WO2010076864A1 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
WO2010076864A1
WO2010076864A1 PCT/JP2009/070404 JP2009070404W WO2010076864A1 WO 2010076864 A1 WO2010076864 A1 WO 2010076864A1 JP 2009070404 W JP2009070404 W JP 2009070404W WO 2010076864 A1 WO2010076864 A1 WO 2010076864A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
piezoelectric
film
piezoelectric element
ceramic
Prior art date
Application number
PCT/JP2009/070404
Other languages
French (fr)
Japanese (ja)
Inventor
昌宣 鶴子
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010076864A1 publication Critical patent/WO2010076864A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers

Definitions

  • the present invention relates to a piezoelectric element having as a piezoelectric film a ceramic thin film formed by an aerosol deposition method.
  • the aerosol deposition method has attracted attention as a method for forming a piezoelectric film in a piezoelectric actuator used in an inkjet printer or the like.
  • an aerosol formed by dispersing ceramic fine particles in a gas is sprayed from a nozzle and sprayed onto the substrate surface at a high speed to pulverize and deposit the fine particles on the substrate to form a ceramic thin film.
  • This film-forming method utilizes the normal temperature impact solidification phenomenon caused by the induction of mechanochemical reaction caused by the release of the local impact energy generated by the collision of ceramic fine particles with the substrate surface.
  • this film forming method is performed at room temperature, the sintering process at 900 ° C. or higher, which is performed in the conventional ceramic forming method, is not necessary. This eliminates the need to design a thin film in consideration of dimensional accuracy. Further, in this film forming method, a dense nanocrystal structure can be formed by crushing fine particles.
  • a grain growth annealing process by heating at a relatively high temperature is performed after the film formation.
  • Fe and Cr in stainless steel diffuse into the piezoelectric layer due to the grain growth annealing treatment, and the piezoelectric characteristics are deteriorated.
  • the grain growth annealing process is a process aimed at improving the piezoelectric characteristics and the like of the thin film by heating the thin film formed by the aerosol deposition method to grow crystal grains in the thin film.
  • the above diffusion can be prevented by providing a diffusion prevention layer made of an insulating ceramic material, a metal material, a conductive oxide or the like between the stainless steel substrate and the piezoelectric layer. This is proposed in Patent Document 1.
  • the film formed by the aerosol deposition method is used as the above-described piezoelectric layer and diffusion preventing layer, the film is annealed at the film interface between the piezoelectric layer and the diffusion preventing layer after the grain growth annealing treatment.
  • peeling was very likely to occur.
  • a crack or pinhole is formed in the manufactured piezoelectric element, so that a pair of electrodes sandwiching the piezoelectric layer is electrically connected and short-circuited, and the yield of the piezoelectric element is not improved. there were.
  • the present invention provides a laminated piezoelectric material that can achieve excellent piezoelectric characteristics that are less likely to cause film peeling and short-circuiting as described above, while having a ceramic film formed by an aerosol deposition method as a piezoelectric layer and a diffusion prevention layer.
  • An object is to provide an element.
  • the piezoelectric element according to the present invention is a piezoelectric element having a four-layer structure in which a first layer, a second layer, and a third layer, which is a piezoelectric layer, are laminated in this order on a substrate.
  • the second layer and the third layer are ceramic films each formed by an aerosol deposition method, and the elastic modulus of the first layer is larger than the elastic modulus of the second layer, and the elastic modulus of the second layer. Is larger than the elastic modulus of the third layer.
  • Type piezoelectric element can be provided.
  • the film forming apparatus includes an aerosol generator 1 for generating aerosol by dispersing material particles in a carrier gas, and a chamber 2 for performing film formation inside.
  • the aerosol generator 1 stores a predetermined amount of material particles and introduces a carrier gas.
  • the aerosol generator 1 generates a gas when a carrier gas is introduced, and further generates vibrations by dispersing material particles in the carrier gas by applying vibration using an ultrasonic vibration device from below.
  • carrier gas inert gas, such as helium and argon, nitrogen, air, oxygen etc. can be used, for example.
  • One end of an aerosol supply pipe 3 is inserted in the upper part of the aerosol generator 1.
  • the other end of the aerosol supply pipe 3 is disposed inside the chamber 2 and is connected to an injection nozzle 4.
  • the chamber 2 is connected to a mechanical booster pump and a rotary pump, and these pumps can depressurize the inside of the chamber 2. As a result, the internal pressure of the chamber 2 becomes lower than the internal pressure of the aerosol generator 1. Then, due to the differential pressure between the internal pressure of the chamber 2 and the internal pressure of the aerosol generator 1, the aerosol generated in the aerosol generator 1 is sucked into the aerosol supply pipe 3 and supplied to the injection nozzle 4.
  • the cavity inside the injection nozzle 4 has such a shape that the cross-sectional area decreases as it travels inside. For this reason, the aerosol that has entered the inside of the injection nozzle 4 from the introduction opening of the injection nozzle 4 is accelerated and sprayed from the injection opening of the injection nozzle 4 onto the substrate 7 as an aerosol flow 5 at a high speed. The material particles colliding with the surface of the substrate 7 are crushed and deposited to form a thin film.
  • a substrate holder 6 is disposed above the injection opening of the injection nozzle 4 as a holding means for attaching the substrate 7 to the lower surface.
  • the substrate holder 6 has a rectangular plate shape.
  • the substrate holder 6 is suspended from the ceiling of the chamber 2 in a horizontal posture by a driving device 8 as driving means.
  • the driving device 8 drives the substrate holder 6 in the left-right direction in FIG. By this reciprocating motion in the left-right direction, scanning film formation on the substrate 7 is performed. By this scanning film formation, a thin film is formed in a predetermined wide range of the substrate 7.
  • the substrate that is the film formation target is typically a stainless steel substrate, but is not limited thereto, and may be a substrate made of other metal, silicon, semiconductor, resin, or the like.
  • lead zirconate titanate As a material constituting the material particles, that is, a thin film material formed by an aerosol deposition method, typically, lead zirconate titanate (PZT) can be given.
  • Lead zirconate titanate is generally known as a material that achieves a desired piezoelectric effect with a film thickness of about several ⁇ m.
  • barium titanate, lead titanate, lead magnesium niobate (PMN), lead nickel niobate (PNN), lead zinc niobate, or the like can be used.
  • the piezoelectric material as described above is used as the material constituting the third layer.
  • aluminum oxide, zirconium oxide, silica Metal oxides such as mullite can be used as the material constituting the first layer and the second layer.
  • the particle size of the material particles may be any particle size that can be used in the aerosol deposition method, and may be, for example, about 0.5 ⁇ m to 5.0 ⁇ m.
  • the film thickness of the thin film formed by the aerosol deposition method is usually about several ⁇ m to several tens of ⁇ m.
  • the piezoelectric element of the present invention shown in FIG. 2 has a first ceramic layer 11 as a first layer laminated on a substrate 14.
  • a second ceramic layer 12 as a second layer is laminated on the first ceramic layer 11.
  • a lower electrode 15 is formed on the second ceramic layer 12.
  • An upper electrode 16 is laminated on the third ceramic layer 13.
  • the ceramics constituting the first ceramic layer 11, the second ceramic layer 12, and the third ceramic layer 13 may be selected from various ceramics that satisfy the above-described elastic modulus relationship.
  • the third ceramic layer 13 needs to be a piezoelectric layer.
  • at least the third ceramic layer 13 is made of a piezoelectric material.
  • the first ceramic layer 11 and the second ceramic layer 12 may be made of a piezoelectric material or may be made of a ceramic material other than the piezoelectric material.
  • each layer is formed by the aerosol deposition method described above.
  • a lower electrode 15 is provided over the entire surface of the second ceramic layer 12 at the interface between the second ceramic layer 12 and the third ceramic layer 13.
  • the lower electrode 15 is used as a ground electrode that is grounded and always has a ground potential.
  • an upper electrode 16 configured as an electrode pattern by a plurality of independent regions is provided on the upper surface of the third ceramic layer 13.
  • the upper electrode 16 has a lead portion connected to each individual region, and is connected to the drive circuit IC via the lead portion.
  • the upper electrode 16 is used as a drive electrode to which a potential different from the ground potential and the ground potential is selectively applied by the drive circuit IC.
  • These electrode layers are preferably made of a metal such as Au or Pt.
  • the first ceramic layer 11 is formed on the surface of the substrate by the above-described aerosol deposition method.
  • the second ceramic layer 12 is formed on the surface of the first ceramic layer 11 by an aerosol deposition method.
  • the lower electrode 15 is formed on the surface of the second ceramic layer 12 by vapor deposition or sputtering, or by applying and drying a paste containing metal particles. Film.
  • a stress release annealing process is performed by heating at a relatively low temperature (about 500 ° C.).
  • the stress release annealing treatment is performed for the purpose of heating the thin film formed by the aerosol deposition method to remove the film forming gas and moisture mixed in the film and releasing the residual stress of the thin film. It is processing.
  • the third ceramic layer 13 which is a piezoelectric layer is again formed on the surface of the lower electrode 15 by the aerosol deposition method.
  • grain growth annealing is performed by heating at a relatively high temperature (about 800 to 900 ° C.) in order to grow crystal grains of the piezoelectric layer.
  • the purpose of grain growth annealing is to heat the piezoelectric layer formed by the aerosol deposition method to achieve growth of crystal grains in the thin film and correction of lattice defects, and to improve the piezoelectric properties of the thin film. It is a process performed in. As described above, the piezoelectric layer formed by the aerosol deposition method has a large change in the elastic modulus in the vicinity of the interface due to the grain growth annealing process. However, by adopting the layer structure according to the present invention, film peeling, etc. The problem can be avoided.
  • the upper electrode 16 is formed on the surface of the third ceramic layer 13.
  • masking is performed and a vapor deposition method or a sputtering method may be performed.
  • a metal layer may be formed on the entire surface of the third ceramic layer 13 by vapor deposition or sputtering, and then formed into a predetermined pattern using photolithography etching.
  • the upper electrode 16 may be formed by screen printing directly on the surface of the third ceramic layer 13. As described above, the piezoelectric element according to the present invention can be manufactured.
  • the elastic modulus of the first ceramic layer 11 constituting the four-layer structure is larger than that of the second ceramic layer 12, and the elastic modulus of the second ceramic layer 12 is that of the third ceramic layer 13. It is comprised so that it may become larger than an elasticity modulus.
  • the gap of the elastic modulus between the ceramic layers can be reduced, so that the stress generated between the layers is reduced, and the interfacial peeling of the piezoelectric layer is less likely to occur.
  • cracks and pinholes are less likely to be formed, short circuits are less likely to occur.
  • the piezoelectric characteristics of the piezoelectric element are improved by reducing the internal stress of the piezoelectric layer.
  • the elastic modulus of the ceramic film referred to in the present invention can be measured by a nanoindentation method. Specifically, it is a value measured using an ultra-fine indentation hardness tester: ENT-1100a manufactured by Elionix Co., with an indentation load of 5 mN.
  • the elastic modulus here is a value measured after each layer is formed and before annealing is performed.
  • the piezoelectric characteristic was calculated by calculating the value of the piezoelectric constant ⁇ d31, and evaluating the magnitude of this value.
  • This piezoelectric constant -d31 was calculated by an operation such as measuring the displacement of the piezoelectric actuator, as will be described later.
  • the first layer is made of zirconium oxide
  • the second layer and the third layer are made of lead zirconate titanate
  • the second layer is a film more than the third layer. The thickness is thin.
  • the elastic modulus of the second layer is made larger than that of the third layer by making the film thickness of the second layer thinner than the film thickness of the third layer.
  • the elastic modulus of a ceramic film formed by an aerosol deposition method depends on the thickness of the ceramic film as well as the type of ceramic. That is, in the case of a ceramic film made of the same material, the light ceramic film becomes harder, that is, the elastic modulus increases. Further, as described above, it is also affected by the elastic modulus of the lower layer of the ceramic film. In this embodiment, the relationship between the elastic moduli of the second layer and the third layer is adjusted using these properties.
  • the first layer is made of aluminum oxide
  • the second layer is made of zirconium oxide
  • the third layer is made of lead zirconate titanate.
  • the aluminum oxide thin film generally has a larger elastic modulus than the zirconium oxide thin film, this embodiment uses this relationship.
  • the first layer is made of aluminum oxide
  • the second layer and the third layer are made of lead zirconate titanate
  • the second layer is a film more than the third layer. The thickness is thin.
  • the relationship between the elastic moduli of the second layer and the third layer is adjusted using the same properties as the first embodiment.
  • the relationship that the elastic modulus of the first layer is larger than the elastic modulus of the second layer and the elastic modulus of the second layer is larger than the elastic modulus of the third layer can be satisfied.
  • the elastic modulus gap between the ceramic layers can be reduced as compared with the conventional piezoelectric element having a three-layer structure. For this reason, even if annealing is performed after film formation by the aerosol deposition method, peeling at the film interface hardly occurs, and electrical evaluation is good. Therefore, the yield can be improved and excellent piezoelectric characteristics can be achieved.
  • Example 1 Preparation of substrate Diffusion bonded SUS substrate and evaluation SUS substrate: 15 ⁇ 35 ⁇ 0.4t were prepared. Using a nanoindenter, the elastic modulus of the evaluation SUS substrate was measured at a load of 5 mN.
  • Formation of First Layer A ZrO 2 film was formed as a first layer serving as a diffusion prevention layer on these substrates by a film forming apparatus based on the aerosol deposition method based on the above-described embodiment.
  • An aerosol generator was charged with 160 g of ZrO 2 powder.
  • the SUS substrate was set in the substrate holder, and the portions other than the film formation range were attached with tape.
  • the substrate holder was set on the XY stage in the film forming chamber, and reciprocal scanning was started. In addition, the stage movement repeated the “U-shaped movement”, and two rows (two sheets) of film formation were performed in the same batch.
  • the chamber which is the film forming chamber was evacuated to an ultimate vacuum pressure of 10 to 20 Pa.
  • Carrier gas was introduced from three systems (flow, crushing, acceleration), and the raw material powder was fluidly stirred. In accordance with a predetermined total flow rate (total of three systems), the flow rate of the flowing gas was set constant while observing the flow state.
  • aerosol injection was performed on each SUS substrate for a predetermined film formation time. After the predetermined film formation time was completed, the film formation gas was stopped and the film formation chamber was opened in vacuum. The substrate holder was removed from the XY stage to obtain a SUS substrate having a first layer formed on the surface.
  • the surface of the SUS substrate on which the first layer was formed was air blown to remove the adhered powder.
  • the film thickness of the first layer on the SUS substrate was measured using a step gauge, it was 1.6 ⁇ m.
  • the elastic modulus of the first layer on the SUS substrate for evaluation was measured using a nanoindenter at a load of 5 mN. The measurement result of the elastic modulus is shown in FIG.
  • the SUS substrate on which the second layer was formed was subjected to ultrasonic cleaning with pure water for a treatment time of 1 min to remove the adhered powder. Water was removed at 150 ° C. ⁇ 30 min and dried. When the film thickness of the second layer on the SUS substrate was measured using a step gauge, it was 1.5 ⁇ m. Next, the elastic modulus of the second layer on the evaluation SUS substrate was measured using a nanoindenter at a load of 5 mN.
  • a PZT film was formed as a piezoelectric layer as the third layer on the laminate after the stress release annealing treatment by the aerosol deposition method similar to that for forming the second layer.
  • the surface of the laminate was air blown to remove the adhered powder.
  • the film thickness of the piezoelectric layer on the SUS substrate was measured using a step gauge, it was 4.9 ⁇ m.
  • the elastic modulus of the piezoelectric layer on the evaluation SUS substrate was measured using a nanoindenter at a load of 5 mN.
  • the obtained laminate was put into a muffle furnace and annealed at 850 ° C. ⁇ 30 min to grow PZT crystal grains on the SUS substrate.
  • terminals for voltage application were connected to the upper electrode and the lower electrode, respectively, where there was no defect determined to be good in electrical evaluation. Then, after heating to 250 ° C. in a heat treatment furnace, a DC voltage corresponding to the film thickness was applied between the terminals under a polarization condition of 6 kv / cm ⁇ 15 min. Then, after cooling to 50 ° C., application of the DC voltage was stopped. Finally, the terminal was removed.
  • Displacement measurement A terminal for voltage application was again connected to the upper electrode and the lower electrode. Next, an AC voltage (input waveform: sine wave of 0 to 20 V, frequency 4 kHz) is applied between the terminals, and the dynamic displacement of the actuator diaphragm (diffusion bonding SUS substrate) at that time is applied to the laser Doppler method. Measured.
  • Example 2 ZrO 2 powder in the step of forming the first layer: Al 2 O 3 powder instead of 160 g: using 140 g, the second layer PZT particles in the forming step: except for using 160 g: ZrO 2 powder instead of 200g
  • a piezoelectric element having a four-layer structure made of SUS substrate / Al 2 O 3 / ZrO 2 / PZT in the same manner as in Example 1. No steps after the polarization treatment were performed.
  • the film thickness of the first layer was 1.3 ⁇ m
  • the film thickness of the second layer was 4.5 ⁇ m
  • the film thickness of the piezoelectric layer was 5.2 ⁇ m.
  • Example 3 consisting of SUS substrate / Al 2 O 3 / PZT / PZT in the same manner as in Example 1 except that Al 2 O 3 powder: 140 g was used instead of ZrO 2 powder: 160 g in the first layer forming step.
  • a layered piezoelectric element was manufactured. No steps after the polarization treatment were performed. The film thickness of the first layer was 1.9 ⁇ m, the film thickness of the second layer was 1.6 ⁇ m, and the film thickness of the piezoelectric layer was 7.0 ⁇ m.
  • Example 1 A piezoelectric element having a three-layer structure made of SUS substrate / Al 2 O 3 / PZT was manufactured in the same manner as in Example 3 except that the step of forming the second layer was omitted. Further, all steps after the polarization treatment were performed in the same manner as in Example 1, and the piezoelectric constant -d31 was 38 pm / V. The first layer had a thickness of 2.0 ⁇ m, and the piezoelectric layer had a thickness of 5.0 ⁇ m. The result of measuring the elastic modulus measured in the same manner as above is shown in FIG. Table 1 shows the determination results of film peeling and electrical evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Provided is a laminated piezoelectric element which comprises thin films formed by the aerosol deposition method and yet shows little film detachment, and which has highly evaluated electrical properties and, therefore, can achieve an improved yield and excellent piezoelectric characteristics. A piezoelectric element having a four-layered structure comprising a first layer, a second layer and a third layer that are laminated in this order on a substrate, wherein the first, second and third layers are respectively ceramic films formed by the aerosol deposition method, and the modulus of elasticity of the first layer is greater than the modulus of elasticity of the second layer and the modulus of elasticity of the second layer is greater than the modulus of elasticity of the third layer.  Examples of the specific embodiment of the first layer/second layer/third layer include ZrO2/PZT/PZT, Al2O3/ZrO2/PZT and Al2O3/PZT/PZT.

Description

圧電素子Piezoelectric element
 本発明は、エアロゾルデポジション法によって成膜したセラミックス薄膜を圧電膜として有する圧電素子に関する。 The present invention relates to a piezoelectric element having as a piezoelectric film a ceramic thin film formed by an aerosol deposition method.
 インクジェットプリンタ等に用いられる圧電アクチュエータにおける圧電膜を形成する方法として、近年、エアロゾルデポジション法が注目されている。エアロゾルデポジション法は、気体中にセラミックス微粒子を分散することにより形成されるエアロゾルをノズルから噴射し、高速で基板表面に吹き付けることによって、上記基板上で微粒子を粉砕し堆積させてセラミックス薄膜を形成する成膜方法である。この成膜方法は、基板表面へのセラミックス微粒子の衝突で発生する局所的な衝撃エネルギーが開放することに起因したメカノケミカル反応の誘起によって起こる常温衝撃固化現象を利用しており、粒子衝突時の衝撃力を膜形成時の反応エネルギーとして作用させる成膜技術である。この成膜方法は常温で実施されるので、従来のセラミックス形成法において実施されていた900℃以上での焼結プロセスが不要となる。そのため、寸法精度を考慮した薄膜設計を行う必要がなくなる。また、この成膜方法では微粒子の破砕によって緻密なナノ結晶組織を形成することができる。 In recent years, the aerosol deposition method has attracted attention as a method for forming a piezoelectric film in a piezoelectric actuator used in an inkjet printer or the like. In the aerosol deposition method, an aerosol formed by dispersing ceramic fine particles in a gas is sprayed from a nozzle and sprayed onto the substrate surface at a high speed to pulverize and deposit the fine particles on the substrate to form a ceramic thin film. This is a film forming method. This film-forming method utilizes the normal temperature impact solidification phenomenon caused by the induction of mechanochemical reaction caused by the release of the local impact energy generated by the collision of ceramic fine particles with the substrate surface. This is a film formation technique in which an impact force acts as reaction energy during film formation. Since this film forming method is performed at room temperature, the sintering process at 900 ° C. or higher, which is performed in the conventional ceramic forming method, is not necessary. This eliminates the need to design a thin film in consideration of dimensional accuracy. Further, in this film forming method, a dense nanocrystal structure can be formed by crushing fine particles.
 エアロゾルデポジション法を利用してステンレス基板上に直接圧電層を成膜する場合には、特許文献3に示されるように成膜後に比較的高温の加熱による粒成長アニール処理が行われる。しかしながら、この粒成長アニール処理によりステンレス中のFeやCrが圧電層に拡散し、圧電特性が低下してしまうことが知られている。なお、粒成長アニール処理とは、エアロゾルデポジション法により形成された薄膜を加熱して薄膜内の結晶粒を成長させて、薄膜の圧電特性等を向上させることを目的とした処理である。 When forming a piezoelectric layer directly on a stainless steel substrate using the aerosol deposition method, as shown in Patent Document 3, a grain growth annealing process by heating at a relatively high temperature is performed after the film formation. However, it is known that Fe and Cr in stainless steel diffuse into the piezoelectric layer due to the grain growth annealing treatment, and the piezoelectric characteristics are deteriorated. The grain growth annealing process is a process aimed at improving the piezoelectric characteristics and the like of the thin film by heating the thin film formed by the aerosol deposition method to grow crystal grains in the thin film.
 圧電特性の低下を防止するために、ステンレス基板と圧電層の間に、絶縁性セラミックス材料や、金属材料、導電性酸化物等からなる拡散防止層を設けることによって上述の拡散を防止することが特許文献1にて提案されている。 In order to prevent the deterioration of the piezoelectric characteristics, the above diffusion can be prevented by providing a diffusion prevention layer made of an insulating ceramic material, a metal material, a conductive oxide or the like between the stainless steel substrate and the piezoelectric layer. This is proposed in Patent Document 1.
 さらに、エアロゾルデポジション法において基板のダメージを低減して積層体構造の機械的強度の低下を防ぐことを目的として、基板とエアロゾルデポジション法による堆積膜との間に、酸化物材料からなる中間膜を設けることが特許文献2にて提案されている。 Furthermore, in order to reduce the damage of the substrate in the aerosol deposition method and prevent the mechanical strength of the laminate structure from being lowered, an intermediate made of an oxide material is formed between the substrate and the deposited film by the aerosol deposition method. Providing a film is proposed in Patent Document 2.
特開2006-261656号公報JP 2006-261656 A 特開2001-152361号公報JP 2001-152361 A 特開2007-88449号公報JP 2007-88449 A
 しかしながらエアロゾルデポジション法により形成されたセラミックス膜を上述した圧電層及び拡散防止層として用いた場合には、粒成長アニール処理をおこなった後に、圧電層と拡散防止層との間の膜界面で膜剥離がきわめて発生しやすいという問題があった。また、たとえ膜剥離が発生しなくとも、製造した圧電素子にクラックやピンホールが形成されることにより圧電層を挟む一対の電極が導通して短絡し、圧電素子の歩留りが向上しないという問題もあった。これらに加えて、圧電素子の圧電特性についてもさらに改善することが望まれていた。 However, when the ceramic film formed by the aerosol deposition method is used as the above-described piezoelectric layer and diffusion preventing layer, the film is annealed at the film interface between the piezoelectric layer and the diffusion preventing layer after the grain growth annealing treatment. There was a problem that peeling was very likely to occur. In addition, even if film peeling does not occur, a crack or pinhole is formed in the manufactured piezoelectric element, so that a pair of electrodes sandwiching the piezoelectric layer is electrically connected and short-circuited, and the yield of the piezoelectric element is not improved. there were. In addition to these, it has been desired to further improve the piezoelectric characteristics of the piezoelectric element.
 そこで本発明は、圧電層及び拡散防止層として、エアロゾルデポジション法により形成されたセラミックス膜を有するものでありながら、上述した膜剥離や短絡が発生しにくい優れた圧電特性を達成できる積層型圧電素子を提供することを目的とする。 Therefore, the present invention provides a laminated piezoelectric material that can achieve excellent piezoelectric characteristics that are less likely to cause film peeling and short-circuiting as described above, while having a ceramic film formed by an aerosol deposition method as a piezoelectric layer and a diffusion prevention layer. An object is to provide an element.
 本発明に係る圧電素子は、基板の上に、第一層、第二層、及び、圧電層である第三層がこの順序で積層された四層構造の圧電素子であって、第一層、第二層、及び第三層は、それぞれがエアロゾルデポジション法によって成膜されたセラミックス膜であり、第一層の弾性率は第二層の弾性率よりも大きく、第二層の弾性率は第三層の弾性率よりも大きいことを特徴とする。 The piezoelectric element according to the present invention is a piezoelectric element having a four-layer structure in which a first layer, a second layer, and a third layer, which is a piezoelectric layer, are laminated in this order on a substrate. The second layer and the third layer are ceramic films each formed by an aerosol deposition method, and the elastic modulus of the first layer is larger than the elastic modulus of the second layer, and the elastic modulus of the second layer. Is larger than the elastic modulus of the third layer.
 本発明によると、エアロゾルデポジション法により形成されたセラミックス膜を有しながらも、膜剥離が発生しにくく、電気評価が良好であるので歩留りが改善されるとともに、優れた圧電特性を達成できる積層型圧電素子を提供することができる。 According to the present invention, while having a ceramic film formed by the aerosol deposition method, the film peeling hardly occurs and the electrical evaluation is good, so that the yield is improved and excellent piezoelectric characteristics can be achieved. Type piezoelectric element can be provided.
本発明に係る圧電素子を製造する際に使用し得る、エアロゾルデポジション法に基づいた成膜装置の概略図である。It is the schematic of the film-forming apparatus based on the aerosol deposition method which can be used when manufacturing the piezoelectric element which concerns on this invention. 本発明に係る4層構造の圧電素子の層構造を示す概略図である。It is the schematic which shows the layer structure of the piezoelectric element of the 4 layer structure which concerns on this invention. 実施例1~3で測定した、4層構造の圧電素子を構成する各層の弾性率を示すグラフである。4 is a graph showing the elastic modulus of each layer constituting a piezoelectric element having a four-layer structure, measured in Examples 1 to 3. 比較例1で測定した、3層構造の圧電素子を構成する各層の弾性率を示すグラフである。5 is a graph showing the elastic modulus of each layer constituting a piezoelectric element having a three-layer structure, measured in Comparative Example 1. FIG.
 以下に、本発明の実施形態を図面に基づいて説明する。まずエアロゾルデポジション法に用いる成膜装置について説明する。この成膜装置は、キャリアガスに材料粒子を分散させてエアロゾルを発生させるためのエアロゾル生成器1と、内部で成膜を実施するためのチャンバ2とを備えている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a film forming apparatus used for the aerosol deposition method will be described. The film forming apparatus includes an aerosol generator 1 for generating aerosol by dispersing material particles in a carrier gas, and a chamber 2 for performing film formation inside.
 エアロゾル生成器1には所定量の材料粒子が収納されており、キャリアガスが導入される。エアロゾル生成器1は、キャリアガス導入の際に巻き上げガスを発生させ、さらに下部から超音波加振装置を用いた振動を加えることによって、キャリアガスに材料粒子を分散させて、エアロゾルを発生する。前記キャリアガスとしては、例えば、ヘリウム、アルゴン等の不活性ガスや、窒素、空気、酸素等を使用することができる。 The aerosol generator 1 stores a predetermined amount of material particles and introduces a carrier gas. The aerosol generator 1 generates a gas when a carrier gas is introduced, and further generates vibrations by dispersing material particles in the carrier gas by applying vibration using an ultrasonic vibration device from below. As said carrier gas, inert gas, such as helium and argon, nitrogen, air, oxygen etc. can be used, for example.
 エアロゾル生成器1の上部にはエアロゾル供給管3の一端が挿入されている。エアロゾル供給管3の他端はチャンバ2の内部に配置され、噴射ノズル4が接続されている。 One end of an aerosol supply pipe 3 is inserted in the upper part of the aerosol generator 1. The other end of the aerosol supply pipe 3 is disposed inside the chamber 2 and is connected to an injection nozzle 4.
 チャンバ2には、メカニカルブースターポンプとロータリーポンプ等が接続されており、これらのポンプはチャンバ2の内部を減圧できる。これによって、チャンバ2の内圧がエアロゾル生成器1の内圧と比較して低圧になる。そして、チャンバ2の内圧とエアロゾル生成器1の内圧との差圧によって、エアロゾル生成器1内で発生したエアロゾルがエアロゾル供給管3に吸い込まれ、噴射ノズル4に供給される。 The chamber 2 is connected to a mechanical booster pump and a rotary pump, and these pumps can depressurize the inside of the chamber 2. As a result, the internal pressure of the chamber 2 becomes lower than the internal pressure of the aerosol generator 1. Then, due to the differential pressure between the internal pressure of the chamber 2 and the internal pressure of the aerosol generator 1, the aerosol generated in the aerosol generator 1 is sucked into the aerosol supply pipe 3 and supplied to the injection nozzle 4.
 噴射ノズル4の内部の空洞は、内部を進行するに従い横断面積が減少していくような形状を有している。このため、噴射ノズル4の導入開口から噴射ノズル4の内部に進入したエアロゾルは、加速されたうえで、噴射ノズル4の射出開口から、エアロゾル流5として高速で基板7に吹き付けられる。基板7の表面に衝突した材料粒子が破砕し、堆積することによって、薄膜が形成される。 The cavity inside the injection nozzle 4 has such a shape that the cross-sectional area decreases as it travels inside. For this reason, the aerosol that has entered the inside of the injection nozzle 4 from the introduction opening of the injection nozzle 4 is accelerated and sprayed from the injection opening of the injection nozzle 4 onto the substrate 7 as an aerosol flow 5 at a high speed. The material particles colliding with the surface of the substrate 7 are crushed and deposited to form a thin film.
 チャンバ2の内部には、噴射ノズル4の射出開口の上方に、基板7を下面に取り付けるための保持手段としての基板ホルダー6が配置されている。基板ホルダー6は矩形板状である。基板ホルダー6は駆動手段としての駆動装置8によって水平姿勢でチャンバ2の天井からつり下げられている。駆動装置8は、基板ホルダー6を、図1での左右方向に駆動する。この左右方向での往復運動によって、基板7に対する走査成膜が行われる。この走査成膜によって、基板7の所定の広範な範囲に薄膜が形成される。 Inside the chamber 2, a substrate holder 6 is disposed above the injection opening of the injection nozzle 4 as a holding means for attaching the substrate 7 to the lower surface. The substrate holder 6 has a rectangular plate shape. The substrate holder 6 is suspended from the ceiling of the chamber 2 in a horizontal posture by a driving device 8 as driving means. The driving device 8 drives the substrate holder 6 in the left-right direction in FIG. By this reciprocating motion in the left-right direction, scanning film formation on the substrate 7 is performed. By this scanning film formation, a thin film is formed in a predetermined wide range of the substrate 7.
 成膜対象物である基板としては、代表的にはステンレス製の基板が挙げられるが、これに限定されず、例えば、他の金属、シリコン、半導体、樹脂等からなる基板でもよい。 The substrate that is the film formation target is typically a stainless steel substrate, but is not limited thereto, and may be a substrate made of other metal, silicon, semiconductor, resin, or the like.
 前記材料粒子を構成する材料、すなわちエアロゾルデポジション法により形成される薄膜の材料としては、代表的にはチタン酸ジルコン酸鉛(PZT)が挙げられる。チタン酸ジルコン酸鉛は通常数μm程度の膜厚で所望の圧電効果を達成する材料として知られている。そのほか、圧電材料としては、チタン酸バリウム、チタン酸鉛、マグネシウムニオブ酸鉛(PMN)、ニッケルニオブ酸鉛(PNN)、亜鉛ニオブ酸鉛等を使用することができる。本発明では第三層を構成する材料として上述のような圧電材料を使用するが、第一層及び第二層を構成する材料としては、前記の圧電材料のほか、酸化アルミニウム、酸化ジルコニウム、シリカ、ムライト等の金属酸化物を使用することができる。 As a material constituting the material particles, that is, a thin film material formed by an aerosol deposition method, typically, lead zirconate titanate (PZT) can be given. Lead zirconate titanate is generally known as a material that achieves a desired piezoelectric effect with a film thickness of about several μm. In addition, as the piezoelectric material, barium titanate, lead titanate, lead magnesium niobate (PMN), lead nickel niobate (PNN), lead zinc niobate, or the like can be used. In the present invention, the piezoelectric material as described above is used as the material constituting the third layer. As the material constituting the first layer and the second layer, in addition to the piezoelectric material, aluminum oxide, zirconium oxide, silica Metal oxides such as mullite can be used.
 材料粒子の粒径は、エアロゾルデポジション法に使用可能な粒径であればよく、例えば、0.5μm~5.0μm程度のものでよい。 The particle size of the material particles may be any particle size that can be used in the aerosol deposition method, and may be, for example, about 0.5 μm to 5.0 μm.
 エアロゾルデポジション法により形成される薄膜の膜厚は通常、数μm~数十μm程度である。 The film thickness of the thin film formed by the aerosol deposition method is usually about several μm to several tens of μm.
 図2で示す本発明の圧電素子は、基板14の上に第一層としての第一セラミックス層11が積層されている。第一セラミックス層11の上に第二層としての第二セラミックス層12が積層されている。第二セラミックス層12の上に下部電極15が形成されている。下部電極15の上に圧電アクチュエータの変形に貢献する圧電層である第三層としての第三セラミックス層13が積層されている。第三セラミックス層13の上に上部電極16が積層されている。 The piezoelectric element of the present invention shown in FIG. 2 has a first ceramic layer 11 as a first layer laminated on a substrate 14. A second ceramic layer 12 as a second layer is laminated on the first ceramic layer 11. A lower electrode 15 is formed on the second ceramic layer 12. A third ceramic layer 13 as a third layer, which is a piezoelectric layer that contributes to deformation of the piezoelectric actuator, is laminated on the lower electrode 15. An upper electrode 16 is laminated on the third ceramic layer 13.
 第一セラミックス層11、第二セラミックス層12、第三セラミックス層13を構成するセラミックスとしては各種セラミックスの中から、上述した弾性率の関係を満足するものを選択すればよい。ただし、この積層体が圧電素子として機能するために、第三セラミックス層13は圧電層とする必要がある。このため、少なくとも第三セラミックス層13は圧電材料により構成される。第一セラミックス層11及び第二セラミックス層12については、圧電材料により構成されてもよいし、圧電材料以外のセラミックス材料により構成されてもよい。本発明では、各層が上述したエアロゾルデポジション法によって成膜されている。 The ceramics constituting the first ceramic layer 11, the second ceramic layer 12, and the third ceramic layer 13 may be selected from various ceramics that satisfy the above-described elastic modulus relationship. However, in order for this laminated body to function as a piezoelectric element, the third ceramic layer 13 needs to be a piezoelectric layer. For this reason, at least the third ceramic layer 13 is made of a piezoelectric material. The first ceramic layer 11 and the second ceramic layer 12 may be made of a piezoelectric material or may be made of a ceramic material other than the piezoelectric material. In the present invention, each layer is formed by the aerosol deposition method described above.
