WO2010073630A1 - Mobile body communication system - Google Patents

Mobile body communication system Download PDF

Info

Publication number
WO2010073630A1
WO2010073630A1 PCT/JP2009/007133 JP2009007133W WO2010073630A1 WO 2010073630 A1 WO2010073630 A1 WO 2010073630A1 JP 2009007133 W JP2009007133 W JP 2009007133W WO 2010073630 A1 WO2010073630 A1 WO 2010073630A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
mobile terminal
henb
csg
operation mode
Prior art date
Application number
PCT/JP2009/007133
Other languages
French (fr)
Japanese (ja)
Inventor
前田美保
望月満
三枝大我
岩根靖
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2010073630A1 publication Critical patent/WO2010073630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to a mobile communication system in which a base station performs wireless communication with a plurality of mobile terminals.
  • the W-CDMA Wideband Code Division Multiple Access
  • HS-DSCH High Speed-Downlink Shared Channel
  • HSDPA High Speed Down Link Link Packet Access
  • HSUPA High Speed Up Link Link Packet Access
  • LTE Long Term Evolution LTE
  • SAE Architecture Evolution
  • LTE Long Term Evolution
  • the access scheme, radio channel configuration, and protocol are completely different from those of the current W-CDMA (HSDPA / HSUPA).
  • W-CDMA uses code division multiple access (Code Division Multiple Access)
  • LTE has OFDM (Orthogonal Frequency Division Multiplexing) in the downlink direction
  • SC-FDMA Single in the uplink direction.
  • LTE is defined as an independent radio access network separate from the W-CDMA network because the communication system is configured using a new core network different from the W-CDMA core network (GPRS). Therefore, in order to distinguish from a W-CDMA communication system, in an LTE communication system, a base station (Base station) that communicates with a mobile terminal (UE: User Equipment) is an eNB (E-UTRAN NodeB), and a plurality of base stations A base station controller (Radio Network Controller) that exchanges control data and user data is referred to as EPC (Evolved Packet Core) (sometimes referred to as aGW: Access Gateway).
  • EPC Evolved Packet Core
  • a unicast service and an E-MBMS service (Evolved Multimedia Broadcast Multicast Service) are provided.
  • the E-MBMS service is a broadcast-type multimedia service and may be simply referred to as MBMS. Mass broadcast contents such as news, weather forecasts, and mobile broadcasts are transmitted to a plurality of mobile terminals. This is also called a point-to-multipoint service.
  • Non-Patent Document 1 describes the current decisions regarding the overall architecture of the LTE system in 3GPP.
  • the overall architecture (Chapter 4 of Non-Patent Document 1) will be described with reference to FIG.
  • FIG. 1 is an explanatory diagram illustrating a configuration of an LTE communication system.
  • a control protocol for example, RRC (Radio Resource Management)
  • a user plane for example, PDCP: Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical layer
  • the base station 102 performs scheduling (Scheduling) and transmission of a paging signal (also referred to as a paging message or paging message) notified from the MME 103 (Mobility Management Entity).
  • Base stations 102 are connected to each other via an X2 interface.
  • the base station 102 is connected to an EPC (Evolved Packet Core) through an S1 interface. More specifically, it is connected to the MME 103 (Mobility Management Entity) via the S1_MME interface, and is connected to the S-GW 104 (Serving Gateway) via the S1_U interface.
  • the MME 103 distributes the paging signal to a plurality or a single base station 102.
  • the MME 103 performs mobility control (Mobility control) in an idle state.
  • the MME 103 manages a tracking area list when the mobile terminal is in a standby state and an active state.
  • the S-GW 104 transmits / receives user data to / from one or a plurality of base stations 102.
  • the S-GW 104 becomes a local mobility anchor point at the time of handover between base stations.
  • P-GW PDN Gateway
  • Non-Patent Document 1 (Chapter 5) describes the current decisions regarding the frame configuration in the LTE system in 3GPP. This will be described with reference to FIG.
  • FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in the LTE communication system.
  • one radio frame (Radio frame) is 10 ms.
  • the radio frame is divided into 10 equally sized sub-frames.
  • the subframe is divided into two equally sized slots.
  • a downlink synchronization signal (Downlink Synchronization Signal: SS) is included in the first (# 0) and sixth (# 5) subframes for each frame.
  • SS Downlink Synchronization Signal
  • the synchronization signal includes a first synchronization signal (Primary Synchronization Signal: P-SS) and a second synchronization signal (Secondary Synchronization Signal: S-SS).
  • P-SS Primary Synchronization Signal
  • S-SS Secondary Synchronization Signal
  • Channels other than MBSFN (Multimedia (Broadcast multicast service Single Frequency Network) and channels other than MBSFN are performed on a subframe basis.
  • MBSFN subframe MBSFN subframe
  • Non-Patent Document 2 describes a signaling example at the time of MBSFN subframe allocation.
  • FIG. 3 is an explanatory diagram showing the configuration of the MBSFN frame.
  • an MBSFN subframe is allocated for each MBSFN frame (MBSFN frame).
  • a set of MBSFN frames (MBSFN frame Cluster) is scheduled.
  • a repetition period (Repetition Period) of a set of MBSFN frames is assigned.
  • Non-Patent Document 1 describes the current decisions regarding the channel configuration in the LTE system in 3GPP. It is assumed that the same channel configuration as a non-CSG cell is used in a CSG (Closed ⁇ Subscriber-Group cell) cell.
  • a physical channel (Non-Patent Document 1, Chapter 5) will be described with reference to FIG.
  • FIG. 4 is an explanatory diagram illustrating physical channels used in the LTE communication system.
  • a physical broadcast channel 401 PhysicalPhysBroadcast channel: PBCH
  • PBCH Physical PhysicalPhysBroadcast channel
  • the BCH transport block transport block
  • a physical control channel format indicator channel 402 (Physical Control indicator channel: PCFICH) is transmitted from the base station 102 to the mobile terminal 101. PCFICH notifies base station 102 to mobile terminal 101 about the number of OFDM symbols used for PDCCHs. PCFICH is transmitted for each subframe.
  • a physical downlink control channel 403 (Physical downlink control channel: PDCCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDCCH includes resource allocation, HARQ information regarding DL-SCH (downlink shared channel which is one of the transport channels shown in FIG. 5), and PCH (paging which is one of the transport channels shown in FIG. 5). Channel).
  • the PDCCH carries an uplink scheduling grant (Uplink Scheduling Grant).
  • the PDCCH carries ACK / Nack that is a response signal for uplink transmission.
  • the PDCCH is also called an L1 / L2 control signal.
  • a physical downlink shared channel 404 (Physical downlink shared channel: PDSCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDSCH is mapped with DL-SCH (downlink shared channel) which is a transport channel and PCH which is a transport channel.
  • a physical multicast channel 405 (Physical multicast channel: PMCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PMCH is mapped with MCH (multicast channel) which is a transport channel.
  • a physical uplink control channel 406 (Physical Uplink control channel: PUCCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102.
  • the PUCCH carries ACK / Nack which is a response signal (response) to downlink transmission.
  • the PUCCH carries a CQI (Channel Quality Indicator) report.
  • CQI is quality information indicating the quality of received data or channel quality.
  • the PUCCH carries a scheduling request (Scheduling Request: SR).
  • a physical uplink shared channel 407 (Physical Uplink shared channel: PUSCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102.
  • a physical HARQ indicator channel 408 Physical Hybrid ARQ indicator: PHICH
  • the PHICH carries ACK / Nack that is a response to uplink transmission.
  • a physical random access channel 409 Physical random access channel: PRACH
  • PRACH Physical random access channel
  • a symbol known as a mobile communication system is inserted into the first, third and last OFDM symbols of each slot.
  • RSRP reference symbol received power
  • FIG. 5 is an explanatory diagram for explaining a transport channel used in an LTE communication system.
  • FIG. 5A shows mapping between the downlink transport channel and the downlink physical channel.
  • FIG. 5B shows mapping between the uplink transport channel and the uplink physical channel.
  • a broadcast channel (Broadcast channel: BCH) is broadcast to the entire base station (cell).
  • BCH is mapped to the physical broadcast channel (PBCH).
  • Retransmission control by HARQ Hybrid ARQ
  • DL-SCH Downlink Shared channel
  • Broadcasting to the entire base station (cell) is possible.
  • Quasi-static resource allocation is also called Persistent Scheduling.
  • DRX Discontinuous reception
  • the DL-SCH is mapped to the physical downlink shared channel (PDSCH).
  • a paging channel (Paging channel: PCH) supports DRX of the mobile terminal in order to enable low power consumption of the mobile terminal. Notification to the entire base station (cell) is required. It is mapped to a physical resource such as a physical downlink shared channel (PDSCH) that can be dynamically used for traffic, or a physical resource such as a physical downlink control channel (PDCCH) of another control channel.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • Multicast channel is used for broadcasting to the entire base station (cell).
  • MCH multicast channel
  • MCH is mapped to PMCH.
  • HARQ Hybrid ARQ
  • UL-SCH Uplink Shared channel
  • PUSCH physical uplink shared channel
  • RACH Random access channel
  • FIG. 5B The random access channel (Random access channel: RACH) shown in FIG. 5B is limited to control information. There is a risk of collision.
  • the RACH is mapped to a physical random access channel (PRACH).
  • PRACH physical random access channel
  • HARQ is a technology for improving the communication quality of a transmission path by combining automatic retransmission (Automatic Repeat request) and error correction (Forward Error Correction).
  • error correction functions effectively by retransmission even for a transmission path in which communication quality changes.
  • further quality improvement can be obtained by combining the reception result of the initial transmission and the reception result of the retransmission upon retransmission.
  • “Ack” is transmitted from the reception side to the transmission side.
  • the transmitting side that has received “Ack” transmits the next data.
  • An example of the HARQ system is “Chase Combining”.
  • Chase combining is a method in which the same data sequence is transmitted for initial transmission and retransmission, and the gain is improved by combining the initial transmission data sequence and the retransmission data sequence in retransmission. The idea is that even if there is an error in the initial transmission data, it is partially accurate, and it is possible to transmit data with higher accuracy by combining the initial transmission data and the retransmission data of the correct part. Based on.
  • IR Intelligent Redundancy
  • IR is to increase redundancy. By transmitting parity bits in retransmission, the redundancy is increased in combination with the initial transmission, and the quality is improved by the error correction function.
  • FIG. 6 is an explanatory diagram illustrating logical channels used in the LTE communication system.
  • FIG. 6A shows mapping between the downlink logical channel and the downlink transport channel.
  • FIG. 6B shows mapping between the uplink logical channel and the uplink transport channel.
  • the broadcast control channel (Broadcast control channel: CHBCCH) is a downlink channel for broadcast system control information.
  • the BCCH that is a logical channel is mapped to a broadcast channel (BCH) that is a transport channel or a downlink shared channel (DL-SCH).
  • a paging control channel (Paging control channel: PCCH) is a downlink channel for transmitting a paging signal.
  • PCCH paging control channel
  • PCCH is used when the network does not know the cell location of the mobile terminal.
  • the PCCH that is a logical channel is mapped to a paging channel (PCH) that is a transport channel.
  • the shared control channel (Common control channel: CCCC) is a channel for transmission control information between the mobile terminal and the base station.
  • CCCH is used when the mobile terminal does not have an RRC connection with the network.
  • the CCCH is mapped to a downlink shared channel (DL-SCH) that is a transport channel.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the multicast control channel (Multicast control channel: MCCH) is a downlink channel for one-to-many transmission. This is a channel used for transmission of MBMS control information for one or several MTCHs from the network to the mobile terminal.
  • MCCH is a channel used only for a mobile terminal receiving MBMS.
  • MCCH is mapped to a downlink shared channel (DL-SCH) or multicast channel (MCH) which is a transport channel.
  • the dedicated control channel (Dedicated control channel: DCCH) is a channel that transmits dedicated control information between the mobile terminal and the network.
  • the DCCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink.
  • the dedicated traffic channel (Dedicate Traffic channel: DTCH) is a channel for one-to-one communication to an individual mobile terminal for transmitting user information.
  • DTCH exists for both uplink and downlink.
  • the DTCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink.
  • a multicast traffic channel (Multicast Traffic channel: MTCH) is a downlink channel for transmitting traffic data from a network to a mobile terminal.
  • MTCH is a channel used only for a mobile terminal that is receiving MBMS.
  • the MTCH is mapped to the downlink shared channel (DL-SCH) or multicast channel (MCH).
  • GCI is a global cell identity.
  • a CSG cell (Closed Subscriber Group cell) is introduced in LTE and UMTS (Universal Mobile Telecommunication System). CSG will be described below (Chapter 3.1 of Non-Patent Document 4).
  • a CSG (Closed Subscriber Group) is a cell in which an operator identifies an available subscriber (a cell for a specific subscriber). The identified subscriber is allowed to access one or more E-UTRAN cells of the Public Land Mobile Network (PLMN). One or more E-UTRAN cells to which the identified subscribers are allowed access are referred to as “CSG cell (s)”. However, PLMN has access restrictions.
  • a CSG cell is a part of a PLMN that broadcasts a unique CSG identity (CSG identity: CSG ID, CSG-ID). Members of the subscriber group who have been registered for use in advance and access the CSG cell using the CSG-ID as access permission information.
  • the CSG-ID is broadcast by the CSG cell or the cell. There are a plurality of CSG-IDs in a mobile communication system.
  • the CSG-ID is then used by the terminal (UE) to facilitate access of CSG related members. It has been discussed at the 3GPP meeting that the CSG cell or information broadcast by the cell is set to a tracking area code (TAC) instead of a CSG-ID.
  • TAC tracking area code
  • the position tracking is to enable tracking of the position of the mobile terminal and calling (the mobile terminal receives a call) even when communication is not performed (standby state).
  • This area for tracking the location of the mobile terminal is called a tracking area.
  • the CSG white list is a list stored in the USIM in which all CSG-IDs of CSG cells to which the subscriber belongs are recorded.
  • the white list in the mobile terminal is given by the upper layer. Thereby, the base station of the CSG cell allocates radio resources to the mobile terminal.
  • Suitable cell will be described below (Non-Patent Document 4, Chapter 4.3).
  • a “suitable cell” is a cell that the UE camps on to receive normal service. Such a cell was provided by (1) the selected PLMN or registered PLMN, or part of the PLMN in the “Equivalent PLMN list”, (2) NAS (non-access stratum) The latest information must satisfy the following conditions. (1) The cell is not a barred cell. (2) The cell is not part of the “Prohibited LAs for roaming” list, but part of at least one tracking area (Tracking Area: TA).
  • Tracking Area TA
  • the cell needs to satisfy the above (1), (3) the cell satisfies the cell selection evaluation criteria, and (4) the cell is a system information (System Information: SI) as a CSG cell. ),
  • SI System Information
  • the CSG-ID shall be part of the UE's “CSG White List” (CSG White List) (included in the UE CSG White List).
  • “Acceptable cell” is described below (Chapter 4.3 of Non-Patent Document 4). This is a cell where the UE camps on in order to receive a limited service (emergency call). Such a cell shall meet all the following requirements: That is, the minimum set of requirements for initiating an emergency call in an E-UTRAN network is shown below. (1) The cell is not a barred cell. (2) The cell satisfies the cell selection evaluation criteria.
  • 3GPP TS36.300 V8.6.0 3GPP R1-072963 TR R3.020V0.6.0
  • 3GPP TS36.304 V8.3.0
  • 3GPP R2-082899 3GPP S1-083461
  • 3GPP R2-086246 3GPP R2-086281
  • 3GPP TS36.331 3GPP R2-094808
  • HeNB and HNB are required to support various services. For example, an operator increases the radio resources that can be used by a mobile terminal by allowing the mobile terminal to be registered in a certain HeNB and HNB and allowing only the registered mobile terminal to access the cell of the HeNB and HNB. To enable high-speed communication. Accordingly, the operator sets the charging fee higher than usual. Service. In order to realize such a service, a CSG (Closed Subscriber Group cell) cell that can be accessed only by registered (subscribed, member) mobile terminals has been introduced.
  • CSG Cell
  • CSG Cell Subscriber Group cells
  • a CSG cell is installed for each store in a shopping street, each room in an apartment, each classroom in a school, and each section in a company, and only a user registered in each CSG cell can use the CSG cell. Is required.
  • Hybrid access mode means "closed access mode” (closed access mode), which is the first operation mode accessible only to registered mobile terminals, and second operation mode accessible to unregistered mobile terminals
  • An operation mode of a CSG cell that simultaneously services both “open access mode” (third operation mode) is shown. In this case, access is permitted to unregistered mobile terminals while determining whether to permit access to registered mobile terminals. Therefore, HeNBs and HNBs that are installed in a large number of shopping streets and condominiums have a mixture of CSG cells that operate in the open access mode and CSG cells that operate in the closed access mode. Further, the HeNB and HNB are assumed to have a portable size and weight, and it is required that their installation and removal be performed frequently and flexibly.
  • radio waves from many different modes of cells are transmitted simultaneously at a certain point. That is, in a shopping street, a condominium, etc., a situation occurs where the mobile terminal is in a position where radio waves from a number of cells in various modes reach.
  • the mobile communication system transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber
  • an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user
  • a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal.
  • the mobile terminal is assigned to each communication cell.
  • Cell identification information which is information for identifying a communication cell, is received from the base station.
  • a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user.
  • Cell identification information that can be used simultaneously with a second operation mode that permits use and that can be assigned to a communication cell includes a first classification assigned to a specific subscriber cell and a second assignment assigned to an unspecified user cell.
  • the cell identification information included in the first classification is assigned to the cell for the specific subscriber that is classified into the classification and operates in the second operation mode.
  • the mobile communication system transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber
  • an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user
  • a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal.
  • the mobile terminal is assigned to each communication cell.
  • Cell identification information which is information for identifying a communication cell, is received from the base station.
  • a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user.
  • the cell identification information that can be operated in the second operation mode that permits use and the third operation mode that simultaneously processes the first operation mode and the second operation mode and that can be assigned to the communication cell is specified. It is classified into the first classification to be assigned to the subscriber cell and the second classification to be assigned to the unspecified user cell, and the specific subscriber cell operating in the third operation mode is included in the first classification. Cell identification information to be assigned.
  • the mobile communication system transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber
  • an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user
  • a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal.
  • the mobile terminal is assigned to each communication cell.
  • Cell identification information which is information for identifying a communication cell, is received from the base station.
  • a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user.
  • Cell identification information that can be used simultaneously with a second operation mode that permits use and that can be assigned to a communication cell includes a first classification assigned to a specific subscriber cell, and a second classification assigned to an unspecified user cell. Since the cell identification information included in the first classification is assigned to the cell for the specific subscriber that is classified into the classification and is operating in the second operation mode, the mobile terminal having the white list can perform the PCI for the CSG cell.
  • an effect that the search operation can be performed at a high speed can be obtained. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained.
  • the mobile communication system transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber
  • an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user
  • a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal.
  • the mobile terminal is assigned to each communication cell.
  • PCI Cell identification information
  • a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user.
  • the cell identification information that can be operated in the second operation mode that permits use and the third operation mode that simultaneously processes the first operation mode and the second operation mode and that can be assigned to the communication cell is specified. It is classified into the first classification assigned to the subscriber cell and the second classification assigned to the unspecified user cell, and the specific subscriber cell operating in the third operation mode is included in the first classification.
  • Cell identification information to be assigned so that a mobile terminal having a white list performs a search using a PCI belonging to the PCI range for the CSG cell, thereby enabling a search operation to be operated at high speed. Can be obtained. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained.
  • FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in an LTE communication system. It is explanatory drawing which shows the structure of a MBSFN (Multimedia
  • MBSFN Multimedia
  • FIG. 6 is a flowchart showing processing of the mobile terminal according to the second embodiment. It is a flowchart which shows the process of the mobile terminal of Embodiment 2 modification.
  • 10 is a flowchart showing processing of a mobile terminal according to the third embodiment. It is a block diagram which shows the whole structure of the mobile communication system currently discussed by 3GPP.
  • FIG. 10 is an explanatory diagram of a cell installation example used in the fourth embodiment.
  • FIG. 10 is a sequence diagram of a mobile communication system in the solution of the fourth embodiment.
  • FIG. 10 is a sequence diagram of a mobile communication system in the solution of the first modification of the fourth embodiment.
  • FIG. 10 is a sequence diagram of a mobile communication system in the solution of the second modification of the fourth embodiment.
  • FIG. 7 is a block diagram showing the overall configuration of an LTE mobile communication system currently under discussion in 3GPP.
  • CSG Cell Subscriber Group
  • e-UTRAN Home-eNodeB Home-eNodeB
  • HNB UTRAN Home-NB
  • eNB non-CSG cells
  • e-UTRAN eNodeB eNodeB
  • NB UTRAN NodeB
  • GERAN BSS GERAN BSS
  • FIG. 7A A mobile terminal (UE) 71 performs transmission / reception with the base station 72.
  • the base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
  • the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME.
  • a plurality of MMEs are connected to one eNB.
  • the Home-eNB 72-2 is connected to the MME 73 via the interface S1, and control information is communicated between the Home-eNB and the MME.
  • a plurality of Home-eNBs are connected to one MME.
  • a mobile terminal (UE) 71 performs transmission / reception with the base station 72.
  • the base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
  • the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME.
  • a plurality of MMEs are connected to one eNB.
  • the Home-eNB 72-2 is connected to the MME 73 via a HeNBGW (Home-eNB Gateway) 74.
  • HeNBGW Home-eNB Gateway
  • Home-eNB and HeGW are connected by an interface S1, and HeNBGW 74 and MME 73 are connected through an interface S1_flex.
  • One or a plurality of Home-eNBs 72-2 are connected to one HeNBGW 74, and information is communicated through S1.
  • the HeNBGW 74 is connected to one or a plurality of MMEs 73, and information is communicated through S1_flex.
  • a plurality of information belonging to the same CSG-ID can be obtained from the MME 73.
  • the Home-eNB 72-2 When transmitting to the Home-eNB 72-2, it is transmitted to the HeNBGW 74 once, and then transmitted to the plurality of Home-eNBs 7-2, thereby signaling efficiency more directly than the plurality of Home-eNBs 72-2 respectively. Can be enhanced.
  • the Home-eNB 72-2 communicates individual information with the MME 73
  • the Home-eNB 72-2 passes through the HeNBGW 74 but only passes (transmits) the information without processing.
  • MME 73 can communicate with each other as if they were directly connected.
  • FIG. 8 is a block diagram showing a configuration of a mobile terminal (terminal 71 in FIG. 7) according to the present invention. Transmission processing of the mobile terminal shown in FIG. 8 will be described. First, control data from the protocol processing unit 801 and user data from the application unit 802 are stored in the transmission data buffer unit 803. The data stored in the transmission data buffer unit 803 is transferred to the encoder unit 804 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 803 to the modulation unit 805 without being encoded. The data encoded by the encoder unit 804 is subjected to modulation processing by the modulation unit 805.
  • the modulated data is converted into a baseband signal, and then output to the frequency conversion unit 806 where it is converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 807 to the base station 312.
  • the reception process of the mobile terminal 311 is executed as follows.
  • a radio signal from the base station 312 is received by the antenna 807.
  • the reception signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 806, and demodulated by the demodulation unit 808.
  • the demodulated data is transferred to the decoder unit 809 and subjected to decoding processing such as error correction.
  • control data is passed to the protocol processing unit 801, and user data is passed to the application unit 802.
  • a series of processing of the mobile terminal is controlled by the control unit 810. Therefore, the control unit 810 is connected to each unit (801 to 809), which is omitted in the drawing.
  • FIG. 9 is a block diagram showing the configuration of the base station (base station 72 in FIG. 7) according to the present invention. A transmission process of the base station shown in FIG. 9 will be described.
  • the EPC communication unit 901 transmits and receives data between the base station 72 and EPC (MME73, HeNBGW74, etc.).
  • the other base station communication unit 902 transmits / receives data to / from other base stations.
  • the EPC communication unit 901 and the other base station communication unit 902 exchange information with the protocol processing unit 903, respectively. Control data from the protocol processing unit 903 and user data and control data from the EPC communication unit 901 and the other base station communication unit 902 are stored in the transmission data buffer unit 904.
  • Data stored in the transmission data buffer unit 904 is transferred to the encoder unit 905 and subjected to encoding processing such as error correction.
  • encoding processing such as error correction.
  • the encoded data is subjected to modulation processing by the modulation unit 906.
  • the modulated data is converted into a baseband signal, and then output to the frequency conversion unit 907 to be converted into a radio transmission frequency.
  • a transmission signal is transmitted from the antenna 908 to one or a plurality of mobile terminals 71.
  • the reception process of the base station 72 is executed as follows. Radio signals from one or a plurality of mobile terminals 311 are received by the antenna 908.
  • the received signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 907, and demodulated by the demodulation unit 909.
  • the demodulated data is transferred to the decoder unit 910, and decoding processing such as error correction is performed.
  • the control data is passed to the protocol processing unit 903 or the EPC communication unit 901 and the other base station communication unit 902, and the user data is passed to the EPC communication unit 901 and the other base station communication unit 902.
  • a series of processing of the base station 72 is controlled by the control unit 911. Therefore, the control unit 911 is connected to each unit (901 to 910), which is omitted in the drawing.
  • FIG. 10 is a block diagram showing a configuration of MME (Mobility Management Entity) according to the present invention.
  • the PDN GW communication unit 1001 transmits and receives data between the MME 73 and the PDN GW.
  • the base station communication unit 1002 transmits and receives data between the MME 73 and the base station 72 using the S1 interface.
  • the data received from the PDN GW is user data
  • the user data is passed from the PDN GW communication unit 1001 to the base station communication unit 1002 via the user plane processing unit 1003 and transmitted to one or a plurality of base stations 72.
  • the data received from the base station 72 is user data
  • the user data is transferred from the base station communication unit 1002 to the PDN GW communication unit 1001 via the user plane processing unit 1003 and transmitted to the PDN GW.
  • the control data is passed from the PDN GW communication unit 1001 to the control plane control unit 1005.
  • the control data is transferred from the base station communication unit 1002 to the control plane control unit 1005.
  • the HeNBGW communication unit 1004 is provided when the HeNBGW 74 exists, and performs data transmission / reception through an interface (IF) between the MME 73 and the HeNBGW 74 depending on the information type.
  • the control data received from the HeNBGW communication unit 1004 is passed from the HeNBGW communication unit 1004 to the control plane control unit 1005.
  • the result of processing in the control plane control unit 1005 is transmitted to the PDN GW via the PDN GW communication unit 1001.
  • control plane control unit 1005 is transmitted to one or a plurality of base stations 72 via the S1 interface via the base station communication unit 1002, and to one or a plurality of HeNBGWs 74 via the HeNBGW communication unit 1004. Sent.
  • the control plane control unit 1005 includes a NAS security unit 1005-1, an SAE bearer control unit 1005-2, an idle state mobility management unit 1005-3, and the like, and performs overall processing for the control plane.
  • the NAS security unit 1005-1 performs security of a NAS (Non-Access Stratum) message.
  • the SAE bearer control unit 1005-2 manages the bearer of SAE (System Architecture Evolution).
  • the idle state mobility management unit 1005-3 performs mobility management in a standby state (LTE-IDLE state, also simply referred to as idle), generation and control of a paging signal in the standby state, and one or more mobile terminals 71 being served thereby Tracking area (TA) addition, deletion, update, search, tracking area list (TA List) management and so on.
  • TA Tracking area
  • the MME initiates the paging protocol by transmitting a paging message to a cell belonging to a tracking area (tracking area: tracking TA) where the UE is registered.
  • the idle state mobility management unit 1005-3 may perform CSG management, CSG-ID management, and white list management of the Home-eNB 72-2 connected to the MME.
  • CSG-ID the relationship between the mobile terminal corresponding to the CSG-ID and the CSG cell is managed (added, deleted, updated, searched). For example, it may be a relationship between one or a plurality of mobile terminals registered for user access with a certain CSG-ID and a CSG cell belonging to the CSG-ID.
  • the relationship between a mobile terminal and a CSG-ID is managed (added, deleted, updated, searched). For example, one or a plurality of CSG-IDs registered by a certain mobile terminal as a user may be stored in the white list.
  • CSG-related management may be performed in other parts of the MME 73, tracking by the idle state mobility management unit 1005-3 instead of the CSG-ID currently being discussed at the 3GPP meeting A method using an area code (Tracking Area Code) can be performed efficiently.
  • a series of processing of the MME 313 is controlled by the control unit 1006. Therefore, although not shown in the drawing, the control unit 1006 is connected to each unit (1001 to 1005).
  • FIG. 11 is a block diagram showing a configuration of the HeNBGW according to the present invention.
  • the EPC communication unit 1101 transmits and receives data between the HeNBGW 74 and the MME 73 using the S1_flex interface.
  • the base station communication unit 1102 transmits and receives data between the HeNBGW 74 and the Home-eNB 72-2 using the S1 interface.
  • the location processing unit 1103 performs processing for transmitting registration information and the like to a plurality of Home-eNBs among data from the MME 73 passed via the EPC communication unit 1101.
  • the data processed by the location processing unit 1103 is passed to the base station communication unit 1102 and transmitted to one or more Home-eNBs 72-2 via the S1 interface.
  • Data that does not require processing in the location processing unit 1103 and is simply passed (transmitted) is passed from the EPC communication unit 1101 to the base station communication unit 1102 and sent to one or more Home-eNBs 72-2 via the S1 interface. Sent.
  • a series of processing of the HeNBGW 74 is controlled by the control unit 1104. Therefore, although not shown in the drawing, the control unit 1104 is connected to each unit (1101 to 1103).
  • FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system.
  • UE mobile terminal
  • FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system.
  • P-SS first synchronization signal
  • S-SS second synchronization signal
  • Synchronize In combination with P-SS and S-SS, a synchronization code (SS) is assigned a synchronization code corresponding to a PCI (Physical Cell Identity) allocated for each cell.
  • PCI Physical Cell Identity
  • a reference signal RS Reference (Reference (Signal) transmitted from the base station for each cell is detected, and the received power is measured.
  • the reference signal RS uses a code corresponding to PCI one-to-one, and can be separated from other cells by correlating with the code. By deriving the RS code of the cell from the PCI specified in ST1201, it becomes possible to detect the RS and measure the RS received power.
  • a cell having the best RS reception quality (for example, a cell having the highest RS reception power) (best cell) is selected from one or more cells detected up to ST1202.
  • PBCH of the best cell is received, and BCCH which is broadcast information is obtained.
  • MIB Master Information Block
  • MIB information includes, for example, DL (downlink) system bandwidth, the number of transmission antennas, SFN (SystemFFrame Number), and the like.
  • SIB1 System Information Block 1 in the broadcast information BCCH is obtained.
  • SIB1 includes information about access to the cell, information about cell selection, and scheduling information of other SIBs (SIBk; integer of k ⁇ 2).
  • SIB1 includes TAC (Tracking Area Code).
  • the mobile terminal compares the TAC received in ST1205 with the TAC already held by the mobile terminal. If the result of the comparison is the same, a standby operation is started in the cell.
  • the mobile terminal requests a change of TA to perform TAU (TrackingTrackArea Update) to the core network (Core Network, EPC) (including MME) through the cell.
  • the core network updates the TA based on the identification number (UE-ID or the like) of the mobile terminal sent from the mobile terminal together with the TAU request signal.
  • the core network transmits a TAU acceptance signal to the mobile terminal.
  • the mobile terminal rewrites (updates) the TAC (or TAC list) held by the mobile terminal with the TAC of the cell. Thereafter, the mobile terminal enters a standby operation in the cell.
  • CSG Cellular Subscriber Group
  • access is permitted only to one or a plurality of mobile terminals registered in the CSG cell.
  • One or a plurality of mobile terminals registered with the CSG cell constitute one CSG.
  • a CSG configured in this way is given a unique identification number called CSG-ID.
  • a single CSG may have a plurality of CSG cells. If a mobile terminal registers in one of the CSG cells, it can access other CSG cells to which the CSG cell belongs.
  • Home-eNB in LTE and Home-NB in UMTS may be used as a CSG cell.
  • the mobile terminal registered in the CSG cell has a white list.
  • the white list is stored in the SIM / USIM.
  • the white list carries CSG information of the CSG cell registered by the mobile terminal.
  • CSG-ID, TAI (Tracking Area Identity), TAC, etc. can be considered as CSG information. If CSG-ID and TAC are associated with each other, either one is sufficient.
  • GCI may be used if CSG-ID or TAC is associated with GCI (Global Cell Identity).
  • a mobile terminal having a white list can access both a CSG cell of a registered CSG-ID and a non-CSG cell.
  • PCI split Physical Cell Identity
  • Non-Patent Document 5 it is discussed to divide all PCIs (Physical Cell Identity) into CSG cells and non-CSG cells (referred to as PCI split) (Non-Patent Document 5). Further, it is discussed that the PCI split information is reported from the base station to the mobile terminals being served by the system information.
  • a basic operation of a mobile terminal using PCI split is disclosed. A mobile terminal that does not have PCI split information needs to perform a cell search using all PCIs (for example, using all 504 codes).
  • a mobile terminal having PCI split information can perform a cell search using the PCI split information.
  • Non-Patent Document 6 discloses three different modes of access to HeNB and HNB.
  • An open access mode the HeNB or HNB is operated as a normal cell of a normal operator.
  • the closed access mode the HeNB or HNB is operated as a CSG cell. This is a CSG cell accessible only to CSG members.
  • a non-CSG member is a CSG cell to which access is permitted at the same time.
  • HeNB HeNB
  • HNB HeNB
  • the hybrid access mode is a mode that operates as a closed access mode for registered users and simultaneously operates as an open access mode for unregistered users. Therefore, the hybrid access mode is different from the open access mode and the closed access mode.
  • closed access mode service By permitting access to the cell only to the registered mobile terminal, the radio resources that can be used by the mobile terminal can be increased to enable high-speed communication. Accordingly, the operator sets the charging fee higher than usual. Service.
  • a cell in hybrid access mode serves both closed access mode and open access mode simultaneously. In this case, only the registered mobile terminal is not permitted to access.
  • the mobile terminal in the open access mode also uses the radio resource of the cell. Accordingly, the communication speed of the closed access mode in the hybrid access mode cell is equal to or lower than the communication speed of the closed access mode cell. The operator reduces the billing fee accordingly. The use of such services is being considered.
  • Non-patent Document 8 describes signaling related to PCI split. However, there is no description regarding the hybrid access mode of HeNB and HNB.
  • Non-Patent Document 7 describes a signaling method for PCI split information.
  • the signaling method shown in Non-Patent Document 7 it is necessary to notify the code value by a start code or an enumerated value. For example, when there are 504 codes in all PCIs, 9 bits are required to indicate 504 codes.
  • a method for notifying PCI split information from a base station to a mobile terminal by a method different from Non-Patent Document 7 is disclosed.
  • PCI split information is indicated by “number of divisions” and “number of remainders” of the PCI code.
  • MOD X Y.
  • PCI split information is indicated by the values of X and Y.
  • X may be 2
  • the PCI split information notified from the base station to the mobile terminal using radio resources is the X value, the Y value for the CSG cell, and the Y value for the non-CSG cell.
  • the amount of information is reduced, and the effect of effective use of radio resources can be obtained.
  • the ratio of the PCI range for the CSG cell and the PCI range for the non-CSG cell can be easily changed by changing the X value.
  • the PCI range for the CSG cell can be doubled compared to the PCI range for the non-CSG cell.
  • Embodiment 2 The subject of this Embodiment is shown below.
  • a HeNB which may be HNB
  • HNB HeNB
  • a non-CSG member is a cell to which access is permitted at the same time. Therefore, it is assumed that the PCI included in the PCI range for the non-CSG cell is allocated to the HeNB operated in the hybrid access mode by the conventional PCI split.
  • the mobile terminal having the white list the mobile terminal registered in any CSG cell
  • the PCI included in the PCI range for the non-CSG cell is allocated by the cell search operation. There arises a problem that the HeNB operated in the hybrid access mode is excluded from the target.
  • PCI for CSG cells is allocated to the HeNB operated in the hybrid access mode as the mobile communication system.
  • the PCI belonging to the PCI range for the CSG cell in the conventional PCI split is not allocated only to the CSG cell, but is allocated to the CSG cell and the HeNB operated in the hybrid access mode in this embodiment.
  • FIG. 13 shows a conceptual diagram of PCI split in the current 3GPP discussion.
  • a range A indicates all PCIs.
  • the PCI range for the CSG cell is set as range B.
  • a PCI range for a non-CSG cell is set as a range C.
  • PCI belonging to range B is allocated to the HeNB operated in the hybrid access mode with the CSG cell.
  • PCIs belonging to range C are assigned to non-CSG cells.
  • the cell identification information includes the PCI (first classification) included in the range B allocated to the CSG cell (specific subscriber cell) and the non-CSG cell (unspecified user). Are classified into two types of PCI (second classification) included in the range C to be assigned to the cell.
  • PCI included in range B is assigned to a cell operating in the hybrid access mode.
  • Step ST6101 the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.), and has PCI split information. Determine whether. When not having, it transfers to step ST6102. If so, the mobile terminal makes a transition to step ST6104. In step ST6102, the mobile terminal performs cell search in the entire PCI range. In step ST6103, the mobile terminal determines whether cell selection has been performed. If so, the process ends. If not, the process returns to step ST6101.
  • the base station macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.
  • Step ST1501 the mobile terminal selects a cell with the best reception quality of the reference signal (Reference signal: RS) (for example, a cell with the highest RS reception power) as the best cell.
  • Step ST1801 the mobile terminal determines whether the best cell is a CSG cell, a non-CSG cell, or a HeNB operated in the hybrid access mode. For this determination, a CSG indicator (Non-patent Document 9) mapped to system information broadcast from the base station can be used. Moreover, the hybrid access indicator (nonpatent literature 8) mapped by the system information alert
  • a CSG indicator Non-patent Document 9
  • the hybrid access indicator nonpatent literature 8 mapped by the system information alert
  • Step ST1503 When it is a non-CSG cell, it transfers to step ST1503. When it is a CSG cell, it transfers to step ST1508.
  • Step ST1503 the mobile terminal determines whether or not to perform cell selection with priority on the CSG cell in the current cell search. When the cell selection is not performed with priority on the CSG cell, the mobile terminal makes a transition to step ST1504.
  • step ST1505 the mobile terminal selects the cell. Thereafter, the process ends.
  • Step ST1505 the mobile terminal removes the cell from the cell search target, and moves to Step ST1506.
  • step ST1506 the mobile terminal determines whether to continue the search.
  • a specific example of whether or not to continue is that if there are other cells that are subject to cell search, the search is judged to be continued, and if there are no other cells that are subject to cell search, the search is continued. Judge that there is no. Further, it is determined that the search is continued if it is within an allowable time from the start of cell search to the completion of cell selection, and it is determined that the search is not continued if the allowable time has expired or has expired. When continuing a search, it transfers to step ST1507. If the search is not continued, the process ends.
  • Step ST1507 the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.) and has PCI split information. Determine whether. When not having, it returns to step ST1501. If so, the mobile terminal makes a transition to step ST6104 in FIG.
  • the base station macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.
  • Step ST1508 the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST1509. If it does not have a CSG-ID or if it is not registered in the CSG cell, the mobile terminal makes a transition to step ST1510. In Step ST1509, the mobile terminal determines whether the CSG-ID of the cell is included in the white list. In other words, it is determined whether or not the cell is registered in the CSG-ID of the cell.
  • step ST1504 If it has the CSG-ID, or if it has been registered with the CSG-ID, the mobile terminal makes a transition to step ST1504. If it does not have the CSG-ID, or if it is not registered with the CSG-ID, the mobile terminal makes a transition to step ST1510. A mobile terminal removes the said cell from the object of a cell search in step ST1510, and transfers to step ST1511. In step ST1511, the mobile terminal determines whether to continue the search. A specific example of whether or not to continue is that if there are other cells that are subject to cell search, the search is judged to be continued, and if there are no other cells that are subject to cell search, the search is continued. Judge that there is no.
  • Step ST1512 the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.) and has PCI split information. Determine whether. When not having, it returns to step ST1501. If so, the mobile terminal makes a transition to step ST6104 in FIG.
  • step ST1802 the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST1803. If the mobile terminal does not have a CSG-ID or has not registered in the CSG cell, the mobile terminal makes a transition to step ST1504. In Step ST1803, the user equipment determines whether to select a cell with priority on the CSG cell. When cell selection is not performed with priority on CSG cells, the mobile terminal makes a transition to step ST1504. When performing cell selection with priority on the CSG cell, the mobile terminal makes a transition to step ST1509.
  • step ST6104 the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST6105. If the mobile terminal does not have a CSG-ID or has not registered in the CSG cell, the mobile terminal makes a transition to step ST6109. In Step ST6105, the mobile terminal performs a cell search using a PCI belonging to the PCI range for the CSG cell using the PCI split information disclosed in the present embodiment, and moves to Step ST6106. In step ST6106, the mobile terminal determines whether cell selection has been performed. If so, the process ends.
  • step ST6106 is a cell selection operation of a mobile terminal that has PCI split information, performs a cell search using a PCI belonging to the PCI range for the CSG cell, and has a white list. Therefore, after the processing in step 1501 in FIG. 14, it is determined in step ST1801 that the CSG cell or the HeNB operated in the hybrid access mode. If it is determined as a CSG cell, the process proceeds to step ST1508, YES is determined in step ST1508, it is determined in step ST1509, and the process proceeds to step ST1504 or step ST1510.
  • step ST1510 After the process of step ST1510, it is determined in step ST1511, and step ST1512 or the process ends.
  • step ST1512 YES is determined.
  • YES is determined in step ST1802
  • YES is determined in step ST1803
  • the process proceeds to step ST1509.
  • step ST6107 the mobile terminal determines that there is no CSG cell registered in the vicinity, and that there is no HeNB operated in the hybrid access mode, and selects a non-CSG cell in this embodiment.
  • the cell search is performed using the PCI belonging to the PCI range for the non-CSG cell using the disclosed PCI split information, and the process proceeds to step ST6108.
  • Step ST6108 the mobile terminal determines whether cell selection has been performed. If so, the process ends. If not, the process returns to step ST6105.
  • a detailed operation example of cell selection performed in step ST6108 will be described with reference to FIG.
  • step ST6108 unlike step 6103, a mobile terminal that has PCI split information, performs a cell search using a PCI belonging to the PCI range for a non-CSG cell, and does not prioritize the CSG cell in the current cell search. This is a cell selection operation. Therefore, after the process of step 1501 in FIG. 14, it is determined as a non-CSG cell in step ST1801, NO is determined in step ST1503, and the process of step ST1504 is performed.
  • Step ST6109 of FIG. 15 the mobile terminal performs cell search in the entire PCI range.
  • Step ST6110 the mobile terminal selects the cell with the best reception quality of the reference signal (Reference signal: RS) (for example, the cell with the highest received power of RS) as the best cell.
  • Reference signal Reference signal
  • Step ST6111 the mobile terminal determines whether the best cell is a non-CSG cell or a HeNB operated in the hybrid access mode. For this determination, a CSG indicator mapped to system information broadcast from the base station can be used. Further, a hybrid access indicator mapped to system information broadcast from the base station can be used. If it is a non-CSG cell or a HeNB operated in the hybrid access mode, the mobile terminal makes a transition to step ST6113. If it does not come out in the non-CSG cell or the HeNB operated in the hybrid access mode, in other words, if it is a CSG cell, the mobile terminal makes a transition to step ST6112. In Step ST6112, the mobile terminal removes the cell from the cell search target, and moves to Step ST6109. In Step ST6113, the mobile terminal selects the cell. Thereafter, the process ends.
  • a CSG indicator mapped to system information broadcast from the base station can be used.
  • a hybrid access indicator mapped to system information broadcast from the base station can be used. If it is
  • a mobile terminal having a white list performs a search using a PCI belonging to the PCI range for the CSG cell, it becomes possible to search for a HeNB operated in the hybrid access mode with the CSG cell. That is, it is possible to search HeNBs operated in the hybrid access mode without searching using PCIs belonging to the PCI range for non-CSG cells.
  • a mobile terminal having a white list performs a search using a PCI belonging to the PCI range for the CSG cell. That is, it is possible to search HeNBs operated in the hybrid access mode without searching using PCIs belonging to the PCI range for non-CSG cells.
  • the mobile terminal preferentially selects the HeNB operated in the CSG cell or the hybrid access mode.
  • a cell search operation can be performed except for the non-CSG cell in the PCI detection stage (step ST1201 in FIG. 12).
  • the system information SIB1 is not received, it is unknown whether it is a non-CSG cell or a CSG cell. Further, if the system information SIB1 is not received, it is unclear whether or not the system is operated in the hybrid access mode.
  • SIB1 system information
  • SIB1 system information
  • this embodiment in this way, it is possible to obtain an effect that the search operation can be operated at high speed. This can obtain the effect of preventing the control delay of the mobile communication system.
  • an effect of reducing power consumption of the mobile terminal can be obtained.
  • This also makes it unnecessary to change to the PCI split method by introducing HeNB operated in the hybrid access mode. Thereby, the effect of avoiding the complexity of the mobile communication system can be obtained.
  • Embodiment 2 Modification 1 In the above solution, the cell search operation of a mobile terminal having a white list has been accelerated compared to the prior art, but the cell search operation of a mobile terminal having no white list has not been accelerated. . Specifically, after a mobile terminal not having a white list (a mobile terminal not registered in the CSG cell) receives PCI split information, a hybrid in which a PCI included in the PCI range for the CSG cell is allocated in a cell search operation. There arises a problem that the HeNB operated in the access mode is removed from the target cell. The HeNB operated in the hybrid access mode is excluded from the search target even though it is a non-CSG member access permitted mode.
  • the problem that the mobile terminal which does not have the white list which exists in the coverage of HeNB operated by hybrid access mode does not perform cell selection of the said HeNB occurs. This means that communication cannot be performed at a communicable location due to inconvenience of PCI allocation.
  • the HeNB operated in the hybrid access mode is not excluded from the search target in the above, the cell search operation targeting all cells even after the mobile terminal without the white list receives the PCI split information This causes problems such as system control delay and increased power consumption of the mobile terminal.
  • the base station notifies the mobile terminals being served as to whether or not there is a HeNB operated in the hybrid access mode in the neighboring cell (hereinafter referred to as “neighboring hybrid status”).
  • the base station notifies a mobile terminal being served thereby of whether there is a HeNB operated in the hybrid access mode in the vicinity of the own cell or in the measurement target cell.
  • a 1-bit indicator may be provided so that “1” is set when it is present, and “0” is set when it is not present (or vice versa).
  • a specific example of the notification method of the surrounding hybrid status is shown below. It is mapped to a broadcast control channel (BCCH) that is a logical channel, further mapped to a broadcast channel (BCH) that is a transport channel, and a physical broadcast channel (PBCH) that is a physical channel, and is notified to the mobile terminal. It is mapped to master information, mapped to a master information block (MIB), mapped to a broadcast control channel (BCCH) that is a logical channel, further broadcast channel (BCH) that is a transport channel, physical broadcast channel that is a physical channel ( PBCH) and notified to the mobile terminal.
  • MIB master information block
  • BCCH broadcast control channel
  • BCH broadcast channel
  • PBCH physical broadcast channel
  • the mobile terminal does not need to obtain another broadcast information block, and the surrounding hybrid status can be quickly reduced with low power consumption. Can be obtained.
  • the peripheral hybrid situation is mapped to the broadcast control channel (BCCH), which is a logical channel, and further mapped to the downlink shared channel (DL-SCH), which is a transport channel, and the physical downlink shared channel (PDSCH), which is a physical channel. Notified to the terminal. It is mapped to system information, mapped to a system information block (SIB), mapped to a broadcast control channel (BCCH) that is a logical channel, further a downlink shared channel (DL-SCH) that is a transport channel, and a physical that is a physical channel It is mapped to the downlink shared channel (PDSCH) and notified to the mobile terminal.
  • SIB1 system information block
  • MIB or SIB1 is broadcast information received as a minimum necessary for an operation waiting from a cell search. Therefore, by including the neighboring hybrid status in the broadcast information received at the minimum necessary for the operation waiting from the cell search, the mobile terminal does not need to obtain other broadcast information blocks and can quickly obtain the neighboring hybrid status with low power consumption. Can be obtained. Also, the current 3GPP and below are being discussed.
  • the CSG indicator which indicates that the cell is a CSG cell, is the direction mapped to SIB1.
  • the hybrid access indicator for distinguishing the hybrid access mode is the direction mapped to SIB1. Further, SIB1 is a direction in which cell reselection common information is mapped.
  • the mobile terminal can obtain the parameters used in the cell search process of the mobile terminal by receiving the same system information, and the effects of avoiding the operation complexity of the mobile terminal and preventing control delay can be obtained.
  • the inter-frequency neighboring cell list (intra Freq Neighbouring Cell List) is mapped to SIB4.
  • the HeNB operated in the hybrid access mode may be included in the inter-frequency neighboring cell list.
  • the HeNB identifier (a home eNB identifier (HNBID)) is mapped to the SIB9.
  • HNBID home eNB identifier
  • the mobile terminal it becomes possible for the mobile terminal to obtain parameters used in the process of obtaining information related to the HeNB by receiving the same system information, avoiding the complexity of operation of the mobile terminal, and controlling delay.
  • the effect of prevention can be obtained.
  • the peripheral hybrid status is mapped to SIB4 or SIB9 in the system information
  • the amount of information transmitted and the amount of signaling can be reduced compared to mapping to SIB1 that is repeatedly transmitted in a relatively short period. For this reason, it is possible to obtain an effect that the mobile terminal can obtain the system information without increasing the signaling load as the system.
  • the parameters related to the physical resource of common recognition are the logical control channel (CCCH), dedicated control channel (DCCH), multicast control channel (MCCH), or multicast traffic channel (MTCH).
  • CCCH logical control channel
  • DCCH dedicated control channel
  • MCCH multicast control channel
  • MTCH multicast traffic channel
  • Step ST6201 the mobile terminal determines whether there is a HeNB operated in the hybrid access mode in the neighboring cell (or in the measurement target cell). For this determination, the “peripheral hybrid status” disclosed in the present modification, which is mapped to information broadcast from the base station, can be used. When there is a HeNB operated in the hybrid access mode in the neighboring cell, the mobile terminal makes a transition to step ST6109. When it does not exist, it transfers to step ST6202.
  • Step ST6202 the user equipment performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information disclosed in the present embodiment, and moves to Step ST6203.
  • a mobile terminal judges whether cell selection was performed in step ST6203. If so, the process ends. If not, the process returns to step ST6202.
  • a detailed operation example of cell selection performed in step ST6203 will be described with reference to FIG.
  • step ST6203 unlike step ST6103, it has PCI split information, performs a cell search with a PCI belonging to the PCI range for a non-CSG cell, does not have a white list, and selects a CSG cell with the current cell search. This is a cell selection operation of a mobile terminal not prioritized. Therefore, after the processing of step ST1501 in FIG. 14, it is determined as a non-CSG cell in step ST1801, and the process proceeds to step ST1503. In step ST1503, NO is determined, and the process proceeds to step ST1504.
  • This modification can obtain the following effects in addition to the effects of the second embodiment. It is possible to increase the cell search speed of a mobile terminal that does not have a white list. There is no need for a mobile terminal not having a white list to search using a PCI belonging to the PCI range for the CSG cell in an environment where there is no HeNB operated in the hybrid access mode. This can provide an effect that the search operation can be operated at high speed. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained. Assuming future CSG cell placement, this is an important effect.
  • Embodiment 3 In the first modification of the second embodiment, it is disclosed that the base station notifies the mobile terminals being served thereof of the surrounding hybrid status.
  • the notification of the peripheral hybrid status it has been disclosed to notify whether or not a HeNB operating in the hybrid access mode exists in the peripheral cell. Further, as another specific example, it has been disclosed that a mobile terminal being served thereby is notified of whether there is a HeNB operating in the hybrid access mode in the vicinity of the own cell or in the measurement target cell.
  • the measurement target cell means, for example, a cell from which the mobile terminal is required to measure from the network side to the mobile terminal.
  • (3-1) Notify the neighboring hybrid status in the current neighboring cell list.
  • Information that makes it possible to distinguish the cell operating in the hybrid access mode together with the PCI of the neighboring cell may be added. Four specific examples of information that can be distinguished are disclosed below.
  • (3-1-1) Indicates the access mode. For example, a closed access mode, an open access mode, and a hybrid access mode are shown.
  • (3-2) Notify the PCI of the HeNB operating in the hybrid access mode by separating from the current neighboring cell list.
  • the peripheral cell list may be separated according to the access mode of the peripheral cell.
  • the mobile terminal can recognize from the neighboring cell list separated for each access mode that each cell with PCI included in the neighboring cell list operates in each access mode.
  • a peripheral cell list for cells operating in the hybrid access mode may be provided. The mobile terminal can recognize that the cell with PCI included in the neighboring cell list for the cell operating in the hybrid access mode is operating in the hybrid access mode.
  • Notify the range of PCI allocated to the hybrid cell (cell operating in the hybrid access mode). Notification may be made only when there is a cell operating in the hybrid access mode in the vicinity.
  • Non-Patent Document 10 it is proposed to reserve a subset of PCIs / PSCs for a hybrid cell from a set of PCIs / PCSs that can be used for a macro cell and broadcast the information to a mobile terminal.
  • a PCI range hereinafter, referred to as a hybrid cell PCI range
  • a hybrid cell PCI range used by the hybrid cell in the non-CSG PCI.
  • details about a method for notifying a mobile terminal of a PCI range for a hybrid cell are not disclosed.
  • the following effects can be obtained by notifying the PCI range allocated to the hybrid cell from the serving cell only when there is a cell operating in the hybrid access mode in the neighboring cell.
  • By notifying the range of PCI allocated to the hybrid cell whether or not the HeNB operating in the hybrid access mode exists in the neighboring cell shown in the first modification of the second embodiment, or the neighboring hybrid in the present embodiment
  • a further specific example (1) of the situation “there is a HeNB that operates in the hybrid access mode in the vicinity”, or “a hybrid in the vicinity”, which is a further specific example (2) of the peripheral hybrid situation in the present embodiment.
  • the same information can be notified without notifying that there is no HeNB operating in the access mode. Thereby, the effect of avoiding the complexity of the mobile communication system due to effective utilization of radio resources and an increase in notification information can be obtained.
  • the notification method of the surrounding hybrid status is the same as that in the first modification of the second embodiment, and thus the description thereof is omitted.
  • step ST1701 the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cells (or measurement target cells). For this determination, the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, which is the “peripheral hybrid status” notified from the base station, can be used. If there is a notification of the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, it is determined that there is a HeNB operating in the hybrid access mode in the peripheral cell, and the process proceeds to step ST1702. If there is no notification of the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, it is determined that there is no HeNB operating in the hybrid access mode in the peripheral cell, and the mobile terminal makes a transition to step ST6202.
  • step ST1702 the mobile terminal performs cell search using the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, which is the “peripheral hybrid status” notified from the base station.
  • Step ST1703 the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
  • step ST1701 the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cells (or measurement target cells). This determination can use the PCI range allocated to the hybrid cell that is notified only when the hybrid access mode exists in the neighboring cell, which is the “neighboring hybrid status” notified from the base station. If there is a notification of the range of PCI allocated to the hybrid cell, it is determined that there is a HeNB operating in the hybrid access mode in the neighboring cell, and the process moves to step ST1702. If there is no notification of the range of PCI allocated to the hybrid cell, it is determined that there is no HeNB operating in the hybrid access mode in the neighboring cells, and the mobile terminal makes a transition to step ST6202.
  • step ST1702 the mobile terminal performs a cell search using the PCI included in the PCI range allocated to the hybrid cell, which is the “peripheral hybrid status” notified from the base station.
  • Step ST1703 the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
  • step ST1701 the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cell (or in the measurement target cell). For this determination, the PCI range assigned to the hybrid cells existing in the vicinity, which is the “peripheral hybrid status” notified from the base station, can be used. If there is a notification of the range of PCI allocated to a hybrid cell existing in the vicinity, it is determined that there is a HeNB operating in the hybrid access mode in the neighboring cell, and the process moves to step ST1702. If there is no notification of the range of PCI allocated to the hybrid cells existing in the vicinity, it is determined that there is no HeNB operating in the hybrid access mode in the neighboring cells, and the mobile terminal makes a transition to step ST6202.
  • step ST1702 the mobile terminal performs a cell search using the PCI included in the PCI range allocated to the hybrid cell existing in the vicinity, which is the “peripheral hybrid status” notified from the base station.
  • Step ST1703 the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
  • the following effects can be obtained in addition to the effects of the second embodiment, similarly to the first modification of the second embodiment. It is possible to increase the cell search speed of a mobile terminal that does not have a white list. In an environment where a mobile terminal that does not have a white list does not have a HeNB operated in the hybrid access mode, it is not necessary to search using a PCI that belongs to the PCI range for the CSG cell. This can provide an effect that the search operation can be executed at high speed. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained. Assuming future CSG cell placement, this is an important effect.
  • a mobile terminal not registered with CSG can simplify processing in a cell search for detecting a macro cell and a hybrid cell, which are cells corresponding to the open access mode.
  • a mobile terminal not registered with CSG can perform cell search using PCI belonging to the PCI range for non-CSG cells and PCI belonging to the PCI range for hybrid cells in order to detect cells corresponding to the open access mode. It becomes.
  • a mobile terminal not registered with CSG performs a cell search with PCI belonging to the PCI range for non-CSG cell and PCI for hybrid cell existing in the vicinity in order to detect a cell corresponding to the open access mode.
  • a CSG unregistered mobile terminal can detect a cell corresponding to the open access mode without performing a cell search using all PCIs, and with a PCI for CSG cells that are not used for a macro cell and a hybrid cell.
  • Cell search operation can be reduced. Thereby, the effect that a further search operation can be performed at high speed can be acquired. This can obtain the effect of preventing further control delay of the mobile communication system. In addition, the effect of further reducing the power consumption of the mobile terminal can be obtained.
  • Embodiment 4 A problem to be solved in the fourth embodiment will be described.
  • the HeNB and HNB may have a plurality of operation modes. This operation mode may be changed after HeNB and HNB are installed. For example, even when the first modification and the third embodiment of the second embodiment are applied, the access mode of the neighboring HeNB may be changed in the same manner. For example, when the operation mode of the neighboring HeNB operating in the closed access mode is changed to the hybrid access mode, it is necessary to change the “neighboring hybrid status” that the serving cell notifies to the mobile terminals being served thereby.
  • a method for changing the “peripheral hybrid status” is disclosed.
  • a method of changing the “peripheral hybrid status” when setting the operation mode via the network is disclosed.
  • the operator sets the HeNB / HNB operation mode via the network.
  • the operator instructs to change the operation mode setting of the HeNB / HNB via the network.
  • the network side notifies the change of the operation mode setting to the HeNB / HNB.
  • Specific examples of the network side include EPC (Evolved Packet Core), MME, S-GW, and HeNBGW.
  • EPC Evolved Packet Core
  • MME Mobility Management
  • S-GW Serving GPRS Support Node
  • HeNBGW HeNBGW
  • an O & M (Operating & Management) system a node, an entity, a function, an element, or the like may be used.
  • an S1 interface or a broadband line may be used.
  • an O & M interface may be used for the notification of the change.
  • the notification of the change of the setting of the operation mode may include an operation mode after the change or an operation mode before and after the change.
  • the network side notifies the changed “neighboring hybrid status” to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB.
  • an S1 interface or a broadband line may be used for the notification of the “peripheral hybrid status”.
  • the network side may notify a change request to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB.
  • the cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change.
  • an S1 interface or a broadband line may be used for the notification of the change request.
  • the request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
  • the HeNB / HNB whose operation mode setting has been changed is selected as a handover destination (target cell) in a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed.
  • the “neighboring hybrid status” needs to be changed by changing the operation mode setting of the HeNB / HNB for the serving cell of the mobile terminal.
  • a mobile terminal being served by a serving cell that is, a cell reported to have better reception quality than the HeNB / HNB whose operation mode setting has been changed, is changed to a “neighboring hybrid situation by changing the operation mode setting of the HeNB / HNB. Need to be changed.
  • a certain threshold value may be determined statically or semi-statically.
  • this specific example (2) eliminates the need to use a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed, and the operation mode setting is The measurement report of the mobile terminal being served by the changed HeNB / HNB may be used, and it is possible to obtain an effect that the processing load on the cell selection method that needs to change the “neighboring hybrid status” is reduced.
  • Cell position information is used.
  • the network side changes the “peripheral hybrid status” by changing the operation mode setting of the HeNB / HNB for cells installed within a certain distance from the HeNB / HNB whose operation mode setting has been changed from the location information of each cell.
  • Cell that needs to be The certain distance may be determined statically or quasi-statically.
  • this specific example eliminates the need to store and process the measurement report, thereby reducing the processing load on the cell selection method that requires the “neighboring hybrid status” to be changed. The effect that it is done can be acquired.
  • the HeNB / HNB information other than the HeNB / HNB whose operation mode setting has been changed, or the HeNB / HNB information whose operation mode setting has been changed, is included in the neighboring cell list
  • the HeNB / HNB other than the HeNB / HNB whose operation mode setting is changed needs to change the “peripheral hybrid status” by changing the operation mode setting of the HeNB / HNB.
  • the measurement report is stored and processed as compared with the specific examples (1), (2), and (3), or the comparison with the threshold value or the like is not necessary. It is possible to obtain an effect that the processing load on the cell selection method is reduced.
  • the measurement report is stored and processed as compared with the specific examples (1), (2), and (3), or the comparison with the threshold value or the like is not necessary. It is possible to obtain an effect that the processing load on the cell selection method is reduced.
  • the cell selection method that requires changing the “neighboring hybrid status” in that it is not necessary to consider neighboring cell information other than the HeNB / HNB whose operation mode setting has been changed compared to the specific example (4). The effect that the processing load about is reduced can be obtained.
  • the “neighboring hybrid status” is changed by changing the operation mode setting of the HeNB / HNB for another cell connected to one or a plurality of MMEs to which the HeNB / HNB whose operation mode setting has been changed is connected It is assumed that the cell is necessary.
  • the overall configuration of an LTE mobile communication system currently under discussion in 3GPP will be described with reference to FIG.
  • CSG Cellular Subscriber Group
  • Home-eNB HeNB
  • UTRAN Home-NB HeNB
  • HNB UTRAN Home-NB
  • eNB UTRAN NodeB
  • GERAN BSS GERAN BSS
  • a mobile terminal (UE) 1801 performs transmission / reception with the base station 1802.
  • Base station 1802 is classified into eNB 1802-1 and Home-eNB 1802-2.
  • the eNB 1802-1 is connected to the MME 1803 via the interface S1, and control information is communicated between the eNB and the MME.
  • a plurality of MMEs 1803 may be connected to one eNB 1802-1.
  • the eNBs are connected by an interface X2, and control information is communicated between the eNBs.
  • the Home-eNB 1802-2 is connected to the MME 1803 via the interface S1, and control information is communicated between the Home-eNB and the MME.
  • a plurality of Home-eNBs are connected to one MME.
  • Home-eNB 1802-2 is connected to MME 1803 via HeNBGW (Home-eNB GateWay) 1804.
  • the Home-eNB and the HeGW are connected via the interface S1
  • the HeNBGW 1804 and the MME 1803 are connected via the interface S1.
  • One or a plurality of Home-eNBs 1802-2 are connected to one HeNBGW 1804, and information is communicated through S1.
  • the HeNBGW 1804 is connected to one or a plurality of MMEs 1803, and information is communicated through S1.
  • Interface X2 between Home-eNB 1802-2 is not supported. From the MME 1803, the HeNBGW 1804 appears as an eNB 1802-1.
  • the HeNBGW 1804 appears as an MME 1803. Regardless of whether the Home-eNB 1802-2 is connected to the EPC via the HeNBGW 1804, the interface S1 between the Home-eNB 1802-2 and the EPC is the same. Mobility to or from Home-eNB 1802-2 that spans MME 1803 is not supported. Home-eNB 1802-2 supports only one cell.
  • the network side uniquely identifies the “peripheral hybrid” regardless of the HeNB / HNB whose operation mode setting has been changed. Since it becomes possible to select a cell that needs to change the “situation”, it is possible to obtain an effect that the processing load on the selection method of the cell that needs to change the “neighboring hybrid situation” is reduced.
  • the network side uniquely identifies the “peripheral hybrid” regardless of the HeNB / HNB whose operation mode setting has been changed. Since it becomes possible to select a cell that needs to change the “situation”, it is possible to obtain an effect that the processing load on the selection method of the cell that needs to change the “neighboring hybrid situation” is reduced.
  • FIG. 19 shows an example of cell arrangement used in the description.
  • a HeNB / HNB 1909 is installed in the coverage 1902 of the macro cell 1901.
  • the coverage of HeNB / HNB 1909 is 1910.
  • a macro cell 1903 is installed adjacent to the macro cell 1901.
  • the coverage of the macro cell 1903 is 1904.
  • HeNB / HNB 1905 and HeNB / HNB 1907 are installed in the vicinity of the cell boundary between the macro cell 1901 and the macro cell 1903.
  • the coverage of HeNB / HNB 1905 is 1906.
  • the coverage of HeNB / HNB 1907 is 1908.
  • step ST2001 the network receives an instruction to change the operation mode setting of the HeNB from an operator. If it is necessary to change the PCI along with the operation mode change, the network side may select a PCI suitable for the new operation mode.
  • the PCI suitable for the new operation mode may be a PCI included in the PCI range for the new operation mode.
  • Step ST2002 the network notifies the HeNB that has received an instruction to change the operation mode setting from the operator of the change in the operation mode setting.
  • the network side may notify the PCI suitable for the new operation mode to the HeNB that has received the instruction to change the operation mode setting.
  • the notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
  • indication of operation mode setting change in step ST2003 performs an operation mode setting change according to an instruction
  • the PCI notification suitable for the new operation mode is received in step 4001
  • the PCI change is executed in accordance with the instruction.
  • indication of the change of operation mode setting may select PCI suitable for a new operation mode.
  • the PCI suitable for the new operation mode may be a PCI included in the PCI range for the new operation mode. At the time of selection, the HeNB may measure reception quality of neighboring cells.
  • a cell having a good reception quality in the reception quality of neighboring cells (a cell having a high SIR when the reception quality is expressed in SIR) is selected as the same or similar PCI as that cell because it is likely to receive interference. Like that. Similar PCI means PCI having high correlation.
  • a threshold may be used when determining a cell with good reception quality. For example, if the reception quality is better than a threshold value (when the reception quality is expressed by SIR, the reception quality is higher than the threshold value), the cell may be determined as a cell with good reception quality.
  • the selection of the PCI suitable for the new operation mode may be after the operation mode setting change instruction in step ST4002.
  • the HeNB performs a PCI change.
  • the HeNB may notify the PCI to the network side.
  • an S1 interface or a broadband line may be used.
  • an O & M interface may be used.
  • the notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
  • Step ST2004 the network selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL.
  • the network selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL.
  • the operation mode setting of the HeNB / HNB 1905 is changed from the closed access mode to the hybrid access mode.
  • the macro cell 1901, the macro cell 1903, and the HeNB / HNB 1907 are selected as cells that need to change the “neighboring hybrid status”.
  • the macro cell 1901 is selected as a cell that needs to change the “neighboring hybrid status”.
  • step ST2005 the network changes the “neighboring hybrid status” of the cell selected in step ST2004.
  • the NCL may be changed.
  • step ST2006 the network notifies the cell selected in step ST2004 of the “neighboring hybrid status” changed in step ST2005.
  • NCL may be notified.
  • Step ST2007 the cell that has received the “neighboring hybrid status” notifies the mobile terminal being served thereby of the received “neighboring hybrid status”.
  • the following effects can be obtained by the fourth embodiment. Even when the operation mode setting is changed after the HeNB and HNB are installed, it is possible to obtain an effect that the “neighboring hybrid status” or “NCL” can be appropriately changed. Further, according to the present embodiment, the operator or the owner of the HeNB / HNB does not need to change the “neighboring hybrid status”. By doing so, it becomes possible to update the “peripheral hybrid status” associated with the operation mode setting change while suppressing the workload and cost generation of the operator or the owner of the HeNB / HNB. Thereby, even when the operation mode setting is changed after HeNB and HNB are installed, it is possible to apply the first and third modifications of the second embodiment, and the first modification of the second embodiment. The effect of the third embodiment can be obtained.
  • Embodiment 4 Modification 1 Since the problem to be solved in the first modification of the fourth embodiment is the same as that of the fourth embodiment, the description thereof is omitted.
  • a method for changing the “peripheral hybrid status” when the operation mode is set via the HeNB / HNB is disclosed.
  • the owner of the HeNB / HNB directly instructs to change the operation mode setting of the HeNB / HNB.
  • the HeNB / HNB notifies the change request to the cell that needs to change the “neighboring hybrid status” by changing the operation mode setting.
  • the cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change.
  • an X2 interface or a broadband line may be used.
  • the request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
  • a mobile terminal being served thereby reports a cell whose reception quality is better than that of the serving cell, that is, the HeNB / HNB whose operation mode setting has been changed, by changing the operation mode setting of the HeNB / HNB. Suppose the situation needs to be changed.
  • a certain threshold value may be determined statically or semi-statically.
  • This specific example eliminates the need for adding a new function of measuring peripheral cells to the cell, as compared to the specific example (1). Thereby, the effect of avoiding the complexity of the mobile communication system can be obtained.
  • the measurement report is stored and processed as compared with the specific examples (1) and (2), or the comparison with the threshold value or the like is not required, so the selection of the cell that needs to change the “neighboring hybrid status” The effect that the processing load about a method is reduced can be acquired.
  • FIG. 19 shows an example of cell arrangement used in the description.
  • FIG. 21 shows an example of the operation of the mobile communication system.
  • the cell installation example in FIG. 19 is the same as that in the fourth embodiment, and thus description thereof is omitted.
  • An example of the operation of the mobile communication system is shown using FIG. The same reference numerals as those in FIG.
  • the HeNB receives an operation mode setting change instruction from the owner.
  • Step ST2102 the HeNB selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL.
  • the HeNB selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL.
  • the operation mode setting of the HeNB / HNB 1905 is changed from the closed access mode to the hybrid access mode.
  • the macro cell 1901, the macro cell 1903, and the HeNB / HNB 1907 are selected as cells that need to change the “neighboring hybrid status”.
  • the operation mode setting of the HeNB / HNB 1909 is changed from the closed access mode to the hybrid access mode will be considered.
  • the macro cell 1901 is selected as a cell that needs to change the “neighboring hybrid status”.
  • the HeNB notifies the cell selected in step ST2102 of a change request for “neighboring hybrid status”.
  • an NCL change request may be notified.
  • HeNB may notify PCI suitable for a new operation mode with respect to the cell selected in step ST4102.
  • the notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
  • the cell that has received the “neighboring hybrid status” change request changes the neighboring hybrid status.
  • the NCL may be changed.
  • Step ST2105 the cell that has received the “neighboring hybrid status” notifies the mobile terminal being served thereby of the “neighboring hybrid status” changed in Step ST2104.
  • Modification 1 of Embodiment 4 can be used in combination with Embodiment 4.
  • the following effects can be obtained by the first modification of the fourth embodiment. Even if the operation mode setting of HeNB or HNB that has been performed via HeNB or HNB is changed after the HeNB or HNB is installed, the “peripheral hybrid status” or “NCL” Can be obtained. Further, even if the operation mode setting of the HeNB or HNB is changed via the HeNB or HNB, the operator or the owner of the HeNB / HNB does not need to change the “neighboring hybrid status” according to the present embodiment. By doing so, it is possible to update the “peripheral hybrid status” associated with the operation mode setting change while suppressing the workload and cost generation of the operator or the owner of the HeNB / HNB.
  • Embodiment 4 Modification 2 Since the problem to be solved in the second modification of the fourth embodiment is the same as that of the fourth embodiment and the first modification of the fourth embodiment, description thereof is omitted.
  • the owner of the HeNB / HNB directly instructs to change the operation mode setting of the HeNB / HNB.
  • the HeNB / HNB receives the instruction to change the operation mode setting, and changes the operation mode setting according to the instruction.
  • the HeNB / HNB notifies the network side of the change of the operation mode setting.
  • An S1 interface or a broadband line may be used for notification of the report.
  • the report may include HeNB / HNB identification information (PCI, GCI, etc.) whose operation mode setting has been changed, an operation mode after the change, or an operation mode before and after the change.
  • PCI HeNB / HNB identification information
  • Specific examples on the network side include EPC (Evolved packet Core), MME, S-GW, and HeNBGW.
  • the network side that has received the report notifies the cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB, and notifies the changed “neighboring hybrid status”.
  • an S1 interface or a broadband line may be used.
  • the network side that has received the report may notify a change request to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB.
  • the cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change.
  • an S1 interface or a broadband line may be used for the notification of the change.
  • the request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
  • a specific example of a method for selecting a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB is the same as that in the fourth embodiment, and a description thereof will be omitted.
  • FIG. 19 shows an example of cell arrangement used in the description.
  • FIG. 22 shows an example of the operation of the mobile communication system.
  • the HeNB notifies the network side of the report of the operation mode setting change.
  • HeNB may notify PCI suitable for a new operation mode to the network side.
  • the notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
  • the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment the method of changing the “neighboring hybrid situation” when the operation mode of the HeNB / HNB is changed is disclosed. Not only when the operation mode of the HeNB / HNB is changed, but also when a new HeNB / HNB is set, it is necessary to change the “neighboring hybrid status” of the cells in the vicinity of the newly installed location To do. Even in this situation, the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment are applicable.
  • Non-Patent Document 1 An ANR (Automatic Neighbor Relation) function is being studied (Non-Patent Document 1).
  • the ANR function is a function that allows an operator to handle a relationship (Neighbour Relations (NRs)) with an adjacent cell automatically instead of manually. By performing the process automatically, it is possible to reduce an increase in operator workload and cost.
  • NRs Neighbour Relations
  • the method disclosed in the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment may be incorporated as a part of the ANR function.
  • a method of changing the “peripheral hybrid status” may be incorporated into the ANR function.
  • the ANR function may be provided in the eNB or HeNB / HNB, or may be provided on the network side.
  • E-UTRAN EvolvedCloseSubscriber Group
  • UTRAN UMTS
  • LTE-Advanced LTE-Advanced
  • CSG ClosedCloseSubscriber Group
  • an operator identifies a subscriber and access is permitted to the identified subscriber as in CSG. It is.
  • the description of the present invention is centered on the case where the HeNB / HNB supports the hybrid access mode.
  • the present invention is also applicable when other entities in the mobile communication system support the hybrid access mode.
  • the present invention can be applied to a case where a cell with a large coverage, for example, a macro cell, or a cell with a small coverage, for example, a micro cell, a pico cell, a femto cell, a hot spot, or a relay, supports the hybrid access mode. It is.
  • the description of the present invention is centered on the case where the HeNB / HNB supports multiple modes.
  • the present invention is also applicable when other entities in the mobile communication system support multiple modes.
  • the present invention can also be applied when a cell with a large coverage, for example, a macro cell, or a cell with a small coverage, for example, a micro cell, a pico cell, a femto cell, a hot spot, or a relay, supports a plurality of modes. It is.
  • the mobile communication system according to the present invention is suitable for use in a mobile communication system in which a base station performs wireless communication with a plurality of well terminals because of the effect of reducing power consumption of the mobile terminal.

Abstract

Disclosed is a mobile body communication system wherein a mobile terminal receives a physical cell identity that is allocated to a communication cell, the mobile body communication system including a cell intended for use by a specific participant, which allows use by a specific mobile terminal (CSG), and a cell intended for use by a non-specific user, which is usable by a non-specific mobile terminal (non-CSG), and selects a cell.  The physical cell identity is classified into a first classification, which is allocated to the CSG cell, and a second classification, which is allocated to the non-CSG cell, wherein the physical cell identity that is included in the first classification is allocated to a CSG cell that operates in hybrid mode.

Description

移動体通信システムMobile communication system
 本発明は、基地局が複数の移動端末と無線通信を実施する移動体通信システムに関するものである。 The present invention relates to a mobile communication system in which a base station performs wireless communication with a plurality of mobile terminals.
 第3世代と呼ばれる通信方式のうち、W-CDMA(Wideband Code division Multiple Access)方式が2001年から日本で商用サービスが開始されている。また、下りリンク(個別データチャネル、個別制御チャネル)にパケット伝送用のチャネル(HS-DSCH: High Speed-Downlink Shared Channel)を追加することにより、下りリンクを用いたデータ送信の更なる高速化を実現するHSDPA(High Speed Down Link Packet Access)のサービスが開始されている。さらに、上り方向のデータ送信をさらに高速化するためHSUPA(High Speed Up Link Packet Access)方式についてもサービスが開始されている。W-CDMAは、移動体通信システムの規格化団体である3GPP(3rd Generation Partnership Project)により定められた通信方式であり、リリース8版の規格書がとりまとめられている。 Among the communication systems called third generation, the W-CDMA (Wideband Code Division Multiple Access) system has been commercialized in Japan since 2001. Also, by adding a packet transmission channel (HS-DSCH: High Speed-Downlink Shared Channel) to the downlink (individual data channel, individual control channel), data transmission using the downlink is further accelerated. Realized HSDPA (High Speed Down Link Link Packet Access) services have been started. Furthermore, in order to further increase the speed of data transmission in the uplink direction, a service has also been started for the HSUPA (High Speed Up Link Link Packet Access) system. W-CDMA is a communication system defined by 3GPP (3rd Generation Partnership Project), which is a standardization organization for mobile communication systems, and standardized release 8 editions are compiled.
 また、3GPPにおいて、W-CDMAとは別の通信方式として、無線区間については「ロングタームエボリューション」(Long Term Evolution LTE)、コアネットワーク(単にネットワークとも称する)を含めたシステム全体構成については「システムアーキテクチャエボリューション」(System Architecture Evolution SAE)と称される新たな通信方式が検討されている。LTEでは、アクセス方式、無線のチャネル構成やプロトコルが、現在のW-CDMA(HSDPA/HSUPA)とは全く異なるものになる。たとえば、アクセス方式は、W-CDMAが符号分割多元接続(Code Division Multiple Access)を用いているのに対して、LTEは下り方向はOFDM(Orthogonal Frequency Division Multiplexing )、上り方向はSC-FDMA(Single Career Frequency Division Multiple Access)を用いる。また、帯域幅は、W-CDMAが5MHzであるのに対し、LTEでは1.4/3/5/10/15/20MHzの中で基地局ごとに選択可能となっている。また、LTEでは、W-CDMAのように回線交換を含まず、パケット通信方式のみになる。 In 3GPP, as a communication method different from W-CDMA, “Long Term Evolution” (Long Term Evolution LTE) is used for the radio section, and the entire system configuration including the core network (also simply referred to as network) is “System”. A new communication method called “Architecture Evolution (SAE)” is being studied. In LTE, the access scheme, radio channel configuration, and protocol are completely different from those of the current W-CDMA (HSDPA / HSUPA). For example, W-CDMA uses code division multiple access (Code Division Multiple Access), whereas LTE has OFDM (Orthogonal Frequency Division Multiplexing) in the downlink direction and SC-FDMA (Single in the uplink direction). Career Frequency Division Multiple Access). The bandwidth is selectable for each base station within 1.4 / 3/5/10/15/20 MHz in LTE, whereas W-CDMA is 5 MHz. Also, LTE does not include circuit switching as in W-CDMA, and only packet communication is used.
 LTEはW-CDMAのコアネットワーク(GPRS)とは異なる新たなコアネットワークを用いて通信システムが構成されるため、W-CDMA網とは別の独立した無線アクセス網として定義される。したがって、W-CDMAの通信システムと区別するため、LTEの通信システムでは、移動端末(UE: User Equipment)と通信を行う基地局(Base station)はeNB(E-UTRAN NodeB)、複数の基地局と制御データやユーザデータのやり取りを行う基地局制御装置(Radio Network Controller)はEPC(Evolved Packet Core)(aGW:Access Gatewayと称されることもある)と称される。このLTEの通信システムでは、ユニキャスト(Unicast)サービスとE-MBMSサービス(Evolved Multimedia Broadcast Multicast Service)が提供される。E-MBMSサービスとは、放送型マルチメディアサービスであり、単にMBMSと称される場合もある。複数の移動端末に対してニュースや天気予報や、モバイル放送など大容量放送コンテンツが送信される。これを1対多(Point to Multipoint)サービスともいう。 LTE is defined as an independent radio access network separate from the W-CDMA network because the communication system is configured using a new core network different from the W-CDMA core network (GPRS). Therefore, in order to distinguish from a W-CDMA communication system, in an LTE communication system, a base station (Base station) that communicates with a mobile terminal (UE: User Equipment) is an eNB (E-UTRAN NodeB), and a plurality of base stations A base station controller (Radio Network Controller) that exchanges control data and user data is referred to as EPC (Evolved Packet Core) (sometimes referred to as aGW: Access Gateway). In the LTE communication system, a unicast service and an E-MBMS service (Evolved Multimedia Broadcast Multicast Service) are provided. The E-MBMS service is a broadcast-type multimedia service and may be simply referred to as MBMS. Mass broadcast contents such as news, weather forecasts, and mobile broadcasts are transmitted to a plurality of mobile terminals. This is also called a point-to-multipoint service.
 3GPPでの、LTEシステムにおける全体的なアーキテクチャ(Architecture)に関する現在の決定事項が、非特許文献1に記載されている。全体的なアーキテクチャ(非特許文献1 4章)について図1を用いて説明する。図1は、LTE方式の通信システムの構成を示す説明図である。図1において、移動端末101に対する制御プロトコル(例えばRRC(Radio Resource Management))とユーザプレイン(例えばPDCP: Packet Data Convergence Protocol、RLC: Radio Link Control、MAC: Medium Access Control、PHY: Physical layer)が基地局102で終端するなら、E-UTRAN(Evolved Universal Terrestrial Radio Access)は1つあるいは複数の基地局102によって構成される。
基地局102は、MME103(Mobility Management Entity)から通知されるページング信号(Paging Signaling、ページングメッセージ(paging messages)とも称される)のスケジューリング(Scheduling)及び送信を行う。基地局102はX2インタフェースにより、お互いに接続される。また基地局102は、S1インタフェースによりEPC(Evolved Packet Core)に接続される。より明確にはS1_MMEインタフェースによりMME103(Mobility Management Entity)に接続され、S1_UインタフェースによりS-GW104(Serving Gateway)に接続される。MME103は、複数あるいは単数の基地局102へのページング信号の分配を行う。また、MME103は待受け状態(Idle State)のモビリティ制御(Mobility control)を行う。MME103は移動端末が待ち受け状態及び、アクティブ状態(Active State)の際に、トラッキングエリア(Tracking Area)リストの管理を行う。S-GW104はひとつまたは複数の基地局102とユーザデータの送受信を行う。S-GW104は基地局間のハンドオーバの際、ローカルな移動性のアンカーポイント(Mobility Anchor Point)となる。更にP-GW(PDN Gateway)が存在し、ユーザ毎のパケットフィルタリングやUE-IDアドレスの割当などを行う。
Non-Patent Document 1 describes the current decisions regarding the overall architecture of the LTE system in 3GPP. The overall architecture (Chapter 4 of Non-Patent Document 1) will be described with reference to FIG. FIG. 1 is an explanatory diagram illustrating a configuration of an LTE communication system. In FIG. 1, a control protocol (for example, RRC (Radio Resource Management)) and a user plane (for example, PDCP: Packet Data Convergence Protocol, RLC: Radio Link Control, MAC: Medium Access Control, PHY: Physical layer) for the mobile terminal 101 are based. If terminated at station 102, Evolved Universal Terrestrial Radio Access (E-UTRAN) is composed of one or more base stations 102.
The base station 102 performs scheduling (Scheduling) and transmission of a paging signal (also referred to as a paging message or paging message) notified from the MME 103 (Mobility Management Entity). Base stations 102 are connected to each other via an X2 interface. The base station 102 is connected to an EPC (Evolved Packet Core) through an S1 interface. More specifically, it is connected to the MME 103 (Mobility Management Entity) via the S1_MME interface, and is connected to the S-GW 104 (Serving Gateway) via the S1_U interface. The MME 103 distributes the paging signal to a plurality or a single base station 102. Further, the MME 103 performs mobility control (Mobility control) in an idle state. The MME 103 manages a tracking area list when the mobile terminal is in a standby state and an active state. The S-GW 104 transmits / receives user data to / from one or a plurality of base stations 102. The S-GW 104 becomes a local mobility anchor point at the time of handover between base stations. Further, there is a P-GW (PDN Gateway), which performs packet filtering and UE-ID address allocation for each user.
 3GPPでの、LTEシステムにおけるフレーム構成に関する現在の決定事項が、非特許文献1(5章)に記載されている。図2を用いて説明する。図2はLTE方式の通信システムで使用される無線フレームの構成を示す説明図である。図2において、1つの無線フレーム(Radio frame)は10msである。無線フレームは10個の等しい大きさのサブフレーム(Sub-frame)に分割される。サブフレームは、2個の等しい大きさのスロット(slot)に分割される。フレーム毎に1番目(#0)と6番目(#5)のサブフレームに下り同期信号(Downlink Synchronization Signal: SS)が含まれる。同期信号には第一同期信号(Primary Synchronization Signal: P-SS)と第二同期信号(Secondary Synchronization Signal: S-SS)がある。サブフレーム単位にてMBSFN(Multimedia Broadcast multicast service Single Frequency Network)用とMBSFN以外のチャネルの多重が行われる。以降、MBSFN送信用のサブフレームをMBSFNサブフレーム(MBSFN sub-frame)と称する。非特許文献2に、MBSFNサブフレームの割り当て時のシグナリング例が記載されている。図3は、MBSFNフレームの構成を示す説明図である。図3において、MBSFNフレーム(MBSFN frame)毎にMBSFNサブフレームが割り当てられる。MBSFNフレームの集合(MBSFN frame Cluster)がスケジュールされる。MBSFNフレームの集合の繰り返し周期(Repetition Period)が割り当てられる。 Non-Patent Document 1 (Chapter 5) describes the current decisions regarding the frame configuration in the LTE system in 3GPP. This will be described with reference to FIG. FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in the LTE communication system. In FIG. 2, one radio frame (Radio frame) is 10 ms. The radio frame is divided into 10 equally sized sub-frames. The subframe is divided into two equally sized slots. A downlink synchronization signal (Downlink Synchronization Signal: SS) is included in the first (# 0) and sixth (# 5) subframes for each frame. The synchronization signal includes a first synchronization signal (Primary Synchronization Signal: P-SS) and a second synchronization signal (Secondary Synchronization Signal: S-SS). Channels other than MBSFN (Multimedia (Broadcast multicast service Single Frequency Network) and channels other than MBSFN are performed on a subframe basis. Hereinafter, a subframe for MBSFN transmission is referred to as an MBSFN subframe (MBSFN sub-frame). Non-Patent Document 2 describes a signaling example at the time of MBSFN subframe allocation. FIG. 3 is an explanatory diagram showing the configuration of the MBSFN frame. In FIG. 3, an MBSFN subframe is allocated for each MBSFN frame (MBSFN frame). A set of MBSFN frames (MBSFN frame Cluster) is scheduled. A repetition period (Repetition Period) of a set of MBSFN frames is assigned.
 3GPPでの、LTEシステムにおけるチャネル構成に関する現在の決定事項が、非特許文献1に記載されている。CSG(Closed Subscriber Group cell)セルにおいてもnon-CSGセルと同じチャネル構成が用いられると想定されている。物理チャネル(Physical channel)について(非特許文献1 5章)図4を用いて説明する。図4は、LTE方式の通信システムで使用される物理チャネルを説明する説明図である。図4において、物理報知チャネル401(Physical Broadcast channel: PBCH)は基地局102から移動端末101へ送信される下りチャネルである。BCHトランスポートブロック(transport block)は40ms間隔中の4個のサブフレームにマッピングされる。40msタイミングの明白なシグナリングはない。物理制御チャネルフォーマットインジケータチャネル402(Physical Control format indicator channel: PCFICH)は基地局102から移動端末101へ送信される。PCFICHは、PDCCHsのために用いるOFDMシンボルの数について基地局102から移動端末101へ通知する。PCFICHはサブフレーム毎に送信される。物理下り制御チャネル403(Physical downlink control channel: PDCCH)は基地局102から移動端末101へ送信される下りチャネルである。PDCCHは、リソース割り当て(allocation)、DL-SCH(図5に示されるトランスポートチャネルの1つである下り共有チャネル)に関するHARQ情報、PCH(図5に示されるトランスポートチャネルの1つであるページングチャネル)を通知する。PDCCHは、上りスケジューリンググラント(Uplink Scheduling Grant)を運ぶ。PDCCHは、上り送信に対する応答信号であるACK/Nackを運ぶ。PDCCHはL1/L2制御信号とも呼ばれる。物理下り共有チャネル404(Physical downlink shared channel: PDSCH)は、基地局102から移動端末101へ送信される下りチャネルである。PDSCHはトランスポートチャネルであるDL-SCH(下り共有チャネル)やトランスポートチャネルであるPCHがマッピングされている。物理マルチキャストチャネル405(Physical multicast channel: PMCH)は基地局102から移動端末101へ送信される下りチャネルである。PMCHはトランスポートチャネルであるMCH(マルチキャストチャネル)がマッピングされている。 Non-Patent Document 1 describes the current decisions regarding the channel configuration in the LTE system in 3GPP. It is assumed that the same channel configuration as a non-CSG cell is used in a CSG (Closed 構成 Subscriber-Group cell) cell. A physical channel (Non-Patent Document 1, Chapter 5) will be described with reference to FIG. FIG. 4 is an explanatory diagram illustrating physical channels used in the LTE communication system. In FIG. 4, a physical broadcast channel 401 (PhysicalPhysBroadcast channel: PBCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. The BCH transport block (transport block) is mapped to four subframes in a 40 ms interval. There is no obvious signaling of 40ms timing. A physical control channel format indicator channel 402 (Physical Control indicator channel: PCFICH) is transmitted from the base station 102 to the mobile terminal 101. PCFICH notifies base station 102 to mobile terminal 101 about the number of OFDM symbols used for PDCCHs. PCFICH is transmitted for each subframe. A physical downlink control channel 403 (Physical downlink control channel: PDCCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDCCH includes resource allocation, HARQ information regarding DL-SCH (downlink shared channel which is one of the transport channels shown in FIG. 5), and PCH (paging which is one of the transport channels shown in FIG. 5). Channel). The PDCCH carries an uplink scheduling grant (Uplink Scheduling Grant). The PDCCH carries ACK / Nack that is a response signal for uplink transmission. The PDCCH is also called an L1 / L2 control signal. A physical downlink shared channel 404 (Physical downlink shared channel: PDSCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PDSCH is mapped with DL-SCH (downlink shared channel) which is a transport channel and PCH which is a transport channel. A physical multicast channel 405 (Physical multicast channel: PMCH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. PMCH is mapped with MCH (multicast channel) which is a transport channel.
 物理上り制御チャネル406(Physical Uplink control channel: PUCCH)は移動端末101から基地局102へ送信される上りチャネルである。PUCCHは下り送信に対する応答信号(response)であるACK/Nackを運ぶ。PUCCHはCQI(Channel Quality indicator)レポートを運ぶ。CQIとは受信したデータの品質、もしくは通信路品質を示す品質情報である。またPUCCHは、スケジューリングリクエスト(Scheduling Request: SR)を運ぶ。物理上り共有チャネル407(Physical Uplink shared channel: PUSCH)は移動端末101から基地局102へ送信される上りチャネルである。PUSCHはUL-SCH(図5に示されるトランスポートチャネルの1つである上り共有チャネル)がマッピングされている。物理HARQインジケータチャネル408(Physical Hybrid ARQ indicator channel: PHICH)は基地局102から移動端末101へ送信される下りチャネルである。PHICHは上り送信に対する応答であるACK/Nackを運ぶ。物理ランダムアクセスチャネル409(Physical random access channel: PRACH)は移動端末101から基地局102へ送信される上りチャネルである。PRACHはランダムアクセスプリアンブル(random access preamble)を運ぶ。 A physical uplink control channel 406 (Physical Uplink control channel: PUCCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. The PUCCH carries ACK / Nack which is a response signal (response) to downlink transmission. The PUCCH carries a CQI (Channel Quality Indicator) report. CQI is quality information indicating the quality of received data or channel quality. The PUCCH carries a scheduling request (Scheduling Request: SR). A physical uplink shared channel 407 (Physical Uplink shared channel: PUSCH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. PUSCH is mapped with UL-SCH (uplink shared channel which is one of the transport channels shown in FIG. 5). A physical HARQ indicator channel 408 (Physical Hybrid ARQ indicator: PHICH) is a downlink channel transmitted from the base station 102 to the mobile terminal 101. The PHICH carries ACK / Nack that is a response to uplink transmission. A physical random access channel 409 (Physical random access channel: PRACH) is an uplink channel transmitted from the mobile terminal 101 to the base station 102. The PRACH carries a random access preamble.
 下りリファレンスシグナル(Reference signal)は、移動体通信システムとして既知のシンボルが、毎スロットの最初、3番目、最後のOFDMシンボルに挿入される。移動端末の物理レイヤの測定として、リファレンスシンボルの受信電力(Reference symbol received power:RSRP)がある。 As a downlink reference signal (Reference signal), a symbol known as a mobile communication system is inserted into the first, third and last OFDM symbols of each slot. As a measurement of the physical layer of the mobile terminal, there is a reference symbol received power (RSRP).
 トランスポートチャネル(Transport channel)について(非特許文献1 5章)図5を用いて説明する。図5は、LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。図5Aには下りトランスポートチャネルと下り物理チャネル間のマッピングを示す。図5Bには上りトランスポートチャネルと上り物理チャネル間のマッピングを示す。下りトランスポートチャネルについて報知チャネル(Broadcast channel: BCH)はその基地局(セル)全体に報知される。BCHは物理報知チャネル(PBCH)にマッピングされる。下り共有チャネル(Downlink Shared channel: DL-SCH)には、HARQ(Hybrid ARQ)による再送制御が適用される。基地局(セル)全体への報知が可能である。ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。準静的なリソース割り当ては,パーシステントスケジューリング(Persistent Scheduling)とも言われる。移動端末の低消費電力化のために移動端末のDRX(Discontinuous reception)をサポートする。DL-SCHは物理下り共有チャネル(PDSCH)へマッピングされる。ページングチャネル(Paging channel: PCH)は移動端末の低消費電力を可能とするために移動端末のDRXをサポートする。基地局(セル)全体への報知が要求される。動的にトラフィックに利用できる物理下り共有チャネル(PDSCH)のような物理リソース、あるいは他の制御チャネルの物理下り制御チャネル(PDCCH)のような物理リソースへマッピングされる。マルチキャストチャネル(Multicast channel: MCH)は基地局(セル)全体への報知に使用される。マルチセル送信におけるMBMSサービス(MTCHとMCCH)のSFN合成をサポートする。準静的なリソース割り当てをサポートする。MCHはPMCHへマッピングされる。 The transport channel will be described with reference to FIG. 5 (Chapter 5 of Non-Patent Document 1). FIG. 5 is an explanatory diagram for explaining a transport channel used in an LTE communication system. FIG. 5A shows mapping between the downlink transport channel and the downlink physical channel. FIG. 5B shows mapping between the uplink transport channel and the uplink physical channel. As for the downlink transport channel, a broadcast channel (Broadcast channel: BCH) is broadcast to the entire base station (cell). BCH is mapped to the physical broadcast channel (PBCH). Retransmission control by HARQ (Hybrid ARQ) is applied to the downlink shared channel (Downlink Shared channel: DL-SCH). Broadcasting to the entire base station (cell) is possible. Supports dynamic or semi-static resource allocation. Quasi-static resource allocation is also called Persistent Scheduling. In order to reduce the power consumption of the mobile terminal, DRX (Discontinuous reception) of the mobile terminal is supported. The DL-SCH is mapped to the physical downlink shared channel (PDSCH). A paging channel (Paging channel: PCH) supports DRX of the mobile terminal in order to enable low power consumption of the mobile terminal. Notification to the entire base station (cell) is required. It is mapped to a physical resource such as a physical downlink shared channel (PDSCH) that can be dynamically used for traffic, or a physical resource such as a physical downlink control channel (PDCCH) of another control channel. A multicast channel (Multicast channel: MCH) is used for broadcasting to the entire base station (cell). Supports SFN combining of MBMS services (MTCH and MCCH) in multi-cell transmission. Supports quasi-static resource allocation. MCH is mapped to PMCH.
 上り共有チャネル(Uplink Shared channel: UL-SCH)にはHARQ(Hybrid ARQ)による再送制御が適用される。ダイナミックあるいは準静的(Semi-static)なリソース割り当てをサポートする。UL-SCHは物理上り共有チャネル(PUSCH)へマッピングされる。図5Bに示されるランダムアクセスチャネル(Random access channel: RACH)は制御情報に限られている。衝突のリスクがある。RACHは物理ランダムアクセスチャネル(PRACH)へマッピングされる。HARQについて説明する。 Retransmission control by HARQ (Hybrid ARQ) is applied to the uplink shared channel (Uplink Shared channel: UL-SCH). Supports dynamic or semi-static resource allocation. The UL-SCH is mapped to the physical uplink shared channel (PUSCH). The random access channel (Random access channel: RACH) shown in FIG. 5B is limited to control information. There is a risk of collision. The RACH is mapped to a physical random access channel (PRACH). HARQ will be described.
 HARQとは自動再送(Automatic Repeat reQuest)と誤り訂正(Forward Error Correction)との組み合わせにより伝送路の通信品質を向上させる技術である。通信品質が変化する伝送路に対しても再送により誤り訂正が有効に機能するという利点がある。特に再送にあたって初送の受信結果と再送の受信結果の合成をすることで更なる品質向上を得ることも可能である。再送の方法の一例を説明する。受信側にて受信データが正しくデコード出来なかった場合(CRC Cyclic Redundancy Check エラーが発生した場合(CRC=NG))、受信側から送信側へ「Nack」を送信する。「Nack」を受信した送信側はデータを再送する。受信側にて受信データが正しくデコードできた場合(CRCエラーが発生しない場合(CRC=OK))、受信側から送信側へ「Ack」を送信する。「Ack」を受信した送信側は次のデータを送信する。HARQ方式の一例として「チェースコンバイニング」(Chase Combining)がある。チェースコンバイニングとは初送と再送に同じデータ系列を送信するもので、再送において初送のデータ系列と再送のデータ系列の合成を行うことで利得を向上させる方式である。これは初送データに誤りがあったとしても部分的に正確なものも含まれており、正確な部分の初送データと再送データとを合成することでより高精度にデータを送信できるという考え方に基づいている。また、HARQ方式の別の例としてIR(Incremental Redundancy)がある。IRとは冗長度を増加させるものであり、再送においてパリティビットを送信することで初送と組み合わせて冗長度を増加させ、誤り訂正機能により品質を向上させるものである。 HARQ is a technology for improving the communication quality of a transmission path by combining automatic retransmission (Automatic Repeat request) and error correction (Forward Error Correction). There is also an advantage that error correction functions effectively by retransmission even for a transmission path in which communication quality changes. In particular, further quality improvement can be obtained by combining the reception result of the initial transmission and the reception result of the retransmission upon retransmission. An example of the retransmission method will be described. If the reception data cannot be decoded correctly on the reception side (CRC Cyclic Redundancy Check error has occurred (CRC = NG)), "Nack" is transmitted from the reception side to the transmission side. The transmission side that has received “Nack” retransmits the data. When the reception data can be correctly decoded on the reception side (when no CRC error occurs (CRC = OK)), “Ack” is transmitted from the reception side to the transmission side. The transmitting side that has received “Ack” transmits the next data. An example of the HARQ system is “Chase Combining”. Chase combining is a method in which the same data sequence is transmitted for initial transmission and retransmission, and the gain is improved by combining the initial transmission data sequence and the retransmission data sequence in retransmission. The idea is that even if there is an error in the initial transmission data, it is partially accurate, and it is possible to transmit data with higher accuracy by combining the initial transmission data and the retransmission data of the correct part. Based on. Another example of the HARQ scheme is IR (Incremental Redundancy). IR is to increase redundancy. By transmitting parity bits in retransmission, the redundancy is increased in combination with the initial transmission, and the quality is improved by the error correction function.
 論理チャネル(Logical channel)について(非特許文献1 6章)図6を用いて説明する。図6は、LTE方式の通信システムで使用される論理チャネルを説明する説明図である。図6Aには下りロジカルチャネルと下りトランスポートチャネル間のマッピングを示す。図6Bには上りロジカルチャネルと上りトランスポートチャネル間のマッピングを示す。報知制御チャネル(Broadcast control channel: BCCH)は報知システム制御情報のための下りチャネルである。論理チャネルであるBCCHはトランスポートチャネルである報知チャネル(BCH)、あるいは下り共有チャネル(DL-SCH)へマッピングされる。ページング制御チャネル(Paging control channel: PCCH)はページング信号を送信するための下りチャネルである。PCCHは移動端末のセルロケーションをネットワークが知らない場合に用いられる。論理チャネルであるPCCHはトランスポートチャネルであるページングチャネル(PCH)へマッピングされる。共有制御チャネル(Common control channel: CCCH)は移動端末と基地局間の送信制御情報のためのチャネルである。CCCHは移動端末がネットワークとの間でRRC接続(connection)を持っていない場合に用いられる。下り方法では、CCCHはトランスポートチャネルである下り共有チャネル(DL-SCH)へマッピングされる。上り方向では、CCCHはトランスポートチャネルである上り共有チャネル(UL-SCH)へマッピングされる。 A logical channel (Chapter 6 of Non-Patent Document 1) will be described with reference to FIG. FIG. 6 is an explanatory diagram illustrating logical channels used in the LTE communication system. FIG. 6A shows mapping between the downlink logical channel and the downlink transport channel. FIG. 6B shows mapping between the uplink logical channel and the uplink transport channel. The broadcast control channel (Broadcast control channel: CHBCCH) is a downlink channel for broadcast system control information. The BCCH that is a logical channel is mapped to a broadcast channel (BCH) that is a transport channel or a downlink shared channel (DL-SCH). A paging control channel (Paging control channel: PCCH) is a downlink channel for transmitting a paging signal. PCCH is used when the network does not know the cell location of the mobile terminal. The PCCH that is a logical channel is mapped to a paging channel (PCH) that is a transport channel. The shared control channel (Common control channel: CCCC) is a channel for transmission control information between the mobile terminal and the base station. CCCH is used when the mobile terminal does not have an RRC connection with the network. In the downlink method, the CCCH is mapped to a downlink shared channel (DL-SCH) that is a transport channel. In the uplink direction, the CCCH is mapped to an uplink shared channel (UL-SCH) that is a transport channel.
 マルチキャスト制御チャネル(Multicast control channel: MCCH)は1対多の送信のための下りチャネルである。ネットワークから移動端末への1つあるいはいくつかのMTCH用のMBMS制御情報の送信のために用いられるチャネルである。MCCHはMBMS受信中の移動端末のみに用いられるチャネルである。MCCHはトランスポートチャネルである下り共有チャネル(DL-SCH)あるいはマルチキャストチャネル(MCH)へマッピングされる。個別制御チャネル(Dedicated control channel: DCCH)は移動端末とネットワーク間の個別制御情報を送信するチャネルである。DCCHは上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)にマッピングされる。個別トラフィックチャネル(Dedicate Traffic channel: DTCH)はユーザ情報の送信のための個別移動端末への1対1通信のチャネルである。DTCHは上り・下りともに存在する。DTCHは上りでは上り共有チャネル(UL-SCH)へマッピングされ、下りでは下り共有チャネル(DL-SCH)へマッピングされる。マルチキャストトラフィックチャネル(Multicast Traffic channel: MTCH)はネットワークから移動端末へのトラフィックデータ送信のための下りチャネルである。MTCHはMBMS受信中の移動端末のみに用いられるチャネルである。MTCHは下り共有チャネル(DL-SCH)あるいはマルチキャストチャネル(MCH)へマッピングされる。 The multicast control channel (Multicast control channel: MCCH) is a downlink channel for one-to-many transmission. This is a channel used for transmission of MBMS control information for one or several MTCHs from the network to the mobile terminal. MCCH is a channel used only for a mobile terminal receiving MBMS. MCCH is mapped to a downlink shared channel (DL-SCH) or multicast channel (MCH) which is a transport channel. The dedicated control channel (Dedicated control channel: DCCH) is a channel that transmits dedicated control information between the mobile terminal and the network. The DCCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink. The dedicated traffic channel (Dedicate Traffic channel: DTCH) is a channel for one-to-one communication to an individual mobile terminal for transmitting user information. DTCH exists for both uplink and downlink. The DTCH is mapped to the uplink shared channel (UL-SCH) in the uplink, and is mapped to the downlink shared channel (DL-SCH) in the downlink. A multicast traffic channel (Multicast Traffic channel: MTCH) is a downlink channel for transmitting traffic data from a network to a mobile terminal. MTCH is a channel used only for a mobile terminal that is receiving MBMS. The MTCH is mapped to the downlink shared channel (DL-SCH) or multicast channel (MCH).
 GCIとは、グローバルセル識別子(Global Cell Identity)のことである。LTE及びUMTS(Universal Mobile Telecommunication System)においてCSGセル(Closed Subscriber Group cell)が導入される。CSGについて以下説明する(非特許文献4 3.1章)。CSG(Closed Subscriber Group)とは、利用可能な加入者をオペレータが特定しているセルである(特定加入者用セル)。特定された加入者は、PLMN(Public Land Mobile Network)のひとつ以上のE-UTRANセルにアクセスすることが許可される。特定された加入者がアクセスを許可されている1つ以上のE-UTRANセルを“CSG cell(s)”とよぶ。ただし、PLMNにはアクセス制限がある。CSGセルとは、固有のCSGアイデンティティ(CSG identity: CSG ID,CSG-ID)を報知するPLMNの一部である。あらかじめ利用登録し、許可された加入者グループのメンバーは、アクセス許可情報であるところのCSG-IDを用いてCSGセルにアクセスする。
CSG-IDはCSGセルかセルによって報知される。移動体通信システムにCSG-IDは複数存在する。そして、CSG-IDは、CSG関連のメンバーのアクセスを容易にするために端末(UE)によって使用される。CSGセルあるいはセルによって報知される情報をCSG-IDの代わりにトラッキングエリアコード(Tracking Area Code TAC)にすることが3GPP会合において議論されている。移動端末の位置追跡は、1つ以上のセルからなる区域を単位に行われる。位置追跡は、通信をしていない状態(待受け状態)であっても移動端末の位置を追跡し、呼び出す(移動端末が着呼する)ことを可能にするためである。この移動端末の位置追跡のための区域をトラッキングエリアとよぶ。CSGホワイトリスト(CSG White List)とは、加入者が属するCSGセルのすべてのCSG-IDが記録されている、USIMに格納されたリストである。移動端末内のホワイトリストは上位レイヤによって与えられる。これによりCSGセルの基地局は移動端末に無線リソースの割り当てを行う。
GCI is a global cell identity. A CSG cell (Closed Subscriber Group cell) is introduced in LTE and UMTS (Universal Mobile Telecommunication System). CSG will be described below (Chapter 3.1 of Non-Patent Document 4). A CSG (Closed Subscriber Group) is a cell in which an operator identifies an available subscriber (a cell for a specific subscriber). The identified subscriber is allowed to access one or more E-UTRAN cells of the Public Land Mobile Network (PLMN). One or more E-UTRAN cells to which the identified subscribers are allowed access are referred to as “CSG cell (s)”. However, PLMN has access restrictions. A CSG cell is a part of a PLMN that broadcasts a unique CSG identity (CSG identity: CSG ID, CSG-ID). Members of the subscriber group who have been registered for use in advance and access the CSG cell using the CSG-ID as access permission information.
The CSG-ID is broadcast by the CSG cell or the cell. There are a plurality of CSG-IDs in a mobile communication system. The CSG-ID is then used by the terminal (UE) to facilitate access of CSG related members. It has been discussed at the 3GPP meeting that the CSG cell or information broadcast by the cell is set to a tracking area code (TAC) instead of a CSG-ID. The location tracking of a mobile terminal is performed in units of areas composed of one or more cells. The position tracking is to enable tracking of the position of the mobile terminal and calling (the mobile terminal receives a call) even when communication is not performed (standby state). This area for tracking the location of the mobile terminal is called a tracking area. The CSG white list is a list stored in the USIM in which all CSG-IDs of CSG cells to which the subscriber belongs are recorded. The white list in the mobile terminal is given by the upper layer. Thereby, the base station of the CSG cell allocates radio resources to the mobile terminal.
 「適切なセル」(Suitable cell)について以下説明する(非特許文献4 4.3章)。「適切なセル」(Suitable cell)とは、UEが通常(normal)サービスを受けるためにキャンプオン(Camp ON)するセルである。そのようなセルは、(1)セルは選択されたPLMNか登録されたPLMN、または「Equivalent PLMNリスト」のPLMNの一部であること、(2)NAS(non-access stratum)によって提供された最新情報にてさらに以下の条件を満たすこと、(1)そのセルが禁じられた(barred)セルでないこと。(2)そのセルが“ローミングのための禁止されたLAs”リストの一部ではなく、少なくとも1つのトラッキングエリア(Tracking Area:TA)の一部であること。その場合、そのセルは上記(1)を満たす必要がある、(3)そのセルが、セル選択評価基準を満たしていること、(4)そのセルが、CSGセルとしてシステム情報(System Information: SI)によって特定されたセルに関しては、CSG-IDはUEの「CSGホワイトリスト」(CSG WhiteList)の一部であること(UEのCSG WhiteList中に含まれること)。 “Suitable cell” will be described below (Non-Patent Document 4, Chapter 4.3). A “suitable cell” is a cell that the UE camps on to receive normal service. Such a cell was provided by (1) the selected PLMN or registered PLMN, or part of the PLMN in the “Equivalent PLMN list”, (2) NAS (non-access stratum) The latest information must satisfy the following conditions. (1) The cell is not a barred cell. (2) The cell is not part of the “Prohibited LAs for roaming” list, but part of at least one tracking area (Tracking Area: TA). In that case, the cell needs to satisfy the above (1), (3) the cell satisfies the cell selection evaluation criteria, and (4) the cell is a system information (System Information: SI) as a CSG cell. ), The CSG-ID shall be part of the UE's “CSG White List” (CSG White List) (included in the UE CSG White List).
 「アクセプタブルセル」(Acceptable cell)について以下説明する(非特許文献4 4.3章)これは、UEが限られたサービス(緊急通報)を受けるためにキャンプオンするセルである。そのようなセルは以下のすべての要件を充足するものとする。つまり、E-UTRANネットワークで緊急通報を開始するための最小のセットの要件を以下に示す。(1)そのセルが禁じられた(barred)セルでないこと。(2)そのセルが、セル選択評価基準を満たしていること。 “Acceptable cell” is described below (Chapter 4.3 of Non-Patent Document 4). This is a cell where the UE camps on in order to receive a limited service (emergency call). Such a cell shall meet all the following requirements: That is, the minimum set of requirements for initiating an emergency call in an E-UTRAN network is shown below. (1) The cell is not a barred cell. (2) The cell satisfies the cell selection evaluation criteria.
 HeNB及びHNBに対してはさまざまなサービスへの対応が求められている。例えば、オペレータは、ある決められたHeNB及びHNBに移動端末を登録させ、登録した移動端末のみにHeNB及びHNBのセルへのアクセスを許可することで、該移動端末が使用できる無線リソースを増大させて高速に通信を行えるようにする。その分、オペレータは課金料を通常よりも高く設定する。といったサービスである。こういったサービスを実現するため、登録した(加入した、メンバーとなった)移動端末のみがアクセスできるCSG(Closed Subscriber Group cell)セルが導入されている。 HeNB and HNB are required to support various services. For example, an operator increases the radio resources that can be used by a mobile terminal by allowing the mobile terminal to be registered in a certain HeNB and HNB and allowing only the registered mobile terminal to access the cell of the HeNB and HNB. To enable high-speed communication. Accordingly, the operator sets the charging fee higher than usual. Service. In order to realize such a service, a CSG (Closed Subscriber Group cell) cell that can be accessed only by registered (subscribed, member) mobile terminals has been introduced.
 CSG(Closed Subscriber Group cell)セルは、商店街やマンション、学校、会社などへ数多く設置されることが要求される。たとえば、商店街では店舗ごと、マンションでは部屋ごと、学校では教室ごと、会社ではセクションごとにCSGセルを設置し、各CSGセルに登録したユーザのみが該CSGセルを使用可能とするような使用方法が要求されている。 Many CSG (Closed Subscriber Group cells) cells are required to be installed in shopping streets, condominiums, schools, and companies. For example, a CSG cell is installed for each store in a shopping street, each room in an apartment, each classroom in a school, and each section in a company, and only a user registered in each CSG cell can use the CSG cell. Is required.
 一方、他のサービスとして、該CSGセルに対して、登録した移動端末のみではなく、登録していない移動端末にも一部の無線リソースを使用させることも考えられている。例えば、商店街の店舗に設置されたCSGセルでは、店員の移動端末のみを該CSGに登録して高速通信可能とするだけでなく、該CSGに登録していないお客の移動端末にも利用させることが要求される。このような場合に対応するため、HeNB及びHNBに対して、「ハイブリッドアクセスモード」(Hybrid access mode)の運用が提案されている。「ハイブリッドアクセスモード」とは、登録した移動端末のみアクセス可能な第一の動作モードである「クローズドアクセスモード」(closed access mode)と、登録していない移動端末がアクセス可能な第二の動作モードである「オープンアクセスモード」(open access mode)の両方を同時にサービスするCSGセルの動作形態を示す(第三の動作モード)。この場合、登録した移動端末に対してはアクセスを許可するか判断しつつ、登録していない移動端末に対してもアクセスを許可するものである。したがって、商店街やマンションなどに数多く設置されたHeNB及びHNBは、オープンアクセスモードで動作するCSGセル、クローズドアクセスモードで動作するCSGセルが混在することになる。また、HeNB及びHNBは可搬なサイズ、重量を想定しており、これらの設置や撤去は頻繁にかつ柔軟に行われることも要求される。このような要求を考慮すると、ある地点においては同時に多数のいろいろなモードのセルからの電波が送信されることになる。つまり、商店街やマンションなどでは、移動端末が多数のいろいろなモードのセルからの電波が届く位置にいる状況が発生する。 On the other hand, as another service, it is also considered that not only registered mobile terminals but also unregistered mobile terminals use some radio resources for the CSG cell. For example, in a CSG cell installed in a store in a shopping street, not only a clerk's mobile terminal is registered in the CSG to enable high-speed communication, but also used by a customer's mobile terminal that is not registered in the CSG Is required. In order to cope with such a case, the operation of “hybrid access mode” has been proposed for HeNB and HNB. "Hybrid access mode" means "closed access mode" (closed access mode), which is the first operation mode accessible only to registered mobile terminals, and second operation mode accessible to unregistered mobile terminals An operation mode of a CSG cell that simultaneously services both “open access mode” (third operation mode) is shown. In this case, access is permitted to unregistered mobile terminals while determining whether to permit access to registered mobile terminals. Therefore, HeNBs and HNBs that are installed in a large number of shopping streets and condominiums have a mixture of CSG cells that operate in the open access mode and CSG cells that operate in the closed access mode. Further, the HeNB and HNB are assumed to have a portable size and weight, and it is required that their installation and removal be performed frequently and flexibly. In consideration of such requirements, radio waves from many different modes of cells are transmitted simultaneously at a certain point. That is, in a shopping street, a condominium, etc., a situation occurs where the mobile terminal is in a position where radio waves from a number of cells in various modes reach.
 このように、オープンアクセスモード、クローズドアクセスモード、ハイブリッドアクセスモードのような異なる動作モードに設定された多数のセルからの電波が届く位置にいる移動端末の場合、多くのアクセス不可能なクローズドアクセスモードのセル(CSGセル)、つまりユーザアクセス登録していないCSGセルを延々とサーチやセル選択を繰り返す状況が生じる。また、セルサーチを行い、選択したセルがハイブリッドアクセスモードのセル、つまりクローズドアクセスモードとオープンアクセスモードをサポートするセルであるにもかかわらず、ユーザアクセス登録していない移動端末はアクセスが不可能という状態になってしまい、再度セルサーチやセル選択を延々と繰り返す状況が生じてしまう。このような場合、システムに制御遅延や無線リソースの使用効率及びシグナリング効率の低下を引き起こす。また、セルサーチを繰り返す移動端末の消費電力が大きくなるという問題が生じる。これらの問題は前述したような将来の多数のいろいろなモードのHeNB、HNBの配置状況を想定すると重要な問題となる。本発明はこれらの問題を解消するためになされたものである。 In this way, in the case of a mobile terminal in a position where radio waves from a large number of cells set in different operation modes such as open access mode, closed access mode, and hybrid access mode can be reached, many closed access modes that cannot be accessed There is a situation in which search and cell selection are repeated endlessly for cells (CSG cells), that is, CSG cells not registered for user access. In addition, cell search is performed and the selected cell is a cell in hybrid access mode, that is, a cell that supports closed access mode and open access mode, but a mobile terminal that is not registered for user access cannot access. As a result, the cell search and cell selection are repeated again and again. In such a case, control delay, radio resource usage efficiency, and signaling efficiency decrease in the system. Further, there arises a problem that power consumption of a mobile terminal that repeats cell search increases. These problems become important when assuming the arrangement of HeNB and HNB in many different modes as described above. The present invention has been made to solve these problems.
 本発明に係る移動体通信システムは、下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の基地局を介して移動端末が位置する所望のトラッキングエリアを管理するとともに、移動端末にページング処理を行う基地局制御装置を含み、移動端末は、通信セルそれぞれに割り当てられた情報であって、通信セルを識別するための情報であるセル識別情報(PCI)を基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、特定加入者用セルは、特定の移動端末ないし加入者に利用を許可する第一の動作モードと不特定の移動端末ないし利用者に利用を許可する第二の動作モードとを同時に運用可能であり、通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、第二の動作モードで動作している特定加入者用セルには第一分類に含まれるセル識別情報が割り当てられるものである。 The mobile communication system according to the present invention transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method. Provided in a mobile terminal, a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber, and an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user And a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal. The mobile terminal is assigned to each communication cell. Cell identification information (PCI), which is information for identifying a communication cell, is received from the base station. In a mobile communication system that selects a cell for communication, a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user. Cell identification information that can be used simultaneously with a second operation mode that permits use and that can be assigned to a communication cell includes a first classification assigned to a specific subscriber cell and a second assignment assigned to an unspecified user cell. The cell identification information included in the first classification is assigned to the cell for the specific subscriber that is classified into the classification and operates in the second operation mode.
 本発明に係る移動体通信システムは、下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の基地局を介して移動端末が位置する所望のトラッキングエリアを管理するとともに、移動端末にページング処理を行う基地局制御装置を含み、移動端末は、通信セルそれぞれに割り当てられた情報であって、通信セルを識別するための情報であるセル識別情報(PCI)を基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、特定加入者用セルは、特定の移動端末ないし加入者に利用を許可する第一の動作モードと不特定の移動端末ないし利用者に利用を許可する第二の動作モードと、第一の動作モードと第二の動作モードとを同時に処理する第三の動作モードで運用可能であり、通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、第三の動作モードで動作している特定加入者用セルには第一分類に含まれるセル識別情報が割り当てられるものである。 The mobile communication system according to the present invention transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method. Provided in a mobile terminal, a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber, and an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user And a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal. The mobile terminal is assigned to each communication cell. Cell identification information (PCI), which is information for identifying a communication cell, is received from the base station. In a mobile communication system that selects a cell for communication, a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user. The cell identification information that can be operated in the second operation mode that permits use and the third operation mode that simultaneously processes the first operation mode and the second operation mode and that can be assigned to the communication cell is specified. It is classified into the first classification to be assigned to the subscriber cell and the second classification to be assigned to the unspecified user cell, and the specific subscriber cell operating in the third operation mode is included in the first classification. Cell identification information to be assigned.
 本発明に係る移動体通信システムは、下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の基地局を介して移動端末が位置する所望のトラッキングエリアを管理するとともに、移動端末にページング処理を行う基地局制御装置を含み、移動端末は、通信セルそれぞれに割り当てられた情報であって、通信セルを識別するための情報であるセル識別情報(PCI)を基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、特定加入者用セルは、特定の移動端末ないし加入者に利用を許可する第一の動作モードと不特定の移動端末ないし利用者に利用を許可する第二の動作モードとを同時に運用可能であり、通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、第二の動作モードで動作している特定加入者用セルには第一分類に含まれるセル識別情報が割り当てられるので、ホワイトリストを有する移動端末がCSGセル用のPCI範囲に属するPCIを用いてサーチを行うことにより、サーチ動作を高速に運用できるという効果を得ることが出来る。このことは移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、移動端末の消費電力の低減という効果を得ることが出来る。 The mobile communication system according to the present invention transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method. Provided in a mobile terminal, a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber, and an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user And a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal. The mobile terminal is assigned to each communication cell. Cell identification information (PCI), which is information for identifying a communication cell, is received from the base station. In a mobile communication system that selects a cell for communication, a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user. Cell identification information that can be used simultaneously with a second operation mode that permits use and that can be assigned to a communication cell includes a first classification assigned to a specific subscriber cell, and a second classification assigned to an unspecified user cell. Since the cell identification information included in the first classification is assigned to the cell for the specific subscriber that is classified into the classification and is operating in the second operation mode, the mobile terminal having the white list can perform the PCI for the CSG cell. By performing a search using a PCI belonging to the range, an effect that the search operation can be performed at a high speed can be obtained. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained.
 本発明に係る移動体通信システムは、下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の基地局を介して移動端末が位置する所望のトラッキングエリアを管理するとともに、移動端末にページング処理を行う基地局制御装置を含み、移動端末は、通信セルそれぞれに割り当てられた情報であって、通信セルを識別するための情報であるセル識別情報(PCI)を基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、特定加入者用セルは、特定の移動端末ないし加入者に利用を許可する第一の動作モードと不特定の移動端末ないし利用者に利用を許可する第二の動作モードと、第一の動作モードと第二の動作モードとを同時に処理する第三の動作モードで運用可能であり、通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、第三の動作モードで動作している特定加入者用セルには第一分類に含まれるセル識別情報が割り当てられるので、ホワイトリストを有する移動端末がCSGセル用のPCI範囲に属するPCIを用いてサーチを行うことにより、サーチ動作を高速に運用できるという効果を得ることが出来る。このことは移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、移動端末の消費電力の低減という効果を得ることが出来る。 The mobile communication system according to the present invention transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) method as a downlink access method and an SC-FDMA (Single Carrier Frequency Division Multiple Access) method as an uplink access method. Provided in a mobile terminal, a specific subscriber cell that is a communication cell that is permitted to be used by a specific mobile terminal or subscriber, and an unspecified user cell that is a communication cell that can be used by an unspecified mobile terminal or user And a base station controller that manages a desired tracking area where the mobile terminal is located via a plurality of base stations and performs paging processing on the mobile terminal. The mobile terminal is assigned to each communication cell. Cell identification information (PCI), which is information for identifying a communication cell, is received from the base station. In a mobile communication system that selects a cell for communication, a cell for a specific subscriber uses a first operation mode that allows a specific mobile terminal or subscriber to use and an unspecified mobile terminal or user. The cell identification information that can be operated in the second operation mode that permits use and the third operation mode that simultaneously processes the first operation mode and the second operation mode and that can be assigned to the communication cell is specified. It is classified into the first classification assigned to the subscriber cell and the second classification assigned to the unspecified user cell, and the specific subscriber cell operating in the third operation mode is included in the first classification. Cell identification information to be assigned, so that a mobile terminal having a white list performs a search using a PCI belonging to the PCI range for the CSG cell, thereby enabling a search operation to be operated at high speed. Can be obtained. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained.
LTE方式の通信システムの構成を示す説明図である。LTE方式の通信システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the communication system of a LTE system. It is explanatory drawing which shows the structure of the communication system of a LTE system. LTE方式の通信システムで使用される無線フレームの構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a radio frame used in an LTE communication system. MBSFN(Multimedia Broadcast multicast service Single Frequency Network)フレームの構成を示す説明図である。It is explanatory drawing which shows the structure of a MBSFN (Multimedia | Broadcast | multicast | multicast | service | Single | Frequency | Network) frame. LTE方式の通信システムで使用される物理チャネルを説明する説明図である。It is explanatory drawing explaining the physical channel used with the communication system of a LTE system. LTE方式の通信システムで使用されるトランスポートチャネルを説明する説明図である。It is explanatory drawing explaining the transport channel used with the communication system of a LTE system. LTE方式の通信システムで使用される論理チャネルを説明する説明図である。It is explanatory drawing explaining the logical channel used with the communication system of a LTE system. 現在3GPPで議論されている移動体通信システムの全体的な構成を示すブロック図である。It is a block diagram which shows the whole structure of the mobile communication system currently discussed by 3GPP. 本発明に係る移動端末311の構成を示すブロック図である。It is a block diagram which shows the structure of the mobile terminal 311 which concerns on this invention. 本発明に係る基地局312の構成を示すブロック図である。It is a block diagram which shows the structure of the base station 312 which concerns on this invention. 本発明に係るMMEの構成を示すブロック図である。It is a block diagram which shows the structure of MME which concerns on this invention. 本発明に係るHeNBGWの構成を示すブロック図である。It is a block diagram which shows the structure of HeNBGW which concerns on this invention. LTE方式の通信システムにおいて移動端末(UE)が行うセルサーチの概略を示すフローチャートである。It is a flowchart which shows the outline of the cell search which a mobile terminal (UE) performs in the communication system of a LTE system. PCIスプリットの概念図である。It is a conceptual diagram of PCI split. 実施の形態2の移動端末のセル選択処理を示すフローチャートである。6 is a flowchart showing cell selection processing of the mobile terminal according to the second embodiment. 実施の形態2の移動端末の処理を示すフローチャートである。6 is a flowchart showing processing of the mobile terminal according to the second embodiment. 実施の形態2変形例の移動端末の処理を示すフローチャートである。It is a flowchart which shows the process of the mobile terminal of Embodiment 2 modification. 実施の形態3の移動端末の処理を示すフローチャートである。10 is a flowchart showing processing of a mobile terminal according to the third embodiment. 現在3GPPで議論されている移動体通信システムの全体的な構成を示すブロック図である。It is a block diagram which shows the whole structure of the mobile communication system currently discussed by 3GPP. 実施の形態4にて用いる、セル設置例の説明図である。FIG. 10 is an explanatory diagram of a cell installation example used in the fourth embodiment. 実施の形態4の解決策における移動体通信システムのシーケンス図である。FIG. 10 is a sequence diagram of a mobile communication system in the solution of the fourth embodiment. 実施の形態4の変形例1の解決策における移動体通信システムのシーケンス図である。FIG. 10 is a sequence diagram of a mobile communication system in the solution of the first modification of the fourth embodiment. 実施の形態4の変形例2の解決策における移動体通信システムのシーケンス図である。FIG. 10 is a sequence diagram of a mobile communication system in the solution of the second modification of the fourth embodiment.
 以下、この発明をより詳細に説明する為に、この発明を実施する為の形態について、添付の図面に従って説明する。
実施の形態1.
 図7は、現在3GPPにおいて議論されているLTE方式の移動体通信システムの全体的な構成を示すブロック図である。現在3GPPにおいては、CSG(Closed Subscriber Group)セル(e-UTRANのHome-eNodeB(Home-eNB,HeNB),UTRANのHome-NB(HNB))とnon-CSGセル(e-UTRANのeNodeB(eNB)、UTRANのNodeB(NB)、GERANのBSS)とを含めたシステムの全体的な構成が検討されており、e-UTRANについては、図7の(a)や(b)のような構成が提案されている(非特許文献1、非特許文献3)。図7(a)について説明する。移動端末(UE)71は基地局72と送受信を行う。基地局72はeNB(non-CSGセル)72-1と、Home-eNB(CSGセル)72-2とに分類される。
eNB72-1はMME73とインタフェースS1により接続され、eNBとMMEとの間で制御情報が通信される。ひとつのeNBに対して複数のMMEが接続される。Home-eNB72-2はMME73とインタフェースS1により接続され、Home-eNBとMMEとの間で制御情報が通信される。ひとつのMMEに対して複数のHome-eNBが接続される。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 7 is a block diagram showing the overall configuration of an LTE mobile communication system currently under discussion in 3GPP. Currently, in 3GPP, CSG (Closed Subscriber Group) cells (e-UTRAN Home-eNodeB (Home-eNB, HeNB), UTRAN Home-NB (HNB)) and non-CSG cells (e-UTRAN eNodeB (eNB) ), UTRAN NodeB (NB), GERAN BSS) and other systems are being studied. For e-UTRAN, configurations such as (a) and (b) in FIG. It has been proposed (Non-Patent Document 1, Non-Patent Document 3). FIG. 7A will be described. A mobile terminal (UE) 71 performs transmission / reception with the base station 72. The base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2.
The eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME. A plurality of MMEs are connected to one eNB. The Home-eNB 72-2 is connected to the MME 73 via the interface S1, and control information is communicated between the Home-eNB and the MME. A plurality of Home-eNBs are connected to one MME.
 次に、図7(b)について説明する。移動端末(UE)71は基地局72と送受信を行う。基地局72はeNB(non-CSGセル)72-1と、Home-eNB(CSGセル)72-2とに分類される。図7(a)と同じように、eNB72-1はMME73とインタフェースS1により接続され、eNBとMMEとの間で制御情報が通信される。ひとつのeNBに対して複数のMMEが接続される。一方、Home-eNB72-2はHeNBGW(Home-eNB GateWay)74を介してMME73と接続される。Home-eNBとHeGWはインタフェースS1により接続され、HeNBGW74とMME73はインタフェースS1_flexを介して接続される。ひとつまたは複数のHome-eNB72-2がひとつのHeNBGW74と接続され、S1を通して情報が通信される。HeNBGW74はひとつまたは複数のMME73と接続され、S1_flexを通して情報が通信される。 Next, FIG. 7B will be described. A mobile terminal (UE) 71 performs transmission / reception with the base station 72. The base station 72 is classified into an eNB (non-CSG cell) 72-1 and a Home-eNB (CSG cell) 72-2. As in FIG. 7A, the eNB 72-1 is connected to the MME 73 via the interface S1, and control information is communicated between the eNB and the MME. A plurality of MMEs are connected to one eNB. On the other hand, the Home-eNB 72-2 is connected to the MME 73 via a HeNBGW (Home-eNB Gateway) 74. Home-eNB and HeGW are connected by an interface S1, and HeNBGW 74 and MME 73 are connected through an interface S1_flex. One or a plurality of Home-eNBs 72-2 are connected to one HeNBGW 74, and information is communicated through S1. The HeNBGW 74 is connected to one or a plurality of MMEs 73, and information is communicated through S1_flex.
 図7(b)の構成を用いて、ひとつのHeNBGW74を、同じCSG-IDに属するHome-eNBと接続することによって、例えばレジストレーション情報など、同じ情報をMME73から同じCSG-IDに属する複数のHome-eNB72-2に送信する場合、一旦HeNBGW74へ送信し、そこから複数のHome-eNB72-2へ送信することで、複数のHome-eNB72-2に対してそれぞれ直接に送信するよりもシグナリング効率を高められる。一方、各Home-eNB72-2がそれぞれ個別の情報をMME73と通信する場合は、HeNBGW74を介すがそこで情報を加工することなく通過(透過)させるだけにしておくことで、Home-eNB72-2とMME73があたかも直接接続されているように通信することも可能となる。 By connecting one HeNBGW 74 to a Home-eNB belonging to the same CSG-ID using the configuration of FIG. 7B, a plurality of information belonging to the same CSG-ID, such as registration information, can be obtained from the MME 73. When transmitting to the Home-eNB 72-2, it is transmitted to the HeNBGW 74 once, and then transmitted to the plurality of Home-eNBs 7-2, thereby signaling efficiency more directly than the plurality of Home-eNBs 72-2 respectively. Can be enhanced. On the other hand, when each Home-eNB 72-2 communicates individual information with the MME 73, the Home-eNB 72-2 passes through the HeNBGW 74 but only passes (transmits) the information without processing. And MME 73 can communicate with each other as if they were directly connected.
 図8は、本発明に係る移動端末(図7の端末71)の構成を示すブロック図である。図8に示す移動端末の送信処理を説明する。まず、プロトコル処理部801からの制御データ、アプリケーション部802からのユーザデータが送信データバッファ部803へ保存される。送信データバッファ部803に保存されたデータはエンコーダー部804へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに送信データバッファ部803から変調部805へ直接出力されるデータが存在しても良い。エンコーダー部804でエンコード処理されたデータは変調部805にて変調処理が行われる。変調されたデータはベースバンド信号に変換された後、周波数変換部806へ出力され、無線送信周波数に変換される。その後、アンテナ807から基地局312に送信信号が送信される。また、移動端末311の受信処理は以下のとおり実行される。基地局312からの無線信号がアンテナ807により受信される。受信信号は、周波数変換部806にて無線受信周波数からベースバンド信号に変換され、復調部808において復調処理が行われる。復調後のデータはデコーダー部809へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部801へ渡され、ユーザデータはアプリケーション部802へ渡される。移動端末の一連の処理は制御部810によって制御される。よって制御部810は、図面では省略しているが、各部(801~809)と接続している。 FIG. 8 is a block diagram showing a configuration of a mobile terminal (terminal 71 in FIG. 7) according to the present invention. Transmission processing of the mobile terminal shown in FIG. 8 will be described. First, control data from the protocol processing unit 801 and user data from the application unit 802 are stored in the transmission data buffer unit 803. The data stored in the transmission data buffer unit 803 is transferred to the encoder unit 804 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 803 to the modulation unit 805 without being encoded. The data encoded by the encoder unit 804 is subjected to modulation processing by the modulation unit 805. The modulated data is converted into a baseband signal, and then output to the frequency conversion unit 806 where it is converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 807 to the base station 312. In addition, the reception process of the mobile terminal 311 is executed as follows. A radio signal from the base station 312 is received by the antenna 807. The reception signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 806, and demodulated by the demodulation unit 808. The demodulated data is transferred to the decoder unit 809 and subjected to decoding processing such as error correction. Of the decoded data, control data is passed to the protocol processing unit 801, and user data is passed to the application unit 802. A series of processing of the mobile terminal is controlled by the control unit 810. Therefore, the control unit 810 is connected to each unit (801 to 809), which is omitted in the drawing.
 図9は、本発明に係る基地局(図7の基地局72)の構成を示すブロック図である。図9に示す基地局の送信処理を説明する。EPC通信部901は、基地局72とEPC(MME73,HeNBGW74など)間のデータの送受信を行う。他基地局通信部902は、他の基地局との間のデータの送受信を行う。EPC通信部901、他基地局通信部902はそれぞれプロトコル処理部903と情報の受け渡しを行う。プロトコル処理部903からの制御データ、またEPC通信部901と他基地局通信部902からのユーザデータ及び制御データが送信データバッファ部904へ保存される。送信データバッファ部904に保存されたデータはエンコーダー部905へ渡され、誤り訂正などのエンコード処理が施される。エンコード処理を施さずに送信データバッファ部904から変調部906へ直接出力されるデータが存在しても良い。エンコードされたデータは変調部906にて変調処理が行われる。変調されたデータはベースバンド信号に変換された後、周波数変換部907へ出力され、無線送信周波数に変換される。その後、アンテナ908より一つもしくは複数の移動端末71に対して送信信号が送信される。また、基地局72の受信処理は以下のとおり実行される。ひとつもしくは複数の移動端末311からの無線信号がアンテナ908により受信される。受信信号は周波数変換部907にて無線受信周波数からベースバンド信号に変換され、復調部909で復調処理が行われる。復調されたデータはデコーダー部910へ渡され、誤り訂正などのデコード処理が行われる。デコードされたデータのうち、制御データはプロトコル処理部903あるいはEPC通信部901、他基地局通信部902へ渡され、ユーザデータはEPC通信部901、他基地局通信部902へ渡される。基地局72の一連の処理は制御部911によって制御される。よって制御部911は図面では省略しているが各部(901~910)と接続している。 FIG. 9 is a block diagram showing the configuration of the base station (base station 72 in FIG. 7) according to the present invention. A transmission process of the base station shown in FIG. 9 will be described. The EPC communication unit 901 transmits and receives data between the base station 72 and EPC (MME73, HeNBGW74, etc.). The other base station communication unit 902 transmits / receives data to / from other base stations. The EPC communication unit 901 and the other base station communication unit 902 exchange information with the protocol processing unit 903, respectively. Control data from the protocol processing unit 903 and user data and control data from the EPC communication unit 901 and the other base station communication unit 902 are stored in the transmission data buffer unit 904. Data stored in the transmission data buffer unit 904 is transferred to the encoder unit 905 and subjected to encoding processing such as error correction. There may exist data that is directly output from the transmission data buffer unit 904 to the modulation unit 906 without being encoded. The encoded data is subjected to modulation processing by the modulation unit 906. The modulated data is converted into a baseband signal, and then output to the frequency conversion unit 907 to be converted into a radio transmission frequency. Thereafter, a transmission signal is transmitted from the antenna 908 to one or a plurality of mobile terminals 71. Further, the reception process of the base station 72 is executed as follows. Radio signals from one or a plurality of mobile terminals 311 are received by the antenna 908. The received signal is converted from a radio reception frequency to a baseband signal by the frequency conversion unit 907, and demodulated by the demodulation unit 909. The demodulated data is transferred to the decoder unit 910, and decoding processing such as error correction is performed. Of the decoded data, the control data is passed to the protocol processing unit 903 or the EPC communication unit 901 and the other base station communication unit 902, and the user data is passed to the EPC communication unit 901 and the other base station communication unit 902. A series of processing of the base station 72 is controlled by the control unit 911. Therefore, the control unit 911 is connected to each unit (901 to 910), which is omitted in the drawing.
 図10は、本発明に係るMME(Mobility Management Entity)の構成を示すブロック図である。PDN GW通信部1001はMME73とPDN GW間のデータの送受信を行う。基地局通信部1002はMME73と基地局72間をS1インタフェースによるデータの送受信を行う。PDN GWから受信したデータがユーザデータであった場合、ユーザデータはPDN GW通信部1001からユーザプレイン処理部1003経由で基地局通信部1002に渡され、1つあるいは複数の基地局72へ送信される。基地局72から受信したデータがユーザデータであった場合、ユーザデータは基地局通信部1002からユーザプレイン処理部1003経由でPDN GW通信部1001に渡され、PDN GWへ送信される。 FIG. 10 is a block diagram showing a configuration of MME (Mobility Management Entity) according to the present invention. The PDN GW communication unit 1001 transmits and receives data between the MME 73 and the PDN GW. The base station communication unit 1002 transmits and receives data between the MME 73 and the base station 72 using the S1 interface. When the data received from the PDN GW is user data, the user data is passed from the PDN GW communication unit 1001 to the base station communication unit 1002 via the user plane processing unit 1003 and transmitted to one or a plurality of base stations 72. The When the data received from the base station 72 is user data, the user data is transferred from the base station communication unit 1002 to the PDN GW communication unit 1001 via the user plane processing unit 1003 and transmitted to the PDN GW.
 PDN GWから受信したデータが制御データであった場合、制御データはPDN GW通信部1001から制御プレイン制御部1005へ渡される。基地局72から受信したデータが制御データであった場合、制御データは基地局通信部1002から制御プレイン制御部1005へ渡される。HeNBGW通信部1004は、HeNBGW74が存在する場合に設けられ、情報種別によって、MME73とHeNBGW74間のインタフェース(IF)によるデータの送受信を行う。HeNBGW通信部1004から受信した制御データはHeNBGW通信部1004から制御プレイン制御部1005へ渡される。制御プレイン制御部1005での処理の結果は、PDN GW通信部1001経由でPDN GWへ送信される。また、制御プレイン制御部1005で処理された結果は、基地局通信部1002経由でS1インタフェースにより1つあるいは複数の基地局72へ送信され、またHeNBGW通信部1004経由で1つあるいは複数のHeNBGW74へ送信される。 When the data received from the PDN GW is control data, the control data is passed from the PDN GW communication unit 1001 to the control plane control unit 1005. When the data received from the base station 72 is control data, the control data is transferred from the base station communication unit 1002 to the control plane control unit 1005. The HeNBGW communication unit 1004 is provided when the HeNBGW 74 exists, and performs data transmission / reception through an interface (IF) between the MME 73 and the HeNBGW 74 depending on the information type. The control data received from the HeNBGW communication unit 1004 is passed from the HeNBGW communication unit 1004 to the control plane control unit 1005. The result of processing in the control plane control unit 1005 is transmitted to the PDN GW via the PDN GW communication unit 1001. Further, the result processed by the control plane control unit 1005 is transmitted to one or a plurality of base stations 72 via the S1 interface via the base station communication unit 1002, and to one or a plurality of HeNBGWs 74 via the HeNBGW communication unit 1004. Sent.
 制御プレイン制御部1005には、NASセキュリティ部1005-1、SAEベアラコントロール部1005-2、アイドルステート(Idle State)モビリティ管理部1005―3などが含まれ、制御プレインに対する処理全般を行う。NASセキュリティ部1005―1はNAS(Non-Access Stratum)メッセージのセキュリティなどを行う。SAEベアラコントロール部1005―2はSAE(System Architecture Evolution)のベアラの管理などを行う。アイドルステートモビリティ管理部1005―3は、待受け(LTE‐IDLE状態、単にアイドルとも称される)状態のモビリティ管理、待受け状態時のページング信号の生成及び制御、傘下の1つあるいは複数の移動端末71のトラッキングエリア(TA)の追加、削除、更新、検索、トラッキングエリアリスト(TA List)管理などを行う。MMEはUEが登録されている(registered)追跡領域(トラッキングエリア:tracking Area: TA)に属するセルへページングメッセージを送信することで、ページングプロトコルに着手する。MMEに接続されるHome-eNB72-2のCSGの管理やCSG-IDの管理、そしてホワイトリスト管理を、アイドルステートモビリティ管理部1005―3で行っても良い。CSG-IDの管理では、CSG-IDに対応する移動端末とCSGセルの関係が管理(追加、削除、更新、検索)される。例えば、あるCSG-IDにユーザアクセス登録された一つまたは複数の移動端末と該CSG-IDに属するCSGセルの関係であっても良い。ホワイトリスト管理では、移動端末とCSG-IDの関係が管理(追加、削除、更新、検索)される。例えば、ホワイトリストには、ある移動端末がユーザ登録した一つまたは複数のCSG-IDが記憶されても良い。これらのCSGに関する管理はMME73の中の他の部分で行われても良いが、アイドルステートモビリティ管理部1005―3で行うことで、現在3GPP会合で議論されている、CSG-IDの代わりにトラッキングエリアコード(Tracking Area Code)を用いる方法が効率よく行える。MME313の一連の処理は制御部1006によって制御される。よって制御部1006は図面では省略しているが各部(1001~1005)と接続している。 The control plane control unit 1005 includes a NAS security unit 1005-1, an SAE bearer control unit 1005-2, an idle state mobility management unit 1005-3, and the like, and performs overall processing for the control plane. The NAS security unit 1005-1 performs security of a NAS (Non-Access Stratum) message. The SAE bearer control unit 1005-2 manages the bearer of SAE (System Architecture Evolution). The idle state mobility management unit 1005-3 performs mobility management in a standby state (LTE-IDLE state, also simply referred to as idle), generation and control of a paging signal in the standby state, and one or more mobile terminals 71 being served thereby Tracking area (TA) addition, deletion, update, search, tracking area list (TA List) management and so on. The MME initiates the paging protocol by transmitting a paging message to a cell belonging to a tracking area (tracking area: tracking TA) where the UE is registered. The idle state mobility management unit 1005-3 may perform CSG management, CSG-ID management, and white list management of the Home-eNB 72-2 connected to the MME. In the management of CSG-ID, the relationship between the mobile terminal corresponding to the CSG-ID and the CSG cell is managed (added, deleted, updated, searched). For example, it may be a relationship between one or a plurality of mobile terminals registered for user access with a certain CSG-ID and a CSG cell belonging to the CSG-ID. In white list management, the relationship between a mobile terminal and a CSG-ID is managed (added, deleted, updated, searched). For example, one or a plurality of CSG-IDs registered by a certain mobile terminal as a user may be stored in the white list. Although these CSG-related management may be performed in other parts of the MME 73, tracking by the idle state mobility management unit 1005-3 instead of the CSG-ID currently being discussed at the 3GPP meeting A method using an area code (Tracking Area Code) can be performed efficiently. A series of processing of the MME 313 is controlled by the control unit 1006. Therefore, although not shown in the drawing, the control unit 1006 is connected to each unit (1001 to 1005).
 図11は、本発明に係るHeNBGWの構成を示すブロック図である。EPC通信部1101はHeNBGW74とMME73間をS1_flexインタフェースによるデータの送受信を行う。基地局通信部1102はHeNBGW74とHome-eNB72-2間をS1インタフェースによるデータの送受信を行う。ロケーション処理部1103は、EPC通信部1101経由で渡されたMME73からのデータのうちレジストレーション情報など、複数のHome-eNBに送信する処理を行う。ロケーション処理部1103で処理されたデータは、基地局通信部1102に渡され、ひとつまたは複数のHome-eNB72-2にS1インタフェースを介して送信される。ロケーション処理部1103での処理を必要とせず通過(透過)させるだけのデータは、EPC通信部1101から基地局通信部1102に渡され、ひとつまたは複数のHome-eNB72-2にS1インタフェースを介して送信される。HeNBGW74の一連の処理は制御部1104によって制御される。よって制御部1104は図面では省略しているが各部(1101~1103)と接続している。 FIG. 11 is a block diagram showing a configuration of the HeNBGW according to the present invention. The EPC communication unit 1101 transmits and receives data between the HeNBGW 74 and the MME 73 using the S1_flex interface. The base station communication unit 1102 transmits and receives data between the HeNBGW 74 and the Home-eNB 72-2 using the S1 interface. The location processing unit 1103 performs processing for transmitting registration information and the like to a plurality of Home-eNBs among data from the MME 73 passed via the EPC communication unit 1101. The data processed by the location processing unit 1103 is passed to the base station communication unit 1102 and transmitted to one or more Home-eNBs 72-2 via the S1 interface. Data that does not require processing in the location processing unit 1103 and is simply passed (transmitted) is passed from the EPC communication unit 1101 to the base station communication unit 1102 and sent to one or more Home-eNBs 72-2 via the S1 interface. Sent. A series of processing of the HeNBGW 74 is controlled by the control unit 1104. Therefore, although not shown in the drawing, the control unit 1104 is connected to each unit (1101 to 1103).
 次に移動体通信システムにおける一般的なセルサーチ方法の一例を示す。図12は、LTE方式の通信システムにおいて移動端末(UE)が行うセルサーチから待ち受け動作までの概略を示すフローチャートである。移動端末にてセルサーチが開始されると、ステップST1201で周辺の基地局から送信される第一同期信号(P-SS)、第二同期信号(S-SS)を用いてスロットタイミング、フレームタイミングの同期をとる。P-SSとS-SSあわせて、同期信号(SS)にはセル毎に割り当てられたPCI(Physical Cell Identity)に1対1対応するシンクロナイゼーションコードが割り当てられている。PCIの数は現在504通りが検討されており、この504通りのPCIを用いて同期をとるとともに、同期がとれたセルのPCIを検出(特定)する。次に同期がとれたセルに対して、ステップST1202で、基地局からセル毎に送信される参照信号RS(Reference Signal)を検出し受信電力の測定を行う。参照信号RSにはPCIと1対1に対応したコードが用いられており、そのコードで相関をとることによって他セルと分離できる。ST1201で特定したPCIから該セルのRS用のコードを導出すことによって、RSを検出し、RS受信電力を測定することが可能となる。次にST1203で、ST1202までで検出されたひとつ以上のセルの中から、RSの受信品質が最も良いセル(例えば、RSの受信電力が最も高いセル)(ベストセル)を選択する。次にST1204でベストセルのPBCHを受信して、報知情報であるBCCHを得る。PBCH上のBCCHには、セル構成情報が含まれるMIB(Master Information Block)がのる。MIBの情報としては、例えば、DL(ダウンリンク)システム帯域幅、送信アンテナ数、SFN(System Frame Number)などがある。 Next, an example of a general cell search method in a mobile communication system is shown. FIG. 12 is a flowchart illustrating an outline from a cell search to a standby operation performed by a mobile terminal (UE) in an LTE communication system. When cell search is started in the mobile terminal, slot timing and frame timing using the first synchronization signal (P-SS) and the second synchronization signal (S-SS) transmitted from the neighboring base stations in step ST1201. Synchronize. In combination with P-SS and S-SS, a synchronization code (SS) is assigned a synchronization code corresponding to a PCI (Physical Cell Identity) allocated for each cell. Currently, 504 PCIs are being studied, and the 504 PCIs are used for synchronization, and the PCI of the synchronized cell is detected (specified). Next, for a synchronized cell, in step ST1202, a reference signal RS (Reference (Signal) transmitted from the base station for each cell is detected, and the received power is measured. The reference signal RS uses a code corresponding to PCI one-to-one, and can be separated from other cells by correlating with the code. By deriving the RS code of the cell from the PCI specified in ST1201, it becomes possible to detect the RS and measure the RS received power. Next, in ST1203, a cell having the best RS reception quality (for example, a cell having the highest RS reception power) (best cell) is selected from one or more cells detected up to ST1202. Next, in ST 1204, PBCH of the best cell is received, and BCCH which is broadcast information is obtained. MIB (Master Information Block) including cell configuration information is carried on BCCH on PBCH. MIB information includes, for example, DL (downlink) system bandwidth, the number of transmission antennas, SFN (SystemFFrame Number), and the like.
 次に1205で、MIBのセル構成情報をもとに該セルのDL-SCHを受信して、報知情報BCCHの中のSIB(System Information Block)1を得る。SIB1には該セルへのアクセスに関する情報や、セルセレクションに関する情報、他のSIB(SIBk;k≧2の整数)のスケジューリング情報が含まれる。また、SIB1にはTAC(Tracking Area Code)が含まれる。次にST1206で、移動端末は、ST1205で受信したTACと、移動端末が既に保有しているTACと比較する。比較した結果、同じならば、該セルで待ち受け動作に入る。比較して異なる場合は、移動端末は該セルを通してコアネットワーク(Core Network, EPC)(MMEなどが含まれる)へ、TAU(Tracking Area Update)を行うためTAの変更を要求する。コアネットワークは、TAU要求信号とともに移動端末から送られてくる該移動端末の識別番号(UE-IDなど)をもとに、TAの更新を行う。コアネットワークはTAの更新後、移動端末にTAU受領信号を送信する。移動端末は該セルのTACで、移動端末が保有するTAC(あるいはTACリスト)を書き換える(更新する)。その後移動端末は該セルで待ち受け動作に入る。 Next, at 1205, the DL-SCH of the cell is received based on the MIB cell configuration information, and SIB (System Information Block) 1 in the broadcast information BCCH is obtained. SIB1 includes information about access to the cell, information about cell selection, and scheduling information of other SIBs (SIBk; integer of k ≧ 2). SIB1 includes TAC (Tracking Area Code). Next, in ST1206, the mobile terminal compares the TAC received in ST1205 with the TAC already held by the mobile terminal. If the result of the comparison is the same, a standby operation is started in the cell. If they are different from each other, the mobile terminal requests a change of TA to perform TAU (TrackingTrackArea Update) to the core network (Core Network, EPC) (including MME) through the cell. The core network updates the TA based on the identification number (UE-ID or the like) of the mobile terminal sent from the mobile terminal together with the TAU request signal. After updating the TA, the core network transmits a TAU acceptance signal to the mobile terminal. The mobile terminal rewrites (updates) the TAC (or TAC list) held by the mobile terminal with the TAC of the cell. Thereafter, the mobile terminal enters a standby operation in the cell.
 LTEやUMTS(Universal Mobile Telecommunication System)においては、CSG(Closed Subscriber Group)セルの導入が検討されている。前述したように、CSGセルに登録したひとつまたは複数の移動端末のみにアクセスが許される。CSGセルと登録されたひとつまたは複数の移動端末がひとつのCSGを構成する。このように構成されたCSGにはCSG-IDと呼ばれる固有の識別番号が付される。なお、ひとつのCSGには複数のCSGセルがあっても良い。移動端末はどれかひとつのCSGセルに登録すればそのCSGセルが属するCSGの他のCSGセルにはアクセス可能となる。また、LTEでのHome-eNBやUMTSでのHome-NBがCSGセルとして使われることがある。CSGセルに登録した移動端末は、ホワイトリストを有する。具体的にはホワイトリストはSIM/USIMに記憶される。ホワイトリストには、移動端末が登録したCSGセルのCSG情報がのる。CSG情報として具体的には、CSG-ID、TAI(Tracking Area Identity)、TACなどが考えられる。CSG-IDとTACが対応づけられていれば、どちらか一方で良い。また、CSG-IDやTACとGCI(Global Cell Identity)が対応付けられていればGCIでもよい。以上から、ホワイトリストを有しない(本発明においては、ホワイトリストが空(empty)の場合も含める)移動端末は、CSGセルにアクセスすることは不可能であり、non-CSGセルのみにしかアクセスできない。一方、ホワイトリストを有する移動端末は、登録したCSG-IDのCSGセルにも、non-CSGセルにもアクセスすることが可能となる。
3GPPでは、全PCI(Physical Cell Identity)を、CSGセル用とnon-CSGセル用とに分割(PCIスプリットと称する)することが議論されている(非特許文献5)。またPCIスプリット情報は、システム情報にて基地局から傘下の移動端末に対して報知されることが議論されている。PCIスプリットを用いた移動端末の基本動作を開示する。PCIスプリット情報を有しない移動端末は、全PCIを用いて(例えば504コード全てを用いて)セルサーチを行う必要がある。対してPCIスプリット情報を有する移動端末は、当該PCIスプリット情報を用いてセルサーチを行うことが可能である。
非特許文献6にHeNB及びHNBへのアクセスの3つの異なるモードが開示されている。オープンアクセスモード(Open access mode)とクローズドアクセスモード(Closed access mode)とハイブリッドアクセスモード(Hybrid access mode)である。各々のモードは以下のような特徴を有する。オープンアクセスモードでは、HeNBやHNBは通常のオペレータのノーマルセルとして操作される。クローズドアクセスモードでは、HeNBやHNBがCSGセルとして操作される。これはCSGメンバーのみアクセス可能なCSGセルである。ハイブリッドアクセスモードでは、非CSGメンバーも同時にアクセス許可されているCSGセルである。
In LTE and UMTS (Universal Mobile Telecommunication System), introduction of a CSG (Closed Subscriber Group) cell is being studied. As described above, access is permitted only to one or a plurality of mobile terminals registered in the CSG cell. One or a plurality of mobile terminals registered with the CSG cell constitute one CSG. A CSG configured in this way is given a unique identification number called CSG-ID. A single CSG may have a plurality of CSG cells. If a mobile terminal registers in one of the CSG cells, it can access other CSG cells to which the CSG cell belongs. In addition, Home-eNB in LTE and Home-NB in UMTS may be used as a CSG cell. The mobile terminal registered in the CSG cell has a white list. Specifically, the white list is stored in the SIM / USIM. The white list carries CSG information of the CSG cell registered by the mobile terminal. Specifically, CSG-ID, TAI (Tracking Area Identity), TAC, etc. can be considered as CSG information. If CSG-ID and TAC are associated with each other, either one is sufficient. Further, GCI may be used if CSG-ID or TAC is associated with GCI (Global Cell Identity). From the above, a mobile terminal that does not have a white list (including a case where the white list is empty in the present invention) cannot access a CSG cell, and only accesses a non-CSG cell. Can not. On the other hand, a mobile terminal having a white list can access both a CSG cell of a registered CSG-ID and a non-CSG cell.
In 3GPP, it is discussed to divide all PCIs (Physical Cell Identity) into CSG cells and non-CSG cells (referred to as PCI split) (Non-Patent Document 5). Further, it is discussed that the PCI split information is reported from the base station to the mobile terminals being served by the system information. A basic operation of a mobile terminal using PCI split is disclosed. A mobile terminal that does not have PCI split information needs to perform a cell search using all PCIs (for example, using all 504 codes). On the other hand, a mobile terminal having PCI split information can perform a cell search using the PCI split information.
Non-Patent Document 6 discloses three different modes of access to HeNB and HNB. An open access mode, a closed access mode, and a hybrid access mode. Each mode has the following characteristics. In the open access mode, the HeNB or HNB is operated as a normal cell of a normal operator. In the closed access mode, the HeNB or HNB is operated as a CSG cell. This is a CSG cell accessible only to CSG members. In the hybrid access mode, a non-CSG member is a CSG cell to which access is permitted at the same time.
 ハイブリッドアクセスモードの実用例を以下に示す。ショッピングモール内でのカバレッジを改善するためHeNB(HNBでも良い)が配置されたと考える。当該HeNBをハイブリッドアクセスモードで運用した場合を考える。ショッピングモールの所有者、従業員は当該HeNBに登録することにより、当該HeNB経由でサービスを受ける場合、課金優遇が受けられるとする。この使用方法はクローズドアクセスモードの使用方法である。一方、当該HeNBに未登録であるお客も、当該HeNB経由でサービスを受けることができる。この使用方法はオープンアクセスモードの使用方法である。上記のようにハイブリッドアクセスモードとは、登録済みのユーザにはクローズドアクセスモードとして動作し、未登録のユーザにはオープンアクセスモードとして同時に動作するモードである。よってハイブリッドアクセスモードは、オープンアクセスモード及びクローズドアクセスモードと性質を異にする。 The practical example of the hybrid access mode is shown below. It is considered that HeNB (or HNB) may be arranged to improve coverage in the shopping mall. Consider a case where the HeNB is operated in the hybrid access mode. It is assumed that the shopping mall owner and employee can receive a preferential charge when receiving services via the HeNB by registering with the HeNB. This method of use is a method of using the closed access mode. On the other hand, customers who are not registered in the HeNB can also receive services via the HeNB. This method of use is a method of using the open access mode. As described above, the hybrid access mode is a mode that operates as a closed access mode for registered users and simultaneously operates as an open access mode for unregistered users. Therefore, the hybrid access mode is different from the open access mode and the closed access mode.
 また、クローズドアクセスモードのサービスの具体例を示す。登録した移動端末のみにセルへのアクセスを許可することで、該移動端末が使用できる無線リソースを増大させて高速に通信を行えるようにする。その分、オペレータは課金料を通常よりも高く設定する。といったサービスである。それに対して、ハイブリッドアクセスモードのセルは、クローズドアクセスモードとオープンアクセスモードの両方を同時にサービスする。この場合、登録した移動端末のみがアクセス許可されるわけではない。オープンアクセスモードの移動端末も該セルの無線リソースを使用する。従って、ハイブリッドアクセスモードのセルにおけるクローズドアクセスモードの通信速度は、クローズドアクセスモードセルの通信速度以下となる。オペレータはこの分、課金料を安くする。このようなサービスの使い分けが検討されている。従って、移動端末は、セルサーチ、セル選択したセルから、クローズドアクセスモードセルを選択するのか、ハイブリッドアクセスモードセルを選択するのか判断できるようにすることが必要となる。このため、3GPPにおいては、セルのアクセスモードが、Hybridかclosedかを示すインジケータ(Hybrid access indicator)を報知情報にのせて傘下の移動端末に報知することが提案されている(非特許文献8)。非特許文献7では、PCIスプリットに関するシグナリングについて記載されている。しかし、HeNBおよびHNBのハイブリッドアクセスモードに関する記載はない。 Also, a specific example of closed access mode service is shown. By permitting access to the cell only to the registered mobile terminal, the radio resources that can be used by the mobile terminal can be increased to enable high-speed communication. Accordingly, the operator sets the charging fee higher than usual. Service. In contrast, a cell in hybrid access mode serves both closed access mode and open access mode simultaneously. In this case, only the registered mobile terminal is not permitted to access. The mobile terminal in the open access mode also uses the radio resource of the cell. Accordingly, the communication speed of the closed access mode in the hybrid access mode cell is equal to or lower than the communication speed of the closed access mode cell. The operator reduces the billing fee accordingly. The use of such services is being considered. Therefore, the mobile terminal needs to be able to determine whether to select the closed access mode cell or the hybrid access mode cell from the cell search and cell selection. For this reason, in 3GPP, it has been proposed to broadcast an indicator (Hybrid access indicator) indicating whether the access mode of a cell is hybrid or closed to broadcasted mobile terminals (Non-patent Document 8). . Non-Patent Document 7 describes signaling related to PCI split. However, there is no description regarding the hybrid access mode of HeNB and HNB.
 非特許文献7では、PCIスプリット情報のシグナリング方法について記載がされている。非特許文献7で示されているシグナリング方法においては、開始コードや列挙値にてコード値を通知する必要がある。全PCIにて例えば504コードが存在する場合、504通りのコードを示すために9ビットが必要となる。本実施の形態では、非特許文献7とは別の方法でPCIスプリット情報を基地局から移動端末へ通知する方法を開示する。本実施の形態では、PCIコードを「割る数」と「余りの数」によりPCIスプリット情報を示す。具体例としては、(PCIコード数)MOD X=Yとする。このXとYの値によりPCIスプリット情報を示す。例えばXを2とし、Y=0をCSGセル用、Y=1をnon-CSGセル用とすればよい。基地局から移動端末へ無線リソースを用いて通知するPCIスプリット情報は、X値とCSGセル用のY値、non-CSGセル用のY値となり、コード値を通知する非特許文献7の方法と比較して情報量が減り、無線リソースの有効活用という効果を得ることが出来る。また例えばY=0をnon-CSGセル用に割り当てると静的あるいは準静的に決定しておけば、基地局から移動端末へはX値とCSGセル用のY値のみで良い。これによりさらなる、情報量の削減が可能となり、無線リソースの有効活用が図れる。また、X値を変更することによりCSGセル用のPCI範囲とnon-CSGセル用のPCI範囲の比率を容易に変更可能となる利点がある。例えばXを3とし、Y=0、1をCSGセル用、Y=2をnon-CSGセル用とすればよい。これによりCSGセル用のPCI範囲がnon-CSGセル用のPCI範囲と比較して2倍の範囲とできる。 Non-Patent Document 7 describes a signaling method for PCI split information. In the signaling method shown in Non-Patent Document 7, it is necessary to notify the code value by a start code or an enumerated value. For example, when there are 504 codes in all PCIs, 9 bits are required to indicate 504 codes. In the present embodiment, a method for notifying PCI split information from a base station to a mobile terminal by a method different from Non-Patent Document 7 is disclosed. In the present embodiment, PCI split information is indicated by “number of divisions” and “number of remainders” of the PCI code. As a specific example, (the number of PCI codes) MOD X = Y. PCI split information is indicated by the values of X and Y. For example, X may be 2, Y = 0 may be used for the CSG cell, and Y = 1 may be used for the non-CSG cell. The PCI split information notified from the base station to the mobile terminal using radio resources is the X value, the Y value for the CSG cell, and the Y value for the non-CSG cell. In comparison, the amount of information is reduced, and the effect of effective use of radio resources can be obtained. For example, if Y = 0 is assigned to a non-CSG cell, if it is determined statically or semi-statically, only the X value and the Y value for the CSG cell are required from the base station to the mobile terminal. As a result, the amount of information can be further reduced, and radio resources can be effectively used. Further, there is an advantage that the ratio of the PCI range for the CSG cell and the PCI range for the non-CSG cell can be easily changed by changing the X value. For example, X may be 3, Y = 0, 1 for the CSG cell, and Y = 2 for the non-CSG cell. As a result, the PCI range for the CSG cell can be doubled compared to the PCI range for the non-CSG cell.
実施の形態2.
 本実施の形態の課題を以下に示す。HeNB(HNBでも良い)がハイブリッドアクセスモードで運用されている場合、CSGセルとは言え非CSGメンバーも同時にアクセス許可されているセルである。よってハイブリッドアクセスモードで運用されるHeNBに従来のPCIスプリットにてnon-CSGセル用のPCI範囲に含まれるPCIを割り当てると考える。この場合、ホワイトリストを有する移動端末(いずれかのCSGセルへ登録している移動端末)がPCIスプリット情報を受信後、セルサーチ動作にてnon-CSGセル用のPCI範囲に含まれるPCIが割り当てられているハイブリッドアクセスモードで運用されるHeNBを対象から外してしまうという問題が発生する。ハイブリッドアクセスモードで運用されるHeNBに登録しているにも関わらず、サーチ対象から外してしまう移動端末が存在する。これは、登録を行っている移動端末が当該CSGセルで通信を行う場合、課金優遇が受けることができる移動体通信システムの場合、ハイブリッドアクセスモードで運用されるHeNBに登録している移動端末が当該HeNBのカバレッジ内にも関わらず、当該HeNBをサーチ対象から外してしまい、課金優遇が受けられないというユーザにとって不利益となる課題が発生する。逆に、上記にてハイブリッドアクセスモードで運用されるHeNBをサーチ対象から外さないとすれば、ホワイトリストを有する移動端末がPCIスプリット情報を受信後であっても全セルを対象にセルサーチ動作を行うことになり、CSGセルを選択(あるいは、セル再選択)するまでの時間が長くなるという問題が発生する。これによりシステムの制御遅延、移動端末の消費電力の増大という課題が発生する。
Embodiment 2. FIG.
The subject of this Embodiment is shown below. When a HeNB (which may be HNB) is operated in the hybrid access mode, although it is a CSG cell, a non-CSG member is a cell to which access is permitted at the same time. Therefore, it is assumed that the PCI included in the PCI range for the non-CSG cell is allocated to the HeNB operated in the hybrid access mode by the conventional PCI split. In this case, after the mobile terminal having the white list (the mobile terminal registered in any CSG cell) receives the PCI split information, the PCI included in the PCI range for the non-CSG cell is allocated by the cell search operation. There arises a problem that the HeNB operated in the hybrid access mode is excluded from the target. There are mobile terminals that are excluded from search targets even though they are registered in the HeNB operated in the hybrid access mode. This is because the mobile terminal registered in the HeNB operated in the hybrid access mode in the case of a mobile communication system that can be charged preferentially when the registered mobile terminal performs communication in the CSG cell. In spite of being within the coverage of the HeNB, the HeNB is excluded from the search target, and a problem that is disadvantageous for the user who cannot receive the charge preferential treatment occurs. On the contrary, if the HeNB operated in the hybrid access mode is not excluded from the search target, the mobile terminal having the white list performs the cell search operation for all cells even after receiving the PCI split information. As a result, there is a problem that it takes a long time to select (or reselect) a CSG cell. This causes problems such as system control delay and increased power consumption of the mobile terminal.
 本実施の形態では、以下の方法で上記課題を解決する。移動体通信システムとしてハイブリッドアクセスモードで運用されているHeNBに対してCSGセル用のPCIを割り当てる。従来技術のように、従来のPCIスプリットでのCSGセル用のPCI範囲に属するPCIをCSGセルにのみ割当てるのではなく、本実施の形態ではCSGセル及びハイブリッドアクセスモードで運用されるHeNBに割当てる。概念について図13を用いて説明する。図13に現在の3GPPの議論におけるPCIスプリットの概念図を示す。
範囲Aは全PCIを示している。例えば504通り(504コード)である。例えばCSGセル用のPCI範囲を範囲Bとする。例えばnon-CSGセル用のPCI範囲を範囲Cとする。本実施の形態では、例えば範囲Bに属するPCIをCSGセルとハイブリッドアクセスモードで運用されるHeNBに割り当てる。また範囲Cに属するPCIをnon-CSGセルに割り当てる。図13に示す概念を言い換えれば、セル識別情報(PCI)は、CSGセル(特定加入者用セル)に割り当てる範囲Bに含まれるPCI(第一分類)と、non-CSGセル(不特定利用者用セル)に割り当てる範囲Cに含まれるPCI(第二分類)の2つの類型に分類されている。本実施の形態においては、ハイブリッドアクセスモードで動作しているセルには、範囲Bに含まれるPCIが割り当てられる。
In the present embodiment, the above problem is solved by the following method. PCI for CSG cells is allocated to the HeNB operated in the hybrid access mode as the mobile communication system. As in the prior art, the PCI belonging to the PCI range for the CSG cell in the conventional PCI split is not allocated only to the CSG cell, but is allocated to the CSG cell and the HeNB operated in the hybrid access mode in this embodiment. The concept will be described with reference to FIG. FIG. 13 shows a conceptual diagram of PCI split in the current 3GPP discussion.
A range A indicates all PCIs. For example, there are 504 ways (504 codes). For example, the PCI range for the CSG cell is set as range B. For example, a PCI range for a non-CSG cell is set as a range C. In the present embodiment, for example, PCI belonging to range B is allocated to the HeNB operated in the hybrid access mode with the CSG cell. PCIs belonging to range C are assigned to non-CSG cells. In other words, the cell identification information (PCI) includes the PCI (first classification) included in the range B allocated to the CSG cell (specific subscriber cell) and the non-CSG cell (unspecified user). Are classified into two types of PCI (second classification) included in the range C to be assigned to the cell. In the present embodiment, PCI included in range B is assigned to a cell operating in the hybrid access mode.
 次に図15を用いて、本実施の形態における移動端末としての動作の一例を説明する。
ステップST6101にて移動端末は、本実施の形態で開示したPCIスプリット情報を基地局(マクロセル、HeNB、HNB、CSGセル、non-CSGセルなど)から受信し、PCIスプリット情報を有しているか否かを判断する。有していない場合、ステップST6102へ移行する。有している場合、ステップST6104へ移行する。ステップST6102にて移動端末は、全PCI範囲にてセルサーチを行う。ステップST6103にて移動端末はセル選択が行われたか否かを判断する。行われていた場合、処理を終了する。行われていない場合、ステップST6101へ戻る。
Next, an example of operation as a mobile terminal in the present embodiment will be described using FIG.
In Step ST6101, the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.), and has PCI split information. Determine whether. When not having, it transfers to step ST6102. If so, the mobile terminal makes a transition to step ST6104. In step ST6102, the mobile terminal performs cell search in the entire PCI range. In step ST6103, the mobile terminal determines whether cell selection has been performed. If so, the process ends. If not, the process returns to step ST6101.
 ステップST6103で行われるセル選択の詳細動作例について図14を用いて説明する。ステップST1501にて移動端末は、リファレンスシグナル(Reference signal:RS)の受信品質が最も良いセル(例えば、RSの受信電力が最も高いセル)をベストセルとして選択する。ステップST1801にて移動端末は、当該ベストセルがCSGセルであるか、non-CSGセルであるかハイブリッドアクセスモードで運用されているHeNBであるかを判断する。この判断には基地局から報知されるシステム情報にマッピングされるCSGインジケータ(非特許文献9)を用いることができる。また、基地局から報知されるシステム情報にマッピングされるハイブリッドアクセスインジケータ(非特許文献8)を用いることができる。non-CSGセルであった場合、ステップST1503へ移行する。CSGセルであった場合、ステップST1508へ移行する。ハイブリッドアクセスモードで運用されているHeNBであった場合、ステップST1802へ移行する。ステップST1503にて移動端末は、現在のセルサーチにてCSGセルを優先してセル選択するか否かを判断する。CSGセルを優先してセル選択を行わない場合、ステップST1504へ移行する。CSGセルを優先してセル選択を行う場合、ステップST1505へ移行する。ステップST1504にて移動端末は、当該セルを選択する。その後処理を終了する。ステップST1505にて移動端末は、当該セルをセルサーチの対象から外し、ステップST1506へ移行する。ステップST1506にて移動端末は、サーチを続けるか否かを判断する。続けるか否かの具体的な判断例は、他にセルサーチの対象となるセルが存在する場合はサーチを続けると判断し、他にセルサーチの対象となるセルが存在しない場合はサーチを続けないと判断する。またセルサーチ開始からセル選択を完了させるまでの許容時間内であればサーチを続けると判断し、許容時間が満了すれば、あるいは満了していればサーチを続けないと判断する。サーチを続ける場合、ステップST1507へ移行する。サーチを続けない場合、処理を終了する。ステップST1507にて移動端末は、本実施の形態で開示したPCIスプリット情報を基地局(マクロセル、HeNB、HNB、CSGセル、non-CSGセルなど)から受信し、PCIスプリット情報を有しているか否かを判断する。有していない場合、ステップST1501へ戻る。有している場合、図15のステップST6104へ移行する。 A detailed operation example of cell selection performed in step ST6103 will be described with reference to FIG. In Step ST1501, the mobile terminal selects a cell with the best reception quality of the reference signal (Reference signal: RS) (for example, a cell with the highest RS reception power) as the best cell. In Step ST1801, the mobile terminal determines whether the best cell is a CSG cell, a non-CSG cell, or a HeNB operated in the hybrid access mode. For this determination, a CSG indicator (Non-patent Document 9) mapped to system information broadcast from the base station can be used. Moreover, the hybrid access indicator (nonpatent literature 8) mapped by the system information alert | reported from a base station can be used. When it is a non-CSG cell, it transfers to step ST1503. When it is a CSG cell, it transfers to step ST1508. When the HeNB is operated in the hybrid access mode, the mobile terminal makes a transition to step ST1802. In Step ST1503, the mobile terminal determines whether or not to perform cell selection with priority on the CSG cell in the current cell search. When the cell selection is not performed with priority on the CSG cell, the mobile terminal makes a transition to step ST1504. When performing cell selection with priority on the CSG cell, the mobile terminal makes a transition to step ST1505. In step ST1504, the mobile terminal selects the cell. Thereafter, the process ends. In Step ST1505, the mobile terminal removes the cell from the cell search target, and moves to Step ST1506. In step ST1506, the mobile terminal determines whether to continue the search. A specific example of whether or not to continue is that if there are other cells that are subject to cell search, the search is judged to be continued, and if there are no other cells that are subject to cell search, the search is continued. Judge that there is no. Further, it is determined that the search is continued if it is within an allowable time from the start of cell search to the completion of cell selection, and it is determined that the search is not continued if the allowable time has expired or has expired. When continuing a search, it transfers to step ST1507. If the search is not continued, the process ends. In Step ST1507, the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.) and has PCI split information. Determine whether. When not having, it returns to step ST1501. If so, the mobile terminal makes a transition to step ST6104 in FIG.
 ステップST1508にて移動端末は、ホワイトリスト内にCSG-IDを有しているか否かを判断する。言い換えれば、いずれかのCSGセルへ登録しているか否かを判断する。CSG-IDを有している場合、あるいはCSGセルへ登録している場合、ステップST1509へ移行する。CSG-IDを有していない場合、あるいはCSGセルへ登録していない場合、ステップST1510へ移行する。ステップST1509にて移動端末は、当該セルのCSG-IDをホワイトリスト内に有しているか否かを判断する。言い換えれば、当該セルのCSG-IDへ登録しているか否かを判断する。当該CSG-IDを有している場合、あるいは当該CSG-IDへ登録している場合、ステップST1504へ移行する。当該CSG-IDを有していない場合、あるいは当該CSG-IDへ登録していない場合は、ステップST1510へ移行する。ステップST1510にて移動端末は、当該セルをセルサーチの対象から外し、ステップST1511へ移行する。ステップST1511にて移動端末は、サーチを続けるか否かを判断する。続けるか否かの具体的な判断例は、他にセルサーチの対象となるセルが存在する場合はサーチを続けると判断し、他にセルサーチの対象となるセルが存在しない場合はサーチを続けないと判断する。またセルサーチ開始からセル選択を完了させるまでの許容時間内であればサーチを続けると判断し、許容時間が満了すれば、あるいは満了していればサーチを続けないと判断する。
サーチを続ける場合、ステップST1512へ移行する。サーチを続けない場合、処理を終了する。ステップST1512にて移動端末は、本実施の形態で開示したPCIスプリット情報を基地局(マクロセル、HeNB、HNB、CSGセル、non-CSGセルなど)から受信し、PCIスプリット情報を有しているか否かを判断する。有していない場合、ステップST1501へ戻る。有している場合、図15のステップST6104へ移行する。ステップST1802にて移動端末は、ホワイトリスト内にCSG-IDを有しているか否かを判断する。言い換えれば、いずれかのCSGセルへ登録しているか否かを判断する。CSG-IDを有している場合、あるいはCSGセルへ登録している場合、ステップST1803へ移行する。CSG-IDを有していない場合、あるいはCSGセルへ登録していない場合、ステップST1504へ移行する。ステップST1803にて移動端末は、CSGセルを優先してセル選択するか否かを判断する。CSGセルを優先してセル選択を行わない場合、ステップST1504へ移行する。CSGセルを優先してセル選択を行う場合、ステップST1509へ移行する。
In Step ST1508, the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST1509. If it does not have a CSG-ID or if it is not registered in the CSG cell, the mobile terminal makes a transition to step ST1510. In Step ST1509, the mobile terminal determines whether the CSG-ID of the cell is included in the white list. In other words, it is determined whether or not the cell is registered in the CSG-ID of the cell. If it has the CSG-ID, or if it has been registered with the CSG-ID, the mobile terminal makes a transition to step ST1504. If it does not have the CSG-ID, or if it is not registered with the CSG-ID, the mobile terminal makes a transition to step ST1510. A mobile terminal removes the said cell from the object of a cell search in step ST1510, and transfers to step ST1511. In step ST1511, the mobile terminal determines whether to continue the search. A specific example of whether or not to continue is that if there are other cells that are subject to cell search, the search is judged to be continued, and if there are no other cells that are subject to cell search, the search is continued. Judge that there is no. Further, it is determined that the search is continued if it is within an allowable time from the start of cell search to the completion of cell selection, and it is determined that the search is not continued if the allowable time has expired or has expired.
When continuing the search, the mobile terminal makes a transition to step ST1512. If the search is not continued, the process ends. In Step ST1512, the mobile terminal receives the PCI split information disclosed in the present embodiment from the base station (macro cell, HeNB, HNB, CSG cell, non-CSG cell, etc.) and has PCI split information. Determine whether. When not having, it returns to step ST1501. If so, the mobile terminal makes a transition to step ST6104 in FIG. In step ST1802, the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST1803. If the mobile terminal does not have a CSG-ID or has not registered in the CSG cell, the mobile terminal makes a transition to step ST1504. In Step ST1803, the user equipment determines whether to select a cell with priority on the CSG cell. When cell selection is not performed with priority on CSG cells, the mobile terminal makes a transition to step ST1504. When performing cell selection with priority on the CSG cell, the mobile terminal makes a transition to step ST1509.
 ステップST6104にて移動端末は、ホワイトリスト内にCSG-IDを有しているか否かを判断する。言い換えれば、いずれかのCSGセルへ登録しているか否かを判断する。CSG-IDを有している場合、あるいはCSGセルへ登録している場合、ステップST6105へ移行する。CSG-IDを有していない場合、あるいはCSGセルへ登録していない場合、ステップST6109へ移行する。ステップST6105にて移動端末は、本実施の形態で開示したPCIスプリット情報にてCSGセル用のPCI範囲に属するPCIにてセルサーチを行い、ステップST6106へ移行する。ステップST6106にて移動端末は、セル選択が行われたか否かを判断する。行われていた場合、処理を終了する。行われていない場合、ステップST6107へ移行する。ステップST6106で行われるセル選択の詳細動作例について図14を用いて説明する。ステップST6106ではステップ6103と異なり、PCIスプリット情報を有し、CSGセル用のPCI範囲に属するPCIにてセルサーチを行い、かつホワイトリストを有する移動端末のセル選択動作である。よって図14にてステップ1501の処理後、ステップST1801にてCSGセル、あるいはハイブリッドアクセスモードで運用されているHeNBであると判断される。CSGセルと判断された場合、ステップST1508へ進み、ステップST1508でYESと判断され、ステップST1509で判断され、ステップST1504、あるいはステップST1510の処理へ進む。ステップST1510の処理後、ステップST1511で判断され、ステップST1512、あるいは処理を終了する。ステップST1512ではYESと判断される。ハイブリッドアクセスモードで運用されるHeNBであると判断された場合、ステップST1802でYESと判断され、ステップST1803にてYESと判断され、ステップST1509へ移行する。 In step ST6104, the mobile terminal determines whether it has a CSG-ID in the white list. In other words, it is determined whether it is registered in any CSG cell. If it has a CSG-ID or if it is registered in a CSG cell, the mobile terminal makes a transition to step ST6105. If the mobile terminal does not have a CSG-ID or has not registered in the CSG cell, the mobile terminal makes a transition to step ST6109. In Step ST6105, the mobile terminal performs a cell search using a PCI belonging to the PCI range for the CSG cell using the PCI split information disclosed in the present embodiment, and moves to Step ST6106. In step ST6106, the mobile terminal determines whether cell selection has been performed. If so, the process ends. When not performed, it transfers to step ST6107. A detailed operation example of cell selection performed in step ST6106 will be described with reference to FIG. Unlike step 6103, step ST6106 is a cell selection operation of a mobile terminal that has PCI split information, performs a cell search using a PCI belonging to the PCI range for the CSG cell, and has a white list. Therefore, after the processing in step 1501 in FIG. 14, it is determined in step ST1801 that the CSG cell or the HeNB operated in the hybrid access mode. If it is determined as a CSG cell, the process proceeds to step ST1508, YES is determined in step ST1508, it is determined in step ST1509, and the process proceeds to step ST1504 or step ST1510. After the process of step ST1510, it is determined in step ST1511, and step ST1512 or the process ends. In step ST1512, YES is determined. When it is determined that the HeNB is operated in the hybrid access mode, YES is determined in step ST1802, YES is determined in step ST1803, and the process proceeds to step ST1509.
 ステップST6107にて移動端末は、周辺に登録しているCSGセルが存在しない、またハイブリッドアクセスモードで運用されているHeNBが存在しないと判断しnon-CSGセルを選択すべく、本実施の形態で開示したPCIスプリット情報にてnon-CSGセル用のPCI範囲に属するPCIにてセルサーチを行い、ステップST6108へ移行する。ステップST6108にて移動端末は、セル選択が行われたか否かを判断する。行われていた場合、処理を終了する。行われていない場合、ステップST6105へ戻る。ステップST6108で行われるセル選択の詳細動作例について図14を用いて説明する。ステップST6108ではステップ6103と異なり、PCIスプリット情報を有し、non-CSGセル用のPCI範囲に属するPCIにてセルサーチを行い、かつ現在のセルサーチにてCSGセルを優先していない移動端末のセル選択動作である。よって図14にてステップ1501の処理後、ステップST1801でnon-CSGセルと判断され、ステップST1503でNOと判断され、ステップST1504の処理を行う。
図15のステップST6109にて移動端末は、全PCI範囲にてセルサーチを行う。ステップST6110にて移動端末は、リファレンスシグナル(Reference signal:RS)の受信品質が最も良いセル(例えば、RSの受信電力が最も高いセル)をベストセルとして選択する。ステップST6111にて移動端末は、当該ベストセルがnon-CSGセル、あるいはハイブリッドアクセスモードで運用されるHeNBであるかを判断する。この判断には基地局から報知されるシステム情報にマッピングされるCSGインジケータを用いることができる。また、基地局から報知されるシステム情報にマッピングされるハイブリッドアクセスインジケータを用いることができる。non-CSGセル、あるいはハイブリッドアクセスモードで運用されるHeNBであった場合、ステップST6113へ移行する。non-CSGセル、あるいはハイブリッドアクセスモードで運用されるHeNBで出なかった場合、言い換えればCSGセルであった場合、ステップST6112へ移行する。ステップST6112にて移動端末は、当該セルをセルサーチの対象から外し、ステップST6109へ移行する。ステップST6113にて移動端末は、当該セルを選択する。その後処理を終了する。
In step ST6107, the mobile terminal determines that there is no CSG cell registered in the vicinity, and that there is no HeNB operated in the hybrid access mode, and selects a non-CSG cell in this embodiment. The cell search is performed using the PCI belonging to the PCI range for the non-CSG cell using the disclosed PCI split information, and the process proceeds to step ST6108. In Step ST6108, the mobile terminal determines whether cell selection has been performed. If so, the process ends. If not, the process returns to step ST6105. A detailed operation example of cell selection performed in step ST6108 will be described with reference to FIG. In step ST6108, unlike step 6103, a mobile terminal that has PCI split information, performs a cell search using a PCI belonging to the PCI range for a non-CSG cell, and does not prioritize the CSG cell in the current cell search. This is a cell selection operation. Therefore, after the process of step 1501 in FIG. 14, it is determined as a non-CSG cell in step ST1801, NO is determined in step ST1503, and the process of step ST1504 is performed.
In Step ST6109 of FIG. 15, the mobile terminal performs cell search in the entire PCI range. In Step ST6110, the mobile terminal selects the cell with the best reception quality of the reference signal (Reference signal: RS) (for example, the cell with the highest received power of RS) as the best cell. In Step ST6111, the mobile terminal determines whether the best cell is a non-CSG cell or a HeNB operated in the hybrid access mode. For this determination, a CSG indicator mapped to system information broadcast from the base station can be used. Further, a hybrid access indicator mapped to system information broadcast from the base station can be used. If it is a non-CSG cell or a HeNB operated in the hybrid access mode, the mobile terminal makes a transition to step ST6113. If it does not come out in the non-CSG cell or the HeNB operated in the hybrid access mode, in other words, if it is a CSG cell, the mobile terminal makes a transition to step ST6112. In Step ST6112, the mobile terminal removes the cell from the cell search target, and moves to Step ST6109. In Step ST6113, the mobile terminal selects the cell. Thereafter, the process ends.
 本実施の形態により、以下の効果を得ることが出来る。ホワイトリストを有する移動端末がCSGセル用のPCI範囲に属するPCIを用いてサーチを行えば、CSGセルとハイブリッドアクセスモードで運用されているHeNBをサーチ対象とすることが可能となる。つまりnon-CSGセル用のPCI範囲に属するPCIを用いてサーチすることなく、ハイブリッドアクセスモードで運用されているHeNBをサーチ対象とすることが可能となる。従来の技術では、ホワイトリストを有する移動端末がハイブリッドアクセスモードで運用されているHeNBをサーチ対象とするためには、全PCI範囲をサーチ対象とする必要があった。例えば、登録を行っている移動端末が当該CSGセルで通信を行う場合、課金優遇が受けられるという移動体通信システムにおいて、移動端末がCSGセルあるいはハイブリッドアクセスモードで運用されているHeNBを優先的にセル選択したい場合、本実施の形態ではPCIの検出の段階(図12のステップST1201)でnon-CSGセルを除いてセルサーチ動作を行うことが出来る。一方従来の技術では、システム情報であるSIB1を受信しなければnon-CSGセルかCSGセルか不明である。また、システム情報であるSIB1を受信しなければハイブリッドアクセスモードで運用されているか否かは不明である。よってシステム情報(SIB1)を受信するまで(図12のステップST1205)、non-CSGセルなどをサーチ対象から外してセルサーチを行うこと、ハイブリッドモードで運用されているHeNBをセル選択することは不可能となる。このように本実施の形態を用いることにより、サーチ動作を高速に運用できるという効果を得ることが出来る。このことは移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、移動端末の消費電力の低減という効果を得ることが出来る。また、これにより、ハイブリッドアクセスモードで運用されるHeNBの導入によってPCIスプリット方法に変更不要とすることができる。これにより移動体通信システムの複雑性を回避するという効果を得ることが出来る。 The following effects can be obtained by this embodiment. If a mobile terminal having a white list performs a search using a PCI belonging to the PCI range for the CSG cell, it becomes possible to search for a HeNB operated in the hybrid access mode with the CSG cell. That is, it is possible to search HeNBs operated in the hybrid access mode without searching using PCIs belonging to the PCI range for non-CSG cells. In the related art, in order for a mobile terminal having a white list to search for a HeNB operated in the hybrid access mode, it is necessary to search the entire PCI range. For example, in a mobile communication system in which when a registered mobile terminal communicates in the CSG cell, charging preferential treatment is received, the mobile terminal preferentially selects the HeNB operated in the CSG cell or the hybrid access mode. In the present embodiment, when a cell is desired to be selected, a cell search operation can be performed except for the non-CSG cell in the PCI detection stage (step ST1201 in FIG. 12). On the other hand, in the conventional technique, if the system information SIB1 is not received, it is unknown whether it is a non-CSG cell or a CSG cell. Further, if the system information SIB1 is not received, it is unclear whether or not the system is operated in the hybrid access mode. Therefore, until system information (SIB1) is received (step ST1205 in FIG. 12), it is not possible to perform a cell search by removing a non-CSG cell or the like from a search target, or to select a HeNB operated in a hybrid mode. It becomes possible. By using this embodiment in this way, it is possible to obtain an effect that the search operation can be operated at high speed. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained. This also makes it unnecessary to change to the PCI split method by introducing HeNB operated in the hybrid access mode. Thereby, the effect of avoiding the complexity of the mobile communication system can be obtained.
実施の形態2 変形例1.
 上記の解決策において、従来の技術に対してホワイトリストを有する移動端末のセルサーチ動作の高速化を実現したが、ホワイトリストを有さない移動端末のセルサーチ動作の高速化は実現できていない。具体的には、ホワイトリストを持たない移動端末(CSGセルへ登録していない移動端末)がPCIスプリット情報を受信後、セルサーチ動作にてCSGセル用のPCI範囲に含まれるPCIが割り当てられるハイブリッドアクセスモードで運用されるHeNBを対象セルから外してしまうという問題が発生する。ハイブリッドアクセスモードで運用されるHeNBは非CSGメンバーであってもアクセス許可されるモードであるにも関わらず、サーチ対象から外れてしまう。よってハイブリッドアクセスモードで運用されるHeNBのカバレッジ内に存在するホワイトリストを持たない移動端末が、当該HeNBをセル選択しないという問題が発生する。これは、通信可能なロケーションにおいて、PCI割当の不都合により通信不可能となることを意味する。逆に、上記にてハイブリッドアクセスモードで運用されるHeNBをサーチ対象から外さないとすれば、ホワイトリストを持たない移動端末がPCIスプリット情報を受信後であっても全セルを対象にセルサーチ動作を行うことになり、システムの制御遅延、移動端末の消費電力の増大という課題が発生する。多数のCSGセルからの電波が届く位置にいるホワイトリストを有さない移動端末の場合、多くのアクセス不可能なCSGセル(つまりユーザアクセス登録していないCSGセル)を延々とサーチやセル選択を繰り返す状況が生じる。
このような場合、システムに制御遅延や無線リソースの使用効率及びシグナリング効率の低下を引き起こす。また、セルサーチを繰り返す移動端末の消費電力が大きくなるという問題が生じる。これらの問題は前述したような将来のCSGセルの配置状況を想定すると重要な問題となる。
Embodiment 2 Modification 1
In the above solution, the cell search operation of a mobile terminal having a white list has been accelerated compared to the prior art, but the cell search operation of a mobile terminal having no white list has not been accelerated. . Specifically, after a mobile terminal not having a white list (a mobile terminal not registered in the CSG cell) receives PCI split information, a hybrid in which a PCI included in the PCI range for the CSG cell is allocated in a cell search operation. There arises a problem that the HeNB operated in the access mode is removed from the target cell. The HeNB operated in the hybrid access mode is excluded from the search target even though it is a non-CSG member access permitted mode. Therefore, the problem that the mobile terminal which does not have the white list which exists in the coverage of HeNB operated by hybrid access mode does not perform cell selection of the said HeNB occurs. This means that communication cannot be performed at a communicable location due to inconvenience of PCI allocation. On the other hand, if the HeNB operated in the hybrid access mode is not excluded from the search target in the above, the cell search operation targeting all cells even after the mobile terminal without the white list receives the PCI split information This causes problems such as system control delay and increased power consumption of the mobile terminal. In the case of a mobile terminal that does not have a white list at a position where radio waves from a large number of CSG cells can reach, a number of inaccessible CSG cells (that is, CSG cells that are not registered for user access) are searched endlessly. Repeated situations arise.
In such a case, control delay, radio resource usage efficiency, and signaling efficiency decrease in the system. Further, there arises a problem that power consumption of a mobile terminal that repeats cell search increases. These problems become important when assuming the future arrangement of CSG cells as described above.
 本変形例では上記課題を解決する方法を開示する。基地局から傘下の移動端末に対して周辺セルにてハイブリッドアクセスモードで運用されるHeNBが存在するか否か(以降、「周辺ハイブリッド状況」と称する)を通知する。基地局は、自セルの周辺、あるいはメジャメント対象セル中にハイブリッドアクセスモードで運用されるHeNBが存在するか否かを傘下の移動端末に対して通知する。具体的には、1ビットのインジケータを設けて、存在する場合は“1”、存在しない場合は“0”を設定する(もちろん逆でも良い)ようにしておいても良い。 In this modification, a method for solving the above problem is disclosed. The base station notifies the mobile terminals being served as to whether or not there is a HeNB operated in the hybrid access mode in the neighboring cell (hereinafter referred to as “neighboring hybrid status”). The base station notifies a mobile terminal being served thereby of whether there is a HeNB operated in the hybrid access mode in the vicinity of the own cell or in the measurement target cell. Specifically, a 1-bit indicator may be provided so that “1” is set when it is present, and “0” is set when it is not present (or vice versa).
 周辺ハイブリッド状況の通知方法の具体例を以下に示す。ロジカルチャネルである報知制御チャネル(BCCH)にマッピングされ、さらにトランスポートチャネルである報知チャネル(BCH)、物理チャネルである物理報知チャネル(PBCH)にマッピングされて移動端末に通知される。マスタ情報にマッピングされ、マスタ情報ブロック(MIB)にマッピングされ、ロジカルチャネルである報知制御チャネル(BCCH)にマッピングされ、さらにトランスポートチャネルである報知チャネル(BCH)、物理チャネルである物理報知チャネル(PBCH)にマッピングされて移動端末に通知される。周辺ハイブリッド状況をMIBにマッピングした場合、以下の効果を得ることが出来る。例えばLTE方式の通信システムにおいては、セルサーチから待ちうけの動作に必要最小限受信する報知情報として、MIBまたはSIB1がある。よって、セルサーチから待ちうけの動作に必要最小限受信する報知情報に周辺ハイブリッド状況を入れることによって、移動端末は他の報知情報ブロックを得る必要がなく短時間に低消費電力で周辺ハイブリッド状況を得ることが可能となる。 A specific example of the notification method of the surrounding hybrid status is shown below. It is mapped to a broadcast control channel (BCCH) that is a logical channel, further mapped to a broadcast channel (BCH) that is a transport channel, and a physical broadcast channel (PBCH) that is a physical channel, and is notified to the mobile terminal. It is mapped to master information, mapped to a master information block (MIB), mapped to a broadcast control channel (BCCH) that is a logical channel, further broadcast channel (BCH) that is a transport channel, physical broadcast channel that is a physical channel ( PBCH) and notified to the mobile terminal. When the peripheral hybrid situation is mapped to the MIB, the following effects can be obtained. For example, in an LTE communication system, there is MIB or SIB1 as broadcast information received at the minimum necessary for an operation waiting from a cell search. Therefore, by including the surrounding hybrid status in the broadcast information received at the minimum necessary for the operation waiting from the cell search, the mobile terminal does not need to obtain another broadcast information block, and the surrounding hybrid status can be quickly reduced with low power consumption. Can be obtained.
 周辺ハイブリッド状況は、ロジカルチャネルである報知制御チャネル(BCCH)にマッピングされ、さらにトランスポートチャネルである下り共有チャネル(DL-SCH)、物理チャネルである物理下り共有チャネル(PDSCH)にマッピングされて移動端末に通知される。
システム情報にマッピングされ、システム情報ブロック(SIB)にマッピングされ、ロジカルチャネルである報知制御チャネル(BCCH)にマッピングされ、さらにトランスポートチャネルである下り共有チャネル(DL-SCH)、物理チャネルである物理下り共有チャネル(PDSCH)にマッピングされて移動端末に通知される。周辺ハイブリッド状況をシステム情報のうちSIB1にマッピングした場合、以下の効果を得ることが出来る。例えばLTE方式の通信システムにおいては、セルサーチから待ちうけの動作に必要最小限受信する報知情報として、MIBまたはSIB1がある。よって、セルサーチから待ちうけの動作に必要最小限受信する報知情報に周辺ハイブリッド状況を入れることによって、移動端末は他の報知情報ブロックを得る必要がなく短時間に低消費電力で周辺ハイブリッド状況を得ることが可能となる。また、現在の3GPP以下のことが議論されている。そのセルがCSGセルであるということを示す、CSGインジケータはSIB1にマッピングされる方向である。ハイブリッドアクセスモードを区別するためのハイブリッドアクセスインジケータはSIB1にマッピングされる方向である。また、SIB1にはセル再選択共通情報(cell Reselection InfoCommon)がマッピングされる方向である。このような状況下において、移動端末がハイブリッドアクセスモードで運用されるHeNBを探すべくセルサーチ動作を行うか、行わないかを決定する際に用いる情報である周辺ハイブリッド状況をSIB1にマッピングすることは、移動端末のセルサーチという処理にて用いるパラメータを、移動端末が同じシステム情報の受信にて得ることが可能となり、移動端末の動作の複雑性回避、制御遅延防止という効果を得ることが出来る。
The peripheral hybrid situation is mapped to the broadcast control channel (BCCH), which is a logical channel, and further mapped to the downlink shared channel (DL-SCH), which is a transport channel, and the physical downlink shared channel (PDSCH), which is a physical channel. Notified to the terminal.
It is mapped to system information, mapped to a system information block (SIB), mapped to a broadcast control channel (BCCH) that is a logical channel, further a downlink shared channel (DL-SCH) that is a transport channel, and a physical that is a physical channel It is mapped to the downlink shared channel (PDSCH) and notified to the mobile terminal. When the peripheral hybrid status is mapped to SIB1 in the system information, the following effects can be obtained. For example, in an LTE communication system, MIB or SIB1 is broadcast information received as a minimum necessary for an operation waiting from a cell search. Therefore, by including the neighboring hybrid status in the broadcast information received at the minimum necessary for the operation waiting from the cell search, the mobile terminal does not need to obtain other broadcast information blocks and can quickly obtain the neighboring hybrid status with low power consumption. Can be obtained. Also, the current 3GPP and below are being discussed. The CSG indicator, which indicates that the cell is a CSG cell, is the direction mapped to SIB1. The hybrid access indicator for distinguishing the hybrid access mode is the direction mapped to SIB1. Further, SIB1 is a direction in which cell reselection common information is mapped. Under such circumstances, it is possible to map the surrounding hybrid status, which is information used when determining whether or not to perform a cell search operation to search for a HeNB operated in the hybrid access mode, to the SIB1. The mobile terminal can obtain the parameters used in the cell search process of the mobile terminal by receiving the same system information, and the effects of avoiding the operation complexity of the mobile terminal and preventing control delay can be obtained.
 周辺ハイブリッド状況をシステム情報のうちSIB4にマッピングした場合、以下の効果を得ることが出来る。現在の3GPPでは、SIB4には同周波数間周辺セルリスト(intra Freq Neighbouring Cell List)がマッピングされる方向である。このような状況下において、移動端末が周辺セルの状況を得るという処理にて用いるパラメータを、移動端末が同じシステム情報の受信にて得ることが可能となり、移動端末の動作の複雑性回避、制御遅延防止という効果を得ることが出来る。また、ハイブリッドアクセスモードで運用されるHeNBは、同周波数間周辺セルリスト中に含まれるとしても良い。また、同周波数間周辺セルリストのセル毎にハイブリッドアクセスモードで運用されるHeNBであるか否かを示すインジケータを持っても良い。周辺ハイブリッド状況をシステム情報のうちSIB9にマッピングした場合、以下の効果を得ることが出来る。現在の3GPPでは、SIB9にはHeNBの識別子(a home eNB identifier (HNBID))がマッピングされる方向である。このような状況下において、移動端末がHeNBに関する情報を得るという処理にて用いるパラメータを、移動端末が同じシステム情報の受信にて得ることが可能となり、移動端末の動作の複雑性回避、制御遅延防止という効果を得ることが出来る。また、周辺ハイブリッド状況をシステム情報のうちSIB4やSIB9にマッピングした場合、比較的短い周期で繰返し送信されるSIB1にマッピングするよりも、送信される情報量、シグナリング量を低減できる。このため、システムとしてのシグナリング負荷を増大させることなく、移動端末が該システム情報を得ることが可能となるという効果が得られる。 When the peripheral hybrid status is mapped to SIB4 in the system information, the following effects can be obtained. In the current 3GPP, the inter-frequency neighboring cell list (intra Freq Neighbouring Cell List) is mapped to SIB4. Under such circumstances, it becomes possible for the mobile terminal to obtain the parameters used in the process of obtaining the status of the neighboring cell by receiving the same system information, thereby avoiding complexity and control of the operation of the mobile terminal. The effect of delay prevention can be obtained. In addition, the HeNB operated in the hybrid access mode may be included in the inter-frequency neighboring cell list. Moreover, you may have an indicator which shows whether it is HeNB operate | moved by a hybrid access mode for every cell of the periphery cell list between the same frequency. When the peripheral hybrid status is mapped to SIB9 in the system information, the following effects can be obtained. In the current 3GPP, the HeNB identifier (a home eNB identifier (HNBID)) is mapped to the SIB9. Under such circumstances, it becomes possible for the mobile terminal to obtain parameters used in the process of obtaining information related to the HeNB by receiving the same system information, avoiding the complexity of operation of the mobile terminal, and controlling delay. The effect of prevention can be obtained. Also, when the peripheral hybrid status is mapped to SIB4 or SIB9 in the system information, the amount of information transmitted and the amount of signaling can be reduced compared to mapping to SIB1 that is repeatedly transmitted in a relatively short period. For this reason, it is possible to obtain an effect that the mobile terminal can obtain the system information without increasing the signaling load as the system.
 あるいは周辺ハイブリッド状況は、共通の認識の物理リソースに関するパラメータは、ロジカルチャネルである共有制御チャネル(CCCH)、あるいは個別制御チャネル(DCCH)、あるいはマルチキャスト制御チャネル(MCCH)、あるいはマルチキャストトラフィックチャネル(MTCH)にマッピングされ、さらにトランスポートチャネルである下り共有チャネル(DL-SCH)、物理チャネルである物理下り共有チャネル(PDSCH)にマッピングされて移動端末に通知される。 Or in the neighboring hybrid situation, the parameters related to the physical resource of common recognition are the logical control channel (CCCH), dedicated control channel (DCCH), multicast control channel (MCCH), or multicast traffic channel (MTCH). Is further mapped to the downlink shared channel (DL-SCH) which is a transport channel and the physical downlink shared channel (PDSCH) which is a physical channel, and is notified to the mobile terminal.
 次に図16を用いて、本変形例における移動端末としての動作の一例を説明する。図16は、図15と類似する部分を有する。よって同じステップ番号の箇所の説明は省略する。ステップST6201にて移動端末は、周辺セル(あるいはあるいはメジャメント対象セル中)にハイブリッドアクセスモードで運用されるHeNBが存在するか否かを判断する。この判断には基地局から報知される情報にマッピングされる、本変形例で開示する「周辺ハイブリッド状況」を用いることができる。周辺セルにハイブリッドアクセスモードで運用されるHeNBが存在する場合、ステップST6109へ移行する。存在しない場合、ステップST6202へ移行する。ステップST6202にて移動端末は、本実施の形態で開示したPCIスプリット情報にてnon-CSGセル用のPCI範囲に属するPCIにてセルサーチを行い、ステップST6203へ移行する。ステップST6203にて移動端末は、セル選択が行われたか否かを判断する。行われていた場合、処理を終了する。行われていない場合、ステップST6202へ戻る。ステップST6203で行われるセル選択の詳細動作例について図14を用いて説明する。ステップST6203ではステップST6103と異なり、PCIスプリット情報を有し、non-CSGセル用のPCI範囲に属するPCIにてセルサーチを行い、ホワイトリストを有さず、かつ現在のセルサーチにてCSGセルを優先していない移動端末のセル選択動作である。よって図14ステップST1501の処理後、ステップST1801にてnon-CSGセルと判断されステップST1503へ進む、ステップST1503でNOと判断され、ステップST1504へ進む。 Next, an example of the operation as a mobile terminal in this modification will be described with reference to FIG. FIG. 16 has parts similar to FIG. Therefore, the description of the same step number is omitted. In Step ST6201, the mobile terminal determines whether there is a HeNB operated in the hybrid access mode in the neighboring cell (or in the measurement target cell). For this determination, the “peripheral hybrid status” disclosed in the present modification, which is mapped to information broadcast from the base station, can be used. When there is a HeNB operated in the hybrid access mode in the neighboring cell, the mobile terminal makes a transition to step ST6109. When it does not exist, it transfers to step ST6202. In Step ST6202, the user equipment performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information disclosed in the present embodiment, and moves to Step ST6203. A mobile terminal judges whether cell selection was performed in step ST6203. If so, the process ends. If not, the process returns to step ST6202. A detailed operation example of cell selection performed in step ST6203 will be described with reference to FIG. In step ST6203, unlike step ST6103, it has PCI split information, performs a cell search with a PCI belonging to the PCI range for a non-CSG cell, does not have a white list, and selects a CSG cell with the current cell search. This is a cell selection operation of a mobile terminal not prioritized. Therefore, after the processing of step ST1501 in FIG. 14, it is determined as a non-CSG cell in step ST1801, and the process proceeds to step ST1503. In step ST1503, NO is determined, and the process proceeds to step ST1504.
 本変形例により、実施の形態2の効果に加えて以下の効果を得ることが出来る。ホワイトリストを有さない移動端末のセルサーチの高速化を実現可能となる。ホワイトリストを有さない移動端末がハイブリッドアクセスモードで運用されるHeNBが存在しない環境にてCSGセル用のPCI範囲に属するPCIを用いてサーチする必要がなくなる。このことは、サーチ動作を高速に運用できるという効果を得ることが出来る。このことは移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、移動端末の消費電力の低減という効果を得ることが出来る。将来のCSGセルの配置状況を想定すると重要な効果となる。 This modification can obtain the following effects in addition to the effects of the second embodiment. It is possible to increase the cell search speed of a mobile terminal that does not have a white list. There is no need for a mobile terminal not having a white list to search using a PCI belonging to the PCI range for the CSG cell in an environment where there is no HeNB operated in the hybrid access mode. This can provide an effect that the search operation can be operated at high speed. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained. Assuming future CSG cell placement, this is an important effect.
実施の形態3.
 実施の形態2の変形例1にて、基地局から傘下の移動端末に対して周辺ハイブリッド状況を通知することを開示した。周辺ハイブリッド状況の通知の具体例として、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在するか否かを通知することを開示した。また別の具体例として、自セルの周辺、あるいはメジャメント対象セル中にハイブリッドアクセスモードで動作するHeNBが存在するか否かを傘下の移動端末に対して通知することを開示した。
Embodiment 3 FIG.
In the first modification of the second embodiment, it is disclosed that the base station notifies the mobile terminals being served thereof of the surrounding hybrid status. As a specific example of the notification of the peripheral hybrid status, it has been disclosed to notify whether or not a HeNB operating in the hybrid access mode exists in the peripheral cell. Further, as another specific example, it has been disclosed that a mobile terminal being served thereby is notified of whether there is a HeNB operating in the hybrid access mode in the vicinity of the own cell or in the measurement target cell.
 本実施の形態3では、周辺ハイブリッド状況の通知の更なる具体例を以下に7つ開示する。 In the third embodiment, seven more specific examples of notification of the surrounding hybrid status are disclosed below.
 (1)周辺(周辺セル、あるいはメジャメント対象セルの中。以降同様とする。)にハイブリッドアクセスモードで動作するHeNBが存在する旨を通知する。メジャメント対象セルとは、例えば、ネットワーク側から移動端末へ、移動端末がメジャメントすることを要求されるセルを意味する。 (1) Notify that there is a HeNB operating in the hybrid access mode in the vicinity (in the neighboring cell or the measurement target cell, and so on). The measurement target cell means, for example, a cell from which the mobile terminal is required to measure from the network side to the mobile terminal.
 (2)周辺にハイブリッドアクセスモードで動作するHeNBが存在しない旨を通知する。 (2) Notify that there is no HeNB operating in the hybrid access mode in the vicinity.
 (3)周辺に存在する、ハイブリッドアクセスモードで動作するHeNBのPCIを通知する。例えば周辺ハイブリッド状況を同周波数間周辺セルリスト(NCL:Neighboring Cell List)、あるいは異周波数間周辺セルリスト、あるいは異システム間周辺セルリストを用いて通知する場合を考える。上記各周辺セルリストにより周辺ハイブリッド状況を通知することで、移動端末が周辺セルの情報をともに受信することが可能となり、移動端末の動作の複雑性回避、制御遅延防止、処理負荷軽減という効果を得ることができる。
周辺に存在する、ハイブリッドアクセスモードで動作するHeNBのPCIを周辺セルリストを用いて通知する方法の具体例を以下2つ開示する。
(3) Notify the PCI of the HeNB operating in the hybrid access mode that exists in the vicinity. For example, consider a case where the neighboring hybrid status is notified using a neighboring cell list (NCL: Neighboring Cell List), a neighboring cell list between different frequencies, or a neighboring cell list between different systems. By notifying the neighboring hybrid status by each neighboring cell list, it becomes possible for the mobile terminal to receive information on neighboring cells together, thereby avoiding the operation complexity of the mobile terminal, preventing control delay, and reducing the processing load. Obtainable.
Two specific examples of the method of notifying the PCI of the HeNB operating in the hybrid access mode existing in the vicinity using the neighbor cell list are disclosed below.
 (3-1)現行の周辺セルリストにて周辺ハイブリッド状況を通知する。周辺セルのPCIと共にハイブリッドアクセスモードで動作するセルであることを区別可能とする情報を付加しても良い。区別可能とする情報の具体例を以下4つ開示する。 (3-1) Notify the neighboring hybrid status in the current neighboring cell list. Information that makes it possible to distinguish the cell operating in the hybrid access mode together with the PCI of the neighboring cell may be added. Four specific examples of information that can be distinguished are disclosed below.
 (3-1-1)アクセスモードの別を示す。例えば、クローズドアクセスモード、オープンアクセスモード、ハイブリッドアクセスモードを示す。 (3-1-1) Indicates the access mode. For example, a closed access mode, an open access mode, and a hybrid access mode are shown.
 (3-1-2)ハイブリッドアクセスモードであるか否かを示す。 (3-1-2) Indicates whether or not the hybrid access mode.
 (3-1-3)ハイブリッドアクセスモードである旨を示す。 (3-1-3) Indicates that it is in hybrid access mode.
 (3-1-4)ハイブリッドアクセスモードでない旨を示す。 (3-1-4) Indicates that it is not in the hybrid access mode.
 (3-2)現行の周辺セルリストと分離することで、ハイブリッドアクセスモードで動作するHeNBのPCIを通知する。周辺セルのアクセスモードにより周辺セルリストを分離しても良い。移動端末は、アクセスモード毎に分離された周辺セルリストにより、該周辺セルリストに含まれるPCIを伴う各セルは、各々のアクセスモードで動作していることが認識可能となる。また、ハイブリッドアクセスモードで動作するセル用の周辺セルリストを設けてもよい。移動端末は、該ハイブリッドアクセスモードで動作するセル用の周辺セルリストに含まれるPCIを伴うセルは、ハイブリッドアクセスモードで動作していることが認識可能となる。 (3-2) Notify the PCI of the HeNB operating in the hybrid access mode by separating from the current neighboring cell list. The peripheral cell list may be separated according to the access mode of the peripheral cell. The mobile terminal can recognize from the neighboring cell list separated for each access mode that each cell with PCI included in the neighboring cell list operates in each access mode. Further, a peripheral cell list for cells operating in the hybrid access mode may be provided. The mobile terminal can recognize that the cell with PCI included in the neighboring cell list for the cell operating in the hybrid access mode is operating in the hybrid access mode.
 (4)ハイブリッドセル(ハイブリッドアクセスモードで動作するセル)に割当てられるPCIの範囲を通知する。周辺にハイブリッドアクセスモードで動作するセルが存在する場合のみ通知するとしても良い。 (4) Notify the range of PCI allocated to the hybrid cell (cell operating in the hybrid access mode). Notification may be made only when there is a cell operating in the hybrid access mode in the vicinity.
 3GPPでは、マクロセルに利用可能なPCIs/PCSsのセットからハイブリッドセルのためにPCIs/PSCsの部分集合を予約して、その情報を移動端末に報知することが提案されている(非特許文献10)。つまり、non-CSG用のPCI中にハイブリッドセルが利用するPCI範囲(以降、ハイブリッドセル用のPCI範囲と称する)を予約することが提案されている。一方、ハイブリッドセル用のPCI範囲の移動端末への通知方法についての詳細は開示されていない。 In 3GPP, it is proposed to reserve a subset of PCIs / PSCs for a hybrid cell from a set of PCIs / PCSs that can be used for a macro cell and broadcast the information to a mobile terminal (Non-Patent Document 10). . That is, it has been proposed to reserve a PCI range (hereinafter, referred to as a hybrid cell PCI range) used by the hybrid cell in the non-CSG PCI. On the other hand, details about a method for notifying a mobile terminal of a PCI range for a hybrid cell are not disclosed.
 周辺セルにハイブリッドアクセスモードで動作するセルが存在する場合のみ、ハイブリッドセルに割当てられるPCIの範囲をサービングセルより通知することで以下の効果を得ることが出来る。ハイブリッドセルに割当てられるPCIの範囲を通知することによって、実施の形態2の変形例1で示した周辺セルにハイブリッドアクセスモードで動作するHeNBが存在するか否か、あるいは本実施の形態における周辺ハイブリッド状況の更なる具体例(1)である「周辺にハイブリッドアクセスモードで動作するHeNBが存在する旨」、あるいは本実施の形態における周辺ハイブリッド状況の更なる具体例(2)である「周辺にハイブリッドアクセスモードで動作するHeNBが存在しない旨」を通知することなく、同様の情報を通知することが可能となる。これにより、無線リソースの有効活用、通知の情報が増加することによる移動体通信システムの複雑性の回避という効果を得ることができる。 The following effects can be obtained by notifying the PCI range allocated to the hybrid cell from the serving cell only when there is a cell operating in the hybrid access mode in the neighboring cell. By notifying the range of PCI allocated to the hybrid cell, whether or not the HeNB operating in the hybrid access mode exists in the neighboring cell shown in the first modification of the second embodiment, or the neighboring hybrid in the present embodiment A further specific example (1) of the situation, “there is a HeNB that operates in the hybrid access mode in the vicinity”, or “a hybrid in the vicinity”, which is a further specific example (2) of the peripheral hybrid situation in the present embodiment. The same information can be notified without notifying that there is no HeNB operating in the access mode. Thereby, the effect of avoiding the complexity of the mobile communication system due to effective utilization of radio resources and an increase in notification information can be obtained.
 (5)周辺に存在するハイブリッドセルに割当てられるPCIの範囲を通知する。これにより、本実施の形態における周辺ハイブリッド状況の更なる具体例(4)と比較して、ハイブリッドアクセスモードで動作しているHeNBの検出のために移動端末がセルサーチのために用いるPCIの数を削減することが可能となる。これにより、移動端末の処理負荷軽減という効果を得ることが出来る。 (5) Notify the range of PCI allocated to hybrid cells existing in the vicinity. Thereby, compared with the further specific example (4) of the surrounding hybrid situation in the present embodiment, the number of PCIs used by the mobile terminal for cell search for detection of the HeNB operating in the hybrid access mode. Can be reduced. Thereby, the effect of reducing the processing load on the mobile terminal can be obtained.
 本実施の形態において、周辺ハイブリッド状況の通知方法は、実施の形態2の変形例1と同様であるので、説明を省略する。 In this embodiment, the notification method of the surrounding hybrid status is the same as that in the first modification of the second embodiment, and thus the description thereof is omitted.
 (6)現在のキャリア周波数(サービング周波数とも称される)にハイブリッドアクセスモードで動作するHeNBが存在する旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在しない旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在するか否かを通知する。該情報は、周辺セルの状況によらないため、移動体通信システムの複雑性の回避という効果を得ることができる。 (6) The fact that there is a HeNB that operates in the hybrid access mode at the current carrier frequency (also referred to as a serving frequency), or that there is no HeNB that operates in the hybrid access mode, or there is a HeNB that operates in the hybrid access mode. Notify if it exists. Since this information does not depend on the situation of neighboring cells, the effect of avoiding the complexity of the mobile communication system can be obtained.
 (7)現在の移動体通信システムにハイブリッドアクセスモードで動作するHeNBが存在する旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在しない旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在するか否かを通知する。
該情報は、周辺セルの状況、キャリア周波数によらないため、移動体通信システムの複雑性の回避という効果を得ることができる。ハイブリッドアクセスモードで動作するHeNBが存在するか否かによりリリースを分断し、リリースバージョンの通知を現在の移動体通信システムにハイブリッドアクセスモードで動作するHeNBが存在する旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在しない旨、あるいはハイブリッドアクセスモードで動作するHeNBが存在するか否かの情報を併せ持つとすればよい。これにより、無線リソースの有効活用、通知の情報が増加することによる移動体通信システムの複雑性の回避という効果を得ることができる。
(7) Whether there is an HeNB that operates in the hybrid access mode in the current mobile communication system, or no HeNB that operates in the hybrid access mode, or whether there is an HeNB that operates in the hybrid access mode. Notice.
Since the information does not depend on the situation of the neighboring cells and the carrier frequency, an effect of avoiding the complexity of the mobile communication system can be obtained. Release is divided depending on whether or not there is an HeNB that operates in the hybrid access mode, and notification of the release version indicates that there is an HeNB that operates in the hybrid access mode in the current mobile communication system, or operates in the hybrid access mode. It is only necessary to have information indicating that there is no HeNB or whether there is a HeNB operating in the hybrid access mode. Thereby, the effect of avoiding the complexity of the mobile communication system due to effective utilization of radio resources and an increase in notification information can be obtained.
 本実施の形態における移動端末としての動作の一例を説明する。本実施の形態における周辺ハイブリッド状況の更なる具体例(1)、(2)を適用した場合の移動端末としての動作の一例は、実施の形態2の変形例1と同様(図16)であるので説明を省略する。本実施の形態における周辺ハイブリッド状況の更なる具体例(3)を適用した場合の移動端末としての動作の一例を、図17を用いて説明する。図15、図16と同じ参照符号は相当する部分であるので、説明は省略する。 An example of operation as a mobile terminal in this embodiment will be described. An example of the operation as a mobile terminal in the case where further specific examples (1) and (2) of the surrounding hybrid situation in the present embodiment are applied is the same as that of the first modification of the second embodiment (FIG. 16). Therefore, explanation is omitted. An example of the operation as a mobile terminal when a further specific example (3) of the surrounding hybrid situation in the present embodiment is applied will be described with reference to FIG. The same reference numerals as those in FIG. 15 and FIG.
 ステップST1701にて移動端末は、周辺セル(あるいはメジャメント対象セル)の中にハイブリッドアクセスモードで動作するHeNBが存在するか否かを判断する。この判断には基地局から通知される「周辺ハイブリッド状況」である、周辺に存在するハイブリッドアクセスモードで動作するHeNBのPCIを用いることができる。周辺に存在するハイブリッドアクセスモードで動作するHeNBのPCIの通知があれば、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在すると判断し、ステップST1702へ移行する。周辺に存在するハイブリッドアクセスモードで動作するHeNBのPCIの通知がなければ、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在しないと判断し、ステップST6202へ移行する。 In step ST1701, the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cells (or measurement target cells). For this determination, the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, which is the “peripheral hybrid status” notified from the base station, can be used. If there is a notification of the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, it is determined that there is a HeNB operating in the hybrid access mode in the peripheral cell, and the process proceeds to step ST1702. If there is no notification of the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, it is determined that there is no HeNB operating in the hybrid access mode in the peripheral cell, and the mobile terminal makes a transition to step ST6202.
 ステップST1702にて移動端末は、基地局から通知される「周辺ハイブリッド状況」である、周辺に存在するハイブリッドアクセスモードで動作するHeNBのPCIにてセルサーチを行う。ステップST1703にて移動端末は、PCIスプリット情報にてnon-CSGセル用のPCI範囲に属するPCIにてセルサーチを行う。 In step ST1702, the mobile terminal performs cell search using the PCI of the HeNB operating in the hybrid access mode existing in the vicinity, which is the “peripheral hybrid status” notified from the base station. In Step ST1703, the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
 本実施の形態における周辺ハイブリッド状況の更なる具体例(4)を適用した場合の移動端末としての動作の一例、図17を用いて説明する。図15、図16と同じ参照符号は相当する部分であるので、説明は省略する。 An example of the operation as a mobile terminal when a further specific example (4) of the surrounding hybrid situation in the present embodiment is applied, will be described with reference to FIG. The same reference numerals as those in FIG. 15 and FIG.
 ステップST1701にて移動端末は、周辺セル(あるいはメジャメント対象セル)の中にハイブリッドアクセスモードで動作するHeNBが存在するか否かを判断する。この判断には基地局から通知される「周辺ハイブリッド状況」である、周辺セルにハイブリッドアクセスモードが存在する場合のみ通知される、ハイブリッドセルに割当てられるPCIの範囲を用いることができる。ハイブリッドセルに割当てられるPCIの範囲の通知があれば、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在すると判断し、ステップST1702へ移行する。ハイブリッドセルに割当てられるPCIの範囲の通知がなければ、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在しないと判断し、ステップST6202へ移行する。 In step ST1701, the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cells (or measurement target cells). This determination can use the PCI range allocated to the hybrid cell that is notified only when the hybrid access mode exists in the neighboring cell, which is the “neighboring hybrid status” notified from the base station. If there is a notification of the range of PCI allocated to the hybrid cell, it is determined that there is a HeNB operating in the hybrid access mode in the neighboring cell, and the process moves to step ST1702. If there is no notification of the range of PCI allocated to the hybrid cell, it is determined that there is no HeNB operating in the hybrid access mode in the neighboring cells, and the mobile terminal makes a transition to step ST6202.
 ステップST1702にて移動端末は、基地局から通知される「周辺ハイブリッド状況」である、ハイブリッドセルに割当てられるPCIの範囲に含まれるPCIにてセルサーチを行う。ステップST1703にて移動端末は、PCIスプリット情報にてnon-CSGセル用のPCI範囲に属するPCIにてセルサーチを行う。 In step ST1702, the mobile terminal performs a cell search using the PCI included in the PCI range allocated to the hybrid cell, which is the “peripheral hybrid status” notified from the base station. In Step ST1703, the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
 本実施の形態における周辺ハイブリッド状況の更なる具体例(5)を適用した場合の移動端末としての動作の一例、図17を用いて説明する。図15、図16と同じ参照符号は相当する部分であるので、説明は省略する。 An example of the operation as a mobile terminal when a further specific example (5) of the surrounding hybrid situation in the present embodiment is applied will be described with reference to FIG. The same reference numerals as those in FIG. 15 and FIG.
 ステップST1701にて移動端末は、周辺セル(あるいはメジャメント対象セル中)にハイブリッドアクセスモードで動作するHeNBが存在するか否かを判断する。この判断には基地局から通知される「周辺ハイブリッド状況」である、周辺に存在するハイブリッドセルに割当てられるPCIの範囲を用いることができる。周辺に存在するハイブリッドセルに割当てられるPCIの範囲の通知があれば、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在すると判断し、ステップST1702へ移行する。周辺に存在するハイブリッドセルに割当てられるPCIの範囲の通知がなければ、周辺セルにハイブリッドアクセスモードで動作するHeNBが存在しないと判断し、ステップST6202へ移行する。 In step ST1701, the mobile terminal determines whether there is a HeNB operating in the hybrid access mode in the neighboring cell (or in the measurement target cell). For this determination, the PCI range assigned to the hybrid cells existing in the vicinity, which is the “peripheral hybrid status” notified from the base station, can be used. If there is a notification of the range of PCI allocated to a hybrid cell existing in the vicinity, it is determined that there is a HeNB operating in the hybrid access mode in the neighboring cell, and the process moves to step ST1702. If there is no notification of the range of PCI allocated to the hybrid cells existing in the vicinity, it is determined that there is no HeNB operating in the hybrid access mode in the neighboring cells, and the mobile terminal makes a transition to step ST6202.
 ステップST1702にて移動端末は、基地局から通知される「周辺ハイブリッド状況」である、周辺に存在するハイブリッドセルに割当てられるPCIの範囲に含まれるPCIにてセルサーチを行う。ステップST1703にて移動端末は、PCIスプリット情報にてnon-CSGセル用のPCI範囲に属するPCIにてセルサーチを行う。 In step ST1702, the mobile terminal performs a cell search using the PCI included in the PCI range allocated to the hybrid cell existing in the vicinity, which is the “peripheral hybrid status” notified from the base station. In Step ST1703, the mobile terminal performs a cell search using the PCI belonging to the PCI range for the non-CSG cell using the PCI split information.
 本実施の形態3により、実施の形態2の変形例1同様、実施の形態2の効果に加えて以下の効果を得ることが出来る。ホワイトリストを有さない移動端末のセルサーチの高速化を実現可能となる。ホワイトリストを有さない移動端末がハイブリッドアクセスモードで運用されるHeNBが存在しない環境にて、CSGセル用のPCI範囲に属するPCIを用いてサーチする必要がなくなる。このことは、サーチ動作を高速に実行できるという効果を得ることが出来る。このことは移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、移動端末の消費電力の低減という効果を得ることが出来る。
将来のCSGセルの配置状況を想定すると重要な効果となる。
According to the third embodiment, the following effects can be obtained in addition to the effects of the second embodiment, similarly to the first modification of the second embodiment. It is possible to increase the cell search speed of a mobile terminal that does not have a white list. In an environment where a mobile terminal that does not have a white list does not have a HeNB operated in the hybrid access mode, it is not necessary to search using a PCI that belongs to the PCI range for the CSG cell. This can provide an effect that the search operation can be executed at high speed. This can obtain the effect of preventing the control delay of the mobile communication system. In addition, an effect of reducing power consumption of the mobile terminal can be obtained.
Assuming future CSG cell placement, this is an important effect.
 さらに、本実施の形態における周辺ハイブリッド状況の更なる具体例(3)(4)(5)を適用した場合の移動端末としての動作として、実施の形態2の変形例1、本実施の形態における周辺ハイブリッド状況の更なる具体例(1)、あるいは(2)を適用した場合と比較して以下の効果を得ることができる。CSG未登録の移動端末が、オープンアクセスモード対応のセルである、マクロセルおよびハイブリッドセルを検出するためのセルサーチにおいて処理を簡素化することができる。CSG未登録の移動端末が、オープンアクセスモード対応のセルを検出するために、non-CSGセル用のPCI範囲に属するPCIとハイブリッドセル用のPCI範囲に属するPCIにてセルサーチを行うことが可能となる。あるいは、CSG未登録の移動端末が、オープンアクセスモード対応のセルを検出するために、non-CSGセル用のPCI範囲に属するPCIと周辺に存在するハイブリッドセル用のPCIにてセルサーチを行うことが可能となる。つまり、CSG未登録の移動端末が、オープンアクセスモード対応のセルを検出するために、全PCIを用いてセルサーチを行うことなく、マクロセル、及びハイブリッドセルに用いることのないCSGセル用のPCIでのセルサーチ動作を削減することが可能となる。これにより、さらなるサーチ動作を高速に実行できるという効果を得ることが出来る。このことは、さらなる移動体通信システムの制御遅延を防止するという効果を得ることが出来る。また、さらなる移動端末の消費電力の低減という効果を得ることが出来る。 Furthermore, as an operation as a mobile terminal in the case where further specific examples (3), (4), and (5) of the surrounding hybrid situation in the present embodiment are applied, the modification 1 of the second embodiment and the present embodiment The following effects can be obtained as compared with the case where the further specific example (1) or (2) of the peripheral hybrid situation is applied. A mobile terminal not registered with CSG can simplify processing in a cell search for detecting a macro cell and a hybrid cell, which are cells corresponding to the open access mode. A mobile terminal not registered with CSG can perform cell search using PCI belonging to the PCI range for non-CSG cells and PCI belonging to the PCI range for hybrid cells in order to detect cells corresponding to the open access mode. It becomes. Alternatively, a mobile terminal not registered with CSG performs a cell search with PCI belonging to the PCI range for non-CSG cell and PCI for hybrid cell existing in the vicinity in order to detect a cell corresponding to the open access mode. Is possible. That is, a CSG unregistered mobile terminal can detect a cell corresponding to the open access mode without performing a cell search using all PCIs, and with a PCI for CSG cells that are not used for a macro cell and a hybrid cell. Cell search operation can be reduced. Thereby, the effect that a further search operation can be performed at high speed can be acquired. This can obtain the effect of preventing further control delay of the mobile communication system. In addition, the effect of further reducing the power consumption of the mobile terminal can be obtained.
実施の形態4.
 実施の形態4にて解決する課題について説明する。HeNB及びHNBは、複数の動作モードが存在することが考えられる。本動作モードはHeNB、HNB設置後に変更される可能性がある。例えば、実施の形態2の変形例1、実施の形態3を適用した場合であっても、同様に、周辺のHeNBのアクセスモードが変更される可能性がある。例えばクローズドアクセスモードで動作している周辺のHeNBの動作モードがハイブリッドアクセスモードに変更された場合、該サービングセルが傘下の移動端末へ通知する「周辺ハイブリッド状況」を変更する必要が発生する。
Embodiment 4 FIG.
A problem to be solved in the fourth embodiment will be described. The HeNB and HNB may have a plurality of operation modes. This operation mode may be changed after HeNB and HNB are installed. For example, even when the first modification and the third embodiment of the second embodiment are applied, the access mode of the neighboring HeNB may be changed in the same manner. For example, when the operation mode of the neighboring HeNB operating in the closed access mode is changed to the hybrid access mode, it is necessary to change the “neighboring hybrid status” that the serving cell notifies to the mobile terminals being served thereby.
 本実施の形態4では、「周辺ハイブリッド状況」の変更方法について開示する。ネットワーク経由で動作モードを設定する場合における「周辺ハイブリッド状況」の変更方法について開示する。 In the fourth embodiment, a method for changing the “peripheral hybrid status” is disclosed. A method of changing the “peripheral hybrid status” when setting the operation mode via the network is disclosed.
 例えば、オペレータがネットワーク経由で、HeNB/HNBの動作モードを設定する。オペレータは、ネットワーク経由でHeNB/HNBの動作モード設定の変更を指示する。ネットワーク側は、該HeNB/HNBへ動作モードの設定の変更を通知する。ネットワーク側の具体例としては、EPC(Evolved Packet Core)、MME、S-GW、HeNBGWなどがある。また、他の具体例として、O&M(Operating & Management)用のシステム、ノード、エンティティ、ファンクション、エレメントなどであっても良い。
該変更の通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。
また、O&M用のインタフェースであっても良い。該動作モードの設定の変更の通知には、変更後の動作モード、あるいは変更前と変更後の動作モードなどが含まれても良い。
For example, the operator sets the HeNB / HNB operation mode via the network. The operator instructs to change the operation mode setting of the HeNB / HNB via the network. The network side notifies the change of the operation mode setting to the HeNB / HNB. Specific examples of the network side include EPC (Evolved Packet Core), MME, S-GW, and HeNBGW. As another specific example, an O & M (Operating & Management) system, a node, an entity, a function, an element, or the like may be used.
For the notification of the change, an S1 interface or a broadband line may be used.
Further, an O & M interface may be used. The notification of the change of the setting of the operation mode may include an operation mode after the change or an operation mode before and after the change.
 ネットワーク側は、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルに対して、変更した「周辺ハイブリッド状況」を通知する。該「周辺ハイブリッド状況」の通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。 The network side notifies the changed “neighboring hybrid status” to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB. For the notification of the “peripheral hybrid status”, an S1 interface or a broadband line may be used.
 あるいは、ネットワーク側は、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルに対して、変更依頼を通知しても良い。
「周辺ハイブリッド状況」の変更依頼を受信したセルは、「周辺ハイブリッド状況」の変更を実行する。該変更依頼の通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。「周辺ハイブリッド状況」の変更依頼には、動作モード設定が変更されたHeNB/HNBの識別情報(PCI、GCIなど)、変更後の動作モード、あるいは変更前と変更後の動作モードなどが含まれても良い。
Alternatively, the network side may notify a change request to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB.
The cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change. For the notification of the change request, an S1 interface or a broadband line may be used. The request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとしては、動作モード設定が変更されたHeNB/HNBをハンドオーバ先、あるいはセル再選択先として選択する可能性のあるセルとする。また、「周辺ハイブリッド状況」を、NCLを用いて傘下の移動端末に通知している場合、該HeNB/HNBの動作モード設定の変更により「NCL」を変更する必要があるセルを選択しても良い。 Possibility of selecting HeNB / HNB whose operation mode setting has been changed as a handover destination or a cell reselection destination as a cell whose "neighboring hybrid status" needs to be changed by changing the operation mode setting of the HeNB / HNB A cell with In addition, when the “neighboring hybrid status” is notified to a mobile terminal being served using NCL, even if a cell that needs to change “NCL” is selected by changing the operation mode setting of the HeNB / HNB good.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルの選択方法の具体例について以下7つ開示する。 Seven specific examples of a cell selection method in which the “neighboring hybrid status” needs to be changed by changing the operation mode setting of the HeNB / HNB are disclosed below.
 (1)動作モード設定が変更されたHeNB/HNB以外のHeNB/HNB傘下の移動端末のメジャメントレポートを用いる。さらに具体例として以下2つ開示する。 (1) Use a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed. Two more specific examples are disclosed below.
 (1-1)動作モード設定が変更されたHeNB/HNB以外のHeNB/HNB傘下の移動端末のメジャメントレポートにて、動作モード設定が変更されたHeNB/HNBをハンドオーバ先(ターゲットセル)として選択した場合、該移動端末のサービングセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。 (1-1) The HeNB / HNB whose operation mode setting has been changed is selected as a handover destination (target cell) in a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed. In this case, it is assumed that the “neighboring hybrid status” needs to be changed by changing the operation mode setting of the HeNB / HNB for the serving cell of the mobile terminal.
 (1-2)動作モード設定が変更されたHeNB/HNB以外のHeNB/HNB傘下の移動端末が、サービングセルより動作モード設定が変更されたHeNB/HNBの受信品質が良好であると報告した場合、該移動端末のサービングセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。本具体例により、動作モード設定が変更されたHeNB/HNB以外のHeNB/HNB傘下の移動端末のメジャメントレポートを用いるため、動作モード設定が変更されたHeNB/HNBをハンドオーバ先、あるいはセル再選択先として選択する可能性のあるセルを的確に選択することが可能となる。つまり、「周辺ハイブリッド状況」を変更する必要があるセルとして、無駄なセルを選択しないという効果を得ることができる。 (1-2) When a user equipment being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed reports that the reception quality of the HeNB / HNB whose operation mode setting has been changed is better than the serving cell, It is assumed that the “neighboring hybrid status” needs to be changed by changing the operation mode setting of the HeNB / HNB for the serving cell of the mobile terminal. According to this specific example, since a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed is used, the HeNB / HNB whose operation mode setting has been changed is used as a handover destination or a cell reselection destination. It is possible to accurately select a cell that may be selected as. That is, it is possible to obtain an effect that a useless cell is not selected as a cell that needs to change the “peripheral hybrid status”.
 (2)動作モード設定が変更されたHeNB/HNB傘下の移動端末のメジャメントレポートを用いる。さらに具体例として以下3つ開示する。 (2) Use a measurement report of a mobile terminal being served by a HeNB / HNB whose operation mode setting has been changed. Three specific examples are disclosed below.
 (2-1)動作モード設定が変更されたHeNB/HNBが傘下の移動端末のメジャメントレポートを用いてハンドオーバ先(ターゲットセル)として選択したセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。 (2-1) A cell selected by the HeNB / HNB whose operation mode setting has been changed as a handover destination (target cell) using a measurement report of a mobile terminal being served by the change of the operation mode setting of the HeNB / HNB Suppose that it is necessary to change the "peripheral hybrid situation".
 (2-2)傘下の移動端末がサービングセル、つまり動作モード設定が変更されたHeNB/HNBより受信品質が良好であると報告したセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。 (2-2) A mobile terminal being served by a serving cell, that is, a cell reported to have better reception quality than the HeNB / HNB whose operation mode setting has been changed, is changed to a “neighboring hybrid situation by changing the operation mode setting of the HeNB / HNB. Need to be changed.
 (2-3)傘下の移動端末が、受信品質がある閾値より良好であると報告したセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。ある閾値は、静的に決められていても、準静的に決められていても良い。 (2-3) Suppose that the mobile terminal being served by the mobile terminal needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB for a cell in which the reception quality is reported to be better than a certain threshold. A certain threshold value may be determined statically or semi-statically.
 本具体例(2)により、具体例(1)と比較して、動作モード設定が変更されたHeNB/HNB以外のHeNB/HNB傘下の移動端末のメジャメントレポートを用いる必要が無く、動作モード設定が変更されたHeNB/HNB傘下の移動端末のメジャメントレポートを用いればよく、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減される、という効果を得ることができる。 Compared to the specific example (1), this specific example (2) eliminates the need to use a measurement report of a mobile terminal being served by a HeNB / HNB other than the HeNB / HNB whose operation mode setting has been changed, and the operation mode setting is The measurement report of the mobile terminal being served by the changed HeNB / HNB may be used, and it is possible to obtain an effect that the processing load on the cell selection method that needs to change the “neighboring hybrid status” is reduced.
 (3)セルの位置情報を用いる。ネットワーク側は、各セルの位置情報から動作モード設定が変更されたHeNB/HNBから、ある距離以内に設置されているセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとする。ある距離は、静的に決められていても、準静的に決められていても良い。
本具体例により、具体例(1)(2)と比較してメジャメントレポートを記憶、処理する必要がないため、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。
(3) Cell position information is used. The network side changes the “peripheral hybrid status” by changing the operation mode setting of the HeNB / HNB for cells installed within a certain distance from the HeNB / HNB whose operation mode setting has been changed from the location information of each cell. Cell that needs to be The certain distance may be determined statically or quasi-statically.
Compared with the specific examples (1) and (2), this specific example eliminates the need to store and process the measurement report, thereby reducing the processing load on the cell selection method that requires the “neighboring hybrid status” to be changed. The effect that it is done can be acquired.
 (4)動作モード設定が変更されたHeNB/HNB以外のHeNB/HNBの周辺セル情報中に、あるいは周辺セルリスト中に、動作モード設定が変更されたHeNB/HNBの情報が含まれていた場合、該動作モード設定が変更されたHeNB/HNB以外のHeNB/HNBを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。本具体例により、具体例(1)(2)(3)と比較してメジャメントレポートを記憶、処理する、あるいは閾値などとの比較が必要ないため、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。 (4) When the HeNB / HNB information other than the HeNB / HNB whose operation mode setting has been changed, or the HeNB / HNB information whose operation mode setting has been changed, is included in the neighboring cell list Suppose that the HeNB / HNB other than the HeNB / HNB whose operation mode setting is changed needs to change the “peripheral hybrid status” by changing the operation mode setting of the HeNB / HNB. According to this specific example, the measurement report is stored and processed as compared with the specific examples (1), (2), and (3), or the comparison with the threshold value or the like is not necessary. It is possible to obtain an effect that the processing load on the cell selection method is reduced.
 (5)動作モード設定が変更されたHeNB/HNBの周辺セル情報、あるいは周辺セルリストに含まれるセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。本具体例により、具体例(1)(2)(3)と比較してメジャメントレポートを記憶、処理する、あるいは閾値などとの比較が必要ないため、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。また、具体例(4)と比較して動作モード設定が変更されたHeNB/HNB以外の周辺セル情報を考慮する必要が無い点において、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。 (5) Neighboring cell information of HeNB / HNB whose operation mode setting has been changed, or a cell included in the neighboring cell list needs to be changed to the “neighboring hybrid situation” by changing the operation mode setting of the HeNB / HNB To do. According to this specific example, the measurement report is stored and processed as compared with the specific examples (1), (2), and (3), or the comparison with the threshold value or the like is not necessary. It is possible to obtain an effect that the processing load on the cell selection method is reduced. In addition, the cell selection method that requires changing the “neighboring hybrid status” in that it is not necessary to consider neighboring cell information other than the HeNB / HNB whose operation mode setting has been changed compared to the specific example (4). The effect that the processing load about is reduced can be obtained.
 (6)動作モード設定が変更されたHeNB/HNBが接続される1つあるいは複数のMMEに接続される他のセルを該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとする。現在3GPPにおいて議論されているLTE方式の移動体通信システムの全体的な構成を、図18を用いて説明する。現在3GPPにおいては、CSG(Closed Subscriber Group)セル(e-UTRANのHome-eNodeB(Home-eNB,HeNB),UTRANのHome-NB(HNB))とnon-CSGセル(e-UTRANのeNodeB(eNB)、UTRANのNodeB(NB)、GERANのBSS)とを含めたシステムの全体的な構成が検討されており、e-UTRANについては、図18のような構成が提案されている(非特許文献1 4.6.1.章)。図18について説明する。 (6) The “neighboring hybrid status” is changed by changing the operation mode setting of the HeNB / HNB for another cell connected to one or a plurality of MMEs to which the HeNB / HNB whose operation mode setting has been changed is connected It is assumed that the cell is necessary. The overall configuration of an LTE mobile communication system currently under discussion in 3GPP will be described with reference to FIG. Currently, in 3GPP, CSG (Closed Subscriber Group) cells (e-UTRAN Home-eNodeB (Home-eNB, HeNB), UTRAN Home-NB (HNB)) and non-CSG cells (e-UTRAN eNodeB (eNB) ), UTRAN NodeB (NB), GERAN BSS) and the like, and a configuration as shown in FIG. 18 is proposed for e-UTRAN (non-patent literature). 1 Chapter 4.6.1). FIG. 18 will be described.
 移動端末(UE)1801は基地局1802と送受信を行う。基地局1802はeNB1802-1と、Home-eNB1802-2とに分類される。eNB1802-1はMME1803とインタフェースS1により接続され、eNBとMMEとの間で制御情報が通信される。ひとつのeNB1802-1に対して複数のMME1803が接続されてもよい。eNB間はインタフェースX2により接続され、eNB間で制御情報が通信される。Home-eNB1802-2はMME1803とインタフェースS1により接続され、Home-eNBとMMEとの間で制御情報が通信される。ひとつのMMEに対して複数のHome-eNBが接続される。あるいは、Home-eNB1802-2はHeNBGW(Home-eNB GateWay)1804を介してMME1803と接続される。Home-eNBとHeGWはインタフェースS1により接続され、HeNBGW1804とMME1803はインタフェースS1を介して接続される。ひとつまたは複数のHome-eNB1802-2がひとつのHeNBGW1804と接続され、S1を通して情報が通信される。HeNBGW1804はひとつまたは複数のMME1803と接続され、S1を通して情報が通信される。さらに現在3GPPでは以下のような構成が検討されている。
Home-eNB1802-2間のインタフェースX2はサポートされない。MME1803からは、HeNBGW1804はeNB1802-1として見える。Home-eNB1802-2からは、HeNBGW1804はMME1803として見える。Home-eNB1802-2がHeNBGW1804を介してEPCに接続されるか否かに関係なく、Home-eNB1802-2とEPC間のインタフェースS1は同じである。MME1803をまたがるような、Home-eNB1802-2へのモビリティ、あるいはHome-eNB1802-2からのモビリティはサポートされない。Home-eNB1802-2は唯一のセルをサポートする。
A mobile terminal (UE) 1801 performs transmission / reception with the base station 1802. Base station 1802 is classified into eNB 1802-1 and Home-eNB 1802-2. The eNB 1802-1 is connected to the MME 1803 via the interface S1, and control information is communicated between the eNB and the MME. A plurality of MMEs 1803 may be connected to one eNB 1802-1. The eNBs are connected by an interface X2, and control information is communicated between the eNBs. The Home-eNB 1802-2 is connected to the MME 1803 via the interface S1, and control information is communicated between the Home-eNB and the MME. A plurality of Home-eNBs are connected to one MME. Alternatively, Home-eNB 1802-2 is connected to MME 1803 via HeNBGW (Home-eNB GateWay) 1804. The Home-eNB and the HeGW are connected via the interface S1, and the HeNBGW 1804 and the MME 1803 are connected via the interface S1. One or a plurality of Home-eNBs 1802-2 are connected to one HeNBGW 1804, and information is communicated through S1. The HeNBGW 1804 is connected to one or a plurality of MMEs 1803, and information is communicated through S1. Furthermore, the following configurations are currently being studied in 3GPP.
Interface X2 between Home-eNB 1802-2 is not supported. From the MME 1803, the HeNBGW 1804 appears as an eNB 1802-1. From the Home-eNB 1802-2, the HeNBGW 1804 appears as an MME 1803. Regardless of whether the Home-eNB 1802-2 is connected to the EPC via the HeNBGW 1804, the interface S1 between the Home-eNB 1802-2 and the EPC is the same. Mobility to or from Home-eNB 1802-2 that spans MME 1803 is not supported. Home-eNB 1802-2 supports only one cell.
 本具体例により、具体例(1)(2)(3)(4)(5)と比較して、動作モード設定が変更されたHeNB/HNBによらずに、ネットワーク側は一意に「周辺ハイブリッド状況」を変更する必要があるセルを選択可能となるので、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。 According to this specific example, compared to the specific examples (1), (2), (3), (4), and (5), the network side uniquely identifies the “peripheral hybrid” regardless of the HeNB / HNB whose operation mode setting has been changed. Since it becomes possible to select a cell that needs to change the “situation”, it is possible to obtain an effect that the processing load on the selection method of the cell that needs to change the “neighboring hybrid situation” is reduced.
 (7)動作モード設定が変更されたHeNB/HNBが接続されるHeNBGWに接続される他のセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとする。本具体例により、具体例(1)(2)(3)(4)(5)と比較して、動作モード設定が変更されたHeNB/HNBによらずに、ネットワーク側は一意に「周辺ハイブリッド状況」を変更する必要があるセルを選択可能となるので、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。 (7) A cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB for another cell connected to the HeNBGW to which the HeNB / HNB whose operation mode setting has been changed is connected And According to this specific example, compared to the specific examples (1), (2), (3), (4), and (5), the network side uniquely identifies the “peripheral hybrid” regardless of the HeNB / HNB whose operation mode setting has been changed. Since it becomes possible to select a cell that needs to change the “situation”, it is possible to obtain an effect that the processing load on the selection method of the cell that needs to change the “neighboring hybrid situation” is reduced.
 次に移動体通信システムの動作を説明する。図19に説明に用いるセルの配置例について示す。マクロセル1901のカバレッジ1902内にHeNB/HNB1909が設置されている。HeNB/HNB1909のカバレッジは1910である。マクロセル1901に隣接してマクロセル1903が設置されている。マクロセル1903のカバレッジは1904である。マクロセル1901、及びマクロセル1903のセル境界付近に、HeNB/HNB1905、HeNB/HNB1907が設置されている。HeNB/HNB1905のカバレッジは1906である。HeNB/HNB1907のカバレッジは1908である。 Next, the operation of the mobile communication system will be described. FIG. 19 shows an example of cell arrangement used in the description. A HeNB / HNB 1909 is installed in the coverage 1902 of the macro cell 1901. The coverage of HeNB / HNB 1909 is 1910. A macro cell 1903 is installed adjacent to the macro cell 1901. The coverage of the macro cell 1903 is 1904. HeNB / HNB 1905 and HeNB / HNB 1907 are installed in the vicinity of the cell boundary between the macro cell 1901 and the macro cell 1903. The coverage of HeNB / HNB 1905 is 1906. The coverage of HeNB / HNB 1907 is 1908.
 図20を用いて、移動体通信システムの動作の一例を示す。ステップST2001にてネットワークは、例えばオペレータからHeNBの動作モード設定変更の指示を受ける。
動作モード変更に伴いPCIを変更する必要があれば、ネットワーク側は、新たな動作モードに適したPCIを選択しても良い。新たな動作モードに適したPCIとは、新たな動作モード用のPCI範囲に含まれるPCIであっても良い。ステップST2002にてネットワークは、オペレータから動作モード設定変更の指示を受けたHeNBに対して、動作モードの設定の変更を通知する。ネットワーク側は、動作モード設定変更の指示を受けたHeNBに対して、新たな動作モードに適したPCIを通知しても良い。通知されるPCIは、変更前のPCIと変更後のPCI、変更後のPCIであっても良いし、あるいは変更前のGCIと変更後のGCI、変更後のGCIであっても良い。ステップST2003にて動作モード設定変更の指示を受けたHeNBは、指示に従い、動作モード設定の変更を実行する。ステップ4001にて新たな動作モードに適したPCIの通知を受信した場合、指示に従い、PCIの変更を実行する。あるいは、動作モード設定の変更の指示を受けたHeNBが、新たな動作モードに適したPCIを選択しても良い。新たな動作モードに適したPCIとは、新たな動作モード用のPCI範囲に含まれるPCIであっても良い。選択の際、該HeNBは、周辺のセルの受信品質を測定してもよい。具体的なPCI選択方法の一例を開示する。周辺のセルの受信品質にて良好な受信品質のセル(受信品質をSIRで表した場合、SIRが高いセル)からは、干渉を受けやすいとして、該セルと同じ、あるいは類似のPCIを選択しないようにする。類似のPCIとは、相関が高いPCIを意味する。良好な受信品質のセルは、1つであっても複数であっても良い。良好な受信品質のセルを決定する際、閾値を用いてもよい。例えば、受信品質が閾値より良好(受信品質をSIRで表した場合、閾値より受信品質が高い)であれば、該セルを良好な受信品質のセルと判断しても良い。新たな動作モードに適したPCIの選択は、ステップST4002の動作モード設定変更の指示の後であっても良い。該HeNBは、PCIの変更を実行する。新たな動作モードに適したPCIをHeNBが選択した場合、該HeNBはネットワーク側へ、該PCIを通知しても良い。該通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。また、O&M用のインタフェースであっても良い。通知されるPCIは、変更前のPCIと変更後のPCI、変更後のPCIであっても良いし、あるいは変更前のGCIと変更後のGCI、変更後のGCIであっても良い。
An example of the operation of the mobile communication system is shown using FIG. In step ST2001, for example, the network receives an instruction to change the operation mode setting of the HeNB from an operator.
If it is necessary to change the PCI along with the operation mode change, the network side may select a PCI suitable for the new operation mode. The PCI suitable for the new operation mode may be a PCI included in the PCI range for the new operation mode. In Step ST2002, the network notifies the HeNB that has received an instruction to change the operation mode setting from the operator of the change in the operation mode setting. The network side may notify the PCI suitable for the new operation mode to the HeNB that has received the instruction to change the operation mode setting. The notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI. HeNB which received the instruction | indication of operation mode setting change in step ST2003 performs an operation mode setting change according to an instruction | indication. When the PCI notification suitable for the new operation mode is received in step 4001, the PCI change is executed in accordance with the instruction. Or HeNB which received the instruction | indication of the change of operation mode setting may select PCI suitable for a new operation mode. The PCI suitable for the new operation mode may be a PCI included in the PCI range for the new operation mode. At the time of selection, the HeNB may measure reception quality of neighboring cells. An example of a specific PCI selection method is disclosed. A cell having a good reception quality in the reception quality of neighboring cells (a cell having a high SIR when the reception quality is expressed in SIR) is selected as the same or similar PCI as that cell because it is likely to receive interference. Like that. Similar PCI means PCI having high correlation. There may be one or a plurality of cells with good reception quality. A threshold may be used when determining a cell with good reception quality. For example, if the reception quality is better than a threshold value (when the reception quality is expressed by SIR, the reception quality is higher than the threshold value), the cell may be determined as a cell with good reception quality. The selection of the PCI suitable for the new operation mode may be after the operation mode setting change instruction in step ST4002. The HeNB performs a PCI change. When the HeNB selects a PCI suitable for the new operation mode, the HeNB may notify the PCI to the network side. For this notification, an S1 interface or a broadband line may be used. Further, an O & M interface may be used. The notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
 ステップST2004にてネットワークは、「周辺ハイブリッド状況」を変更する必要があるセルを選択する。あるいは、NCLを変更する必要があるセルを選択しても良い。
例えば図19を用いて説明する。HeNB/HNB1905の動作モード設定をクローズドアクセスモードからハイブリッドアクセスモードに変更する場合を検討する。その場合、ステップST2004にて例えば、マクロセル1901、マクロセル1903、HeNB/HNB1907が「周辺ハイブリッド状況」を変更する必要があるセルとして選択される。例えば図19を用いて説明する。HeNB/HNB1909の動作モード設定をクローズドアクセスモードからハイブリッドアクセスモードに変更する場合を検討する。その場合、ステップST2004にて例えば、マクロセル1901が「周辺ハイブリッド状況」を変更する必要があるセルとして選択される。
In Step ST2004, the network selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL.
This will be described with reference to FIG. 19, for example. Consider a case where the operation mode setting of the HeNB / HNB 1905 is changed from the closed access mode to the hybrid access mode. In that case, in step ST2004, for example, the macro cell 1901, the macro cell 1903, and the HeNB / HNB 1907 are selected as cells that need to change the “neighboring hybrid status”. This will be described with reference to FIG. 19, for example. Consider a case where the operation mode setting of the HeNB / HNB 1909 is changed from the closed access mode to the hybrid access mode. In this case, for example, in step ST2004, the macro cell 1901 is selected as a cell that needs to change the “neighboring hybrid status”.
 ステップST2005にてネットワークは、ステップST2004にて選択したセルの「周辺ハイブリッド状況」を変更する。あるいは、NCLを変更するとしても良い。ステップST2006にてネットワークは、ステップST2004にて選択したセルに対して、ステップST2005にて変更した「周辺ハイブリッド状況」を通知する。あるいは、NCLを通知するとしても良い。ステップST2007にて、「周辺ハイブリッド状況」を受信したセルは、受信した「周辺ハイブリッド状況」を傘下の移動端末へ通知する。 In step ST2005, the network changes the “neighboring hybrid status” of the cell selected in step ST2004. Alternatively, the NCL may be changed. In step ST2006, the network notifies the cell selected in step ST2004 of the “neighboring hybrid status” changed in step ST2005. Alternatively, NCL may be notified. In Step ST2007, the cell that has received the “neighboring hybrid status” notifies the mobile terminal being served thereby of the received “neighboring hybrid status”.
 実施の形態4により以下の効果を得ることが出来る。HeNB、HNB設置後に動作モード設定が変更される場合であっても、適切に「周辺ハイブリッド状況」あるいは「NCL」を変更可能となる効果を得ることができる。また、本実施の形態によりオペレータあるいはHeNB/HNBのオーナが「周辺ハイブリッド状況」の変更作業が必要ない。こうすることで、オペレータあるいはHeNB/HNBのオーナの作業負荷やコスト発生を抑えつつ、動作モード設定変更に伴う、「周辺ハイブリッド状況」を更新することが可能となる。これにより、HeNB、HNB設置後に動作モード設定が変更される場合であっても、実施の形態2の変形例1、実施の形態3を適用することが可能となり、実施の形態2の変形例1、実施の形態3の効果を得ることが出来る。 The following effects can be obtained by the fourth embodiment. Even when the operation mode setting is changed after the HeNB and HNB are installed, it is possible to obtain an effect that the “neighboring hybrid status” or “NCL” can be appropriately changed. Further, according to the present embodiment, the operator or the owner of the HeNB / HNB does not need to change the “neighboring hybrid status”. By doing so, it becomes possible to update the “peripheral hybrid status” associated with the operation mode setting change while suppressing the workload and cost generation of the operator or the owner of the HeNB / HNB. Thereby, even when the operation mode setting is changed after HeNB and HNB are installed, it is possible to apply the first and third modifications of the second embodiment, and the first modification of the second embodiment. The effect of the third embodiment can be obtained.
実施の形態4 変形例1.
 実施の形態4の変形例1にて解決する課題は、実施の形態4と同様であるので、説明を省略する。
Embodiment 4 Modification 1
Since the problem to be solved in the first modification of the fourth embodiment is the same as that of the fourth embodiment, the description thereof is omitted.
 本実施の形態4の変形例1では、HeNB/HNB経由で動作モードを設定する場合における「周辺ハイブリッド状況」の変更方法について開示する。例えば、HeNB/HNBのオーナは、直接HeNB/HNBの動作モード設定の変更を指示する。HeNB/HNBは、動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルに対して、変更依頼を通知する。「周辺ハイブリッド状況」の変更依頼を受信したセルは、「周辺ハイブリッド状況」の変更を実行する。該変更の通知には、X2インタフェース、あるいはブロードバンド回線を用いても良い。「周辺ハイブリッド状況」の変更依頼には、動作モード設定が変更されたHeNB/HNBの識別情報(PCI、GCIなど)、変更後の動作モード、あるいは変更前と変更後の動作モードなどが含まれても良い。 In the first modification of the fourth embodiment, a method for changing the “peripheral hybrid status” when the operation mode is set via the HeNB / HNB is disclosed. For example, the owner of the HeNB / HNB directly instructs to change the operation mode setting of the HeNB / HNB. The HeNB / HNB notifies the change request to the cell that needs to change the “neighboring hybrid status” by changing the operation mode setting. The cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change. For the notification of the change, an X2 interface or a broadband line may be used. The request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとしては、動作モード設定が変更されたHeNB/HNBをハンドオーバ先、あるいはセル再選択先として選択する可能性のあるセルとする。また、「周辺ハイブリッド状況」を、NCLを用いて傘下の移動端末に通知している場合、該HeNB/HNBの動作モード設定の変更により「NCL」を変更する必要があるセルを選択しても良い。 Possibility of selecting HeNB / HNB whose operation mode setting has been changed as a handover destination or a cell reselection destination as a cell whose "neighboring hybrid status" needs to be changed by changing the operation mode setting of the HeNB / HNB A cell with In addition, when the “neighboring hybrid status” is notified to a mobile terminal being served using NCL, even if a cell that needs to change “NCL” is selected by changing the operation mode setting of the HeNB / HNB good.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルの選択方法の具体例について以下3つ開示する。 Three specific examples of a cell selection method in which the “neighboring hybrid status” needs to be changed by changing the operation mode setting of the HeNB / HNB are disclosed below.
 (1)動作モード設定が変更されたHeNB/HNBが行った、周辺セルの測定結果を用いる。受信品質がある閾値より良好であるセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとしても良い。ある閾値は、静的に決められていても、準静的に決められていても良い。 (1) Use measurement results of neighboring cells performed by the HeNB / HNB whose operation mode setting has been changed. It may be necessary to change the “neighboring hybrid status” for a cell whose reception quality is better than a certain threshold value by changing the operation mode setting of the HeNB / HNB. A certain threshold value may be determined statically or semi-statically.
 (2)動作モード設定が変更されたHeNB/HNB傘下の移動端末のメジャメントレポートを用いる。さらに具体例として以下3つ開示する。 (2) Use a measurement report of a mobile terminal being served by a HeNB / HNB whose operation mode setting has been changed. Three specific examples are disclosed below.
 (2-1)動作モード設定が変更されたHeNB/HNBが傘下の移動端末のメジャメントレポートを用いてハンドオーバ先(ターゲットセル)として選択したセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。 (2-1) A cell selected by the HeNB / HNB whose operation mode setting has been changed as a handover destination (target cell) using a measurement report of a mobile terminal being served by the change of the operation mode setting of the HeNB / HNB Suppose that it is necessary to change the "peripheral hybrid situation".
 (2-2)傘下の移動端末がサービングセル、つまり動作モード設定が変更されたHeNB/HNBより受信品質が良好であると報告したセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。 (2-2) A mobile terminal being served thereby reports a cell whose reception quality is better than that of the serving cell, that is, the HeNB / HNB whose operation mode setting has been changed, by changing the operation mode setting of the HeNB / HNB. Suppose the situation needs to be changed.
 (2-3)傘下の移動端末が、受信品質がある閾値より良好であると報告したセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。ある閾値は、静的に決められていても、準静的に決められていても良い。 (2-3) Suppose that the mobile terminal being served by the mobile terminal needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB for a cell reported that the reception quality is better than a certain threshold . A certain threshold value may be determined statically or semi-statically.
 本具体例により、具体例(1)と比較して、セルに周辺セルの測定という新たな機能を追加する必要がなくなる。これにより、移動体通信システムの複雑性回避という効果を得ることができる。 This specific example eliminates the need for adding a new function of measuring peripheral cells to the cell, as compared to the specific example (1). Thereby, the effect of avoiding the complexity of the mobile communication system can be obtained.
 (3)動作モード設定が変更されたHeNB/HNBの周辺セル情報、あるいは周辺セルリストに含まれるセルを、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるとする。本具体例により、具体例(1)(2)と比較してメジャメントレポートを記憶、処理する、あるいは閾値などとの比較が必要ないため、「周辺ハイブリッド状況」を変更する必要があるセルの選択方法についての処理負荷が軽減されるという効果を得ることができる。 (3) Neighboring cell information of the HeNB / HNB whose operation mode setting has been changed, or a cell included in the neighboring cell list needs to be changed in the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB And According to this specific example, the measurement report is stored and processed as compared with the specific examples (1) and (2), or the comparison with the threshold value or the like is not required, so the selection of the cell that needs to change the “neighboring hybrid status” The effect that the processing load about a method is reduced can be acquired.
 次に移動体通信システムの動作を説明する。図19に説明に用いるセルの配置例について示す。図21に移動体通信システムの動作の一例を示す。図19のセル設置例については、実施の形態4と同様であるので説明を省略する。図21を用いて、移動体通信システムの動作の一例を示す。図20と同じ参照符号は相当する部分であるので、説明は省略する。ステップST2101にてHeNBは、オーナから動作モード設定変更の指示を受ける。 Next, the operation of the mobile communication system will be described. FIG. 19 shows an example of cell arrangement used in the description. FIG. 21 shows an example of the operation of the mobile communication system. The cell installation example in FIG. 19 is the same as that in the fourth embodiment, and thus description thereof is omitted. An example of the operation of the mobile communication system is shown using FIG. The same reference numerals as those in FIG. In Step ST2101, the HeNB receives an operation mode setting change instruction from the owner.
 ステップST2102にてHeNBは、「周辺ハイブリッド状況」を変更する必要があるセルを選択する。あるいは、NCLを変更する必要があるセルを選択しても良い。例えば図19において、HeNB/HNB1905の動作モード設定をクローズドアクセスモードからハイブリッドアクセスモードに変更する場合を検討する。その場合、ステップST2102にて例えば、マクロセル1901、マクロセル1903、HeNB/HNB1907が「周辺ハイブリッド状況」を変更する必要があるセルとして選択される。また、例えば図19において、HeNB/HNB1909の動作モード設定をクローズドアクセスモードからハイブリッドアクセスモードに変更する場合を検討する。その場合、ステップST2102にて例えば、マクロセル1901が「周辺ハイブリッド状況」を変更する必要があるセルとして選択される。 In Step ST2102, the HeNB selects a cell that needs to change the “neighboring hybrid status”. Or you may select the cell which needs to change NCL. For example, in FIG. 19, consider a case where the operation mode setting of the HeNB / HNB 1905 is changed from the closed access mode to the hybrid access mode. In that case, in step ST2102, for example, the macro cell 1901, the macro cell 1903, and the HeNB / HNB 1907 are selected as cells that need to change the “neighboring hybrid status”. Further, for example, in FIG. 19, a case where the operation mode setting of the HeNB / HNB 1909 is changed from the closed access mode to the hybrid access mode will be considered. In this case, for example, in step ST2102, the macro cell 1901 is selected as a cell that needs to change the “neighboring hybrid status”.
 ステップST2103にてHeNBは、ステップST2102にて選択したセルに対して、「周辺ハイブリッド状況」の変更依頼を通知する。あるいは、NCLの変更依頼を通知するとしても良い。HeNBは、ステップST4102にて選択したセルに対して、新たな動作モードに適したPCIを通知しても良い。通知されるPCIは、変更前のPCIと変更後のPCI、変更後のPCIであっても良いし、あるいは変更前のGCIと変更後のGCI、変更後のGCIであっても良い。ステップST2104にて、「周辺ハイブリッド状況」の変更依頼を受信したセルは、周辺ハイブリッド状況を変更する。あるいは、NCLを変更するとしても良い。ステップST2105にて、「周辺ハイブリッド状況」を受信したセルは、ステップST2104にて変更した「周辺ハイブリッド状況」を傘下の移動端末へ通知する。 In step ST2103, the HeNB notifies the cell selected in step ST2102 of a change request for “neighboring hybrid status”. Alternatively, an NCL change request may be notified. HeNB may notify PCI suitable for a new operation mode with respect to the cell selected in step ST4102. The notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI. In Step ST2104, the cell that has received the “neighboring hybrid status” change request changes the neighboring hybrid status. Alternatively, the NCL may be changed. In Step ST2105, the cell that has received the “neighboring hybrid status” notifies the mobile terminal being served thereby of the “neighboring hybrid status” changed in Step ST2104.
 実施の形態4の変形例1は、実施の形態4と組み合わせて用いることができる。 Modification 1 of Embodiment 4 can be used in combination with Embodiment 4.
 実施の形態4の変形例1により実施の形態4に加えて以下の効果を得ることが出来る。
HeNB、HNB経由で行われていたHeNB、HNBの動作モード設定変更に対しても、HeNB、HNB設置後に動作モード設定が変更される場合であっても、適切に「周辺ハイブリッド状況」あるいは「NCL」を変更可能となる効果を得ることができる。また、HeNB、HNB経由で行われた、HeNB、HNBの動作モード設定変更に対しても、本実施の形態によりオペレータあるいはHeNB/HNBのオーナが「周辺ハイブリッド状況」の変更作業が必要ない。こうすることで、オペレータあるいはHeNB/HNBのオーナの作業負荷やコスト発生を抑えつつ、動作モード設定変更に伴う、「周辺ハイブリッド状況」を更新することが可能となる。これにより、HeNB、HNB経由で行われた、HeNB、HNBの動作モード設定変更に対しても、HeNB、HNB設置後に動作モード設定が変更される場合であっても、実施の形態2の変形例1、実施の形態3を適用することが可能となり、実施の形態2の変形例1、実施の形態3の効果を得ることが出来る。
In addition to the fourth embodiment, the following effects can be obtained by the first modification of the fourth embodiment.
Even if the operation mode setting of HeNB or HNB that has been performed via HeNB or HNB is changed after the HeNB or HNB is installed, the “peripheral hybrid status” or “NCL” Can be obtained. Further, even if the operation mode setting of the HeNB or HNB is changed via the HeNB or HNB, the operator or the owner of the HeNB / HNB does not need to change the “neighboring hybrid status” according to the present embodiment. By doing so, it is possible to update the “peripheral hybrid status” associated with the operation mode setting change while suppressing the workload and cost generation of the operator or the owner of the HeNB / HNB. Thereby, even if the operation mode setting is changed after the HeNB and HNB are installed even when the operation mode setting of the HeNB and HNB is performed via the HeNB and HNB, the modification of the second embodiment 1 and Embodiment 3 can be applied, and the effects of Modification 1 and Embodiment 3 of Embodiment 2 can be obtained.
実施の形態4 変形例2.
 実施の形態4の変形例2にて解決する課題は、実施の形態4、実施の形態4の変形例1と同様であるので、説明を省略する。
Embodiment 4 Modification 2
Since the problem to be solved in the second modification of the fourth embodiment is the same as that of the fourth embodiment and the first modification of the fourth embodiment, description thereof is omitted.
 本実施の形態4の変形例2では、HeNB/HNB経由で行われる動作モードを設定する場合における「周辺ハイブリッド状況」の変更方法について、実施の形態4の変形例1とは別の解決策を開示する。例えば、HeNB/HNBのオーナは、直接HeNB/HNBの動作モード設定の変更を指示する。HeNB/HNBは、動作モード設定変更の指示を受けたHeNBは、指示に従い、動作モード設定の変更を実行する。 In the second modification of the fourth embodiment, regarding the method of changing the “peripheral hybrid status” when setting the operation mode performed via the HeNB / HNB, a solution different from the first modification of the fourth embodiment is provided. Disclose. For example, the owner of the HeNB / HNB directly instructs to change the operation mode setting of the HeNB / HNB. The HeNB / HNB receives the instruction to change the operation mode setting, and changes the operation mode setting according to the instruction.
 HeNB/HNBは、ネットワーク側へ動作モード設定変更の報告を通知する。該報告の通知にはS1インタフェース、あるいはブロードバンド回線を用いても良い。該報告には、動作モード設定が変更されたHeNB/HNBの識別情報(PCI、GCIなど)、変更後の動作モード、あるいは変更前と変更後の動作モードなどが含まれても良い。ネットワーク側の具体例としては、EPC(Evolved Packet Core)、MME、S-GW、HeNBGWなどがある。 The HeNB / HNB notifies the network side of the change of the operation mode setting. An S1 interface or a broadband line may be used for notification of the report. The report may include HeNB / HNB identification information (PCI, GCI, etc.) whose operation mode setting has been changed, an operation mode after the change, or an operation mode before and after the change. Specific examples on the network side include EPC (Evolved packet Core), MME, S-GW, and HeNBGW.
 該報告を受信したネットワーク側は、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルに対して、変更した「周辺ハイブリッド状況」を通知する。該変更の通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。 The network side that has received the report notifies the cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB, and notifies the changed “neighboring hybrid status”. For the notification of the change, an S1 interface or a broadband line may be used.
 あるいは、該報告を受信したネットワーク側は、該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルに対して、変更依頼を通知しても良い。「周辺ハイブリッド状況」の変更依頼を受信したセルは、「周辺ハイブリッド状況」の変更を実行する。該変更の通知には、S1インタフェース、あるいはブロードバンド回線を用いても良い。「周辺ハイブリッド状況」の変更依頼には、動作モード設定が変更されたHeNB/HNBの識別情報(PCI、GCIなど)、変更後の動作モード、あるいは変更前と変更後の動作モードなどが含まれても良い。 Alternatively, the network side that has received the report may notify a change request to a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB. The cell that has received the “neighboring hybrid status” change request executes the “neighboring hybrid status” change. For the notification of the change, an S1 interface or a broadband line may be used. The request to change the “peripheral hybrid status” includes the identification information (PCI, GCI, etc.) of the HeNB / HNB whose operation mode setting has been changed, the operation mode after the change, or the operation mode before and after the change. May be.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルとしては、動作モード設定が変更されたHeNB/HNBをハンドオーバ先、あるいはセル再選択先として選択する可能性のあるセルとする。また、「周辺ハイブリッド状況」を、NCLを用いて傘下の移動端末に通知している場合、該HeNB/HNBの動作モード設定の変更により「NCL」を変更する必要があるセルを選択しても良い。 Possibility of selecting HeNB / HNB whose operation mode setting has been changed as a handover destination or a cell reselection destination as a cell whose "neighboring hybrid status" needs to be changed by changing the operation mode setting of the HeNB / HNB A cell with In addition, when the “neighboring hybrid status” is notified to a mobile terminal being served using NCL, even if a cell that needs to change “NCL” is selected by changing the operation mode setting of the HeNB / HNB good.
 該HeNB/HNBの動作モード設定の変更により「周辺ハイブリッド状況」を変更する必要があるセルの選択方法の具体例は実施の形態4と同様であるので説明を省略する。 A specific example of a method for selecting a cell that needs to change the “neighboring hybrid status” by changing the operation mode setting of the HeNB / HNB is the same as that in the fourth embodiment, and a description thereof will be omitted.
 次に移動体通信システムの動作を説明する。図19に説明に用いるセルの配置例について示す。図22に移動体通信システムの動作の一例を示す。図20、図21と同じ参照符号は相当する部分であるので、説明は省略する。ステップST2201にてHeNBは、ネットワーク側へ動作モード設定変更の報告を通知する。HeNBは、ネットワーク側へ新たな動作モードに適したPCIを通知しても良い。通知されるPCIは、変更前のPCIと変更後のPCI、変更後のPCIであっても良いし、あるいは変更前のGCIと変更後のGCI、変更後のGCIであっても良い。 Next, the operation of the mobile communication system will be described. FIG. 19 shows an example of cell arrangement used in the description. FIG. 22 shows an example of the operation of the mobile communication system. The same reference numerals as those in FIG. 20 and FIG. In Step ST2201, the HeNB notifies the network side of the report of the operation mode setting change. HeNB may notify PCI suitable for a new operation mode to the network side. The notified PCI may be the pre-change PCI, the post-change PCI, and the post-change PCI, or the pre-change GCI, the post-change GCI, and the post-change GCI.
 実施の形態4の変形例2により実施の形態4の変形例1と同様の効果を得ることが出来る。 According to the second modification of the fourth embodiment, the same effect as that of the first modification of the fourth embodiment can be obtained.
 実施の形態4、実施の形態4の変形例1、実施の形態4の変形例2では、HeNB/HNBの動作モードが変更された場合の「周辺ハイブリッド状況」を変更する方法を開示した。HeNB/HNBの動作モードが変更された場合のみではなく、新たにHeNB/HNBが設定された場合においても、新たに設置された場所の周辺のセルの「周辺ハイブリッド状況」を変更する必要が発生する。該状況においても実施の形態4、実施の形態4の変形例1、実施の形態4の変形例2を適用可能である。 In the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment, the method of changing the “neighboring hybrid situation” when the operation mode of the HeNB / HNB is changed is disclosed. Not only when the operation mode of the HeNB / HNB is changed, but also when a new HeNB / HNB is set, it is necessary to change the “neighboring hybrid status” of the cells in the vicinity of the newly installed location To do. Even in this situation, the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment are applicable.
 LTEシステムでは、セルフコンフィグレーションあるいはセルフオプティマイゼーション機能をサポートすることが検討されており、またその中で、ANR(Automatic Neighbour Relation)機能が検討されている(非特許文献1)。ANR機能は、隣接セルとの関係(Neighbour Relations (NRs))の取扱いをオペレータが手動で行うのではなく、自動で行うようにする機能である。自動に行わせることで、オペレータの作業負荷やコストの増大を軽減することが可能となる。 In the LTE system, it is considered to support a self-configuration or self-optimization function, and an ANR (Automatic Neighbor Relation) function is being studied (Non-Patent Document 1). The ANR function is a function that allows an operator to handle a relationship (Neighbour Relations (NRs)) with an adjacent cell automatically instead of manually. By performing the process automatically, it is possible to reduce an increase in operator workload and cost.
 実施の形態4、実施の形態4の変形例1、実施の形態4の変形例2で開示した方法を、該ANR機能の一部として組み込むようにしても良い。該ANR機能に「周辺ハイブリッド状況」を変更する方法を組み込むと良い。該ANR機能は、eNBあるいはHeNB/HNBに設けられても良いし、ネットワーク側に設けられても良い。 The method disclosed in the fourth embodiment, the first modification of the fourth embodiment, and the second modification of the fourth embodiment may be incorporated as a part of the ANR function. A method of changing the “peripheral hybrid status” may be incorporated into the ANR function. The ANR function may be provided in the eNB or HeNB / HNB, or may be provided on the network side.
 こうすることで、オペレータあるいはHeNB/HNBのオーナの作業負荷やコスト増大無しに、本実施の形態で開示した方法を行うことが可能となり、さらなる移動体通信システムの高性能化、さらなる移動端末の低消費電力化という効果を得ることが出来る。さらに、将来のHeNB/HNBの設置数が増大した場合にも、該HeNB/HNBの柔軟な設置や動作モードの変更に対応した移動体通信システムを構築することが可能となる。 By doing so, it becomes possible to perform the method disclosed in the present embodiment without increasing the workload and cost of the operator or the owner of the HeNB / HNB. The effect of low power consumption can be obtained. Furthermore, even when the number of HeNB / HNBs to be installed in the future increases, it is possible to construct a mobile communication system that supports flexible installation of HeNB / HNBs and changes in operation modes.
 本発明において、実施の形態1から実施の形態4で個別に記載したが、これらは組合せて用いても良い。 In the present invention, although individually described in the first to fourth embodiments, these may be used in combination.
 本発明についてはLTEシステム(E-UTRAN)を中心に記載したが、W-CDMAシステム(UTRAN、UMTS)及びLTE-Advancedについて適用可能である。更には、CSG(Closed Subscriber Group)が導入される移動体通信システムおよび、CSGと同じようにオペレータが加入者を特定し、特定された加入者がアクセスを許可されるような通信システムにおいて適用可能である。 Although the present invention has been described centering on the LTE system (E-UTRAN), it is applicable to the W-CDMA system (UTRAN, UMTS) and LTE-Advanced. Furthermore, it can be applied to a mobile communication system in which CSG (ClosedCloseSubscriber Group) is introduced, and a communication system in which an operator identifies a subscriber and access is permitted to the identified subscriber as in CSG. It is.
 本発明についてはHeNB/HNBがハイブリッドアクセスモードをサポートした場合を中心に記載した。移動体通信システムの他のエンティティが、ハイブリッドアクセスモードをサポートする場合にも本発明は適用可能である。具体例としては、カバレッジが大きいセル、例えばマクロセル、あるいはカバレッジが小さいセル、例えばマイクロセル、ピコセル、フェムトセル、ホットスポット、あるいはリレーなどが、ハイブリッドアクセスモードをサポートする場合にも本発明は適用可能である。 The description of the present invention is centered on the case where the HeNB / HNB supports the hybrid access mode. The present invention is also applicable when other entities in the mobile communication system support the hybrid access mode. As a specific example, the present invention can be applied to a case where a cell with a large coverage, for example, a macro cell, or a cell with a small coverage, for example, a micro cell, a pico cell, a femto cell, a hot spot, or a relay, supports the hybrid access mode. It is.
 本発明についてはHeNB/HNBが複数のモードをサポートした場合を中心に記載した。移動体通信システムの他のエンティティが、複数のモードをサポートする場合にも本発明は適用可能である。具体例としては、カバレッジが大きいセル、例えばマクロセル、あるいはカバレッジが小さいセル、例えばマイクロセル、ピコセル、フェムトセル、ホットスポット、あるいはリレーなどが、複数のモードをサポートする場合にも本発明は適用可能である。 The description of the present invention is centered on the case where the HeNB / HNB supports multiple modes. The present invention is also applicable when other entities in the mobile communication system support multiple modes. As a specific example, the present invention can also be applied when a cell with a large coverage, for example, a macro cell, or a cell with a small coverage, for example, a micro cell, a pico cell, a femto cell, a hot spot, or a relay, supports a plurality of modes. It is.
 この発明に係る移動体通信システムは、移動端末の消費電力の低減等の効果があるため、基地局が複数の井戸端末と無線通信を実施する移動体通信システムに用いるのに適している。 The mobile communication system according to the present invention is suitable for use in a mobile communication system in which a base station performs wireless communication with a plurality of well terminals because of the effect of reducing power consumption of the mobile terminal.

Claims (2)

  1.  下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の前記移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の前記移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の前記基地局を介して前記移動端末が位置する所望のトラッキングエリアを管理するとともに、前記移動端末にページング処理を行う基地局制御装置を含み、前記移動端末は、前記通信セルそれぞれに割り当てられた情報であって、前記通信セルを識別するための情報であるセル識別情報(PCI)を前記基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、
     前記特定加入者用セルは、特定の前記移動端末ないし加入者に利用を許可する第一の動作モードと不特定の前記移動端末ないし利用者に利用を許可する第二の動作モードとを同時に運用可能であり、前記通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、前記第二の動作モードで動作している前記特定加入者用セルには前記第一分類に含まれるセル識別情報が割り当てられることを特徴とする移動体通信システム。
    A mobile terminal that transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) scheme as a downlink access scheme and an SC-FDMA (Single Career Frequency Division Multiple Access) scheme as an uplink access scheme; A base station provided in a cell for a specific subscriber that is a communication cell that is permitted to be used by a subscriber and a cell for an unspecified user that is a communication cell that can be used by an unspecified mobile terminal or user; and a plurality of base stations The mobile terminal includes a base station controller that manages a desired tracking area where the mobile terminal is located via the base station and performs a paging process on the mobile terminal, and the mobile terminal is assigned to each of the communication cells. And receiving cell identification information (PCI), which is information for identifying the communication cell, from the base station, In a mobile communication system for selecting a cell to be signals,
    The specific subscriber cell simultaneously operates a first operation mode for permitting use to a specific mobile terminal or subscriber and a second operation mode for permitting use to an unspecified mobile terminal or user. The cell identification information that can be assigned to the communication cell is classified into a first classification to be assigned to a specific subscriber cell and a second classification to be assigned to an unspecified user cell, and the second operation The mobile communication system, wherein the cell for specific subscribers operating in the mode is assigned cell identification information included in the first classification.
  2.  下りアクセス方式としてOFDM(Orthogonal Frequency Division Multiplexing)方式を使用し、上りアクセス方式としてSC―FDMA(Single Career Frequency Division Multiple Access)方式を用いてデータの送受信を行う移動端末と、特定の前記移動端末ないし加入者に利用を許可する通信セルである特定加入者用セル及び不特定の前記移動端末ないし利用者が利用可能な通信セルである不特定利用者用セルに設けられた基地局と、複数の前記基地局を介して前記移動端末が位置する所望のトラッキングエリアを管理するとともに、前記移動端末にページング処理を行う基地局制御装置を含み、前記移動端末は、前記通信セルそれぞれに割り当てられた情報であって、前記通信セルを識別するための情報であるセル識別情報(PCI)を前記基地局より受信し、通信を行うセルの選択を行う移動体通信システムにおいて、
     前記特定加入者用セルは、特定の前記移動端末ないし加入者に利用を許可する第一の動作モードと不特定の前記移動端末ないし利用者に利用を許可する第二の動作モードと、前記第一の動作モードと前記第二の動作モードとを同時に処理する第三の動作モードで運用可能であり、前記通信セルに割り当て可能なセル識別情報は、特定加入者用セルに割り当てる第一分類と、不特定利用者用セルに割り当てる第二分類に分類されており、前記第三の動作モードで動作している前記特定加入者用セルには前記第一分類に含まれるセル識別情報が割り当てられることを特徴とする移動体通信システム。
    A mobile terminal that transmits and receives data using an OFDM (Orthogonal Frequency Division Multiplexing) scheme as a downlink access scheme and an SC-FDMA (Single Career Frequency Division Multiple Access) scheme as an uplink access scheme; A base station provided in a cell for a specific subscriber that is a communication cell that is permitted to be used by a subscriber and a cell for an unspecified user that is a communication cell that can be used by an unspecified mobile terminal or user; and a plurality of base stations The mobile terminal includes a base station controller that manages a desired tracking area where the mobile terminal is located via the base station and performs a paging process on the mobile terminal, and the mobile terminal is assigned to each of the communication cells. And receiving cell identification information (PCI), which is information for identifying the communication cell, from the base station, In a mobile communication system for selecting a cell to be signals,
    The specific subscriber cell includes a first operation mode for permitting use to a specific mobile terminal or subscriber, a second operation mode for permitting use to an unspecified mobile terminal or user, and the first operation mode. Cell identification information that can be operated in a third operation mode that simultaneously processes one operation mode and the second operation mode, and that can be assigned to the communication cell includes a first classification assigned to a cell for a specific subscriber, The cell is classified into the second category assigned to the unspecified user cell, and the cell identification information included in the first category is assigned to the cell for the specific subscriber operating in the third operation mode. A mobile communication system.
PCT/JP2009/007133 2008-12-23 2009-12-22 Mobile body communication system WO2010073630A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008326644 2008-12-23
JP2008-326644 2008-12-23
JP2009-250207 2009-10-30
JP2009250207A JP2012044234A (en) 2008-12-23 2009-10-30 Mobile communication system

Publications (1)

Publication Number Publication Date
WO2010073630A1 true WO2010073630A1 (en) 2010-07-01

Family

ID=42287277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007133 WO2010073630A1 (en) 2008-12-23 2009-12-22 Mobile body communication system

Country Status (2)

Country Link
JP (1) JP2012044234A (en)
WO (1) WO2010073630A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111655A1 (en) * 2010-03-09 2011-09-15 シャープ株式会社 Mobile communication system, base station apparatus and mobile communication terminal
US9439216B2 (en) 2009-04-24 2016-09-06 Blackberry Limited Relay link HARQ operation
JP2019017106A (en) * 2013-07-17 2019-01-31 三菱電機株式会社 Communication system and concentrator
US20210013978A1 (en) * 2018-01-12 2021-01-14 Institut Für Rundfunktechnik Transmitter and/or receiver for transmitting and/or receiving radio information signals

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120039250A1 (en) * 2010-01-22 2012-02-16 Zte Corporation Processing method for access mode based on an HNB/HENB
US9749922B2 (en) 2013-01-18 2017-08-29 Kyocera Corporation Communication control method
KR102380990B1 (en) * 2016-07-22 2022-04-01 소니그룹주식회사 Mobile telecommunication system method, user equipment and base station for transmitting on demand system information

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028209A1 (en) * 2007-08-31 2009-03-05 Panasonic Corporation Radio communication terminal, radio communication base station device, and radio communication method
WO2009044620A1 (en) * 2007-10-01 2009-04-09 Nec Corporation Radio communication system, radio communication method, base station, mobile station, base station control method, mobile station control method, and control program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028209A1 (en) * 2007-08-31 2009-03-05 Panasonic Corporation Radio communication terminal, radio communication base station device, and radio communication method
WO2009044620A1 (en) * 2007-10-01 2009-04-09 Nec Corporation Radio communication system, radio communication method, base station, mobile station, base station control method, mobile station control method, and control program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA CORP. ET AL.: "CSG & Home Deployments Status in CT1", 3GPP R2-080020, TSG-RAN WG2 MEETING #60BIS, 14 January 2008 (2008-01-14) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439216B2 (en) 2009-04-24 2016-09-06 Blackberry Limited Relay link HARQ operation
US10135517B2 (en) 2009-04-24 2018-11-20 Blackberry Limited Relay link HARQ operation
WO2011111655A1 (en) * 2010-03-09 2011-09-15 シャープ株式会社 Mobile communication system, base station apparatus and mobile communication terminal
US8983525B2 (en) 2010-03-09 2015-03-17 Sharp Kabushiki Kaisha Mobile communication system, base station device, and mobile communication terminal
JP2019017106A (en) * 2013-07-17 2019-01-31 三菱電機株式会社 Communication system and concentrator
JP2019208273A (en) * 2013-07-17 2019-12-05 三菱電機株式会社 Communication system, base station device, and communication terminal device
JP2021101554A (en) * 2013-07-17 2021-07-08 三菱電機株式会社 Communication system, base station device, and communication terminal device
JP7072696B2 (en) 2013-07-17 2022-05-20 三菱電機株式会社 Communication system, base station equipment and communication terminal equipment
JP2022101681A (en) * 2013-07-17 2022-07-06 三菱電機株式会社 Communication system, base station device, and communication terminal device
JP7254233B2 (en) 2013-07-17 2023-04-07 三菱電機株式会社 Communication system, base station device and communication terminal device
US20210013978A1 (en) * 2018-01-12 2021-01-14 Institut Für Rundfunktechnik Transmitter and/or receiver for transmitting and/or receiving radio information signals
US11916655B2 (en) * 2018-01-12 2024-02-27 Institut Für Rundfunktechnik Transmitter and/or receiver for transmitting and/or receiving radio information signals

Also Published As

Publication number Publication date
JP2012044234A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
US11363560B2 (en) Communication system, terminal device and base station for machine type communication
JP5523609B2 (en) Mobile communication system, mobile terminal and cell
JP6667480B2 (en) Mobile communication system, base station device and relay device
WO2011052190A1 (en) Mobile communication system
WO2010106763A1 (en) Mobile communication system
WO2010073630A1 (en) Mobile body communication system
JP2016226058A (en) Mobile communication system, base station, and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP