WO2010071190A1 - Heparin affinity erythropoietin - Google Patents

Heparin affinity erythropoietin Download PDF

Info

Publication number
WO2010071190A1
WO2010071190A1 PCT/JP2009/071095 JP2009071095W WO2010071190A1 WO 2010071190 A1 WO2010071190 A1 WO 2010071190A1 JP 2009071095 W JP2009071095 W JP 2009071095W WO 2010071190 A1 WO2010071190 A1 WO 2010071190A1
Authority
WO
WIPO (PCT)
Prior art keywords
epo
heparin
chimeric protein
heparin affinity
motif
Prior art date
Application number
PCT/JP2009/071095
Other languages
French (fr)
Japanese (ja)
Inventor
健 鳥羽
公則 加藤
晴雄 塙
義房 相澤
正人 樋口
Original Assignee
国立大学法人 新潟大学
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 新潟大学, 中外製薬株式会社 filed Critical 国立大学法人 新潟大学
Priority to JP2010543009A priority Critical patent/JP5799409B2/en
Publication of WO2010071190A1 publication Critical patent/WO2010071190A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
  • Erythropoietin (hereinafter sometimes referred to as EPO) is an acidic glycoprotein hormone that promotes the differentiation and proliferation of erythroid progenitor cells, and is produced mainly from the kidney. The most abundant red blood cells in the blood are destroyed in the spleen after functioning for a certain period of time (in humans, the average life span is about 120 days). The red blood cell count is always kept constant. EPO plays a central role in maintaining homeostasis of erythrocytes in these organisms. Clinically, EPO is used for the treatment of anemia and pre- and postoperative management.
  • EPO In addition to its function as a hematopoietic factor, EPO is known to suppress apoptosis and protect tissues in nervous system cells, cardiomyocytes, renal tubular epithelial cells, etc. (PNAS 100: 4802-4806, 2003, etc.) ). These two actions of EPO are thought to be due to EPO acting by two different signal transduction pathways. When EPO acts on homodimers of the EPO receptor, it exerts hematopoiesis through the intracellular JAK2 signaling pathway.
  • EPO acts on the heterodimer of EPO receptor and common ⁇ receptor ( ⁇ cR), it exerts an anti-apoptotic effect through the intracellular ERK1 / 2 signaling pathway (PNAS 101: 14907-14912, 2004).
  • EPOE has angiogenesis-promoting activity and is also reported to be useful as a therapeutic agent for ischemic diseases (Christopher H et al., Blood 102 (4); 1340 -1346, 2003, Gustav H B et al., Blood 103 (3); 921-926, 2004, Kyle J S et al., Cardiovascular Research 59; 538-548, 2003).
  • a cytokine having no heparin affinity such as EPO
  • EPO a cytokine having no heparin affinity
  • the drug can easily reach the local area from the body surface, such as treatment of limb ischemia, it can be administered daily, but difficult to administer frequently from the body surface, such as treatment of myocardial ischemia. If there is, there is a need to develop new formulations.
  • glycoproteins and proteoglycans As proteins containing sugar chains present in the living body.
  • heparin-like substances such as chondroitin sulfate, keratan sulfate, heparin, heparan sulfate, and dermatan sulfate in the sugar chain of PG, and the sulfo group (sulfate group) of the sugar chain is another substance, especially basic amino acid residues. Interact with the group.
  • PG such as syndecan is expressed in various cell membranes, forming a scaffold for biological reactions on the extracellular matrix and cell surface.
  • various PGs are expressed on the surface of vascular endothelium, providing a place for reaction to various blood substances.
  • cytokines, chemokines, and other biologically active substances have an affinity for heparin. Since these heparin-affinity substances secreted from the cells show affinity for the extracellular matrix existing around the cells, a concentration gradient with the secretory cells at the top of the mountain is formed, and the target cells of the bioactive substances are Provides information on polarity and direction of movement. In addition, these bioactive substances are strongly accumulated on the surface of cells expressing PG, and particularly on the surface of vascular endothelium.
  • a heparin affinity substance has a heparin affinity motif in its peptide sequence.
  • Basic amino acids such as lysine and arginine have an excess amino group in the side chain, and have a strong affinity for the sulfo group present in the sugar chain of heparin-like substances.
  • Multiple basic amino acids when multiple basic amino acids are present in the motif continuously or discontinuously, or when the protein forms a tertiary structure (three-dimensional structure) even if there is no accumulation of basic amino acids in the primary structure When they are close to each other, the structure functions as a heparin affinity motif.
  • An object of the present invention is to provide a chimeric protein containing a heparin affinity motif and a biologically active polypeptide, and a sustained-release pharmaceutical composition or sustained-release pharmaceutical composition containing the same.
  • the present inventors produced heparinophilic erythropoietin (HEPO), which is a chimeric protein linking EPO and a heparin affinity motif, which shows the affinity of tissue components for heparin-like substances, and EPO organisms.
  • HEPO heparinophilic erythropoietin
  • the present invention was completed by finding that it exhibited activity and having an in vivo hematopoietic action and angiogenesis inhibitory action.
  • a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
  • the biologically active polypeptide is a hematopoietic factor.
  • the heparin affinity motif is composed of 3 to 100 amino acid residues including at least one basic amino acid sequence selected from the following (a) to (d) in the entire domain, and heparin or heparin-like substance
  • the chimeric protein according to [1] which is a domain that binds to a sulfo group present in the sugar chain.
  • BBB BBB
  • BXBB BXBB
  • BBXB BXBXB
  • BXBXB wherein the heparin affinity motif is a motif derived from heparin-binding growth factor or a part thereof.
  • a sustained-release pharmaceutical composition comprising the chimeric protein according to [1] to [7].
  • a sustained-release pharmaceutical composition comprising the chimeric protein according to [1] to [7].
  • a method for producing a pharmaceutically active compound for sustained release comprising a step of fusing a heparin affinity motif to a pharmaceutically active compound.
  • a method for producing a sustained-acting pharmaceutically active compound comprising a step of fusing a pharmaceutically active compound with a heparin affinity motif.
  • HEPO which is a chimeric protein in which EPO and a heparin affinity motif are connected, and confirmed that this acts as erythropoietin having heparin affinity in vitro and in vivo.
  • the following useful effects can be expected.
  • Long-acting erythrocytic agent Erythropoietin is used to treat renal anemia, etc., but it can reduce the burden on patients by increasing the dose of HEPO and decreasing the number of doses it can.
  • EPO has a therapeutic effect on vascular endothelial injury, but in order to obtain this effect, a dosage sufficient to induce polycythemia and cause heart failure is necessary, which is not realistic.
  • HEPO and its derivatives have a selective affinity for vascular endothelium, so it is expected to treat vascular endothelial injury in amounts that do not induce polycythemia, thrombotic thrombocytopenic purpura, post-transplantation / pharmacological properties and radiation It can be applied to the treatment of thrombotic microangiopathy due to injury, vasculitis associated with vascular endothelial injury such as nephritis and Kawasaki disease. 3.
  • EPO has protective effects on the heart, central nervous system, and other organs, but HEPO and its derivatives can be used as alternative therapeutic agents. 4).
  • the following useful properties can be added by imparting heparin affinity to any peptide preparation or non-peptide preparation: 1.
  • tissue affinity By generating tissue affinity, the drug concentration in the tissue can be maintained at a high level. 2.
  • affinity for any cell can be increased. 4).
  • affinity with the vascular endothelium By increasing the affinity with the vascular endothelium, a drug that selectively acts on the vascular endothelium can be created.
  • FIG. 1 shows the structure of the pMIB vector used for rhHEPO cDNA expression.
  • FIG. 2 shows the peptide sequence of rhHEPO.
  • FIG. 3 is a phase contrast micrograph (Panel A) and a cell number graph (Panel B) showing the results of heparin affinity of each EPO in vitro. (In the figure, 1 is EPO; 2 is AEPO; 3 is CEPO; 4 is HEPO).
  • FIG. 4 is a graph showing the erythropoietin activity of EPO and HEPO at various concentrations.
  • FIG. 5 is a graph showing the hematopoietic effect of HEPO.
  • FIG. 6 is a graph showing the angiogenesis inhibitory action of HEPO.
  • Polypeptide having biological activity is not particularly limited, but is preferably a polypeptide that preferably maintains the activity in the target tissue, or after binding to the tissue, it enters the blood from the tissue. A polypeptide that is preferably released gradually.
  • Polypeptides having biological activity include, but are not limited to, antibodies, enzymes, cytokines, and hormones. Specifically, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO), thrombopoietin and other hematopoietic factors, interferon, IL-1 and IL-6, etc.
  • cytokines Includes cytokines, chemokines, immunoglobulins, monoclonal antibodies, humanized antibodies, tissue plasminogen activator (TPA), urokinase, serum albumin, blood coagulation factor VIII, leptin, insulin, stem cell growth factor (SCF), etc.
  • TPA tissue plasminogen activator
  • urokinase urokinase
  • serum albumin serum albumin
  • blood coagulation factor VIII serum albumin
  • leptin blood coagulation factor VIII
  • leptin insulin
  • stem cell growth factor (SCF) stem cell growth factor
  • Heparin affinity motif in the present invention refers to a heparin affinity sequence motif contained in a heparin affinity substance, and has an excess amino group in a side chain such as a basic amino acid in the peptide sequence.
  • the peptide is not particularly limited as long as it is a peptide having a strong affinity for a sulfo group present in the sugar chain of a heparin-like substance.
  • For basic amino acids multiple basic amino acids may exist continuously or discontinuously in the motif, and even if there is no accumulation of basic amino acids in the primary structure, the protein forms a tertiary structure (three-dimensional structure).
  • a plurality of basic amino acids may be close to each other, and the structure may have heparin affinity.
  • a heparin affinity motif for example, at least one, preferably two or more basic amino acid sequences (heparin binding sequences) described in any of (a) to (d) below within the entire domain: In total, it consists of about 3 to 100 amino acid residues, preferably 10 to 40 amino acid residues.
  • heparin affinity motif a motif that binds to a sulfo group present in the sugar chain of a heparin-like substance, a motif derived from a heparin-binding growth factor such as vascular endothelial growth factor (VEGF), or a part thereof can be used.
  • VEGF vascular endothelial growth factor
  • Examples of such a motif include the entire heparin affinity domain described below, or a heparin affinity motif (underlined part) in the domain or a part thereof.
  • hBMP-2 QA K H K Q RKR L K SSCKRHP LYVDFSDVGW NDWIVAPPGY HAFYCHGECP FPLADHLNST NHAIVQTLVN SVNSKIPKAC CVPTELSAIS MLYLDENEKV VLKNYQDMVV EGCGCR (SEQ ID NO: 1) hFGF1: KK NG SC KR GP R THY GQ K (SEQ ID NO: 2) hFGF2: KR T GQY K LGS K TG PGQ K (SEQ ID NO: 3) hPDGF-A: R P R ESG KKRKRKR L K P T (SEQ ID NO: 4) hVEGF: E RRK HLFVQD PQTC K CSC K N TDS R C K A R QL ELNE R TC R CD K P RR (SEQ ID NO: 5) hPLGF: RRR P K G R G KR RR E K Q R PTDC HLCG
  • Heparin-binding growth factor examples include PLGF (Placental growth factor), PDGF (Platelet derived growth factor), VEGF (Vascular endothelial growth factor: Vascular endothelial growth factor) ), IL-8 (Interleukin-8), HGF (Hepatocyto growth factor), SF (Scatter factor), FGF-1 (Fibroblast growth factor-1: fibroblast) Examples include growth factor-1), FGF-2, FGF-7, FGF-10, and the like.
  • a tissue-selective drug can be obtained by using a tissue-specific heparin affinity motif or a part thereof.
  • the pharmaceutical active compound used in the present invention is not particularly limited, and may be a peptide drug or a non-peptide drug, and the activity is not particularly limited.
  • the present invention when the present invention is applied to erythropoietin, it is possible to reduce the number of times erythropoietin is administered to a patient with renal anemia, and it is possible to cause the function of erythropoietin to act selectively in a tissue. An effect can be obtained.
  • DDS Drug Delivery System
  • it can be applied as a DDS (Drug Delivery System) for targeting a target organ by binding a tissue-selective heparin-binding sequence.
  • EPO Erythropoietin
  • the erythropoietin used in the present invention can be any EPO, but is preferably a highly purified EPO, more specifically, a biological EPO that is substantially the same as mammalian EPO, particularly human EPO. It has activity.
  • the erythropoietin used in the present invention may be produced by any method, for example, natural human EPO (Japanese Patent Publication No. 1-38800) obtained by purification from a human-derived extract, or a gene Human EPO, etc. produced by various methods extracted into E. coli, yeast, Chinese hamster ovary cells (CHO cells), C127 cells, COS cells, myeloma cells, BHK cells, insect cells, etc. Can be used.
  • the erythropoietin used in the present invention is preferably EPO produced by a genetic engineering technique, and preferably EPO produced using mammalian cells (particularly CHO cells) (for example, Japanese Patent Publication No. 1-444317, KennethacJacobs). et al., Nature, 313 806-810 (1985)).
  • EPO obtained by gene recombination method has the same amino acid sequence as naturally occurring EPO, or has one or more amino acids in the amino acid sequence deleted, substituted, added, etc. Those having the same biological activity as EPO may be used.
  • Amino acid deletion, substitution, addition and the like can be performed by methods known to those skilled in the art. For example, those skilled in the art will recognize site-directed mutagenesis (Gotoh, T. et al. (1995) Gene 152, 271-275; Zoller, MJ and Smith, M. (1983) Methods Enzymol. 100, 468- 500; Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456; Kramer, W.
  • Polypeptide can be prepared. Amino acid mutations can also occur in nature. In general, the amino acid residue to be substituted is preferably substituted with another amino acid that preserves the properties of the amino acid side chain.
  • hydrophobic amino acids A, I, L, M, F, P, W, Y, V
  • hydrophilic amino acids R, D, N, C, E, Q, G, H, K, S, T
  • amino acids having aliphatic side chains G, A, V, L, I, P
  • amino acids having hydroxyl group-containing side chains S, T, Y
  • sulfur atom-containing side chains Amino acids (C, M) having carboxylic acids and amide-containing side chains (D, N, E, Q), amino groups having base-containing side chains (R, K, H), aromatic-containing side chains (H, F, Y, W) can be mentioned (all parentheses represent single letter amino acids).
  • a fusion protein of EPO and another protein can be used.
  • DNA encoding EPO and DNA encoding another protein are linked so that the frames coincide with each other, introduced into an expression vector, and expressed in a host.
  • Other proteins that are subjected to fusion with the EPO of the present invention are not particularly limited.
  • chemically modified EPO can also be used as the erythropoietin of the present invention.
  • chemically modified EPO include, for example, EPO chemically modified with polyethylene glycol or the like (WO90 / 12874, etc.), EPO without a sugar chain chemically modified with polyethylene glycol or the like, other such as vitamin B12, inorganic or Examples thereof include EPO to which a compound such as an organic compound is bonded.
  • an EPO derivative refers to EPO modified with an amino acid in an EPO molecule or EPO modified with a sugar chain in an EPO molecule.
  • the modification of the sugar chain in the EPO molecule includes sugar chain addition, substitution, deletion and the like.
  • Examples of preferred sugar chain modifications in the present invention include deletion of sialic acid in the EPO molecule.
  • both EPO produced by recombinant animal cells and EPO derived from urine are obtained as EPO compositions containing various EPOs having different sugar chain structures.
  • the number of sialic acids added to EPO molecules in the EPO composition varies depending on individual EPO molecules, but usually 11 to 15 sialic acids are added to one EPO molecule. By removing these sialic acids, it is possible to produce asialized EPO (asialo EPO).
  • the number of sialic acids removed during asialization is not particularly limited, and all sialic acids may be removed, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 sialic acids may be removed.
  • the preferred asialo EPO in the present invention has 10 or less sialic acid added to the EPO molecule, more preferably 5 or less, and particularly preferably 2 or less.
  • the number of sialic acids used in the present invention is the average number of EPO molecules contained in the EPO composition.
  • the average of sialic acid per molecule can be measured by methods known to those skilled in the art (EP 0428267, etc.).
  • EPO from which sialic acid has been removed can be prepared by a method known to those skilled in the art, for example, by treating EPO with an enzyme such as sialidase.
  • an enzyme such as sialidase.
  • a commercially available sialidase can be used. (Special Table 2005-507426, Nobuo Imai et al., Eur.J.Biochem, 194, 457-462 (1990), etc.)
  • Asialo EPO can be safely administered without side effects such as polycythemia and hypertension in angiogenesis treatment, and also when used alone or in combination with bone marrow mononuclear cell transplantation (BMI) Has also been reported to bring about a remarkable angiogenic effect (Japanese Patent Application No. 2007-519063 (Patent No. 4200509)). Asialo EPO is therefore a preferred EPO derivative.
  • the erythropoietin of the present invention may be a sugar chain-modified EPO, and this includes NESP (Novel Erythropoietin Stimulating Protein: WO85 / 02610, which is a sugar chain-modified EPO with sialic acid attached to the N-terminus of EPO. And EPO analogs with modified sugar chains such as WO91 / 05867 and WO95 / 05465).
  • NESP Novel Erythropoietin Stimulating Protein: WO85 / 02610, which is a sugar chain-modified EPO with sialic acid attached to the N-terminus of EPO.
  • EPO analogs with modified sugar chains such as WO91 / 05867 and WO95 / 05465).
  • amino acid modification in the EPO molecule examples include carbamylation, biotinylation, amidineation, acetylation, guanidination, and the like.
  • a preferred amino acid modification in the present invention is carbamylation.
  • amino acid residue to be modified is not particularly limited, and examples thereof include lysine, arginine, glutamic acid, tryptophan and the like, but a preferred amino acid modified in the present invention is lysine.
  • EPO in which lysine is carbamylated can be mentioned (Marcel L et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science, 2004; 305: 239, Fiordaliso E et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. PNAS, 2005; 102: 2046, etc.).
  • the carbamylation of EPO includes carbamylation by reaction with cyanate ion or the like, alkyl-carbamylation by reaction with alkyl-isocyanate or the like, aryl-carbamylation by reaction with aryl-isocyanate or the like.
  • Chimeric protein The present invention provides a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
  • Preparation of a chimeric protein containing a heparin affinity motif and a biologically active polypeptide can be carried out by known methods in various modes described below.
  • a heparin affinity motif sequence When a heparin affinity motif is introduced into a polypeptide having biological activity, a heparin affinity motif sequence may be inserted into the N-terminus, C-terminus of the peptide, or in the middle of the peptide sequence. Or you may use so that a basic substance may adjoin with a tertiary structure instead of a primary structure.
  • a heparin affinity motif may be bound using a linker or the like.
  • a basic side chain such as a free amino group may be directly introduced into the drug.
  • heparin affinity motif there are the following methods for creating a heparin affinity motif.
  • a known heparin affinity substance for example, a whole or part of a heparin affinity motif such as vascular endothelial growth factor (VEGF) is used as it is.
  • VEGF vascular endothelial growth factor
  • a small peptide is prepared so that lysine, arginine, other basic natural amino acids or synthetic amino acids have a certain sequence. 3. It is designed so that a plurality of basic amino acids are coordinated in the vicinity in a tertiary conformation. 4). Instead of basic amino acids, amino groups and other basic side chains are introduced directly or indirectly.
  • a chimeric protein can be obtained by linking a DNA encoding a biologically active polypeptide and a DNA encoding a heparin affinity motif and incorporating the DNA into an expression vector.
  • a recombinant vector for expression can be produced.
  • the chimeric protein produced during the culture can be obtained by culturing recombinant cells transformed with the vector and expressing the incorporated DNA.
  • hosts and expression vectors for producing chimeric proteins are known. Any of these expression systems can be applied to the present invention.
  • animal cells, plant cells, or fungal cells can be used.
  • the following cells can be exemplified as animal cells that can be used in the present invention.
  • Mammalian cells CHO, COS, myeloma, BHK (baby hamster kidney), Hela, Vero, HEK293, Ba / F3, HL-60, Jurkat, SK-HEP1, etc.
  • Amphibian cells Xenopus oocytes and the like.
  • Insect cells sf9, sf21, Tn5, HiFive, etc.
  • a protein gene expression system by cells derived from the genus Nicotiana such as Nicotiana tabacum is known.
  • Callus cultured cells can be used for transformation of plant cells.
  • Yeast genus Saccharomyces such as Saccharomyces serevisiae, Pichia genus filamentous fungi such as Pichia pastoris: Aspergillus genus such as Aspergillus niger.
  • protein gene expression systems using prokaryotic cells are also known.
  • bacterial cells such as E. coli and Bacillus subtilis can be used in the present invention.
  • the promoter / enhancer includes human cytomegalovirus early promoter / enhancer (human cytomegalovirus immediate-promoter / enhancer).
  • a promoter / enhancer derived from a mammalian cell such as a viral promoter / enhancer or human elongation factor 1 ⁇ (HEF1 ⁇ ) can be used for protein expression.
  • viruses that can utilize promoters / enhancers include retroviruses, polyomaviruses, adenoviruses, and simian virus 40 (SV40).
  • the method of Mulligan et al. (Nature (1979) 277, 108) can be used. Further, the HEF1 ⁇ promoter / enhancer can be easily used for target gene expression by the method of Mizushima et al. (Nucleic Acids Res. (1990) 18, 5322).
  • the gene can be expressed by functionally combining a useful promoter commonly used, a signal sequence for protein secretion, and a protein gene to be expressed.
  • the promoter include lacZ promoter and araB promoter.
  • the lacZ promoter the method of Ward et al. (Nature (1989) 341, 544-546; FASEBJ. (1992) 6, 2422-2427) can be used.
  • the araB promoter can be used for the expression of the target gene by the method of Better et al. (Science (1988) 240, 1041-1043).
  • composition comprising a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
  • the pharmaceutical composition of the present invention includes a suspending agent, a solubilizing agent, a stabilizer, an isotonic agent, a preservative, an adsorption inhibitor, a surfactant, a diluent, an excipient, pH, if necessary.
  • a regulator, a soothing agent, a buffering agent, a sulfur-containing reducing agent, an antioxidant and the like can be appropriately added.
  • suspending agent examples include methyl cellulose, polysorbate 80, hydroxyethyl cellulose, gum arabic, tragacanth powder, sodium carboxymethyl cellulose, polyoxyethylene sorbitan monolaurate and the like.
  • solution auxiliary examples include polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinic acid amide, polyoxyethylene sorbitan monolaurate, Magrogol, castor oil fatty acid ethyl ester, and the like.
  • Examples of the stabilizer include dextran 40, methylcellulose, gelatin, sodium sulfite, and sodium metasulfite.
  • amino acid added as stabilizers include free amino acids, salts such as sodium salts, potassium salts and hydrochlorides thereof. Amino acids can be added alone or in combination of two or more.
  • the amino acid added as a stabilizer is not particularly limited, but preferred amino acids include leucine, tryptophan, serine, glutamic acid, arginine, histidine, and lysine.
  • isotonic agent examples include D-mannitol and sorbate.
  • preservative examples include methyl paraoxybenzoate, ethyl paraoxybenzoate, sorbic acid, phenol, cresol, chlorocresol and the like.
  • adsorption inhibitor examples include human serum albumin, lecithin, dextran, ethylene oxide / propylene oxide copolymer, hydroxypropyl cellulose, methyl cellulose, polyoxyethylene hydrogenated castor oil, polyethylene glycol and the like.
  • Surfactants include nonionic surfactants such as sorbitan fatty acid esters such as sorbitan monocaprylate, sorbitan monolaurate, and sorbitan monopalmitate; glycerin such as glycerin monocaprylate, glycerin monomylate, and glycerin monostearate.
  • nonionic surfactants such as sorbitan fatty acid esters such as sorbitan monocaprylate, sorbitan monolaurate, and sorbitan monopalmitate
  • glycerin such as glycerin monocaprylate, glycerin monomylate, and glycerin monostearate.
  • Fatty acid ester such as decaglyceryl monostearate, decaglyceryl distearate, decaglyceryl monolinoleate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate , Polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • anionic surfactants such as sodium cetyl sulfate, lauryl Alkyl sulfates having an alkyl group of 10 to 18 carbon atoms such as sodium sulfate and sodium oleyl sulfate; average addition moles of ethylene oxide such as sodium polyoxyethylene lauryl sulfate A polyoxyethylene alkyl ether sulfate having 2 to 4 and an alkyl group having 10 to 18 carbon atoms; an alkylsulfosuccinic acid ester salt having an alkyl group having 8 to 18 carbon atoms, such as sodium lauryl sulfosuccinate; Typical examples include natural surfactants such as lecithin, glycerophospholipids, fingophospholipids such as sphingomyelin, and sucrose fatty acid esters of fatty acids having 12 to 18 carbon atoms.
  • surfactants can be added to the pharmaceutical composition of the present invention.
  • Preferred surfactants are polyoxyethylene sorbitan fatty acid esters such as polysorbate 20, 40, 60 or 80, with polysorbates 20 and 80 being particularly preferred.
  • Polyoxyethylene polyoxypropylene glycol represented by poloxamer such as Pluronic F-68 (registered trademark) is also preferable.
  • sulfur-containing reducing agent examples include N-acetylcysteine, N-acetylhomocysteine, thioctic acid, thiodiglycol, thioethanolamine, thioglycerol, thiosorbitol, thioglycolic acid and salts thereof, sodium thiosulfate, glutathione, carbon Examples thereof include those having a sulfhydryl group such as thioalkanoic acid having 1 to 7 atoms.
  • antioxidants examples include erythorbic acid, dibutylhydroxytoluene, butylhydroxyanisole, ⁇ -tocopherol, tocopherol acetate, L-ascorbic acid and its salt, L-ascorbyl palmitate, L-ascorbic acid stearate, sodium bisulfite, Chelating agents such as sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediaminetetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like can be mentioned.
  • EDTA disodium ethylenediaminetetraacetate
  • normally added components such as inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate and sodium bicarbonate; organic salts such as sodium citrate, potassium citrate and sodium acetate May be included.
  • inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate and sodium bicarbonate
  • organic salts such as sodium citrate, potassium citrate and sodium acetate
  • the sustained-release preparation can be prepared by a known method, for example, a method using a polymer as a base.
  • the polymer used as the base is preferably a polymer that is decomposed in vivo.
  • the pharmaceutical composition of the present invention varies depending on the type of biologically active polypeptide or pharmaceutically active compound and / or chimeric protein used and the disease to be treated.
  • HEPO Heparinophilic erythropoietin
  • PLGF placental growth factor
  • the dosage of the pharmaceutical composition of the present invention for each patient is determined by a doctor in consideration of the patient's age, weight, symptoms, route of administration and the like.
  • a high tissue concentration can be maintained by local administration.
  • the site to be locally administered is not particularly limited, and can be administered to, for example, a site (tissue, organ, etc.) where angiogenesis is promoted or blood flow is increased or a site ischemic.
  • Specific examples of the local administration site include lower limb skeletal muscle, upper limb skeletal muscle, and heart (myocardium).
  • the local administration is not particularly limited as long as the chimeric protein can be efficiently administered locally to the affected area without having a significant effect on the whole body, and local administration using a normal syringe, needle, local needle, catheter, etc. Is possible.
  • the pharmaceutical composition of the present invention is not limited to local administration but can also be intravascular administration.
  • intravascular administration When frequent administration from the body surface such as treatment of myocardial ischemia is difficult, by administering the chimeric protein of the present invention intravascularly, a part of the chimeric protein is expressed on the vascular endothelium. Since it binds to a substance for heparin such as proteoglycan sulfate, it is specifically adsorbed on the vascular endothelium and can maintain a high concentration in the tissue.
  • the pharmaceutical composition of the present invention can be a sustained-release pharmaceutical composition or a sustained-release pharmaceutical composition.
  • Example 1 Preparation of HEPO (1.1) Preparation of rhHEPO vector A rhHEPO cDNA was prepared from a human EPO cDNA containing no signal sequence by PCR using the following Primer. The construction of the generated cDNA is as follows: 5 '-(Sph-I cleavage sequence)-(full-length human EPO cDNA without signal sequence)-(human PLGF heparin affinity motif cDNA)-(stop codon)-(EcoRI cleavage sequence)-3'.
  • rhHEPO For purification of rhHEPO, a Heparin-Sepharose gel and a pre-packed column (HiTrap Heparin, GE Amersham) were used. After replacing the column with 1 M Tris buffer, 7.5pH7.5, inject the concentrated culture supernatant, wash the column with a sufficient amount of 1 M Tris buffer, and then wash with 1M NaCl + 0.3% BSA in 1M Tris buffer, pH 7.5 RhHEPO was recovered. The collected partially purified solution was concentrated using Ultracel- 10k, and the concentration was measured with hEPO ELISA kit (R & D) to obtain 10 ⁇ g / ml rhHEPO solution. A vector without rhHEPO cDNA incorporated was expressed in cells by the same method, and the collected culture supernatant was concentrated and purified by the same method as a control (Mock).
  • rhHEPO obtained is a chimeric protein consisting of 165 amino acids of human EPO and 30 amino acids of the heparin affinity motif of human PLGF, as shown in FIG.
  • the sequence of the cDNA encoding the chimeric protein rhHEPO is (SEQ ID NO: 11), and the amino acid sequence is (SEQ ID NO: 12).
  • Example 2 Examination of the biological activity of HEPO The in vitro properties of HEPO were examined. For comparison, natural human recombinant erythropoietin (EPO), asialoerythropoietin (AEPO) and carbamyl erythropoietin (CEPO) were used. AEPO was prepared from EPO (manufactured by Chugai Pharmaceutical Co., Ltd.) produced by gene recombination using CHO cells, and literature (Imai N. Higuchi M. Kawamura A. Tomonoh K. Oh-Eda M. Fujiwara M. Shimonaka Y. Ochi N. Physicochemical and biological characterization of asialoerythropoietin.
  • CEPO was prepared by reacting EPO with cyanate ion and carbamylating lysine according to the method described in Jin Zeng (Methods in Enzymology 205: 433-437, 1991).
  • Example 3 HEPO hematopoietic action
  • HEPO hematopoietic action was examined by the following method.
  • Experimental Method ICR mice were intramuscularly administered with 2 ⁇ g / kg body weight of EPO or HEPO or EPOs-free solution three times (days 0, 2, 4). Blood was collected on days 7 and 14, and the hemoglobin concentration (Hb) was measured. Results The results of the resulting hemoglobin concentration (Hb) are shown in FIG.
  • Example 4 Angiogenesis inhibitory action of HEPO
  • the angiogenesis inhibitory action of HEPO was examined by the following method.
  • Experimental Method Lower limb ischemia was created in C57BL mice by the following method. All experimental procedures were performed aseptically based on the Guide for the Care and Use of Laboratory Animals (NIH publication No. 86-23; National Institute of Health, Bethesda, MD). Mice were anesthetized by intraperitoneal administration of ketamine (60 mg / kg BW) and xylazine (6 mg / kg BW).
  • HEPO was observed to inhibit the natural recovery of blood flow.
  • the angiogenesis-promoting action is stronger in the 3rd intramuscular injection than in the 2nd intramuscular injection, but this is a so-called “needle treatment effect”, and there was no difference between the null group and the EPO group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Disclosed is a chimeric protein containing a polypeptide having a heparin affinity motif and biological activity. Additionally disclosed are a controlled-release pharmaceutical composition and a prolonged-action pharmaceutical composition containing the protein.

Description

ヘパリン親和性エリスロポエチンHeparin affinity erythropoietin
 本発明は、ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質に関する。 The present invention relates to a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
 エリスロポエチン(以下においてEPOと記載することもある)は、赤血球系前駆細胞の分化、増殖を促進する酸性糖タンパク質ホルモンであり、主として腎臓から産生される。血液中に最も豊富に存在する赤血球は、一定期間機能した後に脾臓などで破壊される(ヒトでは平均寿命が約120日)が、骨髄から絶えず供給されることによって、正常な状態では末梢の全赤血球数は常に一定に保たれている。EPOはこのような生体の赤血球の恒常性維持において中心的な役割を担っている。臨床的にはEPOは貧血の治療や術前術後の管理に利用されている。 Erythropoietin (hereinafter sometimes referred to as EPO) is an acidic glycoprotein hormone that promotes the differentiation and proliferation of erythroid progenitor cells, and is produced mainly from the kidney. The most abundant red blood cells in the blood are destroyed in the spleen after functioning for a certain period of time (in humans, the average life span is about 120 days). The red blood cell count is always kept constant. EPO plays a central role in maintaining homeostasis of erythrocytes in these organisms. Clinically, EPO is used for the treatment of anemia and pre- and postoperative management.
 EPOは造血因子としての働きの他に、神経系細胞、心筋細胞、腎尿細管上皮細胞などでアポトーシス抑制や組織保護の作用をすることが知られている(PNAS 100:4802-4806, 2003他)。EPOの有するこのような2つの作用は、EPOが2つの異なるシグナル伝達経路によって作用するためであると考えられている。EPOがEPO受容体のホモダイマーに作用すると、細胞内のJAK2シグナル伝達経路を通じて造血作用を及ぼす。一方、EPOがEPO受容体とcommonβ受容体(βcR)とのヘテロダイマーに作用すると、細胞内のERK1/2シグナル伝達経路を通じて抗アポトーシス作用を及ぼす(PNAS 101:14907-14912, 2004)。 In addition to its function as a hematopoietic factor, EPO is known to suppress apoptosis and protect tissues in nervous system cells, cardiomyocytes, renal tubular epithelial cells, etc. (PNAS 100: 4802-4806, 2003, etc.) ). These two actions of EPO are thought to be due to EPO acting by two different signal transduction pathways. When EPO acts on homodimers of the EPO receptor, it exerts hematopoiesis through the intracellular JAK2 signaling pathway. On the other hand, when EPO acts on the heterodimer of EPO receptor and common β receptor (βcR), it exerts an anti-apoptotic effect through the intracellular ERK1 / 2 signaling pathway (PNAS 101: 14907-14912, 2004).
 EPOの有する上記抗アポトーシス作用に基づき、EPO が血管新生促進作用を有し、虚血性疾患の治療剤として有用であることも報告されている(Christopher H et al., Blood 102(4);1340-1346, 2003、Ferdinand H B et al., Blood 103(3);921-926, 2004、Kyle J S et al., Cardiovascular Research 59; 538-548, 2003など)。 Based on the anti-apoptotic action of EPO, EPOE has angiogenesis-promoting activity and is also reported to be useful as a therapeutic agent for ischemic diseases (Christopher H et al., Blood 102 (4); 1340 -1346, 2003, Ferdinand H B et al., Blood 103 (3); 921-926, 2004, Kyle J S et al., Cardiovascular Research 59; 538-548, 2003).
 EPOなどのヘパリン親和性を有さないサイトカインをヒトなどの哺乳類の組織内に投与した場合には、組織内に存在する血管から再吸収されやすく、そのために組織内濃度が低下することがある。たとえば、EPOを虚血性疾患の治療に用いるときには、血管新生を起こしたい目的臓器において、十分な血管が新生されるまでの1週間前後は局所において十分高い薬剤濃度が維持される必要がある。四肢の虚血の治療など体表から局所内に容易に薬剤を到達できる場合には連日投与などの方法が可能であるが、心筋虚血の治療など、体表からの頻回の投与に困難がある場合には、新しい製剤を開発することが求められている。 When a cytokine having no heparin affinity, such as EPO, is administered into a mammalian tissue such as a human, it is likely to be reabsorbed from blood vessels present in the tissue, and the tissue concentration may decrease. For example, when EPO is used for the treatment of ischemic disease, it is necessary to maintain a sufficiently high drug concentration locally in a target organ where angiogenesis is desired for about one week until sufficient blood vessels are regenerated. If the drug can easily reach the local area from the body surface, such as treatment of limb ischemia, it can be administered daily, but difficult to administer frequently from the body surface, such as treatment of myocardial ischemia. If there is, there is a need to develop new formulations.
 生体内に存在する糖鎖を含むタンパク質にはグリコプロテインとプロテオグリカン(PG)がある。PGの持つ糖鎖には、コンドロイチン硫酸・ケラタン硫酸・ヘパリン・ヘパラン硫酸・デルマタン硫酸などのいわゆるヘパリン様物質があり、糖鎖のもつスルホ基(硫酸基)が他の物質・特に塩基性アミノ酸残基との間で相互作用を行う。これらヘパリン様物質は結合組織内に豊富に存在し、また各種細胞膜にはシンデカン等のPGが発現しており、細胞外マトリックスおよび細胞表面での生物反応の足場を形成している。特に血管内皮表面には各種のPGが発現し、各種血中物質に反応の場を提供している。 There are glycoproteins and proteoglycans (PG) as proteins containing sugar chains present in the living body. There are so-called heparin-like substances such as chondroitin sulfate, keratan sulfate, heparin, heparan sulfate, and dermatan sulfate in the sugar chain of PG, and the sulfo group (sulfate group) of the sugar chain is another substance, especially basic amino acid residues. Interact with the group. These heparin-like substances are abundant in connective tissues, and PG such as syndecan is expressed in various cell membranes, forming a scaffold for biological reactions on the extracellular matrix and cell surface. In particular, various PGs are expressed on the surface of vascular endothelium, providing a place for reaction to various blood substances.
 サイトカイン・ケモカイン・およびその他の生物活性物質のうち、かなりのものがヘパリン親和性を有する。細胞から分泌されるこれらのヘパリン親和性物質は細胞周囲に存在する細胞外マトリックスに対する親和性を示すため、分泌細胞を山の頂点とする濃度勾配を形成し、生物活性物質の標的細胞に対して極性や運動の方向性に関する情報を提供する。またPGを発現する細胞表面、および特に血管内皮表面には、これら生物活性物質が強く集積する。 A considerable number of cytokines, chemokines, and other biologically active substances have an affinity for heparin. Since these heparin-affinity substances secreted from the cells show affinity for the extracellular matrix existing around the cells, a concentration gradient with the secretory cells at the top of the mountain is formed, and the target cells of the bioactive substances are Provides information on polarity and direction of movement. In addition, these bioactive substances are strongly accumulated on the surface of cells expressing PG, and particularly on the surface of vascular endothelium.
 ヘパリン親和性物質は、そのペプチド配列の中にヘパリン親和性モチーフを有する。リシン・アルギニンなどの塩基性アミノ酸は側鎖に余剰のアミノ基を有し、ヘパリン様物質の糖鎖に存在するスルホ基と強い親和性を示す。モチーフ内に複数の塩基性アミノ酸が連続または不連続に存在する場合、あるいは一次構造上は塩基性アミノ酸の集積がなくとも、蛋白が三次構造(立体構造)を形成したときに複数の塩基性アミノ酸が近接した場合には、当該構造がヘパリン親和性モチーフとして機能する。 A heparin affinity substance has a heparin affinity motif in its peptide sequence. Basic amino acids such as lysine and arginine have an excess amino group in the side chain, and have a strong affinity for the sulfo group present in the sugar chain of heparin-like substances. Multiple basic amino acids when multiple basic amino acids are present in the motif continuously or discontinuously, or when the protein forms a tertiary structure (three-dimensional structure) even if there is no accumulation of basic amino acids in the primary structure When they are close to each other, the structure functions as a heparin affinity motif.
 現在までに、ヘパリン結合性を利用してEPOを精製する方法が公知(WO97017366(特表平11-511483))となっている。 To date, a method for purifying EPO using heparin-binding properties has been publicly known (WO97017366 (Special Table No. 11-511483)).
 しかしながら、ヘパリン親和性モチーフが結合されたEPOなどの生物活性を有するポリペプチドについては全く知られていない。 However, there is no known biologically active polypeptide such as EPO to which a heparin affinity motif is bound.
WO97017366(特表平11-511483)WO97017366 (Special table 11-511483)
 本発明は、ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質、およびこれを含む徐放性医薬組成物または持効性医薬組成物を提供することを目的とする。 An object of the present invention is to provide a chimeric protein containing a heparin affinity motif and a biologically active polypeptide, and a sustained-release pharmaceutical composition or sustained-release pharmaceutical composition containing the same.
 本発明者らは、EPOとヘパリン親和性モチーフをつなげたキメラ蛋白質であるヘパリン親和性エリスロポエチン(Heparinophilic erythropoietin: HEPO)を作製し、これが組織成分のヘパリン様物質に対する親和性を示し、かつEPOの生物活性を示したこと、並びにin vivoでの造血作用および血管新生阻害作用を有することを見出し、本発明を完成させた。 The present inventors produced heparinophilic erythropoietin (HEPO), which is a chimeric protein linking EPO and a heparin affinity motif, which shows the affinity of tissue components for heparin-like substances, and EPO organisms. The present invention was completed by finding that it exhibited activity and having an in vivo hematopoietic action and angiogenesis inhibitory action.
 すなわち、本発明は、以下のものを提供する。
[1]ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質。
[2]生物活性を有するポリペプチドがサイトカイン、ホルモン又はケモカインである[1]に記載のキメラ蛋白質。
[3]生物活性を有するポリペプチドが造血因子である[2]に記載のキメラ蛋白質。
[4]造血因子がヒトエリスロポエチンである[3]に記載のキメラ蛋白質。
[5]ヘパリン親和性モチーフが、少なくとも当該ドメイン全体に少なくとも1つの下記(a)~(d)から選ばれる塩基性アミノ酸配列を含む3~100個のアミノ酸残基からなり、ヘパリン又はヘパリン様物質の糖鎖に存在するスルホ基と結合するドメインである[1]に記載のキメラ蛋白質。
(a)BBB
(b)BXBB
(c)BBXB
(d)BXBXB
(ここで、Bは、RまたはK;Xは、RまたはK以外のアミノ酸を表す)
[6]ヘパリン親和性モチーフがヘパリン結合性増殖因子由来のモチーフまたはその一部である[1]に記載のキメラ蛋白質。
[7]ヘパリン結合性増殖因子が、PLGFである[6]に記載のキメラ蛋白質。
[8][1]~[7]に記載のキメラ蛋白質を含む徐放性医薬組成物。
[9][1]~[7]に記載のキメラ蛋白質を含む持効性医薬組成物。
[10]医薬活性化合物とヘパリン親和性モチーフを融合させることによる医薬活性化合物の徐放化方法。
[11]医薬活性化合物とヘパリン親和性モチーフを融合させることによる医薬活性化合物の持効化方法。
「12]医薬活性化合物にヘパリン親和性モチーフを融合させる工程を含む徐放化用医薬活性化合物の作製方法。
[13]医薬活性化合物にヘパリン親和性モチーフを融合させる工程を含む持効化用医薬活性化合物の作製方法。
That is, the present invention provides the following.
[1] A chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
[2] The chimeric protein according to [1], wherein the polypeptide having biological activity is a cytokine, hormone or chemokine.
[3] The chimeric protein according to [2], wherein the biologically active polypeptide is a hematopoietic factor.
[4] The chimeric protein according to [3], wherein the hematopoietic factor is human erythropoietin.
[5] The heparin affinity motif is composed of 3 to 100 amino acid residues including at least one basic amino acid sequence selected from the following (a) to (d) in the entire domain, and heparin or heparin-like substance The chimeric protein according to [1], which is a domain that binds to a sulfo group present in the sugar chain.
(a) BBB
(b) BXBB
(c) BBXB
(d) BXBXB
(Where B represents R or K; X represents an amino acid other than R or K)
[6] The chimeric protein according to [1], wherein the heparin affinity motif is a motif derived from heparin-binding growth factor or a part thereof.
[7] The chimeric protein according to [6], wherein the heparin-binding growth factor is PLGF.
[8] A sustained-release pharmaceutical composition comprising the chimeric protein according to [1] to [7].
[9] A sustained-release pharmaceutical composition comprising the chimeric protein according to [1] to [7].
[10] A method for sustained release of a pharmaceutically active compound by fusing a pharmaceutically active compound and a heparin affinity motif.
[11] A method for activating a pharmaceutically active compound by fusing a pharmaceutically active compound and a heparin affinity motif.
[12] A method for producing a pharmaceutically active compound for sustained release, comprising a step of fusing a heparin affinity motif to a pharmaceutically active compound.
[13] A method for producing a sustained-acting pharmaceutically active compound comprising a step of fusing a pharmaceutically active compound with a heparin affinity motif.
 本発明者らは、EPOとヘパリン親和性モチーフをつなげたキメラ蛋白質であるHEPOを作製し、これがin vitroおよびin vivoでヘパリン親和性をもつエリスロポエチンとして作用することを確認した。本願発明により、以下の有用な作用を期待することができる。
1.長期間作用する赤血球増血剤:腎性貧血等の治療にエリスロポエチン製剤が用いられているが、HEPOの1回投与量を増量し投与回数を減少させることで、患者の負担を軽減することができる。
2.EPOには血管内皮傷害治療作用があるが、この作用を得るためには多血症を誘発し心不全を来す程度の投与量が必要であり、現実的ではない。HEPOおよびその誘導体は血管内皮に対する選択的な親和性があるため、多血症を誘発しない量での血管内皮傷害治療作用が見込まれ、血栓性血小板減少性紫斑病、移植後・薬剤性および放射線障害による血栓性微少血管障害、腎炎・川崎病などの血管内皮傷害を伴う血管炎などの治療に応用しうる。
3.EPOには心臓・中枢神経・その他の臓器に対する保護作用があるが、HEPOおよびその誘導体はこれに代わる治療薬として応用しうる。
4.移植用臓器の保存剤に添加することで、移植臓器の劣化を防ぎ生着率を高めることができる。
5.血管新生阻害作用があるので、癌性血管の発育を阻害し、抗癌剤として応用できる。
The present inventors produced HEPO, which is a chimeric protein in which EPO and a heparin affinity motif are connected, and confirmed that this acts as erythropoietin having heparin affinity in vitro and in vivo. According to the present invention, the following useful effects can be expected.
1. Long-acting erythrocytic agent: Erythropoietin is used to treat renal anemia, etc., but it can reduce the burden on patients by increasing the dose of HEPO and decreasing the number of doses it can.
2. EPO has a therapeutic effect on vascular endothelial injury, but in order to obtain this effect, a dosage sufficient to induce polycythemia and cause heart failure is necessary, which is not realistic. HEPO and its derivatives have a selective affinity for vascular endothelium, so it is expected to treat vascular endothelial injury in amounts that do not induce polycythemia, thrombotic thrombocytopenic purpura, post-transplantation / pharmacological properties and radiation It can be applied to the treatment of thrombotic microangiopathy due to injury, vasculitis associated with vascular endothelial injury such as nephritis and Kawasaki disease.
3. EPO has protective effects on the heart, central nervous system, and other organs, but HEPO and its derivatives can be used as alternative therapeutic agents.
4). By adding to a preservative for organs for transplantation, deterioration of the transplanted organ can be prevented and the survival rate can be increased.
5). Since it has an angiogenesis inhibitory effect, it inhibits the growth of cancerous blood vessels and can be applied as an anticancer agent.
 さらに、本発明によれば、任意のペプチド製剤あるいは非ペプチド製剤にヘパリン親和性を付与することで、以下の有用な性質を付加することができる:
1.組織親和性が生じることで、組織内における薬剤濃度を高い状態で維持できる。
2.組織内に投与した場合に、組織からゆっくり血中へ放出されるため、徐放性薬剤として使用できる。
3.ヘパリン親和性モチーフの構造を調整することで、任意の細胞への親和性を高めることができる。
4.特に血管内皮との親和性を高めることで、血管内皮に選択的に作用する薬剤を創製できる。
Furthermore, according to the present invention, the following useful properties can be added by imparting heparin affinity to any peptide preparation or non-peptide preparation:
