WO2010073320A1 - Blood purification device - Google Patents

Blood purification device Download PDF

Info

Publication number
WO2010073320A1
WO2010073320A1 PCT/JP2008/073421 JP2008073421W WO2010073320A1 WO 2010073320 A1 WO2010073320 A1 WO 2010073320A1 JP 2008073421 W JP2008073421 W JP 2008073421W WO 2010073320 A1 WO2010073320 A1 WO 2010073320A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
blood
separator
harmful
rate
Prior art date
Application number
PCT/JP2008/073421
Other languages
French (fr)
Japanese (ja)
Inventor
一本松 正道
鴻志 白
知恵 來栖
利一 宮本
有希 向田
Original Assignee
株式会社Reiメディカル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Reiメディカル filed Critical 株式会社Reiメディカル
Priority to PCT/JP2008/073421 priority Critical patent/WO2010073320A1/en
Publication of WO2010073320A1 publication Critical patent/WO2010073320A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3482Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate by filtrating the filtrate using another cross-flow filter, e.g. a membrane filter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3472Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
    • A61M1/3486Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0415Plasma
    • A61M2202/0417Immunoglobulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0415Plasma
    • A61M2202/0421Beta-2-microglobulin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0456Lipoprotein
    • A61M2202/046Low-density lipoprotein

Definitions

  • the present invention relates to a blood purification treatment apparatus for apheresis treatment that removes harmful components in plasma separated by a plasma separator using an adsorption column or a double membrane filter.
  • Apheresis treatment involves humoral factors that cause disease from the blood through extracorporeal circulation (proteins and pathogenic substances (immune-related substances such as antibodies and cytokines) present in the blood) and cells (lymphocytes) , Granulocytes, viruses, etc.) to improve the pathological condition.
  • the patient's blood or plasma is perfused through an adsorption column formed by immobilizing a functional group having affinity for the substance to be adsorbed on the surface of the carrier, so that the patient's blood circulated extracorporeally.
  • a method for directly removing the substance to be adsorbed from the blood is called a blood adsorption method
  • a method for removing the substance to be adsorbed from the plasma separated from the blood by a plasma separator is called a plasma adsorption method.
  • the present invention belongs to the latter plasma adsorption method.
  • a conventional blood purification apparatus using a plasma adsorption method for apheresis treatment includes a plasma separator 1, a blood inlet T ⁇ b> 1 for feeding blood collected from a human body to the plasma separator 1, and a blood feed.
  • the plasma separated by the plasma separator 1 and adsorbed and removed by the adsorption column 2 is the residual plasma separated on the downstream side of the plasma separator. It joins with blood (blood cell components and residual plasma that has not been plasma-separated) and returned to the human body.
  • the conventional blood purification treatment apparatus using the plasma adsorption method for apheresis treatment has the following problems.
  • Plasma separation rate The ratio of plasma that can be separated to the total plasma (plasma separation rate) is about 50% for a plasma separator using a plasma separation membrane and about 60 to 70% for a plasma separator using a centrifuge.
  • the reason why the plasma in the blood cannot be completely separated and the separation rate is limited to 50 to 70% is that if the blood cell components are concentrated too much, the viscosity increases too much to flow through the blood circuit. This is because shear stress is applied to cause hemolysis.
  • a membrane type plasma separator In a membrane type plasma separator, if the blood cell component is concentrated too much, the viscosity increases too much, and the pores of the separation membrane are clogged with blood cells, making separation difficult. Obviously, this cannot be solved even if the membrane area of the separation membrane is increased in the membrane plasma separator.
  • the blood after plasma separation contains about 27.5% to 30% of plasma relative to the whole blood, and the blood cell component is concentrated to about 57% to 62%. Become.
  • the removal rate of the harmful components with respect to the whole plasma is limited by the plasma separation rate of the plasma separator, and is only about 50% in the case of the membrane type plasma separator. If the removal rate of harmful components relative to the whole plasma is low, the required treatment time until the removal amount of harmful components with respect to the patient's total blood volume reaches the specified achievement rate of harmful component removal (standard treatment 60%, advanced treatment 80%) There was a problem of becoming longer.
  • the relationship between the harmful component removal achievement rate and the required treatment time will be explained in detail.
  • the heart's pumping capacity blood circulation rate in the human body
  • blood pump flow rate blood pump flow rate
  • A is the total blood volume of the human body
  • C is the concentration of harmful components relative to the total blood volume A
  • Q is the volume of blood to be processed (blood flow rate) per unit time in the blood purification apparatus
  • R is the blood purification. If it is set as the harmful component removal rate of a processing apparatus, the relational expression (differential equation) shown in the following Numerical formula 1 will be established.
  • the total blood volume A, the blood volume Q to be processed, and the harmful component removal rate R are constant over time, and the harmful component concentration C decreases with the treatment time t (elapsed time of blood purification treatment).
  • the harmful component concentration C is expressed by an exponential function as shown in Equation 2 below.
  • the treatment time t is expressed by Formula 3 below.
  • the harmful component removal rate R of the purification apparatus is limited by the plasma separation rate of the plasma separator, and thus is 50%, which is the same as the plasma separation rate.
  • Ta 0.6
  • A 6L
  • Q 0.1 L / min
  • R 0.5 into Equation 5
  • the required treatment time tx is 110 minutes, and a net treatment time of about 2 hours excluding preparation time is required.
  • the treatment time tx is 193 minutes, and a treatment time of about 3 hours or more excluding the preparation time is required.
  • the treatment time tx is 276 minutes, and a treatment time of about 4 hours 30 minutes or more excluding the preparation time is required.
  • the harmful component removal rate of the blood purification treatment apparatus is limited by the plasma separation rate of the plasma separator. Even at 60%, it took a long time of about 2 hours, and the physical burden on the patient was very large.
  • the present invention has been made in view of the above-described problems, and its purpose is to increase the harmful component removal rate of a blood purification treatment apparatus using a plasma separation membrane such as a plasma adsorption method, thereby removing certain harmful components.
  • a blood purification treatment device that can shorten the required treatment time with respect to the achievement rate, or improve the achievement rate of harmful component removal for a certain required treatment time, greatly increasing the physical burden on the patient in apheresis treatment It is to reduce.
  • the harmful component removal rate of the blood purification treatment apparatus by the current plasma adsorption method is limited by the plasma separation rate of the plasma separator
  • the plasma after the removal is circulated to the inlet of the plasma separator and mixed with the blood collected from the human body, and the collected blood before removal of harmful components is passed through the plasma separator in a diluted state.
  • the harmful component removal rate of the blood purification apparatus can be improved without being limited by the plasma separation rate.
  • the removal rate of harmful components can also be improved in the apheresis treatment in which harmful components in plasma are removed not with an adsorption column but with a double membrane filter.
  • a blood purification treatment apparatus for apheresis treatment for achieving the above object includes a plasma separator, a blood delivery path for delivering blood collected from a human body to the plasma separator, and the blood A blood pump intervened in the delivery path, a harmful component remover for removing harmful components in the plasma separated by the plasma separator by adsorption or filtration, and the harmful components from the plasma outlet of the plasma separator
  • a plasma circulation path that returns to the blood inlet path upstream from the blood inlet of the plasma separator via a remover, a plasma pump that is interposed in the plasma circulation path, and blood in the plasma separator
  • a first feature is that it comprises a blood delivery path for returning blood after plasma separation from the outlet to the human body.
  • the ratio of the plasma flow rate sent from the plasma circulation path to the blood flow rate sent from the blood pump per unit time exceeds 0.6, and the harmful
  • the second feature is that the value is not less than a predetermined upper limit value of 1.0 or more, which is limited by the processing capability of the component remover.
  • the blood purification processing apparatus branches downstream from the outlet of the harmful component remover in the plasma circulation path and reaches the blood delivery path downstream from the blood outlet of the plasma separator.
  • a plasma bypass route and a second plasma pump interposed in the plasma bypass route are further provided.
  • the plasma separator is a membrane type plasma separator
  • the blood pump is disposed between the blood pump in the blood inlet and the blood inlet of the plasma separator.
  • a fourth feature is that a mixer for uniformly mixing the blood fed from the blood and the plasma fed from the plasma circulation path is provided.
  • the harmful component remover adsorbs and removes the harmful component in the plasma by fixing a functional group that specifically binds to the substance to be adsorbed on the surface of the porous carrier.
  • a porous carrier comprising a skeleton body made of silica gel or silica glass having a three-dimensional network structure, and a three-dimensional network-like through-hole is formed in a gap between the skeleton bodies;
  • a fifth feature is that the pores penetrating to the inside are dispersedly formed.
  • the surface of the porous carrier corresponds to the inner wall surfaces of the through holes and pores of the porous carrier, and the surface of the skeleton body agrees with the inner wall surfaces of the through holes.
  • the plasma separated by the plasma separator is sent from the plasma outlet of the plasma separator to the harmful component remover, and the harmful component remover is harmful in the plasma.
  • the sample is collected from the human body that returns to the blood inlet path upstream from the blood inlet of the plasma separator through the plasma circuit and is sent from the blood inlet path to the plasma separator. Since it is mixed with blood, the blood to be treated is diluted with plasma after removal of harmful components, and the diluted blood is sent to a plasma separator.
  • the diluted blood is separated into plasma, so that the same amount of plasma as the plasma mixed upstream of the blood inlet of the plasma separator is separated without concentrating blood cell components and increasing the viscosity. Is possible. Therefore, in the conventional blood purification processing apparatus, the harmful component removal rate is limited to about 50% by the plasma separation rate of the plasma separator, but in the blood purification processing device of the first feature, the harmful component removal rate. However, without being limited by the plasma separation rate of the plasma separator, it is determined by the mixing ratio of the plasma volume in the blood to be treated and the plasma volume after removal of harmful components.
  • the amount of plasma sent to the harmful component remover is limited by the plasma separation rate of the plasma separator, but the restriction is removed.
  • the amount of plasma that can be delivered to the blood vessel can be increased to the upper limit of the processing capacity of the harmful component remover, and the harmful component removal rate of the blood purification apparatus is improved accordingly.
  • the necessary treatment time is shortened in inverse proportion to the increase in the harmful component removal rate.
  • the necessary treatment time tx is 88 minutes, and the necessary treatment time, which was 110 minutes with the conventional blood purification treatment apparatus, is shortened by 22 minutes and is reduced by 20%.
  • the required treatment time can be further reduced by further increasing the mixing ratio of the plasma volume after removal of harmful components.
  • the ratio of the plasma flow rate through the toxic component remover to the blood flow rate of the blood to be processed per unit time is reduced to 0.6, the plasma volume in the blood to be processed and the plasma volume after removal of the toxic component are mixed.
  • the ratio is 0.6: 0.6, and the harmful component removal rate of the blood purification processing apparatus is 50%, which is the same as that of the conventional blood purification processing apparatus. If the flow rate of the plasma pump is controlled so that the ratio of the plasma flow rate through the harmful component remover to the blood flow rate of the blood to be processed exceeds 0.6, it is definitely necessary for the conventional blood purification treatment device Treatment time can be shortened.
  • the required treatment time can be shortened by 20% or more. Therefore, it is preferable to set the upper limit value of the ratio of the plasma flow rate through the harmful component remover to the blood flow rate of the blood to be treated, which is 1 or more, which is limited by the upper limit of the processing capability of the harmful component remover.
  • the blood is branched downstream from the outlet of the harmful component remover in the plasma circulation path to reach the blood delivery path downstream from the blood outlet of the plasma separator. Since a plasma bypass is provided, the amount of plasma separated by the plasma separator and flowing through the harmful component remover is larger than the amount of plasma after removal of the harmful component mixed with the blood to be treated. Compared with the case where there is no path, the plasma separation rate in the plasma separator is further improved. In the absence of the plasma bypass, the blood volume delivered from the blood outlet of the plasma separator is the same as the blood volume of the blood to be treated.
  • the plasma in the blood delivered from the blood outlet of the plasma separator will be reduced by the amount of plasma diverted to the plasma bypass, resulting in harmful effects in the reduced plasma. Since the components are additionally removed by the harmful component remover, the harmful component removal rate of the blood purification apparatus is further improved.
  • the amount of plasma diverted to the plasma bypass is limited by the upper limit of the plasma separation rate of blood diluted with plasma after removal of harmful components of the plasma separator. It is necessary to limit the flow rate of the plasma pump 2 to 30% or less of the blood flow rate of the blood to be processed.
  • the blood purification apparatus of the fourth feature since the mixer for uniformly mixing the blood to be processed and the plasma after removal of the harmful components is provided, the blood after the removal of the harmful components is provided. To be diluted evenly. When the dilution is insufficient, the blood cell component concentration is high in some blood sent to the plasma separator, so that a part of the plasma having a high harmful component concentration at a certain ratio to the blood cell component is plasma. Since it is sent to the blood delivery path from the blood outlet of the plasma separator without being separated, the harmful component removal rate will be lower than the expected value. According to the blood purification apparatus of the fourth feature, Therefore, it is possible to prevent a reduction in the harmful component removal rate.
  • blood cell components that are not sufficiently diluted with plasma after removal of harmful components are partially concentrated, resulting in excessively high viscosity, and the pores of the plasma separation membrane are blood cells. Since it is possible to prevent clogging and plasma separation from being obstructed, it is possible to prevent a decrease in the harmful component removal rate of the blood purification apparatus due to deterioration in the performance of the plasma separator.
  • the bead-shaped carrier used in the conventional blood purification processing apparatus disclosed in Non-Patent Document 1 is used.
  • the flow resistance can be kept low
  • the pressure loss can be kept low compared with the bead-like carrier
  • the porous carrier constituting the adsorption column is Since it has a three-dimensional network structure skeleton body and the pores penetrating from the surface to the inside of the skeleton body are dispersed, the pore surface area where the functional group functions effectively can be increased, An adsorption column having a high adsorption rate can be provided.
  • an integrated porous carrier having a three-dimensional network structure skeleton body and a three-dimensional network-like through hole formed outside the skeleton body, three through-holes serving as plasma passages are formed. Even if the through-hole diameter is the same as the diameter of the flow path that passes through the narrowed portion of the gap between each bead-shaped carrier when the bead-shaped carrier is densely packed in the column container, the flow is not limited.
  • the road resistance can be suppressed low, and the pressure loss can be suppressed lower than that of the bead-shaped carrier.
  • the movement of the substance to be adsorbed in the pores is caused by diffusion, and the functional groups fixed to the pores near the surface of each support are exclusively effective.
  • the three-dimensional network structure with a larger surface area per unit volume has a pore surface area where the functional group functions more effectively than a bead shape (spherical) with a smaller surface area. You can make it bigger.
  • the plasma flow rate flowing through the adsorption column needs to be increased as compared with the conventional blood purification treatment apparatus.
  • the flow rate is about 3.3 times.
  • the adsorption column It is possible to cope with a processing capacity required for a smaller column volume.
  • the circuit block diagram which shows typically the schematic circuit structure in 1st Embodiment of the blood purification processing apparatus which concerns on this invention.
  • the block diagram which shows typically the structure of the outline of the adsorption column used with the blood purification processing apparatus which concerns on this invention
  • Sectional drawing which shows the principal part which shows typically the structure of the adsorption body of the adsorption column used with the blood purification processing apparatus which concerns on this invention
  • Sectional drawing which shows the principal part which shows typically the structure of the porous support
  • the block diagram which shows typically the structure of the outline of the mixer used with the blood purification processing apparatus which concerns on this invention
  • the top view and sectional drawing which show typically the structure of the static mixing element of the mixer used with the blood purification processing apparatus which concerns
  • Table showing calculation results of harmful component removal rate and required treatment time in the second embodiment of the blood purification apparatus according to the present invention The figure which compares and shows the calculation result of the required treatment time in 1st Embodiment and 2nd Embodiment of the blood purification processing apparatus which concerns on this invention, and the conventional blood purification processing apparatus.
  • Plasma separator 1a Blood inlet 1b: Blood outlet 1c: Plasma outlet 2: Adsorption column 3: Mixer 3a: Plasma inlet 4: Anticoagulant injector 5: Drip chamber 6: Pressure monitor 10, 11: Blood purification apparatus according to the present invention 20: Adsorbent 21: Cylindrical container 22, 23: Opening 24: Porous carrier 25: Functional group 26: Skeletal body 27: Through hole 28: Pore 30: Cylindrical container 31 32: Static mixing element 33: Through hole P1: Blood pump P1 P2, P3: Plasma pump T1: Blood delivery route T2: Blood delivery route T3: Plasma circulation route T4: Plasma bypass route
  • the present apparatus Embodiments of a blood purification apparatus according to the present invention (hereinafter referred to as “the present apparatus” as appropriate) will be described with reference to the drawings.
  • the same components as those in the conventional blood purification apparatus using the plasma adsorption method for apheresis treatment shown in FIG. In order to facilitate understanding of the present invention, in the following description, the same components as those in the conventional blood purification apparatus using the plasma adsorption method for apheresis treatment shown in FIG. . In the following description, the apparatus of the present invention will be described on the assumption that it is applied to apheresis treatment by the plasma adsorption method.
  • the device 10 of the present invention in the first embodiment includes a blood separator T1, a blood inlet T1 for feeding blood collected from a human body to a blood inlet 1a of the plasma separator 1, and a blood feeder.
  • An adsorption column 2 (corresponding to a harmful component remover), a blood delivery path T2 for returning blood after plasma separation from the blood outlet 1b of the plasma separator 1 to the human body, an adsorption column from the plasma outlet 1c of the plasma separator 1 2 and the plasma circulation path T3 returning to the plasma intake port 3a of the mixer 3 and the plasma pump P2 interposed in the plasma circulation path T3.
  • an access port for the anticoagulant injector 4 is provided between the blood pump P1 and the mixer 3 in the blood delivery path T1, and the anticoagulant injector 4 is connected thereto.
  • drip chambers 5 are respectively provided downstream of the blood pumping path T2 and the plasma pump P2 of the plasma circulation path T3, and the pressure monitor 6 is provided in each of the plasma separator 1, the mixer 3, and each drip chamber 5.
  • the particulate removal filter, the adsorption column activation circuit, and the like illustrated in the circuit diagram of the conventional blood purification processing apparatus exemplified in Non-Patent Documents 1 and 2 are not shown. Depending on the situation, it may be inserted at a predetermined location.
  • the plasma pump P2 is provided on the upstream side of the adsorption column 2 of the plasma circulation path T3, but may be provided on the downstream side.
  • the plasma after the harmful components are adsorbed and removed by the adsorption column 2 is downstream from the blood outlet 1b of the plasma separator 1 via the plasma bypass T4.
  • the circuit configuration is such that the concentrated blood after plasma separation sent from the blood outlet 1b of the plasma separator 1 merges with the downstream side of the plasma separator 1 by returning to the blood delivery path T2 on the side.
  • plasma after removal of harmful components by the adsorption column 2 returns to the mixer 3 upstream of the plasma separator 1 via the plasma circulation path T3, and is collected from the human body and blood pump P1. The two are greatly different from each other in that the circuit configuration merges with the blood to be treated.
  • the blood purification process of the apheresis treatment by the apparatus 10 of the present invention is a continuous process in which blood collected from the human body is adsorbed and removed by the apparatus 10 of the present invention and returned to the human body, the plasma separator 1 is subjected to the continuous process.
  • a membrane plasma separator suitable for As the membrane type plasma separator an existing one already approved for medical use in blood purification treatment by the plasma adsorption method such as a hollow fiber type plasma separator in which a hollow fiber membrane bundle is accommodated in a cylindrical container can be used.
  • the adsorption column 2 includes an adsorbent 20 formed by fixing a functional group that specifically binds to a substance to be adsorbed on the surface of a porous carrier in a cylindrical container 21.
  • adsorbent 20 formed by fixing a functional group that specifically binds to a substance to be adsorbed on the surface of a porous carrier in a cylindrical container 21.
  • Each of the end surfaces of the cylindrical container 21 is formed with openings 22 and 23.
  • One opening 22 serves as a plasma inlet for processing and the other opening 23 removes harmful components. It becomes the outlet for plasma later.
  • the adsorbent 20 is immobilized by surface-modifying a functional group 25 that specifically binds to the substance to be adsorbed on the surface of an inorganic porous carrier 24 formed into a cylindrical shape. It is a thing.
  • the functional group 25 includes dextran sulfate or a salt thereof having affinity for LDL, polyacrylic acid or a salt thereof, or other A chain polyvalent acid or a salt thereof is used.
  • ⁇ 2 microglobulin, immunoglobulin, endotoxin, and the like are listed as target substances to be adsorbed and removed by the apparatus 10 of the present invention, and the adsorbent 20 has a structure suitable for the target substance to be adsorbed. It will be.
  • the inorganic porous carrier 24 constituting the adsorbent 20 has a three-dimensional network-like skeleton body 26 and an average pore diameter formed in the gap between the skeleton bodies 26. It has a three-dimensional network-like through-hole 27 in the range of 1 ⁇ m or more and less than 4 ⁇ m, and the surface of the skeleton body 26 has an average pore diameter of the diameter of LDL (corresponding to the maximum length) as the adsorption target substance.
  • the pores 28 in the range of 27 nm to 200 nm in the range of 26 to 27 nm or more are dispersedly formed.
  • the porous carrier 24 of the adsorption column 2 used in this embodiment has a double pore structure composed of two types of pores (through holes 27 and pores 28) having different average pore diameters.
  • FIG. 5 shows an example of an SEM (scanning electron microscope) photograph of the porous carrier 24. Note that the double pore structure of the porous carrier 24 and the pore diameter thereof are also appropriately changed according to the substance to be adsorbed.
  • the method for synthesizing the porous carrier 24 uses, for example, a spinodal decomposition sol-gel method based on the principle disclosed in “Manufacturing Method of Inorganic Porous Material” in JP-A-7-41374.
  • the synthesis method is described in detail in the publication, and since it is not the gist of the present invention, the description is omitted. Further, the method of immobilizing the functional group 25 on the porous carrier 24 by modifying the surface is not the gist of the present invention and will not be described.
  • the adsorption column 2 in which the integrated adsorbent body 20 in which the functional group 25 is surface-modified and immobilized on the porous carrier 24 having a double pore structure is accommodated in the cylindrical container 21 is assumed.
  • the reason is that, compared with an adsorption column in which a bead-shaped carrier is packed tightly in a column container as a porous carrier like the conventional blood purification treatment device disclosed in Non-Patent Document 1, the flow rate is higher.
  • the porous carrier 24 includes a skeleton body 26 having a three-dimensional network structure, and pores 28 penetrating from the surface to the inside of the skeleton body 26 are formed in a dispersed manner. This is because, due to the double pore structure, the pore surface area where the functional group 25 functions effectively can be increased, and an adsorption column having a high adsorption rate of harmful components can be provided.
  • the plasma flow rate per unit time flowing through the adsorption column 2 of the device 10 of the present invention is different from that of the conventional blood due to the difference in circuit configuration between the device 10 of the present invention and the conventional blood purification treatment device. Since it is about 3 to 16 times or more as compared with the purification processing apparatus, a large capacity is required as the processing capacity (processing amount and processing speed) of the adsorption column 2, but the porous support having the above-mentioned double pore structure is required. In the case of the adsorption column 2 using 24, a large processing capacity can be obtained with a smaller volume. However, since the processing capacity of the adsorption column 2 can be solved by providing a plurality of adsorption columns in parallel, an existing adsorption column that has already been approved for medical use according to the substance to be adsorbed may be used.
  • the plasma after removal of harmful components by the adsorption column 2 and the blood to be processed collected from the human body and fed by the blood pump P1 are mixed uniformly by the mixer 3 and then sent to the plasma separator 1.
  • the composition to enter is adopted.
  • the mixture of plasma and blood to be processed after removal of harmful components can be replaced with a drip chamber, but in a drip chamber, the plasma and blood to be processed are not necessarily mixed uniformly. May be diluted with plasma after removal of harmful components, and blood containing a large amount of harmful components may be returned to the human body via the blood delivery path T2 without being separated by the plasma separator 1. Since the harmful component removal rate of the device 10 of the present invention varies, it is preferable to use the mixer 3 as in this embodiment.
  • the mixer 3 is a dynamic structure in which a mixer having a static structure that promotes mixing by, for example, applying a swirling flow using the pressure of the plasma pump P2 or a stirring device driven by external power in a chamber. Can be used.
  • a mixer having a static structure in addition to a structure in which a swirl flow is applied to promote mixing, as shown in FIG. 6, two kinds of disk-shaped PVC (polyvinyl chloride) or the like are provided in the cylindrical container 30.
  • Insert plastic plastic mixing elements 31 and 32 alternately stacked in several stages (for example, 10 stages), and after removing the blood to be treated and harmful components before removing harmful components from one end of the cylindrical container 30
  • the blood to be processed and the plasma are stirred and mixed in order by passing the plasma separately and passing through the through holes provided in the two types of static mixing elements 31 and 32 in order. it can.
  • the two types of static mixing elements 31 and 32 have four through-holes 33 penetrating front and back on one side and five on the other side, and any of the through-holes 33.
  • the diameter is reduced in a funnel shape from the front and back sides toward the inside (center) in the thickness direction (through direction), and the inclination angle of the tapered surface is 45 ° with respect to the central axis of the through hole 33.
  • the dimensions of each part are, for example, the diameters D of the elements 31 and 32 are 18 mm, the thickness d is 5 mm, the minimum diameter a of the through hole 33 is 2 mm or 5 mm, and the maximum diameter of the inlet and outlet portions of the through hole 33.
  • b there are two types of b, 4 mm or 6 mm, and a combination of the minimum diameter a and the maximum diameter b employs any of three types of 2 mm / 4 mm, 2 mm / 6 mm, and 5 mm / 6 mm.
  • the through-hole 33 distinguishes the four elements 31 in gray
  • the disk surface of the element 31 is displayed in gray. This is a display for easy explanation, and is not related to actual coloring.
  • the number and dimensions of the through holes 33, the shapes of the elements 31, 32, the number of steps, and the dimensions of each part are examples and can be changed as appropriate.
  • the two types of one element are divided into four or five through holes 33, and the diameter of each through hole 33 is narrowed from the inlet side. Since the structure spreads toward the outlet, a sudden speed change and pressure change occur with respect to the fluid passing through each through-hole 33, and the fluid is stirred and mixed. Since the fluid divided into four flows further in a distributed manner in the five through holes 33, a speed change and a pressure change occur. Similarly, the fluid divided into five is further dispersed in the four through holes 33. Therefore, a speed change and a pressure change are further generated, and the fluid is alternately passed through the two types of elements 31 and 32, whereby the fluid is stirred and mixed gradually.
  • the blood circuits such as the plasma separator 1, the adsorption column 2, and the mixer 3 are filled with physiological saline, and the basic operation at the start of the operation will be described later.
  • This is the same as the conventional blood purification apparatus except for controlling the plasma flow rate after the harmful components are removed by the adsorption column 2 delivered from the plasma pump P2.
  • the apparatus 10 of the present invention collects plasma from the human body after the harmful components have been removed by the adsorption column 2 and returns to the mixer 3 upstream of the plasma separator 1 via the plasma circuit T3.
  • the harmful components in the blood to be treated are diluted with the plasma after the harmful components are removed, and a part of the blood in the plasma separator 1 is used. Since the harmful component in the blood to be treated is returned to the human body from the outlet 1b via the blood delivery path T2, the ratio of the plasma after removal of the harmful component to the total plasma in the diluted blood after being mixed by the mixer 3 It will be removed according to.
  • the harmful component removal rate R is determined by the blood flow rate Q of the blood to be processed per unit time and the plasma flow rate S flowing into the mixer 3 via the plasma circulation path T3, and the flow rate Q ( L / min) and the flow rate S (L / min) of the plasma pump P2, the relationship shown by the following formula 6 is established.
  • the ratio of plasma in the blood to be treated is 60%
  • the adsorption rate of harmful components of the adsorption column 2 is 100%.
  • Equation 6 is given by Equation 7.
  • the harmful component removal rate R increases as the ratio x increases.
  • the harmful component removal rate R is limited by the plasma separation rate of the plasma separator 2 and is about 50%, but in the case of the device 10 of the present invention, the ratio x It can be seen that the harmful component removal rate R can be set to exceed 50%.
  • the ratio x is less than 0.6 because the conventional harmful component removal rate is 50% or less.
  • Set a large value for example, about 1 to 5.
  • the relationship between the harmful component removal achievement rate Ta and the necessary treatment time tx when the device 10 of the present invention is used is given by the relational expression of the above formula 5, similarly to the conventional blood purification treatment apparatus.
  • the total blood volume A of the patient is 6L
  • the flow rate Q of the blood to be processed is two types of 0.1L / min (high speed processing) and 0.05L / min (normal processing)
  • the harmful component removal achievement rate Ta is 60% (standard)
  • the calculation results of the required treatment time tx when the ratio x is 1, 2, 3, 4 and 5 are summarized in the table of FIG. indicate.
  • the necessary treatment time tx of the conventional blood purification processing apparatus under the same conditions is also displayed in accordance with the list of FIG. 8 for comparison.
  • the shortened time and the time reduction rate from the necessary treatment time tx by the conventional blood purification processing apparatus of the same treatment type are also shown.
  • the conventional blood purification apparatus it is assumed that plasma having a flow rate corresponding to 30% of the blood flow rate Q is separated and harmful components are removed by the adsorption column, and the harmful component removal rate is 50%.
  • the necessary treatment time tx becomes longer than 6 hours, but by using the device 10 of the present invention. Since the absolute value of the necessary treatment time tx can be significantly shortened without increasing the flow rate Q of the blood to be treated, the effect of shortening the necessary treatment time is particularly great during normal treatment and advanced treatment.
  • the ratio x is set to a value larger than 4, the time reduction width of the necessary treatment time tx is reduced, and the treatment of the adsorption column as the plasma flow rate S increases.
  • the upper limit of the ratio x is preferably about 4 to 6 if the capability needs to be increased and the harmful component removal achievement rate Ta is about 80% or less. This is because when the ratio x is somewhat large, the increment of the harmful component removal rate R with respect to the increment of the ratio x is compressed, and the harmful component removal rate R and the necessary treatment time tx are inversely proportional to each other. This is because the time reduction width is suppressed.
  • the device 11 of the present invention in the second embodiment is different from the circuit detour T4 downstream of the adsorption column 2 with respect to the circuit configuration of the device 10 of the first embodiment shown in FIG.
  • a plasma bypass T4 that branches and reaches the blood delivery path T2 downstream from the blood outlet 1b of the plasma separator is added, and the second plasma pump P3 is interposed in the plasma bypass T4.
  • a drip chamber 5 is interposed downstream of the plasma pump P3 in the plasma bypass T4, and a pressure monitor 6 is provided.
  • the plasma pump P2 is provided downstream of the branch point of the plasma circulation path T3 with the plasma bypass T4.
  • the inventive device 11 in the second embodiment has a mixed circuit configuration in which the inventive device 10 of the first embodiment and the conventional blood purification treatment device shown in FIG.
  • the particulate removal filter, the adsorption column activation circuit, and the like shown in the circuit diagram of the conventional blood purification processing apparatus exemplified in Non-Patent Documents 1 and 2 are not shown. Depending on the situation, it may be inserted at a predetermined location.
  • the plasma separator 1, the adsorption column 2, and the mixer 3 used in the device 11 of the present invention can be the same as those used in the device 10 of the first embodiment. To do.
  • the device 11 of the present invention is configured so that a part of plasma after removal of harmful components by the adsorption column 2 is upstream of the plasma separator 1 via the plasma circuit T3 at the plasma flow rate S1 by the plasma pump P2.
  • the blood to be processed which is collected from the human body and sent by the blood pump P1 at the blood flow rate Q, and the remaining part of the plasma after the harmful components are removed by the adsorption column 2
  • the plasma pump P3 returns to the blood delivery path T2 downstream from the blood outlet 1b of the plasma separator 1 via the plasma bypass T4 at the plasma flow rate S2, is diluted by the mixer 3, and is separated by the plasma separator 1.
  • the circuit configuration merges with blood.
  • the blood flow rate Qx delivered from the plasma separator 1 to the blood delivery path T2 is the same as the blood flow rate Q of the blood to be processed, and 60% of it is a plasma component.
  • the blood flow after mixing in the mixer 3 flowing into the plasma separator 1 is (Q + S1) and is sent from the plasma separator 1 to the adsorption column 2.
  • the blood flow rate is (S1 + S2)
  • the blood flow rate sent from the plasma separator 1 to the blood delivery path T2 is (Q ⁇ S2)
  • the dilution containing harmful components per unit time into which the plasma separator 1 flows The ratio of the plasma volume containing harmful components per unit time returning from the plasma separator 1 to the human body via the blood delivery path T2 with respect to the obtained plasma volume is compared with the circuit configuration of the device 10 of the present invention of the first embodiment. Reduced.
  • blood with a blood flow rate (Q-S2) joins with plasma with a plasma flow rate S2 that returns to the blood delivery path T2 via the plasma bypass T4 and is returned to the human body, the blood to be processed collected from the human body It becomes the same as the blood flow rate Q.
  • the harmful component removal rate R of the device 11 of the present invention is as follows: the flow rate Q (L / min) of the blood pump P1, the flow rate S1 (L / min) of the plasma pump P2, and the flow rate S2 (L / min) of the plasma pump P3.
  • the ratio of plasma in the blood to be treated is 60%
  • the adsorption rate of harmful components of the adsorption column 2 is 100%.
  • Equation 8 is expressed by Equation 9. become.
  • the membrane type plasma separator if the blood cell component is concentrated too much, the viscosity increases too much, and the pores of the separation membrane are clogged with blood cells and the plasma separation is not performed.
  • the blood cell component and the plasma component are not completely separated from each other because of inhibition, and in the blood after plasma separation, 30% of the plasma component remains with respect to the blood cell component of 40% of the blood volume of the blood to be treated.
  • the upper limit of the latter ratio (S2 / Q) is about 30%.
  • the harmful component removal rate R increases as the ratio x increases.
  • the harmful component removal rate R is limited by the plasma separation rate of the plasma separator 2 and is about 50%, but in the case of the device 11 of the present invention, the ratio x It can be seen that the harmful component removal rate R can be set to exceed 50%.
  • the circuit configuration is the same as that of the conventional blood purification apparatus, so the ratio x is larger than 0. If x is greater than 0, the harmful component removal rate R is greater than 50%, so the harmful component removal rate R is always higher than the conventional harmful component removal rate of 50%.
  • the harmful component removal rate R of the device 11 of the present invention shown in Equation 9 may be larger than the harmful component removal rate R of the device 10 of the first embodiment shown in Equation 7. As can be seen, the harmful component removal rate R is improved by the inventive device 10 of the first embodiment.
  • the relationship between the harmful component removal achievement rate Ta and the necessary treatment time tx when using the device 11 of the present invention is the relational expression of the above formula 5, as in the case of the conventional blood purification apparatus and the device 10 of the first embodiment.
  • the total blood volume A of the patient is 6L
  • the flow rate Q of the blood to be processed is two types of 0.1L / min (high speed processing) and 0.05L / min (normal processing)
  • the harmful component removal achievement rate Ta is 60% (standard)
  • the calculation results of the required treatment time tx when the ratio x is 1, 2, 3, 4 and 5 are summarized in the table of FIG. indicate.
  • the ratio of the plasma flow rate S2 to the blood flow rate Q (S2 / Q) is 30%.
  • the necessary treatment time tx of the conventional blood purification apparatus under the same conditions is also displayed in accordance with the list of FIG. 10 for comparison.
  • the time is shortened to 207 minutes (3 hours and 27 minutes), and it can be seen that the physical burden on the patient is greatly reduced. Also, compared with the inventive device 10 of the first embodiment, it was 222 minutes (3 hours 42 minutes), but it was shortened to 207 minutes (3 hours 27 minutes). Further, when the flow rate Q of the blood to be treated is set to 80% or higher when the harmful component removal achievement rate Ta is set to be higher than 80% in normal processing, the necessary treatment time tx becomes longer than 6 hours. Since the absolute value of the necessary treatment time tx can be significantly shortened without increasing the flow rate Q of the blood to be treated, the effect of shortening the necessary treatment time is particularly great during normal treatment and advanced treatment.
  • the ratio x is set to a value larger than 2, the time reduction width of the necessary treatment time tx is reduced, and the treatment of the adsorption column as the plasma flow rate S increases. It is necessary to increase the capability, and if the harmful component removal achievement rate Ta is about 80% or less, it is considered that the upper limit of the ratio x is preferably about 2 to 4. This is because when the ratio x is somewhat large, the increment of the harmful component removal rate R with respect to the increment of the ratio x is compressed, and the harmful component removal rate R and the necessary treatment time tx are inversely proportional to each other. This is because the time reduction width is suppressed.
  • FIG. 11 shows a comparison between the required treatment time tx for each ratio x of the devices 10 and 11 of the present invention shown in FIGS. 8 and 10 and a conventional blood purification apparatus.
  • the necessary treatment time tx of the device of the present invention 10 (with plasma circulation path T3) is connected by a solid line
  • the necessary treatment time tx of the device of the present invention 11 is represented by a broken line. It is connected. 11, the relationship between the necessary treatment time tx and the harmful component removal achievement rate Ta, the relationship between the necessary treatment time tx and the ratio x, and the relationship between the devices 10 and 11 of the first and second embodiments described above are as follows. Shown more clearly.
  • the configuration of the device of the present invention and its performance have been described in detail, but blood flow Q, plasma flow S, S1, S2, and harmful component removal used in the performance evaluation are described.
  • the numerical values such as the achievement rate Ta are examples for explanation, and these numerical values are within the range in which the device of the present invention can exhibit the desired performance, the treatment content of the apheresis treatment, the plasma separator used, and the adsorption column It can be appropriately changed according to the processing capacity of the mixer and the like.
  • the apparatus of the present invention can be widely applied to blood purification treatment apparatuses using a plasma adsorption method for apheresis treatment.
  • the harmful components to be adsorbed and removed by the adsorption column are not limited to LDL, and the adsorption column Various types of adsorption columns can be used for the adsorption of harmful components.
  • the method of removing harmful substances in plasma is not limited to the adsorption method using an adsorption column, and may be a filtration method using a double membrane filter or the like.
  • the device of the present invention is used for apheresis treatment.
  • the present invention can be widely applied to a blood purification treatment apparatus using a plasma separation membrane.
  • the blood purification treatment apparatus can be used for a blood purification treatment apparatus using a plasma separation membrane for apheresis treatment for the purpose of removing pathogenic substances (harmful components) such as LDL in blood.

