WO2010074414A2 - Liquid level measurement sensor formed by optical fiber - Google Patents

Liquid level measurement sensor formed by optical fiber Download PDF

Info

Publication number
WO2010074414A2
WO2010074414A2 PCT/KR2009/007075 KR2009007075W WO2010074414A2 WO 2010074414 A2 WO2010074414 A2 WO 2010074414A2 KR 2009007075 W KR2009007075 W KR 2009007075W WO 2010074414 A2 WO2010074414 A2 WO 2010074414A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
liquid
optical
measurement sensor
Prior art date
Application number
PCT/KR2009/007075
Other languages
French (fr)
Korean (ko)
Other versions
WO2010074414A3 (en
Inventor
이종원
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Publication of WO2010074414A2 publication Critical patent/WO2010074414A2/en
Publication of WO2010074414A3 publication Critical patent/WO2010074414A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2922Light, e.g. infrared or ultraviolet for discrete levels with light-conducting sensing elements, e.g. prisms

Definitions

  • the present invention relates to a level measurement sensor formed of an optical fiber, and more particularly, when the optical fiber wound in a periodic shape, such as a spiral or trigonometric waveform, is submerged in a liquid, reflection and refraction of light rays traveling inside the optical fiber are absorbed.
  • the present invention relates to a surface measurement sensor formed of an applied optical fiber.
  • optical level switches that apply reflection and refraction of light rays traveling inside a transparent medium are widely used throughout the industry.
  • optical level switch is a prism type surface switch (US Patent 7109513 B2, 5381022, Japanese Patent 2003-214926, 10-267731, 10-267730) and optical fiber type (Korea Patent 10-0187351-0000, Japanese Patent 04-125423) Etc. This method is effective to use as a switch to detect the position of the surface at a specific position but is not suitable for measuring continuously changing surface.
  • a surface measuring sensor of a spiral or triangular or parallelogram prism composed of a thin film-like transparent material having a large number of prismatic oil level switches or flexible films, it is possible to measure continuously changing oil level. If the number of sensors is too large to complicate the system or the axial stiffness of the sensor increases and the external shock is applied to change the shape of the liquid storage container, the sensor itself may be damaged.
  • the present invention has been made to solve the problems of the prior art, and a main object of the present invention is to reflect light rays traveling inside an optical fiber when the optical fiber wound in a periodic shape such as a spiral or trigonometric waveform is submerged in a liquid. It is an object of the present invention to provide a surface measuring sensor formed of an optical fiber with and refracting.
  • the oil level measurement sensor formed of the optical fiber of the present invention the optical fiber; A light source coupled to one end of the optical fiber; And an optical sensor coupled to the other end of the optical fiber, wherein at least one of both ends or the interruption portion of the optical fiber is further provided with a fixing member.
  • the optical fiber is characterized in that formed of any one of a spiral or trigonometric waveform.
  • the light source may be attached to the transmission surface of the optical fiber, and the optical sensor may be attached to the reception surface of the optical fiber.
  • the axial rigidity is negligibly small and the weight is very light, and when applied to the oil level sensor, a large prism having the same height as the height of the storage vessel containing the liquid in FIG.
  • the effect can be similar to that of measuring oil level, even when a strong external force acts to change the shape of the container inside a liquid storage container made of a flexible material such as rubber. Due to its rigidity, the possibility of the container being perforated can be ruled out.
  • FIG. 1 is a view according to an embodiment of a surface measurement sensor formed of an optical fiber according to the present invention
  • FIG. 2 illustrates a large prism partially submerged in a liquid according to one embodiment
  • FIG. 3 is a view showing a path of light propagating in and out of an optical fiber located in air;
  • FIG. 4 is a view showing a path of light propagating in and out of an optical fiber located in a liquid
  • FIG. 5 is a view showing an application example installed in the liquid storage container according to an embodiment of the oil level sensor formed of the optical fiber according to the present invention.
  • FIG. 1 is a view according to one embodiment of a surface measuring sensor formed of an optical fiber according to the present invention
  • Figure 2 is a view showing a large prism partially submerged in a liquid according to one embodiment
  • Figure 3 is an optical fiber located in the air 4 is a view illustrating a path of light propagating inside and outside
  • FIG. 4 is a view illustrating a path of light propagating inside and outside an optical fiber located in a liquid
  • FIG. 5 is an embodiment of a surface measuring sensor formed of an optical fiber according to the present invention.
  • Figure 2 shows an application example installed in a liquid storage container.
  • the oil level sensor 100, 200, or 300 includes the optical fibers 110, 210, and 310 as shown in FIG. 1 or 5; Light sources (120, 220, 320) coupled to one end of the optical fiber (110, 210, 310); And optical sensors (130, 230, 330) coupled to the other ends of the optical fibers (110, 210, 310), at least one of both ends or the interruption of the optical fibers (110, 210, 310)
  • the fixing member 140, 240, 340 is further provided.
  • the optical fiber (110, 210, 310) is made of any one of a spiral or trigonometric waveform
  • the light source (120, 220, 320) is the transmission surface side of the optical fiber (110, 210, 310)
  • a light source is attached to the light emitting side
  • the optical sensors 130, 230, and 330 are attached to the receiving side of the optical fiber 110, 210, 310 (the light sensor is attached to receive the light). do.
  • the oil level measurement sensor 100, 200, 300 is fixed using the fixing members 140, 240, 340.
  • the optical fiber When the optical fiber is located in the air having a refractive index of n 2 as shown in FIG. 3, when the light is applied to the transmitting surface of the optical fiber, the amount of light reaching the receiving surface through the inside of the optical fiber is the diameter d, the radius of curvature R, and the refractive index of the optical fiber. Affected by n 1 and n 2 .
  • the refractive index n 1 of the optical fiber is greater than the refractive index n 2 of air in FIG. 3, the initial diameter of the light bundle incident on the optical fiber is the same as the diameter of the optical fiber, and the initial direction of the light bundle is about the centerline of the mineral oil. Suppose it is parallel to the tangent line.
  • the light rays entering the point F in contact with the outer edge of the optical fiber propagate along the outer edge of the optical fiber by total reflection.
  • Equation 4 Equation 4 and Snell's Law in order for all the light bundles incident on the optical fiber to be totally reflected.
  • Equation (6) If the radius of curvature R formed by the centerline of the optical fiber bent in a circular arc is smaller than the right side of Equation (6), only a part of the bundle of light incident into the inside of the optical fiber is totally reflected and the remainder is partially parallel to the tangent to the centerline of the optical fiber. It can be seen that the light propagates inside the optical fiber.
  • the light bundle of the totally reflected portion propagates as it is totally reflected inside the optical fiber, and in the remaining light bundle, some light is emitted into the liquid as shown in FIG. 4 whenever reflection occurs at the liquid contact surface from the inside of the optical fiber. Refractions 511, 512, 521, 522 are lost and only the rest are reflected to propagate inside the optical fiber.
  • the partial loss due to refraction is repeated whenever reflected inside the optical fiber.
  • the total loss due to refraction is relatively small even if the light rays closer to the point S are repeated, and the light rays closer to the point P are more refractious as the light rays closer to the point P are repeated. The total loss caused by this is relatively large.
  • the shape of the optical fiber (110, 210, 310) formed in a spiral or trigonometric waveform.
  • the optical fibers 110, 210, 310 are located in a container containing liquid as shown in FIG. 5, the optical fibers 110, 210 through the transmission surface of the optical fibers 110, 210, 310 are provided.
  • the light bundle incident on the inside of the fiber 310 is totally reflected at the portion of the optical fiber 110, 210, 310 which is in contact with the air, and propagates inside the optical fiber 110, 210, 310.
  • the light bundle propagates as described above reaches a portion of the optical fibers 110, 210 and 310 located at the interface between air and liquid, a part of the light bundles is totally reflected to propagate inside the optical fibers 110, 210 and 310. As the rest is reflected, as shown in FIG. 4, the light is propagated repeatedly through the optical fiber 110, 210, 310 while being repeatedly attenuated by the loss due to partial refraction 511, 512, 521, 522 into the liquid. .
  • a ratio of the initial cross-sectional area of the light bundle portion propagated by total internal reflection of the inside of the optical fiber 110, 210, 310 to the initial cross-sectional area of the initially incident light bundle regardless of contact with the liquid is a
  • the ratio of the initial cross-sectional area of the bundle of light propagating as it is repeatedly attenuated by the loss due to partial refraction into the liquid each time it is reflected is 1-a.
  • the average intensity of the light bundle propagating through the internal reflection of the optical fiber 110, 210, 310 regardless of contact with the liquid maintains the initial intensity b as long as there is no loss of other forms.
  • the average intensity c of the light bundle propagating as it is repeatedly attenuated at a rate of m by partial refraction into the liquid while propagating one spiral number in contact with the liquid is the optical fiber 110, 210, 310 submerged in the liquid.
  • the number of helixes in the region is n, it is expressed as
  • the average intensity P of the light bundles reaching the optical sensors 130, 230, and 330 attached to the receiving surface is expressed by the following equation unless other losses are considered.
  • the optical fiber 110, 210, 310 located in the air 500 at the optical fiber 110, 210, 310 located in the air 500, light bundles propagating inside the optical fiber 110, 210, 310 are provided. The whole is totally reflected, and in the portion of the optical fiber (110, 210, 310) submerged in the liquid 600, a part of the light bundle propagating inside the optical fiber (110, 210, 310) is totally reflected and the rest is reflected in the liquid each time It is repeatedly attenuated by the loss due to partial refraction of the optical fiber (110, 210, 310) propagates inside.
  • optical fibers 110, 210, and 310 formed into a spiral or trigonal wave shape are attenuated at a specific ratio m every one cycle of the optical fibers 110, 210, and 310 in a liquid submerged portion.
  • the number of attenuation cycles may be inverted from the luminous intensity values P measured by the photosensors 130, 230 and 330 located at the receiving surface of the ends of the optical fibers 110, 210 and 310 with respect to the unit luminous intensity of the light bundle.
  • Equation 14 Since the number of shape cycles n of the optical fiber 110, 210, 310 submerged in the liquid is calculated from Equation 14, the interface between the air 500 and the liquid 600 in the container storing the liquid, namely It is possible to accurately measure the position of the surface.

Abstract

The present invention relates to a liquid level measurement sensor formed by an optical fiber. The liquid level measurement sensor formed by an optical fiber applies reflection and refraction of light propagating inside the optical fiber when the optical fiber is immersed in liquid, wherein the optical fiber is wound in a periodic shape such as a helix or a trigonometric function waveform. The liquid level measurement sensor of the present invention comprises: an optical fiber; a light source which is coupled to one end of the optical fiber; an optical sensor which is coupled to the other end of the optical fiber; and a fixing member which is included on both ends of and/or on the middle part of the optical fiber.

Description

광섬유로 형성된 유면측정센서Oil level sensor made of optical fiber
본 발명은 광섬유로 형성된 유면측정센서에 관한 것으로써, 더욱 상세하게는 나선형 또는 삼각함수파형 등과 같은 주기적인 형상으로 감겨진 광섬유가 액체 내에 잠겨 있을 때, 광섬유 내부를 진행하는 광선의 반사와 굴절을 응용한 광섬유로 형성된 유면측정센서에 관한 것이다.The present invention relates to a level measurement sensor formed of an optical fiber, and more particularly, when the optical fiber wound in a periodic shape, such as a spiral or trigonometric waveform, is submerged in a liquid, reflection and refraction of light rays traveling inside the optical fiber are absorbed. The present invention relates to a surface measurement sensor formed of an applied optical fiber.
일반적으로, 투명한 매질 내부를 진행하는 광선의 반사와 굴절을 응용한 광학식 유면 스위치는 산업 전반에 걸쳐서 광범위하게 사용되고 있다. In general, optical level switches that apply reflection and refraction of light rays traveling inside a transparent medium are widely used throughout the industry.
기존의 광학식 유면스위치는 프리즘식 유면 스위치(미국특허 7109513 B2, 5381022, 일본특허 2003-214926, 10-267731, 10-267730)와 광섬유 방식(한국특허 10-0187351-0000, 일본특허 04-125423) 등이 있다. 이런 방식은 특정위치에서 유면의 위치를 감지하는 스위치로 사용하기에는 효과적이나 연속적으로 변하는 유면의 측정에는 적합하지 않다. Conventional optical level switch is a prism type surface switch (US Patent 7109513 B2, 5381022, Japanese Patent 2003-214926, 10-267731, 10-267730) and optical fiber type (Korea Patent 10-0187351-0000, Japanese Patent 04-125423) Etc. This method is effective to use as a switch to detect the position of the surface at a specific position but is not suitable for measuring continuously changing surface.
연속적으로 변하는 유면을 광학적인 방법으로 측정하는 방법으로는 Wave Guide를 응용한 방식(한국특허 10-0075777-0000, 미국특허 7049622 B1, 6831290 B2, 6172377 B1) 및 다수의 광학식 유면스위치를 배열하는 방식(미국특허 4954724, 3995168, 일본특허 공개번호 2002021033) 등이 있다. 이런 방식은 Wave Guide를 구성하는 물질의 광학적 특성에 대한 보정이 필요하거나 측정 시스템이 전체적으로 복잡해진다는 단점을 갖는다.As a method of measuring continuously changing oil level by an optical method, a method of applying a wave guide (Korean Patent 10-0075777-0000, US Patent 7049622 B1, 6831290 B2, 6172377 B1) and a method of arranging a plurality of optical oil level switches (U.S. Patent 4954724, 3995168, Japanese Patent Laid-Open No. 2002021033) and the like. This approach has the disadvantage of requiring correction of the optical properties of the material constituting the wave guide, or the overall complexity of the measurement system.
이에 따라, 진일보한 방법으로 다각형으로 재단된 얇은 투명필름을 다양한 형태로 말아서 형성된 유면측정 센서(한국특허 10-0789285-0000)가 있으나 센서의 축방향 강성이 상대적으로 높기 때문에 고무와 같은 유연한 재질의 액체 저장용기 내부에 해당 센서가 장착되는 경우 용기의 형상이 변하게 될 정도의 강한 충격이 외부로부터 작용하게 되면 센서로 인하여 용기가 천공될 가능성이 있었다.Accordingly, there is a surface measuring sensor (Korea Patent 10-0789285-0000) formed by rolling a thin transparent film cut into polygons in various forms in an advanced manner, but since the axial rigidity of the sensor is relatively high, a flexible material such as rubber When the sensor is mounted inside the liquid storage container, if the strong impact such that the shape of the container is changed from the outside, the container may be perforated by the sensor.
또한, 프리즘식 유면스위치를 다수 배열하거나 유연성을 갖는 필름형태의 얇은 투명재료로 구성된 삼각형 또는 평행사변형의 프리즘을 나선형으로 말아 놓은 형태의 유면측정센서를 사용하면 연속적으로 변하는 유면을 측정할 수 있으나, 센서의 개수가 너무 많아서 시스템이 복잡해지거나 또는 센서의 축방향 강성이 증가하여 액체 저장용기의 형상이 변할 정도의 외부충격이 가해지면 센서 자체가 용기에 손상을 입힐 가능성이 있다는 단점을 갖고 있었다.In addition, by using a surface measuring sensor of a spiral or triangular or parallelogram prism composed of a thin film-like transparent material having a large number of prismatic oil level switches or flexible films, it is possible to measure continuously changing oil level. If the number of sensors is too large to complicate the system or the axial stiffness of the sensor increases and the external shock is applied to change the shape of the liquid storage container, the sensor itself may be damaged.
본 발명은 종래 기술의 문제점을 해결하기 위해 이루어진 것으로써, 본 발명의 주된 목적은 나선형 또는 삼각함수파형 등과 같은 주기적인 형상으로 감겨진 광섬유가 액체 내에 잠겨 있을 때, 광섬유 내부를 진행하는 광선의 반사와 굴절을 응용한 광섬유로 형성된 유면측정센서를 제공하는 데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the problems of the prior art, and a main object of the present invention is to reflect light rays traveling inside an optical fiber when the optical fiber wound in a periodic shape such as a spiral or trigonometric waveform is submerged in a liquid. It is an object of the present invention to provide a surface measuring sensor formed of an optical fiber with and refracting.
본 발명의 또 다른 목적은 유면측정센서를 나선형 또는 삼각함수파형 등과 같이 주기적인 형상으로 성형된 광섬유로 구현하여 축방향 강성을 대폭적으로 감소시킨 광섬유로 형성된 유면측정센서를 제공하는데 그 목적이 있다.It is still another object of the present invention to provide a surface measuring sensor formed of an optical fiber which greatly reduces the axial rigidity by implementing the surface measuring sensor into an optical fiber molded into a periodic shape such as a spiral or trigonal waveform.
상기와 같은 목적을 달성하기 위하여, 본 발명인 광섬유로 형성된 유면측정센서는, 광섬유; 상기 광섬유의 일단부에 결합되는 광원; 및 상기 광섬유의 타단부에 결합되는 광센서;를 포함하여 이루어지며, 상기 광섬유의 양단부 또는 중단부 중 적어도 어느 하나에는 고정부재가 더 구비됨으로써 달성된다.In order to achieve the above object, the oil level measurement sensor formed of the optical fiber of the present invention, the optical fiber; A light source coupled to one end of the optical fiber; And an optical sensor coupled to the other end of the optical fiber, wherein at least one of both ends or the interruption portion of the optical fiber is further provided with a fixing member.
이때, 상기 광섬유는 나선형 또는 삼각함수파형 중 어느 하나의 형상으로 이루어지는 것을 특징으로 한다.At this time, the optical fiber is characterized in that formed of any one of a spiral or trigonometric waveform.
또한, 상기 광원은 상기 광섬유의 송신면에 부착되고, 상기 광센서는 상기 광섬유의 수신면에 부착되는 것을 특징으로 한다.The light source may be attached to the transmission surface of the optical fiber, and the optical sensor may be attached to the reception surface of the optical fiber.
이상에서 상술한 본 발명에 따르면, 축방향 강성이 무시할 만큼 작고 무게가 상당히 가벼우며, 이를 유면측정용 센서로 적용하게 되면 액체를 담고 있는 저장용기의 높이와 동일한 높이를 갖는 대형 프리즘을 도 2에 도시된 바와 같이 용기 내에 장착하여 유면을 측정하는 것과 유사한 효과를 얻을 수 있으며, 고무와 같이 유연한 재질로 만들어진 액체 저장용기 내부에 해당 용기의 형상이 변하게 될 정도로 강한 외력이 작용하는 경우에도 유면 측정 센서의 강성 때문에 용기가 천공될 가능성을 원천적으로 배제할 수 있다.According to the present invention described above, the axial rigidity is negligibly small and the weight is very light, and when applied to the oil level sensor, a large prism having the same height as the height of the storage vessel containing the liquid in FIG. As shown in the drawing, the effect can be similar to that of measuring oil level, even when a strong external force acts to change the shape of the container inside a liquid storage container made of a flexible material such as rubber. Due to its rigidity, the possibility of the container being perforated can be ruled out.
도 1은 본 발명에 따른 광섬유로 형성된 유면측정센서의 일실시예에 의한 도면,1 is a view according to an embodiment of a surface measurement sensor formed of an optical fiber according to the present invention;
도 2는 액체에 부분적으로 잠긴 대형 프리즘을 일실시예에 의한 도시한 도면,FIG. 2 illustrates a large prism partially submerged in a liquid according to one embodiment;
도 3은 공기 중에 위치한 광섬유 내외부를 전파하는 빛의 경로를 도시한 도면,3 is a view showing a path of light propagating in and out of an optical fiber located in air;
도 4는 액체 중에 위치한 광섬유 내외부를 전파하는 빛의 경로를 도시한 도면,4 is a view showing a path of light propagating in and out of an optical fiber located in a liquid;
도 5는 본 발명에 따른 광섬유로 형성된 유면측정센서의 일실시예에 의한 액체 저장용기 내에 설치된 적용사례를 도시한 도면.5 is a view showing an application example installed in the liquid storage container according to an embodiment of the oil level sensor formed of the optical fiber according to the present invention.
이하, 첨부된 도면을 참조로 본 발명의 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 광섬유로 형성된 유면측정센서의 일실시예에 의한 도면이고, 도 2는 액체에 부분적으로 잠긴 대형 프리즘을 일실시예에 의한 도시한 도면이며, 도 3은 공기 중에 위치한 광섬유 내외부를 전파하는 빛의 경로를 도시한 도면이고, 도 4는 액체 중에 위치한 광섬유 내외부를 전파하는 빛의 경로를 도시한 도면이며, 도 5는 본 발명에 따른 광섬유로 형성된 유면측정센서의 일실시예에 의한 액체 저장용기 내에 설치된 적용사례를 도시한 도면이다.1 is a view according to one embodiment of a surface measuring sensor formed of an optical fiber according to the present invention, Figure 2 is a view showing a large prism partially submerged in a liquid according to one embodiment, Figure 3 is an optical fiber located in the air 4 is a view illustrating a path of light propagating inside and outside, and FIG. 4 is a view illustrating a path of light propagating inside and outside an optical fiber located in a liquid, and FIG. 5 is an embodiment of a surface measuring sensor formed of an optical fiber according to the present invention. Figure 2 shows an application example installed in a liquid storage container.
본 발명이 제시하는 유면측정센서(100, 200, 300)는 도 1 또는 도 5에 도시된 바와 같이, 광섬유(110, 210, 310); 상기 광섬유(110, 210, 310)의 일단부에 결합되는 광원(120, 220, 320); 및 상기 광섬유(110, 210, 310)의 타단부에 결합되는 광센서(130, 230, 330);를 포함하여 이루어지며, 상기 광섬유(110, 210, 310)의 양단부 또는 중단부 중 적어도 어느 하나에는 고정부재(140, 240, 340)가 더 구비된다.The oil level sensor 100, 200, or 300 according to the present invention includes the optical fibers 110, 210, and 310 as shown in FIG. 1 or 5; Light sources (120, 220, 320) coupled to one end of the optical fiber (110, 210, 310); And optical sensors (130, 230, 330) coupled to the other ends of the optical fibers (110, 210, 310), at least one of both ends or the interruption of the optical fibers (110, 210, 310) The fixing member 140, 240, 340 is further provided.
이때, 상기 광섬유(110, 210, 310)는 나선형 또는 삼각함수파형 중 어느 하나의 형상으로 이루어지며, 상기 광원(120, 220, 320)은 상기 광섬유(110, 210, 310)의 송신면 쪽(광원이 부착되어 빛을 보내는 쪽)에 부착되고, 상기 광센서(130, 230, 330)는 상기 광섬유(110, 210, 310)의 수신면 쪽(광센서가 부착되어 빛을 받아들이는 쪽)에 부착된다.At this time, the optical fiber (110, 210, 310) is made of any one of a spiral or trigonometric waveform, the light source (120, 220, 320) is the transmission surface side of the optical fiber (110, 210, 310) A light source is attached to the light emitting side, and the optical sensors 130, 230, and 330 are attached to the receiving side of the optical fiber 110, 210, 310 (the light sensor is attached to receive the light). do.
상기 고정부재(140, 240, 340)를 이용하여 상기 유면측정센서(100, 200, 300)를 고정시킨다.The oil level measurement sensor 100, 200, 300 is fixed using the fixing members 140, 240, 340.
구성 재료의 굴절률이 n1이고 반지름이 r인 광섬유가 자기 자신과 접촉하여 폐곡선을 이루지 않는다는 전제하에, 광섬유의 중심선이 이루는 곡률반지름 R을 따라 원호의 형상으로 성형되어 있는 경우를 고려해보자.Consider a case where an optical fiber having a refractive index of n 1 and a radius r of the constituent material is formed in the shape of an arc along the radius of curvature R formed by the centerline of the optical fiber, provided that the optical fiber does not form a closed curve in contact with itself.
이러한 광섬유는 도 3에 도시된 바와 같이, 굴절률이 n2인 공기 중에 위치하고 있을 때 광섬유의 송신면에 빛을 가하면 광섬유 내부를 지나 수신면까지 도달하는 빛의 양은 광섬유의 지름 d와 곡률반지름 R 및 굴절률 n1과 n2에 따라 영향을 받는다.When the optical fiber is located in the air having a refractive index of n 2 as shown in FIG. 3, when the light is applied to the transmitting surface of the optical fiber, the amount of light reaching the receiving surface through the inside of the optical fiber is the diameter d, the radius of curvature R, and the refractive index of the optical fiber. Affected by n 1 and n 2 .
작동원리의 설명을 위해 도 3에서 광섬유의 굴절율 n1이 공기의 굴절율 n2 보다 크며, 광섬유로 입사되는 빛다발의 초기 지름은 광섬유의 지름과 동일하고 빛다발의 초기 방향은 광성유의 중심선에 대한 접선과 평행하다고 가정하자. For the purpose of explanation, the refractive index n 1 of the optical fiber is greater than the refractive index n 2 of air in FIG. 3, the initial diameter of the light bundle incident on the optical fiber is the same as the diameter of the optical fiber, and the initial direction of the light bundle is about the centerline of the mineral oil. Suppose it is parallel to the tangent line.
이런 방식에 의해 광섬유로 빛다발이 입사되는 초기조건 위치에서, 설명의 편이를 위해 광섬유의 지름 폭을 따라 반원형의 단면으로 길게 켜낸 가상의 동심원호 형상을 상상해보자. 이 동심원호 형상에서 광섬유의 중심선에 접하여 입사된 광선은 선분 AB를 따라 광섬유 내부를 직진하여 광섬유의 외곽에 도달한 후 반사 및/또는 굴절하게 된다. 이 경로를 따르는 광선에 대해, 도 3과 직각삼각형에 대한 피타고라스의 정리로부터 다음의 두 관계식이 성립함을 알 수 있다.In this way, imagine an imaginary concentric arc shape that is long on a semicircular cross-section along the diameter width of the fiber for ease of explanation at the initial condition where light bundles enter the optical fiber. In this concentric arc shape, the incident light rays coming into contact with the centerline of the optical fiber travel straight inside the optical fiber along line segment AB to reach the outer edge of the optical fiber and then reflect and / or refract. It can be seen from the Pythagorean theorem of FIG. 3 and the right triangle that the ray along this path holds the following two relations.
Figure PCTKR2009007075-appb-I000001
(식1)
Figure PCTKR2009007075-appb-I000001
(Eq. 1)
Figure PCTKR2009007075-appb-I000002
(식2)
Figure PCTKR2009007075-appb-I000002
(Eq. 2)
동일한 초기조건에서 광섬유의 외곽에 접하여 점 F로 입사된 광선은 전반사에 의해 광섬유의 외곽을 따라 전파하게 된다. Under the same initial condition, the light rays entering the point F in contact with the outer edge of the optical fiber propagate along the outer edge of the optical fiber by total reflection.
동일한 초기조건에서 광섬유의 내곽에 접하여 입사된 광선은 선분 PQ를 따라 광섬유 내부를 직진하여 광섬유의 외곽에 도달한 후 반사 및/또는 굴절하게 된다. 이 경로를 따르는 광선에 대해, 도 3과 직각삼각형에 대한 피타고라스의 정리로부터 다음 관계식이 성립함을 알 수 있다.Under the same initial conditions, the incident light rays coming into contact with the inside of the optical fiber go straight inside the optical fiber along the line segment PQ to reach the outside of the optical fiber and then reflect and / or refract. For the rays along this path, it can be seen from the Pythagorean theorem for FIG. 3 and the right triangle that the following relation holds.
Figure PCTKR2009007075-appb-I000003
(식3)
Figure PCTKR2009007075-appb-I000003
(Eq. 3)
Figure PCTKR2009007075-appb-I000004
(식4)
Figure PCTKR2009007075-appb-I000004
(Eq. 4)
광섬유에 입사된 모든 빛다발이 전반사되려면, 상기 식4와 스넬의 법칙(Snell's Law)으로부터 다음의 조건이 만족되어야 함을 알 수 있다.It can be seen that the following conditions must be satisfied from Equation 4 and Snell's Law in order for all the light bundles incident on the optical fiber to be totally reflected.
Figure PCTKR2009007075-appb-I000005
(식 5)
Figure PCTKR2009007075-appb-I000005
(Eq. 5)
상기 식을 다시 정리하면 다음이 얻어진다.In summary, the following is obtained.
Figure PCTKR2009007075-appb-I000006
(식 6)
Figure PCTKR2009007075-appb-I000006
(Equation 6)
상기 식은 다음과 같이 다시 쓸 수 있다.The equation can be rewritten as follows.
Figure PCTKR2009007075-appb-I000007
(식 7)
Figure PCTKR2009007075-appb-I000007
(Eq. 7)
여기서
Figure PCTKR2009007075-appb-I000008
이고
Figure PCTKR2009007075-appb-I000009
이다.
here
Figure PCTKR2009007075-appb-I000008
ego
Figure PCTKR2009007075-appb-I000009
to be.
반지름이 r인 광섬유가 원호 상으로 휘어져 있을 때, 해당 광섬유의 중심선이 이루는 곡률반지름 R이 상기 (식 6)의 조건을 만족한다면 광섬유의 중심선에 대한 접선에 평행하게 광섬유의 내부로 입사된 빛다발은 모두 전반사되어 도 3에 도시된 바와 같이, 광선 510 및 520 처럼 광섬유 내부를 전파함을 알 수 있다.When the radius r optical fiber is bent on an arc, if the radius of curvature R formed by the centerline of the optical fiber satisfies the above condition (Equation 6), the light beam is incident into the optical fiber parallel to the tangent to the centerline of the optical fiber. It can be seen that both are totally reflected and propagate inside the optical fiber as shown in rays 510 and 520, as shown in FIG.
만일 원호 상으로 휘어진 광섬유의 중심선이 이루는 곡률반지름 R이 상기 (식 6)의 우변보다 작다면, 광섬유의 중심선에 대한 접선에 평행하게 광섬유의 내부로 입사된 빛다발의 일부만이 전반사되고 나머지는 부분적으로 반사되어 광섬유 내부를 전파함을 알 수 있다.If the radius of curvature R formed by the centerline of the optical fiber bent in a circular arc is smaller than the right side of Equation (6), only a part of the bundle of light incident into the inside of the optical fiber is totally reflected and the remainder is partially parallel to the tangent to the centerline of the optical fiber. It can be seen that the light propagates inside the optical fiber.
이제 공기 중에서는 상기 (식 6)의 등호를 만족하는 광섬유가 도 4에 도시된 바와 같이 굴절률의 크기가 n1과 n2 사이인 액체의 내부에 잠겨 있는 경우를 고려해보자. 이 액체의 굴절률을 n3라고 하면, 광섬유와 액체 그리고 공기의 굴절률 사이에는 다음이 성립한다.Now consider the case where the optical fiber satisfying the equal sign of Equation 6 in air is immersed in the liquid whose refractive index is between n 1 and n 2 as shown in FIG. 4. If the refractive index of this liquid is n 3 , the following holds between the refractive indices of the optical fiber, liquid and air.
Figure PCTKR2009007075-appb-I000010
(식8)
Figure PCTKR2009007075-appb-I000010
(Eq. 8)
액체에 잠긴 해당 광섬유 내부에서 전반사가 일어나는 임계 경로를 선분 ST라고 한다면, 다음의 등식이 성립한다.If the critical path at which total reflection occurs inside the optical fiber submerged in liquid is called line segment ST, the following equation holds.
Figure PCTKR2009007075-appb-I000011
(식9)
Figure PCTKR2009007075-appb-I000011
(Eq. 9)
여기서
Figure PCTKR2009007075-appb-I000012
이고
Figure PCTKR2009007075-appb-I000013
이며, 전반사가 일어나는 임계 경로에 대한 스넬의 법칙과 상기 식으로부터 다음의 조건이 만족되어야 함을 알 수 있다.
here
Figure PCTKR2009007075-appb-I000012
ego
Figure PCTKR2009007075-appb-I000013
It can be seen from Snell's law for the critical path that total reflection occurs and the following conditions must be satisfied.
Figure PCTKR2009007075-appb-I000014
(식10)
Figure PCTKR2009007075-appb-I000014
(Eq. 10)
상기 식을 다시 정리하면 다음의 관계식이 얻어진다.In summary, the following relational expression is obtained.
Figure PCTKR2009007075-appb-I000015
(식11)
Figure PCTKR2009007075-appb-I000015
(Eq. 11)
여기서
Figure PCTKR2009007075-appb-I000016
이다.
here
Figure PCTKR2009007075-appb-I000016
to be.
중심선의 곡률 반지름이 R이며 굴절률이 n1인 광섬유가 굴절률이 그보다 작은 n3인 액체 속에 잠겨 있다면, 광섬유의 중심선에 대한 접선에 평행하게 광섬유의 내부로 입사된 빛다발 중에서 전반사 되는 부분과, 부분적으로 반사되는 부분의 비율을 상기 (식 11)로부터 계산할 수 있다.If an optical fiber with a radius of curvature of R and an index of refraction n 1 is immersed in a liquid with a smaller refractive index n 3 , the total and partially reflected light bundles that enter the inside of the fiber parallel to the tangent to the center line of the fiber The ratio of the part reflected by can be calculated from the above equation (11).
전반사 되는 부분의 빛다발은 광섬유 내부에서 계속 전반사되면서 전파하게 되며, 나머지 부분의 빛다발에서는 광섬유의 안쪽으로부터 액체 접촉면에서 반사가 일어날 때마다 도 4에 도시된 바와 같이, 액체 속으로 일부의 빛이 굴절(511, 512, 521, 522)되어 손실되고 나머지만 반사되어 광섬유 내부를 전파하게 된다.The light bundle of the totally reflected portion propagates as it is totally reflected inside the optical fiber, and in the remaining light bundle, some light is emitted into the liquid as shown in FIG. 4 whenever reflection occurs at the liquid contact surface from the inside of the optical fiber. Refractions 511, 512, 521, 522 are lost and only the rest are reflected to propagate inside the optical fiber.
즉, 초기 빛다발의 입사 위치를 기준으로 점 S의 바깥쪽에 위치한 빛다발 (선분 SF 영역)에서는 광섬유 내부에서 항상 전반사가 일어나며, 광섬유 내에서 반사를 거듭하여도 손실이 전혀 없이 광선이 광섬유 내부를 전파하게 된다.In other words, in the light bundle (line segment SF region) located outside the point S based on the initial position of the initial light bundle, total internal reflection always occurs inside the optical fiber. It spreads.
이와 달리 초기 빛다발의 입사 위치를 기준으로 점 S의 안쪽에 위치한 빛다발 (선분 PS 영역)에서는 광섬유 내부에서 반사될 때마다 굴절에 의한 부분적 손실이 반복된다. 이 때 초기 빛다발의 입사 위치를 기준으로 선분 PS에 위치한 빛다발에서 점 S에 가까운 광선일수록 반사를 거듭해도 굴절에 의한 총손실이 상대적으로 적으며 점 P에 가까운 광선일수록 반사를 반복할수록 굴절에 의한 총손실이 상대적으로 커진다.In contrast, in the bundle of rays (line segment PS region) located inside the point S based on the initial position of the bundle of rays, the partial loss due to refraction is repeated whenever reflected inside the optical fiber. At this time, in the light bundle located at the line segment PS based on the initial position of the initial light bundle, the total loss due to refraction is relatively small even if the light rays closer to the point S are repeated, and the light rays closer to the point P are more refractious as the light rays closer to the point P are repeated. The total loss caused by this is relatively large.
이상에서 설명한 원리를 유면측정용 센서에 적용하기 위하여 본 발명에서는 나선형 또는 삼각함수파형으로 성형된 광섬유(110, 210, 310)의 형상을 제시하는 바이다.In order to apply the principles described above to the sensor for measuring the surface of the present invention is to present the shape of the optical fiber (110, 210, 310) formed in a spiral or trigonometric waveform.
예를 들어 나선형의 광섬유(110, 210, 310)가 액체가 담겨진 용기 내에 도 5에 도시된 바와 같이 위치하고 있을 때, 상기 광섬유(110, 210, 310)의 송신면을 통해 상기 광섬유(110, 210, 310) 내부로 입사된 빛다발은 공기에 접하고 있는 상기 광섬유(110, 210, 310) 부위에서는 전반사되어 상기 광섬유(110, 210, 310) 내부를 전파한다.For example, when the helical optical fibers 110, 210, 310 are located in a container containing liquid as shown in FIG. 5, the optical fibers 110, 210 through the transmission surface of the optical fibers 110, 210, 310 are provided. The light bundle incident on the inside of the fiber 310 is totally reflected at the portion of the optical fiber 110, 210, 310 which is in contact with the air, and propagates inside the optical fiber 110, 210, 310.
상기와 같이 전파된 빛다발이 공기와 액체의 경계면 위치에 있는 상기 광섬유(110, 210, 310) 부위에 도달하면서부터 빛다발의 일부는 전반사되어 상기 광섬유(110, 210, 310) 내부를 전파하고 나머지는 반사될 때마다 도 4에 도시된 바와 같이, 액체로의 부분 굴절(511, 512, 521, 522)에 의한 손실로 반복적으로 감쇠되면서 상기 광섬유(110, 210, 310) 내부를 전파하게 된다.As the light bundle propagates as described above reaches a portion of the optical fibers 110, 210 and 310 located at the interface between air and liquid, a part of the light bundles is totally reflected to propagate inside the optical fibers 110, 210 and 310. As the rest is reflected, as shown in FIG. 4, the light is propagated repeatedly through the optical fiber 110, 210, 310 while being repeatedly attenuated by the loss due to partial refraction 511, 512, 521, 522 into the liquid. .
초기에 입사된 빛다발의 초기 단면적에 대한, 액체와의 접촉 여부에 관계없이 상기 광섬유(110, 210, 310) 내부를 전반사에 의해 전파하는 빛다발 부위의 초기 단면적의 비율을 a라고 하면, 액체에 접촉한 경우에 반사될 때마다 액체로의 부분 굴절에 의한 손실로 반복적으로 감쇠되면서 전파하는 빛다발 부위의 초기 단면적의 비율은 1-a이다.A ratio of the initial cross-sectional area of the light bundle portion propagated by total internal reflection of the inside of the optical fiber 110, 210, 310 to the initial cross-sectional area of the initially incident light bundle regardless of contact with the liquid is a The ratio of the initial cross-sectional area of the bundle of light propagating as it is repeatedly attenuated by the loss due to partial refraction into the liquid each time it is reflected is 1-a.
액체와의 접촉 여부에 관계없이 상기 광섬유(110, 210, 310) 내부를 전반사에 의해 전파하는 빛다발의 평균 강도는 다른 형태의 손실이 없다면 초기의 강도 b를 그대로 유지한다.The average intensity of the light bundle propagating through the internal reflection of the optical fiber 110, 210, 310 regardless of contact with the liquid maintains the initial intensity b as long as there is no loss of other forms.
반면, 액체에 접촉한 경우에 나선 숫자 1회를 전파하면서 액체로의 부분 굴절에 의해 m의 비율로 반복적으로 감쇠되면서 전파하는 빛다발의 평균 강도 c는 액체에 잠긴 상기 광섬유(110, 210, 310) 부위에서의 나선 숫자가 n인 경우에 다음과 같이 표현된다.On the other hand, the average intensity c of the light bundle propagating as it is repeatedly attenuated at a rate of m by partial refraction into the liquid while propagating one spiral number in contact with the liquid is the optical fiber 110, 210, 310 submerged in the liquid. In the case where the number of helixes in the region is n, it is expressed as
Figure PCTKR2009007075-appb-I000017
(식12)
Figure PCTKR2009007075-appb-I000017
(Eq. 12)
수신면에 부착된 상기 광센서(130, 230, 330)에 도달한 빛다발의 평균 강도 P는, 다른 손실을 고려하지 않는다면, 다음 식으로 표현된다.The average intensity P of the light bundles reaching the optical sensors 130, 230, and 330 attached to the receiving surface is expressed by the following equation unless other losses are considered.
Figure PCTKR2009007075-appb-I000018
(식13)
Figure PCTKR2009007075-appb-I000018
(Eq. 13)
본 발명이 제시하는 유면측정센서(100, 200, 300)에서, 공기(500) 중에 위치한 상기 광섬유(110, 210, 310) 부위에서는 상기 광섬유(110, 210, 310) 내부를 전파하는 빛다발의 전부가 전반사되며, 액체(600)에 잠긴 상기 광섬유(110, 210, 310) 부위에서는 상기 광섬유(110, 210, 310) 내부를 전파하는 빛다발의 일부는 전반사되고 나머지는 반사될 때마다 액체로의 부분 굴절에 의한 손실로 반복적으로 감쇠되면서 상기 광섬유(110, 210, 310) 내부를 전파하게 된다.In the oil level measurement sensor 100, 200, 300 according to the present invention, at the optical fiber 110, 210, 310 located in the air 500, light bundles propagating inside the optical fiber 110, 210, 310 are provided. The whole is totally reflected, and in the portion of the optical fiber (110, 210, 310) submerged in the liquid 600, a part of the light bundle propagating inside the optical fiber (110, 210, 310) is totally reflected and the rest is reflected in the liquid each time It is repeatedly attenuated by the loss due to partial refraction of the optical fiber (110, 210, 310) propagates inside.
나선형 또는 삼각함수파형 등의 형상으로 성형된 상기 광섬유(110, 210, 310)는 액체에 잠긴 부위에서 상기 광섬유(110, 210, 310) 형상의 1주기 마다 특정 비율 m으로 감쇠가 일어나므로 입사된 빛다발의 단위 광도에 대한 상기 광섬유(110, 210, 310) 끝단의 수신면에 위치한 광센서(130, 230, 330)로 측정된 광도 값 P로부터 몇 번의 감쇠 주기를 거쳤는지 역산할 수 있다. 이를 위해 상기 (식 13)을 다시 정리하면 다음을 얻는다.Since the optical fibers 110, 210, and 310 formed into a spiral or trigonal wave shape are attenuated at a specific ratio m every one cycle of the optical fibers 110, 210, and 310 in a liquid submerged portion, The number of attenuation cycles may be inverted from the luminous intensity values P measured by the photosensors 130, 230 and 330 located at the receiving surface of the ends of the optical fibers 110, 210 and 310 with respect to the unit luminous intensity of the light bundle. To recapitulate this equation (13), we get
Figure PCTKR2009007075-appb-I000019
(식14)
Figure PCTKR2009007075-appb-I000019
(Eq. 14)
여기서, here,
Figure PCTKR2009007075-appb-I000020
= 액체에 잠긴 광섬유 부위의 형상 주기 횟수 (반드시 정수일 필요는 없음)
Figure PCTKR2009007075-appb-I000020
= Number of shape cycles in a fiber part submerged in liquid (not necessarily an integer)
Figure PCTKR2009007075-appb-I000021
= 수신면에 부착된 광센서에 도달한 빛다발의 평균 강도
Figure PCTKR2009007075-appb-I000021
= Average intensity of light bundles reaching the optical sensor attached to the receiver
Figure PCTKR2009007075-appb-I000022
= 초기에 입사된 빛다발의 초기 단면적에 대한, 액체와의 접촉 여부에 관계없이 광섬유 내부를 전반사에 의해 전파하는 빛다발의 초기 단면적의 비율
Figure PCTKR2009007075-appb-I000022
= Ratio of the initial cross-sectional area of the light bundle propagated by total reflection inside the optical fiber to the initial cross-sectional area of the initially incident light bundle regardless of contact with liquid.
Figure PCTKR2009007075-appb-I000023
= 송신면에서 광섬유 내부로 입사된 초기 빛다발의 평균 강도
Figure PCTKR2009007075-appb-I000023
= Average intensity of the initial bundle of light incident on the optical fiber at the transmitting surface
Figure PCTKR2009007075-appb-I000024
= 액체에 잠긴 나선형 또는 삼각함수 형상으로 성형된 광섬유 내부의 (1-a)에 해당하는 빛다발로서 형상 1주기에 걸친 반사과정에서 액체 속으로 굴절되어 누설된 빛을 제외한 나머지인 광섬유 내부로 부분 반사된 빛의 비율
Figure PCTKR2009007075-appb-I000024
= A light bundle corresponding to (1-a) inside an optical fiber formed into a helical or trigonometric shape submerged in a liquid, and part of the optical fiber, except for light that is refracted into the liquid and leaked during the reflection process over one cycle. Proportion of reflected light
상기 (식 14)로부터 액체에 잠긴 상기 광섬유(110, 210, 310) 부위의 형상 주기 횟수 n이 계산되므로, 액체를 저장하고 있는 용기 내에서 공기(500)와 액체(600) 사이의 경계면, 즉 유면의 위치를 정확히 측정할 수 있게 되는 것이다.Since the number of shape cycles n of the optical fiber 110, 210, 310 submerged in the liquid is calculated from Equation 14, the interface between the air 500 and the liquid 600 in the container storing the liquid, namely It is possible to accurately measure the position of the surface.
이상에서 본 발명을 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정하지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.While the present invention has been illustrated and described with respect to preferred embodiments, the invention is not limited to the above-described embodiments, and is commonly used in the field of the invention without departing from the spirit of the invention as claimed in the claims. Anyone with a variety of variations will be possible.

Claims (3)

  1. 광섬유;Optical fiber;
    상기 광섬유의 일단부에 결합되는 광원; 및A light source coupled to one end of the optical fiber; And
    상기 광섬유의 타단부에 결합되는 광센서;An optical sensor coupled to the other end of the optical fiber;
    를 포함하여 이루어지며,It is made, including
    상기 광섬유의 양단부 또는 중단부 중 적어도 어느 하나에는 고정부재가 더 구비되는 것을 특징으로 하는 광섬유로 형성된 유면측정센서.At least one of the both ends or the stop of the optical fiber is a surface measurement sensor formed of an optical fiber, characterized in that further provided.
  2. 제1항에 있어서, 상기 광섬유는,The method of claim 1, wherein the optical fiber,
    나선형 또는 삼각함수파형 중 어느 하나의 형상으로 이루어지는 것을 특징으로 하는 광섬유로 형성된 유면측정센서.A surface measuring sensor formed of an optical fiber, characterized in that formed in any one of a spiral or trigonometric waveform.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 광원은 상기 광섬유의 송신면에 부착되고, 상기 광센서는 상기 광섬유의 수신면에 부착되는 것을 특징으로 하는 광섬유로 형성된 유면측정센서.And the light source is attached to the transmission surface of the optical fiber, and the optical sensor is attached to the reception surface of the optical fiber.
PCT/KR2009/007075 2008-12-22 2009-11-30 Liquid level measurement sensor formed by optical fiber WO2010074414A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0131147 2008-12-22
KR1020080131147A KR20100072671A (en) 2008-12-22 2008-12-22 Liquid level measuring sensor made of optical fibers

Publications (2)

Publication Number Publication Date
WO2010074414A2 true WO2010074414A2 (en) 2010-07-01
WO2010074414A3 WO2010074414A3 (en) 2010-09-30

Family

ID=42288228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007075 WO2010074414A2 (en) 2008-12-22 2009-11-30 Liquid level measurement sensor formed by optical fiber

Country Status (2)

Country Link
KR (1) KR20100072671A (en)
WO (1) WO2010074414A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167217A (en) * 2017-05-23 2017-09-15 田志鹏 A kind of fibre optic liquid level sensor system of acoustic-optio coupling
GB2576773A (en) * 2018-08-31 2020-03-04 Advanced Fibreoptic Eng Ltd Fluid level sensing device and method
CN113280890A (en) * 2021-06-01 2021-08-20 重庆理工大学 Reflection type spiral optical fiber liquid level sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444839B (en) * 2015-11-18 2019-09-20 中北大学 Plastic optical fiber liquid level sensor and measurement method based on optical time domain reflection technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880990A (en) * 1988-06-13 1989-11-14 Imo Industries, Inc. Optical liquid-level sensing apparatus
JP2000329606A (en) * 1999-05-19 2000-11-30 Yazaki Corp Liquid level sensor
JP2003194616A (en) * 2001-12-25 2003-07-09 Kurabe Ind Co Ltd Liquid level sensor
JP2006308305A (en) * 2005-04-26 2006-11-09 Yamatake Corp State detection device of liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4880990A (en) * 1988-06-13 1989-11-14 Imo Industries, Inc. Optical liquid-level sensing apparatus
JP2000329606A (en) * 1999-05-19 2000-11-30 Yazaki Corp Liquid level sensor
JP2003194616A (en) * 2001-12-25 2003-07-09 Kurabe Ind Co Ltd Liquid level sensor
JP2006308305A (en) * 2005-04-26 2006-11-09 Yamatake Corp State detection device of liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167217A (en) * 2017-05-23 2017-09-15 田志鹏 A kind of fibre optic liquid level sensor system of acoustic-optio coupling
CN107167217B (en) * 2017-05-23 2020-09-08 田志鹏 Acousto-optic coupled optical fiber liquid level sensor system
GB2576773A (en) * 2018-08-31 2020-03-04 Advanced Fibreoptic Eng Ltd Fluid level sensing device and method
US11047726B2 (en) 2018-08-31 2021-06-29 The Boeing Company Fluid level sensing device and method of determining a fluid level comprising an optical waveguide with successive ones of curved portions being curved in alternating directions
CN113280890A (en) * 2021-06-01 2021-08-20 重庆理工大学 Reflection type spiral optical fiber liquid level sensor
CN113280890B (en) * 2021-06-01 2023-01-20 重庆理工大学 Reflection type spiral optical fiber liquid level sensor

Also Published As

Publication number Publication date
WO2010074414A3 (en) 2010-09-30
KR20100072671A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
EP3665521B1 (en) Rollable optical fiber ribbon with low attenuation, large mode field diameter optical fiber and cable
US4187025A (en) Device for producing a light signal corresponding to the refractive index of a fluid
WO2010074414A2 (en) Liquid level measurement sensor formed by optical fiber
EP3548942B1 (en) Low attenuation optical fiber cable with small sized active particles
DE60236775D1 (en) nd a central reinforcing element
EP0362208A1 (en) Optical coupling device.
US6442316B1 (en) Stress sensor based on periodically inserted color-changing tactile films to detect mishandling of fiber optic cables
WO2024037395A1 (en) Full-dry tube unit using water-blocking powder, and optical cable
US5963701A (en) Plastic optical fibers and optical fiber cables
JP2008170327A (en) Refractive index detector and liquid level detector
EP0803745B1 (en) Fiber optics device
JP2650998B2 (en) Optical fiber for detecting liquid, gas, etc.
KR20120070007A (en) Liquid level measuring sensor made of a transparent cylindrical pipe
CN209821425U (en) Novel light guide element
JPH07113919A (en) Lighting plastic optical fiber tube
CN218412966U (en) Pressure-resistant optical fiber interferometer
KR101288594B1 (en) Optical fiber type light guide plate and backlight unit using the same
KR20210142567A (en) Side Emitting Plastic Optical Fiber
US6122425A (en) Optical-fibre cable having a fixed-bend section
KR100789285B1 (en) Liquid measuring sensor
SU1108333A1 (en) Optical-fibre level indicator
JP2000089043A (en) Multi core optical fiber
JPH10300557A (en) Level sensor
RU15224U1 (en) LIQUID ALARM
JPS6365321A (en) Optical liquid level sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835180

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835180

Country of ref document: EP

Kind code of ref document: A2