1. By generating tissue affinity, the drug concentration in the tissue can be maintained at a high level.
2. When administered into a tissue, it is slowly released into the blood from the tissue, so that it can be used as a sustained-release drug.
3. By adjusting the structure of the heparin affinity motif, affinity for any cell can be increased.
4). In particular, by increasing the affinity with the vascular endothelium, a drug that selectively acts on the vascular endothelium can be created.
図1は、rhHEPOのcDNA発現用に用いたpMIBベクターの構造を示す。FIG. 1 shows the structure of the pMIB vector used for rhHEPO cDNA expression. 図2は、rhHEPOのペプチド配列を示す。FIG. 2 shows the peptide sequence of rhHEPO. 図3は、In vitroでの各EPOのヘパリン親和性の結果を示す位相差顕微鏡写真(パネルA)および細胞数のグラフ(パネルB)である。((図中、1はEPO;2はAEPO;3はCEPO;4はHEPOである)。FIG. 3 is a phase contrast micrograph (Panel A) and a cell number graph (Panel B) showing the results of heparin affinity of each EPO in vitro. (In the figure, 1 is EPO; 2 is AEPO; 3 is CEPO; 4 is HEPO). 図4は、各濃度のEPOおよびHEPOのエリスロポエチン活性を示すグラフである。FIG. 4 is a graph showing the erythropoietin activity of EPO and HEPO at various concentrations. 図5は、HEPOの造血作用を示すグラフである。FIG. 5 is a graph showing the hematopoietic effect of HEPO. 図6は、HEPOの血管新生阻害作用を示すグラフである。FIG. 6 is a graph showing the angiogenesis inhibitory action of HEPO.
生物活性を有するポリペプチド
 本発明に用いる生物活性を有するポリペプチドは特に限定されないが、ターゲットとなる組織内において当該活性を持続させることが好ましいポリペプチド、あるいは組織に結合後、組織から血中に徐々に放出させることが好ましいポリペプチドをいう。生物活性を有するポリペプチドは抗体、酵素、サイトカイン、ホルモンを含むがこれに限定されない。具体的には、顆粒球コロニー刺激因子(G-CSF)、顆粒球マクロファージコロニー刺激因子(GM-CSF)、エリスロポエチン(EPO)、トロンボポエチン等の造血因子、インターフェロン、IL-1やIL-6等のサイトカイン、ケモカイン、免疫グロブリン、モノクローナル抗体、ヒト型化抗体、組織プラスミノーゲン活性化因子(TPA)、ウロキナーゼ、血清アルブミン、血液凝固第VIII因子、レプチン、インシュリン、幹細胞成長因子(SCF)などを含むが、これらに限定されない。特に、G-CSF、EPOなどの造血因子が好ましく、EPOが最も好ましい。
Polypeptide having biological activity The biologically active polypeptide used in the present invention is not particularly limited, but is preferably a polypeptide that preferably maintains the activity in the target tissue, or after binding to the tissue, it enters the blood from the tissue. A polypeptide that is preferably released gradually. Polypeptides having biological activity include, but are not limited to, antibodies, enzymes, cytokines, and hormones. Specifically, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO), thrombopoietin and other hematopoietic factors, interferon, IL-1 and IL-6, etc. Includes cytokines, chemokines, immunoglobulins, monoclonal antibodies, humanized antibodies, tissue plasminogen activator (TPA), urokinase, serum albumin, blood coagulation factor VIII, leptin, insulin, stem cell growth factor (SCF), etc. However, it is not limited to these. In particular, hematopoietic factors such as G-CSF and EPO are preferred, and EPO is most preferred.
 本発明では、特に組織親和性の低いポリペプチドにヘパリン親和性モチーフを結合させることで、当該生物活性の持効性や徐放性を向上させることが可能となり有用である。 In the present invention, particularly by binding a heparin affinity motif to a polypeptide having low tissue affinity, it is possible to improve the sustained activity and sustained release of the biological activity.
ヘパリン親和性モチーフ
 本発明におけるヘパリン親和性モチーフとは、ヘパリン親和性物質中に含まれるヘパリン親和性の配列モチーフをいい、ペプチド配列の中に塩基性アミノ酸等の側鎖に余剰のアミノ基を有する配列であって、ヘパリン様物質の糖鎖に存在するスルホ基と強い親和性を示すペプチドであれば特に限定されない。塩基性アミノ酸は、モチーフ内に複数の塩基性アミノ酸が連続または不連続に存在していても良いし、一次構造上は塩基性アミノ酸の集積がなくとも、蛋白が三次構造(立体構造)を形成したときに複数の塩基性アミノ酸が近接し、当該構造がヘパリン親和性を有していてもよい。そのようなヘパリン親和性モチーフとしては、例えば、当該ドメイン全体内に下記(a)~(d)に記載のいずれかの塩基性アミノ酸配列(ヘパリン結合配列)を少なくとも1つ、好ましくは2つ以上含む、全体として3~100個程度のアミノ酸残基からなり、好ましくは10~40個のアミノ酸残基からなる。
(a)BBB
(b)BXBB
(c)BBXB
(d)BXBXB
(ここで、Bは、RまたはK;Xは、RまたはK以外のアミノ酸を表す)
 ヘパリン親和性モチーフはヘパリン様物質の糖鎖に存在するスルホ基と結合するモチーフや、血管内皮細胞増殖因子(VEGF)などのヘパリン結合性増殖因子由来のモチーフまたはその一部を用いることができる。そのようなモチーフとしては、例えば、下記に記載のヘパリン親和性ドメイン全体若しくは当該ドメイン中のヘパリン親和性モチーフ(下線部)またはその一部が挙げられる。
hBMP-2:
QAKHKQRKRLKSSCKRHP LYVDFSDVGW NDWIVAPPGY HAFYCHGECP FPLADHLNST NHAIVQTLVN SVNSKIPKAC CVPTELSAIS MLYLDENEKV VLKNYQDMVV EGCGCR (SEQ ID NO:1)
hFGF1:
KKNG SCKRGPRTHY GQK (SEQ ID NO:2)
hFGF2:
KRT GQYKLGSKTG PGQK (SEQ ID NO:3)
hPDGF-A:
RPRESG KKRKRKRLKP T (SEQ ID NO:4)
hVEGF:
ERRKHLFVQD PQTCKCSCKN TDSRCKARQL ELNERTCRCD KPRR (SEQ ID NO:5)
hPLGF:
RRRPKGRGKR RREKQRPTDC HLCGDAVPRR(SEQ ID NO:6)
が挙げられる。
Heparin affinity motif The heparin affinity motif in the present invention refers to a heparin affinity sequence motif contained in a heparin affinity substance, and has an excess amino group in a side chain such as a basic amino acid in the peptide sequence. The peptide is not particularly limited as long as it is a peptide having a strong affinity for a sulfo group present in the sugar chain of a heparin-like substance. For basic amino acids, multiple basic amino acids may exist continuously or discontinuously in the motif, and even if there is no accumulation of basic amino acids in the primary structure, the protein forms a tertiary structure (three-dimensional structure). In this case, a plurality of basic amino acids may be close to each other, and the structure may have heparin affinity. As such a heparin affinity motif, for example, at least one, preferably two or more basic amino acid sequences (heparin binding sequences) described in any of (a) to (d) below within the entire domain: In total, it consists of about 3 to 100 amino acid residues, preferably 10 to 40 amino acid residues.
(a) BBB
(b) BXBB
(c) BBXB
(d) BXBXB
(Where B represents R or K; X represents an amino acid other than R or K)
As the heparin affinity motif, a motif that binds to a sulfo group present in the sugar chain of a heparin-like substance, a motif derived from a heparin-binding growth factor such as vascular endothelial growth factor (VEGF), or a part thereof can be used. Examples of such a motif include the entire heparin affinity domain described below, or a heparin affinity motif (underlined part) in the domain or a part thereof.
hBMP-2:
QA K H K Q RKR L K SSCKRHP LYVDFSDVGW NDWIVAPPGY HAFYCHGECP FPLADHLNST NHAIVQTLVN SVNSKIPKAC CVPTELSAIS MLYLDENEKV VLKNYQDMVV EGCGCR (SEQ ID NO: 1)
hFGF1:
KK NG SC KR GP R THY GQ K (SEQ ID NO: 2)
hFGF2:
KR T GQY K LGS K TG PGQ K (SEQ ID NO: 3)
hPDGF-A:
R P R ESG KKRKRKR L K P T (SEQ ID NO: 4)
hVEGF:
E RRK HLFVQD PQTC K CSC K N TDS R C K A R QL ELNE R TC R CD K P RR (SEQ ID NO: 5)
hPLGF:
RRR P K G R G KR RR E K Q R PTDC HLCGDAVP RR (SEQ ID NO: 6)
Is mentioned.
ヘパリン結合性増殖因子
 ヘパリン結合性増殖因子としては、例えば、PLGF(Placental growth factor: 胎盤増殖因子)、PDGF(Platelet derived growth factor: 血小板由来成長因子)、VEGF(Vascular endothelial growth factor: 血管内皮増殖因子)、IL-8(Interleukin-8: インターロイキン-8)、HGF(Hepatocyto growth factor: 肝細胞増殖因子)、SF(Scatter factor: 分散因子)、FGF-1(Fibroblast growth factor-1: 線維芽細胞増殖因子-1)、FGF-2、FGF-7、FGF-10等が挙げられる。特に組織特異的なヘパリン親和性モチーフまたはその一部を用いることで、組織選択的な薬剤とすることも可能である。
Heparin-binding growth factor Examples of heparin-binding growth factors include PLGF (Placental growth factor), PDGF (Platelet derived growth factor), VEGF (Vascular endothelial growth factor: Vascular endothelial growth factor) ), IL-8 (Interleukin-8), HGF (Hepatocyto growth factor), SF (Scatter factor), FGF-1 (Fibroblast growth factor-1: fibroblast) Examples include growth factor-1), FGF-2, FGF-7, FGF-10, and the like. In particular, a tissue-selective drug can be obtained by using a tissue-specific heparin affinity motif or a part thereof.
医薬活性化合物
 本発明において用いられる医薬活性化合物は特に限定されず、ペプチド医薬でも非ペプチド医薬でもよく、活性も特に限定されない。例えば、エリスロポエチンに本発明を適用すれば、腎性貧血患者へのエリスロポエチンの投与回数を減少させることが可能となったり、組織選択的にエリスロポエチンの機能を作用させることが可能となる等の優れた効果を得ることができる。例えば抗癌剤などの非ペプチド性医薬活性化合物にリンカー等を用いてヘパリン結合性配列を結合させることで、投与局所内での濃度を持続させることが可能となる。また組織選択的なヘパリン結合性配列を結合させることで目的とする臓器へのターゲッティングを行うためのDDS (Drug Delivery System) として応用することも可能である。
Pharmaceutically active compound The pharmaceutical active compound used in the present invention is not particularly limited, and may be a peptide drug or a non-peptide drug, and the activity is not particularly limited. For example, when the present invention is applied to erythropoietin, it is possible to reduce the number of times erythropoietin is administered to a patient with renal anemia, and it is possible to cause the function of erythropoietin to act selectively in a tissue. An effect can be obtained. For example, it is possible to maintain the concentration within the administration site by binding a heparin-binding sequence to a non-peptide pharmaceutically active compound such as an anticancer drug using a linker or the like. Further, it can be applied as a DDS (Drug Delivery System) for targeting a target organ by binding a tissue-selective heparin-binding sequence.
エリスロポエチン(EPO)
 本発明に用いるエリスロポエチンは、どのようなEPOでも用いることができるが、好ましくは高度に精製されたEPOであり、より具体的には、哺乳動物EPO、特にヒトEPOと実質的に同じ生物学的活性を有するものである。
Erythropoietin (EPO)
The erythropoietin used in the present invention can be any EPO, but is preferably a highly purified EPO, more specifically, a biological EPO that is substantially the same as mammalian EPO, particularly human EPO. It has activity.
 本発明で用いるエリスロポエチンは、いかなる方法で製造されたものでもよく、例えば、ヒト由来の抽出物から精製して得られた天然のヒトEPO(特公平1-38800号公報、など)や、あるいは遺伝子工学的手法により大腸菌、イースト菌、チャイニーズハムスター卵巣細胞(CHO細胞)、C127細胞、COS細胞、ミエローマ細胞、BHK細胞、昆虫細胞、などに産生せしめ、種々の方法で抽出し分離精製したヒトEPOなどを用いることができる。本発明において用いられるエリスロポエチンは、遺伝子工学的手法により製造されたEPOが好ましく、哺乳動物細胞(特にCHO細胞)を用いて製造されたEPOが好ましい(例えば、特公平1-44317号公報、Kenneth Jacobs et al., Nature, 313 806-810 (1985)など)。 The erythropoietin used in the present invention may be produced by any method, for example, natural human EPO (Japanese Patent Publication No. 1-38800) obtained by purification from a human-derived extract, or a gene Human EPO, etc. produced by various methods extracted into E. coli, yeast, Chinese hamster ovary cells (CHO cells), C127 cells, COS cells, myeloma cells, BHK cells, insect cells, etc. Can be used. The erythropoietin used in the present invention is preferably EPO produced by a genetic engineering technique, and preferably EPO produced using mammalian cells (particularly CHO cells) (for example, Japanese Patent Publication No. 1-444317, KennethacJacobs). et al., Nature, 313 806-810 (1985)).
 遺伝子組換え法により得られるEPOには、天然由来のEPOとアミノ酸配列が同じであるもの、あるいは該アミノ酸配列中の1または複数のアミノ酸を欠失、置換、付加等したもので、天然由来のEPOと同様の生物学的活性を有するもの等であってもよい。アミノ酸の欠失、置換、付加などは当業者に公知の方法により行うことが可能である。例えば、当業者であれば、部位特異的変異誘発法(Gotoh, T. et al. (1995) Gene 152, 271-275;Zoller, M.J. and Smith, M. (1983) Methods Enzymol. 100, 468-500;Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456;Kramer, W. and Fritz, H.J. (1987) Methods Enzymol. 154, 350-367;Kunkel, T.A. (1985) Proc. Natl. Acad. Sci. USA. 82, 488-492;Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、EPOのアミノ酸に適宜変異を導入することにより、EPOと機能的に同等なポリペプチドを調製することができる。また、アミノ酸の変異は自然界においても生じうる。一般的に、置換されるアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に置換されることが好ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ離(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている(Mark, D.F. et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666;Zoller, M.J. & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500;Wang, A. et al., Science 224, 1431-1433;Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413)。 EPO obtained by gene recombination method has the same amino acid sequence as naturally occurring EPO, or has one or more amino acids in the amino acid sequence deleted, substituted, added, etc. Those having the same biological activity as EPO may be used. Amino acid deletion, substitution, addition and the like can be performed by methods known to those skilled in the art. For example, those skilled in the art will recognize site-directed mutagenesis (Gotoh, T. et al. (1995) Gene 152, 271-275; Zoller, MJ and Smith, M. (1983) Methods Enzymol. 100, 468- 500; Kramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456; Kramer, W. and Fritz, HJ (1987) Methods Enzymol. 154, 350-367; Kunkel, TA (1985) Proc. Natl. Acad. Sci. USA. 82, 488-492; Kunkel (1988) Methods Enzymol. 85, 2763-2766) etc. Polypeptide can be prepared. Amino acid mutations can also occur in nature. In general, the amino acid residue to be substituted is preferably substituted with another amino acid that preserves the properties of the amino acid side chain. For example, as the properties of amino acid side chains, hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids having aliphatic side chains (G, A, V, L, I, P), amino acids having hydroxyl group-containing side chains (S, T, Y), sulfur atom-containing side chains Amino acids (C, M) having carboxylic acids and amide-containing side chains (D, N, E, Q), amino groups having base-containing side chains (R, K, H), aromatic-containing side chains (H, F, Y, W) can be mentioned (all parentheses represent single letter amino acids). It is already known that a polypeptide having an amino acid sequence modified by deletion, addition and / or substitution with other amino acids of one or more amino acid residues to a certain amino acid sequence maintains its biological activity. (Mark, DF et al., Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666; Zoller, MJ & Smith, M. Nucleic Acids Research (1982) 10, 6487-6500; Wang, A Et al., Science 224, 1431-1433; Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79,) 6409-6413).