Abstract

A blood purification device whereby the restriction on the removal rate of harmful components imposed by the plasma separation rate of a plasma separation unit in the existing blood purification devices with the use of a plasma separation membrane is overcome and thus the removal rate of harmful components is increased, thereby shortening the treatment time required for achieving a definite level of the removal rate of harmful components or increasing the removal rate of harmful components within a definite treatment time required. The removal rate of harmful components of a blood purification device is increased without any restriction imposed by the plasma separation rate of a plasma separation unit by circulating plasma, from which harmful components have been removed by using a harmful component-removing unit such as an adsorption column, in the inlet of the plasma separation unit and thus mixing plasma with blood collected from the human body so as to pass the blood before the removal of the harmful components, which is to be treated, in the diluted state through the plasma separation unit.

Description

血液浄化処理装置Blood purification treatment equipment
 本発明は、血漿分離器で分離した血漿中の有害成分を吸着カラム或いは二重膜濾過器等で除去するアフェレシス治療用の血液浄化処理装置に関する。 The present invention relates to a blood purification treatment apparatus for apheresis treatment that removes harmful components in plasma separated by a plasma separator using an adsorption column or a double membrane filter.
 アフェレシス治療は、体外循環によって血中から病気の原因となる液性因子(タンパク質やタンパクと結合して血中に存在する病因物質(抗体やサイトカイン等の免疫関連物質等))や細胞(リンパ球、顆粒球、ウイルス等)を除去し、病態の改善を図る治療法である。 Apheresis treatment involves humoral factors that cause disease from the blood through extracorporeal circulation (proteins and pathogenic substances (immune-related substances such as antibodies and cytokines) present in the blood) and cells (lymphocytes) , Granulocytes, viruses, etc.) to improve the pathological condition.
 吸着方式のアフェレシス治療は、吸着対象物質に対して親和性を有する官能基を担体の表面に固定してなる吸着カラムに、患者の血液または血漿を灌流させることで、体外循環させた患者の血中から吸着対象物質を吸着除去する治療法である。血液中から吸着対象物質を直接除去する方式を血液吸着法と呼び、血液から血漿分離器で分離した血漿中から吸着対象物質を除去する方式を血漿吸着法と呼ぶ。本発明は、後者の血漿吸着法に属する。 In the apheresis treatment of the adsorption system, the patient's blood or plasma is perfused through an adsorption column formed by immobilizing a functional group having affinity for the substance to be adsorbed on the surface of the carrier, so that the patient's blood circulated extracorporeally. It is a treatment method that adsorbs and removes a substance to be adsorbed from inside. A method for directly removing the substance to be adsorbed from the blood is called a blood adsorption method, and a method for removing the substance to be adsorbed from the plasma separated from the blood by a plasma separator is called a plasma adsorption method. The present invention belongs to the latter plasma adsorption method.
 従来のアフェレシス治療用の血漿吸着法による血液浄化処理装置は、図12に示すように、血漿分離器1、人体から採取した血液を血漿分離器1に送入する血液送入路T1、血液送入路T1に介装された血液ポンプP1、血漿分離器1で分離された血漿中の有害成分を吸着除去する吸着カラム2、血漿分離器1の血液取出口1bから血漿分離後の血液を人体に戻すための血液送出路T2、血漿分離器1の血漿取出口1cから吸着カラム2を経由して血漿分離器の血液取出口1bより下流側の血液送出路T2に至る血漿迂回路T4、及び、血漿迂回路T4に介装された血漿ポンプP3を備えて構成されている(例えば、下記の非特許文献1のFig.30、非特許文献2の図2等を参照)。つまり、図12に示す従来の血液浄化処理装置では、血漿分離器1で分離され且つ吸着カラム2で有害成分を吸着除去された血漿が、血漿分離器の下流側において、血漿分離された残余の血液(血球成分と血漿分離されなかった残余の血漿)と合流して、人体に戻される。 As shown in FIG. 12, a conventional blood purification apparatus using a plasma adsorption method for apheresis treatment includes a plasma separator 1, a blood inlet T <b> 1 for feeding blood collected from a human body to the plasma separator 1, and a blood feed. The blood pump P1 interposed in the entrance T1, the adsorption column 2 for adsorbing and removing harmful components in the plasma separated by the plasma separator 1, and the blood after plasma separation from the blood outlet 1b of the plasma separator 1 The blood delivery path T2 for returning to the plasma, the plasma bypass T4 from the plasma outlet 1c of the plasma separator 1 via the adsorption column 2 to the blood delivery path T2 downstream from the blood outlet 1b of the plasma separator, and And a plasma pump P3 interposed in the plasma bypass T4 (see, for example, FIG. 30 of Non-Patent Document 1 and FIG. 2 of Non-Patent Document 2 below). That is, in the conventional blood purification apparatus shown in FIG. 12, the plasma separated by the plasma separator 1 and adsorbed and removed by the adsorption column 2 is the residual plasma separated on the downstream side of the plasma separator. It joins with blood (blood cell components and residual plasma that has not been plasma-separated) and returned to the human body.
 しかし、従来のアフェレシス治療用の血漿吸着法による血液浄化処理装置には、以下に示すような問題がある。 However, the conventional blood purification treatment apparatus using the plasma adsorption method for apheresis treatment has the following problems.
 血液は、通常40~45%程度の血球成分と残りの血漿から構成されている。血漿分離を行っても血液側に血漿が残り完全に血漿を分離することはできない。分離できる血漿の全血漿に対する割合(血漿分離率)は血漿分離膜を用いた血漿分離器で約50%、遠心分離器を用いた血漿分離器で60~70%程度である。血液中の血漿を完全に分離できず、分離率が50~70%に止まっている理由は、血球成分を濃縮し過ぎると粘度が上がり過ぎて血液回路を流すことができなくなり、また、血球にせん断応力が掛かり溶血したりするためである。膜型血漿分離器では、血球成分を濃縮し過ぎると粘度が上がり過ぎて分離膜の細孔が血球で詰まって分離が困難になる。このことは、膜型血漿分離器において分離膜の膜面積を増大させても解決できないことは明らかである。膜型血漿分離器の場合、血漿分離後の血液中には全血液に対して27.5%~30%程度の血漿が含まれ、血球成分は57%~62%程度に濃縮されることになる。 Blood usually consists of about 40 to 45% blood cell components and the remaining plasma. Even if plasma separation is performed, plasma remains on the blood side and cannot be completely separated. The ratio of plasma that can be separated to the total plasma (plasma separation rate) is about 50% for a plasma separator using a plasma separation membrane and about 60 to 70% for a plasma separator using a centrifuge. The reason why the plasma in the blood cannot be completely separated and the separation rate is limited to 50 to 70% is that if the blood cell components are concentrated too much, the viscosity increases too much to flow through the blood circuit. This is because shear stress is applied to cause hemolysis. In a membrane type plasma separator, if the blood cell component is concentrated too much, the viscosity increases too much, and the pores of the separation membrane are clogged with blood cells, making separation difficult. Obviously, this cannot be solved even if the membrane area of the separation membrane is increased in the membrane plasma separator. In the case of a membrane-type plasma separator, the blood after plasma separation contains about 27.5% to 30% of plasma relative to the whole blood, and the blood cell component is concentrated to about 57% to 62%. Become.
 従って、仮に吸着カラムで有害成分が全て除去されるとしても全血漿に対する有害成分の除去率は、血漿分離器の血漿分離率で制限され、膜型血漿分離器の場合で50%程度に止まる。全血漿に対する有害成分の除去率が低いと、患者の全血液量に対する有害成分除去量が所定の有害成分除去達成率(標準治療で60%、高度治療で80%)に至るまでの必要治療時間が長くなるという問題があった。 Therefore, even if all the harmful components are removed by the adsorption column, the removal rate of the harmful components with respect to the whole plasma is limited by the plasma separation rate of the plasma separator, and is only about 50% in the case of the membrane type plasma separator. If the removal rate of harmful components relative to the whole plasma is low, the required treatment time until the removal amount of harmful components with respect to the patient's total blood volume reaches the specified achievement rate of harmful component removal (standard treatment 60%, advanced treatment 80%) There was a problem of becoming longer.
 以下、有害成分除去達成率と必要治療時間の関係について詳しく説明する。心臓のポンプ能力(人体内の血液循環速度)が、アフェレシス治療における単位時間当たりの血液採取量(血液ポンプの流速)より2桁程度大きいため、有害成分を除去後の血液を人体に戻した場合、単位時間毎に戻される血液量が人体内を環流する血液量に比べて微量であるため、有害成分を除去された血液が即時に人体内の血液と完全に混合して人体の全血液中の有害成分濃度が均等に低下するという「完全混合モデル」が使用できる。当該完全混合モデルでは、人体の全血液量をAとし、Cを全血液量Aに対する有害成分濃度、Qを血液浄化処理装置における単位時間当たりの被処理血液量(血液流量)、Rを血液浄化処理装置の有害成分除去率とすれば、以下の数式1に示す関係式(微分方程式)が成り立つ。 Hereinafter, the relationship between the harmful component removal achievement rate and the required treatment time will be explained in detail. When the heart's pumping capacity (blood circulation rate in the human body) is about two orders of magnitude greater than the amount of blood collected per unit time (blood pump flow rate) in apheresis treatment, and blood after removing harmful components is returned to the human body Because the amount of blood returned every unit time is very small compared to the amount of blood circulating in the human body, the blood from which harmful components have been removed is immediately and completely mixed with the blood in the human body. A "complete mixing model" can be used in which the concentration of harmful components in the water is reduced evenly. In the complete mixing model, A is the total blood volume of the human body, C is the concentration of harmful components relative to the total blood volume A, Q is the volume of blood to be processed (blood flow rate) per unit time in the blood purification apparatus, and R is the blood purification. If it is set as the harmful component removal rate of a processing apparatus, the relational expression (differential equation) shown in the following Numerical formula 1 will be established.
[数式1]
 d(A×C)/dt=-Q×C×R
[Formula 1]
d (A × C) / dt = −Q × C × R
 ここで、全血液量A、被処理血液量Q、及び、有害成分除去率Rが時間的に一定であり、有害成分濃度Cが治療時間t(血液浄化処理の経過時間)とともに減少すると仮定して、数式1に示す微分方程式を解くと、有害成分濃度Cは以下の数式2で示されるように指数関数で表わされる。尚、定数C0は初期有害成分濃度(t=0)である。そして、数式2の両辺の対数を取って整理すると、治療時間tは、以下の数式3で示される。 Here, it is assumed that the total blood volume A, the blood volume Q to be processed, and the harmful component removal rate R are constant over time, and the harmful component concentration C decreases with the treatment time t (elapsed time of blood purification treatment). When the differential equation shown in Equation 1 is solved, the harmful component concentration C is expressed by an exponential function as shown in Equation 2 below. The constant C0 is the initial harmful component concentration (t = 0). Then, when taking the logarithm of both sides of Formula 2, the treatment time t is expressed by Formula 3 below.
[数式2]
 C/C0=exp(-Q×R/A×t)
[数式3]
 t=-log(C/C0)×A/(Q×R)
[Formula 2]
C / C0 = exp (−Q × R / A × t)
[Formula 3]
t = −log (C / C0) × A / (Q × R)
 ここで、t=tx(必要治療時間)、C=Cx(有害成分除去達成率Taで除去後の目標有害成分濃度)とすると、有害成分除去達成率Taと目標有害成分濃度Cxは、以下の数4で示されるので、数式3に、t=tx、C=Cx、及び、数式4を代入すると、必要治療時間txは、有害成分除去達成率Taを用いて、以下の数式5で示される。 Here, when t = tx (necessary treatment time) and C = Cx (target harmful component concentration after removal with harmful component removal achievement rate Ta), the harmful component removal achievement rate Ta and target harmful component concentration Cx are as follows. Since t = tx, C = Cx, and Equation 4 are substituted into Equation 3, the required treatment time tx is represented by Equation 5 below using the harmful component removal achievement rate Ta. .
[数式4]
 Cx/C0=1-Ta
[数式5]
 tx=-log(1-Ta)×A/(Q×R)
[Formula 4]
Cx / C0 = 1-Ta
[Formula 5]
tx = −log (1-Ta) × A / (Q × R)
 ここで、患者の全血液量Aを6L、被処理血液量Q(採血量)を毎分0.1L、血漿分離率を50%、吸着カラムの有害成分吸着率を100%とした場合、血液浄化処理装置の有害成分除去率Rは、上述の通り、血漿分離器の血漿分離率で制限されるため、血漿分離率と同じ50%となる。60%の有害成分除去達成率Taを達成するためには、数式5に、Ta=0.6、A=6L、Q=0.1L/min、R=0.5を代入すると、必要治療時間txは110分となり、準備時間を除く正味約2時間の治療時間が必要となる。また、80%の有害成分除去達成率Taを達成するためには、数式5に、Ta=0.8、A=6L、Q=0.1L/min、R=0.5を代入すると、必要治療時間txは193分となり、準備時間を除く正味約3時間以上の治療時間が必要となる。更に、90%の有害成分除去達成率Taを達成するためには、数式5に、Ta=0.9、A=6L、Q=0.1L/min、R=0.5を代入すると、必要治療時間txは276分となり、準備時間を除く正味約4時間30分以上の治療時間が必要となる。上述の如く、従来の血漿吸着法による血液浄化処理装置では、血液浄化処理装置の有害成分除去率が血漿分離器の血漿分離率で制限されるため、必要治療時間が、有害成分除去達成率が60%でも約2時間と長時間となり、患者への身体的負担は非常に大きいものとなっていた。 Here, when the total blood volume A of the patient is 6 L, the blood volume to be treated Q (blood collection volume) is 0.1 L per minute, the plasma separation rate is 50%, and the harmful component adsorption rate of the adsorption column is 100%. As described above, the harmful component removal rate R of the purification apparatus is limited by the plasma separation rate of the plasma separator, and thus is 50%, which is the same as the plasma separation rate. In order to achieve the harmful component removal achievement rate Ta of 60%, substituting Ta = 0.6, A = 6L, Q = 0.1 L / min, and R = 0.5 into Equation 5, the required treatment time tx is 110 minutes, and a net treatment time of about 2 hours excluding preparation time is required. Moreover, in order to achieve 80% of the harmful component removal achievement rate Ta, it is necessary to substitute Ta = 0.8, A = 6L, Q = 0.1 L / min, and R = 0.5 into Equation 5. The treatment time tx is 193 minutes, and a treatment time of about 3 hours or more excluding the preparation time is required. Furthermore, in order to achieve a harmful component removal achievement rate Ta of 90%, it is necessary to substitute Ta = 0.9, A = 6L, Q = 0.1 L / min, and R = 0.5 into Equation 5. The treatment time tx is 276 minutes, and a treatment time of about 4 hours 30 minutes or more excluding the preparation time is required. As described above, in the blood purification treatment apparatus using the conventional plasma adsorption method, the harmful component removal rate of the blood purification treatment apparatus is limited by the plasma separation rate of the plasma separator. Even at 60%, it took a long time of about 2 hours, and the physical burden on the patient was very large.
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、血漿吸着法等の血漿分離膜を用いた血液浄化処理装置の有害成分除去率を上げて、一定の有害成分除去達成率に対して必要治療時間を短縮できる、或いは、一定の必要治療時間に対して有害成分除去達成率を向上できる血液浄化処理装置を提供し、アフェレシス治療における患者への身体的負担を大幅に低減することにある。 The present invention has been made in view of the above-described problems, and its purpose is to increase the harmful component removal rate of a blood purification treatment apparatus using a plasma separation membrane such as a plasma adsorption method, thereby removing certain harmful components. Providing a blood purification treatment device that can shorten the required treatment time with respect to the achievement rate, or improve the achievement rate of harmful component removal for a certain required treatment time, greatly increasing the physical burden on the patient in apheresis treatment It is to reduce.
 本願発明者等は、現行の血漿吸着法による血液浄化処理装置の有害成分除去率が、血漿分離器の血漿分離率によって制限されている点に着目し鋭意検討した結果、吸着カラムで有害成分を除去した後の血漿を、血漿分離器の入口に循環させて人体から採取した血液と混合して、有害成分除去前の採取血液が希釈された状態で血漿分離器を通すことで、血漿分離器の血漿分離率によって制限されずに血液浄化処理装置の有害成分除去率の向上が図れることを見出した。また、血漿中の有害成分除去を吸着カラムではなく二重膜濾過器で行うアフェレシス治療においても、同様に有害成分除去率の向上が図れることを見出した。 The inventors of the present application, as a result of diligent investigation focusing on the fact that the harmful component removal rate of the blood purification treatment apparatus by the current plasma adsorption method is limited by the plasma separation rate of the plasma separator, The plasma after the removal is circulated to the inlet of the plasma separator and mixed with the blood collected from the human body, and the collected blood before removal of harmful components is passed through the plasma separator in a diluted state. It has been found that the harmful component removal rate of the blood purification apparatus can be improved without being limited by the plasma separation rate. In addition, it has been found that the removal rate of harmful components can also be improved in the apheresis treatment in which harmful components in plasma are removed not with an adsorption column but with a double membrane filter.
 即ち、上記目的を達成するための本発明に係るアフェレシス治療用の血液浄化処理装置は、血漿分離器と、人体から採取した血液を前記血漿分離器に送入する血液送入路と、前記血液送入路に介装された血液ポンプと、前記血漿分離器で分離された血漿中の有害成分を吸着または濾過により除去する有害成分除去器と、前記血漿分離器の血漿取出口から前記有害成分除去器を経由して前記血漿分離器の血液取入口より上流側の前記血液送入路に帰還する血漿循環路と、前記血漿循環路に介装された血漿ポンプと、前記血漿分離器の血液取出口から血漿分離後の血液を人体に戻すための血液送出路と、を備えることを第1の特徴とする。 That is, a blood purification treatment apparatus for apheresis treatment according to the present invention for achieving the above object includes a plasma separator, a blood delivery path for delivering blood collected from a human body to the plasma separator, and the blood A blood pump intervened in the delivery path, a harmful component remover for removing harmful components in the plasma separated by the plasma separator by adsorption or filtration, and the harmful components from the plasma outlet of the plasma separator A plasma circulation path that returns to the blood inlet path upstream from the blood inlet of the plasma separator via a remover, a plasma pump that is interposed in the plasma circulation path, and blood in the plasma separator A first feature is that it comprises a blood delivery path for returning blood after plasma separation from the outlet to the human body.
 更に、本発明に係る血液浄化処理装置は、単位時間当たりの前記血液ポンプから送入される血液流量に対する前記血漿循環路から送入される血漿流量の比が、0.6を超え、前記有害成分除去器の処理能力で制限される1.0以上の所定の上限値以下であることを第2の特徴とする。 Furthermore, in the blood purification treatment apparatus according to the present invention, the ratio of the plasma flow rate sent from the plasma circulation path to the blood flow rate sent from the blood pump per unit time exceeds 0.6, and the harmful The second feature is that the value is not less than a predetermined upper limit value of 1.0 or more, which is limited by the processing capability of the component remover.
 更に、本発明に係る血液浄化処理装置は、前記血漿循環路の前記有害成分除去器の出口より下流側で分岐して、前記血漿分離器の血液取出口より下流側の前記血液送出路に至る血漿迂回路と、前記血漿迂回路に介装された第2の血漿ポンプと、を更に備えることを第3の特徴とする。 Furthermore, the blood purification processing apparatus according to the present invention branches downstream from the outlet of the harmful component remover in the plasma circulation path and reaches the blood delivery path downstream from the blood outlet of the plasma separator. According to a third aspect of the present invention, a plasma bypass route and a second plasma pump interposed in the plasma bypass route are further provided.
 更に、本発明に係る血液浄化処理装置は、前記血漿分離器が膜型血漿分離器であり、前記血液送入路の前記血液ポンプと前記血漿分離器の血液取入口の間に、前記血液ポンプから送入される血液と、前記血漿循環路から送入される血漿を均一に混合する混合器を備えていることを第4の特徴とする。 Furthermore, in the blood purification processing apparatus according to the present invention, the plasma separator is a membrane type plasma separator, and the blood pump is disposed between the blood pump in the blood inlet and the blood inlet of the plasma separator. A fourth feature is that a mixer for uniformly mixing the blood fed from the blood and the plasma fed from the plasma circulation path is provided.
 更に、本発明に係る血液浄化処理装置は、前記有害成分除去器が、吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定して血漿中の有害成分を吸着除去する吸着カラムであって、前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体を備え、前記骨格体の間隙に3次元網目状の貫通孔が形成され、前記骨格体の表面から内部まで貫通する細孔が分散して形成されていることを第5の特徴とする。ここで、多孔質担体の表面は、多孔質担体の貫通孔及び細孔の各内壁面に相当するものであり、また、骨格体の表面は貫通孔の内壁面と同意である。 Furthermore, in the blood purification apparatus according to the present invention, the harmful component remover adsorbs and removes the harmful component in the plasma by fixing a functional group that specifically binds to the substance to be adsorbed on the surface of the porous carrier. A porous carrier comprising a skeleton body made of silica gel or silica glass having a three-dimensional network structure, and a three-dimensional network-like through-hole is formed in a gap between the skeleton bodies; A fifth feature is that the pores penetrating to the inside are dispersedly formed. Here, the surface of the porous carrier corresponds to the inner wall surfaces of the through holes and pores of the porous carrier, and the surface of the skeleton body agrees with the inner wall surfaces of the through holes.
