WO2010073962A1 - Fuel cell system and fuel cell - Google Patents

Fuel cell system and fuel cell Download PDF

Info

Publication number
WO2010073962A1
WO2010073962A1 PCT/JP2009/071048 JP2009071048W WO2010073962A1 WO 2010073962 A1 WO2010073962 A1 WO 2010073962A1 JP 2009071048 W JP2009071048 W JP 2009071048W WO 2010073962 A1 WO2010073962 A1 WO 2010073962A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
unit
voltage
fuel
power generation
Prior art date
Application number
PCT/JP2009/071048
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 八木
康子 乗富
貴博 鈴木
裕輔 佐藤
典裕 吉永
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008333071A external-priority patent/JP2010153324A/en
Priority claimed from JP2009072479A external-priority patent/JP2010225459A/en
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010073962A1 publication Critical patent/WO2010073962A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel cell for controlling a polymer electrolyte fuel cell using liquid as a fuel.
  • the solid polymer fuel cell is known as a fuel cell that uses a polymer membrane having proton conductivity, sometimes called a proton exchange membrane fuel cell, as an electrolyte.
  • a polymer membrane having proton conductivity sometimes called a proton exchange membrane fuel cell, as an electrolyte.
  • One of the polymer electrolyte fuel cells (PEFC) is a direct methanol fuel cell (DMFC).
  • DMFC direct methanol fuel cell
  • This direct methanol fuel cell is portable because it does not require an auxiliary device such as a vaporizer or a humidifier, it is easier to handle methanol than a gaseous fuel such as hydrogen, and it can be operated at low temperatures.
  • Development is progressing as a small power source for industrial equipment.
  • a direct methanol fuel cell has a membrane electrode assembly (MEA).
  • the membrane electrode assembly includes an anode electrode (also referred to as a fuel electrode), a cathode electrode (also referred to as an air electrode), and a solid polymer membrane that is sandwiched between them and transmits protons.
  • An aqueous methanol solution is supplied to the anode electrode, and air is supplied to the cathode electrode.
  • reaction of the following formula (2) occurs at the cathode electrode of MEA, and water is generated by the electrochemical reaction of protons, electrons, and oxygen.
  • the water generated by the reaction of the formula (2) is removed from the cathode electrode by diffusion into the air supplied to the cathode electrode or moving through the solid polymer membrane to the anode electrode, but remains without being removed. Water accumulates inside the cathode. If this accumulated water is not properly removed, the air diffusivity is lowered, causing a reduction in output voltage.
  • methanol crossover occurs in which part of methanol contained in the methanol aqueous solution supplied to the anode electrode moves directly from the anode electrode to the cathode electrode.
  • reaction of the following formula (3) occurs.
  • the fuel utilization efficiency is defined by the reaction of the formula (2) / ⁇ the reaction of the formula (2) + the formula (3) ⁇ , and the higher the methanol crossover value of the formula (3), the higher the methanol (fuel). The utilization efficiency of is reduced.
  • the power generation efficiency is defined as MEA voltage / theoretical voltage ⁇ fuel utilization efficiency, and the higher the MEA voltage, the higher the power generation efficiency.
  • Patent Document 1 the load of the power generation unit is switched from a closed circuit to an open circuit in order to keep the methanol crossover within a predetermined range and increase the two efficiency of fuel use efficiency and power generation efficiency, and after switching, the constant A method for detecting the methanol concentration based on the output voltage after time has been proposed.
  • this method since the output voltage value of the power generation unit is used as an evaluation value, there is an advantage that a concentration sensor is not required and the apparatus can be downsized.
  • a methanol aqueous solution having a predetermined concentration is supplied to the anode electrode of each cell through a fuel supply unit.
  • the cell in the central region and the cell in the end region with respect to the power generation unit stacking direction may be affected by environmental factors such as the outside air temperature, resulting in a difference in cell temperature.
  • environmental factors such as the outside air temperature, resulting in a difference in cell temperature.
  • an aqueous methanol solution having the same concentration as that of the high temperature cell is supplied.
  • the overvoltage of the formula (1) increases and the voltage decreases. Power generation efficiency will decrease.
  • the fuel diffusibility of the anode is lowered in a cell having a low temperature, so that the load current that can be taken out from the cell is reduced. In this case, there arises a problem that the power generation amount decreases.
  • the cell at the end adjacent to the outside air may be affected by the outside air temperature and the temperature rise rate may be slow.
  • the load current that can be taken out decreases due to the decrease in the fuel diffusibility.
  • the maximum load that can be taken out from the power generation unit is limited by the load of the end cell. Therefore, there is a problem that the power generation amount and the starting speed are reduced from the low temperature start to the steady state where a predetermined power generation amount is obtained.
  • Patent Document 2 a device has been devised in which a conductive dummy cell having heat insulation is arranged at the end of the power generation unit to suppress a temperature drop in the end region and to suppress temperature variation between the cells. Moreover, in patent document 3, the device is provided with a resistor in at least one end region of both ends in the stacking direction of the power generation unit to suppress a temperature drop in the end region and suppress a temperature variation between cells. ing. Furthermore, in Patent Document 4, fuel having a lower heat capacity than that during normal operation is supplied to the anode at startup, and fuel at the anode outlet is circulated again to the anode inlet, thereby speeding up startup of the power generation cell.
  • the present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a fuel cell system and a fuel cell capable of stable operation over a long period of time.
  • One aspect of the present invention includes a power generation unit having a plurality of stacked cells, a fuel supply unit capable of supplying fuel to the cells, the fuel supply amount being adjustable, and at least one specific cell among the plurality of cells.
  • a voltage monitoring unit that monitors the output voltage, a power supply unit that temporarily supplies power to the specific cell, a minimum value of the output voltage that appears after the power is supplied to the specific cell, and the output voltage
  • a fuel cell system is provided that includes a control unit that detects a voltage difference from the response value of the output voltage after the value reaches a minimum value and controls the fuel supply amount according to the voltage difference.
  • a power generation unit having a plurality of stacked cells, a temperature monitoring unit that monitors the temperature of at least one specific cell among the plurality of cells, and temporarily supplying power to the specific cell.
  • a fuel cell system comprising: a power supply unit that supplies the power to the specific cell, and a control unit that supplies the power to the specific cell according to the temperature.
  • a power generation unit having a plurality of stacked cells, a voltage monitoring unit that monitors a voltage of at least one specific cell among the plurality of cells, and temporarily supplying power to the specific cell.
  • a fuel cell system comprising: a power supply unit that supplies the power to the specific cell, and a control unit that supplies the power to the specific cell according to the voltage.
  • the power generation unit includes a plurality of stacked cells, and a power supply unit that temporarily supplies power to at least one specific cell among the plurality of cells.
  • a fuel cell is provided.
  • FIG. 1 is a diagram illustrating a configuration example of a fuel cell system according to the first embodiment.
  • FIG. 2 is a diagram illustrating details of the configuration of the power generation unit illustrated in FIG. 1.
  • FIG. 3 is a diagram showing the response characteristics of the cell voltage.
  • FIG. 4 is a diagram illustrating an example of the relationship between the air flow rate and the time evaluation value.
  • FIG. 5 is a flowchart illustrating a processing procedure of the system according to the first embodiment.
  • FIG. 6 is a diagram showing the response characteristics of the cell voltage.
  • FIG. 7 is a flowchart illustrating a processing procedure of the system according to the second embodiment.
  • FIG. 8 is a flowchart illustrating the processing procedure of the system according to the third embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a fuel cell system according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating details of the configuration of the power generation unit according to the fourth embodiment.
  • FIG. 11 is a diagram relating to a system control method according to the fourth embodiment.
  • FIG. 12 is a flowchart illustrating a processing procedure of the control unit according to the fourth embodiment.
  • FIG. 13 is a diagram illustrating a configuration example of a fuel cell system according to the fifth embodiment.
  • FIG. 14A is a graph showing a load current and an external power supply current to a specific cell in Example 1.
  • FIG. 14B is a graph showing the output voltage of the power generation unit and the voltage of a specific cell in Example 1.
  • FIG. 15A is a graph showing the load current in Comparative Example 1.
  • FIG. 15B is a graph showing the output voltage of the power generation unit and the voltage of a specific cell in Comparative Example 1.
  • FIG. 16 is a diagram illustrating a configuration example of a fuel cell system according to the sixth embodiment.
  • FIG. 17A is a diagram illustrating details of the configuration of the power generation unit according to the sixth embodiment.
  • FIG. 17B is a diagram illustrating a configuration of a specific cell unit.
  • FIG. 17C is a diagram illustrating a configuration of cells other than the specific cell.
  • FIG. 18 is a diagram relating to a system control method according to the sixth embodiment.
  • FIG. 19 is a flowchart illustrating a processing procedure of the control unit according to the sixth embodiment.
  • FIG. 20A is a diagram illustrating details of the configuration of the power generation unit according to the seventh embodiment.
  • FIG. 20B is a diagram illustrating a configuration of a specific cell.
  • FIG. 20C is a diagram illustrating a configuration of cells other than the specific cell.
  • FIG. 1 shows a configuration of a fuel cell system 1 according to a first embodiment of the present invention.
  • the fuel cell system 1 includes a power generation unit 5 having a cell stack structure 50 as shown in FIG. 2 and a fuel tank that stores liquid fuel such as high-concentration methanol or a mixed solution of methanol fuel and a small amount of water (methanol aqueous solution).
  • the auxiliary devices 2 that support the power generation in the power generation unit 5, and the electric power generated by the power generation unit 5 are controlled by the external power source (for example, a lithium ion battery) and the power extracted from the power generation unit 5.
  • the auxiliary devices 2 include a fuel supply unit 4 that supplies fuel from the fuel tank 3 to the power generation unit 5, an air supply unit 6 that supplies air to the power generation unit 5, and a load that adjusts the load current extracted from the power generation unit 5.
  • the adjustment unit 7, the cell voltage monitoring unit 8 that monitors the output voltage of each cell of the cell stack structure 50, and the control unit 9 for controlling each unit in the auxiliary devices 2 are provided.
  • the control unit 9 includes a detection processing unit 9a that detects the state of each unit of the auxiliary devices 2, and a database 9b in which control information for controlling each unit according to the detected information is stored in advance.
  • the control unit 9 detects necessary information from each unit of the power generation unit 5 and the auxiliary devices 2 and processes or calculates the detected information. Further, the control unit 9 gives control signals to the fuel supply unit 4, the power generation unit 5, the load adjustment unit 7, and the air supply unit 6 according to the result of this processing or calculation.
  • the database 9b includes a database that describes in advance how each part of the auxiliary equipment 2 is controlled based on values measured from the cells.
  • the power generation unit 5 is connected to the load power 11 through the load adjustment unit 7 and the power adjustment unit 10.
  • the load power 11 corresponds to, for example, an electronic device driven by power generated by the fuel cell system 1.
  • the power adjustment unit 10 supplies the power generated by the power generation unit 5 to the load power 11. Adjustment of the electric power taken out from the power generation unit 5 is performed by the load adjustment unit 7 adjusting the load current.
  • the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a lithium ion battery or a capacitor). Make up for the power shortage.
  • the power adjustment unit 10 includes a switching circuit that turns on or off the supply of power generated by the power generation unit 5 to the load power 11.
  • the power adjustment unit 10 is configured to be connected to the load power 11 in the on state to be in a closed circuit state, disconnected from the load power 11 in the off state, and to be in an open circuit state on the output side.
  • the power generation unit 5 and the auxiliary devices 2 are connected by a fluid piping system.
  • the fuel tank 3 and the fuel supply unit 4 are connected by a fuel supply line L1.
  • the fuel supply unit 4 and the power generation unit 5 are connected by a fuel supply line L2.
  • the fuel in the fuel tank 3 is supplied to the anode electrode of the power generation unit 5 by adjustment in the fuel supply unit 4.
  • the air supply unit 6 and the power generation unit 5 are connected by an air supply line L ⁇ b> 3, and air is sent to the cathode electrode of the power generation unit 5 by adjustment in the air supply unit 6.
  • the fuel in the fuel tank 3 is directly supplied to the power generation unit 5.
  • the present invention is not limited to this, and the fuel in the fuel tank 3 is diluted with fuel. You may make it the system which mixes with the fuel remaining in the electric power generation in the power generation part 5 by supplying in the mixing tank to store.
  • the power generation unit 5 and the auxiliary devices 2 are connected by a signal and current wiring system.
  • the control unit 9 is connected to the fuel supply unit 4 via the signal line E1.
  • the power generation unit 5 and the control unit 9 are connected by a signal line E2.
  • the load adjustment unit 7 and the control unit 9 are connected by a signal line E3.
  • the cell voltage monitoring unit 8 and the control unit 9 are connected by a signal line E4.
  • the air supply unit 6 and the control unit 9 are connected by a signal line E5.
  • the flow rate of fuel supplied from the fuel supply unit 4 to the power generation unit 5 is measured.
  • the fuel flow rate information representing the measured flow rate is sent to the control unit 9 via the signal line E1.
  • a supply amount control signal that determines the supply flow rate is sent from the control unit 9 to the fuel supply unit 4 via the signal line E1.
  • Fuel is supplied from the fuel supply unit 4 to the power generation unit 5 in accordance with the supply amount control signal.
  • the fuel supplied to each cell 51 may be adjusted for each cell 51 by providing a fuel flow rate adjustment valve (not shown) in the flow path of the fuel flowing into each cell 51.
  • information representing the stack voltage (the voltage of the entire cell) generated and output from the cell stack structure 50 in the power generation unit 5 is sent to the control unit 9 via the signal line E2 as voltage information.
  • the power adjustment unit 10 is connected to the load adjustment unit 7 via a line E6.
  • the load adjustment unit 7 applies a load to the power generation unit 5 through the signal line E3.
  • the value of the load current detected by the load adjustment unit 7 is sent to the control unit 9 via the signal line E3 as load current information.
  • the load control signal set by the control unit 9 is given from the control unit 9 to the load adjustment unit 7 via the signal line E3.
  • the load adjustment unit 7 connects a load corresponding to the set load determined according to the load control signal to the power generation unit 5, and the load current flowing through the set load is detected and sent to the control unit 9 as load current information.
  • the power adjustment unit 10 can be omitted by providing the load adjustment unit 7 with the role of the power adjustment unit 10. In this case, the load power 11 is connected to the load adjustment unit 7.
  • the cell voltage monitoring unit 8 includes a cell voltage detection circuit (not shown) that detects a voltage generated in at least one predetermined cell, and the cell stacked structure 50 in the power generation unit 5 via the signal line E4. Are connected to the above cells. The voltage generated in each cell is measured by the cell voltage detection circuit, and the measured cell voltage value is sent to the control unit 9 as voltage information.
  • the predetermined cells are all the cells 51 included in the cell stack structure 50, but in addition to this, only a plurality of cells 51 are selected from the cell stack structure 50, and those cells 51 are selected. It can also be a combined voltage. Alternatively, only a specific cell 51 can be selected as a predetermined cell. For example, when the cell stack 50 has a large number of cells 51, the cell voltage monitoring unit 8 does not detect the voltages of all the cells 51, but selects two to three adjacent cells 51, Can be the voltage at a predetermined cell.
  • the power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 2 (a) and 2 (b).
  • the cell stack structure 50 includes a plurality of cells 51 stacked between the anode current collector plate 12 and the cathode current collector plate 14, and each cell 51 includes the anode current collector plate 12.
  • the cathode current collector plate 14 is electrically connected in series.
  • the cell 51 stacked between the anode current collector plate 12 and the cathode current collector plate 14 is disposed between a pair of clamping plates 18A and 18B, and is clamped and fixed by fixtures 19A and 19B between the clamping plates 18A and 18B.
  • the anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 8, respectively, and the current generated by the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
  • the cell 51 includes a membrane electrode assembly (referred to as MEA) 20 as shown in FIG.
  • MEA membrane electrode assembly
  • An anode flow path plate 22 is provided on one side of the membrane electrode assembly 20, and a cathode flow path plate 24 is provided on the other side.
  • the MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24.
  • the anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26.
  • the MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
  • the anode flow path plate 22 of each cell 51 is electrically and mechanically connected to the cathode flow path plate 24 of the adjacent cell 51, and the cathode flow path plate 24 of each cell 51 is the anode flow path of the adjacent cell 51.
  • the stacked cells 51 that are electrically and mechanically connected to the plate 22 are connected in series to each other.
  • the cell 51 connected to the cell voltage monitoring unit 8 is provided with output terminals 22A and 24A on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the voltage generated by the cell 51 from the outside. ing.
  • the output terminals 22A and 24A are connected to the voltage detection circuit of the cell voltage monitoring unit 8 through the cell voltage signal line E4, and the cell voltage monitoring unit 8 monitors (monitors) the voltage of each cell 51. From the cell voltage monitoring unit 8, voltage information representing a voltage value corresponding to a voltage generated in a predetermined cell is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
  • the anode channel plate 22 faces the anode electrode side of the MEA 20 and is formed with a channel through which fuel such as methanol and aqueous methanol solution is circulated.
  • the fuel is supplied to the MEA 20 through this flow path, and the gas generated by the reaction in the MEA 20 is discharged through the flow path of the anode flow path plate 22.
  • the cathode channel plate 24 is formed with a channel through which air flows while facing the cathode electrode side of the MEA 20. Air is supplied to the MEA 20 through the channel, and is generated by a reaction in the MEA 20. The water that has passed through is discharged through the channel of the cathode channel plate 24.
  • the membrane electrode assembly (MEA) 20 forms a catalyst layer by applying a catalyst layer on both sides of a solid polymer membrane, and smoothly collects current, supplies fuel, and discharges a reaction product outside the catalyst layer. It is formed by joining gas diffusion layers for the purpose.
  • a catalyst layer for example, an ion exchange membrane made of Nafion (registered trademark) manufactured by DuPont can be used.
  • anode catalyst (anode electrode film) and the cathode catalyst (cathode electrode film) a commercially available Pt—Ru catalyst, Pt catalyst, or the like can be used.
  • Commercially available carbon paper, carbon fiber, and carbon nonwoven fabric can be used as the gas diffusion layer.
  • diffusion layers may be provided with a dense layer (Micro Porous Layer) mainly composed of carbon and a water-repellent material.
  • the anode flow channel plate 22 and the cathode flow channel plate 24 are respectively supplied with fuel and discharge of the reaction product to the anode electrode of the MEA 20, supply of air and discharge of the reaction product to the cathode electrode, and electricity generated by the reaction.
  • the anode channel plate 22 and the cathode channel plate 24 can have any shape as long as this purpose is achieved. For example, a serpentine channel plate can be used for the anode channel plate 22.
  • the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9.
  • the air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9.
  • the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20.
  • the oxygen reduction reaction represented by the formula (2) occurs at the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs.
  • the electrons (e ⁇ ) flow to the load adjusting unit 7.
  • the protons (H +) generated by the anode catalyst flow from the anode electrode to the cathode electrode through the solid polymer membrane.
  • methanol flows simultaneously with protons through the solid polymer membrane to the cathode electrode.
  • the methanol flowing to the cathode electrode undergoes the reaction of the formula (3) on the cathode side, and water is generated at the cathode electrode (methanol crossover).
  • water is contained in the fuel in the fuel tank 3
  • water also flows into the cathode electrode through the solid polymer membrane simultaneously with protons. If power generation is continued in this way, water accumulates in the cathode electrode, and if the accumulated water is not properly removed from the cathode electrode, air diffusibility is reduced.
  • the power generation efficiency is improved by providing a process for improving the air diffusibility of the cell 51. The method will be described below.
  • FIG. 3 shows the cell voltage output from each cell 51 when the load is switched by the load adjusting unit 7 and the load current I taken out from the cell stack structure 50 is changed stepwise from the load current I1 to the load current I2.
  • Response characteristics CR 1 , CR 2 , CR 3 , CR 4 are shown. These CR 1 , CR 2 , CR 3 , and CR 4 represent the cell voltage characteristics measured in the four cells 51 1 to 514 in the cell stack structure 50 in which the four cells 51 1 to 51 4 are stacked. ing.
  • Each of the cells 51 1 to 51 4 is connected to the cell voltage monitoring unit 8, the voltages of the cells 51 1 to 51 4 are individually monitored, and voltage information is supplied to the detection processing unit 9a.
  • superscript suffixes (subscripts) 1 to 4 indicate the cell numbers 1 to 4 of the four cells 51, and the subscript suffix “1” denotes the minimum voltage value V 1 (minimum voltage value). ) And the time point T 1 at which the minimum voltage value V 1 is reached.
  • the minimum voltage value (minimum voltage value) is reached, and then each voltage V gradually converges to a substantially constant value after reaching the maximum voltage value.
  • the air flow rate of 51 is estimated.
  • One of the first load and the second load may be in a no-load state.
  • the time evaluation value ⁇ T 1 n of each cell 51 is almost the same value.
  • a specific failure such as a decrease in local air inflow due to an uneven air distribution or water accumulation (flooding) in the cathode electrode (hereinafter referred to as “abnormality”). This is simply referred to as cell abnormality), and the time evaluation value ⁇ T 1 n of each cell varies.
  • the cell voltage is monitored by the cell voltage monitoring unit 8, the time evaluation value ⁇ T 1 n of each cell is obtained by the detection processing unit 9a, and the air supply unit 6 is controlled based on the time evaluation value ⁇ T 1 n. Will be explained.
  • FIG. 4 is an example in which the relationship between the air inflow amount of the cell 51 and the time evaluation value ⁇ T 1 n is obtained by experiments.
  • the methanol concentration of the fuel supplied to the anode electrode is 1.6 mol / L
  • the air flow rate per unit area supplied to the cathode electrode is 4 to 10 cc / min / in the case of changing cm 2, and the results obtained by plotting the response time evaluation value [Delta] T 1 n.
  • FIG. 4 shows that ⁇ T 1 n increases as the air flow rate decreases, and conversely, when the air flow rate is increased beyond a certain level, ⁇ T 1 n changes less with changes in the air flow rate.
  • FIG. 5 shows a processing procedure of the system in the first embodiment.
  • the control operation of the control unit 9 will be described with reference to FIG.
  • the detection processing unit 9a gives an instruction for load variation processing to the load adjustment unit 7 (step S02).
  • the load adjustment unit 7 adjusts the load current extracted from the power generation unit 5 from the first value to the second value (step S03).
  • the cell voltage monitoring unit 8 measures the voltage value of each cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S04).
  • the detection processing unit 9a detects the minimum voltage value V 1 n from the input voltage information, and detects the time ⁇ T 1 n from the load fluctuation start T 0 until the minimum voltage value V 1 n is obtained (step S05). .
  • the detected time ⁇ T 1 n is stored in the ⁇ T 1 n detection database 9b-1 of the database 9b.
  • the detection processing unit 9a determines whether ⁇ T 1 n is within a predetermined range (step S06).
  • a predetermined minimum time value ⁇ T min ( ⁇ T min includes 0) as shown in the following equation (4).
  • the maximum time value ⁇ T max is determined as a normal cell, and when it is not satisfied, it is determined as an abnormal cell.
  • a frequency distribution S ( ⁇ T 1 n ) is calculated from ⁇ T 1 n obtained in each cell 51, and from the frequency distribution, a cell whose variance is within a predetermined range is determined as a normal cell, and the range A cell that is not within can be determined as an abnormal cell.
  • the calculated frequency distribution S ( ⁇ T 1 n ) has two or more peaks, the value of the peak with the smaller ⁇ T 1 n or the average value thereof can be used.
  • ⁇ T 1 n is equal to or smaller than a predetermined reference value, it is determined as a normal cell, and when ⁇ T 1 n is larger than the reference value, it may be determined as an abnormal cell.
  • the detection processing unit 9a instructs a process for recovering the abnormal cell (step S07).
  • the timing of the recovery process may be, for example, at the end of the fuel cell system 1, may be performed immediately during operation, or at least M (M: any natural number) or more cells. It may be performed only when an abnormality occurs.
  • the detection processing unit 9a When the recovery processing command is issued in step S07, the detection processing unit 9a outputs a control signal instructing an increase in the air supply amount to the air supply unit 4 (step S08).
  • ⁇ T 1 n -supply amount control database 9b-2 stored in advance in the database 9b is used. Based on this ⁇ T 1 n -supply amount control database 9b-2, the control unit 9 sends a supply amount control signal to the air supply unit 6, and the air supply unit 6 adjusts the air supply amount (step S09).
  • the load of the power generation unit is switched from a closed circuit to an open circuit in order to keep the methanol crossover within a predetermined range and improve the fuel utilization efficiency and the power generation efficiency, and the output after a certain time after switching
  • the methanol concentration was detected based on the voltage.
  • it takes time from the time when the load of the power generation unit is switched from the closed circuit to the open circuit until the output voltage is stabilized it has been a problem to increase the detection speed of the methanol concentration.
  • the output voltage of the power generation unit changes due to deterioration over time and the like, there is a problem of stability in detection accuracy of methanol concentration.
  • the power generation unit is composed of a plurality of cells, the output voltage characteristics of each cell vary, and therefore the methanol concentration detection varies depending on which cell voltage value is used.
  • a power generation unit having a plurality of stacked cells, a fuel supply unit that supplies fuel to the cells, a fuel supply amount that can be adjusted, and supplies air to the cells.
  • An air supply unit capable of adjusting an air supply amount; a voltage monitoring unit that monitors an output voltage of at least one of the plurality of cells; an adjustment unit that adjusts a load current extracted from the power generation unit; and the load
  • a time measuring unit that measures a time from when the current is adjusted from the first value to the second value until the output voltage reaches the minimum value; and, depending on the time, the air supply amount and the fuel supply amount
  • a fuel cell system including a control unit that controls at least one of them.
  • the time ⁇ T 1 n until the output voltage of each cell reaches the minimum value from the start of load fluctuation is detected, and air supply is performed so that the value of ⁇ T 1 n falls within a predetermined range. Control the amount. By doing in this way, it becomes possible to suppress the fall of the output voltage by the fall of the air diffusibility in the cathode pole of the cell 51, and can improve electric power generation efficiency.
  • the second embodiment estimates the methanol crossover by using the method for detecting the time ⁇ T 1 n described in the first embodiment, thereby improving not only the power generation efficiency but also the fuel utilization efficiency. Provide a system.
  • FIG. 6 shows the cell voltage output from each cell 51 when the load is switched by the load adjusting unit 7 and the load current I taken out from the cell stack structure 50 is changed stepwise from the load current I1 to the load current I2.
  • Response characteristics CR 1 , CR 2 , CR 3 , CR 4 are shown. These CR 1 , CR 2 , CR 3 , and CR 4 represent the cell voltage characteristics measured in the four cells 51 1 to 514 in the cell stack structure 50 in which the four cells 51 1 to 51 4 are stacked. ing.
  • Each of the cells 51 1 to 51 4 is connected to the cell voltage monitoring unit 8, the voltages of the cells 51 1 to 51 4 are individually monitored, and the cell voltage signal is supplied to the detection processing unit 9a.
  • the superscript suffixes (subscripts) 1 to 4 indicate the cell numbers 1 to 4 of the four cells 51, and the subscript suffix “1” denotes the minimum voltage value V 1 (minimum voltage value). ) And the time point T 1 at which the minimum voltage value V 1 is reached.
  • the subscript suffix "2" indicates a maximum voltage value when T 2 to be and the maximum voltage value (maximum value of the voltage) to output ⁇ appearing after the minimum voltage.
  • the subscript “3” indicates the steady voltage V 3 that is the output response that appears after the minimum voltage and the time T 3 when the steady voltage V 3 is reached.
  • each cell voltage V reaches the maximum voltage value V 2 n (maximum voltage value) and then gradually becomes a substantially constant value (steady voltage V 3 n ). To converge.
  • the methanol crossover of each cell 51 is estimated using the first voltage difference ⁇ V 2 n and the second voltage difference ⁇ V 3 n .
  • One of the first load and the second load may be in a no-load state.
  • the time point T 1 n is defined as the time when the nth cell 51 n becomes the minimum voltage value V 1 n immediately after the load change.
  • the time point T 2 n is determined as the time when the n-th cell 51 n reaches the maximum voltage value V 2 n immediately after the load change.
  • the time T 3 is defined as the time when all the cells 51 1 to 51 n converge to the steady voltage V 3 n after reaching the minimum voltage value V 1 n and the maximum voltage value V 2 n .
  • the time T 3 can be all n cells is arbitrarily set as long as it is after the lapse of the minimum voltage value V 1 n, the maximum voltage value V 2 n.
  • the time point T3 can be determined between 10 seconds and 60 seconds after the load change.
  • the cell voltage is monitored by the cell voltage monitoring unit 8, and a first voltage difference ⁇ V 2 n between the minimum voltage value V 1 n and the maximum voltage value V 2 n that is an output response appearing after the minimum voltage is detected.
  • a basic principle of processing for estimating and controlling methanol crossover based on the first voltage difference ⁇ V 2 n obtained by the processing unit 9a will be described.
  • FIG. 7 shows a processing procedure of the system in the second embodiment.
  • the control operation of the control unit 9 will be described with reference to FIG. In FIG. 7, the same parts as those in FIG.
  • the detection processing unit 9a gives an instruction for load variation processing to the load adjustment unit 7 (step S02).
  • the load adjustment unit 7 adjusts the load current extracted from the power generation unit 5 from the first value to the second value (step S03).
  • the cell voltage monitoring unit 8 measures the voltage value of each cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S04). As a result, voltage information that varies with time for each cell 51 is input from the cell voltage monitoring unit 8 to the detection processing unit 9a.
  • the detection processing unit 9a detects the minimum voltage value V 1 n from the input voltage information, and detects the time ⁇ T 1 n from the load fluctuation start T 0 until the minimum voltage value V 1 n is obtained (step S05). .
  • the detected time ⁇ T 1 n is stored in the ⁇ T 1 n detection database 9b-1 of the database 9b.
  • the detection processing unit 9a detects the maximum voltage value V 2 n from the input voltage information, and determines the difference between the detected minimum voltage value V 1 n and the maximum voltage value V 2 n as the first voltage.
  • the difference ⁇ V 2 n is detected (step S20).
  • the detected first voltage difference ⁇ V 2 n is stored in the ⁇ V 2 n detection database 9b-3 of the database 9b.
  • the detection processing unit 9a determines whether or not ⁇ T 1 n of each cell stored in the ⁇ T 1 n detection database 9b-1 is within a predetermined range (step S06). In this determination, a cell in which ⁇ T 1 n is in an appropriate range is determined as a normal cell, and a cell in which ⁇ T 1 n is not in a predetermined range is determined as a cell whose air inflow amount is not in an appropriate range, that is, an abnormal cell. Then, classification is performed (step S21).
  • the value of only a specific cell among them is measured as a representative value, and an average of a plurality of first voltage differences ⁇ V 2 n Or the dispersion of the first voltage difference ⁇ V 2 n of the normal cell is measured, and the value of the first voltage difference ⁇ V 2 n of the cell whose dispersion is within a predetermined range can be used.
  • the crossover conversion database 9b-4 stored in the database 9b is used.
  • Information for converting the first voltage difference ⁇ V 2 n into a methanol crossover value is stored in advance in the crossover conversion database 9b-4. Specifically, a positive correlation is given between ⁇ V 2 n and the methanol crossover value, and when ⁇ V 2 n is larger than a predetermined value, the methanol crossover value is larger than the predetermined value. On the other hand, if ⁇ V 2 n is smaller than a predetermined value, it is determined that the methanol crossover value is smaller than a predetermined value.
  • the detection processing unit 9a After estimating the methanol crossover value, the detection processing unit 9a gives an instruction to control the fuel supply amount based on this value (step S23).
  • the crossover supply amount control database 9b-5 stored in advance in the database 9b is used.
  • the control unit 9 sends a supply amount control signal to the fuel supply unit 4, and the fuel supply unit 4 controls the fuel supply amount (step S24).
  • a negative correlation is given between the methanol crossover value and the fuel supply amount, and when the methanol crossover value is larger than a predetermined value, the fuel supply amount is set to be greater than the predetermined value. Decrease.
  • the fuel supply amount is increased from a predetermined value.
  • the fuel supply amount is decreased from a predetermined value.
  • the fuel supply amount is increased from a predetermined value.
  • the second embodiment includes a power generation unit having a plurality of stacked cells, a fuel supply unit capable of supplying fuel to the cells, the fuel supply amount being adjustable, and at least one cell among the plurality of cells.
  • a voltage monitoring unit that monitors the output voltage of the power generation unit, an adjustment unit that adjusts the load current extracted from the power generation unit, and the output voltage that is minimum since the load current is adjusted from the first value to the second value.
  • a time measuring unit that measures a time until a value is reached, a voltage difference measuring unit that measures a voltage difference between the minimum value and a maximum value after the output voltage has reached a minimum value, the time and the voltage
  • a fuel cell system including a control unit that controls the fuel supply amount according to a difference.
  • the second embodiment includes a power generation unit having a plurality of stacked cells, a fuel supply unit that supplies methanol fuel to the cells, the fuel supply amount being adjustable, and at least one of the plurality of cells.
  • a voltage monitoring unit that monitors an output voltage of one cell; an adjustment unit that adjusts a load current extracted from the power generation unit; and the output from the time when the load current is adjusted from a first value to a second value.
  • a time measurement unit that measures a time until the voltage reaches a minimum value
  • a voltage difference measurement unit that measures a voltage difference between the minimum value and a maximum value after the output voltage reaches a minimum value
  • the time A fuel cell system comprising: a calculation unit that calculates a methanol crossover value using the voltage difference between cells in a range within a predetermined range.
  • ⁇ T 1 n at the time of load change is measured, a cell 51 whose value is not within a predetermined range is determined as an abnormal cell, and the first voltage difference ⁇ V 2 n of only normal cells is used.
  • a method for estimating methanol crossover was performed. However, in this method, when the number of abnormal cells increases from that of normal cells, the power generation efficiency of the abnormal cells decreases, and at the same time, the number of cells that can be used as normal cells decreases. Usage efficiency may be reduced. Therefore, it is possible to incorporate a process for recovering an abnormal cell in the course of operation for controlling methanol crossover.
  • FIG. 8 shows a processing procedure of the system in the third embodiment. The control operation of the control unit 9 will be described with reference to FIG. FIG. 8 shows the processing after step S21 in the flowchart of FIG.
  • Step S21 corresponds to an abnormal cell detection step in the flowchart of FIG.
  • cells [Delta] T 1 n as described in the second embodiment is determined not in the predetermined range is determined to be abnormal cells
  • cell [Delta] T 1 n is judged to be within a predetermined range It is determined as a normal cell (step S210). If it is determined that the cell is normal, it is used for methanol crossover control. (Step S22).
  • step S211 it is determined whether ⁇ T 1 n is larger or smaller than a predetermined value.
  • the control unit 9 instructs the air supply unit 6 to increase the air supply amount in step S212 (step S212).
  • the air supply part 6 is controlled and the air flow rate supplied to each cell 51 in the power generation part 5 is increased.
  • water accumulated in the cathode electrode is removed, and the power generation efficiency can be recovered.
  • step S214 instructs the fuel supply unit 4 to increase the fuel supply amount.
  • the fuel supply part 4 is controlled and the fuel supply amount supplied to each cell 51 in the power generation part 5 is increased.
  • the power generation efficiency can be recovered.
  • the increase amount of the air supply amount and the increase amount of the fuel supply in steps S211 and S213 are determined in advance in the database of the control unit 9b, and in addition to performing the above steps only on abnormal cells, the output of normal cells It is possible to apply to all the cells within a range that does not give a predetermined output reduction to the reduction.
  • normal cells are used for crossover estimation, while malfunctions can be recovered by applying appropriate processing to abnormal cells. Both efficiency and power generation efficiency can be increased.
  • the fuel circulation unit supplies the fuel in the fuel tank 3 to the mixing tank that stores the diluted fuel, and mixes it with the fuel remaining in the power generation in the power generation unit 5. Applicable.
  • the fuel circulation unit in order to increase the fuel supply amount supplied to the power generation unit 5 in step S214 in FIG. 8, the fuel circulation unit can be operated to increase the fuel circulation amount.
  • the fourth embodiment of the present invention temporarily supplies power to a specific cell among the cells stacked in the power generation unit, estimates a methanol crossover by causing a load fluctuation only in the specific cell, and generates the power generation unit.
  • the amount of fuel supplied to the is controlled.
  • FIG. 9 shows a configuration example of the fuel cell system 101 according to the fourth embodiment of the present invention.
  • the fuel cell system 101 includes a power generation unit 5 having a cell stack structure 50 as shown in FIG. 10 and a fuel tank that stores liquid fuel such as high-concentration methanol or a mixed solution of methanol fuel and a small amount of water (methanol aqueous solution).
  • the auxiliary devices 2 that support the power generation in the power generation unit 5, and the electric power generated by the power generation unit 5 are controlled by the external power source (for example, a lithium ion battery) and the power extracted from the power generation unit 5.
  • the auxiliary devices 2 include a fuel supply unit 4 that supplies fuel from the fuel tank 3 to the power generation unit 5, an air supply unit 6 that supplies air to the power generation unit 5, and a load that adjusts the load current extracted from the power generation unit 5.
  • the adjustment unit 7, the cell voltage monitoring unit 8 that monitors the output voltage of each cell of the cell stack structure 50, the external power supply unit 13, and the control unit 9 for controlling each unit in the auxiliary devices 2 are provided. .
  • the control unit 9 includes a detection processing unit 9a that detects the state of each unit of the auxiliary devices 2, and a database 9b in which control information for controlling each unit according to the detected information is stored in advance.
  • the control unit 9 detects necessary information from each unit of the power generation unit 5 and the auxiliary devices 2 and processes or calculates the detected information. Further, the control unit 9 gives control signals to the fuel supply unit 4, the power generation unit 5, the load adjustment unit 7, the external power supply unit 13, and the air supply unit 6 according to the result of this processing or calculation.
  • the database 9b includes various databases described in advance on how to control each part of the auxiliary equipment 2 based on the values measured from the cells.
  • the power generation unit 5 is connected to the load power 11 through the load adjustment unit 7 and the power adjustment unit 10.
  • the load power 11 corresponds to, for example, an electronic device driven by power generated by the fuel cell system 101.
  • the power adjustment unit 10 supplies the power generated by the power generation unit 5 to the load power 11.
  • the power is adjusted by adjusting the load current by the load adjusting unit 7.
  • the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a secondary battery or a capacitor). Make up for the power shortage.
  • the power adjustment unit 10 includes a switching circuit that turns on or off the supply of power generated by the power generation unit 5 to the load power 11.
  • the power adjustment unit 10 is configured to be connected to the load power 11 in the on state to be in a closed circuit state, disconnected from the load power 11 in the off state, and to be in an open circuit state on the output side.
  • the power generation unit 5 and the auxiliary devices 2 are connected by a fluid piping system.
  • the fuel tank 3 and the fuel supply unit 4 are connected by a fuel supply line L1.
  • the fuel supply unit 4 and the power generation unit 5 are connected by a fuel supply line L2.
  • the fuel in the fuel tank 3 is supplied to the anode electrode of the power generation unit 5 by adjustment in the fuel supply unit 4.
  • the air supply unit 6 and the power generation unit 5 are connected by an air supply line L ⁇ b> 3, and air is sent to the cathode electrode of the power generation unit 5 by adjustment in the air supply unit 6.
  • the fuel in the fuel tank 3 is directly supplied to the power generation unit 5.
  • the present invention is not limited to this, and the fuel in the fuel tank 3 is diluted with fuel. You may make it the system which mixes with the fuel remaining in the electric power generation in the power generation part 5 by supplying in the mixing tank to store.
  • the fluid piping L3 can be used as an air introduction path
  • the power generation unit 5 and the auxiliary devices 2 are connected by a signal and current wiring system.
  • the control unit 9 is connected to the fuel supply unit 4 via the signal line E1.
  • the power generation unit 5 and the control unit 9 are connected by a signal line E2.
  • the load adjustment unit 7 and the control unit 9 are connected by a signal line E3.
  • the cell voltage monitoring unit 8 and the control unit 9 are connected by a signal line E4.
  • the air supply unit 6 and the control unit 9 are connected by a signal line E5.
  • the power generation unit 5 and the load adjustment unit 7 are connected by a current wiring line E61, and the load adjustment unit 7 and the power adjustment unit 10 are connected by a current wiring line E62.
  • the external power supply unit 13 is connected to the power generation unit 5 through a current supply line E7, and is connected to the control unit 9 through a signal line E8.
  • the load adjustment unit 7 applies a load to the power generation unit 5 through the signal line E3.
  • the value of the load current detected by the load adjustment unit 7 is sent to the control unit 9 via the signal line E3 as load current information.
  • the load control signal set by the control unit 9 is given from the control unit 9 to the load adjustment unit 7 via the signal line E3. Therefore, the load adjustment unit 7 connects a load corresponding to the set load determined according to the load control signal to the power generation unit 5, and the load current flowing through the set load is detected and sent to the control unit 9 as load current information.
  • the power adjustment unit 10 can be omitted by providing the load adjustment unit 7 with the role of the power adjustment unit 10. In this case, the load power 11 is connected to the load adjustment unit 7.
  • the cell voltage monitoring unit 8 includes a cell voltage detection circuit (not shown) that detects a voltage generated in at least one specific cell 51 determined in advance, and the cell stack in the power generation unit 5 via the signal line E4. Connected to the specific cell 51 of the structure 50.
  • the specific cell 51 it is preferable to select a cell having an average output and temperature among the cells included in the cell stacked structure 50.
  • the average cell means a cell that is not easily influenced by external environmental factors. For example, a cell in the central region in the cell stacking direction, or a cell whose temperature distribution is measured and whose temperature is closest to the average can be adopted as the average cell.
  • the voltage generated in the specific cell 51 is measured by the cell voltage detection circuit, and the measured cell voltage value is sent to the control unit 9 as voltage information.
  • the specific cell 51 in addition to selecting one of the cells included in the cell stack structure 50, a plurality of cells are selected from the cell stack structure 50, and the voltage average is measured to obtain voltage information. May be sent to the control unit 9.
  • the external power supply unit 13 is connected to the specific cell 51 to which the cell voltage monitoring unit 8 is connected via the current supply line E7 in an electrically parallel manner.
  • the external power supply unit 13 gives a predetermined current to the specific cell 51.
  • the power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 10 (a) and 10 (b).
  • the cell stack structure 50 includes a plurality of cells stacked between the anode current collector plate 12 and the cathode current collector plate 14, and each cell has the anode current collector plate 12 and the cathode.
  • the current collector 14 is electrically connected in series.
  • the cells stacked between the anode current collector plate 12 and the cathode current collector plate 14 are disposed between a pair of clamping plates 18A and 18B, and are clamped and fixed by fixtures 19A and 19B between the clamping plates 18A and 18B. ing.
  • the anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
  • FIG. 10B shows the configuration of the specific cell 51.
  • the cells other than the specific cell 51 include a membrane electrode assembly (MEA) 20, an anode flow channel plate 22, a cathode flow channel plate 24, and a gasket 26.
  • MEA membrane electrode assembly
  • the anode channel plate 22 is provided on one side of the MEA 20, and the cathode channel plate 24 is provided on the other side.
  • the MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24.
  • the anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26.
  • the MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
  • the specific cell 51 is provided with output terminals 22A and 24A on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the voltage of the specific cell 51 from the outside.
  • the output terminals 22A and 24A are connected to the voltage detection circuit of the cell voltage monitoring unit 8 via the cell voltage signal line E4, and the voltage of the specific cell 51 is monitored (monitored) by the cell voltage monitoring unit 8. From the cell voltage monitoring unit 8, voltage information indicating a voltage value corresponding to the voltage generated in the specific cell 51 is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
  • the specific cell 51 is provided with input terminals 22B and 24B on the anode flow path plate 22 and the cathode flow path plate 24, respectively.
  • the input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7.
  • the external power supply unit 13 receives a signal for supplying power to the specific cell 51 from the control unit 9 via the signal line E8.
  • the anode flow path plate 22 faces the anode electrode side of the MEA 20 and supplies methanol and a methanol aqueous solution.
  • the cathode flow path plate 24 faces the cathode side of the MEA 20 and supplies air. Both the anode flow path plate 22 and the cathode flow path plate 24 can take any shape as long as the above purpose is achieved.
  • the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9.
  • the air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9.
  • the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20.
  • the oxygen reduction reaction represented by the formula (2) occurs at the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs.
  • the electrons (e ⁇ ) flow to the load adjusting unit 7.
  • a cell voltage of a particular cell 51 in the cell voltage monitor unit 8 is monitored, first between the maximum voltage value V 3 of the output ⁇ (response value of the output voltage) appearing after the minimum voltage value V 2 and the minimum voltage 1 of the voltage difference [Delta] V 3 is determined by the detection processing section 9a, the estimation of the methanol crossover on the basis of the first voltage difference [Delta] V 3, the basic principle of the process for controlling explaining. Note that the following methanol crossover estimation and control method is the same based on the second voltage difference ⁇ V 4 .
  • FIG. 12 shows a processing procedure of the system in the fourth embodiment. The control operation of the control unit 9 will be described with reference to FIG.
  • the detection processing unit 9a instructs the external power supply unit 13 to perform load fluctuation processing for supplying predetermined power (current I2) (step S102). .
  • the external power supply unit 13 supplies a current (I2) to the specific cell 51 (step S103).
  • the cell voltage monitoring unit 8 measures the voltage value of the specific cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S104). As a result, voltage information that varies with time is input from the cell voltage monitoring unit 8 to the specific cell 51 to the detection processing unit 9a.
  • Detection processing unit 9a detects the maximum voltage value V 3 appearing thereafter from the voltage information that is input to the minimum voltage value V 2, the difference between the minimum voltage value V 2 and the maximum voltage value V 3, which is the detected detecting a first voltage difference [Delta] V 3 (step S105).
  • the crossover conversion database 9b-11 stored in the database 9b is used (step S106).
  • Crossover terms database 9b-11 is information for converting a first voltage difference [Delta] V 3 in methanol crossover values are stored in advance.
  • the detection processing unit 9a gives an instruction to control the fuel supply amount based on this value.
  • the crossover supply amount control database 9b-12 stored in advance in the database 9b is used (step S107). Based on the crossover supply amount control database 9b-12, the control unit 9 sends a supply amount control signal to the fuel supply unit 4, and the fuel supply unit 4 controls the fuel supply amount (step S108).
  • the load fluctuation is caused only to the specific cell 51 due to the power supply from the external power supply unit 13, and the methanol crossover is estimated. Therefore, compared with the method of changing the load of the entire power generation unit 5, it is not necessary to reduce the power generation amount of the entire power generation unit 5, and the power generation efficiency can be increased over a long period of time.
  • the unsteady temperature fluctuation of the power generation unit 5 due to the load fluctuation causes an error in the process of estimating the methanol crossover and controlling the fuel supply amount. Does not change, that is, the calorific value does not change. As a result, temperature fluctuations of the power generation unit 5 are suppressed, and the above influence can be suppressed.
  • the external power supply unit 13 is electrically connected in parallel only to the specific cell 51 of the cells constituting the power generation unit 5, and the power supplied from the external power supply unit 13 to the specific cell 51 is supplied. It was characterized by estimating methanol crossover by controlling.
  • the external power supply unit 13 can be used in combination with other auxiliary devices as long as it serves the purpose of supplying constant power to the specific cell 51 for a predetermined time.
  • FIG. 13 shows a configuration example of the fuel cell system 102 according to the fifth embodiment of the present invention.
  • the fuel cell system 102 has a configuration in which the external power supply unit 13 is removed from the fuel cell system 1 shown in FIG.
  • the specific cell 51 included in the power adjustment unit 10 and the power generation unit 5 is electrically connected through the line E70. Further, the power adjustment unit 10 and the control unit 9 are connected through a line E80. Further, the operation of the detection processing unit 9a in the control unit 9 is different. Since other configurations are the same as those in FIG. 9, the same components as those in FIG. 9 are denoted by the same reference numerals and detailed description thereof is omitted.
  • the power adjustment unit 10 When the power generated by the power generation unit 5 is insufficient with respect to the power required for the load power 11, the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a lithium ion battery or a capacitor). Since the power adjustment unit 10 has the function of the external power supply unit 13 illustrated in FIG. 9 because the power adjustment unit 10 has an adjustment function that compensates for the shortage of power, the system configuration can be simplified.
  • the operation method of the fuel cell system 102 of FIG. 13 is the same as that of the fourth embodiment if the function of the external power supply unit 13 of FIG. To do.
  • the fuel in the fuel tank 3 is supplied by the fuel circulation unit into the mixing tank that stores the diluted fuel, and mixed with the fuel remaining in the power generation in the power generation unit 5. It can also be applied to the method.
  • Example 1 In Example 1, an attempt was made to obtain the voltage difference V 3 between the minimum voltage value and the output response value (maximum voltage value) as an evaluation value by using the method of the fourth embodiment.
  • the power generation section 5 used 20 cells stacked in series. Among the cells included in the power generation unit 5, the tenth set of cells counted from the anode electrode side is set as a predetermined set of specific cells 51, and only the specific cell 51 includes the voltage monitoring unit 8 and the external power supply unit 13. Is connected to enable monitoring of the cell voltage of the specific cell 51 and power supply to the specific cell 51. The remaining 19 cells are not connected to the voltage monitoring unit 8 and the external power supply unit 13.
  • the air supply amount to the power generation unit 5 was performed by an air pump, and the air supply flow rate was fixed during the measurement.
  • the fuel supply to the power generation unit 5 was performed by a fuel pump and fixed at a predetermined fuel concentration and fuel flow rate. Control was performed so that the temperature of the power generation unit 5 was kept constant by a separate temperature adjusting means.
  • FIG. 14A is a graph showing the load current and the current supplied from the external power supply unit 13 to the specific cell 51
  • FIG. 14B is a graph showing the output voltage of the power generation unit 5 and the cell voltage of the specific cell 1. It is.
  • FIG. 15A is a graph showing the load current
  • FIG. 15B is a graph showing the output voltage of the power generation unit 5 and the cell voltage of each cell.
  • the voltage difference V 3 obtained in the method of Example 1 was 0.043V
  • the voltage difference V 3 obtained in Comparative Example 1 approach is also 0.043V
  • the external power supply unit 13 is connected to a specific cell such as an end of the cells stacked on the power generation unit 5 and the external power supply unit 13 is operated according to the temperature of the specific cell. It is what you do.
  • FIG. 16 shows a configuration example of the fuel cell system 103 according to the sixth embodiment of the present invention.
  • the fuel cell system 103 includes a cell temperature monitoring unit 81 instead of the cell voltage monitoring unit 8 of the fuel cell system 101 shown in FIG. Further, the operation of the detection processing unit 9a in the control unit 9 and the data items stored in the database 9b are different. Since other configurations are the same as those in FIG. 9, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cell temperature monitoring unit 81 includes a cell temperature detection circuit (not shown) that detects the temperature of at least one predetermined cell among the cells included in the cell stack structure 50 in the power generation unit 5, and the signal line E40. Connected to the cell via The cell temperature is measured by a cell temperature detection circuit and sent to the control unit 9 as cell temperature information.
  • the cell to which the cell temperature monitoring unit 81 is connected is the cell at the end where the temperature is the lowest in the cell stack structure 50.
  • the configuration of the power generation unit 5 in which two cells at both ends of the cell stack structure 50 are specified cells 511 and the cell temperature monitoring unit 81 is connected will be described.
  • the power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 17A, 17B and 17C.
  • the cell stack structure 50 includes a specific cell 511 stacked between the anode current collector plate 12 and the cathode current collector plate 14 and a specific cell arranged inside the specific cell 511.
  • Cell 510 The specific cell 511 and the cell 510 are electrically connected in series to the anode current collector plate 12 and the cathode current collector plate 14.
  • the specific cell 511 and the cell 510 are disposed between the pair of fastening plates 18A and 18B, and are fastened and fixed by the fixtures 19A and 19B between the fastening plates 18A and 18B.
  • the anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
  • the specific cell 511 and the cell 510 include a membrane electrode assembly (MEA) 20 as shown in FIGS. 17B and 17C.
  • An anode flow path plate 22 is provided on one side of the MEA 20, and a cathode flow path plate 24 is provided on the other side.
  • the MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24.
  • the anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26.
  • the MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
  • the specific cell 511 is provided with a cell temperature detection sensor 22C or 24C on the anode flow path plate 22 or the cathode flow path plate 24 in order to monitor the cell temperature.
  • Information of the temperature detection sensor is sent to the temperature detection circuit of the cell temperature monitoring unit 81 via the signal line E40.
  • the temperature information of the specific cell 511 is supplied to the detection processing unit 9a of the control unit 9 via the signal line E40.
  • a thermocouple can be used as the temperature detection sensor.
  • electrical input terminals 22B and 24B are provided on the anode channel plate 22 and the cathode channel plate 24, respectively.
  • the input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7.
  • the anode flow path plate 22 faces the anode electrode side of the MEA 20 and supplies methanol and a methanol aqueous solution.
  • the cathode flow path plate 24 faces the cathode side of the MEA 20 and supplies air. Both the anode flow path plate 22 and the cathode flow path plate 24 can take any shape as long as the above purpose is achieved.
  • the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9.
  • the air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9.
  • the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20.
  • the oxygen reduction reaction represented by the formula (2) occurs at the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs.
  • the electrons (e ⁇ ) flow to the load adjusting unit 7.
  • the power generation unit is operated at a predetermined temperature in order to keep the power generation efficiency and power generation amount of the power generation unit at a predetermined value.
  • a temperature distribution is generated between the power generation cells of the power generation unit due to the influence of the outside air temperature and the like.
  • the temperature of the specific cell 511 at the end of the power generation unit 5 that is most susceptible to the influence of outside air is the lowest.
  • the fuel diffusibility at the anode electrode of the specific cell 511 is lowered, and the same load as the central cell 510 having a higher temperature than the specific cell 511 cannot be taken out.
  • the power generation unit 5 is generated with a load that can be taken out at the temperature of the specific cell 511 at the end, the other cells 510 are also reduced in accordance with the load of the specific cell 511 to generate power.
  • the power generation amount of the entire power generation unit 5 is reduced.
  • cells other than the specific cell 511 there exists a problem that methanol crossover increases by load reduction and power generation efficiency falls.
  • the cell temperature monitoring unit 8 and the external power supply unit 13 are connected to the specific cell 511 at the end in contact with the anode current collector 18A and the cathode current collector 18B to solve the above problem.
  • the method to do is explained.
  • FIG. 18 shows the change over time of the temperature of the specific cell 511 when the outside air temperature is changed within a certain range. When the outside air temperature decreases, the temperature of the specific cell 511 decreases accordingly.
  • the external power supply unit 13 is electrically connected in parallel to the specific cell 511 via the current supply line E7.
  • the external power supply unit 13 supplies constant power (current I2) to the specific cell 511.
  • FIG. 19 shows a processing procedure of the system in the sixth embodiment. The control operation of the control unit 9 will be described with reference to FIG.
  • the detection processing unit 9a measures the temperature of the specific cell 511 (step S112).
  • the cell temperature monitoring unit 81 detects the temperature of the specific cell 511 (step S113).
  • the detection processing unit 9a proceeds to step S112, and repeatedly measures the temperature of the specific cell 511 (step S114: YES).
  • the detection processing unit 9a uses the external power supply amount database 9b-112 stored in advance in the database 9b.
  • An instruction to supply external power to the power supply unit 13 is given (step S115).
  • Information for converting the measured cell temperature into the supply amount of electric power (current) from the external power supply unit 13 is stored in advance in the external power supply database 9b-112. Thereby, power is supplied to the specific cell 511 from the external power supply unit 13 electrically connected to the specific cell 511 in parallel (step S116).
  • the temperature of the specific cell 511 is lowered from a predetermined temperature due to external environmental factors such as outside air temperature, and the load current that can be extracted from the specific cell 511 is reduced.
  • the load current of the entire power generation unit 5 can be kept constant by supplying power (current) from the external power supply unit 13 to the specific cell 511. Therefore, in the fuel cell system, even when there is temperature variation between cells included in the power generation unit, it is possible to improve the power generation efficiency and the power generation amount.
  • the sixth embodiment can be applied not only to steady power generation, which generates a predetermined amount of power, but also to startup. At the time of start-up, it is preferable to shorten the time until a predetermined power generation amount can be obtained by shortening the time required for the cell temperature to reach a predetermined temperature.
  • Applying the method of the sixth embodiment when the fuel cell system is started up, if the specific cell 511 cannot be taken out because of the low temperature of the specific cell 511, external power is supplied only to the specific cell 511.
  • the unit 13 is electrically connected in parallel, and the load current taken out from the specific cell 511 is reduced. By doing in this way, cells other than the specific cell 511 can be operated with a predetermined load, and the starting speed from a low temperature can be increased.
  • the cell temperature monitoring unit 81 and the external power supply unit 13 are connected to the specific cell 511 having the lowest temperature, and the external power supply unit 13 is operated according to the cell temperature.
  • the external power supply unit 13 is connected to a cell having a low output voltage in the power generation unit 5, and the external power supply unit 13 is operated according to the cell output voltage.
  • the configuration of the fuel cell system according to the seventh embodiment is the same as that of the fuel cell system 101 shown in FIG. 9, and will be described with reference to FIG. However, in the seventh embodiment, the configuration of the power generation unit 5, the operation of the detection processing unit 9a in the control unit 9, and the data items stored in the database 9b are different.
  • the power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 20A, 20B and 20C.
  • the cell stack structure 50 includes a specific cell 521 that is stacked between the anode current collector plate 12 and the cathode current collector plate 14 and connected to the cell voltage monitor unit 8, and a cell voltage monitor unit.
  • Cell 520 other than the specific cell to which 8 is not connected.
  • the specific cell 521 and the cell 520 are electrically connected to the anode current collector plate 12 and the cathode current collector plate 14 in series.
  • the ratio between the specific cell 521 and the cell 520 can be arbitrarily set as long as the specific cell 521 has one or more cells.
  • 20A shows an example in which specific cells 521 and cells 520 are stacked at an interval of one cell.
  • the specific cell 521 and the cell 520 stacked between the anode current collector plate 12 and the cathode current collector plate 14 are disposed between the pair of clamping plates 18A and 18B, and a fixture is provided between the clamping plates 18A and 18B. It is fastened and fixed by 19A and 19B.
  • the anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
  • the specific cell 521 and the cell 520 include a membrane electrode assembly (MEA) 20 as shown in FIGS. 20B and 20C.
  • An anode flow path plate 22 is provided on one side of the MEA 20, and a cathode flow path plate 24 is provided on the other side.
  • the MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24.
  • the anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26.
  • the specific cell 521 is provided with electric wirings 22D and 24D for cell voltage detection on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the cell voltage.
  • the electric wirings 22D and 24D for cell voltage detection are connected to the voltage detection circuit of the cell voltage monitoring unit 8 through the signal line E4. From the cell voltage monitoring unit 8, voltage information representing the voltage value of the specific cell 521 detected by the voltage detection circuit is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
  • input terminals 22B and 24B are provided on the anode flow path plate 22 and the cathode flow path plate 24, respectively.
  • the input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7.
  • FIG. 21 shows the processing procedure of the system in the seventh embodiment. The control operation of the control unit 9 will be described with reference to FIG.
  • the detection processing unit 9a measures the cell voltage of the specific cell 521 (step S122).
  • the cell voltage monitoring unit 8 individually detects the cell voltage of the specific cell 521 (step S123).
  • it is determined whether or not the measured voltage of each cell is within a predetermined range step S124.
  • the detection processing unit 9a proceeds to step S122 and repeatedly measures the voltage of the specific cell 521 (step S124: YES).
  • step S124 when the voltage of the specific cell 521 is not within the predetermined range (step S124: NO), the detection processing unit 9a is stored in advance in the database 9b only for the specific cell 521 whose voltage is not at the predetermined value.
  • a power supply instruction is given from the external power supply unit 13 (step S125).
  • the external power supply amount database 9b-122 stores in advance information for converting the measured cell voltage value into the supply amount of power (current) from the external power supply unit 13. As a result, power is supplied from the external power supply unit 13 electrically connected in parallel to only the specific cell 521 whose voltage is not in the predetermined range among the specific cells 521 (step S126).
  • the specific cell 521 since the individual voltage of the specific cell 521 is detected and external power is supplied according to the voltage value, the specific cell 521 is taken out of the cell whose cell voltage is extremely lowered.
  • the load can be arbitrarily adjusted. Therefore, even if the power generation amount of only the cell whose cell voltage is extremely reduced is reduced, the power generation amount of the entire power generation unit 50 is not reduced.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.

Abstract

A fuel cell system (101) is comprised of a power generating portion (5) having a plurality of laminated cells; a fuel supply portion (4) for supplying fuel to the cells, which can adjust the amount of fuel to be supplied; a voltage monitoring portion (8) for monitoring the output voltage of at least one specific cell (51) selected among the plural cells; a power supply portion (13) for temporarily supplying electric power to the specific cell; and a control portion (9) which detects a voltage difference between the minimum value of the output voltage occurring after electric power is supplied to the specific cell and the response value of the output voltage after the output voltage is reduced to the minimum value, and which controls the amount of fuel to be supplied in accordance with the voltage difference.

Description

燃料電池システム及び燃料電池Fuel cell system and fuel cell
 この発明は、液体を燃料とする固体高分子型燃料電池を制御する燃料電池システム及び燃料電池に関する。 The present invention relates to a fuel cell system and a fuel cell for controlling a polymer electrolyte fuel cell using liquid as a fuel.
 固体高分子型燃料電池は、プロトン交換膜燃料電池とも称呼されることもあるプロトン伝導性を有する高分子膜を電解質として用いる燃料電池として知られている。固体高分子型燃料電池(PEFC)の1つとして、直接メタノール型燃料電池(DMFC)がある。この直接メタノール型燃料電池は、気化器或いは加湿器のような補器が不要である点、メタノールが水素のような気体燃料と比べて取扱いやすい点、低温での運転が可能である点から携帯用機器の小型電源として開発が進められている。 The solid polymer fuel cell is known as a fuel cell that uses a polymer membrane having proton conductivity, sometimes called a proton exchange membrane fuel cell, as an electrolyte. One of the polymer electrolyte fuel cells (PEFC) is a direct methanol fuel cell (DMFC). This direct methanol fuel cell is portable because it does not require an auxiliary device such as a vaporizer or a humidifier, it is easier to handle methanol than a gaseous fuel such as hydrogen, and it can be operated at low temperatures. Development is progressing as a small power source for industrial equipment.
 直接メタノール型燃料電池は膜電極接合体(MEA:Membrane Electrode Assembly)を有する。膜電極接合体は、アノード極(燃料極とも称せられる。)と、カソード極(空気極とも称せられる。)と、これらの間に挟持され、プロトンを透過させる固体高分子膜とを備える。アノード極にはメタノール水溶液が供給され、カソード極には空気が供給される。 A direct methanol fuel cell has a membrane electrode assembly (MEA). The membrane electrode assembly includes an anode electrode (also referred to as a fuel electrode), a cathode electrode (also referred to as an air electrode), and a solid polymer membrane that is sandwiched between them and transmits protons. An aqueous methanol solution is supplied to the anode electrode, and air is supplied to the cathode electrode.
 MEAのアノード極では、下記の式(1)の反応が起こり、メタノールと水との電気化学反応によって二酸化炭素、プロトン、及び電子が生じる。
Figure JPOXMLDOC01-appb-M000001
At the anode of MEA, the reaction of the following formula (1) occurs, and carbon dioxide, protons, and electrons are generated by the electrochemical reaction between methanol and water.
Figure JPOXMLDOC01-appb-M000001
 また、MEAのカソード極においては、下記の式(2)の反応が起こり、プロトンと電子、酸素の電気化学反応によって水が生じる。
Figure JPOXMLDOC01-appb-M000002
Further, the reaction of the following formula (2) occurs at the cathode electrode of MEA, and water is generated by the electrochemical reaction of protons, electrons, and oxygen.
Figure JPOXMLDOC01-appb-M000002
 式(2)の反応で生じた水は、カソード極へ供給される空気中への拡散や、アノード極へ固体高分子膜を通して移動することによってカソード極から除去されるが、除去されずに残った水はカソード極の内部に蓄積される。この蓄積された水が適切に除去されない場合、空気の拡散性を低下させ、出力電圧の低下を引き起こす。 The water generated by the reaction of the formula (2) is removed from the cathode electrode by diffusion into the air supplied to the cathode electrode or moving through the solid polymer membrane to the anode electrode, but remains without being removed. Water accumulates inside the cathode. If this accumulated water is not properly removed, the air diffusivity is lowered, causing a reduction in output voltage.
 さらに直接メタノール型燃料電池では、アノード極に供給されたメタノール水溶液に含まれるメタノールの一部がアノード極からカソード極に直接移動するメタノールクロスオーバーが起こり、カソード極では、式(2)に示される反応に加えて下記の式(3)の反応が起こる。
Figure JPOXMLDOC01-appb-M000003
Further, in the direct methanol fuel cell, methanol crossover occurs in which part of methanol contained in the methanol aqueous solution supplied to the anode electrode moves directly from the anode electrode to the cathode electrode. In addition to the reaction, the reaction of the following formula (3) occurs.
Figure JPOXMLDOC01-appb-M000003
 式(3)に示すメタノールクロスオーバーの反応によりアノード極のメタノールが消費されてしまうと、燃料利用効率が低下する。よって燃料利用効率を高める為には、発電部に供給するメタノール量を燃料濃度や燃料流量等によって制御し、メタノールクロスオーバーを所定の範囲内に納めることが望ましい。 If the methanol at the anode electrode is consumed by the methanol crossover reaction shown in Formula (3), the fuel utilization efficiency decreases. Therefore, in order to increase the fuel utilization efficiency, it is desirable to control the amount of methanol supplied to the power generation unit by the fuel concentration, the fuel flow rate, etc., and to keep the methanol crossover within a predetermined range.
 また、カソード極では式(2)の反応の他にメタノールクロスオーバー反応によって水が生成される為、カソード極から水の除去を適切に行わない限りカソード極での水の量は増加し、空気拡散抵抗が増加し、出力電圧が低下する。出力電圧の低下は発電効率の低下を引き起こす。 In addition, since water is generated by the methanol crossover reaction in addition to the reaction of the formula (2) at the cathode electrode, the amount of water at the cathode electrode increases unless air is appropriately removed from the cathode electrode. The diffusion resistance increases and the output voltage decreases. A decrease in output voltage causes a decrease in power generation efficiency.
 よって発電部から得られる出力電圧を高める為には、カソード極内部への水の蓄積(フラッディング)を事前に検知し、それを抑制することが望ましい。 Therefore, in order to increase the output voltage obtained from the power generation section, it is desirable to detect water accumulation (flooding) in the cathode electrode in advance and suppress it.
 ここで、燃料利用効率とは、式(2)の反応/{式(2)+式(3)の反応}で定義され、式(3)のメタノールクロスオーバー値が高い程、メタノール(燃料)の利用効率が低下する。 Here, the fuel utilization efficiency is defined by the reaction of the formula (2) / {the reaction of the formula (2) + the formula (3)}, and the higher the methanol crossover value of the formula (3), the higher the methanol (fuel). The utilization efficiency of is reduced.
 また、発電効率とはMEAの電圧/理論電圧×燃料利用効率で定義され、MEAの電圧が高い程発電効率は高まる。 Also, the power generation efficiency is defined as MEA voltage / theoretical voltage × fuel utilization efficiency, and the higher the MEA voltage, the higher the power generation efficiency.
 そこで、特許文献1では、上記メタノールクロスオーバーを所定の範囲におさめて燃料利用効率と発電効率の2つの効率を高める為に、発電部の負荷を閉回路から開回路に切り替え、切り替え後の一定時間後の出力電圧をもとにメタノール濃度を検出する手法が提案されている。この手法では、発電部の出力電圧値を評価値とする為、濃度センサーが不要となり、装置を小型化できるという利点がある。 Therefore, in Patent Document 1, the load of the power generation unit is switched from a closed circuit to an open circuit in order to keep the methanol crossover within a predetermined range and increase the two efficiency of fuel use efficiency and power generation efficiency, and after switching, the constant A method for detecting the methanol concentration based on the output voltage after time has been proposed. In this method, since the output voltage value of the power generation unit is used as an evaluation value, there is an advantage that a concentration sensor is not required and the apparatus can be downsized.
 複数のセルを積層して構成される発電部では、予め定められた濃度のメタノール水溶液を、各セルのアノード極に燃料供給部を通して供給する。発電部積層方向に対して中央領域のセルと、端部領域のセルでは、外気温度等の環境因子の影響を受けてセル温度に差が生じることがある。このように、セル間で温度のバラツキが生じた場合、温度が高いセルでは、式(3)のメタノールクロスオーバーが高くなり、燃料利用効率が低下する。よって、発電効率は低下する。 In a power generation unit configured by stacking a plurality of cells, a methanol aqueous solution having a predetermined concentration is supplied to the anode electrode of each cell through a fuel supply unit. The cell in the central region and the cell in the end region with respect to the power generation unit stacking direction may be affected by environmental factors such as the outside air temperature, resulting in a difference in cell temperature. Thus, when temperature variation occurs between cells, in a cell having a high temperature, the methanol crossover of Formula (3) becomes high, and the fuel utilization efficiency decreases. Therefore, the power generation efficiency decreases.
 一方、温度の高いセルと同一の濃度のメタノール水溶液が供給されるが、外部環境の要因等を受けて温度が低いセルでは、式(1)の過電圧が増加し、電圧が低下することから、発電効率は低下してしまう。また、温度の高いセルに比較し、温度の低いセルではアノードの燃料拡散性が低下するため、セルから取り出せる負荷電流は減少する。この場合、発電量が減少する問題が生じる。 On the other hand, an aqueous methanol solution having the same concentration as that of the high temperature cell is supplied. However, in the low temperature cell due to factors of the external environment, the overvoltage of the formula (1) increases and the voltage decreases. Power generation efficiency will decrease. Further, compared with a cell having a high temperature, the fuel diffusibility of the anode is lowered in a cell having a low temperature, so that the load current that can be taken out from the cell is reduced. In this case, there arises a problem that the power generation amount decreases.
 例えば、発電部を低温環境にて起動させる場合、積層されたセルのうち、外気と隣接する端部のセルは外気温度の影響を受けて温度の上昇速度が遅いことがある。この時、温度の低い端部セルでは、前記燃料拡散性の低下によって取り出すことが可能な負荷電流が低下する。この場合、発電部から取り出すことが可能な最大負荷は端部セルの負荷で制限される。よって低温始動から、所定の発電量を得る定常状態までの間において、発電量および起動速度が低下する問題がある。 For example, when the power generation unit is started up in a low temperature environment, among the stacked cells, the cell at the end adjacent to the outside air may be affected by the outside air temperature and the temperature rise rate may be slow. At this time, in the end cell having a low temperature, the load current that can be taken out decreases due to the decrease in the fuel diffusibility. In this case, the maximum load that can be taken out from the power generation unit is limited by the load of the end cell. Therefore, there is a problem that the power generation amount and the starting speed are reduced from the low temperature start to the steady state where a predetermined power generation amount is obtained.
 そこで、特許文献2では、発電部端部に断熱性を有する導電性のダミーセルを配置することで、端部領域の温度低下を抑制し、セル間の温度バラツキを抑制する工夫がなされている。また、特許文献3では、発電部の積層方向両端部のうち、少なくとも一方の端部領域に抵抗体を備え、端部領域の温度低下を抑制し、セル間の温度バラツキを抑制する工夫がなされている。さらには、特許文献4では、起動時に通常運転時よりも低熱容量の燃料をアノードに供給し、アノード出口の燃料を再びアノード入口に循環させることで、発電セルの起動を高速化させている。 Therefore, in Patent Document 2, a device has been devised in which a conductive dummy cell having heat insulation is arranged at the end of the power generation unit to suppress a temperature drop in the end region and to suppress temperature variation between the cells. Moreover, in patent document 3, the device is provided with a resistor in at least one end region of both ends in the stacking direction of the power generation unit to suppress a temperature drop in the end region and suppress a temperature variation between cells. ing. Furthermore, in Patent Document 4, fuel having a lower heat capacity than that during normal operation is supplied to the anode at startup, and fuel at the anode outlet is circulated again to the anode inlet, thereby speeding up startup of the power generation cell.
特開2005-285628号公報JP 2005-285628 A 特開2007-250338号公報JP 2007-250338 A 特開2005-174600号公報JP-A-2005-174600 特開2008-257945号公報JP 2008-257945 A
 上述したように、発電部のセル間の温度特性や出力(電圧)特性が異なる条件下では、発電部全体の発電効率および発電量が低下してしまうという問題がある。また、発電部の発電効率を高めるために、発電部のメタノールクロスオーバーを簡易的に検知し、メタノールクロスオーバーを所定の範囲内に納める必要がある。 As described above, there is a problem in that the power generation efficiency and the power generation amount of the entire power generation unit are reduced under conditions where the temperature characteristics and output (voltage) characteristics between the cells of the power generation unit are different. In addition, in order to increase the power generation efficiency of the power generation unit, it is necessary to simply detect the methanol crossover of the power generation unit and keep the methanol crossover within a predetermined range.
 この発明は上記事情に着目してなされたもので、その目的とするところは、長期間に亘って安定した運用を可能とする燃料電池システム及び燃料電池を提供することにある。 The present invention has been made paying attention to the above circumstances, and an object of the present invention is to provide a fuel cell system and a fuel cell capable of stable operation over a long period of time.
 この発明の一態様は、積層された複数のセルを有する発電部と、前記セルに燃料を供給する、燃料供給量が調整可能な燃料供給部と、前記複数のセルのうち少なくとも一つの特定セルの出力電圧を監視する電圧監視部と、前記特定セルに電力を一時的に供給する電力供給部と、前記電力が前記特定セルに供給された後に現れる前記出力電圧の最小値と、前記出力電圧が最小値となった後の前記出力電圧の応答値との電圧差を検知し、前記電圧差に応じて前記燃料供給量を制御する制御部とを具備する燃料電池システムを提供する。 One aspect of the present invention includes a power generation unit having a plurality of stacked cells, a fuel supply unit capable of supplying fuel to the cells, the fuel supply amount being adjustable, and at least one specific cell among the plurality of cells. A voltage monitoring unit that monitors the output voltage, a power supply unit that temporarily supplies power to the specific cell, a minimum value of the output voltage that appears after the power is supplied to the specific cell, and the output voltage A fuel cell system is provided that includes a control unit that detects a voltage difference from the response value of the output voltage after the value reaches a minimum value and controls the fuel supply amount according to the voltage difference.
 また、この発明の他の態様は、積層された複数のセルを有する発電部と、前記複数のセルのうち少なくとも一つの特定セルの温度を監視する温度監視部と、前記特定セルに電力を一時的に供給する電力供給部と、前記温度に応じて前記特定セルに前記電力を供給する制御部とを具備することを特徴とする燃料電池システムを提供する。 In another aspect of the present invention, a power generation unit having a plurality of stacked cells, a temperature monitoring unit that monitors the temperature of at least one specific cell among the plurality of cells, and temporarily supplying power to the specific cell. A fuel cell system is provided, comprising: a power supply unit that supplies the power to the specific cell, and a control unit that supplies the power to the specific cell according to the temperature.
 また、この発明の他の態様は、積層された複数のセルを有する発電部と、前記複数のセルのうち少なくとも一つの特定セルの電圧を監視する電圧監視部と、前記特定セルに電力を一時的に供給する電力供給部と、前記電圧に応じて前記特定セルに前記電力を供給する制御部とを具備することを特徴とする燃料電池システムを提供する。 According to another aspect of the present invention, a power generation unit having a plurality of stacked cells, a voltage monitoring unit that monitors a voltage of at least one specific cell among the plurality of cells, and temporarily supplying power to the specific cell. A fuel cell system is provided, comprising: a power supply unit that supplies the power to the specific cell, and a control unit that supplies the power to the specific cell according to the voltage.
 また、この発明の他の態様は、積層された複数のセルを有する発電部と、前記複数のセルのうち少なくとも一つの特定セルに電力を一時的に供給する電力供給部とを具備することを特徴とする燃料電池を提供する。 In another aspect of the present invention, the power generation unit includes a plurality of stacked cells, and a power supply unit that temporarily supplies power to at least one specific cell among the plurality of cells. A fuel cell is provided.
 したがってこの発明によれば、長期間に亘って安定した運用を可能とする燃料電池システム及び燃料電池を提供することができる。 Therefore, according to the present invention, it is possible to provide a fuel cell system and a fuel cell that enable stable operation over a long period of time.
図1は、第1の実施形態に係る燃料電池システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a fuel cell system according to the first embodiment. 図2は、図1に示す発電部の構成の詳細を示す図である。FIG. 2 is a diagram illustrating details of the configuration of the power generation unit illustrated in FIG. 1. 図3は、セル電圧の応答特性を示す図である。FIG. 3 is a diagram showing the response characteristics of the cell voltage. 図4は、空気流量と時間評価値との関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of the relationship between the air flow rate and the time evaluation value. 図5は、第1の実施形態におけるシステムの処理手順を示すフローチャートである。FIG. 5 is a flowchart illustrating a processing procedure of the system according to the first embodiment. 図6は、セル電圧の応答特性を示す図である。FIG. 6 is a diagram showing the response characteristics of the cell voltage. 図7は、第2の実施形態におけるシステムの処理手順を示すフローチャートである。FIG. 7 is a flowchart illustrating a processing procedure of the system according to the second embodiment. 図8は、第3の実施形態におけるシステムの処理手順を示すフローチャートである。FIG. 8 is a flowchart illustrating the processing procedure of the system according to the third embodiment. 図9は、第4の実施形態に係る燃料電池システムの構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of a fuel cell system according to the fourth embodiment. 図10は、第4の実施形態における発電部の構成の詳細を示す図である。FIG. 10 is a diagram illustrating details of the configuration of the power generation unit according to the fourth embodiment. 図11は、第4の実施形態のシステム制御手法に関する図である。FIG. 11 is a diagram relating to a system control method according to the fourth embodiment. 図12は、第4の実施形態の制御部の処理手順を示すフローチャートである。FIG. 12 is a flowchart illustrating a processing procedure of the control unit according to the fourth embodiment. 図13は、第5の実施形態に係る燃料電池システムの構成例を示す図である。FIG. 13 is a diagram illustrating a configuration example of a fuel cell system according to the fifth embodiment. 図14Aは、実施例1における負荷電流と特定セルへの外部電力供給電流とを示したグラフである。FIG. 14A is a graph showing a load current and an external power supply current to a specific cell in Example 1. 図14Bは、実施例1における発電部の出力電圧と特定セルの電圧とを示したグラフである。FIG. 14B is a graph showing the output voltage of the power generation unit and the voltage of a specific cell in Example 1. 図15Aは、比較例1における負荷電流を示したグラフである。FIG. 15A is a graph showing the load current in Comparative Example 1. 図15Bは、比較例1における発電部の出力電圧と特定セルの電圧とを示したグラフである。FIG. 15B is a graph showing the output voltage of the power generation unit and the voltage of a specific cell in Comparative Example 1. 図16は、第6の実施形態に係る燃料電池システムの構成例を示す図である。FIG. 16 is a diagram illustrating a configuration example of a fuel cell system according to the sixth embodiment. 図17Aは、第6の実施形態における発電部の構成の詳細を示す図である。FIG. 17A is a diagram illustrating details of the configuration of the power generation unit according to the sixth embodiment. 図17Bは、特定セル部の構成の示す図である。FIG. 17B is a diagram illustrating a configuration of a specific cell unit. 図17Cは、特定セル以外のセルの構成を示す図である。FIG. 17C is a diagram illustrating a configuration of cells other than the specific cell. 図18は、第6の実施形態のシステム制御手法に関する図である。FIG. 18 is a diagram relating to a system control method according to the sixth embodiment. 図19は、第6の実施形態の制御部の処理手順を示すフローチャートである。FIG. 19 is a flowchart illustrating a processing procedure of the control unit according to the sixth embodiment. 図20Aは、第7の実施形態における発電部の構成の詳細を示す図である。FIG. 20A is a diagram illustrating details of the configuration of the power generation unit according to the seventh embodiment. 図20Bは、特定セルの構成を示す図である。FIG. 20B is a diagram illustrating a configuration of a specific cell. 図20Cは、特定セル以外のセルの構成を示す図である。FIG. 20C is a diagram illustrating a configuration of cells other than the specific cell. 図21は、第7の実施形態の制御部の処理手順を示すフローチャートである。FIG. 21 is a flowchart illustrating a processing procedure of the control unit according to the seventh embodiment.
 以下、図面を参照しながら本発明の実施の形態を詳細に説明する。 
 (第1の実施形態) 
 図1は、本発明の第1の実施形態に係る燃料電池システム1の構成を示している。燃料電池システム1は、図2に示すようなセル積層構造50を有する発電部5と、高濃度メタノール、あるいはメタノール燃料と少量の水の混合溶液(メタノール水溶液)等の液体燃料を貯蔵する燃料タンク3と、発電部5における発電をサポートする補器類2と、発電部5で発電した電力を負荷電力11に送るにあたり、外部電源(例えばリチウムイオンバッテリー)と発電部5から取り出す電力を制御する電力調整部10とを備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 shows a configuration of a fuel cell system 1 according to a first embodiment of the present invention. The fuel cell system 1 includes a power generation unit 5 having a cell stack structure 50 as shown in FIG. 2 and a fuel tank that stores liquid fuel such as high-concentration methanol or a mixed solution of methanol fuel and a small amount of water (methanol aqueous solution). 3, the auxiliary devices 2 that support the power generation in the power generation unit 5, and the electric power generated by the power generation unit 5 are controlled by the external power source (for example, a lithium ion battery) and the power extracted from the power generation unit 5. A power adjustment unit 10.
 補器類2は、燃料タンク3から燃料を発電部5に供給する燃料供給部4と、空気を発電部5に供給する空気供給部6と、発電部5から取り出される負荷電流を調整する負荷調整部7と、セル積層構造50の各セルの出力電圧を監視するセル電圧監視部8と、補器類2内の各部を制御するための制御部9とを備える。 The auxiliary devices 2 include a fuel supply unit 4 that supplies fuel from the fuel tank 3 to the power generation unit 5, an air supply unit 6 that supplies air to the power generation unit 5, and a load that adjusts the load current extracted from the power generation unit 5. The adjustment unit 7, the cell voltage monitoring unit 8 that monitors the output voltage of each cell of the cell stack structure 50, and the control unit 9 for controlling each unit in the auxiliary devices 2 are provided.
 制御部9は、上記補器類2の各部の状態を検知する検知処理部9aと、検知された情報に応じて各部を制御する為の制御情報が予め格納されたデータベース9bとを備える。制御部9は、発電部5及び補器類2の各部から必要な情報を検知し、検知した情報の処理または演算を行う。さらに、制御部9はこの処理または演算の結果に応じて、燃料供給部4、発電部5、負荷調整部7、及び空気供給部6に制御信号を与える。後に説明するように、データベース9bは、セルから測定される値に基づき、補器類2の各部をどのように制御するかについて予め記述したデータベースを含んでいる。 The control unit 9 includes a detection processing unit 9a that detects the state of each unit of the auxiliary devices 2, and a database 9b in which control information for controlling each unit according to the detected information is stored in advance. The control unit 9 detects necessary information from each unit of the power generation unit 5 and the auxiliary devices 2 and processes or calculates the detected information. Further, the control unit 9 gives control signals to the fuel supply unit 4, the power generation unit 5, the load adjustment unit 7, and the air supply unit 6 according to the result of this processing or calculation. As will be described later, the database 9b includes a database that describes in advance how each part of the auxiliary equipment 2 is controlled based on values measured from the cells.
 発電部5は、負荷調整部7および電力調整部10を介して負荷電力11に接続される。負荷電力11は、例えば、この燃料電池システム1で発生される電力で駆動される電子機器に相当する。電力調整部10は、発電部5で発生される電力を負荷電力11に供給している。発電部5から取り出す電力の調整は、負荷調整部7が負荷電流を調整することで行われる。電力調整部10は、負荷電力11で必要な電力に対し、発電部5で発電される電力が不足する場合、図には記載していないが、外部電源(例えばリチウムイオンバッテリーやキャパシタ)などから不足分の電力を補う。電力調整部10は、発電部5で発生される電力の負荷電力11への供給をオン或いはオフするスイッチング回路を含んでいる。電力調整部10は、オン状態で、負荷電力11に接続され閉回路状態となり、オフ状態で負荷電力11から切断されてその出力側が開回路状態となるように構成されている。 The power generation unit 5 is connected to the load power 11 through the load adjustment unit 7 and the power adjustment unit 10. The load power 11 corresponds to, for example, an electronic device driven by power generated by the fuel cell system 1. The power adjustment unit 10 supplies the power generated by the power generation unit 5 to the load power 11. Adjustment of the electric power taken out from the power generation unit 5 is performed by the load adjustment unit 7 adjusting the load current. When the power generated by the power generation unit 5 is insufficient with respect to the power required for the load power 11, the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a lithium ion battery or a capacitor). Make up for the power shortage. The power adjustment unit 10 includes a switching circuit that turns on or off the supply of power generated by the power generation unit 5 to the load power 11. The power adjustment unit 10 is configured to be connected to the load power 11 in the on state to be in a closed circuit state, disconnected from the load power 11 in the off state, and to be in an open circuit state on the output side.
 発電部5と補器類2との間は、流体配管系で接続されている。この流体配管系においては、燃料タンク3と燃料供給部4とは、燃料供給ラインL1で接続される。燃料供給部4と発電部5とは、燃料供給ラインL2で接続されている。燃料タンク3内の燃料は、燃料供給部4での調整により発電部5のアノード極に供給される。また、空気供給部6と発電部5とは空気供給ラインL3で接続され、空気供給部6での調整により発電部5のカソード極に空気が送り込まれる。 The power generation unit 5 and the auxiliary devices 2 are connected by a fluid piping system. In this fluid piping system, the fuel tank 3 and the fuel supply unit 4 are connected by a fuel supply line L1. The fuel supply unit 4 and the power generation unit 5 are connected by a fuel supply line L2. The fuel in the fuel tank 3 is supplied to the anode electrode of the power generation unit 5 by adjustment in the fuel supply unit 4. The air supply unit 6 and the power generation unit 5 are connected by an air supply line L <b> 3, and air is sent to the cathode electrode of the power generation unit 5 by adjustment in the air supply unit 6.
 なお、上記図1に示すシステムでは、燃料タンク3内の燃料が発電部5に直接供給される方式となっているが、この方式に限らず、燃料タンク3内の燃料を、希釈した燃料を蓄える混合タンク内に供給し、発電部5での発電で残った燃料と混合させる方式にしても良い。 In the system shown in FIG. 1, the fuel in the fuel tank 3 is directly supplied to the power generation unit 5. However, the present invention is not limited to this, and the fuel in the fuel tank 3 is diluted with fuel. You may make it the system which mixes with the fuel remaining in the electric power generation in the power generation part 5 by supplying in the mixing tank to store.
 また、発電部5と補器類2との間は、信号及び電流配線系で接続されている。制御部9は、信号ラインE1を介して燃料供給部4に接続される。発電部5と制御部9とは、信号ラインE2で接続される。負荷調整部7と制御部9とは信号ラインE3で接続される。セル電圧監視部8と制御部9とは、信号ラインE4で接続されている。空気供給部6と制御部9とは、信号ラインE5で接続されている。 In addition, the power generation unit 5 and the auxiliary devices 2 are connected by a signal and current wiring system. The control unit 9 is connected to the fuel supply unit 4 via the signal line E1. The power generation unit 5 and the control unit 9 are connected by a signal line E2. The load adjustment unit 7 and the control unit 9 are connected by a signal line E3. The cell voltage monitoring unit 8 and the control unit 9 are connected by a signal line E4. The air supply unit 6 and the control unit 9 are connected by a signal line E5.
 燃料供給部4から発電部5に供給される燃料流量が計測される。この計測された流量を表す燃料流量情報が信号ラインE1を介して制御部9に送られる。制御部9からは、供給流量を定める供給量制御信号が信号ラインE1を介して燃料供給部4に送られる。この供給量制御信号に従って燃料供給部4から燃料が発電部5に供給される。ここで、各セル51に供給される燃料は、各セル51に流入する燃料の流路に燃料流量調整バルブ(図示せず)が設けられ、セル51毎に調整されても良い。 The flow rate of fuel supplied from the fuel supply unit 4 to the power generation unit 5 is measured. The fuel flow rate information representing the measured flow rate is sent to the control unit 9 via the signal line E1. A supply amount control signal that determines the supply flow rate is sent from the control unit 9 to the fuel supply unit 4 via the signal line E1. Fuel is supplied from the fuel supply unit 4 to the power generation unit 5 in accordance with the supply amount control signal. Here, the fuel supplied to each cell 51 may be adjusted for each cell 51 by providing a fuel flow rate adjustment valve (not shown) in the flow path of the fuel flowing into each cell 51.
 また、発電部5内のセル積層構造50で発生され、出力されるスタック電圧(各セル全体の電圧)を表す情報は、電圧情報として信号ラインE2を介して制御部9に送られる。電力調整部10はラインE6を介して負荷調整部7に接続されている。負荷調整部7は、信号ラインE3を介して発電部5に負荷を与える。この負荷調整部7で検出された負荷電流の値は、負荷電流情報として信号ラインE3を介して制御部9に送られる。また、制御部9で設定された負荷制御信号は、信号ラインE3を介して制御部9から負荷調整部7に与えられる。従って、負荷調整部7は、負荷制御信号に従って定められた設定負荷に相当する負荷を発電部5に接続し、この設定負荷に流れる負荷電流が検出されて負荷電流情報として制御部9に送られる。 
 なお、負荷調整部7に電力調整部10の役割を持たせることで、電力調整部10を省略させることも可能である。この場合、負荷電力11は負荷調整部7に接続される。
In addition, information representing the stack voltage (the voltage of the entire cell) generated and output from the cell stack structure 50 in the power generation unit 5 is sent to the control unit 9 via the signal line E2 as voltage information. The power adjustment unit 10 is connected to the load adjustment unit 7 via a line E6. The load adjustment unit 7 applies a load to the power generation unit 5 through the signal line E3. The value of the load current detected by the load adjustment unit 7 is sent to the control unit 9 via the signal line E3 as load current information. The load control signal set by the control unit 9 is given from the control unit 9 to the load adjustment unit 7 via the signal line E3. Therefore, the load adjustment unit 7 connects a load corresponding to the set load determined according to the load control signal to the power generation unit 5, and the load current flowing through the set load is detected and sent to the control unit 9 as load current information. .
Note that the power adjustment unit 10 can be omitted by providing the load adjustment unit 7 with the role of the power adjustment unit 10. In this case, the load power 11 is connected to the load adjustment unit 7.
 セル電圧監視部8は、予め定められた少なくとも1つのセルで発生される電圧を検出するセル電圧検出回路(図示せず)を含み、信号ラインE4を介して発電部5内のセル積層構造50の上記セルにそれぞれ接続される。各セルで発生される電圧がセル電圧検出回路で計測され、計測されたセル電圧値が電圧情報として制御部9に送られる。ここでは、予め定められたセルとは、セル積層構造50に含まれる各セル51の全てとするが、この他にも、セル積層構造50のうち複数枚のセル51だけを選択し、それらの合算電圧とすることもできる。また、特定のセル51だけを選択して予め定められたセルとすることもできる。例えば、セル積層構造50が多数のセル51を有する場合、セル電圧監視部8は全てのセル51のそれぞれの電圧を検出するのではなく、隣接する2~3枚のセル51を選択し、これらの合算電圧を予め定められたセルにおける電圧とすることができる。 The cell voltage monitoring unit 8 includes a cell voltage detection circuit (not shown) that detects a voltage generated in at least one predetermined cell, and the cell stacked structure 50 in the power generation unit 5 via the signal line E4. Are connected to the above cells. The voltage generated in each cell is measured by the cell voltage detection circuit, and the measured cell voltage value is sent to the control unit 9 as voltage information. Here, the predetermined cells are all the cells 51 included in the cell stack structure 50, but in addition to this, only a plurality of cells 51 are selected from the cell stack structure 50, and those cells 51 are selected. It can also be a combined voltage. Alternatively, only a specific cell 51 can be selected as a predetermined cell. For example, when the cell stack 50 has a large number of cells 51, the cell voltage monitoring unit 8 does not detect the voltages of all the cells 51, but selects two to three adjacent cells 51, Can be the voltage at a predetermined cell.
 発電部5は、図2(a)及び2(b)に示されるようなセル積層構造50を備えている。図2(a)に示すように、セル積層構造50は、アノード集電板12とカソード集電板14との間に積層された複数のセル51を備え、各セル51がアノード集電板12及びカソード集電板14に電気的に直列に接続されている。アノード集電板12とカソード集電板14との間に積層されたセル51は、一対の締め付け板18A、18B間に配置され、この締め付け板18A、18B間に固定具19A、19Bによって締め付け固定されている。アノード集電板12及びカソード集電板14は、それぞれ負荷調整部8に接続され、セル積層構造50で生成された電流がカソード集電板14で収集されて負荷調整部7に供給される。 The power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 2 (a) and 2 (b). As shown in FIG. 2A, the cell stack structure 50 includes a plurality of cells 51 stacked between the anode current collector plate 12 and the cathode current collector plate 14, and each cell 51 includes the anode current collector plate 12. The cathode current collector plate 14 is electrically connected in series. The cell 51 stacked between the anode current collector plate 12 and the cathode current collector plate 14 is disposed between a pair of clamping plates 18A and 18B, and is clamped and fixed by fixtures 19A and 19B between the clamping plates 18A and 18B. Has been. The anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 8, respectively, and the current generated by the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
 また、セル51は、図2(b)に示されるように膜電極接合体(MEAと称する。)20を備えている。この膜電極接合体20の一方の側にアノード流路板22が設けられ、他方の側にカソード流路板24が設けられている。MEA20は、アノード流路板22とカソード流路板24とに挟まれ、アノード流路板22とカソード流路板24とに接続されたガスケット26で密閉された構造に形成されている。アノード流路板22とカソード流路板24は、このガスケット26で絶縁され、しかも、このガスケット26によってMEA20から外部への燃料及び空気のリークが防止される。MEA20は、電解質膜の一方の側にアノード極が形成され、電解質膜の他方の側にカソード極が形成される。 The cell 51 includes a membrane electrode assembly (referred to as MEA) 20 as shown in FIG. An anode flow path plate 22 is provided on one side of the membrane electrode assembly 20, and a cathode flow path plate 24 is provided on the other side. The MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24. The anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26. The MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
 各セル51のアノード流路板22は、隣接するセル51のカソード流路板24に電気的且つ機械的に接続され、各セル51のカソード流路板24は、隣接するセル51のアノード流路板22に電気的且つ機械的に接続され、積層されたセル51は、互いに直列に接続されている。また、セル電圧監視部8に接続されるセル51には、当該セル51が発生する電圧を外部から監視する為にアノード流路板22及びカソード流路板24に出力端子22A,24Aが設けられている。この出力端子22A,24Aがセル電圧信号ラインE4を介してセル電圧監視部8の電圧検出回路に接続され、セル電圧監視部8により各セル51の電圧がモニター(監視)されている。セル電圧監視部8からは、予め定められたセルで発生される電圧に相当する電圧値を表す電圧情報が信号ラインE4を介して制御部9の検知処理部9aに供給される。 The anode flow path plate 22 of each cell 51 is electrically and mechanically connected to the cathode flow path plate 24 of the adjacent cell 51, and the cathode flow path plate 24 of each cell 51 is the anode flow path of the adjacent cell 51. The stacked cells 51 that are electrically and mechanically connected to the plate 22 are connected in series to each other. The cell 51 connected to the cell voltage monitoring unit 8 is provided with output terminals 22A and 24A on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the voltage generated by the cell 51 from the outside. ing. The output terminals 22A and 24A are connected to the voltage detection circuit of the cell voltage monitoring unit 8 through the cell voltage signal line E4, and the cell voltage monitoring unit 8 monitors (monitors) the voltage of each cell 51. From the cell voltage monitoring unit 8, voltage information representing a voltage value corresponding to a voltage generated in a predetermined cell is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
 アノード流路板22は、MEA20のアノード極側に面してメタノール、およびメタノール水溶液等の燃料が流通される流路が形成されている。この流路を介して燃料がMEA20に供給され、また、MEA20における反応で生成した気体がこのアノード流路板22の流路を介して排出される。カソード流路板24は、MEA20のカソード極側に面して空気が流通される流路が形成され、この流路を介してMEA20に空気が供給され、また、MEA20において反応で生成され、MEA20を透過した水がカソード流路板24の流路を介して排出される。 The anode channel plate 22 faces the anode electrode side of the MEA 20 and is formed with a channel through which fuel such as methanol and aqueous methanol solution is circulated. The fuel is supplied to the MEA 20 through this flow path, and the gas generated by the reaction in the MEA 20 is discharged through the flow path of the anode flow path plate 22. The cathode channel plate 24 is formed with a channel through which air flows while facing the cathode electrode side of the MEA 20. Air is supplied to the MEA 20 through the channel, and is generated by a reaction in the MEA 20. The water that has passed through is discharged through the channel of the cathode channel plate 24.
 膜電極接合体(MEA)20は、固体高分子膜の両面に触媒層を塗布して触媒層を形成し、その触媒層の外側に集電及び燃料供給と反応生成物の排出を円滑に行うためのガス拡散層を接合することで形成される。固体高分子膜としては、例えば、デュポン(DuPont)社のナフィオン(Nafion:登録商標)で作られたイオン交換膜を用いることができる。アノード触媒(アノード電極膜)及びカソード触媒(カソード電極膜)としては、市販のPt-Ru触媒、Pt触媒等を用いることができる。ガス拡散層としては市販のカーボンペーパー、カーボン繊維、カーボン不織布を用いることができる。これら拡散層には、主としてカーボンと撥水性素材から成る緻密層(Micro Porous Layer)を設けても良い。
 なお、アノード流路板22及びカソード流路板24は、それぞれMEA20のアノード極への燃料供給及び反応生成物の排出、カソード極への空気供給及び反応生成物の排出と、反応によって生成した電気の集電を行う為に設けられ、この目的を果たす限り、アノード流路板22及びカソード流路板24の形状は任意の形状をとることができる。例えば、アノード流路板22にサーペンタイン流路板を用いることができる。
The membrane electrode assembly (MEA) 20 forms a catalyst layer by applying a catalyst layer on both sides of a solid polymer membrane, and smoothly collects current, supplies fuel, and discharges a reaction product outside the catalyst layer. It is formed by joining gas diffusion layers for the purpose. As the solid polymer membrane, for example, an ion exchange membrane made of Nafion (registered trademark) manufactured by DuPont can be used. As the anode catalyst (anode electrode film) and the cathode catalyst (cathode electrode film), a commercially available Pt—Ru catalyst, Pt catalyst, or the like can be used. Commercially available carbon paper, carbon fiber, and carbon nonwoven fabric can be used as the gas diffusion layer. These diffusion layers may be provided with a dense layer (Micro Porous Layer) mainly composed of carbon and a water-repellent material.
The anode flow channel plate 22 and the cathode flow channel plate 24 are respectively supplied with fuel and discharge of the reaction product to the anode electrode of the MEA 20, supply of air and discharge of the reaction product to the cathode electrode, and electricity generated by the reaction. The anode channel plate 22 and the cathode channel plate 24 can have any shape as long as this purpose is achieved. For example, a serpentine channel plate can be used for the anode channel plate 22.
 次に、図1に示される燃料電池システム1の動作について説明する。 
 発電を始めるにあたり、燃料供給部4は、制御部9による制御の下で、燃料タンク3から所定の濃度のメタノール水溶液(燃料)を流路L1、流路L2を介してアノード流路板22に供給する。また、空気供給部6は、制御部9による制御の下で、空気を流路L3を介してカソード流路板24に供給する。これにより、アノード流路板22のアノード側では、燃料が流通される流路からアノード極に燃料が浸透される。また、カソード流路板24のカソード側は、空気が流通される流路からカソード極に空気が浸透される。
Next, the operation of the fuel cell system 1 shown in FIG. 1 will be described.
When starting power generation, the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9. Supply. The air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9. Thereby, on the anode side of the anode flow path plate 22, the fuel penetrates from the flow path through which the fuel flows to the anode electrode. On the cathode side of the cathode channel plate 24, air is permeated from the channel through which air flows into the cathode electrode.
 負荷調整部7によりセル積層構造50に接続される負荷が印加されると、アノード極、即ち、MEA20のアノード側では、式(1)に示したメタノール酸化反応が起こる。カソード極、即ち、MEA20のカソード側では、式(2)で示した酸素還元反応が起こる。電子(e-)は負荷調整部7へ流れる。 When a load connected to the cell stack structure 50 is applied by the load adjusting unit 7, the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20. At the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs. The electrons (e−) flow to the load adjusting unit 7.
 アノード触媒で生成されたプロトン(H+)は、アノード極から固体高分子膜を通してカソード極へと流れる。この時、プロトンと同時にメタノールが固体高分子膜を通してカソード極へと流れる。カソード極に流れたメタノールはカソード側で式(3)の反応が起こり、カソード極には水が生成される(メタノールクロスオーバー)。また、燃料タンク3内の燃料に水を含む場合、プロトンと同時に水も固体高分子膜を通してカソード極へと流れ込む。こうして発電を継続すると、カソード極内に水が蓄積され、蓄積された水がカソード極から適切に除去されない場合、空気拡散性の低下を引き起こす。このように空気拡散性の低下が起こった場合、拡散抵抗が増大するため各セル51からの出力電圧が低下し、発電効率が低下してしまう。よって、この第1の実施形態では、セル51の空気拡散性を改善させる為の処理を設けることで、発電効率の向上を図る。以下にその手法を説明する。 The protons (H +) generated by the anode catalyst flow from the anode electrode to the cathode electrode through the solid polymer membrane. At this time, methanol flows simultaneously with protons through the solid polymer membrane to the cathode electrode. The methanol flowing to the cathode electrode undergoes the reaction of the formula (3) on the cathode side, and water is generated at the cathode electrode (methanol crossover). When water is contained in the fuel in the fuel tank 3, water also flows into the cathode electrode through the solid polymer membrane simultaneously with protons. If power generation is continued in this way, water accumulates in the cathode electrode, and if the accumulated water is not properly removed from the cathode electrode, air diffusibility is reduced. Thus, when the air diffusibility is lowered, the diffusion resistance is increased, so that the output voltage from each cell 51 is lowered and the power generation efficiency is lowered. Therefore, in the first embodiment, the power generation efficiency is improved by providing a process for improving the air diffusibility of the cell 51. The method will be described below.
 図3を参照して、空気拡散性が低下したセル51を検出し、当該セルの空気拡散性を改善させる処理について説明する。 
 図3は、負荷調整部7により負荷が切り換えられ、セル積層構造50から取り出される負荷電流Iがステップ状に負荷電流I1から負荷電流I2に変動した際の各セル51から出力されるセル電圧の応答特性CR、CR、CR、CRを示している。これらCR、CR、CR、CRは、4枚のセル51~51が積層されたセル積層構造50における4つのセル51~51において測定されたセル電圧の特性を示している。セル51~51の各々は、セル電圧監視部8に接続され、セル51~51の電圧が個別に監視され、電圧情報が検知処理部9aに供給される。
With reference to FIG. 3, the process which detects the cell 51 in which the air diffusibility fell and improves the air diffusibility of the said cell is demonstrated.
FIG. 3 shows the cell voltage output from each cell 51 when the load is switched by the load adjusting unit 7 and the load current I taken out from the cell stack structure 50 is changed stepwise from the load current I1 to the load current I2. Response characteristics CR 1 , CR 2 , CR 3 , CR 4 are shown. These CR 1 , CR 2 , CR 3 , and CR 4 represent the cell voltage characteristics measured in the four cells 51 1 to 514 in the cell stack structure 50 in which the four cells 51 1 to 51 4 are stacked. ing. Each of the cells 51 1 to 51 4 is connected to the cell voltage monitoring unit 8, the voltages of the cells 51 1 to 51 4 are individually monitored, and voltage information is supplied to the detection processing unit 9a.
 図3において、上付のサフィックス(添え字)1~4は、4枚のセル51のセル番号1~4を示し、下付のサフィックス“1”は、最小電圧値V(電圧の極小値)及び最小電圧値Vとなる時点Tを示す。 In FIG. 3, superscript suffixes (subscripts) 1 to 4 indicate the cell numbers 1 to 4 of the four cells 51, and the subscript suffix “1” denotes the minimum voltage value V 1 (minimum voltage value). ) And the time point T 1 at which the minimum voltage value V 1 is reached.
 図3に示すグラフにおける、時点T=T0以前の期間においては、負荷調整部7で第1の負荷が選択されてセル積層構造50から負荷電流I=I1が取り出される。時点T=Tにおいて、負荷調整部8における負荷が第1の負荷から第2の負荷に変更され、取り出される負荷電流IがI=I1からI=I2にステップ状に増加させられる。この負荷電流Iの変動に伴い、第2の負荷に切り替えた直後の時点T=T では、n番目(nは、1~4)のセルのセル電圧Vは、V=V で最小電圧値(電圧の極小値)となり、その後、各々の電圧Vは、最大電圧値に達した後に、徐々に略一定の値に収束される。ここで、各セルの出力電圧が負荷変動開始から最小値となるまでの時間ΔT =T1 -T0を時間評価値と定義し、この時間評価値ΔT を用いて各セル51の空気流量を推定する。なお、上記第1の負荷及び第2の負荷の一方は、無負荷状態であっても良い。 In the graph shown in FIG. 3, during the period before time T = T 0 , the load adjustment unit 7 selects the first load, and the load current I = I 1 is extracted from the cell stack structure 50. At time T = T 0 , the load in the load adjusting unit 8 is changed from the first load to the second load, and the load current I to be extracted is increased in a stepped manner from I = I1 to I = I2. As the load current I fluctuates, at time T = T 1 n immediately after switching to the second load, the cell voltage V of the nth cell (n is 1 to 4) is V = V 1 n . The minimum voltage value (minimum voltage value) is reached, and then each voltage V gradually converges to a substantially constant value after reaching the maximum voltage value. Here, a time ΔT 1 n = T 1 n −T 0 until the output voltage of each cell reaches the minimum value from the start of load fluctuation is defined as a time evaluation value, and each cell is defined using this time evaluation value ΔT 1 n. The air flow rate of 51 is estimated. One of the first load and the second load may be in a no-load state.
 全てのセル51が同じ燃料流量、空気流量、および温度といった同一条件、同一環境下では、各セル51の時間評価値ΔT は、ほぼ同じ値となる。しかし、特定のセル51に空気配流の偏りによる局所的な空気流入量の減少、あるいはカソード極内での水の蓄積(フラッディング)が生じるなど特異的な不具合(異常)が起こった場合(以下、単にセルの異常と称する。)、各セルの時間評価値ΔT にばらつきが生じる。 Under the same conditions and the same environment such as the same fuel flow rate, air flow rate, and temperature in all the cells 51, the time evaluation value ΔT 1 n of each cell 51 is almost the same value. However, when a specific failure (abnormality) occurs in a specific cell 51, such as a decrease in local air inflow due to an uneven air distribution or water accumulation (flooding) in the cathode electrode (hereinafter referred to as “abnormality”). This is simply referred to as cell abnormality), and the time evaluation value ΔT 1 n of each cell varies.
 以下、セル電圧監視部8でセル電圧がモニターされ、各セルの時間評価値ΔT が検知処理部9aで求められ、この時間評価値ΔT に基づいて空気供給部6を制御する手法を説明する。 Hereinafter, the cell voltage is monitored by the cell voltage monitoring unit 8, the time evaluation value ΔT 1 n of each cell is obtained by the detection processing unit 9a, and the air supply unit 6 is controlled based on the time evaluation value ΔT 1 n. Will be explained.
 図4は、セル51の空気流入量と時間評価値ΔT との関係を実験により求めた一例である。図4では、セル積層構造50中のあるセル51において、アノード極に供給する燃料のメタノール濃度を1.6Mol/Lとし、カソード極に供給する単位面積当たりの空気流量を4~10cc/min/cmと変化させた場合に、時間評価値ΔT の応答をプロットした結果である。図4から、空気流量の低下に伴い、ΔT が大きくなり、逆にある一定以上空気流量を増加させるとΔT は空気流量の変化に対する変化が小さくなることが分かる。空気流量が低下した状態で運転を続けた場合、カソード極からの水の排出が低下するため、空気拡散性が低下し、出力電圧の低下を招く。また、長期的に水の排出が低下すると、カソード極内への水の蓄積(フラッディング)が起こり、更なる出力電圧の低下を招く。その為、上記図3の手法にてΔT を検出し、その検出した値を用いてセル51に供給される空気流量を推定し、その流量を所定の範囲に収める処理を取り入れる。 FIG. 4 is an example in which the relationship between the air inflow amount of the cell 51 and the time evaluation value ΔT 1 n is obtained by experiments. In FIG. 4, in a cell 51 in the cell stack structure 50, the methanol concentration of the fuel supplied to the anode electrode is 1.6 mol / L, and the air flow rate per unit area supplied to the cathode electrode is 4 to 10 cc / min / in the case of changing cm 2, and the results obtained by plotting the response time evaluation value [Delta] T 1 n. FIG. 4 shows that ΔT 1 n increases as the air flow rate decreases, and conversely, when the air flow rate is increased beyond a certain level, ΔT 1 n changes less with changes in the air flow rate. If the operation is continued in a state where the air flow rate is reduced, the discharge of water from the cathode electrode is lowered, so that the air diffusibility is lowered and the output voltage is lowered. In addition, when the discharge of water decreases for a long period of time, water accumulation (flooding) occurs in the cathode electrode, causing a further decrease in output voltage. Therefore, ΔT 1 n is detected by the method shown in FIG. 3, and the air flow rate supplied to the cell 51 is estimated using the detected value, and a process for keeping the flow rate within a predetermined range is incorporated.
 図5は、第1の実施形態におけるシステムの処理手順を示したものである。この図5を参照して、制御部9の制御動作について説明する。 
 制御部9において制御動作が開始されると(ステップS01)、検知処理部9aは負荷調整部7に負荷変動処理の指示を与える(ステップS02)。この指示にしたがって、負荷調整部7は、発電部5から取り出される負荷電流を第1の値から第2の値に調整する(ステップS03)。負荷調整部7で第2の値に変更されると同時に、セル電圧監視部8は、セル電圧監視部8内の電圧検出回路で各セル51の電圧値を時刻と共に計測する(ステップS04)。これにより、検知処理部9aには、セル51ごとに時刻と共に変動される電圧情報がセル電圧監視部8から入力される。検知処理部9aは、入力されてくる電圧情報から最小電圧値V1 を検出し、負荷変動開始Tから最小電圧値V1 をとるまでの時間ΔT を検出する(ステップS05)。検出された時間ΔT は、データベース9bのΔT 検出データベース9b-1に格納される。
FIG. 5 shows a processing procedure of the system in the first embodiment. The control operation of the control unit 9 will be described with reference to FIG.
When the control operation is started in the control unit 9 (step S01), the detection processing unit 9a gives an instruction for load variation processing to the load adjustment unit 7 (step S02). In accordance with this instruction, the load adjustment unit 7 adjusts the load current extracted from the power generation unit 5 from the first value to the second value (step S03). Simultaneously with the change to the second value by the load adjustment unit 7, the cell voltage monitoring unit 8 measures the voltage value of each cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S04). As a result, voltage information that varies with time for each cell 51 is input from the cell voltage monitoring unit 8 to the detection processing unit 9a. The detection processing unit 9a detects the minimum voltage value V 1 n from the input voltage information, and detects the time ΔT 1 n from the load fluctuation start T 0 until the minimum voltage value V 1 n is obtained (step S05). . The detected time ΔT 1 n is stored in the ΔT 1 n detection database 9b-1 of the database 9b.
 検知処理部9aは、ΔT が所定の範囲内にあるか否かを判定する(ステップS06)。ここで、ΔT 検出データベース9b-1に格納されたΔT の判定手法としては、下記式(4)に示すように、予め定められた最小時間値ΔTmin(ΔTminは0を含む)と最大時間値ΔTmaxとの間を満たす場合には正常セルと判定し、それを満たさない場合には異常セルと判定することができる。
Figure JPOXMLDOC01-appb-M000004
The detection processing unit 9a determines whether ΔT 1 n is within a predetermined range (step S06). Here, as a method for determining ΔT 1 n stored in the ΔT 1 n detection database 9b-1, a predetermined minimum time value ΔT min (ΔT min includes 0) as shown in the following equation (4). ) And the maximum time value ΔT max is determined as a normal cell, and when it is not satisfied, it is determined as an abnormal cell.
Figure JPOXMLDOC01-appb-M000004
 その他にも、各セル51で得られたΔT1 から頻度分布S(ΔT1 )を算出し、その頻度分布から、分散が所定の範囲内にあるセルを正常セルと判定し、その範囲内に無いセルを異常セルと判定することができる。また、上記算出された頻度分布S(ΔT1 )が2つ以上のピークを持つ場合、ΔT1 が小さい方のピークの値もしくはその平均値を用いることができる。また、単純に、ΔT1 が予め定められた基準値以下の場合は正常セルと判定し、ΔT1 が基準値より大きい場合は異常セルと判定するようにしても良い。 In addition, a frequency distribution S (ΔT 1 n ) is calculated from ΔT 1 n obtained in each cell 51, and from the frequency distribution, a cell whose variance is within a predetermined range is determined as a normal cell, and the range A cell that is not within can be determined as an abnormal cell. When the calculated frequency distribution S (ΔT 1 n ) has two or more peaks, the value of the peak with the smaller ΔT 1 n or the average value thereof can be used. In addition, when ΔT 1 n is equal to or smaller than a predetermined reference value, it is determined as a normal cell, and when ΔT 1 n is larger than the reference value, it may be determined as an abnormal cell.
 上記ステップS06において異常セルが有る場合は、検知処理部9aは、異常セルを回復させる処理を命令する(ステップS07)。この回復処理のタイミングは、例えば、燃料電池システム1の終了時としても良いし、運転中に即座に行うようにしても良いし、もしくは、少なくともM個(M:任意の自然数)以上のセルに異常が起きた時のみに行うようにしても良い。 If there is an abnormal cell in step S06, the detection processing unit 9a instructs a process for recovering the abnormal cell (step S07). The timing of the recovery process may be, for example, at the end of the fuel cell system 1, may be performed immediately during operation, or at least M (M: any natural number) or more cells. It may be performed only when an abnormality occurs.
 上記ステップS07で回復処理命令が出されると、検知処理部9aは、空気供給量の増加を指示する制御信号を空気供給部4に出力する(ステップS08)。空気供給量を増加させる為の条件を決定するには、データベース9b内に予め蓄えられたΔT -供給量制御データベース9b-2をもとにする。このΔT -供給量制御データベース9b-2をもとに、制御部9は空気供給部6に供給量制御信号を送り、空気供給部6において空気供給量の調整が行われる(ステップS09)。 When the recovery processing command is issued in step S07, the detection processing unit 9a outputs a control signal instructing an increase in the air supply amount to the air supply unit 4 (step S08). In order to determine the conditions for increasing the air supply amount, ΔT 1 n -supply amount control database 9b-2 stored in advance in the database 9b is used. Based on this ΔT 1 n -supply amount control database 9b-2, the control unit 9 sends a supply amount control signal to the air supply unit 6, and the air supply unit 6 adjusts the air supply amount (step S09). .
 従来手法では、メタノールクロスオーバーを所定の範囲におさめて燃料利用効率と発電効率の2つの効率を高める為に、発電部の負荷を閉回路から開回路に切り替え、切り替え後の一定時間後の出力電圧をもとにメタノール濃度を検出していた。しかし、発電部の負荷を閉回路から開回路に切り替えた時点から出力電圧が安定するまでに時間を要するため、メタノール濃度の検出速度の高速化が課題となっていた。また、発電部の出力電圧は、経年劣化等によって変化するため、メタノール濃度の検出精度の安定性の問題があった。また、発電部が複数のセルで構成される場合、セル毎の出力電圧特性にばらつきがあるため、どのセルの電圧値を用いるかによって、メタノール濃度の検出にばらつきが生じてしまう。 In the conventional method, the load of the power generation unit is switched from a closed circuit to an open circuit in order to keep the methanol crossover within a predetermined range and improve the fuel utilization efficiency and the power generation efficiency, and the output after a certain time after switching The methanol concentration was detected based on the voltage. However, since it takes time from the time when the load of the power generation unit is switched from the closed circuit to the open circuit until the output voltage is stabilized, it has been a problem to increase the detection speed of the methanol concentration. In addition, since the output voltage of the power generation unit changes due to deterioration over time and the like, there is a problem of stability in detection accuracy of methanol concentration. In addition, when the power generation unit is composed of a plurality of cells, the output voltage characteristics of each cell vary, and therefore the methanol concentration detection varies depending on which cell voltage value is used.
 そこで、上記第1の実施形態は、積層された複数のセルを有する発電部と、前記セルに燃料を供給する、燃料供給量が調整可能な燃料供給部と、前記セルに空気を供給する、空気供給量が調整可能な空気供給部と、前記複数のセルのうち少なくとも一つのセルの出力電圧を監視する電圧監視部と、前記発電部から取り出される負荷電流を調整する調整部と、前記負荷電流が第1の値から第2の値に調整された時点から前記出力電圧が最小値となるまでの時間を測定する時間測定部と、前記時間に応じて前記空気供給量及び燃料供給量の少なくとも一方を制御する制御部とを具備する燃料電池システムを提供する。 Therefore, in the first embodiment, a power generation unit having a plurality of stacked cells, a fuel supply unit that supplies fuel to the cells, a fuel supply amount that can be adjusted, and supplies air to the cells. An air supply unit capable of adjusting an air supply amount; a voltage monitoring unit that monitors an output voltage of at least one of the plurality of cells; an adjustment unit that adjusts a load current extracted from the power generation unit; and the load A time measuring unit that measures a time from when the current is adjusted from the first value to the second value until the output voltage reaches the minimum value; and, depending on the time, the air supply amount and the fuel supply amount Provided is a fuel cell system including a control unit that controls at least one of them.
 すなわち、上記第1の実施形態では、各セルの出力電圧が負荷変動開始から最小値となるまでの時間ΔT をそれぞれ検出し、ΔT の値が所定の範囲におさまるように空気供給量を制御する。このようにすることで、セル51のカソード極内での空気拡散性の低下による出力電圧の低下を抑制することが可能となり、発電効率を向上することができる。 That is, in the first embodiment, the time ΔT 1 n until the output voltage of each cell reaches the minimum value from the start of load fluctuation is detected, and air supply is performed so that the value of ΔT 1 n falls within a predetermined range. Control the amount. By doing in this way, it becomes possible to suppress the fall of the output voltage by the fall of the air diffusibility in the cathode pole of the cell 51, and can improve electric power generation efficiency.
 (第2の実施形態) 
 第2の実施形態は、上記第1の実施形態に記載した時間ΔT を検知する手法を用いてメタノールクロスオーバーを推定することで、発電効率のみならず、燃料利用効率を向上させる燃料電池システムを提供する。
(Second Embodiment)
The second embodiment estimates the methanol crossover by using the method for detecting the time ΔT 1 n described in the first embodiment, thereby improving not only the power generation efficiency but also the fuel utilization efficiency. Provide a system.
 図6を参照して、メタノールクロスオーバーの推定方法について説明する。 
 図6は、負荷調整部7で負荷が切り換えられ、セル積層構造50から取り出される負荷電流Iがステップ状に負荷電流I1から負荷電流I2に変動した際の各セル51から出力されるセル電圧の応答特性CR、CR、CR、CRを示している。これらCR、CR、CR、CRは、4枚のセル51~51が積層されたセル積層構造50における4つのセル51~51において測定されたセル電圧の特性を示している。セル51~51の各々は、セル電圧監視部8に接続され、セル51~51の電圧が個別に監視され、セル電圧信号が検知処理部9aに供給される。
With reference to FIG. 6, the estimation method of methanol crossover is demonstrated.
FIG. 6 shows the cell voltage output from each cell 51 when the load is switched by the load adjusting unit 7 and the load current I taken out from the cell stack structure 50 is changed stepwise from the load current I1 to the load current I2. Response characteristics CR 1 , CR 2 , CR 3 , CR 4 are shown. These CR 1 , CR 2 , CR 3 , and CR 4 represent the cell voltage characteristics measured in the four cells 51 1 to 514 in the cell stack structure 50 in which the four cells 51 1 to 51 4 are stacked. ing. Each of the cells 51 1 to 51 4 is connected to the cell voltage monitoring unit 8, the voltages of the cells 51 1 to 51 4 are individually monitored, and the cell voltage signal is supplied to the detection processing unit 9a.
 図6において、上付のサフィックス(添え字)1~4は、4枚のセル51のセル番号1~4を示し、下付のサフィックス“1”は、最小電圧値V(電圧の極小値)及び最小電圧値Vとなる時点Tを示す。下付のサフィックス“2”は、最小電圧後に出現する出力応値とする最大電圧値(電圧の極大値)及び最大電圧値となる時点Tを示す。下付のサフィックス“3”は、最小電圧後に出現する出力応値とする定常電圧V及び定常電圧Vとなる時点Tを示す。 In FIG. 6, the superscript suffixes (subscripts) 1 to 4 indicate the cell numbers 1 to 4 of the four cells 51, and the subscript suffix “1” denotes the minimum voltage value V 1 (minimum voltage value). ) And the time point T 1 at which the minimum voltage value V 1 is reached. The subscript suffix "2" indicates a maximum voltage value when T 2 to be and the maximum voltage value (maximum value of the voltage) to output応値appearing after the minimum voltage. The subscript “3” indicates the steady voltage V 3 that is the output response that appears after the minimum voltage and the time T 3 when the steady voltage V 3 is reached.
 図6に示すグラフにおける、時点T=T0以前の時間期間においては、負荷調整部8で第1の負荷が選択されてセル積層構造50から負荷電流I=I1が取り出される。時点T=Tにおいて、負荷調整部8における負荷が第1の負荷から第2の負荷に変更され、取り出される負荷電流IがI=I1からI=I2にステップ状に増加させられる。この負荷電流Iの変動に伴い、第2の負荷に切り替えた直後の時点T=T では、n番目(nは、1~4)のセルのセル電圧Vは、V=V で最小電圧値(電圧の極小値)となり、その後、各々のセル電圧Vは、最大電圧値V (電圧の極大値)に達した後に、徐々に略一定の値(定常電圧V3 )に収束される。 In the time period before time T = T 0 in the graph shown in FIG. 6, the load adjustment unit 8 selects the first load, and the load current I = I 1 is taken out from the cell stack structure 50. At time T = T 0 , the load in the load adjusting unit 8 is changed from the first load to the second load, and the load current I to be extracted is increased in a stepped manner from I = I1 to I = I2. As the load current I fluctuates, at time T = T 1 n immediately after switching to the second load, the cell voltage V of the nth cell (n is 1 to 4) is V = V 1 n . After reaching the minimum voltage value (minimum voltage value), each cell voltage V reaches the maximum voltage value V 2 n (maximum voltage value) and then gradually becomes a substantially constant value (steady voltage V 3 n ). To converge.
 ここで、最小電圧値V と最大電圧値V との間には第1の電圧差ΔV (ΔV =V ―V )が生じる。また、最小電圧値V と一定時間(例えばT=T)経過後の定常電圧V との間には第2の電圧差ΔV (ΔV =V ―V )が生じる。この第1の電圧差ΔV 及び第2の電圧差ΔV を用いて各セル51のメタノールクロスオーバーを推定する。なお、上記第1の負荷及び第2の負荷の一方は、無負荷状態であっても良い。 Here, a first voltage difference ΔV 2 n (ΔV 2 n = V 2 n −V 1 n ) is generated between the minimum voltage value V 1 n and the maximum voltage value V 2 n . Further, a second voltage difference ΔV 3 n (ΔV 3 n = V 3 n −V 1 ) between the minimum voltage value V 1 n and a steady voltage V 3 n after a certain time (for example, T = T 3 ) has elapsed. n ). The methanol crossover of each cell 51 is estimated using the first voltage difference ΔV 2 n and the second voltage difference ΔV 3 n . One of the first load and the second load may be in a no-load state.
 以下の説明において、時点T は負荷変動直後にn番目のセル51が最小電圧値V となる時間と定める。時点T は、負荷変動直後にn番目のセル51が最大電圧値V となる時間と定める。時点Tは、全てのセル511~51が最小電圧値V と最大電圧値V に達した後の定常電圧V に収束した時間と定める。この時点Tは、n個全てのセルが最小電圧値V 、最大電圧値V を経過した後であれば任意に設定することができる。ここで、時点T は、セル51毎のばらつきがあるものの、負荷変動の後の10秒以内に観測される傾向が実験により確認されている。従って、例えば、時点T3は負荷変動の後の10秒~60秒後の間に定めることができる。 In the following description, the time point T 1 n is defined as the time when the nth cell 51 n becomes the minimum voltage value V 1 n immediately after the load change. The time point T 2 n is determined as the time when the n-th cell 51 n reaches the maximum voltage value V 2 n immediately after the load change. The time T 3 is defined as the time when all the cells 51 1 to 51 n converge to the steady voltage V 3 n after reaching the minimum voltage value V 1 n and the maximum voltage value V 2 n . The time T 3 can be all n cells is arbitrarily set as long as it is after the lapse of the minimum voltage value V 1 n, the maximum voltage value V 2 n. Here, although the time T 1 n varies for each cell 51 n , the tendency observed within 10 seconds after the load change has been confirmed by experiments. Therefore, for example, the time point T3 can be determined between 10 seconds and 60 seconds after the load change.
 全てのセル51が同じ燃料流量、空気流量さらには同じ温度といった同一条件、同一環境下におかれた場合、各セル51から出力される第1の電圧差ΔV とメタノールクロスオーバーとの関係は、概ね一意の線形関係に近似することができる。また、第2の電圧差V とメタノールクロスオーバーとの関係も概ね一意の線形関係に近似することができる。 The relationship between the first voltage difference ΔV 2 n output from each cell 51 and the methanol crossover when all the cells 51 are placed under the same conditions and the same environment such as the same fuel flow rate, air flow rate and even the same temperature. Can be approximated by a generally unique linear relationship. Further, the relationship between the second voltage difference V 3 n and the methanol crossover can also be approximated to a substantially unique linear relationship.
 しかし、特定のセル51に空気配流による空気流量の増減や、カソード極内部での水の蓄積(フラッディング)が起こった場合、第1の電圧差ΔV とメタノールクロスオーバーとの関係、及び、第2の電圧差ΔV とメタノールクロスオーバーとの関係は、一意の線形関係にならならず、メタノールクロスオーバーを正しく推測できない。そこで、上記第1の実施形態で検出した時間評価値ΔT を取り入れ、この時間評価値ΔT と第1の電圧差ΔV 及び第2の電圧差ΔV を用いてメタノールクロスオーバーを制御する。 However, when an increase or decrease in the air flow rate due to air distribution or accumulation (flooding) of water inside the cathode electrode occurs in a specific cell 51, the relationship between the first voltage difference ΔV 2 n and the methanol crossover, and The relationship between the second voltage difference ΔV 3 n and the methanol crossover does not become a unique linear relationship, and the methanol crossover cannot be correctly estimated. Therefore, the time evaluation value ΔT 1 n detected in the first embodiment is taken in, and the methanol cross using the time evaluation value ΔT 1 n , the first voltage difference ΔV 2 n, and the second voltage difference ΔV 3 n. Control over.
 以下、セル電圧監視部8でセル電圧がモニターされ、最小電圧値V1 と最小電圧後に出現する出力応値とする最大電圧値V と間の第1の電圧差ΔV が検知処理部9aで求められ、この第1の電圧差ΔV に基づいてメタノールクロスオーバーの推定、制御する処理の基本的原理について説明する。 Thereafter, the cell voltage is monitored by the cell voltage monitoring unit 8, and a first voltage difference ΔV 2 n between the minimum voltage value V 1 n and the maximum voltage value V 2 n that is an output response appearing after the minimum voltage is detected. A basic principle of processing for estimating and controlling methanol crossover based on the first voltage difference ΔV 2 n obtained by the processing unit 9a will be described.
 図7は、第2の実施形態におけるシステムの処理手順を示したものである。この図7を参照して、制御部9の制御動作について説明する。なお、図7において、上記図5と同一部分には同一符号を付した。 
 制御部9において制御動作が開始されると(ステップS01)、検知処理部9aは負荷調整部7に負荷変動処理の指示を与える(ステップS02)。この指示にしたがって、負荷調整部7は、発電部5から取り出される負荷電流を第1の値から第2の値に調整する(ステップS03)。負荷調整部7で第2の値に変更されると同時に、セル電圧監視部8は、セル電圧監視部8内の電圧検出回路で各セル51の電圧値を時刻と共に計測する(ステップS04)。これにより、検知処理部9aには、セル51ごとに時刻と共に変動される電圧情報がセル電圧監視部8から入力される。
FIG. 7 shows a processing procedure of the system in the second embodiment. The control operation of the control unit 9 will be described with reference to FIG. In FIG. 7, the same parts as those in FIG.
When the control operation is started in the control unit 9 (step S01), the detection processing unit 9a gives an instruction for load variation processing to the load adjustment unit 7 (step S02). In accordance with this instruction, the load adjustment unit 7 adjusts the load current extracted from the power generation unit 5 from the first value to the second value (step S03). Simultaneously with the change to the second value by the load adjustment unit 7, the cell voltage monitoring unit 8 measures the voltage value of each cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S04). As a result, voltage information that varies with time for each cell 51 is input from the cell voltage monitoring unit 8 to the detection processing unit 9a.
 検知処理部9aは、入力されてくる電圧情報から最小電圧値V1 を検出し、負荷変動開始Tから最小電圧値V1 をとるまでの時間ΔT を検出する(ステップS05)。検出された時間ΔT は、データベース9bのΔT 検出データベース9b-1に格納される。さらに、検知処理部9aは、入力されてくる電圧情報から最大電圧値V を検出し、上記検出された最小電圧値V1 と最大電圧値V との差を第1の電圧差ΔV として検出する(ステップS20)。検出された第1の電圧差ΔV は、データベース9bのΔV 検出データベース9b-3に格納される。 The detection processing unit 9a detects the minimum voltage value V 1 n from the input voltage information, and detects the time ΔT 1 n from the load fluctuation start T 0 until the minimum voltage value V 1 n is obtained (step S05). . The detected time ΔT 1 n is stored in the ΔT 1 n detection database 9b-1 of the database 9b. Furthermore, the detection processing unit 9a detects the maximum voltage value V 2 n from the input voltage information, and determines the difference between the detected minimum voltage value V 1 n and the maximum voltage value V 2 n as the first voltage. The difference ΔV 2 n is detected (step S20). The detected first voltage difference ΔV 2 n is stored in the ΔV 2 n detection database 9b-3 of the database 9b.
 次に、検知処理部9aは、ΔT 検出データベース9b-1に格納された各セルのΔT1 が所定の範囲内にあるか否かの判定を行う(ステップS06)。この判定において、ΔT1 が適正な範囲内にあるセルを正常セルと判定し、ΔT が所定の範囲内にないセルは空気流入量が適正な範囲にないセル、すなわち異常セルと判定して分別を行う(ステップS21)。 Next, the detection processing unit 9a determines whether or not ΔT 1 n of each cell stored in the ΔT 1 n detection database 9b-1 is within a predetermined range (step S06). In this determination, a cell in which ΔT 1 n is in an appropriate range is determined as a normal cell, and a cell in which ΔT 1 n is not in a predetermined range is determined as a cell whose air inflow amount is not in an appropriate range, that is, an abnormal cell. Then, classification is performed (step S21).
 次に、検知処理部9aは、ΔV 検出データベース9b-3に格納された第1の電圧差ΔV2 のうち、正常セルのみの第1の電圧差ΔV2 を用いて、メタノールクロスオーバーの推定を行う(ステップS22)。ここで、正常セルの第1の電圧差ΔV2 間でバラツキが生じる場合、その中の特定のセルのみの値を代表値として測定する他、複数の第1の電圧差ΔV2 の平均を求めたり、正常セルの第1の電圧差ΔV2 の分散を測定し、その分散が所定の範囲内にあるセルの第1の電圧差ΔV2 の値を用いることができる。 Next, the detection processing unit 9a of the first voltage difference [Delta] V 2 n stored in the [Delta] V 2 n detection database 9b-3, with the first voltage difference [Delta] V 2 n of only normal cells, methanol cross Over is estimated (step S22). Here, when a variation occurs between the first voltage differences ΔV 2 n of normal cells, the value of only a specific cell among them is measured as a representative value, and an average of a plurality of first voltage differences ΔV 2 n Or the dispersion of the first voltage difference ΔV 2 n of the normal cell is measured, and the value of the first voltage difference ΔV 2 n of the cell whose dispersion is within a predetermined range can be used.
 上記得られた第1の電圧差ΔV2 からメタノールクロスオーバー値を推定するには、データベース9b内に蓄えられたクロスオーバー換算データベース9b-4を用いる。クロスオーバー換算データベース9b-4には、第1の電圧差ΔV2 をメタノールクロスオーバー値に換算するための情報が予め記憶されている。具体的には、ΔV2 とメタノールクロスオーバー値の間には正の相関関係が与えられ、ΔV2 が予め定められた値よりも大きい場合、メタノールクロスオーバー値が予め定められた値より大きいと判断し、逆に、ΔV2 が予め定められた値よりも小さい場合、メタノールクロスオーバー値が予め定められた値より小さいと判断する。検知処理部9aは、メタノールクロスオーバー値を推定した後、この値に基づいて燃料供給量を制御する指示を行う(ステップS23)。ここで、推定したメタノールクロスオーバー値と燃料供給量との関係は、データベース9bに予め記憶されたクロスオーバー供給量制御データベース9b-5を用いる。このクロスオーバー供給量制御データベース9b-5をもとに、制御部9は燃料供給部4に供給量制御信号を送り、燃料供給部4において燃料供給量の制御が行われる(ステップS24)。具体的には、メタノールクロスオーバー値と燃料供給量の間には負の相関関係が与えられ、メタノールクロスオーバー値が予め定められた値よりも大きい場合、燃料供給量を予め定められた値より減少させる。逆に、メタノールクロスオーバー値が予め定められた値よりも小さい場合、燃料供給量を予め定められた値より増加させる。 In order to estimate the methanol crossover value from the obtained first voltage difference ΔV 2 n, the crossover conversion database 9b-4 stored in the database 9b is used. Information for converting the first voltage difference ΔV 2 n into a methanol crossover value is stored in advance in the crossover conversion database 9b-4. Specifically, a positive correlation is given between ΔV 2 n and the methanol crossover value, and when ΔV 2 n is larger than a predetermined value, the methanol crossover value is larger than the predetermined value. On the other hand, if ΔV 2 n is smaller than a predetermined value, it is determined that the methanol crossover value is smaller than a predetermined value. After estimating the methanol crossover value, the detection processing unit 9a gives an instruction to control the fuel supply amount based on this value (step S23). Here, for the relationship between the estimated methanol crossover value and the fuel supply amount, the crossover supply amount control database 9b-5 stored in advance in the database 9b is used. Based on the crossover supply amount control database 9b-5, the control unit 9 sends a supply amount control signal to the fuel supply unit 4, and the fuel supply unit 4 controls the fuel supply amount (step S24). Specifically, a negative correlation is given between the methanol crossover value and the fuel supply amount, and when the methanol crossover value is larger than a predetermined value, the fuel supply amount is set to be greater than the predetermined value. Decrease. Conversely, if the methanol crossover value is smaller than a predetermined value, the fuel supply amount is increased from a predetermined value.
 すなわち、電圧差ΔV2 が予め定められた値よりも大きい場合、燃料供給量を予め定められた値より減少させる。電圧差ΔV2 が予め定められた値よりも小さい場合、燃料供給量を予め定められた値よりも増加させる。 That is, when the voltage difference ΔV 2 n is larger than a predetermined value, the fuel supply amount is decreased from a predetermined value. When the voltage difference ΔV 2 n is smaller than a predetermined value, the fuel supply amount is increased from a predetermined value.
 上記第2の実施形態は、積層された複数のセルを有する発電部と、前記セルに燃料を供給する、燃料供給量が調整可能な燃料供給部と、前記複数のセルのうち少なくとも一つのセルの出力電圧を監視する電圧監視部と、前記発電部から取り出される負荷電流を調整する調整部と、前記負荷電流が第1の値から第2の値に調整された時点から前記出力電圧が最小値となるまでの時間を測定する時間測定部と、前記最小値と、前記出力電圧が最小値となった後の最大値との電圧差を測定する電圧差測定部と、前記時間及び前記電圧差に応じて前記燃料供給量を制御する制御部とを具備する燃料電池システムを提供する。 The second embodiment includes a power generation unit having a plurality of stacked cells, a fuel supply unit capable of supplying fuel to the cells, the fuel supply amount being adjustable, and at least one cell among the plurality of cells. A voltage monitoring unit that monitors the output voltage of the power generation unit, an adjustment unit that adjusts the load current extracted from the power generation unit, and the output voltage that is minimum since the load current is adjusted from the first value to the second value. A time measuring unit that measures a time until a value is reached, a voltage difference measuring unit that measures a voltage difference between the minimum value and a maximum value after the output voltage has reached a minimum value, the time and the voltage There is provided a fuel cell system including a control unit that controls the fuel supply amount according to a difference.
 また、上記第2の実施形態は、積層された複数のセルを有する発電部と、前記セルにメタノール燃料を供給する、燃料供給量が調整可能な燃料供給部と、前記複数のセルのうち少なくとも一つのセルの出力電圧を監視する電圧監視部と、前記発電部から取り出される負荷電流を調整する調整部と、前記負荷電流が第1の値から第2の値に調整された時点から前記出力電圧が最小値となるまでの時間を測定する時間測定部と、前記最小値と、前記出力電圧が最小値となった後の最大値との電圧差を測定する電圧差測定部と、前記時間が所定の範囲内にあるセルの前記電圧差を用いて、メタノールクロスオーバー値を算出する算出部とを具備する燃料電池システムを提供する。 In addition, the second embodiment includes a power generation unit having a plurality of stacked cells, a fuel supply unit that supplies methanol fuel to the cells, the fuel supply amount being adjustable, and at least one of the plurality of cells. A voltage monitoring unit that monitors an output voltage of one cell; an adjustment unit that adjusts a load current extracted from the power generation unit; and the output from the time when the load current is adjusted from a first value to a second value. A time measurement unit that measures a time until the voltage reaches a minimum value, a voltage difference measurement unit that measures a voltage difference between the minimum value and a maximum value after the output voltage reaches a minimum value, and the time A fuel cell system comprising: a calculation unit that calculates a methanol crossover value using the voltage difference between cells in a range within a predetermined range.
 すなわち、上記図7の手法では、負荷変動時の各セルの第1の電圧差ΔV2 からメタノールクロスオーバーを推定する際に、当該セルの出力電圧が負荷変動開始から最小値となるまでの時間ΔT を同時に検出する。そしてΔT の値から各セル51に流入する空気流入量が適正な範囲にあるか否かを判定し、正常セルのみの第1の電圧差ΔV2 を用いてメタノールクロスオーバーの推定を行うようにしている。このように各セル51への空気流入量が適正な範囲にあるか否かの判定を事前に行うため、メタノールクロスオーバーの推定誤差を大きく生じさせる空気流入量の変動の影響を除去することが可能である。よってメタノールクロスオーバーの推定精度を高め、燃料利用効率を高めることが可能となる。 That is, in the method of FIG. 7 described above, when the methanol crossover is estimated from the first voltage difference ΔV 2 n of each cell at the time of load change, the output voltage of the cell is from the start of load change to the minimum value. Time ΔT 1 n is detected simultaneously. Then, it is determined from the value of ΔT 1 n whether or not the air inflow amount flowing into each cell 51 is in an appropriate range, and methanol crossover is estimated using the first voltage difference ΔV 2 n of only normal cells. Like to do. In this way, since it is determined in advance whether or not the air inflow amount to each cell 51 is in an appropriate range, it is possible to eliminate the influence of fluctuations in the air inflow amount that causes a large methanol crossover estimation error. Is possible. Therefore, the estimation accuracy of methanol crossover can be improved and the fuel utilization efficiency can be increased.
 (第3の実施形態) 
 第2の実施形態では、負荷変動時のΔT を測定し、その値が所定の範囲にないセル51を異常セルと判断し、正常セルのみの第1の電圧差ΔV2 を用いてメタノールクロスオーバーを推定する手法を行った。しかし、この手法では異常セルが正常セルに対して増加した場合、異常セルによる発電効率が低下すると同時に、正常セルとして利用可能なセルが減少することからメタノールクロスオーバーの推定精度が低下し、燃料利用効率が低下する可能性がある。よって、メタノールクロスオーバーを制御する運転の過程で、異常セルを回復させる処理を取り入れることが可能である。
(Third embodiment)
In the second embodiment, ΔT 1 n at the time of load change is measured, a cell 51 whose value is not within a predetermined range is determined as an abnormal cell, and the first voltage difference ΔV 2 n of only normal cells is used. A method for estimating methanol crossover was performed. However, in this method, when the number of abnormal cells increases from that of normal cells, the power generation efficiency of the abnormal cells decreases, and at the same time, the number of cells that can be used as normal cells decreases. Usage efficiency may be reduced. Therefore, it is possible to incorporate a process for recovering an abnormal cell in the course of operation for controlling methanol crossover.
 図8は、第3の実施形態におけるシステムの処理手順を示したものである。この図8を参照して、制御部9の制御動作について説明する。なお、図8は、図7のフローチャートにおけるステップS21以降の処理を表したものである。 FIG. 8 shows a processing procedure of the system in the third embodiment. The control operation of the control unit 9 will be described with reference to FIG. FIG. 8 shows the processing after step S21 in the flowchart of FIG.
 ステップS21は図7のフローチャートにおける異常セル検知のステップに相当する。ここで、第2の実施形態で説明したようにΔT が所定の範囲に無いと判定されたセルは異常セルと判断され、ΔT が所定の範囲内であると判定されたセルは正常セルと判断される(ステップS210)。そして正常セルと判定された場合にはメタノールクロスオーバー制御へと用いられる。(ステップS22)。 Step S21 corresponds to an abnormal cell detection step in the flowchart of FIG. Here, cells [Delta] T 1 n as described in the second embodiment is determined not in the predetermined range is determined to be abnormal cells, cell [Delta] T 1 n is judged to be within a predetermined range It is determined as a normal cell (step S210). If it is determined that the cell is normal, it is used for methanol crossover control. (Step S22).
 一方、ステップ21で異常セルと判断された場合は、ΔT が所定の値よりも大きいか小さいかの判断を行う(ステップS211)。ΔT が所定の値よりも大きい場合、ステップS212にて制御部9は空気供給部6に空気供給量増加の指示を行う(ステップS212)。これにより、空気供給部6が制御され、発電部5内の各セル51に供給される空気流量が増加される。セル51に供給される空気流量が増加されることで、カソード極に蓄積した水等が除去され、発電効率を回復させることが可能となる。 On the other hand, if it is determined in step 21 that the cell is abnormal, it is determined whether ΔT 1 n is larger or smaller than a predetermined value (step S211). When ΔT 1 n is larger than the predetermined value, the control unit 9 instructs the air supply unit 6 to increase the air supply amount in step S212 (step S212). Thereby, the air supply part 6 is controlled and the air flow rate supplied to each cell 51 in the power generation part 5 is increased. By increasing the flow rate of air supplied to the cell 51, water accumulated in the cathode electrode is removed, and the power generation efficiency can be recovered.
 一方、上記ステップS211の判定において、ΔT が所定の値よりも小さい場合(ステップS213)、制御部9は燃料供給部4に燃料供給量増加の指示を行う(ステップS214)。これにより、燃料供給部4が制御され、発電部5内の各セル51に供給される燃料供給量が増加される。セル51に供給される燃料量が増加されることで、アノード極内に蓄積した二酸化炭素等が除去され、発電効率を回復させることが可能となる。ここで、上記ステップS211およびS213での空気供給量の増加量および燃料供給の増加量は制御部9bのデータベース内に予め定められており、異常セルのみに上記ステップを施す他、正常セルの出力低下に所定の出力低下を及ぼさない範囲にて全てのセルに施すことが可能である。 On the other hand, if ΔT 1 n is smaller than the predetermined value in the determination in step S211, the control unit 9 instructs the fuel supply unit 4 to increase the fuel supply amount (step S214). Thereby, the fuel supply part 4 is controlled and the fuel supply amount supplied to each cell 51 in the power generation part 5 is increased. By increasing the amount of fuel supplied to the cell 51, carbon dioxide accumulated in the anode electrode is removed, and the power generation efficiency can be recovered. Here, the increase amount of the air supply amount and the increase amount of the fuel supply in steps S211 and S213 are determined in advance in the database of the control unit 9b, and in addition to performing the above steps only on abnormal cells, the output of normal cells It is possible to apply to all the cells within a range that does not give a predetermined output reduction to the reduction.
 上述したようにこの発明の実施形態のシステムにおいては、正常セルをクロスオーバーの推定に用いる一方、異常セルに対し、適切な処理を施すことによって不具合を回復させることが可能となるため、燃料利用効率と発電効率の両方を高めることが可能となる。 As described above, in the system according to the embodiment of the present invention, normal cells are used for crossover estimation, while malfunctions can be recovered by applying appropriate processing to abnormal cells. Both efficiency and power generation efficiency can be increased.
 なお、上記第3の実施形態は、燃料循環部によって燃料タンク3内の燃料を、希釈した燃料を蓄える混合タンク内に供給し、発電部5での発電で残った燃料と混合させる方式にも適用できる。この場合、図8のステップS214で発電部5に供給する燃料供給量を増加させるために燃料循環部を操作し、燃料循環量を増加させることも可能である。 In the third embodiment, the fuel circulation unit supplies the fuel in the fuel tank 3 to the mixing tank that stores the diluted fuel, and mixes it with the fuel remaining in the power generation in the power generation unit 5. Applicable. In this case, in order to increase the fuel supply amount supplied to the power generation unit 5 in step S214 in FIG. 8, the fuel circulation unit can be operated to increase the fuel circulation amount.
 (第4の実施形態) 
 本発明の第4の実施形態は、発電部に積層されるセルのうち特定セルに電力を一時的に供給し、特定セルでのみ負荷変動を引き起こすことによって、メタノールクロスオーバーを推定し、発電部への燃料供給量を制御するものである。
(Fourth embodiment)
The fourth embodiment of the present invention temporarily supplies power to a specific cell among the cells stacked in the power generation unit, estimates a methanol crossover by causing a load fluctuation only in the specific cell, and generates the power generation unit. The amount of fuel supplied to the is controlled.
 図9は、本発明の第4の実施形態に係る燃料電池システム101の構成例を示している。燃料電池システム101は、図10に示すようなセル積層構造50を有する発電部5と、高濃度メタノール、あるいはメタノール燃料と少量の水の混合溶液(メタノール水溶液)等の液体燃料を貯蔵する燃料タンク3と、発電部5における発電をサポートする補器類2と、発電部5で発電した電力を負荷電力11に送るにあたり、外部電源(例えばリチウムイオンバッテリー)と発電部5から取り出す電力を制御する電力調整部10とを備える。 FIG. 9 shows a configuration example of the fuel cell system 101 according to the fourth embodiment of the present invention. The fuel cell system 101 includes a power generation unit 5 having a cell stack structure 50 as shown in FIG. 10 and a fuel tank that stores liquid fuel such as high-concentration methanol or a mixed solution of methanol fuel and a small amount of water (methanol aqueous solution). 3, the auxiliary devices 2 that support the power generation in the power generation unit 5, and the electric power generated by the power generation unit 5 are controlled by the external power source (for example, a lithium ion battery) and the power extracted from the power generation unit 5. A power adjustment unit 10.
 補器類2は、燃料タンク3から燃料を発電部5に供給する燃料供給部4と、空気を発電部5に供給する空気供給部6と、発電部5から取り出される負荷電流を調整する負荷調整部7と、セル積層構造50の各セルの出力電圧を監視するセル電圧監視部8と、外部電力供給部13と、補器類2内の各部を制御するための制御部9とを備える。 The auxiliary devices 2 include a fuel supply unit 4 that supplies fuel from the fuel tank 3 to the power generation unit 5, an air supply unit 6 that supplies air to the power generation unit 5, and a load that adjusts the load current extracted from the power generation unit 5. The adjustment unit 7, the cell voltage monitoring unit 8 that monitors the output voltage of each cell of the cell stack structure 50, the external power supply unit 13, and the control unit 9 for controlling each unit in the auxiliary devices 2 are provided. .
 制御部9は、上記補器類2の各部の状態を検知する検知処理部9aと、検知された情報に応じて各部を制御する為の制御情報が予め格納されたデータベース9bとを備える。制御部9は、発電部5及び補器類2の各部から必要な情報を検知し、検知した情報の処理または演算を行う。さらに、制御部9はこの処理または演算の結果に応じて、燃料供給部4、発電部5、負荷調整部7、外部電力供給部13、及び空気供給部6に制御信号を与える。後に説明するように、データベース9bは、セルから測定される値に基づき、補器類2の各部をどのように制御するかについて予め記述した各種データベースを含んでいる。 The control unit 9 includes a detection processing unit 9a that detects the state of each unit of the auxiliary devices 2, and a database 9b in which control information for controlling each unit according to the detected information is stored in advance. The control unit 9 detects necessary information from each unit of the power generation unit 5 and the auxiliary devices 2 and processes or calculates the detected information. Further, the control unit 9 gives control signals to the fuel supply unit 4, the power generation unit 5, the load adjustment unit 7, the external power supply unit 13, and the air supply unit 6 according to the result of this processing or calculation. As will be described later, the database 9b includes various databases described in advance on how to control each part of the auxiliary equipment 2 based on the values measured from the cells.
 発電部5は、負荷調整部7および電力調整部10を介して負荷電力11に接続される。負荷電力11は、例えば、この燃料電池システム101で発生される電力で駆動される電子機器に相当する。電力調整部10は、発電部5で発生される電力を負荷電力11に供給している。電力の調整は、負荷調整部7により負荷電流の調整で行われる。電力調整部10は、負荷電力11で必要な電力に対し、発電部5で発電される電力が不足する場合、図には記載していないが、外部電源(例えば二次電池やコンデンサ)などから不足分の電力を補う。電力調整部10は、発電部5で発生される電力の負荷電力11への供給をオン或いはオフするスイッチング回路を含んでいる。電力調整部10は、オン状態で、負荷電力11に接続され閉回路状態となり、オフ状態で負荷電力11から切断されてその出力側が開回路状態となるように構成されている。 The power generation unit 5 is connected to the load power 11 through the load adjustment unit 7 and the power adjustment unit 10. The load power 11 corresponds to, for example, an electronic device driven by power generated by the fuel cell system 101. The power adjustment unit 10 supplies the power generated by the power generation unit 5 to the load power 11. The power is adjusted by adjusting the load current by the load adjusting unit 7. When the power generated by the power generation unit 5 is insufficient with respect to the power required for the load power 11, the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a secondary battery or a capacitor). Make up for the power shortage. The power adjustment unit 10 includes a switching circuit that turns on or off the supply of power generated by the power generation unit 5 to the load power 11. The power adjustment unit 10 is configured to be connected to the load power 11 in the on state to be in a closed circuit state, disconnected from the load power 11 in the off state, and to be in an open circuit state on the output side.
 発電部5と補器類2との間は、流体配管系で接続されている。この流体配管系においては、燃料タンク3と燃料供給部4とは、燃料供給ラインL1で接続される。燃料供給部4と発電部5とは、燃料供給ラインL2で接続されている。燃料タンク3内の燃料は、燃料供給部4での調整により発電部5のアノード極に供給される。また、空気供給部6と発電部5とは空気供給ラインL3で接続され、空気供給部6での調整により発電部5のカソード極に空気が送り込まれる。 The power generation unit 5 and the auxiliary devices 2 are connected by a fluid piping system. In this fluid piping system, the fuel tank 3 and the fuel supply unit 4 are connected by a fuel supply line L1. The fuel supply unit 4 and the power generation unit 5 are connected by a fuel supply line L2. The fuel in the fuel tank 3 is supplied to the anode electrode of the power generation unit 5 by adjustment in the fuel supply unit 4. The air supply unit 6 and the power generation unit 5 are connected by an air supply line L <b> 3, and air is sent to the cathode electrode of the power generation unit 5 by adjustment in the air supply unit 6.
 なお、上記図9に示すシステムでは、燃料タンク3内の燃料が発電部5に直接供給される方式となっているが、この方式に限らず、燃料タンク3内の燃料を、希釈した燃料を蓄える混合タンク内に供給し、発電部5での発電で残った燃料と混合させる方式にしても良い。また、空気供給部6に例えばファンを用いた場合、流体配管L3は空気導入経路とすることができる。また、ブリージング方式の場合、空気供給部6は不要となる。 In the system shown in FIG. 9, the fuel in the fuel tank 3 is directly supplied to the power generation unit 5. However, the present invention is not limited to this, and the fuel in the fuel tank 3 is diluted with fuel. You may make it the system which mixes with the fuel remaining in the electric power generation in the power generation part 5 by supplying in the mixing tank to store. Moreover, when a fan is used for the air supply part 6, the fluid piping L3 can be used as an air introduction path | route. In the case of the breathing method, the air supply unit 6 is not necessary.
 発電部5と補器類2との間は、信号及び電流配線系で接続されている。制御部9は、信号ラインE1を介して燃料供給部4に接続される。発電部5と制御部9とは、信号ラインE2で接続される。負荷調整部7と制御部9とは信号ラインE3で接続される。セル電圧監視部8と制御部9とは、信号ラインE4で接続されている。空気供給部6と制御部9とは、信号ラインE5で接続されている。発電部5と負荷調整部7とは電流配線ラインE61で接続され、負荷調整部7と電力調整部10とは電流配線ラインE62で接続される。さらに、外部電力供給部13は、発電部5と電流供給ラインE7で接続され、制御部9と信号ラインE8で接続される。 The power generation unit 5 and the auxiliary devices 2 are connected by a signal and current wiring system. The control unit 9 is connected to the fuel supply unit 4 via the signal line E1. The power generation unit 5 and the control unit 9 are connected by a signal line E2. The load adjustment unit 7 and the control unit 9 are connected by a signal line E3. The cell voltage monitoring unit 8 and the control unit 9 are connected by a signal line E4. The air supply unit 6 and the control unit 9 are connected by a signal line E5. The power generation unit 5 and the load adjustment unit 7 are connected by a current wiring line E61, and the load adjustment unit 7 and the power adjustment unit 10 are connected by a current wiring line E62. Furthermore, the external power supply unit 13 is connected to the power generation unit 5 through a current supply line E7, and is connected to the control unit 9 through a signal line E8.
 負荷調整部7は、信号ラインE3を介して発電部5に負荷を与える。この負荷調整部7で検出された負荷電流の値は、負荷電流情報として信号ラインE3を介して制御部9に送られる。また、制御部9で設定された負荷制御信号は、信号ラインE3を介して制御部9から負荷調整部7に与えられる。従って、負荷調整部7は、負荷制御信号に従って定められた設定負荷に相当する負荷を発電部5に接続し、この設定負荷に流れる負荷電流が検出されて負荷電流情報として制御部9に送られる。 
 なお、負荷調整部7に電力調整部10の役割を持たせることで、電力調整部10を省略させることも可能である。この場合、負荷電力11は負荷調整部7に接続される。
The load adjustment unit 7 applies a load to the power generation unit 5 through the signal line E3. The value of the load current detected by the load adjustment unit 7 is sent to the control unit 9 via the signal line E3 as load current information. The load control signal set by the control unit 9 is given from the control unit 9 to the load adjustment unit 7 via the signal line E3. Therefore, the load adjustment unit 7 connects a load corresponding to the set load determined according to the load control signal to the power generation unit 5, and the load current flowing through the set load is detected and sent to the control unit 9 as load current information. .
Note that the power adjustment unit 10 can be omitted by providing the load adjustment unit 7 with the role of the power adjustment unit 10. In this case, the load power 11 is connected to the load adjustment unit 7.
 セル電圧監視部8は、予め定められた少なくとも1つの特定セル51で発生される電圧を検出するセル電圧検出回路(図示せず)を含み、信号ラインE4を介して発電部5内のセル積層構造50の上記特定セル51に接続される。ここで、特定セル51には、セル積層構造50に含まれるセルのうち、出力および温度が平均的なセルを選択することが好ましい。ここで平均的なセルとは、外部環境因子の影響を受けにくいセルをいう。例えば、セル積層方向で中央領域にあるセル、もしくは、セル温度分布を測定しその温度が平均に最も近いセルを平均的なセルとして採用することができる。特定セル51としてこのような平均的なセルを採用することにより、外部環境が変化しても、セルの特性を安定的に得ることができるという効果が得られる。この特定セル51で発生される電圧がセル電圧検出回路で計測され、計測されたセル電圧値が電圧情報として制御部9に送られる。ここで、上記特定セル51として、セル積層構造50に含まれるセルのうち1枚を選択する他、セル積層構造50のうち複数枚のセルを選択し、それらの電圧平均を計測し、電圧情報として制御部9に送るようにしても良い。 The cell voltage monitoring unit 8 includes a cell voltage detection circuit (not shown) that detects a voltage generated in at least one specific cell 51 determined in advance, and the cell stack in the power generation unit 5 via the signal line E4. Connected to the specific cell 51 of the structure 50. Here, as the specific cell 51, it is preferable to select a cell having an average output and temperature among the cells included in the cell stacked structure 50. Here, the average cell means a cell that is not easily influenced by external environmental factors. For example, a cell in the central region in the cell stacking direction, or a cell whose temperature distribution is measured and whose temperature is closest to the average can be adopted as the average cell. By adopting such an average cell as the specific cell 51, it is possible to stably obtain the cell characteristics even when the external environment changes. The voltage generated in the specific cell 51 is measured by the cell voltage detection circuit, and the measured cell voltage value is sent to the control unit 9 as voltage information. Here, as the specific cell 51, in addition to selecting one of the cells included in the cell stack structure 50, a plurality of cells are selected from the cell stack structure 50, and the voltage average is measured to obtain voltage information. May be sent to the control unit 9.
 そして、上記セル電圧監視部8が接続された特定セル51に対し、外部電力供給部13が電気的に並列する形で電流供給ラインE7を介して接続される。外部電力供給部13は予め定められた大きさの電流を特定セル51に与える。 Then, the external power supply unit 13 is connected to the specific cell 51 to which the cell voltage monitoring unit 8 is connected via the current supply line E7 in an electrically parallel manner. The external power supply unit 13 gives a predetermined current to the specific cell 51.
 発電部5は、図10(a)及び10(b)に示されるようなセル積層構造50を備えている。図10(a)に示すように、セル積層構造50は、アノード集電板12とカソード集電板14との間に積層された複数のセルを備え、各セルがアノード集電板12及びカソード集電板14に電気的に直列に接続されている。アノード集電板12とカソード集電板14との間に積層されたセルは、一対の締め付け板18A、18B間に配置され、この締め付け板18A、18B間に固定具19A、19Bによって締め付け固定されている。アノード集電板12及びカソード集電板14は、それぞれ負荷調整部7に接続され、セル積層構造50で生成された電流がカソード集電板14で収集されて負荷調整部7に供給される。 The power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 10 (a) and 10 (b). As shown in FIG. 10A, the cell stack structure 50 includes a plurality of cells stacked between the anode current collector plate 12 and the cathode current collector plate 14, and each cell has the anode current collector plate 12 and the cathode. The current collector 14 is electrically connected in series. The cells stacked between the anode current collector plate 12 and the cathode current collector plate 14 are disposed between a pair of clamping plates 18A and 18B, and are clamped and fixed by fixtures 19A and 19B between the clamping plates 18A and 18B. ing. The anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
 また、図10(b)は、上記特定セル51の構成を示したものである。なお、特定セル51以外のセルは、膜電極接合体(MEA:Membrane Electrode Assembly)20と、アノード流路板22と、カソード流路板24と、ガスケット26とを備える。 FIG. 10B shows the configuration of the specific cell 51. The cells other than the specific cell 51 include a membrane electrode assembly (MEA) 20, an anode flow channel plate 22, a cathode flow channel plate 24, and a gasket 26.
 MEA20の一方の側には、アノード流路板22が設けられ、他方の側にカソード流路板24が設けられている。MEA20は、アノード流路板22とカソード流路板24とに挟まれ、アノード流路板22とカソード流路板24とに接続されたガスケット26で密閉された構造に形成されている。アノード流路板22とカソード流路板24は、このガスケット26で絶縁され、しかも、このガスケット26によってMEA20から外部への燃料及び空気のリークが防止される。MEA20は、電解質膜の一方の側にアノード極が形成され、電解質膜の他方の側にカソード極が形成される。 The anode channel plate 22 is provided on one side of the MEA 20, and the cathode channel plate 24 is provided on the other side. The MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24. The anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26. The MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
 特定セル51には、当該特定セル51の電圧を外部から監視する為にアノード流路板22及びカソード流路板24に出力端子22A,24Aが設けられている。この出力端子22A,24Aがセル電圧信号ラインE4を介してセル電圧監視部8の電圧検出回路に接続され、セル電圧監視部8により特定セル51の電圧がモニター(監視)されている。セル電圧監視部8からは、特定セル51で発生される電圧に相当する電圧値を表す電圧情報が信号ラインE4を介して制御部9の検知処理部9aに供給される。 The specific cell 51 is provided with output terminals 22A and 24A on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the voltage of the specific cell 51 from the outside. The output terminals 22A and 24A are connected to the voltage detection circuit of the cell voltage monitoring unit 8 via the cell voltage signal line E4, and the voltage of the specific cell 51 is monitored (monitored) by the cell voltage monitoring unit 8. From the cell voltage monitoring unit 8, voltage information indicating a voltage value corresponding to the voltage generated in the specific cell 51 is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
 さらに、上記特定セル51には、アノード流路板22及びカソード流路板24に入力端子22B,24Bが設けられている。この入力端子22B,24Bは、電流供給ラインE7を介して外部電力供給部13の電流回路に電気的に並列に接続される。外部電力供給部13は、上記特定セル51に対して電力を供給する信号を、制御部9から信号ラインE8を介して受け取る。 Furthermore, the specific cell 51 is provided with input terminals 22B and 24B on the anode flow path plate 22 and the cathode flow path plate 24, respectively. The input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7. The external power supply unit 13 receives a signal for supplying power to the specific cell 51 from the control unit 9 via the signal line E8.
 アノード流路板22は、MEA20のアノード極側に面し、メタノールおよびメタノール水溶液を供給する。カソード流路板24は、MEA20のカソード極側に面し、空気を供給する。アノード流路板22、カソード流路板24ともに、上記目的を果たす限り、任意の形状をとることができる。 The anode flow path plate 22 faces the anode electrode side of the MEA 20 and supplies methanol and a methanol aqueous solution. The cathode flow path plate 24 faces the cathode side of the MEA 20 and supplies air. Both the anode flow path plate 22 and the cathode flow path plate 24 can take any shape as long as the above purpose is achieved.
 次に、図9に示される燃料電池システム101の動作について説明する。
 発電を始めるにあたり、燃料供給部4は、制御部9による制御の下で、燃料タンク3から所定の濃度のメタノール水溶液(燃料)を流路L1、流路L2を介してアノード流路板22に供給する。また、空気供給部6は、制御部9による制御の下で、空気を流路L3を介してカソード流路板24に供給する。
Next, the operation of the fuel cell system 101 shown in FIG. 9 will be described.
When starting power generation, the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9. Supply. The air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9.
 負荷調整部7によりセル積層構造50に接続される負荷が印加されると、アノード極、即ち、MEA20のアノード側では、式(1)に示したメタノール酸化反応が起こる。カソード極、即ち、MEA20のカソード側では、式(2)で示した酸素還元反応が起こる。電子(e-)は負荷調整部7へ流れる。 When a load connected to the cell stack structure 50 is applied by the load adjusting unit 7, the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20. At the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs. The electrons (e−) flow to the load adjusting unit 7.
 上記発電時、メタノールが固体高分子膜を通してカソード極へと流れるという問題がある(メタノールクロスオーバー)。メタノールクロスオーバー値の増加、或いはこれの極端な低下は発電効率および燃料利用効率を下げる原因となるため、メタノールクロスオーバー値を所定の範囲内に制御する処理を行う。 During the above power generation, there is a problem that methanol flows to the cathode electrode through the solid polymer membrane (methanol crossover). Since an increase in the methanol crossover value or an extreme decrease in the methanol causes a decrease in power generation efficiency and fuel utilization efficiency, processing for controlling the methanol crossover value within a predetermined range is performed.
 図11を参照して、メタノールクロスオーバーを推定し、その値が所定の範囲におさまるよう、発電部5へ供給するメタノール量を制御する流れについて説明する。 Referring to FIG. 11, the flow of estimating the methanol crossover and controlling the amount of methanol supplied to the power generation unit 5 so that the value falls within a predetermined range will be described.
 図11に示すグラフにおける、時点T=T以前の期間においては、負荷調整部7で第1の負荷が選択されてセル積層構造50から負荷電流I=I0が取り出され、発電が行われている。この期間では、外部電力供給部13から特定セル51に電力(電流)の供給は行われていない。 In the graph shown in FIG. 11, in the period before time T = T 0 , the load adjustment unit 7 selects the first load, the load current I = I 0 is extracted from the cell stack structure 50, and power generation is performed. Yes. During this period, power (current) is not supplied from the external power supply unit 13 to the specific cell 51.
 次に、時点T=Tにおいて、特定セル51に電気的に並列に接続された外部電力供給部13から特定セル51に所定の電流(I2)となる電力が供給される。よって、特定セル51から取り出されるセル電流Iは、負荷調整部7が発電部5全体から取り出す電流が一定(I0)の下で減少し、特定セル51から取り出されるセル電流はI1=I0-I2となる。 Next, at a time point T = T 0 , power that is a predetermined current (I2) is supplied to the specific cell 51 from the external power supply unit 13 that is electrically connected to the specific cell 51 in parallel. Therefore, the cell current I taken out from the specific cell 51 decreases when the current taken out from the entire power generation unit 5 by the load adjusting unit 7 is constant (I0), and the cell current taken out from the specific cell 51 is I1 = I0−I2. It becomes.
 特定セル51はセル電流I1にて時点T=Tまで運転され、時点T=T1において、外部電力供給部13からの電力(電流)の供給を停止する。よって、時点T=T1において、特定セル51から取り出される電流IはI1からI0に増加する。 Particular cell 51 is operated at a cell current I1 to the time T = T 1, at time T = T 1, to stop the supply of electric power (current) from an external power supply unit 13. Therefore, at time T = T 1 , the current I extracted from the specific cell 51 increases from I1 to I0.
 この負荷電流I1からI0への負荷変動に伴い、第2の負荷に切り替えた直後の時点T=Tでは、セル電圧Vは、V=V2で最小電圧値(電圧の極小値)となり、その後、時点T=T3では、V=V3で最大電圧値(電圧の極大値)をとり、その後一定の電圧に収束する。 With this load current I1 to the load change on I0, the time T = T 2 immediately after switching to the second load, the cell voltage V, the minimum voltage value V = V 2 (minimum value of the voltage), and Thereafter, at time T = T 3 , the maximum voltage value (maximum voltage value) is taken at V = V 3 and then converges to a constant voltage.
 ここで、最小電圧値Vと最大電圧値Vとの間の電圧差を第1の電圧差ΔV3(ΔV3=V3―V)と定義する。また、最小電圧値Vと一定時間(例えばT=T)経過後の定常電圧Vとの間の電圧差を第2の電圧差ΔV(ΔV=V―V)と定義する。この第1の電圧差ΔV及び第2の電圧差ΔVを用いて特定セル51のメタノールクロスオーバーを推定する。 Here, a voltage difference between the minimum voltage value V 2 and the maximum voltage value V 3 is defined as a first voltage difference ΔV 3 (ΔV 3 = V 3 −V 2 ). Further, the voltage difference between the minimum voltage value V 2 and the steady voltage V 4 after elapse of a certain time (for example, T = T 4 ) is defined as a second voltage difference ΔV 4 (ΔV 4 = V 4 −V 2 ). To do. The methanol crossover of the specific cell 51 is estimated using the first voltage difference ΔV 3 and the second voltage difference ΔV 4 .
 以下、セル電圧監視部8で特定セル51のセル電圧がモニターされ、最小電圧値Vと最小電圧後に出現する出力応値(出力電圧の応答値)とする最大電圧値Vと間の第1の電圧差ΔVが検知処理部9aで求められ、この第1の電圧差ΔVに基づいてメタノールクロスオーバーの推定、制御する処理の基本的原理について説明する。なお、以下のメタノールクロスオーバーの推定、制御方法は第2の電圧差ΔVに基づいても同様である。 Hereinafter, a cell voltage of a particular cell 51 in the cell voltage monitor unit 8 is monitored, first between the maximum voltage value V 3 of the output応値(response value of the output voltage) appearing after the minimum voltage value V 2 and the minimum voltage 1 of the voltage difference [Delta] V 3 is determined by the detection processing section 9a, the estimation of the methanol crossover on the basis of the first voltage difference [Delta] V 3, the basic principle of the process for controlling explaining. Note that the following methanol crossover estimation and control method is the same based on the second voltage difference ΔV 4 .
 図12は、第4の実施形態におけるシステムの処理手順を示したものである。この図12を参照して、制御部9の制御動作について説明する。 FIG. 12 shows a processing procedure of the system in the fourth embodiment. The control operation of the control unit 9 will be described with reference to FIG.
 制御部9において制御動作が開始されると(ステップS101)、検知処理部9aは外部電力供給部13に対し、所定の電力(電流I2)を供給する負荷変動処理の指示を与える(ステップS102)。この指示にしたがって、外部電力供給部13は、特定セル51に対し、電流(I2)を供給する(ステップS103)。そして一定時間経過後、外部電力供給部13から電力の供給を停止する。この時、同時に、セル電圧監視部8は、セル電圧監視部8内の電圧検出回路で特定セル51の電圧値を時刻と共に計測する(ステップS104)。これにより、検知処理部9aには、特定セル51に時刻と共に変動される電圧情報がセル電圧監視部8から入力される。 When the control operation is started in the control unit 9 (step S101), the detection processing unit 9a instructs the external power supply unit 13 to perform load fluctuation processing for supplying predetermined power (current I2) (step S102). . In accordance with this instruction, the external power supply unit 13 supplies a current (I2) to the specific cell 51 (step S103). Then, after a certain time has elapsed, the supply of power from the external power supply unit 13 is stopped. At the same time, the cell voltage monitoring unit 8 measures the voltage value of the specific cell 51 with the time by the voltage detection circuit in the cell voltage monitoring unit 8 (step S104). As a result, voltage information that varies with time is input from the cell voltage monitoring unit 8 to the specific cell 51 to the detection processing unit 9a.
 検知処理部9aは、入力されてくる電圧情報から最小電圧値Vとその後に現れる最大電圧値Vを検出し、上記検出された最小電圧値Vと最大電圧値Vとの差を第1の電圧差ΔVとして検出する(ステップS105)。 Detection processing unit 9a detects the maximum voltage value V 3 appearing thereafter from the voltage information that is input to the minimum voltage value V 2, the difference between the minimum voltage value V 2 and the maximum voltage value V 3, which is the detected detecting a first voltage difference [Delta] V 3 (step S105).
 上記得られた第1の電圧差ΔV3からメタノールクロスオーバー値を推定するには、データベース9b内に蓄えられたクロスオーバー換算データベース9b-11を用いる(ステップS106)。クロスオーバー換算データベース9b-11には、第1の電圧差ΔVをメタノールクロスオーバー値に換算するための情報が予め記憶されている。検知処理部9aは、メタノールクロスオーバー値を推定した後、この値に基づいて燃料供給量を制御する指示を行う。ここで、推定したメタノールクロスオーバー値と燃料供給量との関係は、データベース9bに予め記憶されたクロスオーバー供給量制御データベース9b-12を用いる(ステップS107)。このクロスオーバー供給量制御データベース9b-12をもとに、制御部9は燃料供給部4に供給量制御信号を送り、燃料供給部4において燃料供給量の制御が行われる(ステップS108)。 In order to estimate the methanol crossover value from the obtained first voltage difference ΔV 3, the crossover conversion database 9b-11 stored in the database 9b is used (step S106). Crossover terms database 9b-11 is information for converting a first voltage difference [Delta] V 3 in methanol crossover values are stored in advance. After estimating the methanol crossover value, the detection processing unit 9a gives an instruction to control the fuel supply amount based on this value. Here, as the relationship between the estimated methanol crossover value and the fuel supply amount, the crossover supply amount control database 9b-12 stored in advance in the database 9b is used (step S107). Based on the crossover supply amount control database 9b-12, the control unit 9 sends a supply amount control signal to the fuel supply unit 4, and the fuel supply unit 4 controls the fuel supply amount (step S108).
 以上述べたように、上記第4の実施形態では、外部電力供給部13からの電力供給によって特定セル51のみに対して負荷変動を引き起こし、メタノールクロスオーバーを推定する。したがって、発電部5全体の負荷を変動させる手法と比較し、発電部5全体の発電量を低下させる必要がなく、長期間にわたり発電効率を高めることが可能となる。また、負荷変動に伴う発電部5の非定常的な温度変動は、メタノールクロスオーバーを推定して燃料供給量を制御する過程での誤差を生じさせる原因となるが、本実施形態では、発電量が変化しない、すなわち発熱量が変化しない。このことにより、発電部5の温度変動が抑制され、上記影響を抑えることが可能となる。 As described above, in the fourth embodiment, the load fluctuation is caused only to the specific cell 51 due to the power supply from the external power supply unit 13, and the methanol crossover is estimated. Therefore, compared with the method of changing the load of the entire power generation unit 5, it is not necessary to reduce the power generation amount of the entire power generation unit 5, and the power generation efficiency can be increased over a long period of time. In addition, the unsteady temperature fluctuation of the power generation unit 5 due to the load fluctuation causes an error in the process of estimating the methanol crossover and controlling the fuel supply amount. Does not change, that is, the calorific value does not change. As a result, temperature fluctuations of the power generation unit 5 are suppressed, and the above influence can be suppressed.
 (第5の実施形態) 
 第4の実施形態では、発電部5を構成するセルのうちの特定セル51にのみ外部電力供給部13を電気的に並列に接続し、外部電力供給部13から特定セル51に供給する電力を制御することでメタノールクロスオーバーを推定することを特徴とした。ここで、外部電力供給部13は特定セル51に所定の時間、一定の電力を供給する目的を果たす限り、他の補器と併用することが可能である。
(Fifth embodiment)
In the fourth embodiment, the external power supply unit 13 is electrically connected in parallel only to the specific cell 51 of the cells constituting the power generation unit 5, and the power supplied from the external power supply unit 13 to the specific cell 51 is supplied. It was characterized by estimating methanol crossover by controlling. Here, the external power supply unit 13 can be used in combination with other auxiliary devices as long as it serves the purpose of supplying constant power to the specific cell 51 for a predetermined time.
 図13は、本発明の第5の実施形態に係る燃料電池システム102の構成例を示している。この燃料電池システム102は、上記図9に示した燃料電池システム1から外部電力供給部13を取り除いた構成である。また、電力調整部10と発電部5に含まれる特定セル51は、ラインE70を通して電気的に接続される。さらに、電力調整部10と制御部9はラインE80を通して接続されている。また、制御部9における検知処理部9aの動作が異なる。その他の構成は、上記図9と同様であるため、上記図9と同一の構成については同一の符号を付して詳しい説明は省略する。 FIG. 13 shows a configuration example of the fuel cell system 102 according to the fifth embodiment of the present invention. The fuel cell system 102 has a configuration in which the external power supply unit 13 is removed from the fuel cell system 1 shown in FIG. The specific cell 51 included in the power adjustment unit 10 and the power generation unit 5 is electrically connected through the line E70. Further, the power adjustment unit 10 and the control unit 9 are connected through a line E80. Further, the operation of the detection processing unit 9a in the control unit 9 is different. Since other configurations are the same as those in FIG. 9, the same components as those in FIG. 9 are denoted by the same reference numerals and detailed description thereof is omitted.
 電力調整部10は、負荷電力11で必要な電力に対し、発電部5で発電される電力が不足する場合、図には記載していないが、外部電源(例えばリチウムイオンバッテリーやキャパシタ)などから不足分の電力を補う調整機能を有するため、図9に示した外部電力供給部13の機能を電力調整部10に持たせることで、システム構成を簡略化することが可能となる。なお、図13の燃料電池システム102の運転方法は、図9の外部電力供給部13の機能を電力調整部10で実行すれば、第4の実施形態と同様になるため、ここでは説明を省略する。 When the power generated by the power generation unit 5 is insufficient with respect to the power required for the load power 11, the power adjustment unit 10 is not shown in the figure, but from an external power source (for example, a lithium ion battery or a capacitor). Since the power adjustment unit 10 has the function of the external power supply unit 13 illustrated in FIG. 9 because the power adjustment unit 10 has an adjustment function that compensates for the shortage of power, the system configuration can be simplified. The operation method of the fuel cell system 102 of FIG. 13 is the same as that of the fourth embodiment if the function of the external power supply unit 13 of FIG. To do.
 なお、上記第4及び第5の実施形態は、燃料循環部によって燃料タンク3内の燃料を、希釈した燃料を蓄える混合タンク内に供給し、発電部5での発電で残った燃料と混合させる方式にも適用できる。 In the fourth and fifth embodiments, the fuel in the fuel tank 3 is supplied by the fuel circulation unit into the mixing tank that stores the diluted fuel, and mixed with the fuel remaining in the power generation in the power generation unit 5. It can also be applied to the method.
 (実施例1) 
 実施例1では、上記第4の実施形態の手法を用い、最小電圧値と出力応値(最大電圧値)との電圧差Vを評価値として得ることを試みた。
Example 1
In Example 1, an attempt was made to obtain the voltage difference V 3 between the minimum voltage value and the output response value (maximum voltage value) as an evaluation value by using the method of the fourth embodiment.
 発電部5はセルを直列に20組積層したものを使用した。発電部5に含まれるセルのうち、アノード極側から数えて10組目のセルを予め定められた1組の特定セル51として、この特定セル51のみに電圧監視部8と外部電力供給部13を接続し、特定セル51のセル電圧の監視と、特定セル51への電力供給を可能とした。残りの19枚のセルは電圧監視部8と外部電力供給部13との接続は行っていない。発電部5への空気供給量は、空気ポンプによって行い、測定中は空気供給流量を固定とした。また、発電部5への燃料供給は燃料ポンプによって行い、所定の燃料濃度、燃料流量で固定した。発電部5の温度は別途温度調整手段で一定になるよう制御を行った。 The power generation section 5 used 20 cells stacked in series. Among the cells included in the power generation unit 5, the tenth set of cells counted from the anode electrode side is set as a predetermined set of specific cells 51, and only the specific cell 51 includes the voltage monitoring unit 8 and the external power supply unit 13. Is connected to enable monitoring of the cell voltage of the specific cell 51 and power supply to the specific cell 51. The remaining 19 cells are not connected to the voltage monitoring unit 8 and the external power supply unit 13. The air supply amount to the power generation unit 5 was performed by an air pump, and the air supply flow rate was fixed during the measurement. The fuel supply to the power generation unit 5 was performed by a fuel pump and fixed at a predetermined fuel concentration and fuel flow rate. Control was performed so that the temperature of the power generation unit 5 was kept constant by a separate temperature adjusting means.
 図14Aは、負荷電流と外部電力供給部13から特定セル51へ供給される電流とを示したグラフで、図14Bは、発電部5の出力電圧と特定セル1のセル電圧とを示したグラフである。 FIG. 14A is a graph showing the load current and the current supplied from the external power supply unit 13 to the specific cell 51, and FIG. 14B is a graph showing the output voltage of the power generation unit 5 and the cell voltage of the specific cell 1. It is.
 上記運転条件にて、図14Aに示すように、発電部5から取り出す負荷電流は、I0=1.07Aと固定し、外部電力供給部13が接続された特定セル51には、外部電力供給部13から、T=TでI2=0.95A固定の電流が35秒間だけ供給されるようにし、35秒後のT=Tに外部電力供給部13からの電流供給を終了し、負荷変動を与える運転を行った。そして、T=Tにて観測される最小電圧と、T=T3にて観測される最大電圧との電圧差Vを求めた。 Under the above operating conditions, as shown in FIG. 14A, the load current taken out from the power generation unit 5 is fixed at I0 = 1.07 A, and the specific cell 51 to which the external power supply unit 13 is connected has an external power supply unit. 13, a current fixed at I2 = 0.95 A at T = T 0 is supplied only for 35 seconds, current supply from the external power supply unit 13 is terminated at T = T 1 after 35 seconds, and the load changes Drove driving. Then, it was determined and the minimum voltage observed at T = T 2, the voltage difference V 3 between the maximum voltage observed at T = T 3.
 (比較例1) 
 実施例1と比較するために、比較例1は、発電部5全体の負荷を変動させるようにしたものである。図15Aは、負荷電流を示したグラフで、図15Bは、発電部5の出力電圧と各セルのセル電圧とを示したグラフである。
(Comparative Example 1)
In order to compare with the first embodiment, the first comparative example varies the load of the entire power generation unit 5. FIG. 15A is a graph showing the load current, and FIG. 15B is a graph showing the output voltage of the power generation unit 5 and the cell voltage of each cell.
 図15Aに示すように、発電部5から取り出す負荷電流を、T=TでI0=1.07AからI0=0.12Aに切り替え、35秒間保持後、T=Tにて再びI0=1.07Aへ負荷変動を与える運転を行った。そして、T=Tにて観測される最小電圧と、T=T3にて観測される最大電圧との差を求めた。この結果を図15A、15Bに示す。 As shown in FIG. 15A, the load current extracted from the power generation unit 5 is switched from I0 = 1.07 A to I0 = 0.12 A at T = T 0 , held for 35 seconds, and then again at T = T 1 I0 = 1 The operation which gives load change to 0.07A was performed. Then, the difference between the minimum voltage observed at T = T 2 and the maximum voltage observed at T = T 3 was obtained. The results are shown in FIGS. 15A and 15B.
 図14A、14Bでは、発電部5から取り出す負荷電流I=I0で運転するため、特定セル51以外の19個のセルはI=I0での発電が可能となり、T=TからT=Tまでの期間で発電部5の発電出力を維持することが可能となった。一方、図15A、15Bでは、T=TからT=Tまでの期間は、負荷電流を0.12Aに低下させるため、発電部5から取り出すことが可能な電力が低下してしまっている。 Figure 14A, the 14B, for driving the load current I = I0 taken out from power generating unit 5, the 19 pieces of cells other than the specific cell 51 enables power generation by the I = I0, T = from T 0 T = T 1 It became possible to maintain the power generation output of the power generation unit 5 in the period up to. On the other hand, in FIGS. 15A and 15B, the load current is reduced to 0.12 A during the period from T = T 0 to T = T 1, so that the power that can be taken out from the power generation unit 5 has decreased. .
 実施例1の手法で求めた電圧差Vは0.043Vであり、比較例1の手法で求めた電圧差Vも0.043Vであり、両者で電圧差Vに差はなかった。よって、実施例1の手法によれば、発電部5の発電出力を断続的に低下させることなく電圧差を測定することが可能となり、連続的に長時間に亘って高出力で安定した発電が可能となることを確認することができた。 The voltage difference V 3 obtained in the method of Example 1 was 0.043V, the voltage difference V 3 obtained in Comparative Example 1 approach is also 0.043V, there was no difference in the voltage difference V 3 in both. Therefore, according to the method of the first embodiment, it is possible to measure a voltage difference without intermittently reducing the power generation output of the power generation unit 5, and a stable power generation with a high output over a long time can be achieved. I was able to confirm that it would be possible.
 (第6の実施形態) 
 本発明の第6の実施形態は、発電部5に積層されるセルのうち端部などの特定セルに外部電力供給部13を接続し、特定セルの温度に応じて外部電力供給部13を操作するようにしたものである。
(Sixth embodiment)
In the sixth embodiment of the present invention, the external power supply unit 13 is connected to a specific cell such as an end of the cells stacked on the power generation unit 5 and the external power supply unit 13 is operated according to the temperature of the specific cell. It is what you do.
 図16は、本発明の第6の実施形態に係る燃料電池システム103の構成例を示している。この燃料電池システム103は、上記図9に示した燃料電池システム101のセル電圧監視部8の代わりにセル温度監視部81を備えたものである。また、制御部9における検知処理部9aの動作及びデータベース9bに格納されるデータ項目が異なる。その他の構成は、上記図9と同様であるため、同一の構成については同一の符号を付して詳しい説明は省略する。 FIG. 16 shows a configuration example of the fuel cell system 103 according to the sixth embodiment of the present invention. The fuel cell system 103 includes a cell temperature monitoring unit 81 instead of the cell voltage monitoring unit 8 of the fuel cell system 101 shown in FIG. Further, the operation of the detection processing unit 9a in the control unit 9 and the data items stored in the database 9b are different. Since other configurations are the same as those in FIG. 9, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
 セル温度監視部81は、発電部5内のセル積層構造50に含まれるセルのうち予め定められた少なくとも1つのセルの温度を検出するセル温度検出回路(図示せず)を含み、信号ラインE40を介して上記セルに接続される。上記セルの温度がセル温度検出回路で計測され、セル温度情報として制御部9に送られる。ここでは、セル温度監視部81が接続されるセルは、セル積層構造50の中で最も温度が低下する端部のセルとする。以下、セル積層構造50の両端の2つのセルを特定セル511とし、セル温度監視部81を接続した発電部5の構成について説明する。 The cell temperature monitoring unit 81 includes a cell temperature detection circuit (not shown) that detects the temperature of at least one predetermined cell among the cells included in the cell stack structure 50 in the power generation unit 5, and the signal line E40. Connected to the cell via The cell temperature is measured by a cell temperature detection circuit and sent to the control unit 9 as cell temperature information. Here, the cell to which the cell temperature monitoring unit 81 is connected is the cell at the end where the temperature is the lowest in the cell stack structure 50. Hereinafter, the configuration of the power generation unit 5 in which two cells at both ends of the cell stack structure 50 are specified cells 511 and the cell temperature monitoring unit 81 is connected will be described.
 発電部5は、図17A、17B及び17Cに示されるようなセル積層構造50を備えている。図17Aに示すように、セル積層構造50は、アノード集電板12とカソード集電板14との間に積層される、特定セル511と、特定セル511の内側に配置される特定セル以外のセル510とを備える。特定セル511及びセル510は、アノード集電板12及びカソード集電板14に電気的に直列に接続されている。特定セル511及びセル510は、一対の締め付け板18A、18B間に配置され、この締め付け板18A、18B間に固定具19A、19Bによって締め付け固定されている。アノード集電板12及びカソード集電板14は、それぞれ負荷調整部7に接続され、セル積層構造50で生成された電流がカソード集電板14で収集されて負荷調整部7に供給される。 The power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 17A, 17B and 17C. As shown in FIG. 17A, the cell stack structure 50 includes a specific cell 511 stacked between the anode current collector plate 12 and the cathode current collector plate 14 and a specific cell arranged inside the specific cell 511. Cell 510. The specific cell 511 and the cell 510 are electrically connected in series to the anode current collector plate 12 and the cathode current collector plate 14. The specific cell 511 and the cell 510 are disposed between the pair of fastening plates 18A and 18B, and are fastened and fixed by the fixtures 19A and 19B between the fastening plates 18A and 18B. The anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
 また、特定セル511及びセル510は、図17B及び図17Cに示されるように膜電極接合体(MEA:Membrane Electrode Assembly)20を備えている。このMEA20の一方の側にアノード流路板22が設けられ、他方の側にカソード流路板24が設けられている。MEA20は、アノード流路板22とカソード流路板24とに挟まれ、アノード流路板22とカソード流路板24とに接続されたガスケット26で密閉された構造に形成されている。アノード流路板22とカソード流路板24は、このガスケット26で絶縁され、しかも、このガスケット26によってMEA20から外部への燃料及び空気のリークが防止される。MEA20は、電解質膜の一方の側にアノード極が形成され、電解質膜の他方の側にカソード極が形成される。 Further, the specific cell 511 and the cell 510 include a membrane electrode assembly (MEA) 20 as shown in FIGS. 17B and 17C. An anode flow path plate 22 is provided on one side of the MEA 20, and a cathode flow path plate 24 is provided on the other side. The MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24. The anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26. The MEA 20 has an anode electrode formed on one side of the electrolyte membrane and a cathode electrode formed on the other side of the electrolyte membrane.
 また、特定セル511には、セル温度を監視するためにアノード流路板22もしくはカソード流路板24にセル温度検知センサー22Cもしくは24Cが設けられている。この温度検知センサーの情報が信号ラインE40を介してセル温度監視部81の温度検出回路に送られる。セル温度監視部81からは、特定セル511の温度情報が信号ラインE40を介して制御部9の検知処理部9aに供給される。温度検知センサーとしては、例えば熱電対を用いることができる。 The specific cell 511 is provided with a cell temperature detection sensor 22C or 24C on the anode flow path plate 22 or the cathode flow path plate 24 in order to monitor the cell temperature. Information of the temperature detection sensor is sent to the temperature detection circuit of the cell temperature monitoring unit 81 via the signal line E40. From the cell temperature monitoring unit 81, the temperature information of the specific cell 511 is supplied to the detection processing unit 9a of the control unit 9 via the signal line E40. For example, a thermocouple can be used as the temperature detection sensor.
 さらに、上記特定セル511には、アノード流路板22及びカソード流路板24に電気入力端子22B,24Bが設けられている。この入力端子22B,24Bが電流供給ラインE7を介して外部電力供給部13の電流回路に電気的に並列に接続される。 Furthermore, in the specific cell 511, electrical input terminals 22B and 24B are provided on the anode channel plate 22 and the cathode channel plate 24, respectively. The input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7.
 アノード流路板22は、MEA20のアノード極側に面し、メタノールおよびメタノール水溶液を供給する。カソード流路板24は、MEA20のカソード極側に面し、空気を供給する。アノード流路板22、カソード流路板24ともに、上記目的を果たす限り、任意の形状をとることができる。 The anode flow path plate 22 faces the anode electrode side of the MEA 20 and supplies methanol and a methanol aqueous solution. The cathode flow path plate 24 faces the cathode side of the MEA 20 and supplies air. Both the anode flow path plate 22 and the cathode flow path plate 24 can take any shape as long as the above purpose is achieved.
 次に、図16に示される燃料電池システム103の動作について説明する。 
 発電を始めるにあたり、燃料供給部4は、制御部9による制御の下で、燃料タンク3から所定の濃度のメタノール水溶液(燃料)を流路L1、流路L2を介してアノード流路板22に供給する。また、空気供給部6は、制御部9による制御の下で、空気を流路L3を介してカソード流路板24に供給する。
Next, the operation of the fuel cell system 103 shown in FIG. 16 will be described.
When starting power generation, the fuel supply unit 4 supplies a methanol aqueous solution (fuel) having a predetermined concentration from the fuel tank 3 to the anode flow path plate 22 via the flow paths L1 and L2 under the control of the control section 9. Supply. The air supply unit 6 supplies air to the cathode flow path plate 24 through the flow path L3 under the control of the control unit 9.
 負荷調整部7によりセル積層構造50に接続される負荷が印加されると、アノード極、即ち、MEA20のアノード側では、式(1)に示したメタノール酸化反応が起こる。カソード極、即ち、MEA20のカソード側では、式(2)で示した酸素還元反応が起こる。電子(e-)は負荷調整部7へ流れる。 When a load connected to the cell stack structure 50 is applied by the load adjusting unit 7, the methanol oxidation reaction represented by the formula (1) occurs on the anode electrode, that is, the anode side of the MEA 20. At the cathode electrode, that is, the cathode side of the MEA 20, the oxygen reduction reaction represented by the formula (2) occurs. The electrons (e−) flow to the load adjusting unit 7.
 上記発電時、発電部の発電効率と発電量を所定の値に保つため、発電部は所定の温度で運転される。この時、外気温度等の影響で発電部の発電セル間には温度分布がつく。特に、外気の影響を最も受けやすい発電部5の端部の特定セル511の温度が最も低下する。この場合、特定セル511のアノード極での燃料拡散性が低下し、この特定セル511よりも温度が高い中央部のセル510と同じ負荷を取り出すことができなくなる問題がある。この場合、端部の特定セル511の温度で取り出すことが可能な負荷にて発電部5を発電すると、他のセル510もその特定セル511の負荷に合わせて低減して発電することになるため、発電部5全体の発電量は低下してしまう。また、特定セル511以外のセルでは、負荷の低減によってメタノールクロスオーバーが増加し、発電効率が低下するという問題がある。 During the above power generation, the power generation unit is operated at a predetermined temperature in order to keep the power generation efficiency and power generation amount of the power generation unit at a predetermined value. At this time, a temperature distribution is generated between the power generation cells of the power generation unit due to the influence of the outside air temperature and the like. In particular, the temperature of the specific cell 511 at the end of the power generation unit 5 that is most susceptible to the influence of outside air is the lowest. In this case, there is a problem that the fuel diffusibility at the anode electrode of the specific cell 511 is lowered, and the same load as the central cell 510 having a higher temperature than the specific cell 511 cannot be taken out. In this case, if the power generation unit 5 is generated with a load that can be taken out at the temperature of the specific cell 511 at the end, the other cells 510 are also reduced in accordance with the load of the specific cell 511 to generate power. The power generation amount of the entire power generation unit 5 is reduced. Moreover, in cells other than the specific cell 511, there exists a problem that methanol crossover increases by load reduction and power generation efficiency falls.
 そこで、第6の実施形態では、アノード集電板18Aおよびカソード集電板18Bと接する端部の特定セル511に対してセル温度監視部8および外部電力供給部13を接続し、上記問題を解決する手法を説明する。 Therefore, in the sixth embodiment, the cell temperature monitoring unit 8 and the external power supply unit 13 are connected to the specific cell 511 at the end in contact with the anode current collector 18A and the cathode current collector 18B to solve the above problem. The method to do is explained.
 図18を参照して、第6の実施形態に係る燃料電池システム103の運転方法について説明する。 
 図18は、外気温度をある範囲で変化させた場合の特定セル511の温度の経時変化を示している。外気温度が低下すると、それに伴い、上記特定セル511の温度は低下する。
With reference to FIG. 18, an operation method of the fuel cell system 103 according to the sixth embodiment will be described.
FIG. 18 shows the change over time of the temperature of the specific cell 511 when the outside air temperature is changed within a certain range. When the outside air temperature decreases, the temperature of the specific cell 511 decreases accordingly.
 ここで、制御部9は、セル温度監視部81から供給される温度情報をもとに、発電時間x=xで特定セル511の温度が所定の下限温度Tlimよりも低下したと判定すると、特定セル511に対し、外部電力供給部13を電流供給ラインE7を介して電気的に並列に接続する。電流供給ラインE7を介して、特定セル511に外部電力供給部13が接続されると、外部電力供給部13は一定の電力(電流I2)を特定セル511へ供給する。これにより、発電部5の負荷電流が、発電時間中一定I=I0であっても、特定セル511から取り出す負荷電流I1は、I1=I0-I2で一定に減少する。その後、制御部9は、発電時間x=xで特定セル511温度が下限温度Tlimよりも高くなったと判定すると、外部電力供給部13からの電力の供給を停止する。これにより、特定セル511から取り出す負荷電流I1は発電部負荷I0と同じ負荷I1=I0となる。 Here, when the control unit 9 determines that the temperature of the specific cell 511 is lower than the predetermined lower limit temperature T lim during the power generation time x = x 1 based on the temperature information supplied from the cell temperature monitoring unit 81. The external power supply unit 13 is electrically connected in parallel to the specific cell 511 via the current supply line E7. When the external power supply unit 13 is connected to the specific cell 511 via the current supply line E7, the external power supply unit 13 supplies constant power (current I2) to the specific cell 511. As a result, even if the load current of the power generation unit 5 is constant I = I0 during the power generation time, the load current I1 extracted from the specific cell 511 is constantly reduced as I1 = I0−I2. Thereafter, when the control unit 9 determines that the specific cell 511 temperature has become higher than the lower limit temperature T lim during the power generation time x = x 2 , the supply of power from the external power supply unit 13 is stopped. Thereby, the load current I1 taken out from the specific cell 511 becomes the same load I1 = I0 as the power generation unit load I0.
 図19は、第6の実施形態におけるシステムの処理手順を示したものである。この図19を参照して、制御部9の制御動作について説明する。 FIG. 19 shows a processing procedure of the system in the sixth embodiment. The control operation of the control unit 9 will be described with reference to FIG.
 制御部9において制御動作が開始されると(ステップS111)、検知処理部9aは特定セル511の温度を測定する(ステップS112)。この指示にしたがって、セル温度監視部81は、特定セル511の温度を検知する(ステップS113)。そして、データベース9b内に予め蓄えられたセル温度データベース9b-111をもとに、上記測定した特定セル511の温度が所定の範囲にあるか否かを判定する(ステップS114)。セル温度データベース9b-111には、セルが正常に発電可能な温度範囲(上限値及び下限値の少なくとも一方)を示した情報が予め記憶されている。特定セル511の温度が所定の範囲にある場合、検知処理部9aはステップS112に移行し、特定セル511の温度の測定を繰り返し行う(ステップS114:YES)。 When the control operation is started in the control unit 9 (step S111), the detection processing unit 9a measures the temperature of the specific cell 511 (step S112). In accordance with this instruction, the cell temperature monitoring unit 81 detects the temperature of the specific cell 511 (step S113). Then, based on the cell temperature database 9b-111 stored in advance in the database 9b, it is determined whether or not the measured temperature of the specific cell 511 is within a predetermined range (step S114). In the cell temperature database 9b-111, information indicating a temperature range (at least one of an upper limit value and a lower limit value) in which the cell can normally generate power is stored in advance. When the temperature of the specific cell 511 is within the predetermined range, the detection processing unit 9a proceeds to step S112, and repeatedly measures the temperature of the specific cell 511 (step S114: YES).
 一方、測定した特定セル511の温度が所定の範囲にない場合(ステップS114:NO)、検知処理部9aは、データベース9b内に予め蓄えられた外部電力供給量データベース9b-112に基づいて、外部電力供給部13に対して外部電力を供給する指示を与える(ステップS115)。外部電力供給量データベース9b-112には、測定されたセル温度を外部電力供給部13からの電力(電流)の供給量に換算するための情報が予め記憶されている。これにより、特定セル511に電気的に並列に接続した外部電力供給部13から特定セル511に電力供給が行われる(ステップS116)。 On the other hand, when the measured temperature of the specific cell 511 is not within the predetermined range (step S114: NO), the detection processing unit 9a uses the external power supply amount database 9b-112 stored in advance in the database 9b. An instruction to supply external power to the power supply unit 13 is given (step S115). Information for converting the measured cell temperature into the supply amount of electric power (current) from the external power supply unit 13 is stored in advance in the external power supply database 9b-112. Thereby, power is supplied to the specific cell 511 from the external power supply unit 13 electrically connected to the specific cell 511 in parallel (step S116).
 以上述べたように、上記第6の実施形態では、定常発電時に、外気温等の外部環境因子によって特定セル511の温度が所定の温度より低下し、特定セル511から取り出せる負荷電流が減少した場合でも、外部電力供給部13から特定セル511への電力(電流)供給により、発電部5全体の負荷電流を一定に保つことができる。したがって、燃料電池システムにおいて、発電部に含まれるセル間に温度のバラツキがある場合でも、発電効率と発電量の向上を図ることが可能となる。 As described above, in the sixth embodiment, during steady power generation, the temperature of the specific cell 511 is lowered from a predetermined temperature due to external environmental factors such as outside air temperature, and the load current that can be extracted from the specific cell 511 is reduced. However, the load current of the entire power generation unit 5 can be kept constant by supplying power (current) from the external power supply unit 13 to the specific cell 511. Therefore, in the fuel cell system, even when there is temperature variation between cells included in the power generation unit, it is possible to improve the power generation efficiency and the power generation amount.
 また、上記第6の実施形態は、所定の電力量を発電する、定常発電時のみならず、起動時などにも適用できる。起動時は、セル温度が低い状態から所定の温度に達するまでの時間を早め、所定の発電量を得られるまでの時間を短縮することが好ましい。上記第6の実施形態の手法を応用して、燃料電池システムの起動時に、特定セル511が低温のために他のセルと同等の負荷電流が取り出せない場合は、特定セル511のみに外部電力供給部13を電気的に並列に接続し、特定セル511から取り出す負荷電流を低減させる。このようにすることで、特定セル511以外の他セルは所定の負荷で運転することができ、低温からの起動速度を高速化させることが可能となる。 Further, the sixth embodiment can be applied not only to steady power generation, which generates a predetermined amount of power, but also to startup. At the time of start-up, it is preferable to shorten the time until a predetermined power generation amount can be obtained by shortening the time required for the cell temperature to reach a predetermined temperature. Applying the method of the sixth embodiment, when the fuel cell system is started up, if the specific cell 511 cannot be taken out because of the low temperature of the specific cell 511, external power is supplied only to the specific cell 511. The unit 13 is electrically connected in parallel, and the load current taken out from the specific cell 511 is reduced. By doing in this way, cells other than the specific cell 511 can be operated with a predetermined load, and the starting speed from a low temperature can be increased.
 (第7の実施形態) 
 上記第6の実施形態では、最も温度の低い特定セル511に対してセル温度監視部81と外部電力供給部13を接続し、セル温度に応じて外部電力供給部13を操作したが、第7の実施形態では、発電部5内の出力電圧の低いセルに対して外部電力供給部13を接続し、当該セル出力電圧に応じて外部電力供給部13を操作する。
(Seventh embodiment)
In the sixth embodiment, the cell temperature monitoring unit 81 and the external power supply unit 13 are connected to the specific cell 511 having the lowest temperature, and the external power supply unit 13 is operated according to the cell temperature. In the embodiment, the external power supply unit 13 is connected to a cell having a low output voltage in the power generation unit 5, and the external power supply unit 13 is operated according to the cell output voltage.
 第7の実施形態に係る燃料電池システムの構成は、上記図9に示した燃料電池システム101と同様であるため、上記図9を用いて説明を行う。ただし、第7の実施形態では、発電部5の構成、制御部9における検知処理部9aの動作及びデータベース9bに格納されるデータ項目が異なる。 The configuration of the fuel cell system according to the seventh embodiment is the same as that of the fuel cell system 101 shown in FIG. 9, and will be described with reference to FIG. However, in the seventh embodiment, the configuration of the power generation unit 5, the operation of the detection processing unit 9a in the control unit 9, and the data items stored in the database 9b are different.
 発電部5は、図20A、20B及び20Cに示されるようなセル積層構造50を備えている。図20Aに示すように、セル積層構造50は、アノード集電板12とカソード集電板14との間に積層される、セル電圧監視部8に接続された特定セル521と、セル電圧監視部8が接続されていない特定セル以外のセル520とを備える。特定セル521及びセル520は、アノード集電板12及びカソード集電板14に電気的に直列に接続されている。特定セル521とセル520との割合は、特定セル521を1セル以上有すれば任意に設定することができる。図20Aでは1セル間隔で特定セル521とセル520とが積層されている例を示している。アノード集電板12とカソード集電板14との間に積層された特定セル521と、セル520とは、一対の締め付け板18A、18B間に配置され、この締め付け板18A、18B間に固定具19A、19Bによって締め付け固定されている。アノード集電板12及びカソード集電板14は、それぞれ負荷調整部7に接続され、セル積層構造50で生成された電流がカソード集電板14で収集されて負荷調整部7に供給される。 The power generation unit 5 includes a cell stack structure 50 as shown in FIGS. 20A, 20B and 20C. As shown in FIG. 20A, the cell stack structure 50 includes a specific cell 521 that is stacked between the anode current collector plate 12 and the cathode current collector plate 14 and connected to the cell voltage monitor unit 8, and a cell voltage monitor unit. Cell 520 other than the specific cell to which 8 is not connected. The specific cell 521 and the cell 520 are electrically connected to the anode current collector plate 12 and the cathode current collector plate 14 in series. The ratio between the specific cell 521 and the cell 520 can be arbitrarily set as long as the specific cell 521 has one or more cells. FIG. 20A shows an example in which specific cells 521 and cells 520 are stacked at an interval of one cell. The specific cell 521 and the cell 520 stacked between the anode current collector plate 12 and the cathode current collector plate 14 are disposed between the pair of clamping plates 18A and 18B, and a fixture is provided between the clamping plates 18A and 18B. It is fastened and fixed by 19A and 19B. The anode current collecting plate 12 and the cathode current collecting plate 14 are connected to the load adjusting unit 7, respectively, and the current generated in the cell stack structure 50 is collected by the cathode current collecting plate 14 and supplied to the load adjusting unit 7.
 特定セル521及びセル520は、図20B及び図20Cに示されるように膜電極接合体(MEA:Membrane Electrode Assembly)20を備えている。このMEA20の一方の側にアノード流路板22が設けられ、他方の側にカソード流路板24が設けられている。MEA20は、アノード流路板22とカソード流路板24とに挟まれ、アノード流路板22とカソード流路板24とに接続されたガスケット26で密閉された構造に形成されている。アノード流路板22とカソード流路板24は、このガスケット26で絶縁され、しかも、このガスケット26によってMEA20から外部への燃料及び空気のリークが防止される。 The specific cell 521 and the cell 520 include a membrane electrode assembly (MEA) 20 as shown in FIGS. 20B and 20C. An anode flow path plate 22 is provided on one side of the MEA 20, and a cathode flow path plate 24 is provided on the other side. The MEA 20 is sandwiched between the anode flow path plate 22 and the cathode flow path plate 24 and formed in a structure sealed with a gasket 26 connected to the anode flow path plate 22 and the cathode flow path plate 24. The anode flow path plate 22 and the cathode flow path plate 24 are insulated by the gasket 26, and the leakage of fuel and air from the MEA 20 to the outside is prevented by the gasket 26.
 また、特定セル521には、セル電圧を監視するためにアノード流路板22とカソード流路板24にセル電圧検知用の電気配線22D、24Dが設けられている。このセル電圧検知用の電気配線22D、24Dが信号ラインE4を介してセル電圧監視部8の電圧検出回路に接続されている。セル電圧監視部8からは、電圧検出回路で検出された特定セル521の電圧値を表す電圧情報が信号ラインE4を介して制御部9の検知処理部9aに供給される。 The specific cell 521 is provided with electric wirings 22D and 24D for cell voltage detection on the anode flow path plate 22 and the cathode flow path plate 24 in order to monitor the cell voltage. The electric wirings 22D and 24D for cell voltage detection are connected to the voltage detection circuit of the cell voltage monitoring unit 8 through the signal line E4. From the cell voltage monitoring unit 8, voltage information representing the voltage value of the specific cell 521 detected by the voltage detection circuit is supplied to the detection processing unit 9a of the control unit 9 via the signal line E4.
 さらに、セル電圧監視部8の電圧検出回路が接続された特定セル521には、アノード流路板22及びカソード流路板24に入力端子22B,24Bが設けられている。この入力端子22B,24Bが電流供給ラインE7を介して外部電力供給部13の電流回路に電気的に並列に接続される。 Furthermore, in the specific cell 521 to which the voltage detection circuit of the cell voltage monitoring unit 8 is connected, input terminals 22B and 24B are provided on the anode flow path plate 22 and the cathode flow path plate 24, respectively. The input terminals 22B and 24B are electrically connected in parallel to the current circuit of the external power supply unit 13 through the current supply line E7.
 図21は、第7の実施形態におけるシステムの処理手順を示したものである。この図21を参照して、制御部9の制御動作について説明する。 FIG. 21 shows the processing procedure of the system in the seventh embodiment. The control operation of the control unit 9 will be described with reference to FIG.
 制御部9において制御動作が開始されると(ステップS121)、検知処理部9aは特定セル521のセル電圧を測定する(ステップS122)。この指示にしたがって、セル電圧監視部8は、特定セル521のセル電圧を個別に検知する(ステップS123)。そして、データベース9b内に予め蓄えられたセル電圧データベース9b-121をもとに、測定した各セルの電圧が所定の範囲にあるか否かを判定する(ステップS124)。セル電圧データベース9b-121には、セルが正常に発電していると判断される電圧範囲(上限値及び下限値の少なくとも一方)を示した情報が予め記憶されている。全ての特定セル521の電圧が所定の範囲にある場合、検知処理部9aはステップS122に移行し、特定セル521の電圧の測定を繰り返し行う(ステップS124:YES)。 When the control operation is started in the control unit 9 (step S121), the detection processing unit 9a measures the cell voltage of the specific cell 521 (step S122). In accordance with this instruction, the cell voltage monitoring unit 8 individually detects the cell voltage of the specific cell 521 (step S123). Then, based on the cell voltage database 9b-121 stored in advance in the database 9b, it is determined whether or not the measured voltage of each cell is within a predetermined range (step S124). In the cell voltage database 9b-121, information indicating a voltage range (at least one of an upper limit value and a lower limit value) in which it is determined that the cell is normally generating power is stored in advance. When the voltages of all the specific cells 521 are within the predetermined range, the detection processing unit 9a proceeds to step S122 and repeatedly measures the voltage of the specific cell 521 (step S124: YES).
 一方、特定セル521の電圧が所定の範囲にない場合(ステップS124:NO)、検知処理部9aは、電圧が所定の値にない特定セル521のみに対して、データベース9b内に予め蓄えられた外部電力供給量データベース9b-122に基づいて、外部電力供給部13からの電力供給指示を与える(ステップS125)。外部電力供給量データベース9b-122には、測定されたセル電圧の値を外部電力供給部13からの電力(電流)の供給量に換算するための情報が予め記憶されている。これにより、特定セル521のうち、電圧が所定の範囲にない特定セル521のみに対して、電気的に並列に接続した外部電力供給部13から電力供給が行われる(ステップS126)。 On the other hand, when the voltage of the specific cell 521 is not within the predetermined range (step S124: NO), the detection processing unit 9a is stored in advance in the database 9b only for the specific cell 521 whose voltage is not at the predetermined value. Based on the external power supply amount database 9b-122, a power supply instruction is given from the external power supply unit 13 (step S125). The external power supply amount database 9b-122 stores in advance information for converting the measured cell voltage value into the supply amount of power (current) from the external power supply unit 13. As a result, power is supplied from the external power supply unit 13 electrically connected in parallel to only the specific cell 521 whose voltage is not in the predetermined range among the specific cells 521 (step S126).
 通常、発電部50に含まれるセルは、全てが同じ特性を有するとは限らず、燃料、空気の供給状態、セル温度、その他劣化等によって、同一負荷の条件下でセル電圧にバラツキが生じる。セル電圧が極端に低下したセルがある場合、そのセル電圧に基づいて負荷電流を低下させてしまうと、発電量が低下する問題がある。 Normally, not all cells included in the power generation unit 50 have the same characteristics, and the cell voltage varies under the same load condition due to the supply state of fuel, air, cell temperature, and other deterioration. When there is a cell in which the cell voltage is extremely reduced, there is a problem in that the amount of power generation is reduced if the load current is reduced based on the cell voltage.
 上記第7の実施形態の手法では、特定セル521の個別の電圧を検知し、その電圧値に応じて外部電力を供給するため、特定セル521のうち、セル電圧が極端に低下したセルから取り出す負荷を任意に調整可能となる。よって、セル電圧が極端に低下したセルのみ発電量が低下しても、発電部50全体の発電量を低下させることがない。 In the method of the seventh embodiment, since the individual voltage of the specific cell 521 is detected and external power is supplied according to the voltage value, the specific cell 521 is taken out of the cell whose cell voltage is extremely lowered. The load can be arbitrarily adjusted. Therefore, even if the power generation amount of only the cell whose cell voltage is extremely reduced is reduced, the power generation amount of the entire power generation unit 50 is not reduced.
 すなわち、この発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 That is, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.

Claims (9)

  1.  積層された複数のセルを有する発電部と、
     前記セルに燃料を供給する、燃料供給量が調整可能な燃料供給部と、
     前記複数のセルのうち少なくとも一つの特定セルの出力電圧を監視する電圧監視部と、
     前記特定セルに電力を一時的に供給する電力供給部と、
     前記電力が前記特定セルに供給された後に現れる前記出力電圧の最小値と、前記出力電圧が最小値となった後の前記出力電圧の応答値との電圧差を検知し、前記電圧差に応じて前記燃料供給量を制御する制御部と
    を具備する燃料電池システム。
    A power generation unit having a plurality of stacked cells;
    A fuel supply unit for supplying fuel to the cell, the fuel supply amount being adjustable; and
    A voltage monitoring unit that monitors an output voltage of at least one specific cell among the plurality of cells;
    A power supply unit for temporarily supplying power to the specific cell;
    Detecting a voltage difference between a minimum value of the output voltage that appears after the power is supplied to the specific cell and a response value of the output voltage after the output voltage has reached a minimum value, and according to the voltage difference A fuel cell system including a control unit for controlling the fuel supply amount.
  2.  前記応答値は、前記出力電圧が最小値に達した後に略一定に維持される定常値に相当する請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the response value corresponds to a steady value that is maintained substantially constant after the output voltage reaches a minimum value.
  3.  前記応答値は、前記出力電圧が最小値に達した後に現れる最大値に相当する請求項1記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the response value corresponds to a maximum value that appears after the output voltage reaches a minimum value.
  4.  前記制御部は、前記発電部から取り出す負荷を一定にした状態で、前記特定セルに前記電力を供給する請求項1に記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the control unit supplies the electric power to the specific cell in a state where a load taken out from the power generation unit is constant.
  5.  前記電力供給部は、キャパシタ又は二次電池を備える請求項1に記載の燃料電池システム。 The fuel cell system according to claim 1, wherein the power supply unit includes a capacitor or a secondary battery.
  6.  積層された複数のセルを有する発電部と、
     前記複数のセルのうち少なくとも一つの特定セルの温度を監視する温度監視部と、
     前記特定セルに電力を一時的に供給する電力供給部と、
     前記温度が基準値以下の場合に前記特定セルに前記電力を供給する制御部と
    を具備する燃料電池システム。
    A power generation unit having a plurality of stacked cells;
    A temperature monitoring unit that monitors the temperature of at least one specific cell of the plurality of cells;
    A power supply unit for temporarily supplying power to the specific cell;
    A fuel cell system comprising: a control unit that supplies the power to the specific cell when the temperature is equal to or lower than a reference value.
  7.  前記特定セルは、前記発電部の端部のセルに相当する請求項6記載の燃料電池システム。 The fuel cell system according to claim 6, wherein the specific cell corresponds to a cell at an end of the power generation unit.
  8.  積層された複数のセルを有する発電部と、
     前記複数のセルのうち少なくとも一つの特定セルの電圧を監視する電圧監視部と、
     前記特定セルに電力を一時的に供給する電力供給部と、
     前記特定セル電圧が基準値以下の場合に前記特定セルに前記電力を供給する制御部と
    を具備する燃料電池システム。
    A power generation unit having a plurality of stacked cells;
    A voltage monitoring unit that monitors the voltage of at least one specific cell among the plurality of cells;
    A power supply unit for temporarily supplying power to the specific cell;
    A fuel cell system comprising: a control unit configured to supply the power to the specific cell when the specific cell voltage is equal to or lower than a reference value.
  9.  積層された複数のセルを有する発電部と、
     前記複数のセルのうち少なくとも一つの特定セルに電力を一時的に供給する電力供給部と
    を具備する燃料電池。
    A power generation unit having a plurality of stacked cells;
    A fuel cell comprising: a power supply unit that temporarily supplies power to at least one specific cell among the plurality of cells.
PCT/JP2009/071048 2008-12-26 2009-12-17 Fuel cell system and fuel cell WO2010073962A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-333071 2008-12-26
JP2008333071A JP2010153324A (en) 2008-12-26 2008-12-26 Fuel cell system
JP2009-072479 2009-03-24
JP2009072479A JP2010225459A (en) 2009-03-24 2009-03-24 Fuel cell system and fuel cell

Publications (1)

Publication Number Publication Date
WO2010073962A1 true WO2010073962A1 (en) 2010-07-01

Family

ID=42287577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071048 WO2010073962A1 (en) 2008-12-26 2009-12-17 Fuel cell system and fuel cell

Country Status (1)

Country Link
WO (1) WO2010073962A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248074A (en) * 1987-04-02 1988-10-14 Mitsubishi Electric Corp Crossover detecting method for stacked fuel cell
JP2003272686A (en) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp Fuel cell reactivation treatment method and system
JP2003308867A (en) * 2002-04-16 2003-10-31 Toshiba Corp Method of inspecting direct liquid fuel cell generator, inspecting device and direct liquid fuel cell generator
JP2004288638A (en) * 2003-03-21 2004-10-14 Bose Corp Electrochemical power generation
JP2005108757A (en) * 2003-10-01 2005-04-21 Nissan Motor Co Ltd Fuel cell system and starting method
JP2006107789A (en) * 2004-09-30 2006-04-20 Toshiba Corp Fuel cell unit, board unit, and control method of operation
WO2007024390A1 (en) * 2005-08-23 2007-03-01 Bose Corporation Fuel cell regeneration
WO2007110969A1 (en) * 2006-03-28 2007-10-04 Hitachi, Ltd. Method and apparatus for measuring crossover loss of fuel cell
JP2008071572A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Fuel cell system, and method for controlling the same
JP2008103321A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Fuel cell system and method for operating fuel cell system
JP2008300140A (en) * 2007-05-30 2008-12-11 Sony Corp Fuel cell system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248074A (en) * 1987-04-02 1988-10-14 Mitsubishi Electric Corp Crossover detecting method for stacked fuel cell
JP2003272686A (en) * 2002-03-20 2003-09-26 Toshiba International Fuel Cells Corp Fuel cell reactivation treatment method and system
JP2003308867A (en) * 2002-04-16 2003-10-31 Toshiba Corp Method of inspecting direct liquid fuel cell generator, inspecting device and direct liquid fuel cell generator
JP2004288638A (en) * 2003-03-21 2004-10-14 Bose Corp Electrochemical power generation
JP2005108757A (en) * 2003-10-01 2005-04-21 Nissan Motor Co Ltd Fuel cell system and starting method
JP2006107789A (en) * 2004-09-30 2006-04-20 Toshiba Corp Fuel cell unit, board unit, and control method of operation
WO2007024390A1 (en) * 2005-08-23 2007-03-01 Bose Corporation Fuel cell regeneration
WO2007110969A1 (en) * 2006-03-28 2007-10-04 Hitachi, Ltd. Method and apparatus for measuring crossover loss of fuel cell
JP2008071572A (en) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd Fuel cell system, and method for controlling the same
JP2008103321A (en) * 2006-10-17 2008-05-01 Samsung Sdi Co Ltd Fuel cell system and method for operating fuel cell system
JP2008300140A (en) * 2007-05-30 2008-12-11 Sony Corp Fuel cell system

Similar Documents

Publication Publication Date Title
KR100699371B1 (en) Direct-methanol fuel cell system and mtehod for controlling the same
JP4399801B2 (en) Liquid fuel direct supply fuel cell system, operation control method and operation control apparatus thereof
US8241799B2 (en) Methods of operating fuel cell power generators, and fuel cell power generators
JP2010010085A (en) Fuel cell system
KR20040021651A (en) Method for controlling the methanol concentration in direct methanol fuel cells
JP4852854B2 (en) Fuel cell system
JP2010108645A (en) Fuel cell system and state detection method of fuel cell
JP5340484B2 (en) Degradation judgment method of fuel cell
WO2011118111A1 (en) Fuel cell system and control method therefor
JP4973138B2 (en) Fuel cell system
JP2009170229A (en) Manufacturing method of fuel cell, fuel cell system, and the fuel cell
KR101287105B1 (en) Fuel cell system and driving method thereof
JP2009123383A (en) Fuel cell power supply system, and its operation method
US20110053024A1 (en) Fuel cell using organic fuel
JP2004342596A (en) Solid polymer fuel cell stack
JP2009176483A (en) Fuel cell system
JP2008171601A (en) Fuel cell system
JP2008198496A (en) Polymer electrolyte fuel cell and its characteristic recovery method
WO2010073962A1 (en) Fuel cell system and fuel cell
JP5011670B2 (en) Fuel cell voltage regulator
JP2010257751A (en) Method of controlling fuel cell system
JP6308140B2 (en) Method for estimating the amount of cationic impurities and apparatus for estimating the amount of cationic impurities in a fuel cell system
JP2010153324A (en) Fuel cell system
JP2010257752A (en) Control program of fuel cell module
JP2010225459A (en) Fuel cell system and fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834765

Country of ref document: EP

Kind code of ref document: A1