium citrate
  • the stability of the gadolinium oxide nano-particles themselves according to the present invention can be enhanced.
  • the present invention also provides a composite nano-particle itself in which a biocompatible ligand is bound to a composite particle obtained by coating gadolinium oxide particles with manganese oxide.
  • the gadolinium oxide particles are nano-sized particles formed by using a gadolinium precursor such as GdCl 3 .6H 2 O or Gd (NO 3) 3.
  • the gadolinium oxide is a paramagnetic substance having a weak magnetic property.
  • the gadolinium oxide has an advantage that the lesion is clearly visible and the boundaries of the mass are clarified in contrast to low signals of muscles, bone, and blood vessels.
  • the above-mentioned gadolinium oxide has a disadvantage of high bio-toxicity, and in order to solve the disadvantage of the gadolinium oxide, the nanoparticulate gadolinium oxide particles are coated with manganese oxide using a manganese precursor to form nano- .
  • the manganese oxide is also used as a contrast agent.
  • the manganese oxide is stable enough to show no toxicity even when the manganese oxide is tested in an animal without coating the biocompatible ligand. When coated with manganese oxide, the imaging effect of gadolinium oxide particles is almost maintained and toxicity can be reduced.
  • the composite particles coated with manganese oxide on the gadolinium oxide particles have a high contrast effect, and the stability of the particles can be enhanced.
  • a complex nano-particle itself may be formed by binding a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid in order to enhance bio-toxicity and stability.
  • the biocompatible ligand is a long-chain material, bound to the surface of the composite particle, and can be wrapped around the composite particle or formed into a branched shape. In this way, the composite particle coated with manganese oxide on the gadolinium oxide particle forms a core, and the biocompatible ligand surrounding the composite particle forms a complex nano-particle having a shell shape.
  • the diameter of the composite nano-particles itself is preferably 0.5 to 3 nm. If the diameter of the composite nano-particles itself is less than 0.5 nm, the particles tend to aggregate and the dispersion may not be achieved. As a result, the composite nano-particles themselves may not be uniformly dispersed into the brain tissue, If it exceeds 3 nm, the dispersibility of the liposomes is improved, but it is not suitable for use as a contrast agent for diagnosis of brain diseases to be used in the present invention.
  • the method for producing the composite nano-particle itself according to the present invention comprises:
  • the method of preparing the gadolinium oxide particles of the step 1) may be performed by mixing the gadolinium precursor with distilled water and reacting the mixture at 200 to 300 ° C. It can be carried out by bubbling a gas containing oxygen into the solution so that the gadolinium precursor can be produced as gadolinium oxide particles.
  • the temperature range is a temperature range allowing the gadolinium precursor to become gadolinium oxide particles.
  • a method for preparing the composite particles of the step 2) comprises: adding a manganese precursor to a solution containing the gadolinium oxide particles of the step 1), and reacting the mixture at a temperature of 200 to 300 ° C to remove the gadolinium oxide particles from the manganese precursor May be coated with manganese oxide.
  • the manganese precursor may be bubbled with oxygen-containing gas so as to be manganese oxide.
  • the temperature range is a reaction temperature at which manganese oxide is coated on gadolinium oxide. Under such conditions, the composite particles can be produced by coating the gadolinium oxide particles with manganese oxide.
  • the temperature range is a reaction temperature allowing the biocompatible ligand to be easily bonded to the composite particle.
  • the solution contains gadolinium oxide particles, manganese oxide particles, composite particles coated with gadolinium oxide and manganese oxide, and composite nano particles in which the biocompatible ligand is combined with the composite particles.
  • the method of separating the complex nano-particles themselves according to the present invention when the distilled water is added to the mixed solution, only the ligand-bound complex nano-particles themselves are precipitated, and in addition, the substance becomes dissolved in water. The precipitated material may be separated to separate the complex nano-particles themselves.
  • the separated complex nano-particles may be washed once or more with a solution that does not affect the properties of the distilled water or other materials of the complex nano-particles of the present invention.
  • the composite nano-particles obtained through the above steps may have a diameter of 0.5 to 3 nm.
  • the present invention also provides a contrast agent comprising a complex nano-particle itself in which a biocompatible ligand is bound to a composite particle wherein gadolinium oxide particles are coated with manganese oxide.
  • the complex nano-particles themselves are paramagnetic nanoparticles of 3 nm or less and have water-soluble biocompatible ligands coated therein.
  • the complex nano-particle self-relieving rate (10 to 15 s-1 / M) of the present invention is more than twice as high as the relaxation rate (4 s-1 / M) Quot; < / RTI > value.
  • the diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
  • An auxiliary component may be added to enhance the stability of the contrast agent comprising the complex nano-particle itself prepared by the method of the present invention as an active ingredient.
  • a preferable auxiliary component sodium citrate or the like may be mixed
  • the stability of the gadolinium oxide nanoparticle itself according to the invention can be enhanced.
  • Lactobionic acid-coated gadolinium oxide nanoparticles were prepared in the same manner as in Example 1, except that lactobionic acid was used instead of polyethylene glycol.
  • Gadolinium oxide nanoparticles coated with D-glucuronic acid were prepared in the same manner as in Example 1, except that D-glucuronic acid was used instead of polyethylene glycol.
  • Example 4 Composite nanoparticle itself prepared by bonding tripropylene glycol to a gadolinium oxide-manganese oxide composite particle
  • Example 5 Composite nanoparticle itself prepared by bonding D-glucuronic acid to gadolinium oxide-manganese oxide composite particle
  • the complex nano-particles themselves were prepared in the same manner as in Example 4, except that D-glucuronic acid was used instead of tripropylene glycol.
  • Example 6 Composite nanoparticle itself prepared by binding lactobionic acid to a gadolinium oxide-manganese oxide composite particle
  • the complex nano-particles were prepared in the same manner as in Example 4 except that lactobionic acid was used instead of tripropylene glycol.
  • the biocompatible ligand-coated gadolinium oxide nanoparticles according to the present invention were homogeneous and showed a particle size of 0.5 to 3 nm. This indirectly indicates that the gadolinium oxide according to the present invention can be easily absorbed by the human body.
  • Example 1 produced by the manufacturing method according to the present invention was put into a SQUID magnetometer (manufacturer: Quantum Design, model: MPMS 7) and measured. The results are shown in Figs. 5 (a) and 5 (b).
  • Fig. 5 (a) shows the specimen of Example 1 while keeping the magnetic field constant. It can be seen that the magnetic moment of the gadolinium oxide nanoparticles of Example 1 decreases as the temperature increases.
  • Example 5 (b) shows the change of the specimen of the first embodiment according to the change of the magnetic field in a state where the temperature is kept constant.
  • the gadolinium oxide of Example 1 had a moment value of 0 emu / g when the magnetic field was 0 Oe.
  • the nanoparticles coated with the biocompatible ligand on the oxidized gadolinium nanoparticles according to the present invention were paramagnetic.
  • Example 1 produced by the manufacturing method according to the present invention was put into an FT-IR infrared spectrophotometer (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A) and measured. The results are shown in Figs. 6 (a) and 6 (b) and Fig.
  • FIG. 6 (a) is an FT-IR spectrum of polyethylene glycol
  • FIG. 6 (b) is an FT-IR spectrum of polyethylene glycol-coated gadolinium oxide nanoparticles.
  • the functional group peak of polyethylene glycol is observed in FIG. 6 (b), indicating that the gadolinium oxide nanoparticles are coated with polyethylene glycol.
  • the functional group peak of tripropylene glycol which is a biocompatible ligand, is observed in the complex nano-particle itself, and it can be seen that the composite particle is coated with a biocompatible ligand, tripropylene glycol.
  • the gadolinium oxide nanoparticles prepared in Example 1 were suspended in distilled water at concentrations of 0.0625, 0.125, 0.25 and 0.5 mM to prepare samples. This was measured with an MRI apparatus (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A), and the results are shown in Figs. 8 (a) and (b) and Fig.
  • the relaxation rate time becomes shorter as the concentration of gadolinium oxide nanoparticle itself increases.
  • the gadolinium oxide nanoparticles according to the present invention exhibit concentration-dependent T1 and T2 map image.
  • the T1 and T2 map images were measured and the reciprocal values were taken to obtain r1 and r2 values, and the results are shown in Fig.
  • the slopes of the equations obtained by substituting the values of r1 and r2 are 11.6 and 13.4, respectively. If we calculate this as r2 / r1, we can see that the value is close to 1. Theoretically, the r2 slope value always appears to be higher than the r1 slope value, but it is similar, indicating that the contrast agent according to the present invention is paramagnetic. In addition, the slope value of r1, which is the relaxation rate of the gadolinium oxide nanoparticles according to the present invention, was 11.6. This indicates that the relaxation rate of the gadolinium oxide nano-particles of the present invention is higher when the relaxation rate of the gadolinium complex used in the prior art is 4, which is the average value of r1.
  • the gadolinium oxide nanoparticles according to the present invention can exhibit the same contrasting effect even when a low concentration of contrast agent is used. Therefore, it has been found that the gadolinium oxide nano-particles themselves according to the present invention can be used as an effective contrast agent even at a low concentration.
  • Example 1 The complex nano-particles prepared in Example 1 were suspended in distilled water at a concentration of 2, 1, 0.5, 0.25, 0.125 and 0.0625 mM to prepare samples. This was measured with an MRI apparatus (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A), and the results are shown in Fig.
  • the reason for the difference between r1 and r2 is that the complex nano-particle itself has different relaxation rates in the z-axis and the x-y axis when the hydrogen nuclear spin relaxes.
  • the r1 value is related to the x-y axis relaxation rate and the r2 value is related to the relaxation rate in the z-axis.
  • the two relaxations can be independently measured, and the composite nano-particles themselves have a high T1 contrast, which indicates that the r1 value is higher than 10.
  • An anesthetic is maintained by inhalation of 350 g of a brain tumor-induced experimental rat (SD-rat, Hyochang Science) mixed with isoflurane (Choongwae Pharmaceutical Co., Ltd.) with N2O and O2 and continuously inhaled.
  • 520 ⁇ l (0.007 mM) of the contrast agent according to Example 3 of the present invention was injected into anesthetized experimental rats through a rat tail vein, and the experimental animals were placed in an MRI apparatus (manufactured by GE, model: Excite) .
  • the results are shown in Figs. 11 (a) and 11 (b).
  • Fig. 11 (a) is a brain image of a laboratory mouse before administration of the contrast agent according to the present invention
  • Fig. 11 (b) is a brain image of administration of the contrast agent of Example 3.
  • FIG. 11 (b) when the contrast agent according to the present invention is administered, tumors induced in a laboratory rat as shown in FIG. 11 (b) can be seen.
  • the gadolinium oxide nanoparticles prepared according to the present invention can be usefully used as a contrast agent.
  • An anesthetic is maintained by inhalation of 350 g of a brain tumor-induced experimental rat (SD-rat, Hyochang Science) mixed with isoflurane (Choongwae Pharmaceutical Co., Ltd.) with N2O and O2 and continuously inhaled.
  • 520 ⁇ l (0.007 mM) of the contrast agent according to Example 3 of the present invention was injected into anesthetized experimental rats through a rat tail vein, and the experimental animals were placed in an MRI apparatus (manufactured by GE, model: Excite) . The results are shown in Fig.
  • the contrast agent containing the complex nano-particles according to the present invention when administered, it was found that the contrast enhancement effect on the internal organs of the mice was shown. This suggests that the complex nano particles of the present invention are small in size and easy to access to all organs and have a high contrast effect. This indirectly indicates that the brain tumor can be used to diagnose a brain tumor more easily when the brain tumor is induced.

Abstract

The present invention relates to nanoparticulates, complex nanoparticulates, and a manufacturing method thereof. The nanoparticulates of the present invention which are gadolinium oxide nanoparticulates coated with the biocompatibility ligand can be used as a contrast media for diagnosing diseases such as brain illness, because of the capability to easily pass through the blood-brain barrier. Also, as the manufacturing method of the present invention is simpler than other manufacturing methods for contrast media, the manufacturing method of the present invention may reduce production costs and be utilized in the medical diagnosis field. Also, the contrast media including the complex nanoparticulates of the present invention contains complex particulates manufactured by coating gadolinium oxide particulates with manganese oxide, wherein the gadolinium oxide and the manganese oxide are conventionally used as main components of the contrast media. The complex nanoparticulates manufactured by combining the complex particulates and the biocompatibility ligand can maximize contrast effect and reduce ecotoxicity.

Description

나노입자체, 복합 나노입자체 및 이의 제조방법Nanoparticles themselves, complex nanoparticles themselves and their preparation
본 발명은 나노입자체, 복합 나노입자체 및 이의 제조방법에 관한 것이다.The present invention relates to a nano-particle itself, a composite nano-particle itself, and a method for producing the same.
자기공명영상(MRI, Magnetic Resonance Imaging) 기술은 자기장 안에서 수소 원자의 스핀이 이완되는 현상을 이용해 신체의 해부학적, 생리학적, 생화학적 정보 영상을 얻는 방법으로서, 인간이나 동물의 신체기관을 비침습적 방법으로 실시간 영상화할 수 있는 뛰어난 영상 진단 장비이다.Magnetic Resonance Imaging (MRI) is a method of acquiring anatomical, physiological, and biochemical information images of a body using spin relaxation of hydrogen atoms in a magnetic field. It is a noninvasive method of obtaining human or animal body organs It is an excellent imaging device that can be imaged in real time.
생명과학이나 의학 분야에서 MRI를 다양하고 정밀하게 활용하기 위해서 외부에서 물질을 주입하여 영상 대조도를 증가하는 방법을 사용하는데, 이러한 물질을 조영제라고 한다. MRI 이미지 상에서 조직들 사이의 대조도(contrast)는 조직 내의 물분자 핵스핀(nuclear spin)이 평형상태로 돌아가는 이완작용(relaxation)이 조직별로 다르기 때문에 생기는 현상인데, 조영제는 이러한 이완작용에 영향을 끼쳐 조직간 이완도의 차이를 벌리고 MRI 시그널의 변화를 유발하여 조직간의 대조를 보다 선명하게 하는 역할을 한다.In life sciences and medicine, we use a method to increase the image contrast by injecting materials from outside in order to make various and precise use of MRI. Such materials are called contrast agents. The contrast between tissues on the MRI image is due to the different tissues' different relaxation of the water molecule nuclear spin in the tissue to equilibrium, which affects the relaxation It causes the difference in the degree of relaxation between the tissues and induces a change in the MRI signal, thereby making the contrast between the tissues clearer.
조영제는 구성되는 물질의 성분에 따라 특징 및 기능이 달라질 뿐만 아니라, 주입되는 대상에 따라 활용도와 정밀도의 차이가 생긴다. 조영제을 이용하여 증강된 대조는 특정 생체기관과 조직들의 주변과 영상신호를 높이거나 낮추어서 보다 선명하게 영상화하게 구현한다. 일반적으로 MRI 영상을 얻기를 원하는 신체부위의 영상신호를 주위보다 상대적으로 밝게 만드는 조영제를 양성(positive) 조영제라고 하며, 주위보다 상대적으로 어둡게 만드는 조영제를 음성(negative) 조영제라고 한다.Contrast agents differ in their characteristics and functions depending on the constituents of the constituent materials, and there is a difference in utilization and precision depending on the target to be injected. Enhanced contrast using contrast agents is achieved by increasing or decreasing the perimeter and imaging signal of a particular organ or tissue to produce more vivid imaging. Generally, the contrast agent that makes the image signal of the body part which wants to obtain the MRI image relatively bright is called a positive contrast agent, and the contrast agent which makes it relatively darker than the surrounding is called a negative contrast agent.
조영제 제조에 사용되는 상자성 나노입자로는 망간(Mn), 가돌리늄(Gd) 등이 있으며, 이들 상자성 나노입자는 비수용성 또는 독성 등과 같은 문제점이 있어서, 이를 해결하기 위하여 상자성 나노입자 표면을 다양한 물질로 코팅하려는 시도가 있다.Examples of the paramagnetic nanoparticles used for the contrast agent include manganese (Mn) and gadolinium (Gd). These paramagnetic nanoparticles have problems such as insolubility or toxicity, and in order to solve this problem, There is an attempt to coat.
뇌 신경조직에는 특정한 물질들이 혈관으로부터 들어가는 것을 막는 일종의 장벽이 존재한다. 이러한 기능적인 장벽을 뇌혈관장벽(blood-brain barrier, BBB, 뇌혈관관문)이라고 한다. 예컨대, 트리판 블루(trypan blue)를 정맥 내에 주사한 후 관찰하면, 이 염료는 다른 모든 세포 사이 공간에는 나타나지만, 중추신경계는 나타나지 않는다. 이는 여러 종류의 약물과 대사물질들은 뇌혈관장벽에 막혀 뇌 신경조직에는 투과하지 못하기 때문이다. 이러한 뇌의 특징으로 인해서 일반적인 조영제로는 뇌에 존재하는 질병을 확인하기 어려워, 뇌질환을 진단하기 위한 조영제로서, 뇌혈관장벽을 통과할 수 있는 MRI 조영제가 활발히 연구되고 있다.There is a kind of barrier in the brain nerve tissue that prevents certain substances from entering the blood vessels. These functional barriers are called the blood-brain barrier (BBB). For example, when trypan blue is injected intravenously and observed, this dye appears in all other intercellular spaces, but the central nervous system does not appear. This is because many kinds of drugs and metabolites are blocked by the blood-brain barrier and can not penetrate the brain nerve tissue. Because of these features of the brain, it is difficult to identify the disease present in the brain as a general contrast agent, and an MRI contrast agent that can pass through the cerebral blood vessel barrier has been actively studied as a contrast agent for diagnosing brain diseases.
종래에 미국특허공보 US 6,638,494호는 산화철과 같은 금속을 포함한 초상자성 나노입자에 관한 것으로서, 나노입자의 표면에 특정한 카르복실산을 부착하여 중력 또는 자기장으로 인해, 나노입자가 응집 및 침전되는 것을 방지하는 방법이 개시되어 있다. 상기 특정한 카르복실산으로는 말레산, 타르타르산(tartaric acid) 또는 글루타르산(glutaric acid)과 같은 지방족 디카르복실산이거나, 시트르산, 시클로헥산 또는 트리카르복실산과 같은 지방족 폴리디카르복실산이 이용되었다.Conventionally, U.S. Patent No. 6,638,494 relates to a superpowder nanoparticle containing a metal such as iron oxide, and attaches a specific carboxylic acid to the surface of the nanoparticle to prevent aggregation and precipitation of the nanoparticle due to gravity or magnetic field Is disclosed. The specific carboxylic acid is an aliphatic dicarboxylic acid such as maleic acid, tartaric acid or glutaric acid or an aliphatic polydicarboxylic acid such as citric acid, cyclohexane or tricarboxylic acid .
그러나, 상기 선행 기술의 조영제는 금속 입자 표면에 카르복실산을 부착하여, 나노입자가 응집되지 않도록 하기 위한 방법으로서, 카르복실산을 나노입자에 결합시키는 방법은 간단하지만, 상기 제조된 조영제는 파괴된 뇌혈관장벽을 통과할 수 없고, 상기 카르복실산이 결합된 나노입자가 생체 독성이 있는지 검증되지 않았을 뿐만 아니라, 뇌 질환을 진단하기 위한 조영제로서 사용될 수 없다는 문제점이 있다.However, the above-mentioned contrast agent is a method for attaching a carboxylic acid to the surface of a metal particle to prevent agglomeration of the nanoparticle. Although the method of bonding the carboxylic acid to the nanoparticle is simple, It is not verified that the nanoparticles to which the carboxylic acid is bound are bio-toxic, and it can not be used as a contrast agent for diagnosing brain diseases.
따라서, 당업계에서는 조영제 입자의 크기가 작아서 간에 포집되지 않아 혈중에 고농도로 존재하고, 파괴된 뇌혈관관문을 충분히 통과할 수 있으면서도, 생체독성이 낮은 조영제가 요구된다. Therefore, in the art, a contrast agent having low bio-toxicity is required, while the size of the contrast medium is small so that it is not collected in the liver and exists at a high concentration in the blood and can sufficiently pass through the broken cerebral blood vessel barrier.
상술한 종래 기술의 문제점을 해결하기 위한 본 발명의 목적은 상자성 나노입자가 응집 및 침전되는 것을 방지하면서도, 생체 독성을 유발하지 않도록, 생체적합성 리간드를 이용하여 코팅한 나노입자체, 및 이를 제조할 수 있는 간단한 제조방법을 제공하는 것이다.It is an object of the present invention to solve the problems of the prior art described above, and it is an object of the present invention to provide a nano-particle itself coated with a biocompatible ligand so as not to cause coagulation and sedimentation of the paramagnetic nano- To provide a simple manufacturing method that can be used.
위와 같은 과제를 달성하기 위해 본 발명은 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체을 제공한다.In order to achieve the above object, the present invention provides a nano-particle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
상기 생체적합성 리간드에는 항체 또는 단백질이 결합되어 있을 수 있다.The biocompatible ligand may have an antibody or protein bound thereto.
상기 생체적합성 리간드는 폴리에틸렌 글리콜, 락토바이오닉산 또는 D-글루쿠로닉산 등을 사용할 수 있다.The biocompatible ligand may be polyethylene glycol, lactobionic acid or D-glucuronic acid.
상기 산화가돌리늄 나노입자의 직경은 0.5 내지 9 ㎚인 것이 바람직하고, 더욱 바람직하게는 0.5 내지 2.5 ㎚이다.The diameter of the gadolinium oxide nanoparticles is preferably 0.5 to 9 nm, more preferably 0.5 to 2.5 nm.
상기 생체적합성 리간드가 코팅된 산화가돌리늄 나노입자체의 직경은 0.5 내지 10 ㎚인 것이 바람직하고, 0.5 내지 3 ㎚인 것이 더욱 바람직하다.The diameter of the biocompatible ligand-coated gadolinium oxide nanoparticle itself is preferably 0.5 to 10 nm, more preferably 0.5 to 3 nm.
또한, 본 발명의 한 특징에 따른 나노입자체를 제조하는 방법은, 1) 극성 유기용매에 금속전구체 및 생체적합성 리간드를 첨가하여 혼합물을 얻는 단계; 2) 상기 단계 1)의 혼합물에 공기를 공급하면서 고온에서 교반하여 반응물을 얻는 단계; 및 3) 상기 반응물에 유기용매를 첨가하여 최종산물을 얻는 단계;According to another aspect of the present invention, there is provided a method for preparing a nanoparticle comprising: 1) adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture; 2) stirring the mixture of step 1) at a high temperature while supplying air to obtain a reactant; And 3) adding an organic solvent to the reactant to obtain a final product;
을 포함하여 이루어진다..
상기 단계 1)의 극성 유기용매는 트리에틸렌 글리콜 또는 트리프로필렌 글리콜 등이 사용될 수 있다.The polar organic solvent in the step 1) may be triethylene glycol, tripropylene glycol, or the like.
상기 단계 1)의 금속전구체는 GdCl3·6H20 또는 Gd(NO3)3 등이 사용될 수 있다.The metal precursor of the step 1) may be GdCl 3 .6H 2 O or Gd (NO 3) 3.
상기 금속전구체의 직경은 0.5~9 ㎚인 것이 바람직하고, 더욱 바람직하게는 0.5 내지 2.5 ㎚이다.The diameter of the metal precursor is preferably 0.5 to 9 nm, more preferably 0.5 to 2.5 nm.
상기 단계 1)의 생체적합성 리간드에는 항체 또는 단백질 등이 결합되어 있을 수 있다.The biocompatible ligand of step 1) may be bound to an antibody or protein.
상기 단계 1)의 생체적합성 리간드는 폴리에틸렌 글리콜, 락토바이오닉산 또는 D-글루쿠로닉산 등이 사용될 수 있다.The biocompatible ligand of step 1) may be polyethylene glycol, lactobionic acid or D-glucuronic acid.
상기 단계 1)의 금속전구체 및 생체적합성 리간드는 1:0.5 ~ 0.5:1 몰비로 첨가될 수 있다.The metal precursor and the biocompatible ligand of step 1) may be added in a molar ratio of 1: 0.5 to 0.5: 1.
상기 단계 2)의 공기는 산소가 5 내지 50% 이상 함유되어 있는 것이 바람직하다.The air in the step 2) preferably contains 5 to 50% or more of oxygen.
상기 단계 2)의 고온은 200 내지 300 ℃인 것이 바람직하다.The high temperature of step 2) is preferably 200 to 300 ° C.
상기 단계 2)에서 교반은 20 내지 30 시간 동안 하는 것이 바람직하다.In the step 2), stirring is preferably performed for 20 to 30 hours.
상기 단계 3)의 유기용매는 아세톤 또는 메틸에틸케톤 등이 사용될 수 있다.The organic solvent in step 3) may be acetone, methyl ethyl ketone or the like.
상기 생체적합성 리간드가 코팅된 나노입자체의 직경은 0.5 내지 10 ㎚인 것이 바람직하고, 0.5 내지 3 ㎚인 것이 더욱 바람직하다.The diameter of the nanoparticle itself coated with the biocompatible ligand is preferably 0.5 to 10 nm, more preferably 0.5 to 3 nm.
또한, 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 포함하는 MRI 조영제를 제공한다.Also provided is an MRI contrast agent comprising a nano-particle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
또한, 본 발명은 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합되는 복합 나노입자체를 제공한다.The present invention also provides a composite nano-particle itself in which a biocompatible ligand is bound to a composite particle obtained by coating gadolinium oxide particles with manganese oxide.
상기 생체적합성 리간드는 D-글루쿠론산, 폴리에틸렌글리콜 또는 락토바이온산 등을 사용될 수 있다.The biocompatible ligand may be D-glucuronic acid, polyethylene glycol or lactobionic acid.
상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것이 바람직하다.The diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
또한, 본 발명의 다른 특징에 따른 복합 나노입자체를 제조하는 방법은, 1) 가돌리늄 전구체를 이용하여 산화가돌리늄 입자를 제조하는 단계; 2) 상기 산화가돌리늄 입자를 망간 전구체로 코팅하여 복합입자를 제조하는 단계; 및 3) 상기 복합입자에 생체적합성 리간드를 결합시키는 단계; 을 포함하여 이루어진다.According to another aspect of the present invention, there is provided a method of preparing a composite nano-particle itself, comprising the steps of: 1) preparing gadolinium oxide particles using a gadolinium precursor; 2) coating the gadolinium oxide particles with a manganese precursor to prepare composite particles; And 3) binding the biocompatible ligand to the composite particle; .
상기 단계 1)의 산화가돌리늄 입자를 제조하는 방법은 가돌리늄 전구체를 증류수에 혼합하고, 200~300 ℃로 반응시키는 것이 특징이다.The method for producing the gadolinium oxide particles of the step 1) is characterized in that the gadolinium precursor is mixed with distilled water and reacted at 200 to 300 ° C.
상기 단계 2)의 복합입자를 제조하는 방법은 상기 단계 1)의 산화가돌리늄 입자가 포함된 용액에 망간 전구체를 첨가하고, 200~300 ℃로 반응시켜 산화가돌리늄 입자가 망간 전구체에서 유래된 산화망간으로 코팅되는 것이 특징이다.The method for preparing the composite particles of the step 2) comprises: adding a manganese precursor to a solution containing the gadolinium oxide particles of the step 1) and reacting the mixture at a temperature of 200 to 300 ° C to form a gadolinium oxide particle It is characterized by being coated.
상기 단계 3)은 상기 단계 2)의 복합입자가 포함된 용액에 D-글루쿠론산, 폴리에틸렌글리콜 또는 락토바이온산 등의 생체적합성 리간드를 첨가하고, 130~170 ℃로 반응시키는 것이 특징이다.The step 3) is characterized in that a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid is added to the solution containing the composite particles of step 2), and the reaction is carried out at 130 to 170 ° C.
상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것이 바람직하다.The diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
본 발명의 또 다른 특징에 따른 복합 나노입자체는 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합된 것이다.According to another aspect of the present invention, there is provided a composite nano-particle itself, wherein a biocompatible ligand is bound to a composite particle wherein gadolinium oxide particles are coated with manganese oxide.
상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것이 바람직하다.The diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
본 발명에 따른 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체는 산화가돌리늄을 나노크기로 제조하고, 산화가돌리늄이 갖는 독성을 중화시키기 위하여 생체적합성 리간드로 코팅되어 있어, 생체 독성을 나타내지 않고, 뇌혈관장벽을 통과하여 뇌로 전달될 수 있어 뇌 질환을 진단하기 위한 조영제로 유용하게 사용될 수 있다.The nanoparticles coated with the biocompatible ligand on the oxidized gadolinium nanoparticles according to the present invention are coated with a biocompatible ligand in order to prepare gadolinium oxide in nanoscale and to neutralize the toxicity of gadolinium oxide, , Can be transmitted to the brain through the blood-brain barrier, and thus can be used as a contrast agent for diagnosing brain diseases.
또한, 본 발명에 따른 나노입자체의 제조방법은 가돌리늄 전구체 용액에 생체적합성 리간드를 첨가하고, 반응시켜 산화가돌리늄 나노입자에 생체적합성 리간드를 결합시키는 방법으로서, 나노입자를 제조하는 공정이 별도로 요구되지 않아, 간단한 방법으로 나노입자체의 제조가 용이하다. In addition, the method for preparing nanoparticles according to the present invention is a method for adding a biocompatible ligand to a gadolinium precursor solution and then reacting the biocompatible ligand to bind the biocompatible ligand to the gadolinium oxide nanoparticle. And it is easy to manufacture the nano-particles themselves by a simple method.
또한, 본 발명에 따른 복합 나노입자체를 포함하는 조영제는 종래에 각각 조영제 주요 성분으로 사용되고 있는 산화가돌리늄 및 산화망간을 이용하여 산화가돌리늄 입자를 산화망간으로 코팅시킨 복합입자를 제조하고, 상기 복합입자에 생체적합성 리간드를 결합시켜 복합 나노입자체를 제조함으로서, 조영 효과를 극대화시키면서도, 생체 독성을 감소시킬 수 있는 것이다.In addition, the contrast agent containing the composite nano-particles according to the present invention can be produced by preparing composite particles in which gadolinium oxide particles are coated with manganese oxide using gadolinium oxide and manganese oxide, which are conventionally used as main components of the contrast agent, By combining the biocompatible ligand with the complex nano-particle itself, the biomedical toxicity can be reduced while maximizing the contrast effect.
그러므로, 상기 나노입자체 및 복합 나노입자체는 조영 효과가 월등하여 의학 진단 분야에 유용하게 사용될 수 있다.Therefore, the nano-particles themselves and the composite nano-particles themselves have superior imaging effects and can be used in medical diagnosis fields.
도 1은 본 발명의 일 실시예에 따라 제조된 산화가돌리늄 나노입자에 생체적합성 리간드인 폴리에틸렌글리콜이 코팅된 나노입자체의 전자현미경 사진이다.1 is an electron micrograph of a nano-particle itself coated with a biocompatible ligand, polyethylene glycol, on gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따라 제조된 산화가돌리늄 나노입자에 생체적합성 리간드인 락토바이오닉산으로 코팅된 나노입자체의 전자현미경 사진이다.FIG. 2 is an electron micrograph of a nano-particle itself coated with lactobionic acid, which is a biocompatible ligand, on gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따라 제조된 산화가돌리늄 나노입자에 생체적합성 리간드인 D-글루쿠로닉산으로 코팅된 나노입자체의 전자현미경 사진이다.FIG. 3 is an electron micrograph of a nano-particle itself coated with a biocompatible ligand, D-glucuronic acid, on the gadolinium oxide nanoparticles prepared according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 제조된 복합 나노입자체의 전자현미경 사진이다.4 is an electron micrograph of a composite nano-particle itself prepared according to an embodiment of the present invention.
도 5는 본 발명에 따라 제조된 나노입자체의 절대온도와 자기장의 변화에 따른 특징을 나타낸 도이다.FIG. 5 is a graph showing characteristics of nano-particles manufactured according to the present invention in accordance with changes in absolute temperature and magnetic field.
도 6는 본 발명에 따라 제조된 나노입자체의 FT-IR 스펙트럼을 나타낸 것이다.FIG. 6 shows the FT-IR spectrum of the nano-particles themselves prepared according to the present invention.
도 7는 본 발명의 일 실시예에 따라 제조된 복합 나노입자체에 생체적합성 리간드의 결합상태를 나타낸 도이다.FIG. 7 is a view showing the binding state of a biocompatible ligand to a composite nano-particle itself prepared according to an embodiment of the present invention.
도 8은 본 발명에 따라 제조된 나노입자체의 농도에 따른 map image를 나타낸 것이다.FIG. 8 shows a map image according to the concentration of the nano-particles themselves prepared according to the present invention.
도 9는 본 발명에 따라 제조된 나노입자체의 농도에 따른 이완성에 관한 것이다.Figure 9 relates to the relaxation according to the concentration of the nano-particles themselves prepared according to the present invention.
도 10은 본 발명의 일 실시예에 따라 제조된 복합 나노입자체의 이완성을 측정한 결과이다.10 is a measurement result of the relaxation property of the composite nano-particles produced according to an embodiment of the present invention.
도 11은 본 발명에 따라 제조된 나노입자체를 포함하는 조영제를 투여한 실험용 쥐의 뇌 MRI 사진이다.11 is a brain MRI photograph of a mouse for experimental administration of a contrast agent containing nano-particles prepared according to the present invention.
도 12는 본 발명의 일 실시예에 따라 제조된 복합 나노입자체를 포함하는 조영제를 동물에 투여한 후, MRI 측정 사진이다.FIG. 12 is a MRI photograph of a contrast agent prepared in accordance with an embodiment of the present invention and administered to an animal.
본 출원인은 산화가돌리늄을 이용한 뇌질환 진단용 조영제를 연구하던 중, 생체적합성 고분자인 폴리에틸렌 글리콜, 락토바이오닉산 또는 D-글루쿠로닉산 등으로 산화가돌리늄을 코팅한 나노입자체와 산화가돌리늄을 산화망간으로 코팅하고, 이를 생체적합성 고분자로 코팅한 복합 나노입자체가 뇌혈관장벽을 통과할 수 있으며, 조영 효과가 월등함을 확인하고, 본 발명을 완성하였다.The present applicant has been studying a contrast agent for the diagnosis of brain diseases using gadolinium oxide. The inventors of the present invention have found that when a biocompatible polymer such as polyethylene glycol, lactobionic acid or D-glucuronic acid is coated with gadolinium oxide, Coated with a biocompatible polymer, and that the composite nano-particles coated with the biocompatible polymer can pass through the cerebral blood vessel barrier, and that the contrast effect is excellent. Thus, the present invention has been completed.
본 발명은 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 제공한다.The present invention provides a nanoparticle itself coated with a biocompatible ligand on gadolinium oxide nanoparticles.
상기 산화가돌리늄 나노입자는 본 발명에 따른 나노입자체에서 코어를 이루는 부분으로서, 산화가돌리늄 나노입자의 직경은 0.5 ~ 9 ㎚인 것이 바람직하다. 본 발명의 나노입자의 직경이 9 ㎚를 초과할 경우, 본 발명에 따른 나노입자체의 크기가 조절되기 힘들뿐만 아니라, 제조되는 나노입자체가 뇌혈관관문을 통과하기가 용이하지 않을 수 있다.The gadolinium oxide nanoparticle is a portion constituting the core of the nano-particles according to the present invention, and the diameter of the gadolinium oxide nanoparticles is preferably 0.5 to 9 nm. When the diameter of the nanoparticles of the present invention exceeds 9 nm, the size of the nanoparticle according to the present invention is not easily controlled, and the nanoparticle itself may not easily pass through the blood vessel barrier.
본 발명에 따른 상기 생체적합성 리간드에 항체 또는 단백질을 결합시켜 사용할 수도 있다. 상기 항체는 특별히 한정하는 것은 아니지만, 생체 내 특이적인 부위에 대한 친화도를 증가시키기 위해 가변부위 또는 불변부위가 변이된 것을 사용할 수도 있다. 더불어, 상기 단백질은 특별히 한정하는 것은 아니지만, 치료용 단백질 또는 단백질성 호르몬을 사용할 수 있다. 상기 단백질은 생체의 특이적인 부위에 대한 친화도를 증가시키기 위해 변이된 것을 사용할 수도 있다. The biocompatible ligand according to the present invention may be bound to an antibody or protein. Although the antibody is not particularly limited, it is also possible to use a mutated variable region or constant region in order to increase the affinity for a specific region in a living body. In addition, although the protein is not particularly limited, a therapeutic protein or a protein hormone can be used. The protein may be mutated to increase the affinity for a specific site in a living body.
상기 생체적합성 리간드는 특별히 한정하는 것은 아니지만, 생체적합성이 좋은 고분자이면 한정하지 않는다. 바람직하게는 폴리에틸렌글리콜(polyethylene glycol), 락토바이오닉산(lactobionic acid), D-글루쿠로닉산(D-glucuronic acid) 등을 단독 또는 혼합하여 사용할 수 있다.The biocompatible ligand is not particularly limited, but it is not limited as long as it is a biocompatible polymer. Preferably, polyethylene glycol, lactobionic acid, D-glucuronic acid and the like can be used alone or in combination.
상기 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체의 직경은 0.5 ~ 10 ㎚인 것이 바람직하다. 상기 산화가돌리늄 나노입자체가 10 ㎚를 초과할 경우에는 뇌혈관관문을 통과하기 힘들어, 뇌질환 진단을 위한 조영제로 사용하기 어렵다. The diameter of the nano-particles having the biocompatible ligand coated on the gadolinium oxide nanoparticles is preferably 0.5 to 10 nm. If the gadolinium oxide nano-particle itself is more than 10 nm, it is difficult to pass through the cerebral blood vessel and it is difficult to use it as a contrast agent for diagnosis of brain diseases.
또한, 본 발명의 나노입자체의 제조방법은,Further, in the method for producing a nano-particle itself of the present invention,
1) 극성 유기용매에 금속전구체 및 생체적합성 리간드를 첨가하여 혼합물을 얻는 단계;1) adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture;
2) 상기 단계 1)의 혼합물에 공기를 공급하면서 고온에서 교반하여 반응물을 얻는 단계; 및2) stirring the mixture of step 1) at a high temperature while supplying air to obtain a reactant; And
3) 상기 반응물에 유기용매를 첨가하여 최종산물을 얻는 단계;3) adding an organic solvent to the reaction product to obtain a final product;
을 포함한다..
먼저, 상기 단계 1)은 극성 유기용매에 금속전구체 및 생체적합성 리간드를 첨가하여 혼합물을 얻는 단계이다.First, the step 1) is a step of adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture.
상기 단계 1)의 극성 유기용매는 특별히 한정하는 것은 않으며, 금속전구체 및 생체적합성 리간드의 반응을 유도할 수 있는 극성 유기용매이면 한정하지 않으며, 바람직하게는 트리에틸렌글리콜, 트리프로필렌글리콜 등이 사용될 수 있다.The polar organic solvent in the step 1) is not particularly limited and is not limited as long as it is a polar organic solvent capable of inducing the reaction of the metal precursor and the biocompatible ligand. Preferably, triethylene glycol, tripropylene glycol, have.
상기 금속전구체는 특별히 한정하지 않으며, 바람직하게는 가돌리늄 전구체를 사용할 수 있으며, 더욱 바람직하게는 GdCl3·6H20, Gd(NO3)3 등을 사용할 수 있다. 상기 금속전구체의 직경은 0.5 ~ 9 ㎚인 것이 바람직하다. 본 발명에 사용되는 나노입자의 직경이 9 ㎚를 초과할 경우, 본 발명에 따른 나노입자체의 크기가 조절되기 힘들뿐만 아니라, 제조되는 나노입자체가 뇌혈관관문을 통과하기가 용이하지 않을 수도 있다.The metal precursor is not particularly limited, and preferably a gadolinium precursor can be used. More preferably, GdCl 3 .6H 2 O and Gd (NO 3) 3 can be used. The diameter of the metal precursor is preferably 0.5 to 9 nm. When the diameter of the nanoparticles used in the present invention exceeds 9 nm, it is difficult to control the size of the nanoparticles according to the present invention, and the nanoparticles themselves may not easily pass through the blood vessel barrier have.
본 발명에 따른 상기 생체적합성 리간드에 항체 또는 단백질이 결합시킨 것을 사용할 수도 있다. 상기 항체는 특별히 한정하는 것은 아니지만, 생체내 특이적인 부위에 대한 친화도를 증가시키기 위해 가변부위 또는 불변부위가 변이된 것을 사용할 수도 있다. 더불어, 상기 단백질은 특별히 한정하는 것은 아니지만, 치료용 단백질 또는 단백질성 호르몬을 사용할 수 있다. 상기 단백질은 생체의 특이적인 부위에 대한 친화도를 증가시키기 위해 변이된 것을 사용할 수도 있다.The biocompatible ligand according to the present invention may be conjugated with an antibody or protein. Although the antibody is not particularly limited, it is also possible to use a mutated variable region or constant region in order to increase the affinity for a specific region in a living body. In addition, although the protein is not particularly limited, a therapeutic protein or a protein hormone can be used. The protein may be mutated to increase the affinity for a specific site in a living body.
상기 생체적합성 리간드는 특별히 한정하는 것은 아니지만, 생체적합성이 좋은 고분자이면 한정하지 않으며, 바람직하게는 폴리에틸렌 글리콜, 락토바이오닉산, D-글루쿠로닉산 등을 단독 또는 혼합하여 사용할 수 있다.The biocompatible ligand is not particularly limited, and is not limited as long as it is a biocompatible polymer. Preferably, polyethylene glycol, lactobionic acid, D-glucuronic acid and the like can be used singly or in combination.
상기 금속전구체 및 생체적합성 리간드는 1~0.5 : 0.5~1 몰비로 혼합하여 금속전구체에 생체적합성 리간드를 코팅시킬 수 있다.The metal precursor and the biocompatible ligand may be mixed at a molar ratio of 1: 0.5: 0.5 to 1 to coat the metal precursor with the biocompatible ligand.
다음으로, 상기 단계 2)는 단계 1)의 혼합물에 공기를 공급하면서 고온에서 교반하여 반응물을 얻는 단계이다.Next, the step 2) is a step of obtaining a reactant by stirring at a high temperature while supplying air to the mixture of the step 1).
상기 공기는 특별히 한정하지는 않으며, 대기중에 있는 공기를 사용할 수도 있다. 바람직하게는 산소가 5 ~ 50% 함유된 것을 사용할 수 있다. 상기 반응에서 공기에 포함된 산소는 가돌리늄 금속전구체와 반응하여 산화가돌리늄을 생성시키기 위한 것이며, 상기 공기를 공급하는 방법은 특별히 한정하지는 않으나, 바람직하게는 반응액에 버블링하여 공기를 공급할 수 있다.The air is not particularly limited, and air in the air may be used. Preferably 5 to 50% of oxygen may be used. In the reaction, oxygen contained in the air reacts with the gadolinium metal precursor to produce gadolinium oxide. The method of supplying the air is not particularly limited, but it is preferable to bubble the reaction solution to supply air.
또한, 상기 공기를 공급하는 단계는 혼합물 제조와 동시에 바로 공기를 주입할 수도 있지만, 혼합물이 적절한 반응시간을 갖게 한 후, 공급할 수도 있다. 상기 고온은 금속전구체에 생체적합성 리간드를 코팅시킬 수 있는 온도이면, 200 ~ 300 ℃로 하여 반응시키는 것이 바람직하다. 상기 반응을 용이하게 하기 위하여 20 ~ 30 시간 동안 교반하여 반응시킬 수 있다. 상기 온도가 200 ℃ 미만일 경우에는, 금속전구체에 생체적합성 리간드를 코팅시키는 반응을 유도하기 어렵고, 300 ℃를 초과할 경우에는 온도 증가에 따른 반응 속도가 더 이상 증가하지 않는다. 상기 교반은 반응물의 생성이 용이한 방법이면 한정하지 않는다. 본 단계에서 생성되는 반응물은 산화가돌리늄 나노입자 표면에 생체적합성 리간드가 결합 또는 코팅되어 있으며, 높은 온도로 인해서 생체적합성 리간드의 결합이 다소 불안정한 상태일 수 있다. 그러므로, 이를 수득하기 위한 하기와 같은 추가적인 단계가 필요하다.In addition, the step of supplying air may be carried out simultaneously with the preparation of the mixture, but may be performed after the mixture has an appropriate reaction time. It is preferable that the high temperature is 200-300 占 폚 if the metal precursor has a temperature capable of coating the biocompatible ligand. The reaction may be carried out by stirring for 20 to 30 hours to facilitate the reaction. When the temperature is less than 200 ° C, it is difficult to induce a reaction to coat the biocompatible ligand with the metal precursor. When the temperature exceeds 300 ° C, the reaction rate does not increase with increasing temperature. The stirring is not limited as long as the reactant can be easily produced. The reaction product produced in this step may be a state where the biocompatible ligand is bound or coated on the surface of the gadolinium oxide nanoparticles and the biocompatible ligand is somewhat unstable due to the high temperature. Therefore, there is a need for additional steps as follows to obtain it.
마지막으로, 상기 단계 3)은 상기 반응물에 유기용매를 첨가하여 최종산물을 얻는 단계이다.Finally, step 3) is a step of adding an organic solvent to the reactant to obtain a final product.
상기 유기용매는 상기 단계 2)의 반응물의 안정성을 높이면서도, 침전시킬 수 있는 유기용매이면 한정하지 않으며, 바람직하게는 아세톤, 메틸에틸케톤과 같은 케톤류를 사용하여 침전시킬 수 있다. 첨가된 상기 유기용매의 온도는 특별히 한정하지는 않으며, 반응물의 온도를 낮추기 위하여 상온인 유기용매를 첨가할 수도 있으며, 반응물이 냉각된 이후에 첨가할 수도 있다. 상기 반응물은 적절한 최종산물을 얻기 위하여 냉각할 수도 있으며, 반응물을 냉각하는 방법은 적절한 최종산물을 얻기 위한 방법이면 한정하지 않으나, 상온에서 서서히 냉각시킬 수도 있고, 급냉시킬 수도 있다. 본 단계에서 생성되는 최종산물은 단계 2)의 반응물인 생체적합성 리간드가 결합된 나노입자체의 침전물이며, 상기 침전물을 수득하여 이를 다시 증류수나 기타 조영제로 사용되기에 적절한 용액에 첨가되면, 분산되어 조영제로서 용이하게 사용될 수 있는 형태이다.The organic solvent may be precipitated using ketones such as acetone and methyl ethyl ketone, while the stability of the reactant in step 2) is enhanced, and the organic solvent is not limited as long as it is an organic solvent capable of precipitating. The temperature of the added organic solvent is not particularly limited, and an organic solvent at room temperature may be added to lower the temperature of the reactant, or may be added after the reactant is cooled. The reaction product may be cooled to obtain an appropriate final product. The method of cooling the reaction product is not limited as long as it is a method for obtaining an appropriate final product. However, the reaction product can be slowly cooled at room temperature or quenched. The final product produced in this step is a precipitate of the nano-particles themselves, to which the biocompatible ligand, which is a reactant in step 2), is added. When the precipitate is added to a solution suitable for use as distilled water or other contrast agent, It is a form that can be easily used as a contrast agent.
상기 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체의 제조 과정을 더욱 상세하게 설명하자면, 트리에틸렌 글리콜과 같은 유기용매에 가돌리늄 전구체 및, 폴리에틸렌글리콜, 락토바이오닉산 또는 D-글루쿠로닉산을 첨가하고, 이 혼합물에 대기중의 공기를 버블링하여 주면서 260 ℃에서 24시간 동안 교반하여 반응시켰다.The preparation of the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticle is described in detail. A gadolinium precursor and an organic solvent such as polyethylene glycol, lactobionic acid or D-glucurononic acid are added to an organic solvent such as triethylene glycol. And the mixture was reacted by stirring at 260 캜 for 24 hours while bubbling air in the air.
위와 같은 합성 단계를 마친 반응 생성물에는 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체와 함께, 반응물의 사용량에 따라 극성 유기용매 및 미반응 물질이 포함될 수 있다. 이러한 반응 생성물로부터 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 분리, 수득하기 위한 분리 단계가 진행된다. The reaction product after the above synthesis step may include a nano-particle itself coated with a biocompatible ligand on the gadolinium oxide nanoparticles, and a polar organic solvent and an unreacted material depending on the amount of the reactant used. From this reaction product, a separation step is carried out to separate and obtain the nanoparticle itself coated with the biocompatible ligand on the oxidized gadolinium nanoparticle.
상기 분리 단계는 막 여과법 등을 이용하여 반응 생성물로부터 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 분리, 수득할 수 있으나, 바람직하게는 침전 분리법을 이용한다. 구체적으로, 반응 생성물에 침전제를 첨가하여 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 침전시킨다. 그리고 반응기로부터 상등액을 제거하여 침전물(산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체)을 분리, 수득한다. 상기 침전제는, 아세톤 또는 메틸에틸케톤 등의 케톤류를 사용할 수 있다. 이때, 상기 생체적합성 리간드가 코팅된 산화가돌리늄 침전물을 건조시켜 분말 상으로 제품화할 수 있다. 또한, 상기 건조된 분말을 증류수 등에 녹여 액상으로 제품화될 수 있으며, 건조된 분말은 증류수에 우수한 분산성을 갖는다.The separation step may be performed by using a membrane filtration method or the like to separate and obtain the nano-particles themselves coated with the biocompatible ligand from the reaction product, preferably the precipitation separation method. Specifically, a precipitant is added to the reaction product to precipitate the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticles. Then, the supernatant is removed from the reactor to separate and obtain a precipitate (nano-particle itself coated with biocompatible ligand on gadolinium oxide nanoparticles). As the precipitant, ketones such as acetone or methyl ethyl ketone can be used. At this time, the biocompatible ligand-coated gadolinium oxide precipitate can be dried to produce a powdery product. In addition, the dried powder can be made into a liquid product by dissolving in distilled water or the like, and the dried powder has excellent dispersibility in distilled water.
이상에서 설명한 본 발명의 제조방법에 따르면, 하나의 합성 공정에 의해 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체가 간단하게 제조된다. 즉, 상기 언급된 바와 같이, 상기 반응을 수반하는 합성 단계에 의해, 금속 전구체가 나노 크기 입자의 금속산화물로 산화되면서, 이와 동시에 상기 금속산화물의 입자 표면에는 생체적합성 리간드가 코팅된다. 또한, 본 발명에 따른 최종산물은 초미세 크기로 제조되어, 인체 흡수가 빠르며, 제조비용이 저렴하다는 장점이 있다. 아울러, 합성이 반응기에서 한번에 진행되므로, 반응기 스케일을 크게 설계하면 대량 생산이 가능하다.According to the manufacturing method of the present invention described above, the nanoparticle itself coated with the biocompatible ligand on the gadolinium oxide nanoparticles by a single synthesis step is simply produced. That is, as noted above, the synthesis step involving the reaction oxidizes the metal precursor to the metal oxide of the nanoscale particles, while at the same time coating the biocompatible ligand on the surface of the metal oxide. In addition, the final product according to the present invention is advantageous in that it is manufactured in an ultrafine size, has quick absorption of human body, and has a low manufacturing cost. In addition, since the synthesis is carried out in a single step in the reactor, mass production can be achieved by designing the reactor scale to be large.
한편, 본 발명에 따른 산화가돌리늄 나노입자체는 금속산화물의 표면에 생체 적합성 리간드가 코팅된 코어-쉘(core-shell) 구조를 갖는다.Meanwhile, the gadolinium oxide nanoparticle according to the present invention has a core-shell structure in which a biocompatible ligand is coated on the surface of a metal oxide.
본 발명에 따른 산화가돌리늄 나노입자체의 직경은 0.5~10㎚인 것이 바람직하다.The diameter of the gadolinium oxide nano-particles themselves according to the present invention is preferably 0.5 to 10 nm.
본 발명에 따른 산화가돌리늄 나노입자체는, 특별히 한정하는 것은 아니지만 MRI의 조영제 및 약물 전달 시스템 등의 다양한 용도로 사용될 수 있으며, 코어를 구성하는 금속산화물이 산화가돌리늄이므로, MRI에서 T1 조영제로서 유용하게 사용될 수 있다.The gadolinium oxide nanoparticles according to the present invention are not particularly limited but can be used for various purposes such as MRI contrast agent and drug delivery system. Since the metal oxide constituting the core is gadolinium oxide, it is useful as a T1 contrast agent in MRI Can be used.
가돌리늄 계열의 조영제는 뇌혈관관문을 통과하지 못하며, 일부는 독성을 나타내어 뇌 질환을 위한 조영제로는 부적합하다. 그러나, 본 발명의 조영제는 폴리에틸렌글리콜과 같이 독성을 감소시키기 위해 사용되는 생체적합성 리간드로 나노크기의 산화가돌리늄을 코팅하여, 간 대사가 더디게 이루어지며, 뇌혈관관문을 통과하면서도, 생체적합성 리간드 코팅을 통해서 조영제의 독성을 감소시키는 결과를 가져왔다. 특히, 가돌리늄은 T1 조영제로 사용하기에 가장 적합한 원소이나, 독성으로 인해서 인체 사용이 제한되었으나, 본 발명은 가돌리늄의 이러한 단점을 극복하면서, 뇌질환을 위한 조영제를 완성하였다.Gadolinium-based contrast agents do not pass through the cerebral blood vessels and some are toxic and are not suitable as contrast agents for brain diseases. However, the contrast agent of the present invention is a biocompatible ligand used to reduce toxicity, such as polyethylene glycol, coated with nano-sized gadolinium oxide, resulting in a slow metabolism of the liver, through biocompatible ligand coating Resulting in reduced toxicity of the contrast agent. Particularly, gadolinium is the most suitable element to be used as a T1 contrast agent, but the use of the human body due to toxicity was limited. However, the present invention overcomes these shortcomings of gadolinium and completed the contrast agent for brain diseases.
본 발명에 따른 제조방법으로 제조되는 산화가돌리늄 나노입자체를 유효성분으로 포함하는 MRI 조영제의 유효성분 안정성을 높이기 위하여 보조 성분을 추가할 수 있으며, 바람직한 보조성분으로는 소듐시트레이트(sodium citrate) 등을 혼합하여 본 발명에 따른 산화가돌리늄 나노입자체의 안정성을 높일 수 있다.An auxiliary component may be added to enhance the stability of the active ingredient of the MRI contrast agent containing the gadolinium oxide nanoparticle itself, which is produced by the production method according to the present invention, as an active ingredient. Examples of suitable auxiliary components include sodium citrate The stability of the gadolinium oxide nano-particles themselves according to the present invention can be enhanced.
또한, 본 발명은 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합되는 복합 나노입자체를 제공한다.The present invention also provides a composite nano-particle itself in which a biocompatible ligand is bound to a composite particle obtained by coating gadolinium oxide particles with manganese oxide.
산화가돌리늄 입자는 GdCl3ㆍ6H20 또는 Gd(NO3)3 등의 가돌리늄 전구체를 이용하여 형성되는 나노 크기의 입자이다. 상기 산화가돌리늄은 약한 자성을 띄는 상자성 물질로서, 조영제로 사용될 경우, 병변을 잘 보이게 하고 근육, 골, 혈관의 낮은 신호와 대비하여 종괴의 경계를 명확하게 한다는 장점이 있다. 그러나, 상기 산화가돌리늄은 생체 독성이 높다는 단점이 있어, 상기 산화가돌리늄의 단점을 해결하기 위하여, 나노 크기의 상기 산화가돌리늄 입자를 망간 전구체를 이용하여 산화망간으로 코팅하여, 나노 크기의 복합입자를 형성시킬 수 있다. 상기 산화망간은 조영제로도 사용되는 물질로서, 상기 산화망간에 생체적합 리간드를 코팅하지 않은 상태로 동물실험을 할 경우에도 독성을 거의 나타나지 않을 만큼 안정하다. 산화망간으로 코팅할 경우 산화가돌리늄 입자의 조영효과는 거의 유지되면서 독성이 경감될 수 있다.The gadolinium oxide particles are nano-sized particles formed by using a gadolinium precursor such as GdCl 3 .6H 2 O or Gd (NO 3) 3. The gadolinium oxide is a paramagnetic substance having a weak magnetic property. When used as a contrast agent, the gadolinium oxide has an advantage that the lesion is clearly visible and the boundaries of the mass are clarified in contrast to low signals of muscles, bone, and blood vessels. However, the above-mentioned gadolinium oxide has a disadvantage of high bio-toxicity, and in order to solve the disadvantage of the gadolinium oxide, the nanoparticulate gadolinium oxide particles are coated with manganese oxide using a manganese precursor to form nano- . The manganese oxide is also used as a contrast agent. The manganese oxide is stable enough to show no toxicity even when the manganese oxide is tested in an animal without coating the biocompatible ligand. When coated with manganese oxide, the imaging effect of gadolinium oxide particles is almost maintained and toxicity can be reduced.
그러므로, 산화가돌리늄 입자에 산화망간으로 코팅한 복합입자는 조영 효과는 높으며, 입자의 안정성이 높아질 수 있다.Therefore, the composite particles coated with manganese oxide on the gadolinium oxide particles have a high contrast effect, and the stability of the particles can be enhanced.
상기 복합입자는 생체에 사용될 때, 생체 독성 및 안정성을 높이기 위하여, D-글루쿠론산, 폴리에틸렌글리콜 또는 락토바이온산 등의 생체적합성 리간드를 결합시켜 복합 나노입자체를 형성시킬 수 있다. 상기 생체 적합성 리간드는 긴 사슬 형태의 물질로서, 상기 복합입자의 표면에 결합되며, 복합입자 주변을 감싸거나, 가지형으로 이루며 결합될 수 있다. 이와 같이 산화가돌리늄 입자에 산화망간이 코팅된 복합입자는 코어를 이루고, 복합입자 주변을 감싸는 생체 적합성 리간드는 쉘의 형태를 갖는 복합 나노입자체가 형성된다.When the composite particle is used in a living body, a complex nano-particle itself may be formed by binding a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid in order to enhance bio-toxicity and stability. The biocompatible ligand is a long-chain material, bound to the surface of the composite particle, and can be wrapped around the composite particle or formed into a branched shape. In this way, the composite particle coated with manganese oxide on the gadolinium oxide particle forms a core, and the biocompatible ligand surrounding the composite particle forms a complex nano-particle having a shell shape.
상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것이 바람직하다. 이때, 상기 복합 나노입자체의 직경이 0.5 ㎚ 미만일 경우, 입자체가 뭉쳐질 우려가 있어 분산이 잘 이루어지지 않고, 이로 인해서 상기 복합 나노입자체가 뇌조직으로 고르게 분산되지 못해 조영제로서의 효과가 떨어질 가능성이 있으며, 3 ㎚를 초과할 경우, 입자체의 분산성은 좋아지나, 본 발명에서 사용되기 위한 뇌질환 진단용 조영제로 사용되기에 적절하지 않다.The diameter of the composite nano-particles itself is preferably 0.5 to 3 nm. If the diameter of the composite nano-particles itself is less than 0.5 nm, the particles tend to aggregate and the dispersion may not be achieved. As a result, the composite nano-particles themselves may not be uniformly dispersed into the brain tissue, If it exceeds 3 nm, the dispersibility of the liposomes is improved, but it is not suitable for use as a contrast agent for diagnosis of brain diseases to be used in the present invention.
또한, 본 발명의 복합 나노입자체의 제조하는 방법은, Further, the method for producing the composite nano-particle itself according to the present invention comprises:
1) 가돌리늄 전구체를 이용하여 산화가돌리늄 입자를 제조하는 단계;1) preparing gadolinium oxide particles using a gadolinium precursor;
2) 상기 산화가돌리늄 입자를 망간 전구체로 코팅하여 복합입자를 제조하는 단계; 및2) coating the gadolinium oxide particles with a manganese precursor to prepare composite particles; And
3) 상기 복합입자에 생체적합성 리간드를 결합시키는 단계;3) binding the biocompatible ligand to the composite particle;
을 포함하여 이루어진다..
이하 본 발명의 각 단계를 구체적으로 살펴본다.Hereinafter, each step of the present invention will be described in detail.
먼저, 상기 단계 1)의 산화가돌리늄 입자를 제조하는 방법은 가돌리늄 전구체를 증류수에 혼합하고, 200~300 ℃로 반응시켜 수행할 수 있다. 상기 가돌리늄 전구체가 산화가돌리늄 입자로 생성될 수 있도록, 용액에 산소가 포함된 기체를 버블링하여 수행할 수 있다. 이때, 상기 온도 범위는 가돌리늄 전구체가 산화가돌리늄 입자될 수 있도록 하는 온도범위이다.The method of preparing the gadolinium oxide particles of the step 1) may be performed by mixing the gadolinium precursor with distilled water and reacting the mixture at 200 to 300 ° C. It can be carried out by bubbling a gas containing oxygen into the solution so that the gadolinium precursor can be produced as gadolinium oxide particles. At this time, the temperature range is a temperature range allowing the gadolinium precursor to become gadolinium oxide particles.
다음으로, 상기 단계 2)의 복합입자를 제조하는 방법은 상기 단계 1)의 산화가돌리늄 입자가 포함된 용액에 망간 전구체를 첨가하고, 200~300 ℃로 반응시켜 산화가돌리늄 입자가 망간 전구체에서 유래된 산화망간으로 코팅될 수 있다. 상기 망간 전구체가 산화망간이 될 수 있도록 산소가 포함된 기체를 버블링하여 수행할 수 있다. 이때, 상기 온도 범위는 산화가돌리늄에 산화망간이 코팅될 수 있도록 하는 반응온도이다. 상기와 같은 조건에서, 산화가돌리늄 입자가 산화망간으로 코팅됨에 의해 복합입자가 제조될 수 있다.Next, a method for preparing the composite particles of the step 2) comprises: adding a manganese precursor to a solution containing the gadolinium oxide particles of the step 1), and reacting the mixture at a temperature of 200 to 300 ° C to remove the gadolinium oxide particles from the manganese precursor May be coated with manganese oxide. The manganese precursor may be bubbled with oxygen-containing gas so as to be manganese oxide. At this time, the temperature range is a reaction temperature at which manganese oxide is coated on gadolinium oxide. Under such conditions, the composite particles can be produced by coating the gadolinium oxide particles with manganese oxide.
마지막으로, 상기 단계 3)에서 복합입자에 생체적합성 리간드를 결합시키는 방법은 복합입자가 포함된 용액에 D-글루쿠론산, 폴리에틸렌글리콜 또는 락토바이온산 등의 생체적합성 리간드를 첨가하고, 130~170 ℃로 하여 반응을 수행할 수 있다. 이때, 상기 온도 범위는 복합입자에 생체적합성 리간드가 용이하게 결합될 수 있도록 하는 반응온도이다. 상기와 같은 조건에서, 생체적합성 리간드의 카르복실산에서 수소가 떨어져 나가고, 남은 산소와 복합입자의 산화망간이 결합하게 된다. 이는 망간과 리간드의 결합 후 리간드 단독에서는 볼 수 없었던 FT-IR(Fourier transform spectroscopy)의 1600대의 C=O 진동으로 확인할 수 있다.Finally, in the step 3), a biocompatible ligand is bound to the composite particle by adding a biocompatible ligand such as D-glucuronic acid, polyethylene glycol or lactobionic acid to the solution containing the complex particle, RTI ID = 0.0 > C, < / RTI > In this case, the temperature range is a reaction temperature allowing the biocompatible ligand to be easily bonded to the composite particle. Under the above conditions, hydrogen is removed from the carboxylic acid of the biocompatible ligand, and the remaining oxygen and the manganese oxide of the composite particles are bonded. This can be confirmed by 1600 C = O oscillations of FT-IR (Fourier transform spectroscopy), which was not found in the ligand alone after the binding of manganese and ligand.
상기 단계 3)의 반응을 통하여 용액에는 산화가돌리늄 입자, 산화망간 입자, 산화가돌리늄이 산화망간으로 코팅된 복합입자, 복합입자에 생체적합성 리간드가 결합된 복합 나노입자체가 혼재되어 있는 상태이다. 여기서 본 발명의 복합 나노입자체를 분리하는 방법은 상기 혼합용액에 증류수를 넣으면 리간드가 결합된 복합 나노입자체만 침전되고, 그 이외에 물질은 물에 용해된 상태가 된다. 상기 침전된 물질을 분리하여 복합 나노입자체를 분리할 수 있다.Through the reaction of step 3), the solution contains gadolinium oxide particles, manganese oxide particles, composite particles coated with gadolinium oxide and manganese oxide, and composite nano particles in which the biocompatible ligand is combined with the composite particles. Here, in the method of separating the complex nano-particles themselves according to the present invention, when the distilled water is added to the mixed solution, only the ligand-bound complex nano-particles themselves are precipitated, and in addition, the substance becomes dissolved in water. The precipitated material may be separated to separate the complex nano-particles themselves.
상기 분리된 복합 나노입자체는 증류수 또는 기타 본 발명의 복합 나노입자체의 물질의 성질에 영향을 끼치지 않는 용액으로 수세 과정을 1회 이상 실시할 수 있다. 상기와 같은 단계를 통하여 얻어진 복합 나노입자체는 직경이 0.5~3 ㎚일 수 있다.The separated complex nano-particles may be washed once or more with a solution that does not affect the properties of the distilled water or other materials of the complex nano-particles of the present invention. The composite nano-particles obtained through the above steps may have a diameter of 0.5 to 3 nm.
또한, 본 발명은 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합된 복합 나노입자체를 포함하는 조영제를 제공한다.The present invention also provides a contrast agent comprising a complex nano-particle itself in which a biocompatible ligand is bound to a composite particle wherein gadolinium oxide particles are coated with manganese oxide.
상기의 복합 나노입자체는 3 ㎚ 이하의 상자성 나노입자이며, 물에 녹을 수 있는 생체적합성 리간드를 코팅되어 있어 물에 잘 녹는 특성을 가진다. 도 10에서 보는 바와 같이, 본 발명의 복합 나노입자체 r1 이완율(10~15 s-1/M)이 종래에 시판되는 옴니스캔의 이완율(4 s-1/M)보다 2배 이상 높은 값을 가진다는 것을 알 수 있다.The complex nano-particles themselves are paramagnetic nanoparticles of 3 nm or less and have water-soluble biocompatible ligands coated therein. 10, the complex nano-particle self-relieving rate (10 to 15 s-1 / M) of the present invention is more than twice as high as the relaxation rate (4 s-1 / M) Quot; < / RTI > value.
이완율의 값이 커질수록 수소 핵이 더 많이 이완됨을 나타내고, 이는 조영제의 조영효과가 증가되었음을 보여준다.The higher the relaxation rate, the more relaxation of the hydrogen nucleus, which shows that the contrast effect of the contrast agent is increased.
상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것이 바람직하다.The diameter of the composite nano-particles itself is preferably 0.5 to 3 nm.
본 발명에 따른 제조방법으로 제조되는 복합 나노입자체를 유효성분으로 포함하는 조영제의 안정성을 높이기 위하여 보조 성분을 추가할 수 있으며, 바람직한 보조성분으로는 소듐시트레이트(sodium citrate) 등을 혼합하여 본 발명에 따른 산화가돌리늄 나노입자체의 안정성을 높일 수 있다.An auxiliary component may be added to enhance the stability of the contrast agent comprising the complex nano-particle itself prepared by the method of the present invention as an active ingredient. As a preferable auxiliary component, sodium citrate or the like may be mixed The stability of the gadolinium oxide nanoparticle itself according to the invention can be enhanced.
이하, 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the preferred embodiments, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
실시예 1: 폴리에틸렌글리콜이 코팅된 산화가돌리늄 나노입자체의 제조Example 1: Preparation of polyethylene glycol-coated gadolinium oxide nanoparticles
GdCl3·6H2O 5 m㏖, 폴리에틸렌글리콜 5 m㏖ 및 트리에틸렌글리콜 40 ㎖를 혼합하였다. 이 혼합물에 대기중의 공기로 버블링하면서 260 ℃에서 24시간 동안 자기막대로 교반하면서 반응시켰다. 상기 혼합물을 실온으로 하여 냉각시킨 후, 반응물에 아세톤을 첨가하여 폴리에틸렌글리콜이 코팅된 산화가돌리늄 나노입자체를 침전시킨다. 상층액은 제거하고, 침전물은 공기 중에서 건조시켜 분말을 수득하였다.5 mmol of GdCl3 占 H2O, 5 占 퐉 ol of polyethylene glycol and 40 ml of triethylene glycol were mixed. The mixture was allowed to react at 260 占 폚 for 24 hours while stirring with magnetic air while bubbling with air in the atmosphere. After the mixture is cooled to room temperature, acetone is added to the reaction product to precipitate polyethylene glycol-coated gadolinium oxide nano-particles themselves. The supernatant was removed, and the precipitate was dried in air to obtain a powder.
실시예 2: 락토바이오닉산이 코팅된 산화가돌리늄 나노입자체의 제조Example 2: Preparation of lactobionic acid-coated gadolinium oxide nanoparticles
폴리에틸렌글리콜 대신에 락토바이오닉산을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하여 락토바이오닉산이 코팅된 산화가돌리늄 나노입자체를 제조하였다. Lactobionic acid-coated gadolinium oxide nanoparticles were prepared in the same manner as in Example 1, except that lactobionic acid was used instead of polyethylene glycol.
실시예 3: D-글루쿠로닉산이 코팅된 산화가돌리늄 나노입자체의 제조Example 3: Preparation of gadolinium oxide nanoparticles self-coated with D-glucuronic acid
폴리에틸렌글리콜 대신에 D-글루쿠로닉산을 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하여 D-글루쿠로닉산이 코팅된 산화가돌리늄 나노입자체를 제조하였다. Gadolinium oxide nanoparticles coated with D-glucuronic acid were prepared in the same manner as in Example 1, except that D-glucuronic acid was used instead of polyethylene glycol.
실시예 4: 산화가돌리늄-산화망간 복합입자에 트리프로필렌글리콜을 결합시켜 제조되는 복합 나노입자체Example 4: Composite nanoparticle itself prepared by bonding tripropylene glycol to a gadolinium oxide-manganese oxide composite particle
GdCl3ㆍ6H2O(5 m㏖)을 증류수 40 ㎖에 첨가하고, 이를 공기를 버블링하면서 260 ℃에서 24시간 동안 교반하여 반응시켜 산화가돌리늄 입자를 제조하였다. 다시 여기에 MnCl2ㆍ4H2O(5 m㏖)을 넣고 공기를 버블링하면서 260 ℃에서 24시간 반응시켰다. 여기에 트리프로필렌글리콜(5 m㏖)을 첨가하고, 150 ℃에서 24시간 반응시켰다. 반응이 완료된 후, 상온에서 냉각하고, 물을 첨가하여 입자체를 침전시켜 분리하였다. 분리된 입자체를 증류수로 3번 세척하여 복합 나노입자체를 제조하였다. GdCl 3 .6H 2 O (5 mmol) was added to 40 ml of distilled water and reacted with stirring at 260 ° C for 24 hours while bubbling air to prepare gadolinium oxide particles. Again, MnCl 2 .4H 2 O (5 mmol) was added thereto and reacted at 260 ° C for 24 hours while bubbling air. Tripropylene glycol (5 mmol) was added thereto and reacted at 150 ° C for 24 hours. After completion of the reaction, the reaction mixture was cooled at room temperature, and water was added to precipitate the pore. The separated mouths were washed three times with distilled water to prepare composite nano-particles themselves.
실시예 5: 산화가돌리늄-산화망간 복합입자에 D-글루쿠론산을 결합시켜 제조되는 복합 나노입자체Example 5: Composite nanoparticle itself prepared by bonding D-glucuronic acid to gadolinium oxide-manganese oxide composite particle
트리프로필렌글리콜 대신에 D-글루쿠론산을 사용하는 것을 제외하고는 상기 실시예 4과 동일한 방법으로 하여 복합 나노입자체를 제조하였다. The complex nano-particles themselves were prepared in the same manner as in Example 4, except that D-glucuronic acid was used instead of tripropylene glycol.
실시예 6: 산화가돌리늄-산화망간 복합입자에 락토바이온산을 결합시켜 제조되는 복합 나노입자체Example 6: Composite nanoparticle itself prepared by binding lactobionic acid to a gadolinium oxide-manganese oxide composite particle
트리프로필렌글리콜 대신에 락토바이온산을 사용하는 것을 제외하고는 상기 실시예 4과 동일한 방법으로 하여 복합 나노입자체를 제조하였다.The complex nano-particles were prepared in the same manner as in Example 4 except that lactobionic acid was used instead of tripropylene glycol.
실험예 1: 산화가돌리늄 나노입자체 크기 측정EXPERIMENTAL EXAMPLE 1 Measurement of Gadolinium Oxide Nanoparticle Size
상기 실시예 1~4에서 제조된 나노입자체 및 복합 나노입자체를 전자현미경으로 측정하기 위하여, 상기 나노입자체 및 복합 나노입자체를 메탄올에 분산처리를 한 후, 시편을 제작하였다. 이를 고해상도 전자현미경(제작사: JEOL, 모델: JEM 2100F)으로 측정하였다. 그 결과를 하기 도 1~4에 나타내었다.In order to measure the nano-particles themselves and the composite nano-particles prepared in Examples 1 to 4 by an electron microscope, the nano-particles themselves and the composite nano-particles themselves were dispersed in methanol, and specimens were prepared. This was measured with a high resolution electron microscope (manufactured by JEOL, model: JEM 2100F). The results are shown in Figs. 1 to 4.
도 1~4에서 보는 바와 같이, 본 발명에 따른 생체적합성 리간드가 코팅된 산화가돌리늄 나노입자체는 균일하고, 0.5~3 ㎚ 입자 크기를 보였다. 이는 본 발명에 따른 산화가돌리늄이 인체 흡수가 용이하게 이루어질 수 있음을 간접적으로 알 수 있었다.As shown in FIGS. 1 to 4, the biocompatible ligand-coated gadolinium oxide nanoparticles according to the present invention were homogeneous and showed a particle size of 0.5 to 3 nm. This indirectly indicates that the gadolinium oxide according to the present invention can be easily absorbed by the human body.
실험예 2: 산화가돌리늄 나노입자체의 상자성 측정Experimental Example 2: Parametric measurement of gadolinium oxide nano-particle itself
본 발명에 따른 제조방법에 의해서 제조된 실시예 1을 SQUID 자기력측정장치(SQUID magnetometer, 제작사: Quantum Design, 모델: MPMS 7)에 투입하고 측정하였다. 그 결과를 하기 도 5(a) 및 (b)에 나타내었다.Example 1 produced by the manufacturing method according to the present invention was put into a SQUID magnetometer (manufacturer: Quantum Design, model: MPMS 7) and measured. The results are shown in Figs. 5 (a) and 5 (b).
도 5(a)는 자기장을 일정하게 한 상태에서 실시예 1의 시편을 측정한 것이다. 실시예 1의 산화가돌리늄 나노입자체는 온도가 높아질수록 자기장의 모멘트 값이 하락함을 볼 수 있다.Fig. 5 (a) shows the specimen of Example 1 while keeping the magnetic field constant. It can be seen that the magnetic moment of the gadolinium oxide nanoparticles of Example 1 decreases as the temperature increases.
또한, 도 5(b)는 온도를 일정하게 한 상태에서 자기장의 변화에 따른 실시예 1의 시편의 변화를 살펴본 것이다. 실시예 1의 산화가돌리늄은 자기장이 0 Oe가 되었을때 모멘트 값도 0 emu/g가 됨을 알 수 있었다.5 (b) shows the change of the specimen of the first embodiment according to the change of the magnetic field in a state where the temperature is kept constant. The gadolinium oxide of Example 1 had a moment value of 0 emu / g when the magnetic field was 0 Oe.
상기 결과로 보아, 본 발명에 따른 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체는 상자성을 띄고 있음을 확인할 수 있었다.As a result, it was confirmed that the nanoparticles coated with the biocompatible ligand on the oxidized gadolinium nanoparticles according to the present invention were paramagnetic.
실험예 3: 산화가돌리늄 나노입자체의 생체고분자 코팅 측정 Experimental Example 3: Measurement of biopolymer coating of gadolinium oxide nano-particles themselves
본 발명에 따른 제조방법에 의해서 제조된 실시예 1을 FT-IR 적외선분광광도계(Fourier Transform Infrared Spectrophotometer, 제작사: Mattson Instruments Ins., 모델: Galaxy 7020A)에 투입하고 측정하였다. 그 결과를 하기 도 6 (a) 및 (b)과 도 7에 나타내었다.Example 1 produced by the manufacturing method according to the present invention was put into an FT-IR infrared spectrophotometer (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A) and measured. The results are shown in Figs. 6 (a) and 6 (b) and Fig.
도 6(a)는 폴리에틸렌글리콜의 FT-IR 스팩트럼이고, 도 6(b)는 폴리에틸렌글리콜가 코팅된 산화가돌리늄 나노입자체의 FT-IR 스팩트럼이다. 먼저 도 6(b)에 폴리에틸렌글리콜의 작용기 피크가 관찰되는 것으로 보아 산화가돌리늄 나노입자에 폴리에틸렌글리콜이 코팅된 것을 알 수 있다. 또한 도 6(b)에 1600 cm-1 위치에 C=O 피크는 폴리에틸렌글리콜의 카보닐기가 산화가돌리늄 나노입자에 화학결합된 것을 알 수 있다.FIG. 6 (a) is an FT-IR spectrum of polyethylene glycol, and FIG. 6 (b) is an FT-IR spectrum of polyethylene glycol-coated gadolinium oxide nanoparticles. First, the functional group peak of polyethylene glycol is observed in FIG. 6 (b), indicating that the gadolinium oxide nanoparticles are coated with polyethylene glycol. Also in Fig. 6 (b), it can be seen that the carbonyl group of polyethylene glycol is chemically bonded to the gadolinium oxide nanoparticles at a C = O peak at 1600 cm < -1 >.
또한, 도 7에서는 복합 나노입자체에 생체적합성 리간드인 트리프로필렌글리콜의 작용기 피크가 관찰되는 것으로 보아 복합입자에 생체적합성 리간드인 트리프로필렌글리콜이 코팅된 것을 알 수 있다.Further, in FIG. 7, the functional group peak of tripropylene glycol, which is a biocompatible ligand, is observed in the complex nano-particle itself, and it can be seen that the composite particle is coated with a biocompatible ligand, tripropylene glycol.
실험예 4: 농도에 따른 산화가돌리늄 나노입자체의 이완성 및 상자성 측정 Experimental Example 4: Determination of relaxation and paramagnetism of gadolinium oxide nano-particles by concentration
실시예 1에서 제조된 산화가돌리늄 나노입자체를 증류수로 현탁하여 0.0625, 0.125, 0.25, 0.5 mM 농도로 하여 시료를 제조하였다. 이를 MRI 장치(제작사: Mattson Instruments Ins., 모델: Galaxy 7020A)로 측정하고, 그 결과를 하기 도 8(a) 및 (b)와 도 9에 나타내었다.The gadolinium oxide nanoparticles prepared in Example 1 were suspended in distilled water at concentrations of 0.0625, 0.125, 0.25 and 0.5 mM to prepare samples. This was measured with an MRI apparatus (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A), and the results are shown in Figs. 8 (a) and (b) and Fig.
도 8(a) 및 (b)에 나타난 바와 같이, 산화가돌리늄 나노입자체의 농도가 높을수록 이완율 시간이 짧아지는 현상을 보이는데, 본 발명에 따른 산화가돌리늄 나노입자체는 농도 의존적인 T1 및 T2 map image가 나타남을 알 수 있었다. T1 및 T2 map image를 측정하고, 그 값을 역수값을 취하여, r1 및 r2값을 구하고, 그 결과를 도 9에 나타내었다.As shown in FIGS. 8 (a) and 8 (b), the relaxation rate time becomes shorter as the concentration of gadolinium oxide nanoparticle itself increases. The gadolinium oxide nanoparticles according to the present invention exhibit concentration-dependent T1 and T2 map image. The T1 and T2 map images were measured and the reciprocal values were taken to obtain r1 and r2 values, and the results are shown in Fig.
도 9에 나타난 바와 같이, r1 및 r2값을 대입하여 얻은 방정식의 기울기는 각각 11.6 및 13.4임을 알 수 있었다. 이를 r2/r1으로 계산하여 보면, 1에 가까운 값이 나옴을 알 수 있었다. 이는 이론적으로 항상 r2 기울기 값이 r1 기울기 값보다 높게 나타나지만, 유사함을 나타내고 이는 본 발명에 따른 조영제가 상자성을 갖음을 알 수 있었다. 또한, 본 발명에 따른 산화가돌리늄 나노입자체의 이완율인 r1의 기울기 값이 11.6로 나타났다. 이는 기존에 사용되고 있는 가돌리늄 복합체의 이완율 값이 평균 r1이 4로 나타나는 것에 비교하였을 때, 본 발명의 산화가돌리늄 나노입자체의 이완율 값이 더 높게 나타남을 알 수 있었다. 이는 본 발명에 따른 산화가돌리늄 나노입자체가 기존에 사용되고 있는 조영제 낮은 농도를 사용하더라도, 같은 조영효과를 보일 수 있음을 나타냈다. 그러므로, 본 발명에 따른 산화가돌리늄 나노입자체는 낮은 농도로도 효과적인 조영제로 사용될 수 있음 알 수 있었다.As shown in FIG. 9, the slopes of the equations obtained by substituting the values of r1 and r2 are 11.6 and 13.4, respectively. If we calculate this as r2 / r1, we can see that the value is close to 1. Theoretically, the r2 slope value always appears to be higher than the r1 slope value, but it is similar, indicating that the contrast agent according to the present invention is paramagnetic. In addition, the slope value of r1, which is the relaxation rate of the gadolinium oxide nanoparticles according to the present invention, was 11.6. This indicates that the relaxation rate of the gadolinium oxide nano-particles of the present invention is higher when the relaxation rate of the gadolinium complex used in the prior art is 4, which is the average value of r1. This indicates that the gadolinium oxide nanoparticles according to the present invention can exhibit the same contrasting effect even when a low concentration of contrast agent is used. Therefore, it has been found that the gadolinium oxide nano-particles themselves according to the present invention can be used as an effective contrast agent even at a low concentration.
실험예 5: 농도에 따른 복합 나노입자체의 이완성 및 상자성 측정 Experimental Example 5: Relaxation and parametric measurement of complex nano-particles according to concentration
실시예 1에서 제조된 복합 나노입자체를 증류수로 현탁하여 2, 1, 0.5, 0.25, 0.125 및 0.0625 mM 농도로 하여 시료를 제조하였다. 이를 MRI 장치(제작사: Mattson Instruments Ins., 모델: Galaxy 7020A)로 측정하고, 그 결과를 하기 도 10에 나타내었다.The complex nano-particles prepared in Example 1 were suspended in distilled water at a concentration of 2, 1, 0.5, 0.25, 0.125 and 0.0625 mM to prepare samples. This was measured with an MRI apparatus (manufactured by Mattson Instruments Ins., Model: Galaxy 7020A), and the results are shown in Fig.
도 10에 나타난 바와 같이, 본 발명에 따른 복합 나노입자체의 R1 및 R2 값의 역수 값을 취하여, r1 및 r2값을 구하였다.As shown in Fig. 10, the reciprocal values of the R1 and R2 values of the complex nano-particles themselves according to the present invention were taken and r1 and r2 values were obtained.
r1의 값과 r2의 값이 차이가 나는 이유는 복합 나노입자체가 수소핵 스핀이 이완될 때, z축으로의 이완율과 x-y축으로의 이완율이 다르기 때문이다. r1값은 x-y축 이완율과 관련되고 r2값은 z축으로의 이완율과 관련이 있다. 두 가지 이완은 각각 독립적으로 측정이 가능하며 이 복합 나노입자체는 T1 조영효과가 크므로 r1값이 10 이상으로 높게 나타났음을 확인하였다.The reason for the difference between r1 and r2 is that the complex nano-particle itself has different relaxation rates in the z-axis and the x-y axis when the hydrogen nuclear spin relaxes. The r1 value is related to the x-y axis relaxation rate and the r2 value is related to the relaxation rate in the z-axis. The two relaxations can be independently measured, and the composite nano-particles themselves have a high T1 contrast, which indicates that the r1 value is higher than 10.
실험예 6: 본 발명에 따른 나노입자체를 포함하는 조영제의 생체 내 조영효과Experimental Example 6: In vivo contrast effect of contrast agent containing nano-particles according to the present invention
뇌 종양이 유발된 350 g의 실험용 쥐(SD-rat, 효창사이언스)를 이소플루란(isoflurane, 중외제약)을 N2O 및 O2와 혼합하여 마취시킨 후, 이를 지속적으로 흡입시켜 마취를 유지시킨다. 마취가 된 실험용 쥐에 본 발명의 실시예 3에 따른 조영제 520 ㎕(0.007 mM)를 쥐 꼬리정맥을 통하여 주입하고, 상기 실험 동물을 MRI 장비(제작사: GE, 모델: Excite)에 넣고, 측정하였다. 그 결과를 하기 도 11(a) 및 (b)에 나타내었다.An anesthetic is maintained by inhalation of 350 g of a brain tumor-induced experimental rat (SD-rat, Hyochang Science) mixed with isoflurane (Choongwae Pharmaceutical Co., Ltd.) with N2O and O2 and continuously inhaled. 520 μl (0.007 mM) of the contrast agent according to Example 3 of the present invention was injected into anesthetized experimental rats through a rat tail vein, and the experimental animals were placed in an MRI apparatus (manufactured by GE, model: Excite) . The results are shown in Figs. 11 (a) and 11 (b).
도 11(a)는 본 발명에 따른 조영제를 투여하기 전의 실험용 쥐의 뇌 영상이고, 도 11(b)는 실시예 3의 조영제를 투여한 뇌 영상이다. 본 도면에서 보는 바와 같이, 도 11(b)에서는 본 발명에 따른 조영제를 투여하였을 경우, 도 11(b)에 표기되어 있는 것과 같이 실험용 쥐 내에 유발되어 있는 종양을 볼 수 있다.Fig. 11 (a) is a brain image of a laboratory mouse before administration of the contrast agent according to the present invention, and Fig. 11 (b) is a brain image of administration of the contrast agent of Example 3. Fig. As shown in FIG. 11 (b), when the contrast agent according to the present invention is administered, tumors induced in a laboratory rat as shown in FIG. 11 (b) can be seen.
따라서, 본 발명에 따라 제조된 산화가돌리늄 나노입자체는 조영제로서 유용하게 사용될 수 있다.Therefore, the gadolinium oxide nanoparticles prepared according to the present invention can be usefully used as a contrast agent.
실험예 7: 본 발명에 따른 복합 나노입자체를 포함하는 조영제의 생체 내 조영효과Experimental Example 7: In vivo contrast effect of contrast agent containing complex nano-particles according to the present invention
뇌 종양이 유발된 350 g의 실험용 쥐(SD-rat, 효창사이언스)를 이소플루란(isoflurane, 중외제약)을 N2O 및 O2와 혼합하여 마취시킨 후, 이를 지속적으로 흡입시켜 마취를 유지시킨다. 마취가 된 실험용 쥐에 본 발명의 실시예 3에 따른 조영제 520 ㎕(0.007 mM)를 쥐 꼬리정맥을 통하여 주입하고, 상기 실험 동물을 MRI 장비(제작사: GE, 모델: Excite)에 넣고, 측정하였다. 그 결과를 하기 도 12에 나타내었다.An anesthetic is maintained by inhalation of 350 g of a brain tumor-induced experimental rat (SD-rat, Hyochang Science) mixed with isoflurane (Choongwae Pharmaceutical Co., Ltd.) with N2O and O2 and continuously inhaled. 520 μl (0.007 mM) of the contrast agent according to Example 3 of the present invention was injected into anesthetized experimental rats through a rat tail vein, and the experimental animals were placed in an MRI apparatus (manufactured by GE, model: Excite) . The results are shown in Fig.
도 12에서 보는 바와 같이, 본 발명에 따른 복합 나노입자체를 포함하는 조영제를 투여할 경우, 쥐 내부 장기에 대한 높은 조영 효과를 보임을 알 수 있었다. 이는 본 발명의 복합 나노입자체의 크기가 작아 모든 장기로의 접근이 용이하고 조영효과가 높음을 알 수 있었다. 이는 뇌종양 유발될 경우, 뇌혈관관문을 더욱 용이하게 투과하여 뇌종양 진단에도 사용될 수 있다는 것을 간접적으로 알 수 있었다.As shown in FIG. 12, when the contrast agent containing the complex nano-particles according to the present invention was administered, it was found that the contrast enhancement effect on the internal organs of the mice was shown. This suggests that the complex nano particles of the present invention are small in size and easy to access to all organs and have a high contrast effect. This indirectly indicates that the brain tumor can be used to diagnose a brain tumor more easily when the brain tumor is induced.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 본 발명의 기술 사상 범위 내에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 첨부된 특허 청구 범위에 속하는 것은 당연하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Of course.

Claims (28)

  1. 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체.Nanoparticles themselves coated with biocompatible ligands on gadolinium oxide nanoparticles.
  2. 제1항에 있어서, The method according to claim 1,
    상기 생체적합성 리간드에 항체 또는 단백질이 결합되어 있는 것을 특징으로 하는 나노입자체.Wherein the biocompatible ligand is bound to an antibody or a protein.
  3. 제1항에 있어서, The method according to claim 1,
    상기 생체적합성 리간드는 폴리에틸렌 글리콜, 락토바이오닉산 및 D-글루쿠로닉산으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노입자체.Wherein the biocompatible ligand is at least one selected from the group consisting of polyethylene glycol, lactobionic acid, and D-glucuronic acid.
  4. 제1항에 있어서, The method according to claim 1,
    상기 산화가돌리늄 나노입자의 직경은 0.5~9 ㎚인 것을 특징으로 하는 나노입자체.Wherein the diameter of the gadolinium oxide nanoparticles is 0.5 to 9 nm.
  5. 제1항에 있어서, The method according to claim 1,
    상기 생체적합성 리간드가 코팅된 산화가돌리늄 나노입자체의 직경은 0.5 ~ 10 ㎚인 것을 특징으로 하는 나노입자체.Wherein the biocompatible ligand-coated gadolinium oxide nanoparticle itself has a diameter of 0.5 to 10 nm.
  6. 1) 극성 유기용매에 금속전구체 및 생체적합성 리간드를 첨가하여 혼합물을 얻는 단계;1) adding a metal precursor and a biocompatible ligand to a polar organic solvent to obtain a mixture;
    2) 상기 단계 1)의 혼합물에 공기를 공급하면서 고온에서 교반하여 반응물을 얻는 단계; 및2) stirring the mixture of step 1) at a high temperature while supplying air to obtain a reactant; And
    3) 상기 반응물에 유기용매를 첨가하여 최종산물을 얻는 단계;3) adding an organic solvent to the reaction product to obtain a final product;
    로 이루어지는 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체의 제조방법.Wherein the biocompatible ligand is coated on the gadolinium oxide nanoparticles.
  7. 제6항에 있어서, The method according to claim 6,
    상기 단계 1)의 극성 유기용매는 트리에틸렌 글리콜 및 트리프로필렌 글리콜으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the polar organic solvent in step 1) is at least one selected from the group consisting of triethylene glycol and tripropylene glycol.
  8. 제6항에 있어서, The method according to claim 6,
    상기 단계 1)의 금속전구체는 GdCl3·6H20 및 Gd(NO3)3으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the metal precursor of step 1) is at least one selected from the group consisting of GdCl3 6H2O and Gd (NO3) 3.
  9. 제6항에 있어서, The method according to claim 6,
    상기 금속전구체의 직경은 0.5 ~ 9 ㎚인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the metal precursor has a diameter of 0.5 to 9 nm.
  10. 제6항에 있어서, The method according to claim 6,
    상기 단계 1)의 생체적합성 리간드에 항체 또는 단백질이 결합되어 있는 것을 특징으로 하는 나노입자체의 제조방법.Wherein the biocompatible ligand of step 1) is bound to an antibody or a protein.
  11. 제6항에 있어서, The method according to claim 6,
    상기 단계 1)의 생체적합성 리간드는 폴리에틸렌 글리콜, 락토바이오닉산 및 D-글루쿠로닉산으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the biocompatible ligand of step 1) is at least one selected from the group consisting of polyethylene glycol, lactobionic acid, and D-glucuronic acid.
  12. 제6항에 있어서, The method according to claim 6,
    상기 단계 1)의 금속전구체 및 생체적합성 리간드는 1:0.5 ~ 0.5:1 몰비로 첨가되는 것을 특징으로 하는 나노입자체의 제조방법.Wherein the metal precursor and the biocompatible ligand of step 1) are added in a molar ratio of 1: 0.5 to 0.5: 1.
  13. 제6항에 있어서, The method according to claim 6,
    상기 단계 2)의 공기는 산소가 5 ~ 50% 이상 함유되어 있는 것을 특징으로 하는 나노입자체의 제조방법.Wherein the air of step 2) contains 5 to 50% or more of oxygen.
  14. 제6항에 있어서, The method according to claim 6,
    상기 단계 2)의 고온은 200 ~ 300 ℃인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the high temperature of step 2) is 200 to 300 占 폚.
  15. 제6항에 있어서, The method according to claim 6,
    상기 단계 2)에서 교반은 20 ~ 30 시간 동안 하는 것을 특징으로 하는 나노입자체의 제조방법.And stirring in the step 2) is performed for 20 to 30 hours.
  16. 제6항에 있어서, The method according to claim 6,
    상기 단계 3)의 유기용매는 아세톤 및 메틸에틸케톤으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the organic solvent in step 3) is at least one selected from the group consisting of acetone and methyl ethyl ketone.
  17. 제6항에 있어서, The method according to claim 6,
    상기 생체적합성 리간드가 코팅된 나노입자체의 직경은 0.5~10 ㎚인 것을 특징으로 하는 나노입자체의 제조방법.Wherein the biocompatible ligand-coated nanoparticle has a diameter of 0.5 to 10 nm.
  18. 제1항 또는 제6항의 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체를 포함하는 MRI 조영제.An MRI contrast agent comprising a nanoparticle itself coated with a biocompatible ligand of the gadolinium oxide nanoparticle of claim 1 or 6.
  19. 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합되는 복합 나노입자체.Composite nanoparticle itself in which a biocompatible ligand is bound to a composite particle coated with gadolinium oxide particles with manganese oxide.
  20. 제19항에 있어서, 20. The method of claim 19,
    상기 생체적합성 리간드는 D-글루쿠론산, 폴리에틸렌글리콜 및 락토바이온산으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 복합 나노입자체.Wherein the biocompatible ligand is at least one selected from the group consisting of D-glucuronic acid, polyethylene glycol, and lactobionic acid.
  21. 제19항에 있어서,20. The method of claim 19,
    상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것을 특징으로 하는 복합 나노입자체.Wherein the complex nano-particle itself has a diameter of 0.5 to 3 nm.
  22. 1) 가돌리늄 전구체를 이용하여 산화가돌리늄 입자를 제조하는 단계;1) preparing gadolinium oxide particles using a gadolinium precursor;
    2) 상기 산화가돌리늄 입자를 망간 전구체로 코팅하여 복합입자를 제조하는 단계; 및2) coating the gadolinium oxide particles with a manganese precursor to prepare composite particles; And
    3) 상기 복합입자에 생체적합성 리간드를 결합시키는 단계;3) binding the biocompatible ligand to the composite particle;
    을 포함하여 이루어지는 복합 나노입자체의 제조방법.Wherein the composite nano-particles are produced by a method comprising the steps of:
  23. 제22항에 있어서,23. The method of claim 22,
    상기 단계 1)의 산화가돌리늄 입자를 제조하는 방법은 가돌리늄 전구체를 증류수에 혼합하고, 200~300 ℃로 반응시키는 것을 특징으로 하는 복합 나노입자체의 제조방법.Wherein the gadolinium precursor is mixed with distilled water and reacted at a temperature of 200 to 300 ° C.
  24. 제22항에 있어서,23. The method of claim 22,
    상기 단계 2)의 복합입자를 제조하는 방법은 상기 단계 1)의 산화가돌리늄 입자가 포함된 용액에 망간 전구체를 첨가하고, 200~300 ℃로 반응시켜 산화가돌리늄 입자가 망간 전구체에서 유래된 산화망간으로 코팅되는 것을 특징으로 하는 복합 나노입자체의 제조방법.The method for preparing the composite particles of the step 2) comprises: adding a manganese precursor to a solution containing the gadolinium oxide particles of the step 1) and reacting the mixture at a temperature of 200 to 300 ° C to form a gadolinium oxide particle Wherein the coating layer is coated on the surface of the composite nano-particles.
  25. 제22항에 있어서,23. The method of claim 22,
    상기 단계 3)은 상기 단계 2)의 복합입자가 포함된 용액에 D-글루쿠론산, 폴리에틸렌글리콜 및 락토바이온산으로 이루어지는 군으로부터 선택되는 1종 이상인 생체적합성 리간드를 첨가하고, 130~170 ℃로 반응시키는 것을 특징으로 하는 복합 나노입자체의 제조방법.In the step 3), a biocompatible ligand, which is at least one selected from the group consisting of D-glucuronic acid, polyethylene glycol and lactobionic acid, is added to the solution containing the composite particles of the step 2) And reacting the resultant nanoparticles.
  26. 제22항에 있어서,23. The method of claim 22,
    상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것을 특징으로 하는 복합 나노입자체의 제조방법.Wherein the diameter of the composite nano-particle itself is 0.5 to 3 nm.
  27. 산화가돌리늄 입자를 산화망간으로 코팅한 복합입자에 생체적합성 리간드가 결합된 복합 나노입자체를 포함하는 조영제.Contrast agent containing a complex nano-particle itself in which a biocompatible ligand is bound to a composite particle coated with gadolinium oxide particles with manganese oxide.
  28. 제27항에 있어서,28. The method of claim 27,
    상기 복합 나노입자체의 직경은 0.5~3 ㎚인 것을 특징으로 하는 복합 나노입자체를 포함하는 조영제. Wherein the complex nano-particle itself has a diameter of 0.5 to 3 nm.
PCT/KR2009/005880 2008-12-30 2009-10-13 Nanoparticulates, complex nanoparticulates, and manufacturing method thereof WO2010076946A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0136752 2008-12-30
KR1020080136752A KR101072666B1 (en) 2008-12-30 2008-12-30 Coated gadolinium oxide nanoparticles by biocompatible ligand and synthesizing thereof
KR10-2009-0093463 2009-09-30
KR1020090093463A KR101126940B1 (en) 2009-09-30 2009-09-30 Complex nano-particles, and preparation methods thereof

Publications (1)

Publication Number Publication Date
WO2010076946A1 true WO2010076946A1 (en) 2010-07-08

Family

ID=42309974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005880 WO2010076946A1 (en) 2008-12-30 2009-10-13 Nanoparticulates, complex nanoparticulates, and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2010076946A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368930A (en) * 2019-08-07 2019-10-25 山东卓高新材料有限公司 A kind of nano manganese oxide catalysis material and preparation method thereof
CN111956810A (en) * 2020-08-03 2020-11-20 南京大学 Preparation method and application of dual-mode angiographic agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260137A1 (en) * 2004-05-18 2005-11-24 General Electric Company Contrast agents for magnetic resonance imaging
KR20070088392A (en) * 2006-02-24 2007-08-29 (주)에이티젠 Magnetic nanocomposite using amphiphilic compound and pharmaceutical composition comprising the same
US20080003184A1 (en) * 2004-09-14 2008-01-03 Kajsa Uvdal Superparamagnetic Gadolinium Oxide Nanoscale Particles and Compositions Comprising Such Particles
KR20080066999A (en) * 2005-11-10 2008-07-17 메르크 파텐트 게엠베하 Nanoparticles used as contrasting agents in magnetic resonance imaging

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260137A1 (en) * 2004-05-18 2005-11-24 General Electric Company Contrast agents for magnetic resonance imaging
US20080003184A1 (en) * 2004-09-14 2008-01-03 Kajsa Uvdal Superparamagnetic Gadolinium Oxide Nanoscale Particles and Compositions Comprising Such Particles
KR20080066999A (en) * 2005-11-10 2008-07-17 메르크 파텐트 게엠베하 Nanoparticles used as contrasting agents in magnetic resonance imaging
KR20070088392A (en) * 2006-02-24 2007-08-29 (주)에이티젠 Magnetic nanocomposite using amphiphilic compound and pharmaceutical composition comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368930A (en) * 2019-08-07 2019-10-25 山东卓高新材料有限公司 A kind of nano manganese oxide catalysis material and preparation method thereof
CN111956810A (en) * 2020-08-03 2020-11-20 南京大学 Preparation method and application of dual-mode angiographic agent

Similar Documents

Publication Publication Date Title
Shokouhimehr et al. Biocompatible Prussian blue nanoparticles: Preparation, stability, cytotoxicity, and potential use as an MRI contrast agent
Liu et al. Porous gold nanocluster-decorated manganese monoxide nanocomposites for microenvironment-activatable MR/photoacoustic/CT tumor imaging
Fatouros et al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle
Lee et al. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes
Hou et al. Nanodiamond–Manganese dual mode MRI contrast agents for enhanced liver tumor detection
WO2014163221A1 (en) Metal oxide nanoparticle-based t1-t2 dual-mode magnetic resonance imaging contrast agent
WO2014163222A1 (en) Metal oxide nanoparticle-based magnetic resonance imaging contrast agent with a central cavity
Du et al. Dual-targeting and excretable ultrasmall SPIONs for T 1-weighted positive MR imaging of intracranial glioblastoma cells by targeting the lipoprotein receptor-related protein
CN103143043B (en) Preparation method of Fe3O4/Au composite nanoparticles
Chen et al. Cy5. 5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas
WO2011085603A1 (en) Fe3o4/tio2 composite nano particles, preparation method and application thereof in magnetic resonance imaging contrast agent
Wang et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T 1–T 2 contrast agent for magnetic resonance imaging
Veintemillas-Verdaguer et al. Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents
WO2019151827A1 (en) Bilirubin derivative-based diagnostic and therapeutic ultrasound contrast agent
Hemalatha et al. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging
WO2013154329A1 (en) Contrast-enhancing agent for nuclear magnetic resonance imaging comprising melanin nanoparticles stably dispersed in water
CN101444630A (en) Method for preparing high magnetic resonance sensitivity ferroferric oxide nano-particle with tumor-targeting function
WO2010076946A1 (en) Nanoparticulates, complex nanoparticulates, and manufacturing method thereof
WO2020197046A1 (en) Ultrafine iron oxide nanoparticle-based magnetic resonance imaging t1 contrast agent
CN104672462B (en) A kind of multiple tooth bionical ligand for enhancing nano-particle biocompatibility and stability and preparation method thereof
KR101072666B1 (en) Coated gadolinium oxide nanoparticles by biocompatible ligand and synthesizing thereof
CN103110965B (en) Ferroferric oxide nanometer material as well as preparation method and application thereof
CN106310297A (en) Multifunctional high-polymer prodrug nano-scale drug delivery system as well as preparation method and use thereof
KR101126940B1 (en) Complex nano-particles, and preparation methods thereof
WO2009116755A2 (en) Magnetic resonance imaging t1 contrast media containing manganese tetroxide nanoparticles and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836267

Country of ref document: EP

Kind code of ref document: A1