 第二セラミックス層12と第三セラミックス層13との界面にある第二セラミックス層12の表面には、全面にわたって下部電極15が設けられている。下部電極15は、アースされて常時グランド電位となるグランド電極として使用される。第三セラミックス層13の上表面には、複数の独立した領域によって電極パターンとして構成されている上部電極16が設けられている。上部電極16は、個々の領域それぞれにリード部が接続され、リード部を介して駆動回路ICに接続される。これによって上部電極16は、駆動回路ICによってグランド電位とグランド電位とは異なる電位が選択的に付与される駆動電極として使用される。これら電極層は、Au、Pt等の金属により構成されることが好ましい。 A lower electrode 15 is provided over the entire surface of the second ceramic layer 12 at the interface between the second ceramic layer 12 and the third ceramic layer 13. The lower electrode 15 is used as a ground electrode that is grounded and always has a ground potential. On the upper surface of the third ceramic layer 13, an upper electrode 16 configured as an electrode pattern by a plurality of independent regions is provided. The upper electrode 16 has a lead portion connected to each individual region, and is connected to the drive circuit IC via the lead portion. Thus, the upper electrode 16 is used as a drive electrode to which a potential different from the ground potential and the ground potential is selectively applied by the drive circuit IC. These electrode layers are preferably made of a metal such as Au or Pt.
 本発明の圧電素子の具体的な製法を以下に説明する。まず、基板の表面に、上述したエアロゾルデポジション法により第一セラミックス層11を形成する。次に、第一セラミックス層11表面の粉体を除去したあと、第一セラミックス層11の表面に、エアロゾルデポジション法により第二セラミックス層12を形成する。次に、第二セラミックス層12表面の粉体を除去したあと、第二セラミックス層12の表面に、蒸着法やスパッタ法、あるいは金属粒子を含むペーストの塗布及び乾燥等によって、下部電極15を成膜する。続いて、第一セラミックス層11と第二セラミックス層12の応力を開放するために、比較的低温(およそ500℃程度)での加熱による応力開放アニール処理をおこなう。 A specific method for producing the piezoelectric element of the present invention will be described below. First, the first ceramic layer 11 is formed on the surface of the substrate by the above-described aerosol deposition method. Next, after removing the powder on the surface of the first ceramic layer 11, the second ceramic layer 12 is formed on the surface of the first ceramic layer 11 by an aerosol deposition method. Next, after the powder on the surface of the second ceramic layer 12 is removed, the lower electrode 15 is formed on the surface of the second ceramic layer 12 by vapor deposition or sputtering, or by applying and drying a paste containing metal particles. Film. Subsequently, in order to release the stress of the first ceramic layer 11 and the second ceramic layer 12, a stress release annealing process is performed by heating at a relatively low temperature (about 500 ° C.).
 ここで応力開放アニール処理とは、エアロゾルデポジション法により形成された薄膜を加熱して、膜内に混入した成膜ガスおよび水分等を除去するとともに、薄膜の残留応力を開放させる目的で行われる処理である。 Here, the stress release annealing treatment is performed for the purpose of heating the thin film formed by the aerosol deposition method to remove the film forming gas and moisture mixed in the film and releasing the residual stress of the thin film. It is processing.
 前記の応力開放アニール処理のあと、下部電極15の表面に、ふたたびエアロゾルデポジション法により圧電層である第三セラミックス層13が形成される。表面の粉体の除去後、圧電層の結晶粒を成長させるため、比較的高温(およそ800~900℃程度)での加熱による粒成長アニール処理をおこなう。 After the stress release annealing process, the third ceramic layer 13 which is a piezoelectric layer is again formed on the surface of the lower electrode 15 by the aerosol deposition method. After the surface powder is removed, grain growth annealing is performed by heating at a relatively high temperature (about 800 to 900 ° C.) in order to grow crystal grains of the piezoelectric layer.
 ここで粒成長アニール処理とは、エアロゾルデポジション法により形成された圧電層を加熱して、薄膜内の結晶粒の成長や、格子欠陥の修正を達成し、薄膜の圧電特性等を向上させる目的で行われる処理である。上述のとおり、エアロゾルデポジション法により形成された圧電層は、この粒成長アニール処理によって、その界面付近での弾性率がおおきく変化するが、本発明に係る層構成を採用することによって膜剥離等の問題を回避できる。 The purpose of grain growth annealing is to heat the piezoelectric layer formed by the aerosol deposition method to achieve growth of crystal grains in the thin film and correction of lattice defects, and to improve the piezoelectric properties of the thin film. It is a process performed in. As described above, the piezoelectric layer formed by the aerosol deposition method has a large change in the elastic modulus in the vicinity of the interface due to the grain growth annealing process. However, by adopting the layer structure according to the present invention, film peeling, etc. The problem can be avoided.
 最後に、第三セラミックス層13の表面に、上部電極16を形成する。上部電極16を形成するには、マスキングをして蒸着法やスパッタ法を実施すればよい。あるいは蒸着法やスパッタ法により第三セラミックス層13の全面に金属層を形成した後、フォトリソグラフィ・エッチングを利用して所定のパターンに形成してもよい。また、第三セラミックス層13の表面に直接スクリーン印刷をすることによって上部電極16を形成してもよい。以上によって、本発明に係る圧電素子を製造できる。 Finally, the upper electrode 16 is formed on the surface of the third ceramic layer 13. In order to form the upper electrode 16, masking is performed and a vapor deposition method or a sputtering method may be performed. Alternatively, a metal layer may be formed on the entire surface of the third ceramic layer 13 by vapor deposition or sputtering, and then formed into a predetermined pattern using photolithography etching. Further, the upper electrode 16 may be formed by screen printing directly on the surface of the third ceramic layer 13. As described above, the piezoelectric element according to the present invention can be manufactured.
 本発明に係る圧電素子は、4層構造を構成する第一セラミックス層11の弾性率は第二セラミックス層12の弾性率よりも大きく、第二セラミックス層12の弾性率は第三セラミックス層13の弾性率よりも大きくなるように構成されている。このように構成することによって、各セラミックス層間の弾性率のギャップを小さくすることができるので、各層の間で発生する応力が低減されて、圧電層の界面剥離が発生しにくくなる。また、クラックやピンホールも形成されにくくなるので、短絡も発生しにくくなる。これとともに圧電層の内部応力の低減によって、圧電素子の圧電特性も向上する。 In the piezoelectric element according to the present invention, the elastic modulus of the first ceramic layer 11 constituting the four-layer structure is larger than that of the second ceramic layer 12, and the elastic modulus of the second ceramic layer 12 is that of the third ceramic layer 13. It is comprised so that it may become larger than an elasticity modulus. By configuring in this way, the gap of the elastic modulus between the ceramic layers can be reduced, so that the stress generated between the layers is reduced, and the interfacial peeling of the piezoelectric layer is less likely to occur. In addition, since cracks and pinholes are less likely to be formed, short circuits are less likely to occur. At the same time, the piezoelectric characteristics of the piezoelectric element are improved by reducing the internal stress of the piezoelectric layer.
 本発明でいうセラミックス膜の弾性率は、ナノインデンテーション法によって測定することができる。具体的には、エリオニクス社製の超微小押込み硬さ試験機:ENT-1100aを用いて、押込み荷重を5mNとして測定した値である。なお、ここでいう弾性率は、各層を形成したあとアニール処理を行う以前に測定された値である。 The elastic modulus of the ceramic film referred to in the present invention can be measured by a nanoindentation method. Specifically, it is a value measured using an ultra-fine indentation hardness tester: ENT-1100a manufactured by Elionix Co., with an indentation load of 5 mN. The elastic modulus here is a value measured after each layer is formed and before annealing is performed.
 また、圧電特性は圧電定数-d31の値を算出し、この値の大きさで評価した。この圧電定数-d31は、後述するように、圧電アクチュエータの変位を測定すること等の作業によって算出した。 In addition, the piezoelectric characteristic was calculated by calculating the value of the piezoelectric constant −d31, and evaluating the magnitude of this value. This piezoelectric constant -d31 was calculated by an operation such as measuring the displacement of the piezoelectric actuator, as will be described later.
 本発明の第一実施形態によると、前記圧電素子は、第一層が酸化ジルコニウムからなり、第二層及び第三層がチタン酸ジルコン酸鉛からなり、第二層は第三層よりも膜厚が薄い。 According to the first embodiment of the present invention, in the piezoelectric element, the first layer is made of zirconium oxide, the second layer and the third layer are made of lead zirconate titanate, and the second layer is a film more than the third layer. The thickness is thin.
 この実施形態では、第二層の膜厚を第三層の膜厚よりも薄くすることによって、第二層の弾性率を第三層の弾性率よりも大きくする。一般に、エアロゾルデポジション法で形成されたセラミックス膜の弾性率は、セラミックスの種類のほか、セラミックス膜の膜厚にも依存している。すなわち、同じ材料からなるセラミックス膜の場合には、うすいセラミックス膜のほうが硬くなり、すなわち弾性率が大きくなる。また、上述のとおり、上記セラミックス膜の下層の弾性率にも影響される。本実施形態では、これらの性質を利用して第二層と第三層の弾性率の関係が調整される。 In this embodiment, the elastic modulus of the second layer is made larger than that of the third layer by making the film thickness of the second layer thinner than the film thickness of the third layer. In general, the elastic modulus of a ceramic film formed by an aerosol deposition method depends on the thickness of the ceramic film as well as the type of ceramic. That is, in the case of a ceramic film made of the same material, the light ceramic film becomes harder, that is, the elastic modulus increases. Further, as described above, it is also affected by the elastic modulus of the lower layer of the ceramic film. In this embodiment, the relationship between the elastic moduli of the second layer and the third layer is adjusted using these properties.
 本発明の第二実施形態によると、前記圧電素子は、第一層が酸化アルミニウムからなり、第二層が酸化ジルコニウムからなり、第三層がチタン酸ジルコン酸鉛からなる。 According to the second embodiment of the present invention, in the piezoelectric element, the first layer is made of aluminum oxide, the second layer is made of zirconium oxide, and the third layer is made of lead zirconate titanate.
 酸化アルミニウム薄膜は一般に、酸化ジルコニウム薄膜よりも弾性率が大きいので、本実施形態はこの関係を利用している。 Since the aluminum oxide thin film generally has a larger elastic modulus than the zirconium oxide thin film, this embodiment uses this relationship.
 本発明の第三実施形態によると、前記圧電素子は、第一層が酸化アルミニウムからなり、第二層及び第三層がチタン酸ジルコン酸鉛からなり、第二層は第三層よりも膜厚が薄い。 According to a third embodiment of the present invention, in the piezoelectric element, the first layer is made of aluminum oxide, the second layer and the third layer are made of lead zirconate titanate, and the second layer is a film more than the third layer. The thickness is thin.
 この実施形態では、第一実施形態と同様の性質を利用して第二層と第三層の弾性率の関係が調整される。 In this embodiment, the relationship between the elastic moduli of the second layer and the third layer is adjusted using the same properties as the first embodiment.
 これら実施形態における具体的な層構成によると、第一層の弾性率は第二層の弾性率よりも大きく、第二層の弾性率は第三層の弾性率よりも大きいという関係を満足できる。このことにより、従来の三層構造の圧電素子と比較すると、各セラミックス層間での弾性率のギャップを小さく抑制できる。このため、エアロゾルデポジション法による成膜後にアニール処理をおこなっても、膜界面での剥離が発生しにくく、電気評価も良好である。よって、歩留りが改善されるとともに、優れた圧電特性を達成することができる。 According to the specific layer structure in these embodiments, the relationship that the elastic modulus of the first layer is larger than the elastic modulus of the second layer and the elastic modulus of the second layer is larger than the elastic modulus of the third layer can be satisfied. . Accordingly, the elastic modulus gap between the ceramic layers can be reduced as compared with the conventional piezoelectric element having a three-layer structure. For this reason, even if annealing is performed after film formation by the aerosol deposition method, peeling at the film interface hardly occurs, and electrical evaluation is good. Therefore, the yield can be improved and excellent piezoelectric characteristics can be achieved.
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 (実施例1)
 1.基板の準備
 拡散接合SUS基板および評価用SUS基板:15×35×0.4tを準備した。ナノインデンターを用いて、荷重:5mNにて評価用SUS基板の弾性率を測定した。
Example 1
1. Preparation of substrate Diffusion bonded SUS substrate and evaluation SUS substrate: 15 × 35 × 0.4t were prepared. Using a nanoindenter, the elastic modulus of the evaluation SUS substrate was measured at a load of 5 mN.
 2.第一層の形成
 これら基板に対して、上述した実施形態に基づくエアロゾルデポジション法に基づいた成膜装置にて、拡散防止層である第一層としてZrO膜を形成した。
2. Formation of First Layer A ZrO 2 film was formed as a first layer serving as a diffusion prevention layer on these substrates by a film forming apparatus based on the aerosol deposition method based on the above-described embodiment.
 以下本工程を具体的に説明する。エアロゾル生成器にZrO粉末:160gを投入した。基板ホルダーにSUS基板をセットし、成膜範囲以外をテープで貼付した。基板ホルダーを成膜室内のXYステージにセットし、往復スキャンを開始した。なお、ステージ移動は「コの字移動」を繰返しており、2列(2枚)成膜を同一バッチにて行った。成膜室であるチャンバを真空引きして、到達真空圧:10~20Paとした。キャリアガスを3系統(流動、破砕、加速)から導入し、原料粉体を流動攪拌した。所定の総流量(3系統の合計)に合わせ、流動状態を見ながら流動ガス流量を一定に定めた。その後、破砕ガスと加速ガスの比率を変更することで所望のエアロゾル濃度に調整した。成膜範囲外で空噴射:5minを行った後、所定の成膜時間で各SUS基板上にエアロゾル噴射した。所定の成膜時間が終了した後、成膜ガスを止め、成膜室を真空開放した。基板ホルダーをXYステージから取り外し、第一層が表面に形成されたSUS基板を得た。 This process will be specifically described below. An aerosol generator was charged with 160 g of ZrO 2 powder. The SUS substrate was set in the substrate holder, and the portions other than the film formation range were attached with tape. The substrate holder was set on the XY stage in the film forming chamber, and reciprocal scanning was started. In addition, the stage movement repeated the “U-shaped movement”, and two rows (two sheets) of film formation were performed in the same batch. The chamber which is the film forming chamber was evacuated to an ultimate vacuum pressure of 10 to 20 Pa. Carrier gas was introduced from three systems (flow, crushing, acceleration), and the raw material powder was fluidly stirred. In accordance with a predetermined total flow rate (total of three systems), the flow rate of the flowing gas was set constant while observing the flow state. Then, it adjusted to the desired aerosol density | concentration by changing the ratio of crushing gas and acceleration gas. After performing idle injection: 5 min outside the film formation range, aerosol injection was performed on each SUS substrate for a predetermined film formation time. After the predetermined film formation time was completed, the film formation gas was stopped and the film formation chamber was opened in vacuum. The substrate holder was removed from the XY stage to obtain a SUS substrate having a first layer formed on the surface.
 第一層が形成されたSUS基板は表面をエアブローし、付着した粉体を除去した。段差計を用いて、SUS基板上の第一層の膜厚を測定したところ、1.6μmであった。次に、ナノインデンターを用いて、荷重:5mNにて、評価用SUS基板上の第一層の弾性率を測定した。弾性率の測定結果を図3に示す。 The surface of the SUS substrate on which the first layer was formed was air blown to remove the adhered powder. When the film thickness of the first layer on the SUS substrate was measured using a step gauge, it was 1.6 μm. Next, the elastic modulus of the first layer on the SUS substrate for evaluation was measured using a nanoindenter at a load of 5 mN. The measurement result of the elastic modulus is shown in FIG.
 3.第二層の形成
 こうして得られたSUS基板上のZrO膜に対して、前述と同様のエアロゾルデポジション法にて、ZrO粉末:160gの代わりにPZT粒子:200gを使用して、第二層としてPZT膜を形成した。
3. Formation of the second layer The ZrO 2 film on the SUS substrate obtained in this way was subjected to the same aerosol deposition method as above, using PZT particles: 200 g instead of ZrO 2 powder: 160 g, A PZT film was formed as a layer.
 第二層が形成されたSUS基板に対して、純水にて処理時間:1minの超音波洗浄を行い、付着した粉体を除去した。150℃×30minにて水分除去し、乾燥した。段差計を用いて、SUS基板上の第二層の膜厚を測定したところ、1.5μmであった。次に、ナノインデンターを用いて、荷重:5mNにて、評価用SUS基板上の第二層の弾性率を測定した。 The SUS substrate on which the second layer was formed was subjected to ultrasonic cleaning with pure water for a treatment time of 1 min to remove the adhered powder. Water was removed at 150 ° C. × 30 min and dried. When the film thickness of the second layer on the SUS substrate was measured using a step gauge, it was 1.5 μm. Next, the elastic modulus of the second layer on the evaluation SUS substrate was measured using a nanoindenter at a load of 5 mN.
 4.下部電極の形成
 スパッタ装置を用いて、第二層の表面に、下部電極となるTi(0.05μm)/Pt(0.5μm)層を形成した。
4). Formation of Lower Electrode A Ti (0.05 μm) / Pt (0.5 μm) layer serving as a lower electrode was formed on the surface of the second layer using a sputtering apparatus.
 5.応力開放アニール処理
 得られた積層体をマッフル炉に投入して、500℃×30minでアニール処理を行い、Pt残留応力を開放した。
5). Stress Release Annealing Treatment The obtained laminate was put into a muffle furnace and annealed at 500 ° C. for 30 minutes to release Pt residual stress.
 6.第三層(圧電層)の形成
 応力開放アニール処理後の積層体に対して、第二層形成時と同様のエアロゾルデポジション法にて、第三層である圧電層としてPZT膜を形成した。
6). Formation of Third Layer (Piezoelectric Layer) A PZT film was formed as a piezoelectric layer as the third layer on the laminate after the stress release annealing treatment by the aerosol deposition method similar to that for forming the second layer.
 積層体の表面をエアブローし、付着した粉体を除去した。段差計を用いて、SUS基板上の圧電層の膜厚を測定したところ、4.9μmであった。さらに、ナノインデンターを用いて、荷重:5mNにて、評価用SUS基板上の圧電層の弾性率を測定した。 The surface of the laminate was air blown to remove the adhered powder. When the film thickness of the piezoelectric layer on the SUS substrate was measured using a step gauge, it was 4.9 μm. Further, the elastic modulus of the piezoelectric layer on the evaluation SUS substrate was measured using a nanoindenter at a load of 5 mN.
 7.粒成長アニール処理
 得られた積層体をマッフル炉に投入して、850℃×30minでアニール処理を行い、SUS基板上のPZT結晶粒を成長させた。
7). Grain Growth Annealing Treatment The obtained laminate was put into a muffle furnace and annealed at 850 ° C. × 30 min to grow PZT crystal grains on the SUS substrate.
 上記の粒成長アニール処理後のPZT膜の外観形状を観察し、全面剥離があった場合は、膜剥離ありと判定した。多数のサンプルについて膜剥離の有無を判定し、全サンプル数に対する膜剥離が発生したサンプル数の割合を、膜剥離の発生率として以下の表1に示す。 The appearance of the PZT film after the above grain growth annealing treatment was observed, and when there was peeling on the entire surface, it was determined that there was film peeling. The presence / absence of film peeling is determined for a large number of samples, and the ratio of the number of samples in which film peeling occurs with respect to the total number of samples is shown in Table 1 below as the rate of film peeling.
 8.上部電極の形成
 拡散接合SUS基板上の圧電膜の表面に、メタルマスクを介して上部電極となるAu(0.2μm)を形成した。これによって、SUS基板/ZrO/PZT/PZTからなる4層構造の圧電素子を製造した。
8). Formation of Upper Electrode Au (0.2 μm) serving as the upper electrode was formed on the surface of the piezoelectric film on the diffusion bonded SUS substrate through a metal mask. Thus, a four-layer piezoelectric element made of SUS substrate / ZrO 2 / PZT / PZT was manufactured.
 9.電気評価
 導通テスタを用いて、下部電極:Ptおよび上部電極:Au層間の様々な箇所でのショート確認を行った。ショートの場合は電気評価を不良、測定可能な場合は電気評価を良好と判断した。多数のサンプルについて電気評価を行い、全サンプル数に対する電気評価が不良であったサンプル数の割合を、電気評価の不良率として以下の表1に示す。
9. Electrical evaluation Using a continuity tester, shorts were confirmed at various locations between the lower electrode: Pt and the upper electrode: Au layer. In the case of a short circuit, the electrical evaluation was judged to be poor, and when the measurement was possible, the electrical evaluation was judged to be good. The electrical evaluation is performed on a large number of samples, and the ratio of the number of samples in which the electrical evaluation is poor with respect to the total number of samples is shown in Table 1 below as a failure rate in the electrical evaluation.
 10.分極処理
 まず、電気評価で良好と判断された欠陥のない箇所の上部電極と下部電極に、それぞれ電圧印加のための端子を接続した。そして、熱処理炉にて250℃に加熱してから各端子の間に、分極条件:6kv/cm×15minにて膜厚に相当する直流電圧を印加した。その後50℃まで冷却してから直流電圧の印加を停止した。最後に端子を取り外した。
10. Polarization treatment First, terminals for voltage application were connected to the upper electrode and the lower electrode, respectively, where there was no defect determined to be good in electrical evaluation. Then, after heating to 250 ° C. in a heat treatment furnace, a DC voltage corresponding to the film thickness was applied between the terminals under a polarization condition of 6 kv / cm × 15 min. Then, after cooling to 50 ° C., application of the DC voltage was stopped. Finally, the terminal was removed.
 11.変位測定
 再び、上部電極と下部電極に電圧印加のための端子を接続した。次に、端子間に交流電圧(入力波形:0~20Vの正弦波、周波数4kHz)を印加し、そのときのアクチュエ-タの振動板(拡散接合SUS基板)の動的変位をレーザドップラー法にて測定した。
11. Displacement measurement A terminal for voltage application was again connected to the upper electrode and the lower electrode. Next, an AC voltage (input waveform: sine wave of 0 to 20 V, frequency 4 kHz) is applied between the terminals, and the dynamic displacement of the actuator diaphragm (diffusion bonding SUS substrate) at that time is applied to the laser Doppler method. Measured.
 12.圧電定数の算出
 圧電アクチュエータの構造体の変位と圧電定数の関係を、予めANSYSによって周波数応答性から解析しておき、このシミュレーション結果と上記の変位測定結果とを比較して、圧電定数-d31を算出した。本実施例においては、圧電定数-d31は、53pm/Vであった。
12 Calculation of Piezoelectric Constant The relationship between the displacement of the piezoelectric actuator structure and the piezoelectric constant is analyzed in advance from the frequency response by ANSYS, and the simulation result is compared with the above displacement measurement result to determine the piezoelectric constant −d31. Calculated. In this example, the piezoelectric constant -d31 was 53 pm / V.
 (実施例2)
 第一層の形成工程においてZrO粉末:160gの代わりにAl粉末:140gを使用し、第二層の形成工程ではPZT粒子:200gの代わりにZrO粉末:160gを使用したこと以外は実施例1と同様にして、SUS基板/Al/ZrO/PZTからなる4層構造の圧電素子を製造した。分極処理以降の工程は行わなかった。なお、第一層の膜厚は1.3μm、第二層の膜厚は4.5μm、圧電層の膜厚は5.2μmであった。
(Example 2)
ZrO 2 powder in the step of forming the first layer: Al 2 O 3 powder instead of 160 g: using 140 g, the second layer PZT particles in the forming step: except for using 160 g: ZrO 2 powder instead of 200g Produced a piezoelectric element having a four-layer structure made of SUS substrate / Al 2 O 3 / ZrO 2 / PZT in the same manner as in Example 1. No steps after the polarization treatment were performed. The film thickness of the first layer was 1.3 μm, the film thickness of the second layer was 4.5 μm, and the film thickness of the piezoelectric layer was 5.2 μm.
 (実施例3)
 第一層の形成工程においてZrO粉末:160gの代わりにAl粉末:140gを使用したこと以外は実施例1と同様にして、SUS基板/Al/PZT/PZTからなる4層構造の圧電素子を製造した。分極処理以降の工程は行わなかった。なお、第一層の膜厚は1.9μm、第二層の膜厚は1.6μm、圧電層の膜厚は7.0μmであった。
(Example 3)
4 consisting of SUS substrate / Al 2 O 3 / PZT / PZT in the same manner as in Example 1 except that Al 2 O 3 powder: 140 g was used instead of ZrO 2 powder: 160 g in the first layer forming step. A layered piezoelectric element was manufactured. No steps after the polarization treatment were performed. The film thickness of the first layer was 1.9 μm, the film thickness of the second layer was 1.6 μm, and the film thickness of the piezoelectric layer was 7.0 μm.
 (比較例1)
 第二層の形成工程を省略したこと以外は実施例3と同様にして、SUS基板/Al/PZTからなる3層構造の圧電素子を製造した。また、実施例1と同様に分極処理以降の工程も全て行い、圧電定数-d31は、38pm/Vであった。なお、第一層の膜厚は2.0μm、圧電層の膜厚は5.0μmであった。上記と同様にして測定した弾性率を測定した結果を図4に示す。また、膜剥離と電気評価の判定結果については表1に示す。
(Comparative Example 1)
A piezoelectric element having a three-layer structure made of SUS substrate / Al 2 O 3 / PZT was manufactured in the same manner as in Example 3 except that the step of forming the second layer was omitted. Further, all steps after the polarization treatment were performed in the same manner as in Example 1, and the piezoelectric constant -d31 was 38 pm / V. The first layer had a thickness of 2.0 μm, and the piezoelectric layer had a thickness of 5.0 μm. The result of measuring the elastic modulus measured in the same manner as above is shown in FIG. Table 1 shows the determination results of film peeling and electrical evaluation.
 図3と図4より、実施例1~3で示される本発明に係る4層構造の圧電素子では、第一層と圧電層とのあいだに第一層よりも弾性率が低い第二層を形成することで、比較例1で示される従来の3層構造の圧電素子と比較すると、各セラミックス膜間の弾性率のギャップを低減できていることが分かる。 3 and 4, in the four-layered piezoelectric element according to the present invention shown in Examples 1 to 3, a second layer having a lower elastic modulus than the first layer is provided between the first layer and the piezoelectric layer. As compared with the conventional three-layer structure piezoelectric element shown in Comparative Example 1, it can be seen that the elastic modulus gap between the ceramic films can be reduced.
Figure JPOXMLDOC01-appb-T000001

 
 
Figure JPOXMLDOC01-appb-T000001

 
 
 表1より、比較例1で示される従来の3層構造の圧電素子では膜剥離が発生しやすく、また電気評価が不良になりやすいので良品率はわずか22.2%にとどまっているが、実施例1~3で示される本発明に係る4層構造の圧電素子では、60.0%以上という良品率を達成できたことが分かる。 According to Table 1, the conventional three-layer structure piezoelectric element shown in Comparative Example 1 is prone to film peeling and the electrical evaluation tends to be poor, so the yield rate is only 22.2%. It can be seen that the non-defective product ratio of 60.0% or more was achieved in the four-layered piezoelectric element according to the present invention shown in Examples 1 to 3.
 また、実施例1と比較例1との対比によって、圧電定数-d31が大幅に向上していることが認められ、圧電素子として圧電特性も向上することが確認された。 Further, it was confirmed that the piezoelectric constant -d31 was greatly improved by comparing Example 1 with Comparative Example 1, and it was confirmed that the piezoelectric characteristics of the piezoelectric element were also improved.
1 エアロゾル生成器
2 チャンバ
3 エアロゾル供給管
4 噴射ノズル
5 エアロゾル流
6 基板ホルダー
7 基板
8 駆動装置
11 第一セラミックス層
12 第二セラミックス層
13 第三セラミックス層
14 基板
15 下部電極
16 上部電極
DESCRIPTION OF SYMBOLS 1 Aerosol generator 2 Chamber 3 Aerosol supply pipe 4 Injection nozzle 5 Aerosol flow 6 Substrate holder 7 Substrate 8 Driving device 11 First ceramic layer 12 Second ceramic layer 13 Third ceramic layer 14 Substrate 15 Lower electrode 16 Upper electrode

Claims (4)

  1.  基板(14)の上に、第一層(11)、第二層(12)、及び、圧電層である第三層(13)がこの順序で積層された四層構造の圧電素子であって、
     第一層(11)、第二層(12)、及び第三層(13)は、それぞれがエアロゾルデポジション法によって成膜されたセラミックス膜であり、
     第一層(11)の弾性率は第二層(12)の弾性率よりも大きく、第二層(12)の弾性率は第三層(13)の弾性率よりも大きい、圧電素子。
    A piezoelectric element having a four-layer structure in which a first layer (11), a second layer (12), and a third layer (13) as a piezoelectric layer are laminated in this order on a substrate (14). ,
    Each of the first layer (11), the second layer (12), and the third layer (13) is a ceramic film formed by an aerosol deposition method.
    The piezoelectric element, wherein the elastic modulus of the first layer (11) is larger than the elastic modulus of the second layer (12), and the elastic modulus of the second layer (12) is larger than the elastic modulus of the third layer (13).
  2.  第一層(11)が酸化ジルコニウムからなり、第二層(12)及び第三層(13)がチタン酸ジルコン酸鉛からなり、第二層(12)は第三層(13)よりも膜厚が薄い、請求項1記載の圧電素子。 The first layer (11) is made of zirconium oxide, the second layer (12) and the third layer (13) are made of lead zirconate titanate, and the second layer (12) is more film than the third layer (13). The piezoelectric element according to claim 1, wherein the piezoelectric element is thin.
  3.  第一層(11)が酸化アルミニウムからなり、第二層(12)が酸化ジルコニウムからなり、第三層(13)がチタン酸ジルコン酸鉛からなる、請求項1記載の圧電素子。 The piezoelectric element according to claim 1, wherein the first layer (11) is made of aluminum oxide, the second layer (12) is made of zirconium oxide, and the third layer (13) is made of lead zirconate titanate.
  4.  第一層(11)が酸化アルミニウムからなり、第二層(12)及び第三層(13)がチタン酸ジルコン酸鉛からなり、第二層(12)は第三層(13)よりも膜厚が薄い、請求項1記載の圧電素子。 The first layer (11) is made of aluminum oxide, the second layer (12) and the third layer (13) are made of lead zirconate titanate, and the second layer (12) is more film than the third layer (13). The piezoelectric element according to claim 1, wherein the piezoelectric element is thin.
PCT/JP2009/070404 2008-12-29 2009-12-04 Piezoelectric element WO2010076864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-335785 2008-12-29
JP2008335785A JP2010157648A (en) 2008-12-29 2008-12-29 Piezoelectric element

Publications (1)

Publication Number Publication Date
WO2010076864A1 true WO2010076864A1 (en) 2010-07-08

Family

ID=42309917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070404 WO2010076864A1 (en) 2008-12-29 2009-12-04 Piezoelectric element

Country Status (2)

Country Link
JP (1) JP2010157648A (en)
WO (1) WO2010076864A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026668A1 (en) * 2011-08-19 2013-02-28 Siemens Aktiengesellschaft Method for producing a piezoceramic bender transducer
EP3653755A1 (en) * 2018-11-13 2020-05-20 Siemens Aktiengesellschaft Production of a mould using the separation of aerosols

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526704B2 (en) * 2009-10-26 2014-06-18 Tdk株式会社 Piezoelectric actuator
JP6311179B2 (en) * 2013-12-27 2018-04-18 株式会社ユーテック Ferroelectric ceramics

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279953A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Ceramic structure and its manufacturing method
JP2006173249A (en) * 2004-12-14 2006-06-29 Fuji Photo Film Co Ltd Piezoelectric actuator, its manufacturing process, and liquid ejection head
JP2006229154A (en) * 2005-02-21 2006-08-31 Brother Ind Ltd Piezoelectric actuator, inkjet head and their manufacturing methods
JP2007042740A (en) * 2005-08-01 2007-02-15 Hitachi Cable Ltd Piezoelectric thin film element
JP2008027961A (en) * 2006-07-18 2008-02-07 Ngk Insulators Ltd Dielectric device
JP2008102318A (en) * 2006-10-19 2008-05-01 Nec Corp Optical element, optical integrated device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279953A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Ceramic structure and its manufacturing method
JP2006173249A (en) * 2004-12-14 2006-06-29 Fuji Photo Film Co Ltd Piezoelectric actuator, its manufacturing process, and liquid ejection head
JP2006229154A (en) * 2005-02-21 2006-08-31 Brother Ind Ltd Piezoelectric actuator, inkjet head and their manufacturing methods
JP2007042740A (en) * 2005-08-01 2007-02-15 Hitachi Cable Ltd Piezoelectric thin film element
JP2008027961A (en) * 2006-07-18 2008-02-07 Ngk Insulators Ltd Dielectric device
JP2008102318A (en) * 2006-10-19 2008-05-01 Nec Corp Optical element, optical integrated device and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026668A1 (en) * 2011-08-19 2013-02-28 Siemens Aktiengesellschaft Method for producing a piezoceramic bender transducer
EP3653755A1 (en) * 2018-11-13 2020-05-20 Siemens Aktiengesellschaft Production of a mould using the separation of aerosols

Also Published As

Publication number Publication date
JP2010157648A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5188076B2 (en) Piezoelectric element and manufacturing method thereof, electronic device, and ink jet apparatus
JP2001152360A (en) Ceramic dielectric film forming method, multilayered structure of ceramic dielectric film/substrate, and electro-mechanical transducer
JP4276276B2 (en) Method for manufacturing piezoelectric element
US7506441B2 (en) Method for manufacturing a piezoelectric film on a substrate
JP6342040B1 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
WO2010076864A1 (en) Piezoelectric element
JP2014072511A (en) Laminate
WO2010116802A1 (en) Piezoelectric element
US20070247782A1 (en) Dielectric device
US7771780B2 (en) Method of producing composite material, method of producing piezoelectric actuator, method of producing ink-jet head, and piezoelectric actuator
JP2006229154A (en) Piezoelectric actuator, inkjet head and their manufacturing methods
JP4894137B2 (en) Piezoelectric actuator and inkjet head manufacturing method
JP2006054442A (en) Manufacturing method of piezoelectric actuator and ink jet head, piezoelectric actuator and ink jet head
JP4094521B2 (en) Manufacturing method of structure
JP2007088449A (en) Composite material film, piezoelectric actuator, and process for manufacturing inkjet head, and piezoelectric actuator
JP3340043B2 (en) Piezoelectric actuator and method of manufacturing the same
US7955647B2 (en) Method for manufacturing film or piezoelectric film
JP6607993B2 (en) Multilayer substrate having piezoelectric film, element having piezoelectric film, and method of manufacturing multilayer substrate having piezoelectric film
JP2009209413A (en) Method for selecting optimum condition for execution of aerosol deposition method, and film forming method
JP3207315B2 (en) Piezoelectric / electrostrictive film type element
EP1757714A2 (en) Method of producing film and method of producing ink-jet head
JP2007335489A (en) Piezoelectric material thin-film element, thin-film actuator, ink-jet head, and ink-jet recorder
JP4908746B2 (en) Multilayer structure, piezoelectric actuator, and manufacturing method thereof
JP2020014024A (en) Laminate board with piezoelectric film, element with piezoelectric film, and method for manufacturing laminate board with piezoelectric film
JP2021012909A (en) Piezoelectric laminate, piezoelectric element, and manufacturing method of piezoelectric laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836204

Country of ref document: EP

Kind code of ref document: A1