 又、本発明のエリスロポエチンとして、EPOと他のタンパク質との融合タンパク質を用いることも可能である。融合ポリペプチドを作製するには、例えば、EPOをコードするDNAと他のタンパク質をコードするDNAをフレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させればよい。本発明のEPOとの融合に付される他のタンパク質は、特に限定されない。 Also, as the erythropoietin of the present invention, a fusion protein of EPO and another protein can be used. In order to produce a fusion polypeptide, for example, DNA encoding EPO and DNA encoding another protein are linked so that the frames coincide with each other, introduced into an expression vector, and expressed in a host. Other proteins that are subjected to fusion with the EPO of the present invention are not particularly limited.
 又、本発明のエリスロポエチンとして、化学修飾したEPOを用いることも可能である。化学修飾したEPOの例として、例えば、ポリエチレングリコール等により化学修飾されたEPO(WO90/12874など)、糖鎖のついていないEPOをポリエチレングリコール等により化学修飾したもの、その他、ビタミンB12等、無機あるいは有機化合物等の化合物を結合させたEPOなどを挙げることができる。 Moreover, chemically modified EPO can also be used as the erythropoietin of the present invention. Examples of chemically modified EPO include, for example, EPO chemically modified with polyethylene glycol or the like (WO90 / 12874, etc.), EPO without a sugar chain chemically modified with polyethylene glycol or the like, other such as vitamin B12, inorganic or Examples thereof include EPO to which a compound such as an organic compound is bonded.
 さらに、本発明のエリスロポエチンとしてEPO誘導体を用いることも可能である。EPO誘導体とは、EPO分子中のアミノ酸を修飾したEPO又はEPO分子中の糖鎖を修飾したEPOのことをいう。 Furthermore, it is also possible to use an EPO derivative as the erythropoietin of the present invention. An EPO derivative refers to EPO modified with an amino acid in an EPO molecule or EPO modified with a sugar chain in an EPO molecule.
 EPO分子中の糖鎖の修飾としては、糖鎖の付加、置換、欠失などが含まれる。本発明において好ましい糖鎖の修飾としては、EPO分子中のシアル酸の欠失を挙げることができる。 The modification of the sugar chain in the EPO molecule includes sugar chain addition, substitution, deletion and the like. Examples of preferred sugar chain modifications in the present invention include deletion of sialic acid in the EPO molecule.
 通常、組換え動物細胞により生産したEPO、尿由来のEPOのいずれも、糖鎖構造の異なる多様なEPOを含むEPO組成物として得られる。EPO組成物中のEPO分子に付加しているシアル酸の数は、個々のEPO分子によって異なるが、通常、1つのEPO分子に11個~15個のシアル酸が付加している。これらのシアル酸を除去することによりアシアロ化されたEPO(アシアロEPO)を作製することが可能である。アシアロ化の際に除去されるシアル酸の数は特に限定されず、全てのシアル酸を除去してもよいし、1、2、3、4、5、6、7、8、9、10、11、12、13、又は14個のシアル酸を除去してもよい。本発明において好ましいアシアロEPOは、EPO分子に付加しているシアル酸の数が10個以下であり、さらに好ましくは5個以下であり、特に好ましくは2個以下である。なお、本発明において用いられるシアル酸の数は、EPO組成物に含まれているEPO分子の平均数を用いる。1分子あたりのシアル酸の平均は当業者に公知の方法によって測定することが可能である(EP0428267公報、など)。 Usually, both EPO produced by recombinant animal cells and EPO derived from urine are obtained as EPO compositions containing various EPOs having different sugar chain structures. The number of sialic acids added to EPO molecules in the EPO composition varies depending on individual EPO molecules, but usually 11 to 15 sialic acids are added to one EPO molecule. By removing these sialic acids, it is possible to produce asialized EPO (asialo EPO). The number of sialic acids removed during asialization is not particularly limited, and all sialic acids may be removed, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 sialic acids may be removed. The preferred asialo EPO in the present invention has 10 or less sialic acid added to the EPO molecule, more preferably 5 or less, and particularly preferably 2 or less. The number of sialic acids used in the present invention is the average number of EPO molecules contained in the EPO composition. The average of sialic acid per molecule can be measured by methods known to those skilled in the art (EP 0428267, etc.).
 シアル酸が除去されたEPO(アシアロEPO)は当業者に公知の方法で作製することができ、例えば、シアリダーゼなどの酵素でEPOを処理すること等により作製することが可能である。シアリダーゼは市販されているものを用いることが可能である。(特表2005-507426号、Nobuo Imai et al., Eur.J.Biochem, 194, 457-462 (1990)、など) EPO from which sialic acid has been removed (Asialo EPO) can be prepared by a method known to those skilled in the art, for example, by treating EPO with an enzyme such as sialidase. A commercially available sialidase can be used. (Special Table 2005-507426, Nobuo Imai et al., Eur.J.Biochem, 194, 457-462 (1990), etc.)
 アシアロEPOは、血管新生治療において、多血症や高血圧などの副作用を伴わずに安全に投与することができ、さらに骨髄単核球移植(BMI)と併用した場合にも併用しない単独投与の場合にも顕著な血管新生効果をもたらすことが報告されている(特願2007-519063号(特許第4200509号))。したがって、アシアロEPOは好ましいEPO誘導体である。 Asialo EPO can be safely administered without side effects such as polycythemia and hypertension in angiogenesis treatment, and also when used alone or in combination with bone marrow mononuclear cell transplantation (BMI) Has also been reported to bring about a remarkable angiogenic effect (Japanese Patent Application No. 2007-519063 (Patent No. 4200509)). Asialo EPO is therefore a preferred EPO derivative.
 さらに、本発明のエリスロポエチンは、糖鎖改変体EPOであってもよく、これにはEPOのN末端にシアル酸が付着した糖鎖改変体EPOであるNESP(Novel Erythropoietin Stimulating Protein : WO85/02610,WO91/05867, WO95/05465等に記載)などの糖鎖が改変されたEPO類似体が挙げられる。 Furthermore, the erythropoietin of the present invention may be a sugar chain-modified EPO, and this includes NESP (Novel Erythropoietin Stimulating Protein: WO85 / 02610, which is a sugar chain-modified EPO with sialic acid attached to the N-terminus of EPO. And EPO analogs with modified sugar chains such as WO91 / 05867 and WO95 / 05465).
 EPO分子中のアミノ酸の修飾としては、カルバミル化、ビオチン化、アミジン化、アセチル化、グアニジン化、などを挙げることができるが、本発明において好ましいアミノ酸の修飾はカルバミル化である。 Examples of amino acid modification in the EPO molecule include carbamylation, biotinylation, amidineation, acetylation, guanidination, and the like. A preferred amino acid modification in the present invention is carbamylation.
 修飾されるアミノ酸残基は特に限定されず、例えば、リジン、アルギニン、グルタミン酸、トリプトファンなどを挙げることができるが、本発明において修飾される好ましいアミノ酸はリジンである。 The amino acid residue to be modified is not particularly limited, and examples thereof include lysine, arginine, glutamic acid, tryptophan and the like, but a preferred amino acid modified in the present invention is lysine.
 従って、本発明においてアミノ酸が修飾されたEPOの特に好ましい態様として、リジンがカルバミル化されたEPOを挙げることができる(Marcel L et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science, 2004; 305: 239、 Fiordaliso E et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. PNAS, 2005; 102: 2046、など)。EPOのカルバミル化には、シアナートイオン等との反応によるカルバミル化、アルキル-イソシアナート等との反応によるアルキル-カルバミル化、アリール-イソシアナート等との反応によるアリール-カルバミル化などが含まれる。 Accordingly, as a particularly preferred embodiment of EPO modified with amino acids in the present invention, EPO in which lysine is carbamylated can be mentioned (Marcel L et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science, 2004; 305: 239, Fiordaliso E et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. PNAS, 2005; 102: 2046, etc.). The carbamylation of EPO includes carbamylation by reaction with cyanate ion or the like, alkyl-carbamylation by reaction with alkyl-isocyanate or the like, aryl-carbamylation by reaction with aryl-isocyanate or the like.
キメラ蛋白質
 本発明は、ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質を提供する。
Chimeric protein The present invention provides a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
 ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質の作製は以下に述べる種々の態様で公知の方法により実施することができる。 Preparation of a chimeric protein containing a heparin affinity motif and a biologically active polypeptide can be carried out by known methods in various modes described below.
 生物活性を有するポリペプチドにヘパリン親和性モチーフを導入する場合には、当該ペプチドのN末端、あるいはC末端、あるいはペプチド配列の途中にヘパリン親和性モチーフ配列を挿入してもよい。または、一次構造ではなく三次立体構造で塩基性物質が近接するように用いてもよい。 When a heparin affinity motif is introduced into a polypeptide having biological activity, a heparin affinity motif sequence may be inserted into the N-terminus, C-terminus of the peptide, or in the middle of the peptide sequence. Or you may use so that a basic substance may adjoin with a tertiary structure instead of a primary structure.
 非ペプチド製剤にヘパリン親和性を付与するためには、ヘパリン親和性モチーフをリンカー等を用いて結合させてもよい。または当該薬剤に直接、自由なアミノ基などの塩基性側鎖を導入してもよい。 In order to impart heparin affinity to a non-peptide preparation, a heparin affinity motif may be bound using a linker or the like. Alternatively, a basic side chain such as a free amino group may be directly introduced into the drug.
 具体的には、ヘパリン親和性モチーフの作成には以下の方法がある。
1.既知のヘパリン親和性物質、例えば血管内皮細胞増殖因子(VEGF)などのヘパリン親和性モチーフの全体もしくは一部をそのまま用いる。
2.リシン・アルギニン・その他の塩基性の自然型アミノ酸または合成アミノ酸が複数、一定の配列をとるように小ペプチドを作成する。
3.複数の塩基性アミノ酸が三次立体構造で近傍に配位されるように設計する。
4.塩基性アミノ酸の代わりに、アミノ基・その他の塩基性側鎖を直接または間接に導入して用いる。
Specifically, there are the following methods for creating a heparin affinity motif.
1. A known heparin affinity substance, for example, a whole or part of a heparin affinity motif such as vascular endothelial growth factor (VEGF) is used as it is.
2. A small peptide is prepared so that lysine, arginine, other basic natural amino acids or synthetic amino acids have a certain sequence.
3. It is designed so that a plurality of basic amino acids are coordinated in the vicinity in a tertiary conformation.
4). Instead of basic amino acids, amino groups and other basic side chains are introduced directly or indirectly.
 一例を挙げると、後述する実施例に記載するように、生物活性を有するポリペプチドをコードするDNAとヘパリン親和性モチーフをコードするDNAを連結させ、これを発現ベクターに組み込むことによって、キメラ蛋白質を発現する組換えベクターが作製できる。該ベクターにより形質転換された組換え細胞を培養し、組み込まれたDNAを発現させることによって、培養中に生産される当該キメラ蛋白質を取得できる。 For example, as described in the Examples below, a chimeric protein can be obtained by linking a DNA encoding a biologically active polypeptide and a DNA encoding a heparin affinity motif and incorporating the DNA into an expression vector. A recombinant vector for expression can be produced. The chimeric protein produced during the culture can be obtained by culturing recombinant cells transformed with the vector and expressing the incorporated DNA.
 キメラ蛋白質を作製するための宿主と発現ベクターの多くの組み合わせが公知である。これらの発現系は、いずれも本発明に応用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、あるいは真菌細胞が使用できる。具体的には、本発明に利用することができる動物細胞としては、次のような細胞を例示することができる。
(1)哺乳類細胞、:CHO、COS、ミエローマ、BHK(baby hamster kidney)、Hela、Vero、HEK293、Ba/F3、HL-60、Jurkat、SK-HEP1など。
(2)両生類細胞:アフリカツメガエル卵母細胞など。
(3)昆虫細胞:sf9、sf21、Tn5、HiFiveなど。
Many combinations of hosts and expression vectors for producing chimeric proteins are known. Any of these expression systems can be applied to the present invention. When eukaryotic cells are used as hosts, animal cells, plant cells, or fungal cells can be used. Specifically, the following cells can be exemplified as animal cells that can be used in the present invention.
(1) Mammalian cells: CHO, COS, myeloma, BHK (baby hamster kidney), Hela, Vero, HEK293, Ba / F3, HL-60, Jurkat, SK-HEP1, etc.
(2) Amphibian cells: Xenopus oocytes and the like.
(3) Insect cells: sf9, sf21, Tn5, HiFive, etc.
 あるいは植物細胞としては、ニコティアナ・タバカム(Nicotiana tabacum)などのニコティアナ(Nicotiana)属由来の細胞による蛋白質遺伝子の発現系が公知である。植物細胞の形質転換には、カルス培養した細胞を利用することができる。 Alternatively, as a plant cell, a protein gene expression system by cells derived from the genus Nicotiana such as Nicotiana tabacum is known. Callus cultured cells can be used for transformation of plant cells.
 更に真菌細胞としては、次のような細胞を利用することができる。酵母:サッカロミセス・セレビシエ(Saccharomyces serevisiae)などのサッカロミセス(Saccharomyces)属、メタノール資化酵母(Pichia pastoris)などのPichia属糸状菌:アスペスギルス・ニガー(Aspergillus niger)などのアスペルギルス(Aspergillus)属。 Furthermore, the following cells can be used as fungal cells. Yeast: genus Saccharomyces such as Saccharomyces serevisiae, Pichia genus filamentous fungi such as Pichia pastoris: Aspergillus genus such as Aspergillus niger.
 あるいは原核細胞を利用した蛋白質遺伝子の発現系も公知である。たとえば、細菌細胞を用いる場合、大腸菌(E. coli)、枯草菌などの細菌細胞を本発明に利用することができる。 Alternatively, protein gene expression systems using prokaryotic cells are also known. For example, when bacterial cells are used, bacterial cells such as E. coli and Bacillus subtilis can be used in the present invention.
 哺乳類細胞を用いる場合、常用される有用なプロモーター、発現させる蛋白質遺伝子、その3’側下流にポリAシグナルを機能的に結合させて発現させることができる。例えばプロモーター/エンハンサーとしては、ヒトサイトメガロウイルス前期プロモーター/エンハンサー(human cytomegalovirus immediate early promoter/enhancer)を挙げることができる。 When using mammalian cells, it can be expressed by functionally binding a useful promoter commonly used, a protein gene to be expressed, and a poly A signal downstream of the 3 'side. For example, the promoter / enhancer includes human cytomegalovirus early promoter / enhancer (human cytomegalovirus immediate-promoter / enhancer).
 また、その他に、ウイルスプロモーター/エンハンサー、あるいはヒトエロンゲーションファクター1α(HEF1α)などの哺乳類細胞由来のプロモーター/エンハンサー等を、蛋白質発現のために使用することができる。プロモーター/エンハンサーを利用することができるウイルスとして、具体的には、レトロウイルス、ポリオーマウイルス、アデノウイルス、シミアンウイルス40(SV40)等を示すことができる。 In addition, a promoter / enhancer derived from a mammalian cell such as a viral promoter / enhancer or human elongation factor 1α (HEF1α) can be used for protein expression. Specific examples of viruses that can utilize promoters / enhancers include retroviruses, polyomaviruses, adenoviruses, and simian virus 40 (SV40).
 SV40プロモーター/エンハンサーを使用する場合はMulliganらの方法(Nature(1979)277, 108)を利用することができる。また、HEF1αプロモーター/エンハンサーはMizushimaらの方法(Nucleic Acids Res.(1990)18, 5322)により、容易に目的とする遺伝子発現に利用することができる。 When using the SV40 promoter / enhancer, the method of Mulligan et al. (Nature (1979) 277, 108) can be used. Further, the HEF1α promoter / enhancer can be easily used for target gene expression by the method of Mizushima et al. (Nucleic Acids Res. (1990) 18, 5322).
 大腸菌の場合、常用される有用なプロモーター、蛋白質分泌のためのシグナル配列および発現させる蛋白質遺伝子を機能的に結合させて当該遺伝子が発現できる。プロモーターとしては、例えばlacZプロモーター、araBプロモーターを挙げることができる。lacZプロモーターを使用する場合はWardらの方法(Nature(1989)341, 544-546 ; FASEBJ.(1992)6, 2422-2427)を利用することができる。あるいはaraBプロモーターはBetterらの方法(Science(1988)240, 1041-1043)により、目的とする遺伝子の発現に利用することができる。 In the case of Escherichia coli, the gene can be expressed by functionally combining a useful promoter commonly used, a signal sequence for protein secretion, and a protein gene to be expressed. Examples of the promoter include lacZ promoter and araB promoter. When using the lacZ promoter, the method of Ward et al. (Nature (1989) 341, 544-546; FASEBJ. (1992) 6, 2422-2427) can be used. Alternatively, the araB promoter can be used for the expression of the target gene by the method of Better et al. (Science (1988) 240, 1041-1043).
医薬組成物
 本発明はさらに、ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質を含む医薬組成物を提供する。
Pharmaceutical Composition The present invention further provides a pharmaceutical composition comprising a chimeric protein comprising a heparin affinity motif and a biologically active polypeptide.
 本発明の医薬組成物には、必要に応じて、懸濁剤、溶解補助剤、安定化剤、等張化剤、保存剤、吸着防止剤、界面活性剤、希釈剤、賦形剤、pH調整剤、無痛化剤、緩衝剤、含硫還元剤、酸化防止剤等を適宜添加することができる。 The pharmaceutical composition of the present invention includes a suspending agent, a solubilizing agent, a stabilizer, an isotonic agent, a preservative, an adsorption inhibitor, a surfactant, a diluent, an excipient, pH, if necessary. A regulator, a soothing agent, a buffering agent, a sulfur-containing reducing agent, an antioxidant and the like can be appropriately added.
 懸濁剤の例としては、メチルセルロース、ポリソルベート80、ヒドロキシエチルセルロース、アラビアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルビタンモノラウレート等を挙げることができる。 Examples of the suspending agent include methyl cellulose, polysorbate 80, hydroxyethyl cellulose, gum arabic, tragacanth powder, sodium carboxymethyl cellulose, polyoxyethylene sorbitan monolaurate and the like.
 溶液補助剤としては、ポリオキシエチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシエチレンソルビタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステル等を挙げることができる。 Examples of the solution auxiliary include polyoxyethylene hydrogenated castor oil, polysorbate 80, nicotinic acid amide, polyoxyethylene sorbitan monolaurate, Magrogol, castor oil fatty acid ethyl ester, and the like.
 安定化剤としては、デキストラン40、メチルセルロース、ゼラチン、亜硫酸ナトリウム、メタ亜硫酸ナトリウム等を挙げることができる。 Examples of the stabilizer include dextran 40, methylcellulose, gelatin, sodium sulfite, and sodium metasulfite.
 また、安定化剤としてある種のアミノ酸を添加することも可能である(例えば、特開平10-182481号公報など)。安定化剤として添加されるアミノ酸には、遊離のアミノ酸、そのナトリウム塩、カリウム塩、塩酸塩などの塩などが含まれる。アミノ酸は1種又は2種以上を組み合わせて添加することができる。安定化剤として添加されるアミノ酸は特に限定されないが、好ましいアミノ酸としては、ロイシン、トリプトファン、セリン、グルタミン酸、アルギニン、ヒスチジン、リジンを挙げることができる。 It is also possible to add a certain type of amino acid as a stabilizer (for example, JP-A-10-182481). Amino acids added as stabilizers include free amino acids, salts such as sodium salts, potassium salts and hydrochlorides thereof. Amino acids can be added alone or in combination of two or more. The amino acid added as a stabilizer is not particularly limited, but preferred amino acids include leucine, tryptophan, serine, glutamic acid, arginine, histidine, and lysine.
 等張化剤としては例えば、D-マンニトール、ソルビート等を挙げることができる。 Examples of the isotonic agent include D-mannitol and sorbate.
 保存剤としては例えば、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾール等を挙げることができる。 Examples of the preservative include methyl paraoxybenzoate, ethyl paraoxybenzoate, sorbic acid, phenol, cresol, chlorocresol and the like.
 吸着防止剤としては例えば、ヒト血清アルブミン、レシチン、デキストラン、エチレンオキサイド・プロピレンオキサイド共重合体、ヒドロキシプロピルセルロース、メチルセルロース、ポリオキシエチレン硬化ヒマシ油、ポリエチレングリコール等を挙げることができる。 Examples of the adsorption inhibitor include human serum albumin, lecithin, dextran, ethylene oxide / propylene oxide copolymer, hydroxypropyl cellulose, methyl cellulose, polyoxyethylene hydrogenated castor oil, polyethylene glycol and the like.
 界面活性剤としては、非イオン界面活性剤、例えばソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノパルミテート等のソルビタン脂肪酸エステル;グリセリンモノカプリレート、グリセリンモノミリテート、グリセリンモノステアレート等のグリセリン脂肪酸エステル;デカグリセリルモノステアレート、デカグリセリルジステアレート、デカグリセリルモノリノレート等のポリグリセリン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル;ポリオキシエチレンソルビットテトラステアレート、ポリオキシエチレンソルビットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エステル;ポリオキシエチレングリセリルモノステアレート等のポリオキシエチレングリセリン脂肪酸エステル;ポリエチレングリコールジステアレート等のポリエチレングリコール脂肪酸エステル;ポリオキシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレンプロピルエーテル、ポリオキシエチレンポリオキシプロピレンセチルエーテル等のポリオキシエチレンポリオキシプロピレンアルキルエーテル;ポリオキシエチエレンノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル;ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油(ポリオキシエチレン水素ヒマシ油)等のポリオキシエチレン硬化ヒマシ油;ポリオキシエチレンソルビットミツロウ等のポリオキシエチレンミツロウ誘導体;ポリオキシエチレンラノリン等のポリオキシエチレンラノリン誘導体;ポリオキシエチレンステアリン酸アミド等のポリオキシエチレン脂肪酸アミド等のHLB6~18を有するもの;陰イオン界面活性剤、例えばセチル硫酸ナトリウム、ラウリル硫酸ナトリウム、オレイル硫酸ナトリウム等の炭素原子数10~18のアルキル基を有するアルキル硫酸塩;ポリオキシエチレンラウリル硫酸ナトリウム等の、エチレンオキシドの平均付加モル数が2~4でアルキル基の炭素原子数が10~18であるポリオキシエチレンアルキルエーテル硫酸塩;ラウリルスルホコハク酸エステルナトリウム等の、アルキル基の炭素原子数が8~18のアルキルスルホコハク酸エステル塩;天然系の界面活性剤、例えばレシチン、グリセロリン脂質;スフィンゴミエリン等のフィンゴリン脂質;炭素原子数12~18の脂肪酸のショ糖脂肪酸エステル等を典型的例として挙げることができる。本発明の医薬組成物には、これらの界面活性剤の1種または2種以上を組み合わせて添加することができる。好ましい界面活性剤は、ポリソルベート20,40,60又は80などのポリオキシエチレンソルビタン脂肪酸エステルであり、ポリソルベート20及び80が特に好ましい。また、ポロキサマー(プルロニックF-68(登録商標)など)に代表されるポリオキシエチレンポリオキシプロピレングリコールも好ましい。 Surfactants include nonionic surfactants such as sorbitan fatty acid esters such as sorbitan monocaprylate, sorbitan monolaurate, and sorbitan monopalmitate; glycerin such as glycerin monocaprylate, glycerin monomylate, and glycerin monostearate. Fatty acid ester; polyglycerin fatty acid ester such as decaglyceryl monostearate, decaglyceryl distearate, decaglyceryl monolinoleate; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate , Polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc. Oxyethylene sorbitan fatty acid ester; polyoxyethylene sorbite fatty acid ester such as polyoxyethylene sorbite tetrastearate and polyoxyethylene sorbite tetraoleate; polyoxyethylene glycerin fatty acid ester such as polyoxyethylene glyceryl monostearate; polyethylene glycol distea Polyethylene glycol fatty acid esters such as rate; polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether; polyoxy such as polyoxyethylene polyoxypropylene glycol, polyoxyethylene polyoxypropylene propyl ether, polyoxyethylene polyoxypropylene cetyl ether Ethylene polyoxypropylene alkyl ether; polyoxyethylenno Polyoxyethylene alkyl phenyl ethers such as ruphenyl ether; Polyoxyethylene hydrogenated castor oil such as polyoxyethylene castor oil and polyoxyethylene hydrogenated castor oil (polyoxyethylene hydrogen castor oil); Polyoxy such as polyoxyethylene sorbite beeswax Ethylene beeswax derivatives; polyoxyethylene lanolin derivatives such as polyoxyethylene lanolin; polyoxyethylene fatty acid amides such as polyoxyethylene stearamide, etc. having HLB 6-18; anionic surfactants such as sodium cetyl sulfate, lauryl Alkyl sulfates having an alkyl group of 10 to 18 carbon atoms such as sodium sulfate and sodium oleyl sulfate; average addition moles of ethylene oxide such as sodium polyoxyethylene lauryl sulfate A polyoxyethylene alkyl ether sulfate having 2 to 4 and an alkyl group having 10 to 18 carbon atoms; an alkylsulfosuccinic acid ester salt having an alkyl group having 8 to 18 carbon atoms, such as sodium lauryl sulfosuccinate; Typical examples include natural surfactants such as lecithin, glycerophospholipids, fingophospholipids such as sphingomyelin, and sucrose fatty acid esters of fatty acids having 12 to 18 carbon atoms. One or a combination of two or more of these surfactants can be added to the pharmaceutical composition of the present invention. Preferred surfactants are polyoxyethylene sorbitan fatty acid esters such as polysorbate 20, 40, 60 or 80, with polysorbates 20 and 80 being particularly preferred. Polyoxyethylene polyoxypropylene glycol represented by poloxamer (such as Pluronic F-68 (registered trademark)) is also preferable.
 含硫還元剤としては例えば、N-アセチルシステイン、N-アセチルホモシステイン、チオクト酸、チオジグリコール、チオエタノールアミン、チオグリセロール、チオソルビトール、チオグリコール酸及びその塩、チオ硫酸ナトリウム、グルタチオン、炭素原子数1~7のチオアルカン酸等のスルフヒドリル基を有するもの等が挙げられる。 Examples of the sulfur-containing reducing agent include N-acetylcysteine, N-acetylhomocysteine, thioctic acid, thiodiglycol, thioethanolamine, thioglycerol, thiosorbitol, thioglycolic acid and salts thereof, sodium thiosulfate, glutathione, carbon Examples thereof include those having a sulfhydryl group such as thioalkanoic acid having 1 to 7 atoms.
 酸化防止剤としては例えば、エリソルビン酸、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、α-トコフェロール、酢酸トコフェロール、L-アスコルビン酸及びその塩、L-アスコルビン酸パルミテート、L-アスコルビン酸ステアレート、亜硫酸水素ナトリウム、亜硫酸ナトリウム、没食子酸トリアミル、没食子酸プロピルあるいはエチレンジアミン四酢酸二ナトリウム(EDTA)、ピロリン酸ナトリウム、メタリン酸ナトリウム等のキレート剤が挙げられる。 Examples of the antioxidant include erythorbic acid, dibutylhydroxytoluene, butylhydroxyanisole, α-tocopherol, tocopherol acetate, L-ascorbic acid and its salt, L-ascorbyl palmitate, L-ascorbic acid stearate, sodium bisulfite, Chelating agents such as sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediaminetetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate and the like can be mentioned.
 さらには、塩化ナトリウム、塩化カリウム、塩化カルシウム、リン酸ナトリウム、リン酸カリウム、炭酸水素ナトリウムなどの無機塩;クエン酸ナトリウム、クエン酸カリウム、酢酸ナトリウムなどの有機塩などの通常添加される成分を含んでいてもよい。 Furthermore, normally added components such as inorganic salts such as sodium chloride, potassium chloride, calcium chloride, sodium phosphate, potassium phosphate and sodium bicarbonate; organic salts such as sodium citrate, potassium citrate and sodium acetate May be included.
 本発明を徐放性製剤として行う場合、徐放性製剤は公知の方法、例えば基剤としてポリマーを用いる方法などにより調製することが可能である。基剤として用いるポリマーは生体内で分解されるポリマーを用いることが好ましい。 When carrying out the present invention as a sustained-release preparation, the sustained-release preparation can be prepared by a known method, for example, a method using a polymer as a base. The polymer used as the base is preferably a polymer that is decomposed in vivo.
 本発明の医薬組成物は、使用する生物活性を有するポリペプチドまたは医薬活性化合物および/またはキメラ蛋白質の種類や治療する疾患によって異なる。本発明の一例であるEPOのC末端に胎盤増殖因子(PLGF)のヘパリン結合性ドメインを結合したキメラ蛋白であるHEPO(Heparinophilic erythropoietin)の場合には、通常、0.001μg/kg/day~1000μg/kg/day、好ましくは0.01μg/kg/day~100μg/kg/day、より好ましくは0.1μg/kg/day~30μg/kg/dayの投与量で投与する。本発明の医薬組成物の個々の患者に対する投与量は患者の年齢、体重、症状、投与経路などを考慮して医師により決定される。 The pharmaceutical composition of the present invention varies depending on the type of biologically active polypeptide or pharmaceutically active compound and / or chimeric protein used and the disease to be treated. In the case of HEPO (Heparinophilic erythropoietin), which is a chimeric protein in which a heparin-binding domain of placental growth factor (PLGF) is bound to the C-terminus of EPO, which is an example of the present invention, usually 0.001 μg / kg / day to 1000 μg / It is administered at a dose of kg / day, preferably 0.01 μg / kg / day to 100 μg / kg / day, more preferably 0.1 μg / kg / day to 30 μg / kg / day. The dosage of the pharmaceutical composition of the present invention for each patient is determined by a doctor in consideration of the patient's age, weight, symptoms, route of administration and the like.
 本発明の医薬組成物においては、キメラ蛋白質が体表あるいは経カテーテル的に直接投与できる場合には、局所投与することで高い組織内濃度を維持することができる。局所投与される部位は特に限定されず、たとえば血管新生促進や血流増加を起こしたい部位(組織、器官など)や虚血状態になっている部位などに投与することができる。具体的な局所投与部位の例としては、下肢骨格筋、上肢骨格筋、心臓(心筋)などを挙げることができる。 In the pharmaceutical composition of the present invention, when the chimeric protein can be directly administered on the body surface or via a catheter, a high tissue concentration can be maintained by local administration. The site to be locally administered is not particularly limited, and can be administered to, for example, a site (tissue, organ, etc.) where angiogenesis is promoted or blood flow is increased or a site ischemic. Specific examples of the local administration site include lower limb skeletal muscle, upper limb skeletal muscle, and heart (myocardium).
 局所投与は、全身に大きな影響を及ぼすことなく患部局所に効率的にキメラ蛋白質を投与できる方法であれば特に限定されず、通常の注射器、ニードル、局所針、カテーテルなどを用いて局所投与することが可能である。 The local administration is not particularly limited as long as the chimeric protein can be efficiently administered locally to the affected area without having a significant effect on the whole body, and local administration using a normal syringe, needle, local needle, catheter, etc. Is possible.
 さらに、本発明の医薬組成物は、局所投与に限定されず、血管内投与とすることもできる。心筋虚血の治療など体表からの頻回の投与に困難がある場合には、本発明のキメラ蛋白質を血管内投与することにより、キメラ蛋白質の一部は血管内皮に発現しているへパラン硫酸プロテオグリカンなどのヘパリン用物質に結合することから、血管内皮に特異的に吸着され、組織内での濃度を高く維持することができる。 Furthermore, the pharmaceutical composition of the present invention is not limited to local administration but can also be intravascular administration. When frequent administration from the body surface such as treatment of myocardial ischemia is difficult, by administering the chimeric protein of the present invention intravascularly, a part of the chimeric protein is expressed on the vascular endothelium. Since it binds to a substance for heparin such as proteoglycan sulfate, it is specifically adsorbed on the vascular endothelium and can maintain a high concentration in the tissue.
 したがって、本発明の医薬組成物は徐放性医薬組成物または持効性医薬組成物とすることができる。 Therefore, the pharmaceutical composition of the present invention can be a sustained-release pharmaceutical composition or a sustained-release pharmaceutical composition.
 本発明を実施例によりさらに詳しく説明するが、本発明はこれに限定されない。種々の変更、修飾が当業者には可能であり、これらの変更、修飾も本発明に含まれる。 The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Various changes and modifications can be made by those skilled in the art, and these changes and modifications are also included in the present invention.
 なお、以下の実施例における統計的解析は、全てのデータを平均値±SDで表す。群間の比較をANOVA、次いでボン=フェローニの確率検定により行った。顕著な違いをp<0.05で定義した。 In the statistical analysis in the following examples, all data are expressed as an average value ± SD. Comparisons between groups were performed by ANOVA followed by Bonn-Feroni probability test. Significant differences were defined with p <0.05.
 実施例1:HEPOの調製
(1.1)rhHEPOのベクターの作成
 シグナル配列を含まないヒトEPOのcDNAを以下のPrimerを用いたPCR法によりrhHEPOのcDNAを作成した。作成したcDNAの構築は以下のとおりである:
5’ - (Sph-I切断配列) - (シグナル配列を含まないヒトEPOのcDNA全長) - (ヒトPLGFのヘパリン親和性モチーフのcDNA) - (終始コドン) - (EcoRI切断配列) - 3’。
Example 1: Preparation of HEPO (1.1) Preparation of rhHEPO vector A rhHEPO cDNA was prepared from a human EPO cDNA containing no signal sequence by PCR using the following Primer. The construction of the generated cDNA is as follows:
5 '-(Sph-I cleavage sequence)-(full-length human EPO cDNA without signal sequence)-(human PLGF heparin affinity motif cDNA)-(stop codon)-(EcoRI cleavage sequence)-3'.
使用したプライマーおよび得られたポリペプチド
1)hEPO-cDNAの5'末端にSph-Iサイトを付加
5’primer: ttaatggcatgctagccccaccacgcctcatctgtgac (SEQ ID NO:7)
2)hEPOの3'末端にPLGFのcDNAヘパリン結合モチーフおよびEcoRIサイトを付加して伸張
3’primer-1: ttctcttccccctgcccttgggtctcctccttctgtcccctgtcctgcaggcctc 
(SEQ ID NO:8)
3’primer-2: ggcagtctgtgggtctctgcttctctctcctcctcttccccctgcccttgggtc 
(SEQ ID NO:9)
3’primer-3: gagaattcctacctccggggaacagcatcgccgcacaggtggcagtctgtgggtctctgcttct 
(SEQ ID NO:10)
 PCRバンドを切り出し、塩基配列を確認したのち、pMIB Baculovirus Vector(Invitrigen社)に制限酵素 (5’:SphI, 3’:EcoRI) を用いてrhHEPOのcDNAを挿入し(図1)、公知の方法により大腸菌 JM109株(Takaraバイオ)に導入し、複数のクローンを得、塩基配列の確認により正しい向きに正しい配列で挿入されたクローンを得た。この大腸菌クローンを公知の方法により増殖させ、Quantum Prep, Plasmid Maxiprep Kit (BIO-RAD社) を用いてベクターを精製し、キットを用いてミラクリン処理を行い (Mira CLEAN, Endotoxin Removal Kit, Mirus社)、OD260でDNA濃度を測定し、-80℃で保存した。
Primers used and the resulting polypeptide 1) Add Sph-I site to the 5 'end of hEPO-cDNA
5'primer: ttaatggcatgctagccccaccacgcctcatctgtgac (SEQ ID NO: 7)
2) Extension by adding PLGF cDNA heparin binding motif and EcoRI site to the 3 'end of hEPO
3'primer-1: ttctcttccccctgcccttgggtctcctccttctgtcccctgtcctgcaggcctc
(SEQ ID NO: 8)
3'primer-2: ggcagtctgtgggtctctgcttctctctcctcctcttccccctgcccttgggtc
(SEQ ID NO: 9)
3'primer-3: gagaattcctacctccggggaacagcatcgccgcacaggtggcagtctgtgggtctctgcttct
(SEQ ID NO: 10)
After cutting out the PCR band and confirming the nucleotide sequence, the cDNA of rhHEPO was inserted into pMIB Baculovirus Vector (Invitrigen) using restriction enzyme (5 ': SphI, 3': EcoRI) (Fig. 1), Was introduced into Escherichia coli JM109 strain (Takara Bio) to obtain a plurality of clones, and a clone inserted with the correct sequence in the correct orientation was obtained by confirming the nucleotide sequence. This Escherichia coli clone is grown by a known method, the vector is purified using Quantum Prep, Plasmid Maxiprep Kit (BIO-RAD), and miraculin treatment is performed using the kit (Mira CLEAN, Endotoxin Removal Kit, Mirus) The DNA concentration was measured with OD260 and stored at -80 ° C.
(1.2)rhHEPOの発現系と精製
 発現細胞は昆虫細胞株HighFive (Invitrogen社) を用い、培養液は無血清培養液ExpressFive (Invitrogen社) を用い、BioCoat, Collagen-Iボトル(BD社)による付着細胞系でRoom Air, 28℃の条件で培養した。融解した保存ベクターをFuGENE HD (Invitrogen社) を用いて昆虫細胞に導入し、培養上清を収穫した。上清からMILLEX-HA, 0.45μm (Millipore社) を用いて粒子を除去したのち、濃縮フィルター Amicon Ultra-15, Ultracel- 10k (Millipore社) を用いて10kD以下の分子を取り除く濃縮を行った。
(1.2) rhHEPO expression system and purification An insect cell line HighFive (Invitrogen) is used as an expression cell, a serum-free culture medium ExpressFive (Invitrogen) is used as a culture medium, and BioCoat, Collagen-I bottle (BD) The cells were cultured in an adherent cell line with room air at 28 ° C. The thawed storage vector was introduced into insect cells using FuGENE HD (Invitrogen), and the culture supernatant was harvested. The particles were removed from the supernatant using MILLEX-HA, 0.45 μm (Millipore), and then concentrated to remove molecules of 10 kD or less using a concentration filter Amicon Ultra-15, Ultracel-10k (Millipore).
 rhHEPOの精製にはHeparin-Sepharose gel, pre-packed カラム (HiTrap Heparin, GE Amersham社) を用いた。カラムを 1 M Tris buffer, pH7.5で置換したのち、濃縮培養上清を注入し、十分量の1 M Tris bufferでカラムを洗ったのち、1M NaCl + 0.3% BSA in 1M Tris buffer, pH 7.5 でrhHEPOを回収した。回収した部分精製液をUltracel- 10kを用いて濃縮し、hEPO ELISA kit (R&D社) で濃度を測定し、10 μg/mlのrhHEPO溶液を得た。rhHEPOのcDNAを組み込まないベクターを同じ方法で細胞に発現させ、回収した培養上清を同じ方法で濃縮精製したものをコントロールとして用いた(Mock)。 For purification of rhHEPO, a Heparin-Sepharose gel and a pre-packed column (HiTrap Heparin, GE Amersham) were used. After replacing the column with 1 M Tris buffer, 7.5pH7.5, inject the concentrated culture supernatant, wash the column with a sufficient amount of 1 M Tris buffer, and then wash with 1M NaCl + 0.3% BSA in 1M Tris buffer, pH 7.5 RhHEPO was recovered. The collected partially purified solution was concentrated using Ultracel- 10k, and the concentration was measured with hEPO ELISA kit (R & D) to obtain 10 μg / ml rhHEPO solution. A vector without rhHEPO cDNA incorporated was expressed in cells by the same method, and the collected culture supernatant was concentrated and purified by the same method as a control (Mock).
 得られたrhHEPOの構造は、図2に示すように、ヒトEPOの165アミノ酸とヒトPLGFのヘパリン親和性モチーフの30アミノ酸からなるキメラ蛋白質である。キメラ蛋白質rhHEPOをコードするcDNAの配列は(SEQ ID NO:11)であり、アミノ酸配列は(SEQ ID NO:12)である。 The structure of rhHEPO obtained is a chimeric protein consisting of 165 amino acids of human EPO and 30 amino acids of the heparin affinity motif of human PLGF, as shown in FIG. The sequence of the cDNA encoding the chimeric protein rhHEPO is (SEQ ID NO: 11), and the amino acid sequence is (SEQ ID NO: 12).
 実施例2:HEPOの生物学的活性の検討
 HEPOのin vitroでの性質を調べた。比較対象として自然型ヒトリコンビナントエリスロポエチン(EPO)、同アシアロエリスロポエチン(AEPO)・同カルバミルエリスロポエチン(CEPO)を用いた。なお、AEPOの調製はCHO細胞を用いて遺伝子組換え法で作製したEPO(中外製薬株式会社製)から、文献(Imai N. Higuchi M. Kawamura A. Tomonoh K. Oh-Eda M. Fujiwara M. Shimonaka Y. Ochi N. Physicochemical and biological characterization of asialoerythropoietin. Suppressive effects of sialic acid in the expression of biological activity of human erythropoietin in vitro. European Journal of Biochemistry. 194(2):457-62, 1990 Dec 12.)記載の方法により、またCEPOの調製はJin Zeng (Methods in Enzymology 205: 433-437, 1991)に記載の方法に従い、EPOをシアナートイオンと反応させ、リジンをカルバミル化させることにより行った。
Example 2: Examination of the biological activity of HEPO The in vitro properties of HEPO were examined. For comparison, natural human recombinant erythropoietin (EPO), asialoerythropoietin (AEPO) and carbamyl erythropoietin (CEPO) were used. AEPO was prepared from EPO (manufactured by Chugai Pharmaceutical Co., Ltd.) produced by gene recombination using CHO cells, and literature (Imai N. Higuchi M. Kawamura A. Tomonoh K. Oh-Eda M. Fujiwara M. Shimonaka Y. Ochi N. Physicochemical and biological characterization of asialoerythropoietin. Suppressive effects of sialic acid in the expression of biological activity of human erythropoietin in vitro. European Journal of Biochemistry. 194 (2): 457-62, 1990 Dec 12.) CEPO was prepared by reacting EPO with cyanate ion and carbamylating lysine according to the method described in Jin Zeng (Methods in Enzymology 205: 433-437, 1991).
(2.1)ヘパリン親和性
実験方法
 4種のEPO液(80 ng/ml) にヘパリンアガロースゲルを加え、一夜静置した。翌朝、ゲルを緩衝液で数回洗浄した。EPO依存性白血病細胞株AS-E2(1 x 105/ml) にゲルを加え、5日後に細胞数を測定した(n = 3)。
結果
 得られたヘパリン親和性の結果を図3に示す(図中、1はEPO;2はAEPO;3はCEPO;4はHEPOである)。パネルAは位相差顕微鏡写真であり、写真の大きい粒子はゲル、小さい粒子は細胞である。また、パネルBは細胞数(x 106/ml)を示す。この結果から、HEPOのみがヘパリンアガロースゲルに吸着し、洗浄によって遊離しないことが明らかになった。また、HEPOはヘパリンアガロースゲルに吸着した状態でもEPOとしての生物活性を失わないことが明らかになった。
(2.1) Heparin affinity
Experimental Method A heparin agarose gel was added to 4 types of EPO solutions (80 ng / ml) and allowed to stand overnight. The next morning, the gel was washed several times with buffer. The gel was added to EPO-dependent leukemia cell line AS-E2 (1 × 10 5 / ml), and the number of cells was measured after 5 days (n = 3).
The results of the resulting heparin affinity are shown in FIG. 3 (in the figure, 1 is EPO; 2 is AEPO; 3 is CEPO; 4 is HEPO). Panel A is a phase contrast photomicrograph, where the large particles in the photo are gels and the small particles are cells. Panel B shows the cell number (x 10 6 / ml). From this result, it was revealed that only HEPO was adsorbed on the heparin agarose gel and not released by washing. It was also revealed that HEPO does not lose its biological activity as EPO even when adsorbed on heparin agarose gel.
(2.2)エリスロポエチン活性
実験方法
 各濃度のEPOおよびHEPOをAS-E2細胞(2 x 104/ml)に添加し、4日間の培養ののちに細胞数を計測した(n = 3)。
結果
 得られたエリスロポエチン活性の結果を図4に示す(図中、○はEPO;●はHEPOである)。EPOおよびHEPOは3■10 ng/mlで最大の活性を示した。なお、低濃度のHEPOで活性の低下が見られるが、これは昆虫細胞に発現した蛋白がプラスチック容器表面に吸着されやすいためであり、HEPOの本来の性質ではないと考えられる。この結果から、HEPOの生物活性の力価はEPOとほぼ等しいことが明らかになった。
(2.2) Erythropoietin activity
Experimental Method Each concentration of EPO and HEPO was added to AS-E2 cells (2 × 10 4 / ml), and the number of cells was counted after 4 days of culture (n = 3).
Results The results of erythropoietin activity obtained are shown in FIG. 4 (in the figure, ◯ is EPO; ● is HEPO). EPO and HEPO showed maximum activity at 3 ■ 10 ng / ml. A decrease in activity is observed at a low concentration of HEPO. This is because the protein expressed in insect cells is easily adsorbed on the surface of the plastic container, and is not considered to be an original property of HEPO. From this result, it became clear that the titer of biological activity of HEPO is almost equal to EPO.
 実施例3:HEPOの造血作用
 HEPOの造血作用を以下の方法により検討した。
実験方法
 ICRマウスに2 μg/kg体重のEPOまたはHEPOまたはEPOsを含まない溶液を3回筋肉内投与した(days 0, 2, 4)。7日目および14日目に採血し、ヘモグロビン濃度(Hb)を測定した。
結果
 得られたヘモグロビン濃度(Hb)の結果を図5に示す。投与されたEPOは半減期が短いため14日目にはすでにHbが低下傾向を示したが、HEPOは結合組織から徐々に血中へ放出されるため、14日目でもHbが上昇傾向を示した(Day 0: n = 8, Day 7: null: n = 6, EPO: n = 6, HEPO: n = 6, Day 14: null: n = 6, EPO: n = 4, HEPO: n = 6)。
Example 3: HEPO hematopoietic action HEPO hematopoietic action was examined by the following method.
Experimental Method ICR mice were intramuscularly administered with 2 μg / kg body weight of EPO or HEPO or EPOs-free solution three times ( days 0, 2, 4). Blood was collected on days 7 and 14, and the hemoglobin concentration (Hb) was measured.
Results The results of the resulting hemoglobin concentration (Hb) are shown in FIG. The administered EPO had a short half-life, so Hb already showed a tendency to decrease on the 14th day, but since HEPO was gradually released into the blood from the connective tissue, the Hb also showed an upward trend on the 14th day. (Day 0: n = 8, Day 7: null: n = 6, EPO: n = 6, HEPO: n = 6, Day 14: null: n = 6, EPO: n = 4, HEPO: n = 6 ).
 実施例4:HEPOの血管新生阻害作用
 HEPOの血管新生阻害作用を以下の方法により検討した。
実験方法
 C57BLマウスに次の方法で下肢虚血を作成した。すべての実験手順は Guide for the Care and Use of Laboratory Animals (NIH publication No.86 - 23; National Institute of Health, Bethesda, MD)に基づき無菌的に行われた。マウスをケタミン(60 mg/kg BW)およびキシラジン(6 mg/kg BW)の腹腔内投与により麻酔した。Isnerの方法に準じ左下肢の中間部に皮膚切開を加え、血管を露出した(Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM: Mouse model of angiogenesis. Am J Pathol 152: 1667 - 1679, 1998)。大腿動脈起始部を結紮ののちその末梢の伏在動脈を結紮し、その他の側枝を剥離して本管とともに切除した。なお、全てのマウスには通常の食事及び飲み水を与えた。
Example 4: Angiogenesis inhibitory action of HEPO The angiogenesis inhibitory action of HEPO was examined by the following method.
Experimental Method Lower limb ischemia was created in C57BL mice by the following method. All experimental procedures were performed aseptically based on the Guide for the Care and Use of Laboratory Animals (NIH publication No. 86-23; National Institute of Health, Bethesda, MD). Mice were anesthetized by intraperitoneal administration of ketamine (60 mg / kg BW) and xylazine (6 mg / kg BW). A skin incision was made in the middle of the left lower limb according to the method of Isner, and blood vessels were exposed (Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM: Mouse model of angiogenesis. Am J Pathol 152: 1667 -1679, 1998). After ligating the origin of the femoral artery, the saphenous artery at its periphery was ligated, and the other side branches were removed and resected together with the main tube. All mice were given normal food and drinking water.
 下肢虚血を作成したマウスの虚血筋肉内に2 μg/kg体重のEPOまたはHEPOまたはEPOsを含まない溶液を2回(days 0, 3)または3回(days 0, 2, 4)投与し、7日目の血流回復をレーザードップラー法で測定した(x2: null: n = 9, EPO: n = 9, HEPO: n = 6, x3: null: n = 6, EPO: 6, HEPO: n = 7)。比較のために虚血作成1日後の値も示す(n = 5)。なお、C57BLマウスは虚血から自然回復する性質のマウスである。
結果
 得られた血管新生阻害作用の結果を図5示す。図から明らかなように、HEPOには血流の自然回復を阻害する作用が観察された。2回筋注より3回筋注のほうが血管新生促進作用が強いが、これは所謂「針治療効果」であり、null群とEPO群で差はなかった。
2 μg / kg body weight of EPO or HEPO or EPOs-free solution is administered 2 times (days 0, 3) or 3 times ( days 0, 2, 4) into the ischemic muscle of the mouse that has created leg ischemia The blood flow recovery on the 7th day was measured by laser Doppler method (x2: null: n = 9, EPO: n = 9, HEPO: n = 6, x3: null: n = 6, EPO: 6, HEPO: n = 7). For comparison, the value one day after ischemia is also shown (n = 5). The C57BL mouse is a mouse that naturally recovers from ischemia.
Results The results of the angiogenesis inhibitory action obtained are shown in FIG. As is clear from the figure, HEPO was observed to inhibit the natural recovery of blood flow. The angiogenesis-promoting action is stronger in the 3rd intramuscular injection than in the 2nd intramuscular injection, but this is a so-called “needle treatment effect”, and there was no difference between the null group and the EPO group.

Claims (13)

  1. ヘパリン親和性モチーフと生物活性を有するポリペプチドを含むキメラ蛋白質。 A chimeric protein comprising a heparin affinity motif and a polypeptide having biological activity.
  2. 生物活性を有するポリペプチドがサイトカイン、ホルモン又はケモカインである請求項1に記載のキメラ蛋白質。 The chimeric protein according to claim 1, wherein the polypeptide having biological activity is a cytokine, hormone or chemokine.
  3. 生物活性を有するポリペプチドが造血因子である請求項2に記載のキメラ蛋白質。 The chimeric protein according to claim 2, wherein the polypeptide having biological activity is a hematopoietic factor.
  4. 造血因子がヒトエリスロポエチンである請求項3に記載のキメラ蛋白質。 The chimeric protein according to claim 3, wherein the hematopoietic factor is human erythropoietin.
  5. ヘパリン親和性モチーフが、少なくとも当該ドメイン全体に少なくとも1つの下記(a)~(d)から選ばれる塩基性アミノ酸配列を含む3~100個のアミノ酸残基からなり、ヘパリン又はヘパリン様物質の糖鎖に存在するスルホ基と結合するドメインである請求項1に記載のキメラ蛋白質。
    (a)BBB
    (b)BXBB
    (c)BBXB
    (d)BXBXB
    (ここで、Bは、RまたはK;Xは、RまたはK以外のアミノ酸を表す)
    The heparin affinity motif is composed of 3 to 100 amino acid residues including at least one basic amino acid sequence selected from the following (a) to (d) in at least the entire domain, and the sugar chain of heparin or heparin-like substance The chimeric protein according to claim 1, wherein the chimeric protein is a domain that binds to a sulfo group present in.
    (a) BBB
    (b) BXBB
    (c) BBXB
    (d) BXBXB
    (Where B represents R or K; X represents an amino acid other than R or K)
  6. ヘパリン親和性モチーフがヘパリン結合性増殖因子由来のモチーフまたはその一部である請求項1に記載のキメラ蛋白質。 The chimeric protein according to claim 1, wherein the heparin affinity motif is a motif derived from heparin-binding growth factor or a part thereof.
  7. ヘパリン結合性増殖因子が、PLGFである請求項6に記載のキメラ蛋白質。 The chimeric protein according to claim 6, wherein the heparin-binding growth factor is PLGF.
  8. 請求項1~7に記載のキメラ蛋白質を含む徐放性医薬組成物。 A sustained-release pharmaceutical composition comprising the chimeric protein according to any one of claims 1 to 7.
  9. 請求項1~7に記載のキメラ蛋白質を含む持効性医薬組成物。 A sustained-release pharmaceutical composition comprising the chimeric protein according to any one of claims 1 to 7.
  10. 医薬活性化合物とヘパリン親和性モチーフを融合させることによる医薬活性化合物の徐放化方法。 A method for sustained release of a pharmaceutically active compound by fusing a pharmaceutically active compound and a heparin affinity motif.
  11. 医薬活性化合物とヘパリン親和性モチーフを融合させることによる医薬活性化合物の持効化方法。 A method for retaining a pharmaceutically active compound by fusing a pharmaceutically active compound and a heparin affinity motif.
  12. 医薬活性化合物にヘパリン親和性モチーフを融合させる工程を含む徐放化用医薬活性化合物の作製方法。 A method for producing a pharmaceutically active compound for sustained release, comprising a step of fusing a heparin affinity motif to a pharmaceutically active compound.
  13. 医薬活性化合物にヘパリン親和性モチーフを融合させる工程を含む持効化用医薬活性化合物の作製方法。 A method for producing a pharmaceutically active compound for sustained release, comprising a step of fusing a heparin affinity motif to a pharmaceutically active compound.
PCT/JP2009/071095 2008-12-19 2009-12-18 Heparin affinity erythropoietin WO2010071190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543009A JP5799409B2 (en) 2008-12-19 2009-12-18 Heparin affinity erythropoietin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-323611 2008-12-19
JP2008323611 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010071190A1 true WO2010071190A1 (en) 2010-06-24

Family

ID=42268857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071095 WO2010071190A1 (en) 2008-12-19 2009-12-18 Heparin affinity erythropoietin

Country Status (2)

Country Link
JP (1) JP5799409B2 (en)
WO (1) WO2010071190A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007935A1 (en) * 1990-11-01 1992-05-14 The Scripps Research Institute Glycosaminoglycan-targeted fusion proteins, their design, construction and compositions
JP2002536016A (en) * 1999-02-13 2002-10-29 オステオジェネティクス ゲーエムベーハー Polypeptide variants with enhanced heparin binding ability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69027383T2 (en) * 1989-03-06 1996-11-14 Suntory Ltd NEW SUPEROXYD DISMUTASE
JPH0477499A (en) * 1990-07-18 1992-03-11 Suntory Ltd Physiologically active peptide having heparin-binding property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007935A1 (en) * 1990-11-01 1992-05-14 The Scripps Research Institute Glycosaminoglycan-targeted fusion proteins, their design, construction and compositions
JP2002536016A (en) * 1999-02-13 2002-10-29 オステオジェネティクス ゲーエムベーハー Polypeptide variants with enhanced heparin binding ability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKUNOU T. ET AL.: "Engineering insulin-like growth factor-1 for local delivery", FASEB J., vol. 22, no. 6, June 2008 (2008-06-01), pages 1886 - 1893 *

Also Published As

Publication number Publication date
JP5799409B2 (en) 2015-10-28
JPWO2010071190A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US7465447B2 (en) Fc-erythropoietin fusion protein with improved pharmacokinetics
JP6060167B2 (en) Fibroblast growth factor 21 mutant
JP5737826B2 (en) Treatment of anemia by inhibition of VEGF
US6887848B2 (en) Vascular endothelial growth factor variants
US20050202538A1 (en) Fc-erythropoietin fusion protein with improved pharmacokinetics
KR20080021115A (en) Erythropoietin receptor peptide formulations and uses
JP2020073603A (en) Methods and compositions for increasing red blood cells using GDF15 polypeptides
JP5326079B2 (en) Treatment of ischemic disease with erythropoietin
US8420350B2 (en) Glycosylation-deficient hepatocyte growth factor
JP5799409B2 (en) Heparin affinity erythropoietin
US20080287652A1 (en) Antagonists Against Interaction of Pf4 and Rantes
JPWO2007083683A1 (en) Method for removing sialic acid and method for producing asialoerythropoietin
JP4200509B2 (en) EPO derivative-containing blood related disease therapeutic agent
US8188039B2 (en) VEGF-D mutants and their use
JP5763882B2 (en) Transplanted organ protective agent
JP4732896B2 (en) Combined use of G-CSF and angiogenic factors
KR102604984B1 (en) Formulatiom of fusion protein comprising il-2 protein and cd80 protein
AU2006313672B2 (en) Combination of glycoisoforms for the treatment or prevention of sepsis, transgenic cell line producing erythropoietin glycoisoforms, pharmaceutical composition comprising such combination, procedures to obtain the cell line, procedures to produce such combination of glycoisoforms, and sepsis treatment and prevention methods
JP2010536857A (en) Formulation and use of erythropoietin receptor peptide
JPH0418031A (en) Injury healing promoter
JPWO2006075587A1 (en) CSF-containing therapeutic agent for low dose administration
SK281485B6 (en) Dna sequence, polypeptide exhibiting hematopoietic biological activity, use thereof and pharmaceutical compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833492

Country of ref document: EP

Kind code of ref document: A1