 上記第1の特徴の血液浄化処理装置によれば、血漿分離器で分離された血漿が、血漿分離器の血漿取出口から有害成分除去器に送出され、有害成分除去器において当該血漿中の有害成分が除去された後に、血漿循環路を通して、血漿分離器の血液取入口より上流側の血液送入路に帰還し、血液送入路から血漿分離器に送入される人体から採取した被処理血液と混合されるため、被処理血液が有害成分除去後の血漿によって希釈され、希釈された血液が血漿分離器に送入される。血漿分離器では、希釈された血液が血漿分離されるため、血球成分が濃縮され粘度が上がることなく、血漿分離器の血液取入口より上流側で混合した血漿と同量の血漿を分離することが可能となる。従って、従来の血液浄化処理装置では、有害成分除去率が、血漿分離器の血漿分離率によって50%程度に制限されていたが、上記第1の特徴の血液浄化処理装置では、有害成分除去率が、血漿分離器の血漿分離率によって制限されることなく、被処理血液中の血漿量と有害成分除去後の血漿量の混合比によって決定されることになる。従って、従来の血液浄化処理装置では、有害成分除去器に送入される血漿量は、血漿分離器の血漿分離率によって制限されていたものが、当該制限が取り除かれたので、有害成分除去器に送入できる血漿量は有害成分除去器の処理能力の上限まで増加でき、その分、血液浄化処理装置の有害成分除去率が向上することになる。血液浄化処理装置の有害成分除去率が向上する結果、上記数式5より明らかなように、有害成分除去率の増加に反比例して、必要治療時間が短縮される。 According to the blood purification processing apparatus of the first feature, the plasma separated by the plasma separator is sent from the plasma outlet of the plasma separator to the harmful component remover, and the harmful component remover is harmful in the plasma. After the components are removed, the sample is collected from the human body that returns to the blood inlet path upstream from the blood inlet of the plasma separator through the plasma circuit and is sent from the blood inlet path to the plasma separator. Since it is mixed with blood, the blood to be treated is diluted with plasma after removal of harmful components, and the diluted blood is sent to a plasma separator. In the plasma separator, the diluted blood is separated into plasma, so that the same amount of plasma as the plasma mixed upstream of the blood inlet of the plasma separator is separated without concentrating blood cell components and increasing the viscosity. Is possible. Therefore, in the conventional blood purification processing apparatus, the harmful component removal rate is limited to about 50% by the plasma separation rate of the plasma separator, but in the blood purification processing device of the first feature, the harmful component removal rate. However, without being limited by the plasma separation rate of the plasma separator, it is determined by the mixing ratio of the plasma volume in the blood to be treated and the plasma volume after removal of harmful components. Therefore, in the conventional blood purification treatment apparatus, the amount of plasma sent to the harmful component remover is limited by the plasma separation rate of the plasma separator, but the restriction is removed. The amount of plasma that can be delivered to the blood vessel can be increased to the upper limit of the processing capacity of the harmful component remover, and the harmful component removal rate of the blood purification apparatus is improved accordingly. As a result of the improvement in the harmful component removal rate of the blood purification treatment apparatus, as is apparent from Equation 5, the necessary treatment time is shortened in inverse proportion to the increase in the harmful component removal rate.
 例えば、単位時間当たりの被処理血液の血液流量と有害成分除去器を通流する血漿流量を同量とした場合、被処理血液中の血球成分の割合を40%とすると、被処理血液中の血漿量と有害成分除去後の血漿量の混合比は0.6:1となり、血液浄化処理装置の有害成分除去率は、62.5%(=1/(1+0.6))となる。ここで、上記数式5に、患者の全血液量Aを6L、被処理血液量Q(採血量)を毎分0.1L、有害成分除去率Rを62.5%とすると、60%の有害成分除去達成率Taを達成するためには、必要治療時間txは88分となり、従来の血液浄化処理装置で110分であった必要治療時間が、22分短縮され、20%削減される。 For example, if the blood flow rate of the blood to be processed per unit time and the plasma flow rate through the harmful component remover are the same, assuming that the proportion of blood cell components in the blood to be processed is 40%, The mixing ratio of the plasma volume and the plasma volume after removal of harmful components is 0.6: 1, and the harmful component removal rate of the blood purification apparatus is 62.5% (= 1 / (1 + 0.6)). Here, if the total blood volume A of the patient is 6 L, the blood volume Q to be treated (blood collection volume) is 0.1 L per minute, and the harmful component removal rate R is 62.5%, In order to achieve the component removal achievement rate Ta, the necessary treatment time tx is 88 minutes, and the necessary treatment time, which was 110 minutes with the conventional blood purification treatment apparatus, is shortened by 22 minutes and is reduced by 20%.
 有害成分除去後の血漿量の混合比率を更に上げることで、更なる必要治療時間の短縮が可能となる。例えば、上記混合比率を2倍にすると、被処理血液中の血漿量と有害成分除去後の血漿量の混合比は0.6:2となり、血液浄化処理装置の有害成分除去率は、77%(=2/(2+0.6))となるため、上記数式5より、必要治療時間txは71分となり、従来の血液浄化処理装置で110分であった必要治療時間が、39分短縮され、35%削減される。更に、上記混合比率を4倍にすると、被処理血液中の血漿量と有害成分除去後の血漿量の混合比は0.6:4となり、血液浄化処理装置の有害成分除去率は、87%(=4/(4+0.6))となるため、上記数式5より、必要治療時間txは63分となり、従来の血液浄化処理装置で110分であった必要治療時間が、47分短縮され、43%削減される。 更 に The required treatment time can be further reduced by further increasing the mixing ratio of the plasma volume after removal of harmful components. For example, when the mixing ratio is doubled, the mixing ratio of the plasma volume in the blood to be processed and the plasma volume after removal of harmful components is 0.6: 2, and the harmful component removal rate of the blood purification apparatus is 77%. (= 2 / (2 + 0.6)) Therefore, from Equation 5, the required treatment time tx is 71 minutes, and the required treatment time, which was 110 minutes in the conventional blood purification apparatus, is reduced by 39 minutes. 35% reduction. Furthermore, when the mixing ratio is quadrupled, the mixing ratio of the plasma volume in the blood to be treated and the plasma volume after removal of harmful components is 0.6: 4, and the harmful component removal rate of the blood purification apparatus is 87%. (= 4 / (4 + 0.6)) Therefore, from the above formula 5, the required treatment time tx is 63 minutes, and the required treatment time which was 110 minutes in the conventional blood purification apparatus is reduced by 47 minutes, 43% reduction.
 但し、単位時間当たりの被処理血液の血液流量に対する有害成分除去器を通流する血漿流量の比を0.6まで下げると、被処理血液中の血漿量と有害成分除去後の血漿量の混合比は0.6:0.6となり、血液浄化処理装置の有害成分除去率は、従来の血液浄化処理装置と同様の50%となるため、上記第2の特徴の血液浄化処理装置のように、被処理血液の血液流量に対する有害成分除去器を通流する血漿流量の比は0.6を超えるように、血漿ポンプの流量制御を行えば、従来の血液浄化処理装置に対して確実に必要治療時間を短縮できることになる。更に、上述したように、被処理血液の血液流量に対する有害成分除去器を通流する血漿流量の比を1以上とすることで、必要治療時間を20%以上短縮できるようになる。従って、被処理血液の血液流量に対する有害成分除去器を通流する血漿流量の比の上限値を有害成分除去器の処理能力の上限で制限される1以上に設定するのが好ましい。 However, if the ratio of the plasma flow rate through the toxic component remover to the blood flow rate of the blood to be processed per unit time is reduced to 0.6, the plasma volume in the blood to be processed and the plasma volume after removal of the toxic component are mixed. The ratio is 0.6: 0.6, and the harmful component removal rate of the blood purification processing apparatus is 50%, which is the same as that of the conventional blood purification processing apparatus. If the flow rate of the plasma pump is controlled so that the ratio of the plasma flow rate through the harmful component remover to the blood flow rate of the blood to be processed exceeds 0.6, it is definitely necessary for the conventional blood purification treatment device Treatment time can be shortened. Furthermore, as described above, by setting the ratio of the plasma flow rate through the harmful component remover to the blood flow rate of the blood to be treated to 1 or more, the required treatment time can be shortened by 20% or more. Therefore, it is preferable to set the upper limit value of the ratio of the plasma flow rate through the harmful component remover to the blood flow rate of the blood to be treated, which is 1 or more, which is limited by the upper limit of the processing capability of the harmful component remover.
 更に、上記第3の特徴の血液浄化処理装置によれば、血漿循環路の有害成分除去器の出口より下流側で分岐して、血漿分離器の血液取出口より下流側の血液送出路に至る血漿迂回路が設けられているため、被処理血液に混合される有害成分除去後の血漿量より、血漿分離器で分離され有害成分除去器を通流する血漿量が多くなるため、当該血漿迂回路が無い場合に比べて、血漿分離器での血漿分離率が更に向上する。当該血漿迂回路が無い場合は、血漿分離器の血液取出口から送出される血液量は、被処理血液の血液量と同じであるので、何れも血漿成分は60%程度含まれることになるが、当該血漿迂回路がある場合は、血漿迂回路に分流される血漿量だけ、血漿分離器の血液取出口から送出される血液中の血漿が減少することになり、当該減少した血漿中の有害成分が有害成分除去器で追加的に除去されるため、血液浄化処理装置の有害成分除去率が更に向上することになる。但し、血漿迂回路に分流される血漿量は、血漿分離器の有害成分除去後の血漿で希釈された血液の血漿分離率の上限値で制限されるため、血漿迂回路に介装された第2の血漿ポンプの流量は、被処理血液の血液流量の30%以下に制限する必要がある。 Furthermore, according to the blood purification processing apparatus of the third feature, the blood is branched downstream from the outlet of the harmful component remover in the plasma circulation path to reach the blood delivery path downstream from the blood outlet of the plasma separator. Since a plasma bypass is provided, the amount of plasma separated by the plasma separator and flowing through the harmful component remover is larger than the amount of plasma after removal of the harmful component mixed with the blood to be treated. Compared with the case where there is no path, the plasma separation rate in the plasma separator is further improved. In the absence of the plasma bypass, the blood volume delivered from the blood outlet of the plasma separator is the same as the blood volume of the blood to be treated. If there is such a plasma bypass, the plasma in the blood delivered from the blood outlet of the plasma separator will be reduced by the amount of plasma diverted to the plasma bypass, resulting in harmful effects in the reduced plasma. Since the components are additionally removed by the harmful component remover, the harmful component removal rate of the blood purification apparatus is further improved. However, the amount of plasma diverted to the plasma bypass is limited by the upper limit of the plasma separation rate of blood diluted with plasma after removal of harmful components of the plasma separator. It is necessary to limit the flow rate of the plasma pump 2 to 30% or less of the blood flow rate of the blood to be processed.
 更に、上記第4の特徴の血液浄化処理装置によれば、被処理血液と有害成分除去後の血漿を均一に混合する混合器が設けられているため、被処理血液が有害成分除去後の血漿で均一に希釈される。当該希釈が不十分な場合は、血漿分離器に送入される一部の血液において血球成分濃度が高いために当該血球成分に対して一定の割合で有害成分濃度の高い血漿の一部が血漿分離されずに血漿分離器の血液取出口から血液送出路に送出されるため、有害成分除去率が所期値より低下することになるが、上記第4の特徴の血液浄化処理装置によれば、当該有害成分除去率の低下を防止できる。更に、血漿分離器に送入される血液中において、有害成分除去後の血漿で十分に希釈されない血液中の血球成分が部分的に濃縮され粘度が上がり過ぎて血漿分離膜の細孔が血球で詰まって血漿分離が阻害されることも未然に防止できるため、血漿分離器の性能劣化に伴う血液浄化処理装置の有害成分除去率の低下を防止できる。 Furthermore, according to the blood purification apparatus of the fourth feature, since the mixer for uniformly mixing the blood to be processed and the plasma after removal of the harmful components is provided, the blood after the removal of the harmful components is provided. To be diluted evenly. When the dilution is insufficient, the blood cell component concentration is high in some blood sent to the plasma separator, so that a part of the plasma having a high harmful component concentration at a certain ratio to the blood cell component is plasma. Since it is sent to the blood delivery path from the blood outlet of the plasma separator without being separated, the harmful component removal rate will be lower than the expected value. According to the blood purification apparatus of the fourth feature, Therefore, it is possible to prevent a reduction in the harmful component removal rate. Furthermore, in the blood sent to the plasma separator, blood cell components that are not sufficiently diluted with plasma after removal of harmful components are partially concentrated, resulting in excessively high viscosity, and the pores of the plasma separation membrane are blood cells. Since it is possible to prevent clogging and plasma separation from being obstructed, it is possible to prevent a decrease in the harmful component removal rate of the blood purification apparatus due to deterioration in the performance of the plasma separator.
 更に、上記第5の特徴の血液浄化処理装置によれば、例えば、血漿吸着方式のアフェレシス治療において、非特許文献1に開示されている従来の血液浄化処理装置で使用されているビーズ状担体をカラム容器内に密に充填した吸着カラムと比較して、流路抵抗を低く抑制でき、圧力損失をビーズ状担体と比較して低く抑えることができ、また、吸着カラムを構成する多孔質担体が3次元網目構造の骨格体を備え、骨格体の表面から内部まで貫通する細孔が分散して形成されている構造のため、官能基が有効に機能する細孔表面積を大きくでき、有害成分の吸着速度の大きい吸着カラムを提供できる。より詳細には、3次元網目構造の骨格体と骨格体外に形成された3次元網目状の貫通孔を有する一体型の多孔質担体を用いることで、血漿の通流路となる貫通孔が3次元網目状に連通することから、貫通孔径が、ビーズ状担体をカラム容器内に密に充填した場合の各ビーズ状担体間の隙間の狭窄個所を通過する流路径と同じであっても、流路抵抗を低く抑制でき、圧力損失をビーズ状担体と比較して低く抑えることができる。また、ビーズ状担体も3次元網目構造の骨格体も、吸着対象物質の細孔内の移動が拡散による移動であり、各担体の表面近傍の細孔に固定されている官能基が専ら有効に機能するものと仮定すれば、担体の立体形状は、単位容積当たりの表面積が大きい3次元網目構造の方が、表面積の小さいビーズ状(球状)より、官能基が有効に機能する細孔表面積を大きくできることになる。 Furthermore, according to the blood purification processing apparatus of the fifth feature, for example, in the plasma adsorption apheresis treatment, the bead-shaped carrier used in the conventional blood purification processing apparatus disclosed in Non-Patent Document 1 is used. Compared with the adsorption column densely packed in the column container, the flow resistance can be kept low, the pressure loss can be kept low compared with the bead-like carrier, and the porous carrier constituting the adsorption column is Since it has a three-dimensional network structure skeleton body and the pores penetrating from the surface to the inside of the skeleton body are dispersed, the pore surface area where the functional group functions effectively can be increased, An adsorption column having a high adsorption rate can be provided. More specifically, by using an integrated porous carrier having a three-dimensional network structure skeleton body and a three-dimensional network-like through hole formed outside the skeleton body, three through-holes serving as plasma passages are formed. Even if the through-hole diameter is the same as the diameter of the flow path that passes through the narrowed portion of the gap between each bead-shaped carrier when the bead-shaped carrier is densely packed in the column container, the flow is not limited. The road resistance can be suppressed low, and the pressure loss can be suppressed lower than that of the bead-shaped carrier. Moreover, in both the bead-like support and the three-dimensional network structure, the movement of the substance to be adsorbed in the pores is caused by diffusion, and the functional groups fixed to the pores near the surface of each support are exclusively effective. Assuming that it functions, the three-dimensional network structure with a larger surface area per unit volume has a pore surface area where the functional group functions more effectively than a bead shape (spherical) with a smaller surface area. You can make it bigger.
 本発明の血液浄化処理装置を吸着方式のアフェレシス治療に適用する場合、吸着カラムを通流する血漿流量が、従来の血液浄化処理装置に比べて増大させる必要があるため、例えば、単位時間当たりの被処理血液の血液流量と吸着カラムを通流する血漿流量を同量とした場合では、約3.3倍となるが、上記第5の特徴の血液浄化処理装置によれば、斯かる吸着カラムに要求される処理能力に対してより小さいカラム容積で対応することが可能となる。 When the blood purification treatment apparatus of the present invention is applied to adsorption-type apheresis treatment, the plasma flow rate flowing through the adsorption column needs to be increased as compared with the conventional blood purification treatment apparatus. When the blood flow rate of the blood to be processed and the plasma flow rate through the adsorption column are the same, the flow rate is about 3.3 times. According to the blood purification treatment device of the fifth feature, the adsorption column It is possible to cope with a processing capacity required for a smaller column volume.
本発明に係る血液浄化処理装置の第1実施形態における概略の回路構成を模式的に示す回路構成図The circuit block diagram which shows typically the schematic circuit structure in 1st Embodiment of the blood purification processing apparatus which concerns on this invention. 本発明に係る血液浄化処理装置で使用する吸着カラムの概略の構成を模式的に示す構成図The block diagram which shows typically the structure of the outline of the adsorption column used with the blood purification processing apparatus which concerns on this invention 本発明に係る血液浄化処理装置で使用する吸着カラムの吸着体の構造を模式的に示す要部断面図Sectional drawing which shows the principal part which shows typically the structure of the adsorption body of the adsorption column used with the blood purification processing apparatus which concerns on this invention 本発明に係る血液浄化処理装置で使用する吸着カラムの吸着体を構成する多孔質担体の構造を模式的に示す要部断面図Sectional drawing which shows the principal part which shows typically the structure of the porous support | carrier which comprises the adsorbent of the adsorption column used with the blood purification processing apparatus which concerns on this invention 本発明に係る血液浄化処理装置で使用する吸着カラムの吸着体を構成する多孔質担体のSEM写真SEM photograph of the porous carrier constituting the adsorbent of the adsorption column used in the blood purification apparatus according to the present invention 本発明に係る血液浄化処理装置で使用する混合器の概略の構成を模式的に示す構成図The block diagram which shows typically the structure of the outline of the mixer used with the blood purification processing apparatus which concerns on this invention 本発明に係る血液浄化処理装置で使用する混合器の静的混合エレメントの構造を模式的に示す平面図と断面図The top view and sectional drawing which show typically the structure of the static mixing element of the mixer used with the blood purification processing apparatus which concerns on this invention 本発明に係る血液浄化処理装置の第1実施形態における有害成分除去率及び必要治療時間の計算結果を示す一覧表Table showing calculation results of harmful component removal rate and required treatment time in the first embodiment of the blood purification apparatus according to the present invention 本発明に係る血液浄化処理装置の第2実施形態における概略の回路構成を模式的に示す回路構成図The circuit block diagram which shows typically the schematic circuit structure in 2nd Embodiment of the blood purification processing apparatus which concerns on this invention. 本発明に係る血液浄化処理装置の第2実施形態における有害成分除去率及び必要治療時間の計算結果を示す一覧表Table showing calculation results of harmful component removal rate and required treatment time in the second embodiment of the blood purification apparatus according to the present invention 本発明に係る血液浄化処理装置の第1実施形態及び第2実施形態、従来の血液浄化処理装置における必要治療時間の計算結果を対比して示す図The figure which compares and shows the calculation result of the required treatment time in 1st Embodiment and 2nd Embodiment of the blood purification processing apparatus which concerns on this invention, and the conventional blood purification processing apparatus. 従来の血液浄化処理装置の概略の回路構成を模式的に示す回路構成図Circuit configuration diagram schematically showing a schematic circuit configuration of a conventional blood purification treatment apparatus
符号の説明Explanation of symbols
 1:  血漿分離器
 1a: 血液取入口
 1b: 血液取出口
 1c: 血漿取出口
 2:  吸着カラム
 3:  混合器
 3a: 血漿取入口
 4:  抗凝固薬注入器
 5:  ドリップチェンバー
 6:  圧力モニター
 10、11: 本発明に係る血液浄化処理装置
 20: 吸着体
 21: 円筒容器
 22、23: 開口部
 24: 多孔質担体
 25: 官能基
 26: 骨格体
 27: 貫通孔
 28: 細孔
 30: 円筒容器
 31、32: 静的混合エレメント
 33: 貫通孔
 P1: 血液ポンプP1
 P2、P3: 血漿ポンプ
 T1: 血液送入路
 T2: 血液送出路
 T3: 血漿循環路
 T4: 血漿迂回路
1: Plasma separator 1a: Blood inlet 1b: Blood outlet 1c: Plasma outlet 2: Adsorption column 3: Mixer 3a: Plasma inlet 4: Anticoagulant injector 5: Drip chamber 6: Pressure monitor 10, 11: Blood purification apparatus according to the present invention 20: Adsorbent 21: Cylindrical container 22, 23: Opening 24: Porous carrier 25: Functional group 26: Skeletal body 27: Through hole 28: Pore 30: Cylindrical container 31 32: Static mixing element 33: Through hole P1: Blood pump P1
P2, P3: Plasma pump T1: Blood delivery route T2: Blood delivery route T3: Plasma circulation route T4: Plasma bypass route
 本発明に係る血液浄化処理装置(以下、適宜「本発明装置」という。)の実施の形態につき、図面に基づいて説明する。尚、本発明の理解を容易とすべく、以下の説明においては、図12に示す従来のアフェレシス治療用の血漿吸着法による血液浄化処理装置と同じ構成要素には同じ符号を付して説明する。尚、以下の説明では、本発明装置を血漿吸着法によるアフェレシス治療に適用する場合を想定して説明する。 Embodiments of a blood purification apparatus according to the present invention (hereinafter referred to as “the present apparatus” as appropriate) will be described with reference to the drawings. In order to facilitate understanding of the present invention, in the following description, the same components as those in the conventional blood purification apparatus using the plasma adsorption method for apheresis treatment shown in FIG. . In the following description, the apparatus of the present invention will be described on the assumption that it is applied to apheresis treatment by the plasma adsorption method.
 〈第1実施形態〉
 第1実施形態における本発明装置10は、図1に示すように、血漿分離器1、人体から採取した血液を血漿分離器1の血液取入口1aに送入する血液送入路T1、血液送入路T1に介装された血液ポンプP1、血液送入路T1の血液ポンプP1より下流側に介装された混合器3、血漿分離器1で分離された血漿中の有害成分を吸着除去する吸着カラム2(有害成分除去器に相当)、血漿分離器1の血液取出口1bから血漿分離後の血液を人体に戻すための血液送出路T2、血漿分離器1の血漿取出口1cから吸着カラム2を経由して混合器3の血漿取入口3aに帰還する血漿循環路T3、及び、血漿循環路T3に介装された血漿ポンプP2を備えて構成されている。また、血液送入路T1の血液ポンプP1と混合器3の間に抗凝固薬注入器4用のアクセスポートが設けられ、抗凝固薬注入器4が接続している。更に、血液送出路T2、及び、血漿循環路T3の血漿ポンプP2の下流側に夫々ドリップチェンバー5が介装され、血漿分離器1、混合器3、及び、各ドリップチェンバー5に夫々圧力モニター6が設けられている。尚、図1では、非特許文献1及び2に例示されている従来の血液浄化処理装置の回路図に図示されている微粒子除去フィルタ、吸着カラム賦活回路等については図示を省略しているが必要に応じて所定箇所に介装すれば良い。また、本実施形態では、血漿ポンプP2は、血漿循環路T3の吸着カラム2より上流側に設けているが、下流側に設けても構わない。
<First Embodiment>
As shown in FIG. 1, the device 10 of the present invention in the first embodiment includes a blood separator T1, a blood inlet T1 for feeding blood collected from a human body to a blood inlet 1a of the plasma separator 1, and a blood feeder. Adsorption and removal of harmful components in plasma separated by blood pump P1 interposed in inlet T1, mixer 3 interposed downstream of blood pump P1 in blood inlet T1, and plasma separator 1 An adsorption column 2 (corresponding to a harmful component remover), a blood delivery path T2 for returning blood after plasma separation from the blood outlet 1b of the plasma separator 1 to the human body, an adsorption column from the plasma outlet 1c of the plasma separator 1 2 and the plasma circulation path T3 returning to the plasma intake port 3a of the mixer 3 and the plasma pump P2 interposed in the plasma circulation path T3. In addition, an access port for the anticoagulant injector 4 is provided between the blood pump P1 and the mixer 3 in the blood delivery path T1, and the anticoagulant injector 4 is connected thereto. Further, drip chambers 5 are respectively provided downstream of the blood pumping path T2 and the plasma pump P2 of the plasma circulation path T3, and the pressure monitor 6 is provided in each of the plasma separator 1, the mixer 3, and each drip chamber 5. Is provided. In FIG. 1, the particulate removal filter, the adsorption column activation circuit, and the like illustrated in the circuit diagram of the conventional blood purification processing apparatus exemplified in Non-Patent Documents 1 and 2 are not shown. Depending on the situation, it may be inserted at a predetermined location. In the present embodiment, the plasma pump P2 is provided on the upstream side of the adsorption column 2 of the plasma circulation path T3, but may be provided on the downstream side.
 従来の血液浄化処理装置では、図12に示すように、吸着カラム2で有害成分が吸着除去された後の血漿が、血漿迂回路T4を経由して血漿分離器1の血液取出口1bより下流側の血液送出路T2に戻って、血漿分離器1の血液取出口1bから送出された血漿分離後の濃縮された血液と血漿分離器1の下流側で合流する回路構成であるのに対し、本発明装置10では、吸着カラム2で有害成分除去された後の血漿が、血漿循環路T3を経由して血漿分離器1の上流側の混合器3に戻って、人体から採取され血液ポンプP1で送入される被処理血液と合流する回路構成である点で、両者は大きく相違する。 In the conventional blood purification apparatus, as shown in FIG. 12, the plasma after the harmful components are adsorbed and removed by the adsorption column 2 is downstream from the blood outlet 1b of the plasma separator 1 via the plasma bypass T4. The circuit configuration is such that the concentrated blood after plasma separation sent from the blood outlet 1b of the plasma separator 1 merges with the downstream side of the plasma separator 1 by returning to the blood delivery path T2 on the side. In the device 10 of the present invention, plasma after removal of harmful components by the adsorption column 2 returns to the mixer 3 upstream of the plasma separator 1 via the plasma circulation path T3, and is collected from the human body and blood pump P1. The two are greatly different from each other in that the circuit configuration merges with the blood to be treated.
 本発明装置10によるアフェレシス治療の血液浄化処理は、人体から採取された血液を本発明装置10で有害成分を吸着除去して人体に戻す連続処理であるため、血漿分離器1は、当該連続処理に適した膜型血漿分離器を使用する。膜型血漿分離器は、筒状容器内に中空糸膜束を収容した中空糸型血漿分離器等の既に血漿吸着法による血液浄化処理で医用認可されている既存のものが使用可能である。 Since the blood purification process of the apheresis treatment by the apparatus 10 of the present invention is a continuous process in which blood collected from the human body is adsorbed and removed by the apparatus 10 of the present invention and returned to the human body, the plasma separator 1 is subjected to the continuous process. Use a membrane plasma separator suitable for As the membrane type plasma separator, an existing one already approved for medical use in blood purification treatment by the plasma adsorption method such as a hollow fiber type plasma separator in which a hollow fiber membrane bundle is accommodated in a cylindrical container can be used.
 本実施形態では、吸着カラム2は、図2に模式的に示すように、吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定してなる吸着体20を円筒容器21に収容して構成され、円筒容器21の各端面には、夫々開口部22,23が形成され、一方の開口部22が処理対象となる血漿の送入口となり、他方の開口部23が有害成分除去後の血漿の排出口となる。 In the present embodiment, as schematically shown in FIG. 2, the adsorption column 2 includes an adsorbent 20 formed by fixing a functional group that specifically binds to a substance to be adsorbed on the surface of a porous carrier in a cylindrical container 21. Each of the end surfaces of the cylindrical container 21 is formed with openings 22 and 23. One opening 22 serves as a plasma inlet for processing and the other opening 23 removes harmful components. It becomes the outlet for plasma later.
 吸着体20は、図3に模式的に示すように、円柱状に成形された無機系の多孔質担体24の表面に吸着対象物質に特異的に結合する官能基25を表面修飾して固定化したものである。吸着対象物質が、例えば血液中のLDL(低密度リポタンパク)の場合、官能基25としては、LDLに対して親和性を有するデキストラン硫酸またはその塩、ポリアクリル酸またはその塩、或いは、その他の鎖状多価酸またはその塩を使用する。尚、本発明装置10で吸着除去する対象物質としては、LDL以外に、β2ミクログロブリン、免疫グロブリン、エンドトキシン等が挙げられ、吸着体20は、吸着対象物質に適合した構造のものが使用されることになる。 As schematically shown in FIG. 3, the adsorbent 20 is immobilized by surface-modifying a functional group 25 that specifically binds to the substance to be adsorbed on the surface of an inorganic porous carrier 24 formed into a cylindrical shape. It is a thing. When the substance to be adsorbed is, for example, LDL (low density lipoprotein) in blood, the functional group 25 includes dextran sulfate or a salt thereof having affinity for LDL, polyacrylic acid or a salt thereof, or other A chain polyvalent acid or a salt thereof is used. In addition to the LDL, β2 microglobulin, immunoglobulin, endotoxin, and the like are listed as target substances to be adsorbed and removed by the apparatus 10 of the present invention, and the adsorbent 20 has a structure suitable for the target substance to be adsorbed. It will be.
 吸着体20を構成する無機系の多孔質担体24は、図4に模式的に示すように、3次元網目状の一体構造の骨格体26と、骨格体26の間隙に形成された平均孔径が1μm以上4μm未満の範囲内の3次元網目状の貫通孔27を有してなり、更に、骨格体26の表面には、平均孔径が吸着対象物質であるLDLの直径(最大長に相当)の26~27nm以上の27nm以上200nm以下の範囲の細孔28が分散して形成されている。従って、本実施形態で使用する吸着カラム2の多孔質担体24は、平均孔径の異なる2種類の細孔(貫通孔27と細孔28)からなる2重細孔構造となっている。図5に、多孔質担体24のSEM(走査型電子顕微鏡)写真の一例を示す。尚、多孔質担体24の2重細孔構造及びその孔径についても、吸着対象物質に応じて適宜変更される。 As shown schematically in FIG. 4, the inorganic porous carrier 24 constituting the adsorbent 20 has a three-dimensional network-like skeleton body 26 and an average pore diameter formed in the gap between the skeleton bodies 26. It has a three-dimensional network-like through-hole 27 in the range of 1 μm or more and less than 4 μm, and the surface of the skeleton body 26 has an average pore diameter of the diameter of LDL (corresponding to the maximum length) as the adsorption target substance. The pores 28 in the range of 27 nm to 200 nm in the range of 26 to 27 nm or more are dispersedly formed. Therefore, the porous carrier 24 of the adsorption column 2 used in this embodiment has a double pore structure composed of two types of pores (through holes 27 and pores 28) having different average pore diameters. FIG. 5 shows an example of an SEM (scanning electron microscope) photograph of the porous carrier 24. Note that the double pore structure of the porous carrier 24 and the pore diameter thereof are also appropriately changed according to the substance to be adsorbed.
 尚、多孔質担体24の合成方法は、例えば、特開平7-41374号公報の「無機系多孔質体の製造方法」に開示されている原理に基づくスピノーダル分解ゾルゲル法を使用するものであるが、当該合成方法は、当該公報に詳細に説明されており、また、本発明の本旨ではないので説明は省略する。また、多孔質担体24への官能基25を表面修飾して固定化する方法についても、本発明の本旨ではないので説明を割愛する。 The method for synthesizing the porous carrier 24 uses, for example, a spinodal decomposition sol-gel method based on the principle disclosed in “Manufacturing Method of Inorganic Porous Material” in JP-A-7-41374. The synthesis method is described in detail in the publication, and since it is not the gist of the present invention, the description is omitted. Further, the method of immobilizing the functional group 25 on the porous carrier 24 by modifying the surface is not the gist of the present invention and will not be described.
 また、本実施形態では、2重細孔構造の多孔質担体24に官能基25を表面修飾して固定化した一体型の吸着体20を円筒容器21に収容した吸着カラム2の使用を想定しているが、その理由は、非特許文献1に開示されている従来の血液浄化処理装置のような多孔質担体としてビーズ状担体をカラム容器内に密に充填した吸着カラムと比較して、流路抵抗及び圧力損失を低く抑制できるためであり、また、多孔質担体24が3次元網目構造の骨格体26を備え、骨格体26の表面から内部まで貫通する細孔28が分散して形成されている2重細孔構造のため、官能基25が有効に機能する細孔表面積を大きくでき、有害成分の吸着速度の大きい吸着カラムを提供できるからである。 Further, in the present embodiment, it is assumed that the adsorption column 2 in which the integrated adsorbent body 20 in which the functional group 25 is surface-modified and immobilized on the porous carrier 24 having a double pore structure is accommodated in the cylindrical container 21 is assumed. However, the reason is that, compared with an adsorption column in which a bead-shaped carrier is packed tightly in a column container as a porous carrier like the conventional blood purification treatment device disclosed in Non-Patent Document 1, the flow rate is higher. This is because the road resistance and pressure loss can be suppressed low, and the porous carrier 24 includes a skeleton body 26 having a three-dimensional network structure, and pores 28 penetrating from the surface to the inside of the skeleton body 26 are formed in a dispersed manner. This is because, due to the double pore structure, the pore surface area where the functional group 25 functions effectively can be increased, and an adsorption column having a high adsorption rate of harmful components can be provided.
 上述した本発明装置10と従来の血液浄化処理装置との回路構成との違いによって、後述するように、本発明装置10の吸着カラム2を通流する単位時間当たりの血漿流量は、従来の血液浄化処理装置と比較して約3~16倍以上となるため、吸着カラム2の処理能力(処理量及び処理速度)として大きなものが要求されるが、上述の2重細孔構造の多孔質担体24を用いた吸着カラム2の場合、より小さな容積で大きな処理能力が得られることになる。但し、吸着カラム2の処理能力は、吸着カラムを並列に複数設けることで解決できるため、吸着対象物質に応じて既に医用認可されている既存の吸着カラムを使用しても良い。 As will be described later, the plasma flow rate per unit time flowing through the adsorption column 2 of the device 10 of the present invention is different from that of the conventional blood due to the difference in circuit configuration between the device 10 of the present invention and the conventional blood purification treatment device. Since it is about 3 to 16 times or more as compared with the purification processing apparatus, a large capacity is required as the processing capacity (processing amount and processing speed) of the adsorption column 2, but the porous support having the above-mentioned double pore structure is required. In the case of the adsorption column 2 using 24, a large processing capacity can be obtained with a smaller volume. However, since the processing capacity of the adsorption column 2 can be solved by providing a plurality of adsorption columns in parallel, an existing adsorption column that has already been approved for medical use according to the substance to be adsorbed may be used.
 本実施形態では、吸着カラム2で有害成分除去された後の血漿と人体から採取され血液ポンプP1で送入される被処理血液を混合器3で均一に混合してから血漿分離器1に送入する構成を採用している。有害成分除去後の血漿と被処理血液の混合は、ドリップチェンバーで代用することも可能であるが、ドリップチェンバーでは、血漿と被処理血液の混合が必ずしも均一に行われないため、有害成分除去前の血液が有害成分除去後の血漿での希釈が不十分となり、有害成分を多く含む血液が、血漿分離器1で血漿分離されずに血液送出路T2を介して人体に戻される可能性があり、本発明装置10の有害成分除去率に変動を来すことになるため、本実施形態のように混合器3を使用するのが好ましい。尚、混合器3を使用せずにドリップチェンバー等で有害成分除去後の血漿と被処理血液の混合を行った場合でも、被処理血液は、従来の血液浄化処理装置との回路構成と比較して、より希釈された血液が血漿分離器1で血漿分離されるため、血漿分離膜が目詰まりして性能低下を来す可能性が低くなっているが、混合器3を使用することで、当該血漿分離膜の目詰まりも更に発生し難くなり、経時変化による本発明装置10の有害成分除去率の低下を抑制できる。 In this embodiment, the plasma after removal of harmful components by the adsorption column 2 and the blood to be processed collected from the human body and fed by the blood pump P1 are mixed uniformly by the mixer 3 and then sent to the plasma separator 1. The composition to enter is adopted. The mixture of plasma and blood to be processed after removal of harmful components can be replaced with a drip chamber, but in a drip chamber, the plasma and blood to be processed are not necessarily mixed uniformly. May be diluted with plasma after removal of harmful components, and blood containing a large amount of harmful components may be returned to the human body via the blood delivery path T2 without being separated by the plasma separator 1. Since the harmful component removal rate of the device 10 of the present invention varies, it is preferable to use the mixer 3 as in this embodiment. Even when the plasma after removal of harmful components is mixed with a drip chamber or the like without using the mixer 3, the blood to be processed is compared with the circuit configuration of a conventional blood purification apparatus. Thus, since the more diluted blood is separated into plasma by the plasma separator 1, the possibility of clogging the plasma separation membrane and lowering the performance is low, but by using the mixer 3, The clogging of the plasma separation membrane is less likely to occur, and a reduction in the harmful component removal rate of the device 10 of the present invention due to a change with time can be suppressed.
 混合器3は、血漿ポンプP2の圧力を利用して例えば旋廻流を掛けて混合を促進させる静的構造の混合器や、チェンバーの中に外部動力で駆動される攪拌装置を設けた動的構造の混合器等が利用できる。静的構造の混合器3としては、旋廻流を掛けて混合を促進させる構造以外に、図6に示すように、円筒容器30内に、円盤状の2種類のPVC(ポリ塩化ビニール)等のプラスチック製の静的混合エレメント31,32を交互に数段(例えば10段)重ね合わせたものを挿入し、円筒容器30の一方端側から、有害成分除去前の被処理血液と有害成分除去後の血漿を各別に送入し、2種類の静的混合エレメント31,32に設けられた貫通孔を順番に通過することで、被処理血液と血漿が順次攪拌され混合される構造のものも使用できる。2種類の静的混合エレメント31,32は、図7に示すように、一方には表裏貫通する貫通孔33が円盤面に4つ、他方には5つ形成されており、何れの貫通孔33も表裏両側から厚み方向(貫通方向)の内側(中央)に向かって夫々漏斗状に縮径しており、そのテーパ面の傾斜角は貫通孔33の中心軸に対して45°である。各部の寸法は、一例として、エレメント31,32の直径Dが18mm、厚さdが5mm、貫通孔33の最小口径aが2mmまたは5mmの2種類、貫通孔33の入口及び出口部分の最大口径bが4mmまたは6mmの2種類となっており、最小口径aと最大口径bの組み合わせは、2mm/4mm、2mm/6mm、5mm/6mmの3通りの何れかを採用する。図6中、2種類のエレメント31,32の内、貫通孔33が4つのエレメント31をグレー表示して区別し、図7中、エレメント31の円盤面をグレー表示しているが、何れも、説明の容易のための表示であり、実際の着色とは関係ない。尚、貫通孔33の数及び寸法、エレメント31,32の形状、段数及び各部の寸法は、一例であり適宜変更可能である。 The mixer 3 is a dynamic structure in which a mixer having a static structure that promotes mixing by, for example, applying a swirling flow using the pressure of the plasma pump P2 or a stirring device driven by external power in a chamber. Can be used. As the mixer 3 having a static structure, in addition to a structure in which a swirl flow is applied to promote mixing, as shown in FIG. 6, two kinds of disk-shaped PVC (polyvinyl chloride) or the like are provided in the cylindrical container 30. Insert plastic plastic mixing elements 31 and 32 alternately stacked in several stages (for example, 10 stages), and after removing the blood to be treated and harmful components before removing harmful components from one end of the cylindrical container 30 The blood to be processed and the plasma are stirred and mixed in order by passing the plasma separately and passing through the through holes provided in the two types of static mixing elements 31 and 32 in order. it can. As shown in FIG. 7, the two types of static mixing elements 31 and 32 have four through-holes 33 penetrating front and back on one side and five on the other side, and any of the through-holes 33. Also, the diameter is reduced in a funnel shape from the front and back sides toward the inside (center) in the thickness direction (through direction), and the inclination angle of the tapered surface is 45 ° with respect to the central axis of the through hole 33. The dimensions of each part are, for example, the diameters D of the elements 31 and 32 are 18 mm, the thickness d is 5 mm, the minimum diameter a of the through hole 33 is 2 mm or 5 mm, and the maximum diameter of the inlet and outlet portions of the through hole 33. There are two types of b, 4 mm or 6 mm, and a combination of the minimum diameter a and the maximum diameter b employs any of three types of 2 mm / 4 mm, 2 mm / 6 mm, and 5 mm / 6 mm. In FIG. 6, among the two types of elements 31, 32, the through-hole 33 distinguishes the four elements 31 in gray, and in FIG. 7, the disk surface of the element 31 is displayed in gray. This is a display for easy explanation, and is not related to actual coloring. The number and dimensions of the through holes 33, the shapes of the elements 31, 32, the number of steps, and the dimensions of each part are examples and can be changed as appropriate.
 図7に示す構造の2種類のエレメント31,32では、2種類の一方のエレメントで各貫通孔33へと4分割または5分割されるとともに、各貫通孔33の口径が入口側から狭くなり、出口に向かって広がる構造であるため、各貫通孔33を通過する流体に対して急激な速度変化と圧力変化が生じ、流体の攪拌混合が促進される。4分割された流体は、更に、5つの貫通孔33に分散して流れるため、更に速度変化と圧力変化が生じ、同様に、5分割された流体は、更に、4つの貫通孔33に分散して流れるため、更に速度変化と圧力変化が生じ、2種類のエレメント31,32を流体が交互に通過することで、流体の攪拌混合が徐々に進行する構造となっている。 In the two types of elements 31 and 32 having the structure shown in FIG. 7, the two types of one element are divided into four or five through holes 33, and the diameter of each through hole 33 is narrowed from the inlet side. Since the structure spreads toward the outlet, a sudden speed change and pressure change occur with respect to the fluid passing through each through-hole 33, and the fluid is stirred and mixed. Since the fluid divided into four flows further in a distributed manner in the five through holes 33, a speed change and a pressure change occur. Similarly, the fluid divided into five is further dispersed in the four through holes 33. Therefore, a speed change and a pressure change are further generated, and the fluid is alternately passed through the two types of elements 31 and 32, whereby the fluid is stirred and mixed gradually.
 本発明装置10の運転開始に際しては、血漿分離器1、吸着カラム2、混合器3等の血液回路内には、生理食塩水が充填されており、運転開始時の基本的な操作は、後述する血漿ポンプP2から送出される吸着カラム2で有害成分除去された後の血漿流量の制御以外は、従来の血液浄化処理装置と同じである。 At the start of the operation of the device 10 of the present invention, the blood circuits such as the plasma separator 1, the adsorption column 2, and the mixer 3 are filled with physiological saline, and the basic operation at the start of the operation will be described later. This is the same as the conventional blood purification apparatus except for controlling the plasma flow rate after the harmful components are removed by the adsorption column 2 delivered from the plasma pump P2.
 次に、図1に示す回路構成の本発明装置10の有害成分除去率、本発明装置10を使用した場合の有害成分除去達成率と必要治療時間の関係について詳しく説明する。 Next, the harmful component removal rate of the device 10 of the present invention having the circuit configuration shown in FIG. 1 and the relationship between the harmful component removal achievement rate and the required treatment time when the device 10 of the present invention is used will be described in detail.
 上述の通り、本発明装置10は、吸着カラム2で有害成分除去された後の血漿が、血漿循環路T3を経由して血漿分離器1の上流側の混合器3に戻って、人体から採取され血液ポンプP1で送入される被処理血液と合流する回路構成であるため、被処理血液中の有害成分は、有害成分除去後の血漿で希釈され、その一部が血漿分離器1の血液取出口1bから血液送出路T2を介して人体に戻されるため、被処理血液中の有害成分は、混合器3で混合された後の希釈血液中の全血漿に対する有害成分除去後の血漿の割合に応じて除去されることになる。つまり、有害成分除去率Rは、単位時間当たりの被処理血液の血液流量Qと、血漿循環路T3を経由して混合器3に流入する血漿流量Sによって決定され、血液ポンプP1の流速Q(L/min)と血漿ポンプP2の流速S(L/min)によって、以下の数式6で示す関係となる。但し、被処理血液中の血漿の割合を60%とし、吸着カラム2の有害成分吸着率を100%とする。また、血液流量Qに対する血漿流量Sの比率(S/Q)をxとすると、数式6は、数式7で与えられる。 As described above, the apparatus 10 of the present invention collects plasma from the human body after the harmful components have been removed by the adsorption column 2 and returns to the mixer 3 upstream of the plasma separator 1 via the plasma circuit T3. In this way, the harmful components in the blood to be treated are diluted with the plasma after the harmful components are removed, and a part of the blood in the plasma separator 1 is used. Since the harmful component in the blood to be treated is returned to the human body from the outlet 1b via the blood delivery path T2, the ratio of the plasma after removal of the harmful component to the total plasma in the diluted blood after being mixed by the mixer 3 It will be removed according to. That is, the harmful component removal rate R is determined by the blood flow rate Q of the blood to be processed per unit time and the plasma flow rate S flowing into the mixer 3 via the plasma circulation path T3, and the flow rate Q ( L / min) and the flow rate S (L / min) of the plasma pump P2, the relationship shown by the following formula 6 is established. However, the ratio of plasma in the blood to be treated is 60%, and the adsorption rate of harmful components of the adsorption column 2 is 100%. Further, when the ratio (S / Q) of the plasma flow rate S to the blood flow rate Q is x, Equation 6 is given by Equation 7.
[数式6]
 R=S/(S+Q×0.6)
[数式7]
 R=x/(x+0.6)=1-0.6/(x+0.6)
[Formula 6]
R = S / (S + Q × 0.6)
[Formula 7]
R = x / (x + 0.6) = 1-0.6 / (x + 0.6)
 数式7より、比率xが大きくなるほど有害成分除去率Rが大きくなることが分かる。これより、従来の血液浄化処理装置では、有害成分除去率Rは、血漿分離器2の血漿分離率で制限され50%程度が限界であったが、本発明装置10の場合には、比率xによって有害成分除去率Rが50%を超えて設定可能であることが分かる。 From Equation 7, it can be seen that the harmful component removal rate R increases as the ratio x increases. Thus, in the conventional blood purification treatment apparatus, the harmful component removal rate R is limited by the plasma separation rate of the plasma separator 2 and is about 50%, but in the case of the device 10 of the present invention, the ratio x It can be seen that the harmful component removal rate R can be set to exceed 50%.
 また、比率xが0.6以下の場合には、有害成分除去率Rが50%以下となるため、従来の有害成分除去率50%と同等以下となるため、比率xは、0.6より大きく設定し、例えば、1~5程度とする。尚、比率xを大きくして血漿流量Sを増加させても、血漿分離器1の血液取出口1bから送出される有害成分除去後の血液流量は、混合器3に送入される被処理血液の血液流量Qと同じである。 Moreover, since the harmful component removal rate R is 50% or less when the ratio x is 0.6 or less, the ratio x is less than 0.6 because the conventional harmful component removal rate is 50% or less. Set a large value, for example, about 1 to 5. Even if the ratio x is increased to increase the plasma flow rate S, the blood flow after removal of harmful components sent from the blood outlet 1b of the plasma separator 1 is the blood to be processed sent to the mixer 3. It is the same as the blood flow rate Q.
 本発明装置10を使用した場合の有害成分除去達成率Taと必要治療時間txの関係は、従来の血液浄化処理装置と同様に、上記数式5の関係式で与えられる。患者の全血液量Aを6L、被処理血液の流量Qを0.1L/min(高速処理)と0.05L/min(通常処理)の2通り、有害成分除去達成率Taを60%(標準治療)と80%(高度治療)の2通り、比率xを1,2,3,4,5の5通りとした場合の、必要治療時間txの計算結果について、図8の一覧表に纏めて表示する。また、同じ条件での従来の血液浄化処理装置の必要治療時間txも、比較のために、図8の一覧表に合わせて表示する。また、本発明装置10による必要治療時間txの右側の2列には、同じ治療タイプでの従来の血液浄化処理装置による必要治療時間txからの短縮時間と時間削減率も併記している。従来の血液浄化処理装置では、血液流量Qの30%に相当する流量の血漿が分離され吸着カラムで有害成分が除去され、有害成分除去率が50%となる場合を想定する。 The relationship between the harmful component removal achievement rate Ta and the necessary treatment time tx when the device 10 of the present invention is used is given by the relational expression of the above formula 5, similarly to the conventional blood purification treatment apparatus. The total blood volume A of the patient is 6L, the flow rate Q of the blood to be processed is two types of 0.1L / min (high speed processing) and 0.05L / min (normal processing), and the harmful component removal achievement rate Ta is 60% (standard) The calculation results of the required treatment time tx when the ratio x is 1, 2, 3, 4 and 5 are summarized in the table of FIG. indicate. Further, the necessary treatment time tx of the conventional blood purification processing apparatus under the same conditions is also displayed in accordance with the list of FIG. 8 for comparison. Further, in the two columns on the right side of the necessary treatment time tx by the apparatus 10 of the present invention, the shortened time and the time reduction rate from the necessary treatment time tx by the conventional blood purification processing apparatus of the same treatment type are also shown. In the conventional blood purification apparatus, it is assumed that plasma having a flow rate corresponding to 30% of the blood flow rate Q is separated and harmful components are removed by the adsorption column, and the harmful component removal rate is 50%.
 図8に示す計算結果より明らかなように、被処理血液の血液流量Qと有害成分除去後の血漿流量Sが同量である場合(x=1)、必要治療時間txは20%削減され、比率xが2~5と増加するとともに、必要治療時間txの削減率も、35%、40%、42.5%、44%と上昇する。例えば、通常処理(Q=0.05L/min)の高度治療(Ta=80%)の場合、必要治療時間txが従来の血液浄化処理装置では386分(6時間26分)であったところ、比率x=4の本発明装置10では222分(3時間42分)まで短縮されており、患者への身体的負担が大幅に軽減されていることが分かる。また、被処理血液の流量Qが通常処理において、有害成分除去達成率Taを80%以上に高く設定すると、必要治療時間txが6時間を超えて長くなるが、本発明装置10を用いることで、被処理血液の流量Qを増加させることなく、必要治療時間txの絶対値を大幅に短縮できるため、特に、通常処理時、高度治療時において、必要治療時間の短縮効果が大きくなる。 As is clear from the calculation results shown in FIG. 8, when the blood flow rate Q of the blood to be treated and the plasma flow rate S after removal of harmful components are the same amount (x = 1), the necessary treatment time tx is reduced by 20%, As the ratio x increases from 2 to 5, the reduction rate of the required treatment time tx also increases to 35%, 40%, 42.5%, and 44%. For example, in the case of advanced treatment (Ta = 80%) with normal treatment (Q = 0.05 L / min), the required treatment time tx was 386 minutes (6 hours 26 minutes) in the conventional blood purification treatment apparatus. In the device 10 of the present invention with the ratio x = 4, the time is shortened to 222 minutes (3 hours 42 minutes), and it can be seen that the physical burden on the patient is greatly reduced. Further, when the flow rate Q of the blood to be treated is set to 80% or higher in the harmful component removal achievement rate Ta in the normal processing, the necessary treatment time tx becomes longer than 6 hours, but by using the device 10 of the present invention. Since the absolute value of the necessary treatment time tx can be significantly shortened without increasing the flow rate Q of the blood to be treated, the effect of shortening the necessary treatment time is particularly great during normal treatment and advanced treatment.
 尚、図8より明らかなように、比率xを4以上に更に大きく設定しても、必要治療時間txの時間短縮幅は小さくなるため、また、血漿流量Sの増加に合わせて吸着カラムの処理能力を上げる必要があり、有害成分除去達成率Taが80%程度以下であれば、比率xの上限は4~6程度が好ましいと考えられる。これは、比率xがある程度大きいと比率xの増分に対する有害成分除去率Rの増分が圧縮され、また、有害成分除去率Rと必要治療時間txが反比例の関係にあるため、必要治療時間txの時間短縮幅が抑制されるためである。 As is apparent from FIG. 8, even if the ratio x is set to a value larger than 4, the time reduction width of the necessary treatment time tx is reduced, and the treatment of the adsorption column as the plasma flow rate S increases. It is considered that the upper limit of the ratio x is preferably about 4 to 6 if the capability needs to be increased and the harmful component removal achievement rate Ta is about 80% or less. This is because when the ratio x is somewhat large, the increment of the harmful component removal rate R with respect to the increment of the ratio x is compressed, and the harmful component removal rate R and the necessary treatment time tx are inversely proportional to each other. This is because the time reduction width is suppressed.
 〈第2実施形態〉
 本発明装置の第2実施形態について説明する。第2実施形態における本発明装置11は、図9に示すように、図1に示す第1実施形態の本発明装置10の回路構成に対して、吸着カラム2より下流側の血漿迂回路T4から分岐して血漿分離器の血液取出口1bより下流側の血液送出路T2に至る血漿迂回路T4を追加し、血漿迂回路T4に第2の血漿ポンプP3を介装した回路構成となっている。また、血漿迂回路T4の血漿ポンプP3の下流側にドリップチェンバー5が介装され、圧力モニター6が設けられている。尚、第2実施形態では、血漿ポンプP2は、第1実施形態とは異なり、血漿循環路T3の血漿迂回路T4との分岐点より下流側に設けている。第2実施形態における本発明装置11は、回路構成上、第1実施形態の本発明装置10と図12に示す従来の血液浄化処理装置を統合した混合型回路構成となっている。尚、図9では、非特許文献1及び2に例示されている従来の血液浄化処理装置の回路図に図示されている微粒子除去フィルタ、吸着カラム賦活回路等については図示を省略しているが必要に応じて所定箇所に介装すれば良い。また、本発明装置11で使用する血漿分離器1、吸着カラム2、混合器3は、第1実施形態の本発明装置10で使用するものと同じものが使用可能であり、重複する説明は割愛する。
Second Embodiment
A second embodiment of the device of the present invention will be described. As shown in FIG. 9, the device 11 of the present invention in the second embodiment is different from the circuit detour T4 downstream of the adsorption column 2 with respect to the circuit configuration of the device 10 of the first embodiment shown in FIG. A plasma bypass T4 that branches and reaches the blood delivery path T2 downstream from the blood outlet 1b of the plasma separator is added, and the second plasma pump P3 is interposed in the plasma bypass T4. . A drip chamber 5 is interposed downstream of the plasma pump P3 in the plasma bypass T4, and a pressure monitor 6 is provided. In the second embodiment, unlike the first embodiment, the plasma pump P2 is provided downstream of the branch point of the plasma circulation path T3 with the plasma bypass T4. The inventive device 11 in the second embodiment has a mixed circuit configuration in which the inventive device 10 of the first embodiment and the conventional blood purification treatment device shown in FIG. In FIG. 9, the particulate removal filter, the adsorption column activation circuit, and the like shown in the circuit diagram of the conventional blood purification processing apparatus exemplified in Non-Patent Documents 1 and 2 are not shown. Depending on the situation, it may be inserted at a predetermined location. The plasma separator 1, the adsorption column 2, and the mixer 3 used in the device 11 of the present invention can be the same as those used in the device 10 of the first embodiment. To do.
 次に、図9に示す回路構成の本発明装置11の有害成分除去率、本発明装置11を使用した場合の有害成分除去達成率と必要治療時間の関係について詳しく説明する。 Next, the harmful component removal rate of the device 11 of the present invention having the circuit configuration shown in FIG. 9 and the relationship between the harmful component removal achievement rate and the required treatment time when the device 11 of the present invention is used will be described in detail.
 上述の通り、本発明装置11は、吸着カラム2で有害成分除去された後の血漿の一部が、血漿ポンプP2によって血漿流量S1で血漿循環路T3を経由して血漿分離器1の上流側の混合器3に戻り、人体から採取され血液ポンプP1によって血液流量Qで送入される被処理血液と合流するとともに、吸着カラム2で有害成分除去された後の血漿の残りの一部が、血漿ポンプP3によって血漿流量S2で血漿迂回路T4を経由して血漿分離器1の血液取出口1bより下流側の血液送出路T2に戻り、混合器3で希釈され血漿分離器1で血漿分離された血液と合流する回路構成となる。 As described above, the device 11 of the present invention is configured so that a part of plasma after removal of harmful components by the adsorption column 2 is upstream of the plasma separator 1 via the plasma circuit T3 at the plasma flow rate S1 by the plasma pump P2. And the blood to be processed which is collected from the human body and sent by the blood pump P1 at the blood flow rate Q, and the remaining part of the plasma after the harmful components are removed by the adsorption column 2, The plasma pump P3 returns to the blood delivery path T2 downstream from the blood outlet 1b of the plasma separator 1 via the plasma bypass T4 at the plasma flow rate S2, is diluted by the mixer 3, and is separated by the plasma separator 1. The circuit configuration merges with blood.
 ここで、第1実施形態の本発明装置10では、血漿分離器1から血液送出路T2に送出される血液流量Qxは、被処理血液の血液流量Qと同じであり、その60%は血漿成分であるが、第2実施形態の本発明装置11では、血漿分離器1に流入する混合器3で混合後の血液流量は(Q+S1)であり、血漿分離器1から吸着カラム2に送出される血漿流量が(S1+S2)であるので、血漿分離器1から血液送出路T2に送出される血液流量は、(Q-S2)となり、血漿分離器1の流入する単位時間当たりの有害成分を含む希釈された血漿量に対する血漿分離器1から血液送出路T2を経由して人体に戻る単位時間当たりの有害成分を含む血漿量の割合は、第1実施形態の本発明装置10の回路構成と比較して低減される。尚、血液流量(Q-S2)の血液が血漿迂回路T4を経由して血液送出路T2に戻る血漿流量S2の血漿と合流して人体に戻されるため、人体から採取される被処理血液の血液流量Qと同じになる。 Here, in the device 10 of the present invention of the first embodiment, the blood flow rate Qx delivered from the plasma separator 1 to the blood delivery path T2 is the same as the blood flow rate Q of the blood to be processed, and 60% of it is a plasma component. However, in the device 11 of the present invention of the second embodiment, the blood flow after mixing in the mixer 3 flowing into the plasma separator 1 is (Q + S1) and is sent from the plasma separator 1 to the adsorption column 2. Since the plasma flow rate is (S1 + S2), the blood flow rate sent from the plasma separator 1 to the blood delivery path T2 is (Q−S2), and the dilution containing harmful components per unit time into which the plasma separator 1 flows The ratio of the plasma volume containing harmful components per unit time returning from the plasma separator 1 to the human body via the blood delivery path T2 with respect to the obtained plasma volume is compared with the circuit configuration of the device 10 of the present invention of the first embodiment. Reduced. In addition, since blood with a blood flow rate (Q-S2) joins with plasma with a plasma flow rate S2 that returns to the blood delivery path T2 via the plasma bypass T4 and is returned to the human body, the blood to be processed collected from the human body It becomes the same as the blood flow rate Q.
 以上より、本発明装置11の有害成分除去率Rは、血液ポンプP1の流速Q(L/min)、血漿ポンプP2の流速S1(L/min)、血漿ポンプP3の流速S2(L/min)によって、以下の数式8で与えられる。但し、被処理血液中の血漿の割合を60%とし、吸着カラム2の有害成分吸着率を100%とする。ここで、血液流量Qに対する血漿流量S1の比率(S1/Q)をxとし、血液流量Qに対する血漿流量S2の比率(S2/Q)を30%とすると、数式8は、数式9で示すようになる。ここで、「発明が解決しようとする課題」で説明したように、膜型血漿分離器では、血球成分を濃縮し過ぎると粘度が上がり過ぎて分離膜の細孔が血球で詰まって血漿分離が阻害されることから、血球成分と血漿成分は完全に分離されず、血漿分離後の血液中には、被処理血液の血液量の40%の血球成分に対して30%の血漿成分が残るため、後者の比率(S2/Q)は、30%程度が上限となる。 From the above, the harmful component removal rate R of the device 11 of the present invention is as follows: the flow rate Q (L / min) of the blood pump P1, the flow rate S1 (L / min) of the plasma pump P2, and the flow rate S2 (L / min) of the plasma pump P3. Is given by Equation 8 below. However, the ratio of plasma in the blood to be treated is 60%, and the adsorption rate of harmful components of the adsorption column 2 is 100%. Here, when the ratio (S1 / Q) of the plasma flow rate S1 to the blood flow rate Q is x and the ratio (S2 / Q) of the plasma flow rate S2 to the blood flow rate Q is 30%, Equation 8 is expressed by Equation 9. become. Here, as explained in “Problems to be Solved by the Invention”, in the membrane type plasma separator, if the blood cell component is concentrated too much, the viscosity increases too much, and the pores of the separation membrane are clogged with blood cells and the plasma separation is not performed. The blood cell component and the plasma component are not completely separated from each other because of inhibition, and in the blood after plasma separation, 30% of the plasma component remains with respect to the blood cell component of 40% of the blood volume of the blood to be treated. The upper limit of the latter ratio (S2 / Q) is about 30%.
[数式8]
 R=(S1+S2)/(S1+Q×0.6)
[数式9]
 R=(x+0.3)/(x+0.6)=1-0.3/(x+0.6)
[Formula 8]
R = (S1 + S2) / (S1 + Q × 0.6)
[Formula 9]
R = (x + 0.3) / (x + 0.6) = 1-0.3 / (x + 0.6)
 数式9より、比率xが大きくなるほど有害成分除去率Rが大きくなることが分かる。これより、従来の血液浄化処理装置では、有害成分除去率Rは、血漿分離器2の血漿分離率で制限され50%程度が限界であったが、本発明装置11の場合には、比率xによって有害成分除去率Rが50%を超えて設定可能であることが分かる。第2実施形態の本発明装置11では、比率xが0の場合には、従来の血液浄化処理装置と同じ回路構成となるので、比率xは0より大きい値となるが、数式9より、比率xが0より大きいと、有害成分除去率Rが50%より大きくなるため、有害成分除去率Rは、必ず従来の有害成分除去率50%より高くなる。更に、比率xが同じ場合、数式9に示す本発明装置11の有害成分除去率Rの方が、数式7に示す第1実施形態の本発明装置10の有害成分除去率Rより大きくなることが分かり、第1実施形態の本発明装置10より、有害成分除去率Rが向上する。 From Formula 9, it can be seen that the harmful component removal rate R increases as the ratio x increases. Thus, in the conventional blood purification treatment apparatus, the harmful component removal rate R is limited by the plasma separation rate of the plasma separator 2 and is about 50%, but in the case of the device 11 of the present invention, the ratio x It can be seen that the harmful component removal rate R can be set to exceed 50%. In the device 11 of the present invention of the second embodiment, when the ratio x is 0, the circuit configuration is the same as that of the conventional blood purification apparatus, so the ratio x is larger than 0. If x is greater than 0, the harmful component removal rate R is greater than 50%, so the harmful component removal rate R is always higher than the conventional harmful component removal rate of 50%. Furthermore, when the ratio x is the same, the harmful component removal rate R of the device 11 of the present invention shown in Equation 9 may be larger than the harmful component removal rate R of the device 10 of the first embodiment shown in Equation 7. As can be seen, the harmful component removal rate R is improved by the inventive device 10 of the first embodiment.
 本発明装置11を使用した場合の有害成分除去達成率Taと必要治療時間txの関係は、従来の血液浄化処理装置及び第1実施形態の本発明装置10と同様に、上記数式5の関係式で与えられる。患者の全血液量Aを6L、被処理血液の流量Qを0.1L/min(高速処理)と0.05L/min(通常処理)の2通り、有害成分除去達成率Taを60%(標準治療)と80%(高度治療)の2通り、比率xを1,2,3,4,5の5通りとした場合の、必要治療時間txの計算結果について、図10の一覧表に纏めて表示する。但し、血液流量Qに対する血漿流量S2の比率(S2/Q)を30%とする。また、同じ条件での従来の血液浄化処理装置の必要治療時間txも、比較のために、図10の一覧表に合わせて表示する。 The relationship between the harmful component removal achievement rate Ta and the necessary treatment time tx when using the device 11 of the present invention is the relational expression of the above formula 5, as in the case of the conventional blood purification apparatus and the device 10 of the first embodiment. Given in. The total blood volume A of the patient is 6L, the flow rate Q of the blood to be processed is two types of 0.1L / min (high speed processing) and 0.05L / min (normal processing), and the harmful component removal achievement rate Ta is 60% (standard) The calculation results of the required treatment time tx when the ratio x is 1, 2, 3, 4 and 5 are summarized in the table of FIG. indicate. However, the ratio of the plasma flow rate S2 to the blood flow rate Q (S2 / Q) is 30%. In addition, the necessary treatment time tx of the conventional blood purification apparatus under the same conditions is also displayed in accordance with the list of FIG. 10 for comparison.
 図10に示す計算結果より明らかなように、被処理血液の血液流量Qと有害成分除去後の血漿流量S1が同量である場合(x=1)、必要治療時間txは38.5%削減され、比率xが2~5と増加するとともに、必要治療時間txの削減率も、43.5%、45.5%、46.5%、47.2%と上昇する。例えば、通常処理(Q=0.05L/min)の高度治療(Ta=80%)の場合、必要治療時間txが従来の血液浄化処理装置では386分(6時間26分)であったところ、比率x=4の本発明装置11では207分(3時間27分)まで短縮されており、患者への身体的負担が大幅に軽減されていることが分かる。また、第1実施形態の本発明装置10と比較しても、222分(3時間42分)であったところが、207分(3時間27分)まで短縮している。また、被処理血液の流量Qが通常処理において、有害成分除去達成率Taを80%以上に高く設定すると、必要治療時間txが6時間を超えて長くなるが、本発明装置11を用いることで、被処理血液の流量Qを増加させることなく、必要治療時間txの絶対値を大幅に短縮できるため、特に、通常処理時、高度治療時において、必要治療時間の短縮効果が大きくなる。 As is clear from the calculation results shown in FIG. 10, when the blood flow rate Q of the blood to be treated and the plasma flow rate S1 after removal of harmful components are the same amount (x = 1), the required treatment time tx is reduced by 38.5%. As the ratio x increases from 2 to 5, the reduction rate of the required treatment time tx also increases to 43.5%, 45.5%, 46.5%, and 47.2%. For example, in the case of advanced treatment (Ta = 80%) with normal treatment (Q = 0.05 L / min), the required treatment time tx was 386 minutes (6 hours 26 minutes) in the conventional blood purification treatment apparatus. In the device 11 of the present invention with the ratio x = 4, the time is shortened to 207 minutes (3 hours and 27 minutes), and it can be seen that the physical burden on the patient is greatly reduced. Also, compared with the inventive device 10 of the first embodiment, it was 222 minutes (3 hours 42 minutes), but it was shortened to 207 minutes (3 hours 27 minutes). Further, when the flow rate Q of the blood to be treated is set to 80% or higher when the harmful component removal achievement rate Ta is set to be higher than 80% in normal processing, the necessary treatment time tx becomes longer than 6 hours. Since the absolute value of the necessary treatment time tx can be significantly shortened without increasing the flow rate Q of the blood to be treated, the effect of shortening the necessary treatment time is particularly great during normal treatment and advanced treatment.
 尚、図10より明らかなように、比率xを2以上に更に大きく設定しても、必要治療時間txの時間短縮幅は小さくなるため、また、血漿流量Sの増加に合わせて吸着カラムの処理能力を上げる必要があり、有害成分除去達成率Taが80%程度以下であれば、比率xの上限は2~4程度が好ましいと考えられる。これは、比率xがある程度大きいと比率xの増分に対する有害成分除去率Rの増分が圧縮され、また、有害成分除去率Rと必要治療時間txが反比例の関係にあるため、必要治療時間txの時間短縮幅が抑制されるためである。 As is clear from FIG. 10, even if the ratio x is set to a value larger than 2, the time reduction width of the necessary treatment time tx is reduced, and the treatment of the adsorption column as the plasma flow rate S increases. It is necessary to increase the capability, and if the harmful component removal achievement rate Ta is about 80% or less, it is considered that the upper limit of the ratio x is preferably about 2 to 4. This is because when the ratio x is somewhat large, the increment of the harmful component removal rate R with respect to the increment of the ratio x is compressed, and the harmful component removal rate R and the necessary treatment time tx are inversely proportional to each other. This is because the time reduction width is suppressed.
 次に、図11に、図8及び図10に示した本発明装置10、11の比率x別の必要治療時間txと従来の血液浄化処理装置を対比して図示する。図11中、本発明装置10(血漿循環路T3有り)の必要治療時間txを実線で連結し、本発明装置11(血漿循環路T3と血漿迂回路T4有り)の必要治療時間txを破線で連結している。図11により、上述した、必要治療時間txと有害成分除去達成率Taの関係、必要治療時間txと比率xの関係、第1及び第2実施形態の本発明装置10、11間の関係が、より明確に示されている。 Next, FIG. 11 shows a comparison between the required treatment time tx for each ratio x of the devices 10 and 11 of the present invention shown in FIGS. 8 and 10 and a conventional blood purification apparatus. In FIG. 11, the necessary treatment time tx of the device of the present invention 10 (with plasma circulation path T3) is connected by a solid line, and the necessary treatment time tx of the device of the present invention 11 (with plasma circulation path T3 and plasma bypass T4) is represented by a broken line. It is connected. 11, the relationship between the necessary treatment time tx and the harmful component removal achievement rate Ta, the relationship between the necessary treatment time tx and the ratio x, and the relationship between the devices 10 and 11 of the first and second embodiments described above are as follows. Shown more clearly.
 以上、本発明装置の構成及びその性能(有害成分除去達成率と必要治療時間の関係)について詳細に説明したが、性能評価において使用した血液流量Q、血漿流量S,S1,S2、有害成分除去達成率Ta等の数値は、説明のための一例であり、これらの数値は、本発明装置が所期の性能を発揮し得る範囲において、アフェレシス治療の治療内容、使用する血漿分離器、吸着カラム、混合器等の処理能力に応じて適宜変更可能である。また、本発明装置は、アフェレシス治療用の血漿吸着法による血液浄化処理装置に広く適用できるものであり、吸着カラムで吸着除去する有害成分は、LDLに限定されるものではなく、また、吸着カラムの有害成分の吸着方式も種々の方式の吸着カラムが使用できる。更に、血漿中の有害物質の除去方式は吸着カラムによる吸着方式に限定されるものではなく、二重膜濾過器等を用いた濾過方式であっても良く、本発明装置は、アフェレシス治療用の血漿分離膜を用いた血液浄化処理装置に広く適用できる。 As mentioned above, the configuration of the device of the present invention and its performance (relationship between harmful component removal achievement rate and required treatment time) have been described in detail, but blood flow Q, plasma flow S, S1, S2, and harmful component removal used in the performance evaluation are described. The numerical values such as the achievement rate Ta are examples for explanation, and these numerical values are within the range in which the device of the present invention can exhibit the desired performance, the treatment content of the apheresis treatment, the plasma separator used, and the adsorption column It can be appropriately changed according to the processing capacity of the mixer and the like. The apparatus of the present invention can be widely applied to blood purification treatment apparatuses using a plasma adsorption method for apheresis treatment. The harmful components to be adsorbed and removed by the adsorption column are not limited to LDL, and the adsorption column Various types of adsorption columns can be used for the adsorption of harmful components. Furthermore, the method of removing harmful substances in plasma is not limited to the adsorption method using an adsorption column, and may be a filtration method using a double membrane filter or the like. The device of the present invention is used for apheresis treatment. The present invention can be widely applied to a blood purification treatment apparatus using a plasma separation membrane.
 本発明に係る血液浄化処理装置は、血液中のLDL等の病因物質(有害成分)の除去を目的とするアフェレシス治療用の血漿分離膜を用いた血液浄化処理装置に利用可能である。 The blood purification treatment apparatus according to the present invention can be used for a blood purification treatment apparatus using a plasma separation membrane for apheresis treatment for the purpose of removing pathogenic substances (harmful components) such as LDL in blood.

