WO2010073875A1 - Responsive glass membrane for ion-selective electrode, and ion-selective electrode - Google Patents

Responsive glass membrane for ion-selective electrode, and ion-selective electrode Download PDF

Info

Publication number
WO2010073875A1
WO2010073875A1 PCT/JP2009/070030 JP2009070030W WO2010073875A1 WO 2010073875 A1 WO2010073875 A1 WO 2010073875A1 JP 2009070030 W JP2009070030 W JP 2009070030W WO 2010073875 A1 WO2010073875 A1 WO 2010073875A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ion
response
oxidation number
oxide
Prior art date
Application number
PCT/JP2009/070030
Other languages
French (fr)
Japanese (ja)
Inventor
忠範 橋本
篤 石原
友志 西尾
恵和 岩本
Original Assignee
国立大学法人三重大学
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人三重大学, 株式会社堀場製作所 filed Critical 国立大学法人三重大学
Priority to JP2010543989A priority Critical patent/JP5791023B2/en
Publication of WO2010073875A1 publication Critical patent/WO2010073875A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/36Glass electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • the present invention relates to a response glass membrane for an ion-selective electrode that exhibits semiconductivity and is excellent in ion response, and an ion-selective electrode including the same.
  • a responsive glass membrane used for an ion-selective electrode exhibits ion responsiveness using an ion conductive material such as lithium ion (Li + ) as a mediator.
  • an ion conductive material such as lithium ion (Li + ) as a mediator.
  • the glass containing such an ionic conductive material has a disadvantage that it has poor durability because the number of bonds in the glass skeleton is small.
  • the glass containing an ion conductive substance has a complicated composition, and the mixed cation effect in which the ion conductive cation competes with other cations is easily developed.
  • the mixed cation effect appears, the movement of the ion conductive material in the glass is inhibited. Therefore, when glass containing the ion conductive material is used for the response glass membrane of the ion selective electrode, the glass membrane resistance is increased.
  • the present invention is intended to provide a response glass membrane for an ion-selective electrode that exhibits semiconductivity and excellent ion response, and an ion-selective electrode including the same.
  • Me having an oxidation number of + n and Me ′ having an oxidation number of + (n ⁇ m) (Me and Me ′ represent transition metals of d block elements).
  • Me—O ⁇ exchanges electrons with the cation on the surface of the response glass film, and Me n + —O—Me ′ (n ⁇ m) + in the response glass film. It is presumed that Me (n ⁇ m) + -O-Me ′ n + is mutually converted to cause hopping conduction to transmit electrons. For this reason, even if the oxide glass used by this invention does not contain an ion conductive substance, it can show electroconductivity and it becomes possible to express ion responsiveness.
  • the response glass membrane for an ion selective electrode according to the present invention is made of an oxide glass containing no ion conductive material, it has the following advantageous characteristics as compared with those containing an ion conductive material. That is, (1) since the number of bonds in the glass skeleton is increased, durability and corrosion resistance are improved. (2) Since it is not ionic conductivity but electronic conductivity, the electrical resistance (specific resistance) is lowered and the ion responsiveness is improved. (3) Since the electric resistance (specific resistance) is low, the film thickness can be increased to improve the strength. (4) Since the composition is simple, it is easy to regenerate the glass.
  • oxide glass used in the present invention examples include phosphate glass, silicate glass, borate glass, and oxynitride glass.
  • the oxide glass used in the present invention may contain Group 3 elements such as Sc, Y, and lanthanoids, and as raw materials, barium oxide (BaO), calcium oxide (CaO), strontium oxide.
  • An alkaline earth metal oxide such as (SrO) may be contained.
  • a response glass film made of an oxide glass that is excellent in durability and corrosion resistance has a long life, has a low specific resistance, and can be made tough glass by increasing the film thickness, and the same Can be obtained.
  • the fragmentary broken view which shows 1 part of the internal structure of the glass electrode in one Embodiment of this invention The enlarged view of the response glass film
  • the ion-selective electrode 1 includes a cylindrical glass support tube 2 and a response glass film 3 bonded to the tip of the support tube 2.
  • a response glass film 3 bonded to the tip of the support tube 2.
  • ion species such as proton (H + ), potassium ion (K + ), sodium ion (Na + ), ammonium ion (NH 4 + ), silver ion (Ag + ), etc. It is a response.
  • the support tube 2 contains an internal electrode 4 and is filled with an internal liquid 5.
  • a lead wire 6 is connected to the internal electrode 4, and the lead wire 6 extends outside from the base end portion of the support tube 2 and is connected to an ion concentration meter main body (not shown).
  • the internal electrode 4 for example, an Ag / AgCl electrode or the like is used, and as the internal liquid 5, for example, a potassium chloride solution adjusted to pH 7 is used.
  • the response glass film 3 has a cylindrical shape that is blow-molded so that the tip portion is substantially hemispherical. To join the response glass film 3 to the support tube 2, the response glass film 3 is used as the response glass film 3. For example, the oxide glass to be obtained is melted in, for example, a furnace maintained at a few hundreds of degrees, and after the tip of the support tube 2 is immersed therein, it is pulled up and blown at a predetermined speed.
  • the yield point is included in the devitrification region, whereas in the oxide glass described in detail below, the yield point is included in the devitrification region. I can't.
  • the oxide glass can avoid a reaction with a mold or a mold release agent that may occur in the case of lithium glass. For this reason, the response glass film 3 using such an oxide glass can also be formed by press working using a mold, which is impossible with conventional lithium glass.
  • Me ′ having an oxidation number of + n and Me ′ having an oxidation number of + (n ⁇ m) (Me and Me ′ represent a transition metal of a d-block element, and Me and Me ′ are the same or different.
  • N represents an integer of 1 or more
  • m represents an integer of 1 to 3
  • Me ′) 0.0001 to 0.6, preferably composed of an oxide glass contained in a molar ratio of 0.01 to 0.6. When the molar ratio exceeds 0.6, vitrification is difficult, and when the molar ratio is less than 0.0001, electrical conductivity necessary for ion responsiveness is not exhibited.
  • Me and Me ′ are not particularly limited as long as they are transition metals of the d block element, and examples thereof include Ti, V, Mo, W, Fe, Cr, Mn, Co, Ni, Cu, and Ce.
  • both Me and Me ′ are Fe
  • Fe 2+ —O—Fe 3+ and Fe 3+ —O—Fe 2+ are mutually converted to cause hopping conduction
  • both Me and Me ′ are V
  • V 4+ -OV 5+ and V 5+ -OV 4+ are converted into each other to cause hopping conduction.
  • Me is Fe and Me ′ is V
  • Fe 2+ -OV 5+ , Fe 3+ -OV 4+ , Fe 3+ -OV 5+ and Fe 2+ -OV 4+ Converting to hopping conduction occurs.
  • the oxide glass constituting the response glass film 3 may be any of phosphate glass, silicate glass, borate glass, and oxynitride glass, and phosphate glass is particularly preferable. .
  • phosphate glass is particularly preferable.
  • the oxide glass constituting the response glass film 3 may contain a metal oxide having an oxidation number of +3 to +5 such as Al 2 O 3 as a raw material. If it is such, corrosion resistance can improve more.
  • the oxide glass constituting the response glass film 3 may contain a Group 3 element such as Sc, Y, or a lanthanoid. If it is such, an alkali error can be reduced.
  • a Group 3 element such as Sc, Y, or a lanthanoid. If it is such, an alkali error can be reduced.
  • These Group 3 elements may be used alone or in combination of two or more.
  • the oxide glass constituting the response glass film 3 may contain an oxide of an alkaline earth metal such as barium oxide (BaO), calcium oxide (CaO), strontium oxide (SrO) as a raw material. . If it is such, alkali responsiveness can be suppressed. These oxides may be used alone or in combination of two or more.
  • the oxide glass constituting the response glass film 3 preferably has a specific resistance of 3 ⁇ 10 10 ⁇ ⁇ cm or less. If the specific resistance exceeds 3 ⁇ 10 10 ⁇ ⁇ cm, the sensitivity may be less than 50%, and sufficient ion response may not be obtained.
  • the sensitivity is a value expressed with the theoretical value in the Nernst response as 100%.
  • the oxide glass constituting such a response glass film 3 has an oxide of Me that is + (n ⁇ m), and further has an oxidation number as required. It is manufactured by weighing and mixing a raw material compound containing an oxide of Me that is + n, melting in a reducing atmosphere such as N 2 gas, and then cooling. At this time, the melting is performed in a reducing atmosphere in order to prevent the Me in the glass from being biased toward the oxidation number + (n ⁇ m).
  • annealing may be further performed at 200 to 1000 ° C. to oxidize only the surface of the response glass film 3 to increase Me—O 2 ⁇ .
  • Me is Ti
  • the titanol group on the surface of the response glass film 3 is increased, and electron transfer inside the response glass film 3 is not hindered. It is also possible to develop a photocatalytic action.
  • response glass membrane 3 in the present embodiment was fabricated that consists Chitanorin silicate glass consisting 70 mol% TiO 2 and 30mol% P 2 O 5 Prefecture.
  • Ti 3+ / Ti 4+ (molar ratio) of the titanophosphate glass was examined by a light absorption spectrum method, it was 0.06 to 0.15.
  • the measurement solution was switched from an aqueous buffer solution of pH 7 to 99.5% ethanol. The pH response (indicated stability) was examined.
  • the response glass film 3 in the present embodiment a glass composed of titanophosphate glass composed of 74 mol% TiO 2 and 26 mol% P 2 O 5 was further produced.
  • Ti 3+ / Ti 4+ (molar ratio) of the titanophosphate glass was examined by a light absorption spectrum method, it was 10 ⁇ 4 to 0.2.
  • the glass electrode 1 provided with the response glass film 3 was prepared and the potential was measured three times in the order of pH 7 ⁇ pH 4 ⁇ pH 9 using an aqueous buffer solution, as shown in the graph of FIG. It showed pH responsiveness. From the result of this potential measurement, the pH sensitivity between pH 4-9 was determined to be 79.6%.
  • the “sensitivity” is a value that represents the theoretical value in the Nernst response as 100%.
  • the glass electrode 1 can recover the same responsiveness as before the measurement of the alkaline aqueous solution by washing with an acid after being used for the measurement of the alkaline aqueous solution (pH 13).
  • the oxide glass used for the response glass film 3 exhibits electrical conductivity even if it does not contain an ion conductive material, and therefore has a good ion response. It becomes possible to express sex.
  • the response glass film 3 of the glass electrode 1 is made of an oxide glass containing no ion conductive material, it has the following advantageous characteristics as compared with those containing an ion conductive material. That is, (1) since the number of bonds in the glass skeleton is increased, durability and corrosion resistance are improved. (2) Since it is not ionic conductivity but electronic conductivity, the electrical resistance (specific resistance) is lowered and the ion responsiveness is improved. (3) Since the electric resistance (specific resistance) is low, the film thickness can be increased to improve the strength. (4) Since the composition is simple, it is easy to regenerate the glass.
  • the present invention is not limited to the above embodiment.
  • the ion selective electrode of the present invention is not limited to the glass electrode 1, but may be a composite electrode in which the glass electrode and the reference electrode are integrated, or a single electrode in which the temperature compensation electrode is further added to the composite electrode. Good.
  • the response glass film 3 of the glass electrode 1 according to the present invention has a low specific resistance and can exhibit a good ion response even when the film thickness is increased, the plate-like oxide glass is cut and polished. It may be produced by casting a molten oxide glass into a predetermined mold and molding it. Since the response glass film 3 obtained in this way has high mechanical strength, it is sealed by bonding to one end opening of the support tube 2 using an adhesive or a mechanical mechanism (mechanical seal). A glass electrode 1 as shown in FIG. 5 can be produced. As the support tube 2 of the glass electrode 1 having such a configuration, for example, one made of borosilicate glass or fluororesin having excellent corrosion resistance and mechanical strength can be used.
  • a response glass film made of an oxide glass that is excellent in durability and corrosion resistance, has a long life, has a low specific resistance, and can be made tough vitrified by increasing the film thickness.
  • a glass electrode can be obtained.
  • the response glass film according to the present invention has a simple composition, it can be easily regenerated and is excellent in terms of environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A responsive glass membrane (3) for ion-selective electrodes which has semiconductivity and excellent responsiveness to ions, and an ion-selective electrode (1) provided with the glass membrane. The glass membrane comprises an oxide glass containing Me having an oxidation number of +n and Me' having an oxidation number of +(n±m) (Me and Me' represent transition metals belonging to the d-block elements and may be the same or different; n is an integer of 1 or larger; and m is an integer of 1-3) in an (Me having an oxidation number of +n)/(Me' having an oxidation number of +(n±m)) molar ratio of 0.0001-0.6.

Description

イオン選択性電極用応答ガラス膜及びイオン選択性電極Responsive glass membrane for ion-selective electrode and ion-selective electrode
 この発明は、半導性を示し、イオン応答性に優れたイオン選択性電極用応答ガラス膜及びそれを備えたイオン選択性電極に関するものである。 The present invention relates to a response glass membrane for an ion-selective electrode that exhibits semiconductivity and is excellent in ion response, and an ion-selective electrode including the same.
 従来、イオン選択性電極に用いられる応答ガラス膜は、リチウムイオン(Li)等のイオン導電物質を媒介物質としてイオン応答性を発現している。しかしながら、このようなイオン導電物質を含有するガラスはガラス骨格の結合数が少ないため、耐久性に劣るという欠点を有する。 Conventionally, a responsive glass membrane used for an ion-selective electrode exhibits ion responsiveness using an ion conductive material such as lithium ion (Li + ) as a mediator. However, the glass containing such an ionic conductive material has a disadvantage that it has poor durability because the number of bonds in the glass skeleton is small.
 また、イオン導電物質を含有するガラスは組成が複雑になり、イオン導電カチオンが他のカチオンと競合する混合カチオン効果を発現しやすくなる。混合カチオン効果が発現すると、ガラス中のイオン導電物質の移動が阻害されるので、イオン導電物質を含有するガラスをイオン選択性電極の応答ガラス膜に使用するとガラス膜抵抗の増大を招く。 In addition, the glass containing an ion conductive substance has a complicated composition, and the mixed cation effect in which the ion conductive cation competes with other cations is easily developed. When the mixed cation effect appears, the movement of the ion conductive material in the glass is inhibited. Therefore, when glass containing the ion conductive material is used for the response glass membrane of the ion selective electrode, the glass membrane resistance is increased.
 更に、イオン導電物質を含有する応答ガラス膜を水溶液中に浸漬すると、イオン導電物質や他のカチオンが水溶液中に溶解して次第に水和層が厚くなり、イオン応答性が低下するという問題点もある。 Furthermore, when a responsive glass membrane containing an ionic conductive material is immersed in an aqueous solution, the ionic conductive material and other cations dissolve in the aqueous solution and the hydration layer gradually thickens, resulting in a decrease in ionic response. is there.
 加えて、近時、環境保護の観点から廃棄されたガラスの再利用が推進されているが、イオン導電物質を含有するガラスは組成が複雑であるので、再生が困難である。 In addition, recently, recycling of discarded glass has been promoted from the viewpoint of environmental protection. However, glass containing an ion conductive material has a complicated composition and is difficult to regenerate.
 そこで本発明は、半導性を示し、イオン応答性に優れたイオン選択性電極用応答ガラス膜及びそれを備えたイオン選択性電極を提供すべく図ったものである。 Therefore, the present invention is intended to provide a response glass membrane for an ion-selective electrode that exhibits semiconductivity and excellent ion response, and an ion-selective electrode including the same.
 すなわち本発明に係るイオン選択性電極用応答ガラス膜は、酸化数が+nであるMeと酸化数が+(n±m)であるMe´(Me及びMe´はdブロック元素の遷移金属を表し、Me及びMe´は同じでも異なっていてもよく、nは1以上の整数を表し、mは1~3の整数を表す。)とを、(酸化数が+nであるMe)/(酸化数が+(n±m)であるMe´)=0.0001~0.6のモル比で含有する酸化物ガラスからなることを特徴とする。 That is, in the response glass membrane for an ion selective electrode according to the present invention, Me having an oxidation number of + n and Me ′ having an oxidation number of + (n ± m) (Me and Me ′ represent transition metals of d block elements). , Me and Me ′ may be the same or different, n represents an integer of 1 or more, m represents an integer of 1 to 3, and (Me whose oxidation number is + n) / (oxidation number) It is characterized by comprising an oxide glass containing Me ′) = 0.001 to 0.6 in a molar ratio of + (n ± m).
 このようなものであれば、応答ガラス膜表面では、Me-Oがカチオンとの間で電子の授受を行い、応答ガラス膜中では、Men+-O-Me´(n±m)+とMe(n±m)+-O-Me´n+とが相互に変換してホッピング伝導が起こり電子が伝達されると推測される。このため、本発明で用いられる酸化物ガラスはイオン導電物質を含有していなくとも電気伝導性を示すことができ、イオン応答性を発現することが可能となる。 If this is the case, Me—O exchanges electrons with the cation on the surface of the response glass film, and Me n + —O—Me ′ (n ± m) + in the response glass film. It is presumed that Me (n ± m) + -O-Me ′ n + is mutually converted to cause hopping conduction to transmit electrons. For this reason, even if the oxide glass used by this invention does not contain an ion conductive substance, it can show electroconductivity and it becomes possible to express ion responsiveness.
 また、本発明に係るイオン選択性電極用応答ガラス膜は、イオン導電物質を含有しない酸化物ガラスからなるので、イオン導電物質を含有するものに比べて、以下のような有利な特徴を有する。すなわち、(1)ガラス骨格の結合数がより多くなるので耐久性・耐蝕性が向上する。(2)イオン導電性ではなく、電子導電性であるため、電気抵抗(比抵抗)が低下してイオン応答性が向上する。(3)電気抵抗(比抵抗)が低いので膜厚を厚くして強度を向上することができる。(4)組成が単純であるのでガラスの再生が容易である。(5)水溶液中に浸漬してもイオン導電カチオンが溶出することがないので、使用に伴い水和層の厚さが増してイオン応答速度が低下することがない。(6)極性有機溶媒中に浸漬してもイオン導電物質がガラス膜表面に局在したり溶媒中に引き抜かれたりして電気伝導性が阻害されることがないので極性有機溶媒中でも高いイオン応答速度を維持することができる。 Further, since the response glass membrane for an ion selective electrode according to the present invention is made of an oxide glass containing no ion conductive material, it has the following advantageous characteristics as compared with those containing an ion conductive material. That is, (1) since the number of bonds in the glass skeleton is increased, durability and corrosion resistance are improved. (2) Since it is not ionic conductivity but electronic conductivity, the electrical resistance (specific resistance) is lowered and the ion responsiveness is improved. (3) Since the electric resistance (specific resistance) is low, the film thickness can be increased to improve the strength. (4) Since the composition is simple, it is easy to regenerate the glass. (5) Since ion conductive cations do not elute even when immersed in an aqueous solution, the thickness of the hydrated layer does not increase with use and the ion response speed does not decrease. (6) Even when immersed in a polar organic solvent, the ionic conductive material is not localized on the glass film surface or drawn into the solvent, and the electrical conductivity is not hindered. The speed can be maintained.
 本発明で用いられる酸化物ガラスとしては、リン酸塩ガラス、ケイ酸塩ガラス、ホウ酸塩ガラス又はオキシナイトライドガラスが挙げられる。 Examples of the oxide glass used in the present invention include phosphate glass, silicate glass, borate glass, and oxynitride glass.
 また、本発明で用いられる酸化物ガラスは、Sc、Y、ランタノイド等の3族の元素を含有していてもよく、また、原料として、酸化バリウム(BaO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)等のアルカリ土類金属の酸化物を含有していてもよい。 Further, the oxide glass used in the present invention may contain Group 3 elements such as Sc, Y, and lanthanoids, and as raw materials, barium oxide (BaO), calcium oxide (CaO), strontium oxide. An alkaline earth metal oxide such as (SrO) may be contained.
 本発明のイオン選択性電極用応答ガラス膜を備えているイオン選択性電極もまた、本発明の1つである。すなわち、本発明に係るイオン選択性電極は、酸化数が+nであるMeと酸化数が+(n±m)であるMe´(Me及びMe´はdブロック元素の遷移金属を表し、Me及びMe´は同じでも異なっていてもよく、nは1以上の整数を表し、mは1~3の整数を表す。)とを、(酸化数が+nであるMe)/(酸化数が+(n±m)であるMe´)=0.0001~0.6のモル比で含有する酸化物ガラスからなる応答ガラス膜を備えていることを特徴とする。 The ion selective electrode provided with the response glass membrane for an ion selective electrode of the present invention is also one aspect of the present invention. That is, in the ion selective electrode according to the present invention, Me ′ having an oxidation number of + n and Me ′ having an oxidation number of + (n ± m) (Me and Me ′ represent transition metals of d block elements, Me and Me ′ may be the same or different, n represents an integer of 1 or more, m represents an integer of 1 to 3, and (Me whose oxidation number is + n) / (the oxidation number is + ( It is characterized in that a response glass film made of an oxide glass containing Me ′) = 0.0001 to 0.6 in a range of n ± m) is provided.
 このように本発明によれば、耐久性・耐蝕性に優れ、長寿命であり、比抵抗が低く、膜厚を厚くしてタフガラス化することが可能な酸化物ガラスからなる応答ガラス膜及びそれを備えたガラス電極を得ることができる。 Thus, according to the present invention, a response glass film made of an oxide glass that is excellent in durability and corrosion resistance, has a long life, has a low specific resistance, and can be made tough glass by increasing the film thickness, and the same Can be obtained.
本発明の一実施形態におけるガラス電極の内部構造を1部示す部分破断図。The fragmentary broken view which shows 1 part of the internal structure of the glass electrode in one Embodiment of this invention. 図1における応答ガラス膜近傍の拡大図。The enlarged view of the response glass film | membrane vicinity in FIG. 70TiO-30Pの組成を有する応答ガラス膜を備えたpHガラス電極の極性有機溶媒中での応答性を示すグラフ。70TiO graph showing the response of a polar organic solvent at pH glass electrode with a response glass membrane having a composition of 2 -30P 2 O 5. 74TiO-26Pの組成を有する応答ガラス膜を備えたpHガラス電極の水性溶媒中での応答性を示すグラフ。Graph showing the responsiveness of an aqueous solvent of pH glass electrode with a response glass membrane having a composition of 74TiO 2 -26P 2 O 5. 他の実施形態におけるガラス電極の内部構造を1部示す部分破断図。The fragmentary broken view which shows 1 part of the internal structure of the glass electrode in other embodiment.
 以下に、本発明の一実施形態を、図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
 本実施形態に係るイオン選択性電極1は、図1及び図2に示すように、円筒状のガラス製の支持管2と、その支持管2の先端部に接合した応答ガラス膜3とを備えたガラス電極であり、例えば、プロトン(H)、カリウムイオン(K)、ナトリウムイオン(Na)、アンモニウムイオン(NH )、銀イオン(Ag)等のイオン種に選択的に応答するものである。 As shown in FIGS. 1 and 2, the ion-selective electrode 1 according to the present embodiment includes a cylindrical glass support tube 2 and a response glass film 3 bonded to the tip of the support tube 2. For example, selective to ion species such as proton (H + ), potassium ion (K + ), sodium ion (Na + ), ammonium ion (NH 4 + ), silver ion (Ag + ), etc. It is a response.
 支持管2には、内部電極4が収容してあり、かつ、内部液5が充填してある。内部電極4には、リード線6が接続してあり、リード線6はこの支持管2の基端部から外部に延出し図示しないイオン濃度計本体に接続されるようにしてある。 The support tube 2 contains an internal electrode 4 and is filled with an internal liquid 5. A lead wire 6 is connected to the internal electrode 4, and the lead wire 6 extends outside from the base end portion of the support tube 2 and is connected to an ion concentration meter main body (not shown).
 内部電極4としては、例えばAg/AgCl電極等が用いられ、内部液5としては、例えばpH7に調整した塩化カリウム溶液等が用いられる。 As the internal electrode 4, for example, an Ag / AgCl electrode or the like is used, and as the internal liquid 5, for example, a potassium chloride solution adjusted to pH 7 is used.
 応答ガラス膜3は、先端部が略半球状をなすようにブロー成形してある円筒状のものであり、この応答ガラス膜3を前記支持管2に接合するには、応答ガラス膜3に用いられる酸化物ガラスを、例えば千数百度に保たれた炉内で溶融状態にしておき、そこに支持管2の先端部を浸漬した後、所定速度で引き上げ、ブローするといった方法がとられる。 The response glass film 3 has a cylindrical shape that is blow-molded so that the tip portion is substantially hemispherical. To join the response glass film 3 to the support tube 2, the response glass film 3 is used as the response glass film 3. For example, the oxide glass to be obtained is melted in, for example, a furnace maintained at a few hundreds of degrees, and after the tip of the support tube 2 is immersed therein, it is pulled up and blown at a predetermined speed.
 また、リチウムイオンを含有するガラス(以下、リチウムガラスという。)では、屈伏点が失透領域に含まれるのに対して、以下に詳述する酸化物ガラスでは、屈伏点が失透領域に含まれない。また、当該酸化物ガラスは、リチウムガラスの場合に起こり得る金型又は金型の離型剤等との反応を回避することが可能である。このため、このような酸化物ガラスを用いた応答ガラス膜3は、従来のリチウムガラスでは不可能であった金型を用いたプレス加工により成形することも可能である。 Further, in the glass containing lithium ions (hereinafter referred to as lithium glass), the yield point is included in the devitrification region, whereas in the oxide glass described in detail below, the yield point is included in the devitrification region. I can't. In addition, the oxide glass can avoid a reaction with a mold or a mold release agent that may occur in the case of lithium glass. For this reason, the response glass film 3 using such an oxide glass can also be formed by press working using a mold, which is impossible with conventional lithium glass.
 応答ガラス膜3は、酸化数が+nであるMeと酸化数が+(n±m)であるMe´(Me及びMe´はdブロック元素の遷移金属を表し、Me及びMe´は同じでも異なっていてもよく、nは1以上の整数を表し、mは1~3の整数を表す。)とを、(酸化数が+nであるMe)/(酸化数が+(n±m)であるMe´)=0.0001~0.6、好ましくは0.01~0.6のモル比で含有する酸化物ガラスからなるものである。当該モル比が0.6を超えると、ガラス化が困難であり、当該モル比が0.0001未満であると、イオン応答性に必要な電気伝導性が発現しない。 In the response glass film 3, Me ′ having an oxidation number of + n and Me ′ having an oxidation number of + (n ± m) (Me and Me ′ represent a transition metal of a d-block element, and Me and Me ′ are the same or different. N represents an integer of 1 or more, m represents an integer of 1 to 3, and (the oxidation number is + n Me) / (the oxidation number is + (n ± m)). Me ′) = 0.0001 to 0.6, preferably composed of an oxide glass contained in a molar ratio of 0.01 to 0.6. When the molar ratio exceeds 0.6, vitrification is difficult, and when the molar ratio is less than 0.0001, electrical conductivity necessary for ion responsiveness is not exhibited.
 Me及びMe´としてはdブロック元素の遷移金属であれば特に限定されず、例えば、Ti、V、Mo、W、Fe、Cr、Mn、Co、Ni、Cu、Ce等が挙げられる。 Me and Me ′ are not particularly limited as long as they are transition metals of the d block element, and examples thereof include Ti, V, Mo, W, Fe, Cr, Mn, Co, Ni, Cu, and Ce.
 このような応答ガラス膜3においては、その表面では、Me-Oがカチオンとの間で電子の授受を行い、その内部では、Men+-O-Me´(n±m)+とMe(n±m)+-O-Me´n+とが相互に変換してホッピング伝導が起こり電子が伝達されることによって電気伝導性が発現し、この結果イオン応答性が発現すると推測される。 In such a responsive glass film 3, Me—O exchanges electrons with cations on the surface, and Me n + —O—Me ′ (n ± m) + and Me (on the inside ). n ± m) + -O-Me ′ n + is converted into each other to cause hopping conduction and transfer of electrons, thereby expressing electrical conductivity. As a result, it is assumed that ion responsiveness appears.
 具体的には、例えば、Me及びMe´がいずれもTiである場合、応答ガラス膜3の表面では、チタノール基がカチオンとの間で電子の授受を行い、応答ガラス膜3の内部では、Ti3+-O-Ti4+とTi4+-O-Ti3+とが相互に変換してホッピング伝導が起こり電子が伝達される。 Specifically, for example, when both Me and Me ′ are Ti, on the surface of the response glass film 3, the titanol groups exchange electrons with cations, and within the response glass film 3, Ti 3 + -O-Ti 4+ and Ti 4+ -O-Ti 3+ are converted into each other to cause hopping conduction and transfer of electrons.
 また、Me及びMe´がいずれもFeである場合は、Fe2+-O-Fe3+とFe3+-O-Fe2+とが相互に変換してホッピング伝導が起こり、Me及びMe´がいずれもVである場合は、V4+-O-V5+とV5+-O-V4+とが相互に変換してホッピング伝導が起こる。 Further, when both Me and Me ′ are Fe, Fe 2+ —O—Fe 3+ and Fe 3+ —O—Fe 2+ are mutually converted to cause hopping conduction, and both Me and Me ′ are V In this case, V 4+ -OV 5+ and V 5+ -OV 4+ are converted into each other to cause hopping conduction.
 更に、MeがFeでMe´がVである場合は、例えば、Fe2+-O-V5+、Fe3+-O-V4+、Fe3+-O-V5+及びFe2+-O-V4+が相互に変換してホッピング伝導が起こる。 Furthermore, when Me is Fe and Me ′ is V, for example, Fe 2+ -OV 5+ , Fe 3+ -OV 4+ , Fe 3+ -OV 5+ and Fe 2+ -OV 4+ Converting to hopping conduction occurs.
 MeとMe´との酸化数が離れている場合は、電子の移動がスムーズになり、結果として比抵抗が下がる効果にあり、MeとMe´とが互いに異なる元素である場合は、ガラス化しやすいという効果がある。 When Me and Me ′ have different oxidation numbers, the movement of electrons is smooth, and as a result, the specific resistance is reduced. When Me and Me ′ are different elements, they are easily vitrified. There is an effect.
 なお、Ti以外のMe(又はMe´)が取り得る酸化数はそれぞれ下記表1に記載のとおりである。 The oxidation numbers that Me (or Me ′) other than Ti can take are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 応答ガラス膜3を構成する酸化物ガラスは、リン酸塩ガラス、ケイ酸塩ガラス、ホウ酸塩ガラス、及び、オキシナイトライドガラスのいずれであってもよいが、なかでもリン酸塩ガラスが好ましい。このようなリン酸塩ガラスを応答ガラス膜3に用いると、ガラス電極1自体の軽量化を図ることができるうえ、電気抵抗(比抵抗)が低いことからイオン応答性を向上させることもできる。そして、電気抵抗(比抵抗)が低いため、機械的強度等も考慮し、歪みを柔軟に設定することができ、応答ガラス膜3を設計する際の自由度を大幅に高めることができる。 The oxide glass constituting the response glass film 3 may be any of phosphate glass, silicate glass, borate glass, and oxynitride glass, and phosphate glass is particularly preferable. . When such a phosphate glass is used for the response glass film 3, it is possible to reduce the weight of the glass electrode 1 itself and to improve the ion responsiveness because of its low electric resistance (specific resistance). And since electric resistance (specific resistance) is low, considering mechanical strength etc., distortion can be set flexibly and the freedom degree at the time of designing the response glass film | membrane 3 can be raised significantly.
 更に、応答ガラス膜3を構成する酸化物ガラスは、原料として、例えばAl等の酸化数が+3~+5である金属の酸化物を含有していてもよい。このようなものであれば、耐蝕性がより向上しうる。 Further, the oxide glass constituting the response glass film 3 may contain a metal oxide having an oxidation number of +3 to +5 such as Al 2 O 3 as a raw material. If it is such, corrosion resistance can improve more.
 また、応答ガラス膜3を構成する酸化物ガラスは、Sc、Y、ランタノイド等の3族の元素を含有していてもよい。このようなものであれば、アルカリ誤差を低減することができる。これらの3族の元素は単独で用いられてもよく、2種以上が併用されてもよい。 Further, the oxide glass constituting the response glass film 3 may contain a Group 3 element such as Sc, Y, or a lanthanoid. If it is such, an alkali error can be reduced. These Group 3 elements may be used alone or in combination of two or more.
 更に、応答ガラス膜3を構成する酸化物ガラスは、原料として、酸化バリウム(BaO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)等のアルカリ土類金属の酸化物を含有していてもよい。このようなものであれば、アルカリ応答性を抑制することができる。これらの酸化物は単独で用いられてもよく、2種以上が併用されてもよい。 Further, the oxide glass constituting the response glass film 3 may contain an oxide of an alkaline earth metal such as barium oxide (BaO), calcium oxide (CaO), strontium oxide (SrO) as a raw material. . If it is such, alkali responsiveness can be suppressed. These oxides may be used alone or in combination of two or more.
 本実施形態において応答ガラス膜3を構成する酸化物ガラスとしては、比抵抗が3×1010Ω・cm以下であるものが好ましい。比抵抗が3×1010Ω・cmを超えると感度が50%を下回ることがあり、充分なイオン応答性が得られない場合がある。なお、ここで、感度とは、ネルンスト応答における理論値を100%として表した値である。 In the present embodiment, the oxide glass constituting the response glass film 3 preferably has a specific resistance of 3 × 10 10 Ω · cm or less. If the specific resistance exceeds 3 × 10 10 Ω · cm, the sensitivity may be less than 50%, and sufficient ion response may not be obtained. Here, the sensitivity is a value expressed with the theoretical value in the Nernst response as 100%.
 このような応答ガラス膜3を構成する酸化物ガラスは、例えば、MeとMe´とが同じものである場合、+(n±m)であるMeの酸化物、更に必要に応じて酸化数が+nであるMeの酸化物を含む原料化合物を秤量・混合し、Nガス等による還元雰囲気下で溶融した後、冷却することにより製造される。この際、溶融を還元雰囲気下で行うのは、ガラス中のMeが酸化数+(n±m)であるものに偏るのを防ぐためである。 For example, when Me and Me ′ are the same, the oxide glass constituting such a response glass film 3 has an oxide of Me that is + (n ± m), and further has an oxidation number as required. It is manufactured by weighing and mixing a raw material compound containing an oxide of Me that is + n, melting in a reducing atmosphere such as N 2 gas, and then cooling. At this time, the melting is performed in a reducing atmosphere in order to prevent the Me in the glass from being biased toward the oxidation number + (n ± m).
 応答ガラス膜3のイオン応答性を向上させるためには、更に200~1000℃でアニーリングを行い、応答ガラス膜3の表面のみを酸化して、Me-Oを増加させてもよい。また、MeがTiである場合は、応答ガラス膜3の表面のみを酸化することにより、応答ガラス膜3表面のチタノール基を増加して、応答ガラス膜3内部における電子伝達は阻害せずに、光触媒作用を発現させることも可能となる。 In order to improve the ion responsiveness of the response glass film 3, annealing may be further performed at 200 to 1000 ° C. to oxidize only the surface of the response glass film 3 to increase Me—O 2 . Further, when Me is Ti, by oxidizing only the surface of the response glass film 3, the titanol group on the surface of the response glass film 3 is increased, and electron transfer inside the response glass film 3 is not hindered. It is also possible to develop a photocatalytic action.
 ガラス電極1を用いて試料溶液のイオン濃度を測定する際には、ガラス電極1の応答ガラス膜3をイオン濃度を求めたい試料溶液に浸すと、応答ガラス膜3に内部液5と試料溶液との間のイオン濃度の差に応じた起電力が生じる。この起電力を、図示しない比較電極を用いて、ガラス電極1の内部電極4と比較電極の内部電極の電位差(電圧)として測定してイオン濃度を算出する。この起電力は温度によって変動するため、温度素子を用い、この出力信号値をパラメータとして前記電位差を補正して、試料溶液のイオン濃度を算出しイオン濃度計本体に表示することが好ましい。 When measuring the ion concentration of the sample solution using the glass electrode 1, if the response glass film 3 of the glass electrode 1 is immersed in the sample solution whose ion concentration is to be obtained, the internal liquid 5 and the sample solution An electromotive force is generated according to the difference in ion concentration between the two. This electromotive force is measured as a potential difference (voltage) between the internal electrode 4 of the glass electrode 1 and the internal electrode of the comparative electrode using a comparative electrode (not shown) to calculate the ion concentration. Since this electromotive force varies depending on temperature, it is preferable to use a temperature element, correct the potential difference using this output signal value as a parameter, calculate the ion concentration of the sample solution, and display it on the ion concentration meter main body.
 本実施形態における応答ガラス膜3として、70mol%TiOと30mol%Pとからなるチタノリン酸ガラスから構成されたものを作製した。当該チタノリン酸ガラスのTi3+/Ti4+(モル比)を光吸収スペクトル法で調べたところ、0.06~0.15であった。この応答ガラス膜3を備えたガラス電極1(本発明品)の極性有機溶媒中でのpH応答性を調べるために、pH7の水性緩衝液から99.5%エタノールに測定液を切り替えたときのpH応答性(指示安定性)を調べた。この際、比較として、従来のリチウムシリケートガラスからなる応答ガラス膜を備えた電極(従来品)と、他社の非水溶媒用電極(他社製品)を用いた。その結果、図3のグラフに示すように、本発明品のpH応答性は抜きんでて優れていた。 In response glass membrane 3 in the present embodiment was fabricated that consists Chitanorin silicate glass consisting 70 mol% TiO 2 and 30mol% P 2 O 5 Prefecture. When Ti 3+ / Ti 4+ (molar ratio) of the titanophosphate glass was examined by a light absorption spectrum method, it was 0.06 to 0.15. In order to investigate the pH response of the glass electrode 1 (product of the present invention) provided with the response glass film 3 in a polar organic solvent, the measurement solution was switched from an aqueous buffer solution of pH 7 to 99.5% ethanol. The pH response (indicated stability) was examined. At this time, for comparison, an electrode (conventional product) provided with a response glass film made of conventional lithium silicate glass and a nonaqueous solvent electrode (commercial product) of another company were used. As a result, as shown in the graph of FIG. 3, the product of the present invention was excellent in pH responsiveness.
 また、本実施形態における応答ガラス膜3として、更に、74mol%TiOと26mol%Pとからなるチタノリン酸ガラスから構成されるものを作製した。当該チタノリン酸ガラスのTi3+/Ti4+(モル比)を光吸収スペクトル法で調べたところ、10-4~0.2であった。この応答ガラス膜3を備えたガラス電極1を作製し、水性の緩衝液を用いてpH7→pH4→pH9の順で電位測定を3回行ったところ、図4のグラフに示すように、良好なpH応答性を示した。また、この電位測定の結果から、pH4-9間のpH感度を求めたところ79.6%であった。なおここで、「感度」とは、ネルンスト応答における理論値を100%として表した値である。 In addition, as the response glass film 3 in the present embodiment, a glass composed of titanophosphate glass composed of 74 mol% TiO 2 and 26 mol% P 2 O 5 was further produced. When Ti 3+ / Ti 4+ (molar ratio) of the titanophosphate glass was examined by a light absorption spectrum method, it was 10 −4 to 0.2. When the glass electrode 1 provided with the response glass film 3 was prepared and the potential was measured three times in the order of pH 7 → pH 4 → pH 9 using an aqueous buffer solution, as shown in the graph of FIG. It showed pH responsiveness. From the result of this potential measurement, the pH sensitivity between pH 4-9 was determined to be 79.6%. Here, the “sensitivity” is a value that represents the theoretical value in the Nernst response as 100%.
 また、本ガラス電極1は、アルカリ水溶液(pH13)の測定に使用した後、酸で洗浄することにより、アルカリ水溶液測定前と同等の応答性を回復することが可能であると思われる。 Moreover, it seems that the glass electrode 1 can recover the same responsiveness as before the measurement of the alkaline aqueous solution by washing with an acid after being used for the measurement of the alkaline aqueous solution (pH 13).
 したがって、このように構成した本実施形態に係るガラス電極1によれば、応答ガラス膜3に用いられる酸化物ガラスがイオン導電物質を含有していなくとも電気伝導性を示すので、良好なイオン応答性を発現することが可能となる。 Therefore, according to the glass electrode 1 according to the present embodiment configured as described above, the oxide glass used for the response glass film 3 exhibits electrical conductivity even if it does not contain an ion conductive material, and therefore has a good ion response. It becomes possible to express sex.
 また、ガラス電極1の応答ガラス膜3は、イオン導電物質を含有しない酸化物ガラスからなるので、イオン導電物質を含有するものに比べて、以下のような有利な特徴を有する。すなわち、(1)ガラス骨格の結合数がより多くなるので耐久性・耐蝕性が向上する。(2)イオン導電性ではなく、電子導電性であるため、電気抵抗(比抵抗)が低下してイオン応答性が向上する。(3)電気抵抗(比抵抗)が低いので膜厚を厚くして強度を向上することができる。(4)組成が単純であるのでガラスの再生が容易である。(5)水溶液中に浸漬してもイオン導電カチオンが溶出することがないので、使用に伴い水和層の厚さが増してイオン応答速度が低下することがない。(6)極性有機溶媒中に浸漬してもイオン導電物質がガラス膜表面に局在したり溶媒中に引き抜かれたりして電気伝導性が阻害されることがないので極性有機溶媒中でも高いイオン応答速度を維持することができる。 Further, since the response glass film 3 of the glass electrode 1 is made of an oxide glass containing no ion conductive material, it has the following advantageous characteristics as compared with those containing an ion conductive material. That is, (1) since the number of bonds in the glass skeleton is increased, durability and corrosion resistance are improved. (2) Since it is not ionic conductivity but electronic conductivity, the electrical resistance (specific resistance) is lowered and the ion responsiveness is improved. (3) Since the electric resistance (specific resistance) is low, the film thickness can be increased to improve the strength. (4) Since the composition is simple, it is easy to regenerate the glass. (5) Since ion conductive cations do not elute even when immersed in an aqueous solution, the thickness of the hydrated layer does not increase with use and the ion response speed does not decrease. (6) Even when immersed in a polar organic solvent, the ionic conductive material is not localized on the glass film surface or drawn into the solvent, and the electrical conductivity is not hindered. The speed can be maintained.
 なお、本発明は、前記実施形態に限られるものではない。 The present invention is not limited to the above embodiment.
 例えば、本発明のイオン選択性電極はガラス電極1に限られず、ガラス電極と比較電極を一体化した複合電極や、複合電極に更に温度補償電極を加えて一体化した一本電極であってもよい。 For example, the ion selective electrode of the present invention is not limited to the glass electrode 1, but may be a composite electrode in which the glass electrode and the reference electrode are integrated, or a single electrode in which the temperature compensation electrode is further added to the composite electrode. Good.
 また、本発明に係るガラス電極1の応答ガラス膜3は、比抵抗が低く膜厚を厚くしても良好なイオン応答性を発現することができるので、板状の酸化物ガラスを切削研磨することにより作製されたものや、溶融した酸化物ガラスを所定の型に流し込んで成型することによって作製されたものであってもよい。このようにして得られた応答ガラス膜3は機械的強度が高いので、接着剤又は機械的な機構(メカニカルシール)を用いて支持管2の一端開口部に接合して封止することにより、図5に示すようなガラス電極1を作製することができる。このような構成を有するガラス電極1の支持管2としては、例えば、耐食性や機械的強度に優れたホウケイ酸塩ガラスやフッ素樹脂等からなるものを用いることできる。 Further, since the response glass film 3 of the glass electrode 1 according to the present invention has a low specific resistance and can exhibit a good ion response even when the film thickness is increased, the plate-like oxide glass is cut and polished. It may be produced by casting a molten oxide glass into a predetermined mold and molding it. Since the response glass film 3 obtained in this way has high mechanical strength, it is sealed by bonding to one end opening of the support tube 2 using an adhesive or a mechanical mechanism (mechanical seal). A glass electrode 1 as shown in FIG. 5 can be produced. As the support tube 2 of the glass electrode 1 having such a configuration, for example, one made of borosilicate glass or fluororesin having excellent corrosion resistance and mechanical strength can be used.
 その他、本発明は、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.
 本発明によれば、耐久性・耐蝕性に優れ、長寿命であり、比抵抗が低く、膜厚を厚くしてタフガラス化することが可能な酸化物ガラスからなる応答ガラス膜及びそれを備えたガラス電極を得ることができる。また、本発明に係る応答ガラス膜は、組成が単純であるので、再生が容易であり、環境保護の点からも優れている。 According to the present invention, there is provided a response glass film made of an oxide glass that is excellent in durability and corrosion resistance, has a long life, has a low specific resistance, and can be made tough vitrified by increasing the film thickness. A glass electrode can be obtained. Moreover, since the response glass film according to the present invention has a simple composition, it can be easily regenerated and is excellent in terms of environmental protection.
1…ガラス電極
2…支持管
3…応答ガラス膜
4…内部電極
5…内部液
6…リード線
DESCRIPTION OF SYMBOLS 1 ... Glass electrode 2 ... Support tube 3 ... Response glass film 4 ... Internal electrode 5 ... Internal liquid 6 ... Lead wire

Claims (5)

  1.  酸化数が+nであるMeと酸化数が+(n±m)であるMe´(Me及びMe´はdブロック元素の遷移金属を表し、Me及びMe´は同じでも異なっていてもよく、nは1以上の整数を表し、mは1~3の整数を表す。)とを、(酸化数が+nであるMe)/(酸化数が+(n±m)であるMe´)=0.0001~0.6のモル比で含有する酸化物ガラスからなることを特徴とするイオン選択性電極用応答ガラス膜。 Me having an oxidation number of + n and Me ′ having an oxidation number of + (n ± m) (Me and Me ′ represent transition metals of d block elements, and Me and Me ′ may be the same or different, and n Represents an integer of 1 or more and m represents an integer of 1 to 3.) (Me having an oxidation number of + n) / (Me ′ having an oxidation number of + (n ± m)) = 0. A response glass membrane for an ion-selective electrode, comprising an oxide glass containing a molar ratio of 0001 to 0.6.
  2.  前記酸化物ガラスが、リン酸塩ガラス、ケイ酸塩ガラス、ホウ酸塩ガラス又はオキシナイトライドガラスである請求項1記載のイオン選択性電極用応答ガラス膜。 The response glass membrane for an ion-selective electrode according to claim 1, wherein the oxide glass is phosphate glass, silicate glass, borate glass or oxynitride glass.
  3.  前記酸化物ガラスが、3族の元素を含有する請求項1記載のイオン選択性電極用応答ガラス膜。 The response glass membrane for an ion-selective electrode according to claim 1, wherein the oxide glass contains a Group 3 element.
  4.  前記酸化物ガラスが、原料として、アルカリ土類金属の酸化物を含有する請求項1記載のイオン選択性電極用応答ガラス膜。 The responsive glass membrane for an ion-selective electrode according to claim 1, wherein the oxide glass contains an oxide of an alkaline earth metal as a raw material.
  5.  酸化数が+nであるMeと酸化数が+(n±m)であるMe´(Me及びMe´はdブロック元素の遷移金属を表し、Me及びMe´は同じでも異なっていてもよく、nは1以上の整数を表し、mは1~3の整数を表す。)とを、(酸化数が+nであるMe)/(酸化数が+(n±m)であるMe´)=0.0001~0.6のモル比で含有する酸化物ガラスからなる応答ガラス膜を備えていることを特徴とするイオン選択性電極。 Me having an oxidation number of + n and Me ′ having an oxidation number of + (n ± m) (Me and Me ′ represent transition metals of d block elements, and Me and Me ′ may be the same or different, and n Represents an integer of 1 or more and m represents an integer of 1 to 3.) (Me having an oxidation number of + n) / (Me ′ having an oxidation number of + (n ± m)) = 0. An ion-selective electrode comprising a response glass film made of an oxide glass containing a molar ratio of 0001 to 0.6.
PCT/JP2009/070030 2008-12-25 2009-11-27 Responsive glass membrane for ion-selective electrode, and ion-selective electrode WO2010073875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543989A JP5791023B2 (en) 2008-12-25 2009-11-27 Ion-responsive glass membrane for ion-selective electrode, ion-selective electrode, and ion concentration meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329713 2008-12-25
JP2008329713 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010073875A1 true WO2010073875A1 (en) 2010-07-01

Family

ID=42287493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070030 WO2010073875A1 (en) 2008-12-25 2009-11-27 Responsive glass membrane for ion-selective electrode, and ion-selective electrode

Country Status (2)

Country Link
JP (1) JP5791023B2 (en)
WO (1) WO2010073875A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210055252A1 (en) * 2019-08-21 2021-02-25 Endress+Hauser Conducta Gmbh+Co. Kg Sensor element for a potentiometric sensor and respective manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357895A (en) * 1976-11-04 1978-05-25 Mihairobuitsuchi Shiyu Mihairu Glass electrode
JPS60200840A (en) * 1984-03-23 1985-10-11 Takeshi Nomura Glass electrode film selective for anion
JP2008241696A (en) * 2007-02-26 2008-10-09 Mie Univ Responsive glass for ion selective electrode and ion selective electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357895A (en) * 1976-11-04 1978-05-25 Mihairobuitsuchi Shiyu Mihairu Glass electrode
JPS60200840A (en) * 1984-03-23 1985-10-11 Takeshi Nomura Glass electrode film selective for anion
JP2008241696A (en) * 2007-02-26 2008-10-09 Mie Univ Responsive glass for ion selective electrode and ion selective electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210055252A1 (en) * 2019-08-21 2021-02-25 Endress+Hauser Conducta Gmbh+Co. Kg Sensor element for a potentiometric sensor and respective manufacturing method
US11692961B2 (en) * 2019-08-21 2023-07-04 Endress+Hauser Conducta Gmbh+Co. Kg Sensor element for a potentiometric sensor and respective manufacturing method

Also Published As

Publication number Publication date
JPWO2010073875A1 (en) 2012-06-14
JP5791023B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
CN103214172B (en) The manufacture method of chemically reinforced glass plate
JP5029014B2 (en) Semiconductor sealing glass, semiconductor sealing outer tube, and semiconductor electronic component
JP5890393B2 (en) Low expansion glass, tempered glass, and method for producing tempered glass
CN104302591A (en) Toughened glass substrate and manufacturing process therefor
WO2012002174A1 (en) Lead-free glass for sealing semiconductor
WO2012063726A1 (en) Lead-free glass for encapsulating semiconductor, and overcoat tube for encapsulating semiconductor
US4028196A (en) PH Responsive glass compositions and electrodes
TW201402506A (en) Ion exchangeable transition metal-containing glasses
JP5009318B2 (en) Ion selective electrode
US2497235A (en) ph-responsive glass electrodes
JP5791023B2 (en) Ion-responsive glass membrane for ion-selective electrode, ion-selective electrode, and ion concentration meter
JP5335288B2 (en) Glass electrode and its response glass
JP6305505B2 (en) Sodium-resistant bonded glass and use thereof
US3433749A (en) Glass electrode compositions
JPWO2010050590A1 (en) Glass paste
JP6489414B2 (en) Glass manufacturing method
JP2016155730A (en) Heat insulation material
KR20140020222A (en) Ionically conductive material and process for producing same
US20240132009A1 (en) Joint connection comprising a glass, glass, in particular for producing a joint connection, and feedthrough comprising a glass and/or a joint connection, and method for producing same
JP2005207887A (en) Electrode support member and electrochemical sensor
WO2018190056A1 (en) Crystalline glass composition
JP2001220170A (en) Glass and method of forming mold lens by using that glass
JPH08198638A (en) Lithium ion conductive glass
JPH04175271A (en) Glass joining body and production thereof
US3773642A (en) Electron-conductive glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834679

Country of ref document: EP

Kind code of ref document: A1