Claims (5)

  1.  血漿分離器と、
     人体から採取した血液を前記血漿分離器に送入する血液送入路と、
     前記血液送入路に介装された血液ポンプと、
     前記血漿分離器で分離された血漿中の有害成分を吸着または濾過により除去する有害成分除去器と、
     前記血漿分離器の血漿取出口から前記有害成分除去器を経由して前記血漿分離器の血液取入口より上流側の前記血液送入路に帰還する血漿循環路と、
     前記血漿循環路に介装された血漿ポンプと、
     前記血漿分離器の血液取出口から血漿分離後の血液を人体に戻すための血液送出路と、を備えることを特徴とするアフェレシス治療用の血液浄化処理装置。
    A plasma separator;
    A blood delivery path for delivering blood collected from the human body to the plasma separator;
    A blood pump interposed in the blood delivery path;
    A harmful component remover that removes harmful components in the plasma separated by the plasma separator by adsorption or filtration;
    A plasma circuit that returns from the plasma outlet of the plasma separator to the blood inlet path upstream of the blood inlet of the plasma separator via the harmful component remover;
    A plasma pump interposed in the plasma circuit;
    A blood purification treatment apparatus for apheresis treatment, comprising: a blood delivery path for returning blood after plasma separation to a human body from a blood outlet of the plasma separator.
  2.  単位時間当たりの前記血液ポンプから送入される血液流量に対する前記血漿循環路から送入される血漿流量の比が、0.6を超え、前記有害成分除去器の処理能力で制限される1.0以上の所定の上限値以下であることを特徴とする請求項1に記載の血液浄化処理装置。 The ratio of the plasma flow rate delivered from the plasma circuit to the blood flow rate delivered from the blood pump per unit time exceeds 0.6 and is limited by the processing capacity of the harmful component remover. The blood purification apparatus according to claim 1, wherein the blood purification apparatus is 0 or more and a predetermined upper limit value or less.
  3.  前記血漿循環路の前記有害成分除去器の出口より下流側で分岐して、前記血漿分離器の血液取出口より下流側の前記血液送出路に至る血漿迂回路と、
     前記血漿迂回路に介装された第2の血漿ポンプと、を更に備えることを特徴とする請求項1に記載の血液浄化処理装置。
    A plasma bypass that branches downstream from the outlet of the harmful component remover in the plasma circulation path and reaches the blood delivery path downstream from the blood outlet of the plasma separator;
    The blood purification apparatus according to claim 1, further comprising a second plasma pump interposed in the plasma bypass.
  4.  前記血漿分離器が膜型血漿分離器であり、
     前記血液送入路の前記血液ポンプと前記血漿分離器の血液取入口の間に、前記血液ポンプから送入される血液と、前記血漿循環路から送入される血漿を均一に混合する混合器を備えていることを特徴とする請求項1~3の何れか1項に記載の血液浄化処理装置。
    The plasma separator is a membrane plasma separator;
    A mixer that uniformly mixes the blood fed from the blood pump and the plasma fed from the plasma circulation path between the blood pump of the blood feeding path and the blood inlet of the plasma separator. The blood purification treatment apparatus according to any one of claims 1 to 3, further comprising:
  5.  前記有害成分除去器が、吸着対象物質に特異的に結合する官能基を多孔質担体の表面に固定して血漿中の有害成分を吸着除去する吸着カラムであって、前記多孔質担体が、3次元網目構造のシリカゲルまたはシリカガラスからなる骨格体を備え、前記骨格体の間隙に3次元網目状の貫通孔が形成され、前記骨格体の表面から内部まで貫通する細孔が分散して形成されていることを特徴とする請求項1~3の何れか1項に記載の血液浄化処理装置。 The harmful component remover is an adsorption column that adsorbs and removes harmful components in plasma by fixing a functional group that specifically binds to an adsorption target substance to the surface of the porous carrier, and the porous carrier includes 3 A skeleton body made of silica gel or silica glass having a three-dimensional network structure is formed, and a three-dimensional network-like through hole is formed in a gap between the skeleton bodies, and pores penetrating from the surface to the inside of the skeleton body are dispersed. The blood purification treatment apparatus according to any one of claims 1 to 3, wherein:
PCT/JP2008/073421 2008-12-24 2008-12-24 Blood purification device WO2010073320A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073421 WO2010073320A1 (en) 2008-12-24 2008-12-24 Blood purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/073421 WO2010073320A1 (en) 2008-12-24 2008-12-24 Blood purification device

Publications (1)

Publication Number Publication Date
WO2010073320A1 true WO2010073320A1 (en) 2010-07-01

Family

ID=42286989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073421 WO2010073320A1 (en) 2008-12-24 2008-12-24 Blood purification device

Country Status (1)

Country Link
WO (1) WO2010073320A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036169A1 (en) * 2010-09-15 2012-03-22 旭化成クラレメディカル株式会社 Blood purification device and control method therefor
CN106310415A (en) * 2016-09-27 2017-01-11 上海江夏血液技术有限公司 Cerebral stroke treatment system adopting blood cell separation and plasma adsorption technology
TWI595897B (en) * 2016-03-31 2017-08-21 禾研科技股份有限公司 Blood Purification System
CN113769191A (en) * 2021-08-20 2021-12-10 健帆生物科技集团股份有限公司 Control method and device of dual plasma molecular adsorption system and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243532A (en) * 1975-09-26 1981-01-06 Asahi Kasei Kogyo Kabushiki Kaisha Blood treating system
JPH1076004A (en) * 1996-09-05 1998-03-24 Kanegafuchi Chem Ind Co Ltd Adsorbing material for humor treatment and adsorber for humor treatment
JP2001087381A (en) * 1999-09-21 2001-04-03 Inoac Corp New extracorporeal circulation system and artificial internal organ assisting system using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243532A (en) * 1975-09-26 1981-01-06 Asahi Kasei Kogyo Kabushiki Kaisha Blood treating system
JPH1076004A (en) * 1996-09-05 1998-03-24 Kanegafuchi Chem Ind Co Ltd Adsorbing material for humor treatment and adsorber for humor treatment
JP2001087381A (en) * 1999-09-21 2001-04-03 Inoac Corp New extracorporeal circulation system and artificial internal organ assisting system using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036169A1 (en) * 2010-09-15 2012-03-22 旭化成クラレメディカル株式会社 Blood purification device and control method therefor
CN103118719A (en) * 2010-09-15 2013-05-22 旭化成医疗株式会社 Blood purification device and control method therefor
JP5547293B2 (en) * 2010-09-15 2014-07-09 旭化成メディカル株式会社 Blood purification apparatus and control method thereof
TWI478737B (en) * 2010-09-15 2015-04-01 旭化成醫療股份有限公司 Blood purification device and its control method
TWI595897B (en) * 2016-03-31 2017-08-21 禾研科技股份有限公司 Blood Purification System
CN106310415A (en) * 2016-09-27 2017-01-11 上海江夏血液技术有限公司 Cerebral stroke treatment system adopting blood cell separation and plasma adsorption technology
CN113769191A (en) * 2021-08-20 2021-12-10 健帆生物科技集团股份有限公司 Control method and device of dual plasma molecular adsorption system and storage medium
CN113769191B (en) * 2021-08-20 2023-11-07 健帆生物科技集团股份有限公司 Control method, equipment and storage medium of double plasma molecular adsorption system

Similar Documents

Publication Publication Date Title
EP0776223B1 (en) Arrangement for removing substances from liquids, in particular blood
US4518497A (en) Blood treating system
US5858238A (en) Salvage of autologous blood via selective membrane/sorption technologies
DE69721223T2 (en) MEMBRANEOFFINITY SYSTEM AND METHOD OF USE THEREOF
JP4226050B1 (en) Absorption column for body fluid purification treatment
US20150258268A1 (en) Multi-staged filtration system for blood fluid removal
JPS6046983B2 (en) blood processing equipment
EP2190498A1 (en) Process and device for saving diafiltrate
JPS6171063A (en) Selective separation of high-molecular weight substance in blood
CH626256A5 (en) Device for the continuous, extracorporal separation of specific substances from blood
WO2010073320A1 (en) Blood purification device
US4609461A (en) Apparatus for purifying blood
WO2019052989A1 (en) Method for processing a protein-containing suspension or protein-containing solution
Ronco Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers
JP5984913B2 (en) Evaluation method of albumin leakage from blood purifier
JP2538751B2 (en) Leukocyte capture and separation device
JPH0852209A (en) Multiple function device for blood processing
JPS6045359A (en) Blood purifier
JPS61128979A (en) Blood treatment apparatus
EP1002566A2 (en) Filter for adsorbing heparin and/or endotoxins in plasma and/or blood
JPH1057476A (en) Membrane separator
US20150315544A1 (en) Blood separation filter
US20170266362A1 (en) System for removal of pro-inflammatory mediators as well as granulocytes and monocytes from blood
JPH0759849A (en) Blood filter in common use as blood dialyzer
JPS6362B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP