WO2010071174A1 - Method for initializing magnetoresistive element, and magnetoresistive element - Google Patents

Method for initializing magnetoresistive element, and magnetoresistive element Download PDF

Info

Publication number
WO2010071174A1
WO2010071174A1 PCT/JP2009/071042 JP2009071042W WO2010071174A1 WO 2010071174 A1 WO2010071174 A1 WO 2010071174A1 JP 2009071042 W JP2009071042 W JP 2009071042W WO 2010071174 A1 WO2010071174 A1 WO 2010071174A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetization
region
magnetization fixed
magnetoresistive element
fixed region
Prior art date
Application number
PCT/JP2009/071042
Other languages
French (fr)
Japanese (ja)
Inventor
哲広 鈴木
則和 大嶋
聖万 永原
俊輔 深見
延行 石綿
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010543001A priority Critical patent/JP5472821B2/en
Publication of WO2010071174A1 publication Critical patent/WO2010071174A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy

Definitions

  • the present invention relates to a magnetoresistive element and an initialization method thereof, and more particularly, to an initialization method of a magnetoresistive element configured to reverse magnetization by domain wall motion.
  • MRAM is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation.
  • a magnetoresistive element exhibiting a “magnetoresistance effect” such as a TMR (Tunnel MagnetoResistance) effect is used.
  • a magnetic tunnel junction (MTJ: Magnetic Tunnel Junction) in which a tunnel barrier layer is sandwiched between two ferromagnetic layers is formed.
  • One of the two ferromagnetic layers is a magnetization fixed layer (pinned layer) whose magnetization direction is fixed, and the other one is a magnetization free layer (free layer) whose magnetization direction can be reversed. ).
  • the resistance value (R + ⁇ R) of the MTJ when the magnetization directions of the pinned layer and the free layer are “anti-parallel” is larger than the resistance value (R) when they are “parallel” due to the magnetoresistance effect. It is known.
  • the MRAM uses the magnetoresistive element having the MTJ as a memory cell, and stores data in a nonvolatile manner by utilizing the change in the resistance value. For example, the antiparallel state is associated with data “1”, and the parallel state is associated with data “0”. Data is written to the memory cell by reversing the magnetization direction of the magnetization free layer.
  • the most traditional method of writing data to the MRAM is a method of reversing the magnetization of the magnetization free layer by a current magnetic field.
  • the reversal magnetic field necessary for reversing the magnetization of the magnetization free layer becomes substantially inversely proportional to the memory cell size. That is, as the memory cell is miniaturized, the write current increases. This is not preferable in providing a highly integrated MRAM.
  • spin transfer method has been proposed as a write method that can suppress an increase in write current accompanying miniaturization (for example, Japanese Patent Laid-Open No. 2005-93488).
  • a spin-polarized current is injected into a ferromagnetic conductor, and the magnetization is reversed by a direct interaction between the spin of conduction electrons carrying the current and the magnetic moment of the conductor. This phenomenon is referred to as spin transfer magnetization switching.
  • Writing by the spin injection method is suitable for realizing a highly integrated MRAM because the write current decreases as the size of the magnetization free layer decreases.
  • US Pat. No. 6,834,005 discloses a magnetic shift register utilizing spin injection.
  • This magnetic shift register stores information using a domain wall in a magnetic material.
  • a current is injected so as to pass through the domain wall, and the domain wall is moved by the current.
  • the magnetization direction of each region is treated as recorded data.
  • Such a magnetic shift register is used, for example, for recording a large amount of serial data.
  • Domain wall motion MRAM using such domain wall motion by spin injection is described in Japanese Patent Laid-Open No. 2005-191032 and WO 2005/069368.
  • An MRAM described in Japanese Patent Application Laid-Open No. 2005-191032 includes a magnetization fixed layer in which magnetization is fixed, a tunnel insulating layer stacked on the magnetization fixed layer, and a magnetization recording layer stacked on the tunnel insulating layer. . Since the magnetization recording layer includes a portion where the magnetization direction can be reversed and a portion where the magnetization direction is not substantially changed, it is referred to as a magnetization recording layer, not a magnetization free layer.
  • FIG. 1 shows the structure of the magnetic recording layer. In FIG. 1, the magnetization recording layer 100 has a linear shape.
  • the magnetization recording layer 100 includes a junction 103 that overlaps the tunnel insulating layer and the magnetization fixed layer, a constriction 104 adjacent to both ends of the junction 103, and a pair of magnetization fixed units formed adjacent to the constriction 104. 101, 102.
  • the pair of magnetization fixed portions 101 and 102 are provided with fixed magnetizations in opposite directions.
  • the magnetization of these magnetization fixed portions is fixed by an exchange bias magnetic field formed by laminating an antiferromagnetic layer, for example.
  • the MRAM further includes a pair of write terminals 105 and 106 that are electrically connected to the pair of magnetization fixed portions 101 and 102.
  • the write terminals 105 and 106 allow a write current to pass through the junction portion 103, the pair of constricted portions 104, and the pair of magnetization fixed portions 101 and 102 of the magnetization recording layer 100.
  • the constricted portion 104 serves as a pin potential with respect to the domain wall, and information is held depending on which of the constricted portions the domain wall is present on the left or right side or the magnetization direction of the joint portion 103.
  • the direction of the domain wall movement is controlled by the direction of the write current.
  • FIG. 2 shows the structure of the magnetic recording layer.
  • the magnetic recording layer 100 is composed of three regions having different thicknesses. Specifically, the magnetization recording layer 100 is composed of the thickest first magnetization fixed portion 101, the second thickest second magnetization fixed portion 102, and the thinnest bonding portion 103 disposed therebetween.
  • the step at the boundary between the junction 103, the magnetization fixed unit 101, and the magnetization fixed unit 102 functions as a pin potential. Therefore, the domain wall 112 moves between the two steps by applying a current.
  • a magnetic semiconductor having anisotropy perpendicular to the film surface is used as the magnetization recording layer, and the current for domain wall movement is as small as 0.35 mA.
  • the junction 103 is actually provided with a tunnel insulating layer and a magnetization fixed layer, which are not shown in FIG.
  • the magnetization directions of the two magnetization fixed portions of the magnetization recording layer need to be antiparallel.
  • a process of making the magnetization directions of the two magnetization fixed portions antiparallel by applying an external magnetic field having an appropriate magnitude is hereinafter referred to as “initialization”.
  • Japanese Patent Laid-Open No. 2005-191032 does not mention a method of making the magnetization directions of the two magnetization fixed portions antiparallel.
  • WO 2005/069368 discloses that initialization is performed by an external magnetic field after film formation by utilizing the coercive force difference between the first magnetization fixed part 101 and the second magnetization fixed part 102.
  • WO2005 / 069368 discloses that a coercive force difference is provided by making the thicknesses of the first magnetization fixed portion 101 and the second magnetization fixed portion 102 different. Since the magnetization is less likely to be reversed as the magnetic layer is thicker, a magnetic field is applied so that the magnetization of the second magnetization fixed unit 102 and the junction 103 is reversed and the magnetization of the first magnetization fixed unit 101 is not reversed. Thus, the domain wall can be introduced at the boundary between the first magnetization fixed portion 101 and the joint portion 103.
  • the number of steps increases and the cost increases. That is, in order to make the thicknesses of the first magnetization fixed portion 101 and the second magnetization fixed portion 102 different, it is necessary to form two steps having different sizes. In order to form two different types of steps, it is necessary to repeat the exposure process twice. This means that the number of steps increases.
  • the difference in thickness between the first magnetization pinned portion 101 and the second magnetization pinned portion 102 is magnetically asymmetric, that is, the first magnetization pinned portion 101 and the second magnetization pinned portion 102 are different from each other. It means that the depth of pin potential is different. This means that the current value when the domain wall moves to the left and right may be different values.
  • an object of the present invention is to provide a magnetically symmetric element structure having a small number of steps and a method for introducing and initializing a domain wall into the structure in a current-driven domain wall motion type magnetoresistive element. is there.
  • a magnetization recording layer that is a ferromagnetic layer
  • the magnetization recording layer has a magnetization reversal region having reversible magnetization and a first magnetization connected to a first boundary of the magnetization reversal region.
  • a method of initializing a magnetoresistive element having a fixed region and a second magnetization fixed region connected to a second boundary of the magnetization switching region is provided.
  • the initialization method includes a step of directing magnetization of the magnetization switching region, the first magnetization fixed region, and the second magnetization fixed region in the first direction, and between the first magnetization fixed region and the second magnetization fixed region. Applying a first magnetic field having a component in a second direction opposite to the first direction to the magnetization recording layer while passing a current through the magnetization switching region.
  • a current-driven domain wall motion type magnetoresistive element in which the number of steps is small and a domain wall motion defect does not occur, and a method for introducing and initializing a domain wall into the structure. it can.
  • FIG. 1 is a plan view showing a configuration of a magnetization recording layer of a conventional magnetoresistive element.
  • FIG. 2 is a perspective view showing another configuration of the magnetization recording layer of the conventional magnetoresistive element.
  • FIG. 3 is a perspective view showing the configuration of the magnetoresistive element according to the embodiment of the present invention.
  • FIG. 4 is a perspective view showing a configuration of a magnetoresistive element according to another embodiment of the present invention.
  • FIG. 5 is a perspective view showing a configuration of a magnetoresistive element according to still another embodiment of the present invention.
  • FIG. 6A is a conceptual diagram illustrating a magnetoresistive element initialization method according to an embodiment of the present invention.
  • FIG. 6A is a conceptual diagram illustrating a magnetoresistive element initialization method according to an embodiment of the present invention.
  • FIG. 6B is a conceptual diagram illustrating a magnetoresistive element initialization method according to an embodiment of the present invention.
  • FIG. 6C is a conceptual diagram showing a method of initializing a magnetoresistive element in one embodiment of the present invention.
  • FIG. 6D is a conceptual diagram showing a magnetoresistive element initialization method in one embodiment of the present invention.
  • FIG. 7 is a phase diagram showing the state of the magnetoresistive element after initialization by the magnetoresistive element initialization method of one embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of a magnetoresistive element according to still another embodiment of the present invention.
  • FIG. 9 is a conceptual diagram showing a data writing method of the magnetoresistive element in one embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing an example of the configuration of an MRAM in which magnetoresistive elements according to an embodiment of the present invention are integrated.
  • the present invention can be applied to both the case where the magnetization recording layer of the magnetoresistive element has magnetization in the in-plane direction and the case where the magnetization has magnetization in the vertical direction.
  • a case where the recording layer is used will be described.
  • FIG. 3 is a perspective view showing the structure of the magnetoresistive element 1 according to the embodiment of the present invention.
  • the magnetoresistive element 1 includes a magnetization recording layer 10, a magnetization fixed layer 30, and a tunnel barrier layer 32 provided therebetween.
  • the tunnel barrier layer 32 is a nonmagnetic insulating layer, and is composed of a thin insulating film such as an Al 2 O 3 film or an MgO film.
  • the tunnel barrier layer 32 is sandwiched between the magnetization recording layer 10 and the magnetization fixed layer 30, and a magnetic tunnel junction (MTJ) is formed by the magnetization recording layer 10, the tunnel barrier layer 32, and the magnetization fixed layer 30.
  • MTJ magnetic tunnel junction
  • the magnetization recording layer 10 is a ferromagnetic layer having anisotropy (perpendicular magnetic anisotropy) in a direction perpendicular to the substrate surface.
  • the magnetization recording layer 10 includes at least one material of Fe, Co, and Ni. Further, the perpendicular magnetic anisotropy can be stabilized when the magnetic recording layer 10 contains Pt or Pd.
  • the magnetic recording layer 10 has B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, By adding Hf, Ta, W, Re, Os, Ir, Au, and Sm, adjustment can be made so that desired magnetic properties are expressed.
  • the material of the magnetic recording layer 10 includes Co, Co—Pt, Co—Pd, Co—Cr, Co—Pt—Cr, Co—Cr—Ta, Co—Cr—B, and Co—Cr—.
  • Pt—B, Co—Cr—Ta—B, Co—V, Co—Mo, Co—W, Co—Ti, Co—Ru, Co—Rh, Fe—Pt, Fe—Pd, Fe—Co—Pt, Fe—Co—Pd, Sm—Co and the like can be mentioned.
  • a laminated body in which a layer containing at least one material of Fe, Co, and Ni is laminated with different layers can be used as the magnetization recording layer 10 that exhibits magnetic anisotropy in the perpendicular direction.
  • a laminate of Co film and Pd film, a laminate of Co film and Pt film, a laminate of Co film and Ni film, a laminate of Fe film and Au film, etc. can be used as the magnetization recording layer 10. is there.
  • the magnetization fixed layer 30 is composed of a ferromagnetic layer having a fixed magnetization or a laminated body of a ferromagnetic layer and a nonmagnetic layer.
  • the magnetization fixed layer 30 has perpendicular magnetic anisotropy like the magnetization recording layer 10.
  • the magnetization fixed layer 30 is configured such that the magnetization direction thereof is not changed by the write and read operations. Therefore, the magnetization fixed layer 30 is configured so that the magnetic anisotropy is larger than that of the magnetization recording layer 10. This can be realized by appropriately selecting materials and compositions of the magnetization recording layer 10 and the magnetization fixed layer 30.
  • the magnetization direction of the magnetization fixed layer 30 is fixed by stacking an antiferromagnetic layer (not shown) on the surface of the magnetization fixed layer 30 opposite to the tunnel barrier layer and pinning the magnetization. Is also feasible.
  • the magnetization fixed layer 30 can also be configured using the same material as the magnetization recording layer 10.
  • the magnetization fixed layer 30 is composed of a laminated body including a ferromagnetic layer 34, a nonmagnetic layer 31, and a ferromagnetic layer 33.
  • the magnetization fixed layer 30 is configured such that the ferromagnetic layers 33 and 34 are antiferromagnetically coupled and the magnetizations of the ferromagnetic layers 33 and 34 are antiparallel to each other.
  • the magnetizations of the two ferromagnetic layers 33 and 34 can be coupled antiparallel to each other. In this case, if the magnetizations of the two ferromagnetic layers 34 and 33 are substantially equal, the leakage magnetic field from the magnetization fixed layer 30 can be suppressed.
  • a material having a large TMR effect such as CoFe or CoFeB may be used for a part of the magnetization recording layer 10 and the magnetization fixed layer 30, particularly a part in contact with the tunnel barrier layer.
  • a ferromagnetic layer is disposed between the tunnel barrier layer 32 and the magnetic recording layer 10 via a nonmagnetic metal layer, and data is read using the MTJ formed from the ferromagnetic layer and the magnetization fixed layer 30. It can also be taken.
  • the magnetization direction of the ferromagnetic layer is determined by the leakage magnetic field from the magnetization recording layer, and the magnetization state of the magnetization recording layer is indirectly read out.
  • a material having in-plane anisotropy may be used as the ferromagnetic layer and the magnetization fixed layer.
  • the magnetoresistive element 1 of the present embodiment is configured to support a write operation by a domain wall motion method. More specifically, the magnetization recording layer 10 of the magnetoresistive element 1 has a first magnetization fixed region 11 a, a second magnetization fixed region 11 b, and a magnetization switching region 13. The magnetization switching region 13 is formed so as to face the magnetization fixed layer 30. In other words, a part of the magnetization switching region 13 of the magnetization recording layer 10 is connected to the magnetization fixed layer 30 via the tunnel barrier layer 32.
  • the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b are fixed in antiparallel directions.
  • “magnetization is fixed” means that the magnetization direction does not change before and after the write operation. That is, even if the magnetization direction of a part of the magnetization fixed region changes during the write operation, it returns to the original state after the write operation is completed.
  • the magnetization of the second magnetization fixed region 11b is reversed by an external magnetic field or Joule heat as will be described later.
  • the magnetization direction of the magnetization switching region 13 is reversible and is the + Z direction or the ⁇ Z direction. That is, the magnetization of the magnetization switching region 13 is allowed to be parallel or antiparallel to the magnetization of the ferromagnetic layer 34 of the magnetization fixed layer 30.
  • the first magnetization fixed region 11b and the magnetization switching region 13 form one magnetic domain
  • the first The magnetization fixed region 11a forms another magnetic domain. That is, a domain wall 12 is formed between the first magnetization fixed region 11 a and the magnetization switching region 13.
  • the magnetization direction of the magnetization switching region 13 is the -Z direction
  • the first magnetization fixed region 11a and the magnetization switching region 13 form one magnetic domain
  • the second magnetization fixed region 11b forms another magnetic domain. . That is, a domain wall is formed between the second magnetization fixed region 11 b and the magnetization switching region 13.
  • the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are formed thicker than the magnetization switching region 13. Such a structure can be obtained by etching only the portion corresponding to the magnetization switching region 13 after forming the magnetic recording layer.
  • the reason for making the film thicknesses different is that a pin potential of the domain wall is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the domain wall energy is proportional to the film thickness, the domain wall generated in the first and second magnetization fixed regions 11a and 11b easily moves to the magnetization switching region 13, whereas the domain wall generated in the magnetization switching region 13 is the first. It is difficult to move to the first and second magnetization fixed regions 11a and 11b.
  • the domain wall is pinned to the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions 11a and 11b by the static magnetic field from the thick portions of the first and second magnetization fixed regions 11a and 11b.
  • the film configuration of the portion remaining only in the second magnetization fixed regions 11a and 11b may be changed.
  • a Co / Ni laminated film which is a highly polarized material that easily causes domain wall movement due to current, can be used for the former, and a Co / Pt laminated film having a large magnetic anisotropy can be used for the latter.
  • the latter can be replaced with an antiferromagnetic material such as PtMn, a nonmagnetic metal such as Ru and a laminated structure such as a Co / Pt laminated film, or a magnetic material having in-plane anisotropy such as NiFe. .
  • Current supply terminals 14a and 14b for applying a write current are connected to the first magnetization fixed region 11a and the second magnetization fixed region 11b, respectively.
  • a domain wall is introduced between the current supply terminals 14a and 14b by the initialization operation described later, and is driven in accordance with the write current.
  • the portion where the tunnel barrier layer 32 and the magnetization fixed layer 30 are stacked to form the MTJ must include the portion between the current supply terminals 14 a and 14 b in the magnetization recording layer 10. This is because the direction of magnetization during this time changes as a result of the write operation.
  • the current supply terminals 14 a and 14 b may be located either above or below the magnetization recording layer 10.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetically symmetric (except for manufacturing errors), that is, the first magnetization
  • the pin potential depth of the fixed region 11a and the second magnetization fixed region 11b is the same (except for manufacturing errors). This is because the pin potential is the same when the domain wall 12 is at the boundary between the magnetization switching region 13 and the first magnetization fixed region 11a and when the domain wall 12 is at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11b. In operation, this means that the domain wall is driven with substantially equal current.
  • This is desirable not only from the viewpoint of circuit design but also from the viewpoint of pin potential design.
  • the design of the magnetization fixed region, that is, the pin potential must be designed in consideration of thermal disturbance. However, if the magnetization fixed region is asymmetric, at least one of them has an excessive pin potential. This can lead to current imbalance and increase.
  • FIG. 4 and 5 are perspective views showing other structures of the magnetic recording layer 10. 4 and 5, the MTJ portion is not shown, and only the magnetization recording layer 10 is shown.
  • the first magnetization fixed region 11 a and the second magnetization fixed region 11 b have a wider shape than the magnetization switching region 13. This is because a domain wall pin potential is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the energy of the domain wall is substantially proportional to the width of the magnetization recording layer 10, the domain wall generated in the first and second magnetization fixed regions 11 a and 11 b easily moves to the magnetization switching region 13, whereas in the magnetization switching region 13 The generated domain wall hardly moves to the first and second magnetization fixed regions 11a and 11b.
  • the domain wall is pinned to the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions 11a and 11b by a static magnetic field from a portion of the first and second magnetization fixed regions 11a and 11b protruding from the magnetization switching region 13. Stopped.
  • the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are wider and thicker than the magnetization switching region 13. This is because a domain wall pin potential is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the domain wall energy is substantially proportional to the width and thickness of the magnetization recording layer 10, the domain wall generated in the first and second magnetization fixed regions 11 a and 11 b easily moves to the magnetization switching region 13, whereas the magnetization switching is performed. The domain wall generated in the region 13 is difficult to move to the first and second magnetization fixed regions 11a and 11b.
  • the domain walls of the first and second magnetization fixed regions 11a and 11b that protrude from the magnetization reversal region 13 and the static magnetic field from the thick portion cause the domain wall to become the magnetization reversal region 13 and the first and second magnetization fixed regions 11a, Pinned to the boundary of 11b.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetically symmetric (except for manufacturing errors), that is, the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the pinned potential depth of the magnetization fixed region 11b is the same (except for manufacturing errors).
  • This is suitable as a characteristic of the magnetoresistive element 1, but is initialized by application of an external magnetic field, that is, the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetized antiparallel to each other, and the domain wall is obtained.
  • the magnetoresistive element 1 is initialized using a special initialization method.
  • the initialization process of the magnetoresistive element 1 in the present embodiment that is, the process of magnetizing the first magnetization fixed region 11a and the second magnetization fixed region 11b antiparallel to each other and introducing the domain wall will be described with reference to FIGS. 6A to 6D. Will be described. 6A to 6D, the configuration of FIG. 3 is assumed, but the initialization method and the principle thereof are common to the elements of FIGS.
  • the coercive force of the magnetization fixed layer 30 is sufficiently larger than the coercivity of the magnetization recording layer 10, and the magnetization direction of the magnetization fixed layer 30 is not changed in the initialization process, and the illustration of the magnetization fixed layer 30 is omitted. Yes.
  • step S1 when a large magnetic field is first applied in the ⁇ Z direction, all the magnetizations are directed in the ⁇ Z direction (step S1).
  • a current is applied between the current supply terminals while applying a magnetic field in the + Z direction.
  • the magnetic field and the current are larger than a certain value, only the magnetization switching region 13 is reversed in magnetization as shown in FIG. 6B, and the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions is obtained.
  • Two domain walls are introduced (step S2a). This is because the cross-sectional area of the magnetization switching region 13 is smaller than the cross-sectional areas of the first and second magnetization fixed regions, and the current density is large.
  • the saturation magnetization is preferentially lowered, and only the magnetization switching region 13 is switched.
  • the domain wall 12b depins in the direction of the second magnetization fixed region, and at least a part of the second magnetization fixed region is reversed (step S2b). . This is because the domain wall 12b is pushed in the direction of electron movement by the effect of the spin torque.
  • the magnetization reversal of the entire second magnetization fixed region 11b can be more reliably performed by applying a magnetic field in the + Z direction after stopping the current application (step S3).
  • the magnetic field at this time needs to be more than the propagation magnetic field of the domain wall in the 2nd magnetization fixed area
  • FIG. 7 shows a phase diagram of the initial magnetization state when the applied current and the applied magnetic field in steps S2a and S2b described above are used as parameters.
  • step S1 the entire magnetic recording layer 10 is saturated by applying a sufficiently large magnetic field, and step S3 is omitted.
  • the magnetization of any region is not reversed, and the magnetization state does not change from step S1 (region A in FIG. 7).
  • the magnetic field and current become a certain magnitude, a magnetization state in which only the magnetization switching region 13 is reversed is obtained (region B in FIG. 7).
  • region C in FIG. 7 When the magnetic field and current are further increased, a magnetization state in which only one magnetization fixed region is reversed in addition to the magnetization reversal region 13 is obtained (region C in FIG. 7). Which magnetization fixed region is inverted can be controlled by the current direction, and the magnetization fixed region on the side where electrons enter from the magnetization inverted region is inverted by the spin torque effect.
  • the state of region C in FIG. 7 is the magnetization state required for the domain wall motion memory.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b As a method for realizing this without making the magnetic characteristics of the first magnetization fixed region 11a and the second magnetization fixed region 11b asymmetrical, as shown in FIG. 8, the first magnetization fixed region 11a and the second magnetization fixed region 11b.
  • the nonmagnetic metal layer 15a is laminated only on the first magnetization fixed region 11a.
  • the nonmagnetic metal layer 15a makes the current density in the first magnetization fixed region 11a smaller than the current density in the second magnetization fixed region 11b in the current application in the initialization process of the magnetoresistive element 1 described above. Accordingly, if the current direction in steps S2a and S2b of FIGS.
  • the magnetic field application direction is not limited to the Z direction, and may have a certain amount of X or Y component.
  • the initialization method of the present invention can be implemented in an inspection at the end of a wafer process or an inspection after assembling a package. Further, the steps shown in FIGS. 6A to 6D may be performed in different work processes. For example, step S1 can be performed during the wafer process, and steps S2a, S2b, and S3 can be performed after the assembly of the package.
  • FIG. 9 shows the data writing principle for the structure shown in FIG.
  • Data writing is performed by a domain wall motion method using spin injection.
  • the write current flows in a plane in the magnetization recording layer 10, not in the direction penetrating the MTJ.
  • the write current is supplied to the magnetic recording layer 10 from the current supply terminals 14a and 14b.
  • the state in which the magnetization direction of the ferromagnetic layer 34 of the magnetization fixed layer 30 and the magnetization direction of the magnetization switching region 13 are parallel is associated with data “0”.
  • the magnetization direction of the magnetization switching region 13 is the ⁇ Z direction, and the domain wall 12 exists at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11 b.
  • the state where the magnetization directions of the magnetization switching region 13 and the ferromagnetic layer 34 are antiparallel is associated with the data “1”.
  • the magnetization direction of the magnetization switching region 13 is the + Z direction, and the domain wall 12 exists at the boundary between the magnetization switching region 13 and the first magnetization fixed region 11 a.
  • the write current IW1 flows from the first magnetization fixed region 11a through the magnetization switching region 13 to the second magnetization fixed region 11b.
  • spin electrons are injected into the magnetization switching region 13 from the second magnetization fixed region 11b.
  • the spin of the injected electrons drives the domain wall at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11b in the direction of the first magnetization fixed region 11a.
  • the magnetization direction of the magnetization switching region 13 is switched to the + Z direction. That is, due to the spin transfer effect, the magnetization of the magnetization switching region 13 is reversed and the magnetization direction is changed to the + Z direction.
  • the write current IW2 flows from the second magnetization fixed region 11b through the magnetization switching region 13 to the first magnetization fixed region 11a.
  • spin electrons are injected into the magnetization switching region 13 from the first magnetization fixed region 11a.
  • the magnetization of the magnetization switching region 13 is reversed and the magnetization direction is changed to the ⁇ Z direction.
  • the magnetization direction of the magnetization switching region 13 is switched by the write currents IW1 and IW2 that flow in the magnetization recording layer 10 in a plane.
  • the first magnetization fixed region 11a and the second magnetization fixed region 11b serve as a supply source of electrons having different spins.
  • reading of data from the magnetoresistive element 1 is performed according to the following procedure.
  • a read current is supplied so as to flow between the magnetization fixed layer 30 and the magnetization switching region 13.
  • the read current flows from one of the magnetization fixed regions 11 a and 11 b to the ferromagnetic layer 34 of the magnetization fixed layer 30 via the magnetization switching region 13 and the tunnel barrier layer 32.
  • the read current flows from the ferromagnetic layer 34 of the magnetization fixed layer 30 via the tunnel barrier layer 32 and the magnetization switching region 13 to either of the magnetization fixed regions 11 a and 11 b.
  • the resistance value of the magnetoresistive element is detected, and the magnetization direction of the magnetization switching region 13 is sensed.
  • FIG. 10 is a conceptual diagram showing the configuration of such an MRAM.
  • the MRAM has a memory cell array 60 in which a plurality of memory cells 61 are arranged in a matrix. In each memory cell 61, a magnetoresistive element 1 and two select transistors TR1 and TR2 are integrated. One of the source / drain of the selection transistor TR1 is connected to the current supply terminal 14a connected to the first magnetization fixed region 11a, and the other is connected to the first bit line BL1.
  • One of the source / drain of the selection transistor TR2 is connected to the current supply terminal 14b of the second magnetization fixed region 11b, and the other is connected to the second bit line BL2.
  • the gates of the selection transistors TR1 and TR2 are connected to the word line WL.
  • the magnetization fixed layer 30 of the magnetoresistive element 1 is connected to a ground line through wiring.
  • the word line WL is connected to the X selector 62.
  • the X selector 62 selects a word line WL corresponding to a target memory cell 61 (hereinafter referred to as “selected memory cell”) as a selected word line in writing / reading data.
  • the first bit line BL1 is connected to the Y-side current termination circuit 64, and the second bit line BL2 is connected to the Y selector 63.
  • the Y selector 63 selects the second bit line BL2 connected to the selected memory cell as the selected second bit line.
  • the Y-side current termination circuit 64 selects the first bit line BL1 connected to the selected memory cell as the selected first bit line.
  • the memory cell array 60 includes a reference cell 61r that is referred to when reading data, in addition to the memory cell 61 used for data recording.
  • the structure of the reference cell 61r is the same as that of the memory cell 61.
  • a first reference bit line BL1r and a second reference bit line BL2r are provided along the column of reference cells 61r.
  • the operation of the MRAM at the time of data writing is as follows:
  • the Y-side current source circuit 65 supplies or draws a predetermined write current (IW1, IW2) to the selected second bit line.
  • the Y-side power supply circuit 66 supplies a predetermined voltage to the Y-side current termination circuit 64 at the time of data writing.
  • the write currents (IW1, IW2) flow into or out of the Y selector 63.
  • These X selector 62, Y selector 63, Y side current termination circuit 64, Y side current source circuit 65, and Y side power supply circuit 66 are a write current supply circuit for supplying write currents IW 1 and IW 2 to the magnetoresistive element 1. Is configured.
  • the operation of the MRAM during data reading is as follows: the first bit line BL1 is set to “Open”.
  • the read current load circuit 67 supplies a predetermined read current to the selected second bit line.
  • the read current load circuit 67 supplies a predetermined current to the second reference bit line BL2r connected to the reference cell 61r corresponding to the selected word line.
  • the sense amplifier 68 determines the data stored in the selected memory cell from the potential difference between the second reference bit line BL2r and the selected second bit line, and outputs the data.

Abstract

Disclosed is a method for initializing a magnetoresistive element which comprises a magnetization recording layer that is a ferromagnetic layer. The magnetization recording layer comprises a magnetization reversal region having a reversible magnetization, a first magnetization fixed region connected to a first boundary of the magnetization reversal region, and a second magnetization fixed region connected to a second boundary of the magnetization reversal region. The method for initializing a magnetoresistive element comprises: a step wherein the magnetizations of the magnetization reversal region, the first magnetization fixed region and the second magnetization fixed region are directed to a first direction; and a step wherein a first magnetic field having a component in a second direction that is opposite to the first direction is applied to the magnetization recording layer, while passing a current between the first magnetization fixed region and the second magnetization fixed region through the magnetization reversal region.

Description

磁気抵抗素子の初期化方法、及び磁気抵抗素子Method for initializing magnetoresistive element and magnetoresistive element

 本発明は、磁気抵抗素子及びその初期化方法に関し、特に、磁壁移動によって磁化を反転するように構成された磁気抵抗素子の初期化方法に関する。

The present invention relates to a magnetoresistive element and an initialization method thereof, and more particularly, to an initialization method of a magnetoresistive element configured to reverse magnetization by domain wall motion.

 MRAMは、高集積・高速動作の観点から有望な不揮発性メモリである。MRAMにおいては、TMR(Tunnel MagnetoResistance)効果などの「磁気抵抗効果」を示す磁気抵抗素子が利用される。その磁気抵抗素子には、例えばトンネルバリヤ層が2層の強磁性層で挟まれた磁気トンネル接合(MTJ:Magnetic Tunnel Junction)が形成される。その2層の強磁性層のうちの1層は、磁化の向きが固定された磁化固定層(ピン層)であり、他の1層は、磁化の向きが反転可能な磁化自由層(フリー層)である。

MRAM is a promising nonvolatile memory from the viewpoint of high integration and high-speed operation. In the MRAM, a magnetoresistive element exhibiting a “magnetoresistance effect” such as a TMR (Tunnel MagnetoResistance) effect is used. In the magnetoresistive element, for example, a magnetic tunnel junction (MTJ: Magnetic Tunnel Junction) in which a tunnel barrier layer is sandwiched between two ferromagnetic layers is formed. One of the two ferromagnetic layers is a magnetization fixed layer (pinned layer) whose magnetization direction is fixed, and the other one is a magnetization free layer (free layer) whose magnetization direction can be reversed. ).

 ピン層とフリー層の磁化の向きが“反平行”である場合のMTJの抵抗値(R+ΔR)は、磁気抵抗効果により、それらが“平行”である場合の抵抗値(R)よりも大きくなることが知られている。MRAMは、このMTJを有する磁気抵抗素子をメモリセルとして用い、その抵抗値の変化を利用することによってデータを不揮発的に記憶する。例えば、反平行状態はデータ“1”に対応付けられ、平行状態はデータ“0”に対応付けられる。メモリセルに対するデータの書き込みは、磁化自由層の磁化の向きを反転させることによって行われる。

The resistance value (R + ΔR) of the MTJ when the magnetization directions of the pinned layer and the free layer are “anti-parallel” is larger than the resistance value (R) when they are “parallel” due to the magnetoresistance effect. It is known. The MRAM uses the magnetoresistive element having the MTJ as a memory cell, and stores data in a nonvolatile manner by utilizing the change in the resistance value. For example, the antiparallel state is associated with data “1”, and the parallel state is associated with data “0”. Data is written to the memory cell by reversing the magnetization direction of the magnetization free layer.

 MRAMに対するデータの書き込み方法として最も伝統的なものは、電流磁界によって磁化自由層の磁化を反転させる方法である。しかしながら、この書き込み方式では、メモリセルサイズにほぼ反比例して、磁化自由層の磁化を反転させるために必要な反転磁界が大きくなる。つまり、メモリセルが微細化されるにつれて、書き込み電流が増加する。これは、高集積度のMRAMを提供するうえでは好ましくない。

The most traditional method of writing data to the MRAM is a method of reversing the magnetization of the magnetization free layer by a current magnetic field. However, in this writing method, the reversal magnetic field necessary for reversing the magnetization of the magnetization free layer becomes substantially inversely proportional to the memory cell size. That is, as the memory cell is miniaturized, the write current increases. This is not preferable in providing a highly integrated MRAM.

 微細化に伴う書き込み電流の増加を抑制することができる書き込み方式として、「スピン注入(spin transfer)方式」が提案されている(例えば、特開2005-93488号公報)。スピン注入方式では、強磁性導体にスピン偏極電流(spin-polarized current)が注入され、その電流を担う伝導電子のスピンと導体の磁気モーメントとの間の直接相互作用によって磁化が反転する。この現象は、スピン注入磁化反転(Spin Transfer Magnetization Switching)と参照される。スピン注入方式による書き込みは、磁化自由層のサイズの減少と共に書き込み電流が減少するため、高集積度のMRAMを実現するのに適している。

A “spin transfer method” has been proposed as a write method that can suppress an increase in write current accompanying miniaturization (for example, Japanese Patent Laid-Open No. 2005-93488). In the spin injection method, a spin-polarized current is injected into a ferromagnetic conductor, and the magnetization is reversed by a direct interaction between the spin of conduction electrons carrying the current and the magnetic moment of the conductor. This phenomenon is referred to as spin transfer magnetization switching. Writing by the spin injection method is suitable for realizing a highly integrated MRAM because the write current decreases as the size of the magnetization free layer decreases.

 米国特許第6834005号には、スピン注入を利用した磁気シフトレジスタが開示されている。この磁気シフトレジスタは、磁性体中の磁壁(domain wall)を利用して情報を記憶する。くびれ等により多数の領域(磁区)に分けられた磁性体において、磁壁を通過するように電流が注入され、その電流により磁壁が移動する。各領域の磁化の向きが、記録データとして扱われる。このような磁気シフトレジスタは、例えば、大量のシリアルデータの記録に利用される。

US Pat. No. 6,834,005 discloses a magnetic shift register utilizing spin injection. This magnetic shift register stores information using a domain wall in a magnetic material. In a magnetic material divided into a number of regions (magnetic domains) by constriction or the like, a current is injected so as to pass through the domain wall, and the domain wall is moved by the current. The magnetization direction of each region is treated as recorded data. Such a magnetic shift register is used, for example, for recording a large amount of serial data.

 このようなスピン注入による磁壁移動(Domain Wall Motion)を利用した「磁壁移動方式のMRAM」が、特開2005-191032号公報、WO2005/069368号公報に記載されている。

“Domain wall motion MRAM” using such domain wall motion by spin injection is described in Japanese Patent Laid-Open No. 2005-191032 and WO 2005/069368.

 特開2005-191032号公報に記載されたMRAMは、磁化が固定された磁化固定層と、磁化固定層上に積層されたトンネル絶縁層と、トンネル絶縁層に積層された磁化記録層とを備える。磁化記録層には、磁化の向きが反転可能な部分と実質的に変化しない部分も含まれているため、磁化自由層ではなく、磁化記録層と呼ぶことにする。図1は、その磁化記録層の構造を示している。図1において、磁化記録層100は、直線形状を有している。具体的には、磁化記録層100は、トンネル絶縁層及び磁化固定層と重なる接合部103、接合部103の両端に隣接するくびれ部104、及びくびれ部104に隣接形成された一対の磁化固定部101、102を有する。一対の磁化固定部101、102には、互いに反対向きの固定磁化が付与されている。これらの磁化固定部の磁化は例えば反強磁性層を積層し、その交換バイアス磁界により固定される。更に、MRAMは、一対の磁化固定部101、102に電気的に接続された一対の書き込み用端子105、106を備える。この書き込み用端子105、106により、磁化記録層100の接合部103、一対のくびれ部104及び一対の磁化固定部101、102を貫通する書き込み電流が流れる。くびれ部104は磁壁に対するピンポテンシャルとしてはたらき、磁壁が左右どちらのくびれ部に存在するか、あるいは、接合部103の磁化方向によって情報が保持される。磁壁の移動の向きは書き込み電流の向きにより制御される。

An MRAM described in Japanese Patent Application Laid-Open No. 2005-191032 includes a magnetization fixed layer in which magnetization is fixed, a tunnel insulating layer stacked on the magnetization fixed layer, and a magnetization recording layer stacked on the tunnel insulating layer. . Since the magnetization recording layer includes a portion where the magnetization direction can be reversed and a portion where the magnetization direction is not substantially changed, it is referred to as a magnetization recording layer, not a magnetization free layer. FIG. 1 shows the structure of the magnetic recording layer. In FIG. 1, the magnetization recording layer 100 has a linear shape. Specifically, the magnetization recording layer 100 includes a junction 103 that overlaps the tunnel insulating layer and the magnetization fixed layer, a constriction 104 adjacent to both ends of the junction 103, and a pair of magnetization fixed units formed adjacent to the constriction 104. 101, 102. The pair of magnetization fixed portions 101 and 102 are provided with fixed magnetizations in opposite directions. The magnetization of these magnetization fixed portions is fixed by an exchange bias magnetic field formed by laminating an antiferromagnetic layer, for example. The MRAM further includes a pair of write terminals 105 and 106 that are electrically connected to the pair of magnetization fixed portions 101 and 102. The write terminals 105 and 106 allow a write current to pass through the junction portion 103, the pair of constricted portions 104, and the pair of magnetization fixed portions 101 and 102 of the magnetization recording layer 100. The constricted portion 104 serves as a pin potential with respect to the domain wall, and information is held depending on which of the constricted portions the domain wall is present on the left or right side or the magnetization direction of the joint portion 103. The direction of the domain wall movement is controlled by the direction of the write current.

 WO2005/069368号公報に記載されたMRAMでは、ピンポテンシャルを形成する手段として段差が用いられている。図2はその磁化記録層の構造を示している。図2において、磁化記録層100は厚さの異なる3つの領域からなっている。具体的には磁化記録層100は最も厚い第1の磁化固定部101、次に厚い第2の磁化固定部102、及び、その間に配置された最も薄い接合部103から構成されている。図2では接合部103と磁化固定部101、及び、磁化固定部102の境界の段差がピンポテンシャルとして機能する。そのため、電流を印加することにより磁壁112は2つの段差の間を移動する。なお、WO2005/069368号公報では膜面に垂直な異方性を有する磁性半導体が磁化記録層として用いられており、磁壁移動のための電流は0.35mAと小さい。接合部103には実際にはトンネル絶縁層及び磁化固定層が配置されるが図2には図示されていない。

In the MRAM described in WO2005 / 069368, a step is used as a means for forming a pin potential. FIG. 2 shows the structure of the magnetic recording layer. In FIG. 2, the magnetic recording layer 100 is composed of three regions having different thicknesses. Specifically, the magnetization recording layer 100 is composed of the thickest first magnetization fixed portion 101, the second thickest second magnetization fixed portion 102, and the thinnest bonding portion 103 disposed therebetween. In FIG. 2, the step at the boundary between the junction 103, the magnetization fixed unit 101, and the magnetization fixed unit 102 functions as a pin potential. Therefore, the domain wall 112 moves between the two steps by applying a current. In WO2005 / 069368, a magnetic semiconductor having anisotropy perpendicular to the film surface is used as the magnetization recording layer, and the current for domain wall movement is as small as 0.35 mA. The junction 103 is actually provided with a tunnel insulating layer and a magnetization fixed layer, which are not shown in FIG.

 磁壁移動方式のMRAMでは、磁化記録層の2つの磁化固定部の磁化方向を反平行にする必要がある。例えば、適切な大きさの外部磁界を印加することにより、2つの磁化固定部の磁化方向を反平行にする工程を以下では、「初期化」と呼ぶ。特開2005-191032号公報では、2つの磁化固定部の磁化方向を反平行にする方法については言及されていない。

In the domain wall motion type MRAM, the magnetization directions of the two magnetization fixed portions of the magnetization recording layer need to be antiparallel. For example, a process of making the magnetization directions of the two magnetization fixed portions antiparallel by applying an external magnetic field having an appropriate magnitude is hereinafter referred to as “initialization”. Japanese Patent Laid-Open No. 2005-191032 does not mention a method of making the magnetization directions of the two magnetization fixed portions antiparallel.

 WO2005/069368号公報では、第1の磁化固定部101と第2の磁化固定部102の保磁力差を利用して、成膜後に外部磁界により、初期化をすることを開示している。具体的には、WO2005/069368号公報では、第1の磁化固定部101と第2の磁化固定部102の厚さを相違させることによって保磁力差をつけることを開示している。磁化は磁性層が厚いほど反転しにくくなるため、第2の磁化固定部102、及び、接合部103の磁化が反転し、第1の磁化固定部101の磁化が反転しないような磁界を印加することにより、磁壁を第1の磁化固定部101と接合部103の境界に導入することができる。

WO 2005/069368 discloses that initialization is performed by an external magnetic field after film formation by utilizing the coercive force difference between the first magnetization fixed part 101 and the second magnetization fixed part 102. Specifically, WO2005 / 069368 discloses that a coercive force difference is provided by making the thicknesses of the first magnetization fixed portion 101 and the second magnetization fixed portion 102 different. Since the magnetization is less likely to be reversed as the magnetic layer is thicker, a magnetic field is applied so that the magnetization of the second magnetization fixed unit 102 and the junction 103 is reversed and the magnetization of the first magnetization fixed unit 101 is not reversed. Thus, the domain wall can be introduced at the boundary between the first magnetization fixed portion 101 and the joint portion 103.

特開2005-93488号公報JP 2005-93488 A 米国特許第6834005号US Pat. No. 6,834,005 特開2005-191032号公報Japanese Patent Laid-Open No. 2005-191032 WO2005/069368号公報WO2005 / 069368

 しかしながら、WO2005/069368号公報のように、第1の磁化固定部101と第2の磁化固定部102の厚さを相違させる構造を形成すると、工程数が増加し、コストが増加する原因になる。即ち、第1の磁化固定部101と第2の磁化固定部102の厚さを相違させるためには、異なる大きさの2つの段差を形成する必要がある。異なる2種類の段差を形成するためには、露光プロセスを2回繰り返す必要がある。これは工程数が増加することを意味する。

However, if a structure in which the thicknesses of the first magnetization pinned portion 101 and the second magnetization pinned portion 102 are made different as in WO 2005/069368, the number of steps increases and the cost increases. . That is, in order to make the thicknesses of the first magnetization fixed portion 101 and the second magnetization fixed portion 102 different, it is necessary to form two steps having different sizes. In order to form two different types of steps, it is necessary to repeat the exposure process twice. This means that the number of steps increases.

 また、第1の磁化固定部101と第2の磁化固定部102の厚さが違うことは、磁気的に非対称である、即ち、第1の磁化固定部101と第2の磁化固定部102のピンポテンシャルの深さが異なることを意味する。これは、磁壁が左右に動く際の電流値が異なる値になってしまう可能性があることを意味する。

Further, the difference in thickness between the first magnetization pinned portion 101 and the second magnetization pinned portion 102 is magnetically asymmetric, that is, the first magnetization pinned portion 101 and the second magnetization pinned portion 102 are different from each other. It means that the depth of pin potential is different. This means that the current value when the domain wall moves to the left and right may be different values.

 したがって、本発明の目的は、電流駆動磁壁移動型の磁気抵抗素子において、工程数が少なく、磁気的に対称な素子構造、及び、その構造に磁壁を導入し初期化する方法を提供することにある。

Accordingly, an object of the present invention is to provide a magnetically symmetric element structure having a small number of steps and a method for introducing and initializing a domain wall into the structure in a current-driven domain wall motion type magnetoresistive element. is there.

 本発明の一の観点では、強磁性層である磁化記録層を具備し、磁化記録層が、反転可能な磁化を有する磁化反転領域と、磁化反転領域の第1境界に接続された第1磁化固定領域と、磁化反転領域の第2境界に接続された第2磁化固定領域とを有する磁気抵抗素子の初期化方法が提供される。当該初期化方法は、磁化反転領域と、第1磁化固定領域と、第2磁化固定領域の磁化を、第1方向に向ける工程と、第1磁化固定領域と第2磁化固定領域との間で磁化反転領域を通るように電流を流しながら、第1方向と反対の第2方向の成分を有する第1磁界を磁化記録層に印加する工程とを備えている。

In one aspect of the present invention, a magnetization recording layer that is a ferromagnetic layer is provided, and the magnetization recording layer has a magnetization reversal region having reversible magnetization and a first magnetization connected to a first boundary of the magnetization reversal region. A method of initializing a magnetoresistive element having a fixed region and a second magnetization fixed region connected to a second boundary of the magnetization switching region is provided. The initialization method includes a step of directing magnetization of the magnetization switching region, the first magnetization fixed region, and the second magnetization fixed region in the first direction, and between the first magnetization fixed region and the second magnetization fixed region. Applying a first magnetic field having a component in a second direction opposite to the first direction to the magnetization recording layer while passing a current through the magnetization switching region.

 本発明によれば、電流駆動磁壁移動型の磁気抵抗素子において、工程数が少なく、磁壁移動の不良の生じない素子構造、及び、その構造に磁壁を導入し初期化する方法を提供することができる。

According to the present invention, in a current-driven domain wall motion type magnetoresistive element, there are provided an element structure in which the number of steps is small and a domain wall motion defect does not occur, and a method for introducing and initializing a domain wall into the structure. it can.

図1は、従来の磁気抵抗素子の磁化記録層の構成を示す平面図である。FIG. 1 is a plan view showing a configuration of a magnetization recording layer of a conventional magnetoresistive element. 図2は、従来の磁気抵抗素子の磁化記録層の他の構成を示す斜視図である。FIG. 2 is a perspective view showing another configuration of the magnetization recording layer of the conventional magnetoresistive element. 図3は、本発明の一実施形態の磁気抵抗素子の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the magnetoresistive element according to the embodiment of the present invention. 図4は、本発明の他の実施形態の磁気抵抗素子の構成を示す斜視図である。FIG. 4 is a perspective view showing a configuration of a magnetoresistive element according to another embodiment of the present invention. 図5は、本発明の更に他の実施形態の磁気抵抗素子の構成を示す斜視図である。FIG. 5 is a perspective view showing a configuration of a magnetoresistive element according to still another embodiment of the present invention. 図6Aは、本発明の一実施形態における磁気抵抗素子の初期化方法を示す概念図である。FIG. 6A is a conceptual diagram illustrating a magnetoresistive element initialization method according to an embodiment of the present invention. 図6Bは、本発明の一実施形態における磁気抵抗素子の初期化方法を示す概念図である。FIG. 6B is a conceptual diagram illustrating a magnetoresistive element initialization method according to an embodiment of the present invention. 図6Cは、本発明の一実施形態における磁気抵抗素子の初期化方法を示す概念図である。FIG. 6C is a conceptual diagram showing a method of initializing a magnetoresistive element in one embodiment of the present invention. 図6Dは、本発明の一実施形態における磁気抵抗素子の初期化方法を示す概念図である。FIG. 6D is a conceptual diagram showing a magnetoresistive element initialization method in one embodiment of the present invention. 図7は、本発明の一実施形態の磁気抵抗素子の初期化方法による初期化後の磁気抵抗素子の状態を示す相図である。FIG. 7 is a phase diagram showing the state of the magnetoresistive element after initialization by the magnetoresistive element initialization method of one embodiment of the present invention. 図8は、本発明の更に他の実施形態の磁気抵抗素子の構成を示す斜視図である。FIG. 8 is a perspective view showing the configuration of a magnetoresistive element according to still another embodiment of the present invention. 図9は、本発明の一実施形態における磁気抵抗素子のデータ書き込み方法を示す概念図である。FIG. 9 is a conceptual diagram showing a data writing method of the magnetoresistive element in one embodiment of the present invention. 図10は、本発明の一実施形態の磁気抵抗素子を集積化したMRAMの構成の例を示す回路図である。FIG. 10 is a circuit diagram showing an example of the configuration of an MRAM in which magnetoresistive elements according to an embodiment of the present invention are integrated.

 以下、添付図面を参照して、本発明の様々な実施形態について説明する。本発明は、磁気抵抗素子の磁化記録層が面内方向に磁化を有する場合、及び、垂直方向に磁化を有する場合のいずれにも適用可能であるが、以下では、垂直方向に磁化を有する磁化記録層を使用する場合について説明する。磁気抵抗素子の性能の向上のためには、垂直方向に磁化を有する磁化記録層を使用することが好適である。

Hereinafter, various embodiments of the present invention will be described with reference to the accompanying drawings. The present invention can be applied to both the case where the magnetization recording layer of the magnetoresistive element has magnetization in the in-plane direction and the case where the magnetization has magnetization in the vertical direction. A case where the recording layer is used will be described. In order to improve the performance of the magnetoresistive element, it is preferable to use a magnetization recording layer having magnetization in the perpendicular direction.

(磁気抵抗素子の構造)

 図3は、本発明の一実施形態の磁気抵抗素子1の構造を示す斜視図である。図3に示されているように、磁気抵抗素子1は、磁化記録層10と、磁化固定層30と、その間に設けられたトンネルバリヤ層32とを備えている。トンネルバリヤ層32は、非磁性の絶縁層であり、例えば、Al膜やMgO膜等の薄い絶縁膜で構成される。トンネルバリヤ層32は、磁化記録層10と磁化固定層30に挟まれており、これら磁化記録層10、トンネルバリヤ層32、及び磁化固定層30によって磁気トンネル接合(MTJ)が形成されている。

(Structure of magnetoresistive element)

FIG. 3 is a perspective view showing the structure of the magnetoresistive element 1 according to the embodiment of the present invention. As shown in FIG. 3, the magnetoresistive element 1 includes a magnetization recording layer 10, a magnetization fixed layer 30, and a tunnel barrier layer 32 provided therebetween. The tunnel barrier layer 32 is a nonmagnetic insulating layer, and is composed of a thin insulating film such as an Al 2 O 3 film or an MgO film. The tunnel barrier layer 32 is sandwiched between the magnetization recording layer 10 and the magnetization fixed layer 30, and a magnetic tunnel junction (MTJ) is formed by the magnetization recording layer 10, the tunnel barrier layer 32, and the magnetization fixed layer 30.

 磁化記録層10は、基板面に垂直な方向の異方性(垂直磁気異方性)を持つ強磁性層である。磁化記録層10は、Fe、Co、Niのうちの少なくとも一つ以上の材料を含む。さらに、磁化記録層10がPtやPdを含むことで垂直磁気異方性を安定化することができる。これに加えて、磁化記録層10にB、C、N、O、Al、Si、P、Ti、V、Cr、Mn、Cu、Zn、Zr、Nb、Mo、Tc、Ru、Rh、Ag、Hf、Ta、W、Re、Os、Ir、Au、Smを添加することによって所望の磁気特性が発現されるように調整することができる。具体的には、磁化記録層10の材料としては、Co、Co-Pt、Co-Pd、Co-Cr、Co-Pt-Cr、Co-Cr-Ta、Co-Cr-B、Co-Cr-Pt-B、Co-Cr-Ta-B、Co-V、Co-Mo、Co-W、Co-Ti、Co-Ru、Co-Rh、Fe-Pt、Fe-Pd、Fe-Co-Pt、Fe-Co-Pd、Sm-Coなどが挙げられる。この他、Fe、Co、Niのうちの少なくとも一つの材料を含む層が、異なる層と積層された積層体は、垂直方向の磁気異方性を発現する磁化記録層10として使用することができる。具体的にはCo膜とPd膜の積層体、Co膜とPt膜の積層体、Co膜とNi膜の積層体、Fe膜とAu膜の積層体などが、磁化記録層10として使用可能である。

The magnetization recording layer 10 is a ferromagnetic layer having anisotropy (perpendicular magnetic anisotropy) in a direction perpendicular to the substrate surface. The magnetization recording layer 10 includes at least one material of Fe, Co, and Ni. Further, the perpendicular magnetic anisotropy can be stabilized when the magnetic recording layer 10 contains Pt or Pd. In addition to this, the magnetic recording layer 10 has B, C, N, O, Al, Si, P, Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Ag, By adding Hf, Ta, W, Re, Os, Ir, Au, and Sm, adjustment can be made so that desired magnetic properties are expressed. Specifically, the material of the magnetic recording layer 10 includes Co, Co—Pt, Co—Pd, Co—Cr, Co—Pt—Cr, Co—Cr—Ta, Co—Cr—B, and Co—Cr—. Pt—B, Co—Cr—Ta—B, Co—V, Co—Mo, Co—W, Co—Ti, Co—Ru, Co—Rh, Fe—Pt, Fe—Pd, Fe—Co—Pt, Fe—Co—Pd, Sm—Co and the like can be mentioned. In addition, a laminated body in which a layer containing at least one material of Fe, Co, and Ni is laminated with different layers can be used as the magnetization recording layer 10 that exhibits magnetic anisotropy in the perpendicular direction. . Specifically, a laminate of Co film and Pd film, a laminate of Co film and Pt film, a laminate of Co film and Ni film, a laminate of Fe film and Au film, etc. can be used as the magnetization recording layer 10. is there.

 磁化固定層30は、固定された磁化を有する強磁性層、又は、強磁性層と非磁性層の積層体で構成される。磁化固定層30は、磁化記録層10と同様に垂直磁気異方性を有している。加えて、磁化固定層30は、その磁化の向きが、書込み、及び、読出し動作によって変化しないように構成される。このために、磁化固定層30は、磁気異方性が磁化記録層10よりも大きいように構成される。これは、磁化記録層10と磁化固定層30の材料、組成を適切に選択することにより実現可能である。また、磁化固定層30の磁化の向きの固定は、磁化固定層30のトンネルバリヤ層とは反対側の面に反強磁性体層(図示せず)を積層し、磁化をピン止めすることによっても実現可能である。磁化固定層30も磁化記録層10と同様な材料を用いて構成することができる。

The magnetization fixed layer 30 is composed of a ferromagnetic layer having a fixed magnetization or a laminated body of a ferromagnetic layer and a nonmagnetic layer. The magnetization fixed layer 30 has perpendicular magnetic anisotropy like the magnetization recording layer 10. In addition, the magnetization fixed layer 30 is configured such that the magnetization direction thereof is not changed by the write and read operations. Therefore, the magnetization fixed layer 30 is configured so that the magnetic anisotropy is larger than that of the magnetization recording layer 10. This can be realized by appropriately selecting materials and compositions of the magnetization recording layer 10 and the magnetization fixed layer 30. The magnetization direction of the magnetization fixed layer 30 is fixed by stacking an antiferromagnetic layer (not shown) on the surface of the magnetization fixed layer 30 opposite to the tunnel barrier layer and pinning the magnetization. Is also feasible. The magnetization fixed layer 30 can also be configured using the same material as the magnetization recording layer 10.

 本実施形態では、図3に示されているように、磁化固定層30は、強磁性層34、非磁性層31、強磁性層33からなる積層体で構成されている。ここで、磁化固定層30は、強磁性層33、34が反強磁性的に結合され、強磁性層33、34の磁化が互いに反平行になるように構成される。例えば、非磁性層31としてRu膜又はCu膜を用い、その膜厚を適切に選択することにより、2つの強磁性層33、34の磁化を互いに反平行に結合することができる。この場合、2つの強磁性層34、33の磁化をほぼ等しくすれば、磁化固定層30からの漏洩磁界を抑制することができる。

In the present embodiment, as shown in FIG. 3, the magnetization fixed layer 30 is composed of a laminated body including a ferromagnetic layer 34, a nonmagnetic layer 31, and a ferromagnetic layer 33. Here, the magnetization fixed layer 30 is configured such that the ferromagnetic layers 33 and 34 are antiferromagnetically coupled and the magnetizations of the ferromagnetic layers 33 and 34 are antiparallel to each other. For example, by using a Ru film or a Cu film as the nonmagnetic layer 31 and appropriately selecting the film thickness, the magnetizations of the two ferromagnetic layers 33 and 34 can be coupled antiparallel to each other. In this case, if the magnetizations of the two ferromagnetic layers 34 and 33 are substantially equal, the leakage magnetic field from the magnetization fixed layer 30 can be suppressed.

 また、磁化記録層10及び磁化固定層30の一部分、特にトンネルバリヤ層と接する部分にCoFeやCoFeBなどTMR効果の大きな材料を用いても良い。

Further, a material having a large TMR effect such as CoFe or CoFeB may be used for a part of the magnetization recording layer 10 and the magnetization fixed layer 30, particularly a part in contact with the tunnel barrier layer.

 さらに、トンネルバリヤ層32と磁化記録層10の間に非磁性金属層を介して強磁性層を配置し、この強磁性層と磁化固定層30から形成されるMTJを用いてデータを読み出す構成をとることもできる。この場合、強磁性層は磁化記録層からの漏洩磁界によりその磁化方向が定まり、磁化記録層の磁化状態が間接的に読み出される。この構成においては強磁性層、及び、磁化固定層としては面内異方性を有する材料を用いても良い。

Further, a ferromagnetic layer is disposed between the tunnel barrier layer 32 and the magnetic recording layer 10 via a nonmagnetic metal layer, and data is read using the MTJ formed from the ferromagnetic layer and the magnetization fixed layer 30. It can also be taken. In this case, the magnetization direction of the ferromagnetic layer is determined by the leakage magnetic field from the magnetization recording layer, and the magnetization state of the magnetization recording layer is indirectly read out. In this configuration, a material having in-plane anisotropy may be used as the ferromagnetic layer and the magnetization fixed layer.

 本実施形態の磁気抵抗素子1は、磁壁移動方式による書き込み動作に対応するように構成されている。より具体的には、磁気抵抗素子1の磁化記録層10が、第1磁化固定領域11a、第2磁化固定領域11b、及び磁化反転領域13を有している。磁化反転領域13は、磁化固定層30と対向するように形成されている。言い換えれば、磁化記録層10の磁化反転領域13の一部が、トンネルバリヤ層32を介して磁化固定層30に接続されている。

The magnetoresistive element 1 of the present embodiment is configured to support a write operation by a domain wall motion method. More specifically, the magnetization recording layer 10 of the magnetoresistive element 1 has a first magnetization fixed region 11 a, a second magnetization fixed region 11 b, and a magnetization switching region 13. The magnetization switching region 13 is formed so as to face the magnetization fixed layer 30. In other words, a part of the magnetization switching region 13 of the magnetization recording layer 10 is connected to the magnetization fixed layer 30 via the tunnel barrier layer 32.

 後述する初期化動作により、第1磁化固定領域11aと第2磁化固定領域11bの磁化は、互いに反平行な方向に固定される。尚、「磁化が固定されている」とは、書き込み動作の前後で磁化の方向が変わらないことを意味する。すなわち、書き込み動作中に、磁化固定領域の一部の磁化の方向が変化しても、書き込み動作終了後には元に戻る。また、初期化動作においては、後述のように第2磁化固定領域11bの磁化は外部磁界やジュール熱により反転する。

By the initialization operation described later, the magnetizations of the first magnetization fixed region 11a and the second magnetization fixed region 11b are fixed in antiparallel directions. Note that “magnetization is fixed” means that the magnetization direction does not change before and after the write operation. That is, even if the magnetization direction of a part of the magnetization fixed region changes during the write operation, it returns to the original state after the write operation is completed. In the initialization operation, the magnetization of the second magnetization fixed region 11b is reversed by an external magnetic field or Joule heat as will be described later.

 一方、磁化反転領域13の磁化の向きは反転可能であり、+Z方向あるいは-Z方向である。つまり、磁化反転領域13の磁化は磁化固定層30の強磁性層34の磁化と平行あるいは反平行になることが許される。図3に示されているように、磁化反転領域13の磁化の向きが+Z方向の場合、第1磁化固定領域11bと磁化反転領域13とが1つの磁区(magnetic domain)を形成し、第1磁化固定領域11aが別の磁区を形成する。つまり、第1磁化固定領域11aと磁化反転領域13の間に磁壁(domain wall)12が形成される。一方、磁化反転領域13の磁化の向きが-Z方向の場合、第1磁化固定領域11aと磁化反転領域13とが1つの磁区を形成し、第2磁化固定領域11bが別の磁区を形成する。つまり、第2磁化固定領域11bと磁化反転領域13の間に磁壁が形成される。

On the other hand, the magnetization direction of the magnetization switching region 13 is reversible and is the + Z direction or the −Z direction. That is, the magnetization of the magnetization switching region 13 is allowed to be parallel or antiparallel to the magnetization of the ferromagnetic layer 34 of the magnetization fixed layer 30. As shown in FIG. 3, when the magnetization direction of the magnetization switching region 13 is the + Z direction, the first magnetization fixed region 11b and the magnetization switching region 13 form one magnetic domain, and the first The magnetization fixed region 11a forms another magnetic domain. That is, a domain wall 12 is formed between the first magnetization fixed region 11 a and the magnetization switching region 13. On the other hand, when the magnetization direction of the magnetization switching region 13 is the -Z direction, the first magnetization fixed region 11a and the magnetization switching region 13 form one magnetic domain, and the second magnetization fixed region 11b forms another magnetic domain. . That is, a domain wall is formed between the second magnetization fixed region 11 b and the magnetization switching region 13.

 第1磁化固定領域11aと第2磁化固定領域11bは磁化反転領域13と比較して厚く形成されている。このような構造は、磁化記録層を成膜後、磁化反転領域13に対応する部分のみをエッチングすることにより得られる。膜厚を相違させるのは、第1及び第2磁化固定領域11a、11bと磁化反転領域13との境界に磁壁のピンポテンシャルを形成するためである。磁壁のエネルギーは膜厚に比例するので、第1及び第2磁化固定領域11a、11bに生じた磁壁は磁化反転領域13に容易に移動するのに対し、磁化反転領域13に生じた磁壁は第1及び第2磁化固定領域11a、11bには移動しにくい。また、第1及び第2磁化固定領域11a、11bの厚い部分からの静磁界により、磁壁は磁化反転領域13と第1及び第2磁化固定領域11a、11bの境界にピン止めされる。なお、磁化記録層10の厚さ方向の構成を途中で変化させることにより、エッチングの際に磁化反転領域13と第1及び第2磁化固定領域11a、11bに共通に残る部分と、第1及び第2磁化固定領域11a、11bにのみ残る部分の膜構成を変えても良い。例えば、前者には電流による磁壁移動の生じやすい高分極材料であるCo/Ni積層膜などを用い、後者には磁気異方性の大きいCo/Pt積層膜などを用いることができる。また、後者はPtMnなどの反強磁性材料、Ruなどの非磁性金属とCo/Pt積層膜などの積層構造、あるいは、NiFeなどの面内異方性を有する磁性材料で置き換えることも可能である。

The first magnetization fixed region 11 a and the second magnetization fixed region 11 b are formed thicker than the magnetization switching region 13. Such a structure can be obtained by etching only the portion corresponding to the magnetization switching region 13 after forming the magnetic recording layer. The reason for making the film thicknesses different is that a pin potential of the domain wall is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the domain wall energy is proportional to the film thickness, the domain wall generated in the first and second magnetization fixed regions 11a and 11b easily moves to the magnetization switching region 13, whereas the domain wall generated in the magnetization switching region 13 is the first. It is difficult to move to the first and second magnetization fixed regions 11a and 11b. The domain wall is pinned to the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions 11a and 11b by the static magnetic field from the thick portions of the first and second magnetization fixed regions 11a and 11b. In addition, by changing the configuration in the thickness direction of the magnetization recording layer 10 in the middle, the portions that remain in common in the magnetization switching region 13 and the first and second magnetization fixed regions 11a and 11b during etching, The film configuration of the portion remaining only in the second magnetization fixed regions 11a and 11b may be changed. For example, a Co / Ni laminated film, which is a highly polarized material that easily causes domain wall movement due to current, can be used for the former, and a Co / Pt laminated film having a large magnetic anisotropy can be used for the latter. The latter can be replaced with an antiferromagnetic material such as PtMn, a nonmagnetic metal such as Ru and a laminated structure such as a Co / Pt laminated film, or a magnetic material having in-plane anisotropy such as NiFe. .

 第1磁化固定領域11aと第2磁化固定領域11bには、書き込み電流を印加するための電流供給端子14a、14bがそれぞれに接続されている。後述の初期化動作によって磁壁が電流供給端子14aと14bの間に導入され、書き込み電流に応じて駆動される。トンネルバリヤ層32及び磁化固定層30が積層されてMTJを構成する部分は、磁化記録層10のうち、電流供給端子14aと14bの間の部分を含まなければならない。これは、書き込み動作の結果、この間の磁化の方向が変化するためである。なお、電流供給端子14a、14bは磁化記録層10の上下どちらにあってもよい。

Current supply terminals 14a and 14b for applying a write current are connected to the first magnetization fixed region 11a and the second magnetization fixed region 11b, respectively. A domain wall is introduced between the current supply terminals 14a and 14b by the initialization operation described later, and is driven in accordance with the write current. The portion where the tunnel barrier layer 32 and the magnetization fixed layer 30 are stacked to form the MTJ must include the portion between the current supply terminals 14 a and 14 b in the magnetization recording layer 10. This is because the direction of magnetization during this time changes as a result of the write operation. Note that the current supply terminals 14 a and 14 b may be located either above or below the magnetization recording layer 10.

 図3の磁化記録層10の構造で留意すべきことは、第1磁化固定領域11aと第2磁化固定領域11bとが(製造誤差を除いて)磁気的に対称である、即ち、第1磁化固定領域11aと第2磁化固定領域11bのピンポテンシャルの深さが(製造誤差を除いて)同一であることである。これは磁壁12が磁化反転領域13と第1磁化固定領域11aの境界にある場合と、磁化反転領域13と第2磁化固定領域11bの境界にある場合のピンポテンシャルが同等であり、後述の書き込み動作において、ほぼ等しい電流で磁壁が駆動されることを意味している。これは回路設計の観点から望ましいだけでなく、ピンポテンシャル設計の点からも望ましい。すなわち、磁化固定領域の設計、すなわち、ピンポテンシャルの設計は熱擾乱を考慮しておこなわなければならないが、磁化固定領域が非対称な場合は少なくとも一方が過剰なピンポテンシャルを有することになるため、駆動電流のアンバランス、及び、増大をもたらす可能性がある。

It should be noted in the structure of the magnetization recording layer 10 in FIG. 3 that the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetically symmetric (except for manufacturing errors), that is, the first magnetization The pin potential depth of the fixed region 11a and the second magnetization fixed region 11b is the same (except for manufacturing errors). This is because the pin potential is the same when the domain wall 12 is at the boundary between the magnetization switching region 13 and the first magnetization fixed region 11a and when the domain wall 12 is at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11b. In operation, this means that the domain wall is driven with substantially equal current. This is desirable not only from the viewpoint of circuit design but also from the viewpoint of pin potential design. In other words, the design of the magnetization fixed region, that is, the pin potential must be designed in consideration of thermal disturbance. However, if the magnetization fixed region is asymmetric, at least one of them has an excessive pin potential. This can lead to current imbalance and increase.

 第1磁化固定領域11aと第2磁化固定領域11bとが(製造誤差を除いて)磁気的に対称であるという条件を満たす限り、本発明の磁気抵抗素子としては、他の様々な構造が採用され得る。図4、図5は、磁化記録層10の他の構造を示す斜視図である。図4、図5においては、MTJの部分は図示を省略し、磁化記録層10のみを示している。

As long as the condition that the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetically symmetric (excluding manufacturing errors) is satisfied, various other structures are employed as the magnetoresistive element of the present invention. Can be done. 4 and 5 are perspective views showing other structures of the magnetic recording layer 10. 4 and 5, the MTJ portion is not shown, and only the magnetization recording layer 10 is shown.

 図4の構造においては、第1磁化固定領域11aと第2磁化固定領域11bとが、磁化反転領域13と比較して幅広い形状をしている。これは第1及び第2磁化固定領域11a、11bと磁化反転領域13との境界に磁壁のピンポテンシャルを形成するためである。磁壁のエネルギーは磁化記録層10の幅にほぼ比例するので、第1及び第2磁化固定領域11a、11bに生じた磁壁は磁化反転領域13に容易に移動するのに対し、磁化反転領域13に生じた磁壁は第1及び第2磁化固定領域11a、11bには移動しにくい。また、第1及び第2磁化固定領域11a、11bの磁化反転領域13からはみ出した部分からの静磁界により、磁壁は磁化反転領域13と第1及び第2磁化固定領域11a、11bの境界にピン止めされる。

In the structure of FIG. 4, the first magnetization fixed region 11 a and the second magnetization fixed region 11 b have a wider shape than the magnetization switching region 13. This is because a domain wall pin potential is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the energy of the domain wall is substantially proportional to the width of the magnetization recording layer 10, the domain wall generated in the first and second magnetization fixed regions 11 a and 11 b easily moves to the magnetization switching region 13, whereas in the magnetization switching region 13 The generated domain wall hardly moves to the first and second magnetization fixed regions 11a and 11b. Further, the domain wall is pinned to the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions 11a and 11b by a static magnetic field from a portion of the first and second magnetization fixed regions 11a and 11b protruding from the magnetization switching region 13. Stopped.

 一方、図5の構造においては、第1磁化固定領域11aと第2磁化固定領域11bとが、磁化反転領域13と比較して、幅広く、かつ、厚い形状をしている。これは第1及び第2磁化固定領域11a、11bと磁化反転領域13との境界に磁壁のピンポテンシャルを形成するためである。磁壁のエネルギーは磁化記録層10の幅、厚さにほぼ比例するので、第1及び第2磁化固定領域11a、11bに生じた磁壁は磁化反転領域13に容易に移動するのに対し、磁化反転領域13に生じた磁壁は第1及び第2磁化固定領域11a、11bには移動しにくい。また、第1及び第2磁化固定領域11a、11bの磁化反転領域13からはみ出した部分、及び、厚い部分からの静磁界により、磁壁は磁化反転領域13と第1及び第2磁化固定領域11a、11bの境界にピン止めされる。

On the other hand, in the structure of FIG. 5, the first magnetization fixed region 11 a and the second magnetization fixed region 11 b are wider and thicker than the magnetization switching region 13. This is because a domain wall pin potential is formed at the boundary between the first and second magnetization fixed regions 11 a and 11 b and the magnetization switching region 13. Since the domain wall energy is substantially proportional to the width and thickness of the magnetization recording layer 10, the domain wall generated in the first and second magnetization fixed regions 11 a and 11 b easily moves to the magnetization switching region 13, whereas the magnetization switching is performed. The domain wall generated in the region 13 is difficult to move to the first and second magnetization fixed regions 11a and 11b. In addition, the domain walls of the first and second magnetization fixed regions 11a and 11b that protrude from the magnetization reversal region 13 and the static magnetic field from the thick portion cause the domain wall to become the magnetization reversal region 13 and the first and second magnetization fixed regions 11a, Pinned to the boundary of 11b.

(磁化固定領域の初期化)

 上述のように、本実施形態では、第1磁化固定領域11aと第2磁化固定領域11bとが(製造誤差を除いて)磁気的に対称である、即ち、第1磁化固定領域11aと第2磁化固定領域11bのピンポテンシャルの深さが(製造誤差を除いて)同一である。このことは、磁気抵抗素子1の特性としては好適であるが、外部磁界の印加によって初期化する、即ち、第1磁化固定領域11a及び第2磁化固定領域11bを互いに反平行に磁化させ、磁壁を導入することを困難にするという問題もある。即ち、単純に外部磁界を印加しただけでは、第1磁化固定領域11a及び第2磁化固定領域11bが同一の方向に向いてしまい、初期化することができない。

(Initialization of magnetization fixed region)

As described above, in the present embodiment, the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetically symmetric (except for manufacturing errors), that is, the first magnetization fixed region 11a and the second magnetization fixed region 11b. The pinned potential depth of the magnetization fixed region 11b is the same (except for manufacturing errors). This is suitable as a characteristic of the magnetoresistive element 1, but is initialized by application of an external magnetic field, that is, the first magnetization fixed region 11a and the second magnetization fixed region 11b are magnetized antiparallel to each other, and the domain wall is obtained. There is also the problem of making it difficult to introduce. That is, simply applying an external magnetic field causes the first magnetization fixed region 11a and the second magnetization fixed region 11b to face in the same direction and cannot be initialized.

 そこで、本実施形態では、特殊な初期化方法を用いて磁気抵抗素子1が初期化される。以下では、本実施形態における磁気抵抗素子1の初期化過程、すなわち、第1磁化固定領域11a及び第2磁化固定領域11bを互いに反平行に磁化させ、磁壁を導入する過程について図6A~図6Dを用いて説明する。図6A~図6Dでは、図3の構成を仮定するが、初期化方法、及び、その原理は図4、図5の素子について共通である。また、磁化固定層30の保磁力は磁化記録層10の保磁力よりも十分大きく、磁化固定層30の磁化方向は初期化過程で変化しないと仮定し、磁化固定層30の図示を省略している。

Therefore, in the present embodiment, the magnetoresistive element 1 is initialized using a special initialization method. Hereinafter, the initialization process of the magnetoresistive element 1 in the present embodiment, that is, the process of magnetizing the first magnetization fixed region 11a and the second magnetization fixed region 11b antiparallel to each other and introducing the domain wall will be described with reference to FIGS. 6A to 6D. Will be described. 6A to 6D, the configuration of FIG. 3 is assumed, but the initialization method and the principle thereof are common to the elements of FIGS. Further, it is assumed that the coercive force of the magnetization fixed layer 30 is sufficiently larger than the coercivity of the magnetization recording layer 10, and the magnetization direction of the magnetization fixed layer 30 is not changed in the initialization process, and the illustration of the magnetization fixed layer 30 is omitted. Yes.

 図6Aに示されているように、最初に-Z方向に大きな磁界を印加すると、全ての磁化は-Z方向を向く(ステップS1)。次に+Z方向の磁界を印加しながら、電流供給端子間に電流を印加する。このとき、磁界と電流がある値よりも大きいと、図6Bに示されているように、磁化反転領域13のみが磁化反転し、磁化反転領域13と第1及び第2磁化固定領域の境界に2つの磁壁が導入される(ステップS2a)。これは磁化反転領域13の断面積が第1及び第2磁化固定領域の断面積よりも小さく、電流密度が大きいことに起因する。すなわち、磁化反転領域13におけるジュール熱による温度上昇が大きいため、飽和磁化の低下が優先的に生じ、磁化反転領域13のみが磁化反転する。さらに、磁界、電流が大きい場合、図6Cに示されているように、磁壁12bが第2磁化固定領域の方向にデピンし、第2磁化固定領域の少なくとも一部が磁化反転する(ステップS2b)。これはスピントルクの効果により磁壁12bが電子の移動方向に押されるためである。このとき、第2磁化固定領域11bに侵入した磁壁12bが第2磁化固定領域11b内に留まるか、磁壁が境界から抜けて、第2磁化固定領域11b全体が反転するかは、主にこのとき印加されている磁界に依存している。第2磁化固定領域11b全体の磁化反転は、図6Dに示されるように、電流印加を止めた後に、+Z方向に磁界印加をすることにより、さらに確実に実施することができる(ステップS3)。なお、このときの磁界は第2磁化固定領域11bにおける磁壁のプロパゲーション磁界以上である必要がある。

As shown in FIG. 6A, when a large magnetic field is first applied in the −Z direction, all the magnetizations are directed in the −Z direction (step S1). Next, a current is applied between the current supply terminals while applying a magnetic field in the + Z direction. At this time, if the magnetic field and the current are larger than a certain value, only the magnetization switching region 13 is reversed in magnetization as shown in FIG. 6B, and the boundary between the magnetization switching region 13 and the first and second magnetization fixed regions is obtained. Two domain walls are introduced (step S2a). This is because the cross-sectional area of the magnetization switching region 13 is smaller than the cross-sectional areas of the first and second magnetization fixed regions, and the current density is large. That is, since the temperature rise due to Joule heat in the magnetization switching region 13 is large, the saturation magnetization is preferentially lowered, and only the magnetization switching region 13 is switched. Further, when the magnetic field and current are large, as shown in FIG. 6C, the domain wall 12b depins in the direction of the second magnetization fixed region, and at least a part of the second magnetization fixed region is reversed (step S2b). . This is because the domain wall 12b is pushed in the direction of electron movement by the effect of the spin torque. At this time, whether the domain wall 12b that has entered the second magnetization fixed region 11b stays in the second magnetization fixed region 11b or whether the domain wall falls out of the boundary and the entire second magnetization fixed region 11b is inverted is mainly at this time. Depends on the applied magnetic field. As shown in FIG. 6D, the magnetization reversal of the entire second magnetization fixed region 11b can be more reliably performed by applying a magnetic field in the + Z direction after stopping the current application (step S3). In addition, the magnetic field at this time needs to be more than the propagation magnetic field of the domain wall in the 2nd magnetization fixed area | region 11b.

 図7に、上述のステップS2a、S2bにおける印加電流と印加磁界をパラメーターとしたときの、初期磁化状態の相図を示す。ここで、ステップS1では十分に大きな磁界を印加することにより磁化記録層10全体を飽和させており、ステップS3は省略している。磁界、電流が共に小さい場合、いずれの領域の磁化も反転せず、磁化状態はステップS1から変化しない(図7の領域A)。磁界、電流がある程度の大きさになると、磁化反転領域13のみが反転した磁化状態が得られる(図7の領域B)。さらに磁界、電流を増加すると、磁化反転領域13に加えて、一方の磁化固定領域だけが反転した磁化状態が得られる(図7の領域C)。どちらの磁化固定領域が反転するかは電流方向により制御可能であり、スピントルク効果により電子が磁化反転領域から侵入する側の磁化固定領域が反転する。図7の領域Cの状態が磁壁移動型メモリで必要とされる磁化状態である。磁界、電流が過剰に大きい場合、全ての領域の磁化が反転してしまう(図7の領域D)。これはスピントルクの効果と比較して、磁界やジュール熱の影響が相対的に大きくなるためである。

FIG. 7 shows a phase diagram of the initial magnetization state when the applied current and the applied magnetic field in steps S2a and S2b described above are used as parameters. Here, in step S1, the entire magnetic recording layer 10 is saturated by applying a sufficiently large magnetic field, and step S3 is omitted. When both the magnetic field and the current are small, the magnetization of any region is not reversed, and the magnetization state does not change from step S1 (region A in FIG. 7). When the magnetic field and current become a certain magnitude, a magnetization state in which only the magnetization switching region 13 is reversed is obtained (region B in FIG. 7). When the magnetic field and current are further increased, a magnetization state in which only one magnetization fixed region is reversed in addition to the magnetization reversal region 13 is obtained (region C in FIG. 7). Which magnetization fixed region is inverted can be controlled by the current direction, and the magnetization fixed region on the side where electrons enter from the magnetization inverted region is inverted by the spin torque effect. The state of region C in FIG. 7 is the magnetization state required for the domain wall motion memory. When the magnetic field and current are excessively large, the magnetization of all the regions is reversed (region D in FIG. 7). This is because the influence of the magnetic field and Joule heat becomes relatively larger than the effect of the spin torque.

 本発明の初期化方法の動作マージンを広げるためには、第1磁化固定領域11aと第2磁化固定領域11bの一方が磁化反転しにくくなるようにすることが有効である。これにより、図7における領域Cと領域Dの縦の境界を右側にシフトさせることができる。

In order to widen the operation margin of the initialization method of the present invention, it is effective to make one of the first magnetization fixed region 11a and the second magnetization fixed region 11b difficult to reverse magnetization. Thereby, the vertical boundary between the region C and the region D in FIG. 7 can be shifted to the right.

 第1磁化固定領域11aと第2磁化固定領域11bの磁気特性を非対称にしないで、これを実現する方法として、図8に示されているように、第1磁化固定領域11aと第2磁化固定領域11bの一方に非磁性金属層15aを積層させるという方法がある。図8においては、非磁性金属層15aが第1磁化固定領域11aの上部にのみ積層されている。この非磁性金属層15aは、上述の磁気抵抗素子1の初期化過程での電流印加において、第1磁化固定領域11aにおける電流密度を第2磁化固定領域11bにおける電流密度よりも小さくする。これにより、第2磁化固定領域11bを反転させるように図6B、図6CのステップS2a、S2bにおける電流方向を選べば(即ち、第2磁化固定領域11bから磁化反転領域13を通って第1磁化固定領域11aに電流を流せば)、初期化マージンを広げることができる。なお、図8では、非磁性金属層15aを積層させる手法が図3の構造の磁化記録層10に適用されているが、当該手法が、図4及び図5の構造の磁化記録層10にも適用可能であることは、当業者には自明的であろう。

As a method for realizing this without making the magnetic characteristics of the first magnetization fixed region 11a and the second magnetization fixed region 11b asymmetrical, as shown in FIG. 8, the first magnetization fixed region 11a and the second magnetization fixed region 11b. There is a method of laminating a nonmagnetic metal layer 15a on one side of the region 11b. In FIG. 8, the nonmagnetic metal layer 15a is laminated only on the first magnetization fixed region 11a. The nonmagnetic metal layer 15a makes the current density in the first magnetization fixed region 11a smaller than the current density in the second magnetization fixed region 11b in the current application in the initialization process of the magnetoresistive element 1 described above. Accordingly, if the current direction in steps S2a and S2b of FIGS. 6B and 6C is selected so as to invert the second magnetization fixed region 11b (that is, the first magnetization is passed from the second magnetization fixed region 11b through the magnetization switching region 13). If a current is passed through the fixed region 11a), the initialization margin can be increased. In FIG. 8, the method of laminating the nonmagnetic metal layer 15a is applied to the magnetic recording layer 10 having the structure of FIG. 3, but the method is applied to the magnetic recording layer 10 having the structure of FIGS. Applicability will be apparent to those skilled in the art.

 以上述べた初期化動作において磁界方向を全て反対方向に設定しても、所望の初期状態が得られることは言うまでもない。また、磁界印加方向はZ方向だけでなく、ある程度のX、または、Y成分を有していてもよい。

It goes without saying that a desired initial state can be obtained even if the magnetic field directions are all set in opposite directions in the initialization operation described above. The magnetic field application direction is not limited to the Z direction, and may have a certain amount of X or Y component.

 本発明の初期化方法はウェハ工程終了時の検査、あるいは、パッケージ組み立て後の検査において実施することができる。また、図6A~図6Dに示した各ステップを異なる作業工程で実施してもよい。例えば、ステップS1はウェハ工程中におこない、ステップS2a、S2b、S3はパッケージ組み立て後におこなうこともできる。

The initialization method of the present invention can be implemented in an inspection at the end of a wafer process or an inspection after assembling a package. Further, the steps shown in FIGS. 6A to 6D may be performed in different work processes. For example, step S1 can be performed during the wafer process, and steps S2a, S2b, and S3 can be performed after the assembly of the package.

(書き込み、及び、読み出し動作)

 次に、磁気抵抗素子1に対するデータの書き込みについて説明する。

 図9は、図3で示された構造に対するデータの書込み原理を示している。データ書き込みは、スピン注入を利用した磁壁移動方式で行われる。書き込み電流は、MTJを貫通する方向ではなく、磁化記録層10内を平面的に流れる。その書き込み電流は、電流供給端子14a、14bから磁化記録層10に供給される。本実施形態では、磁化固定層30の強磁性層34の磁化と磁化反転領域13の磁化の向きが平行である状態が、データ“0”に対応付けられている。データ“0”状態において、磁化反転領域13の磁化の向きは-Z方向であり、磁壁12は磁化反転領域13と第2磁化固定領域11bとの境界に存在する。一方、磁化反転領域13と強磁性層34の磁化の向きが反平行である状態が、データ“1”に対応付けられている。データ“1”状態において、磁化反転領域13の磁化の向きは+Z方向であり、磁壁12は磁化反転領域13と第1磁化固定領域11aとの境界に存在する。

(Write and read operations)

Next, data writing to the magnetoresistive element 1 will be described.

FIG. 9 shows the data writing principle for the structure shown in FIG. Data writing is performed by a domain wall motion method using spin injection. The write current flows in a plane in the magnetization recording layer 10, not in the direction penetrating the MTJ. The write current is supplied to the magnetic recording layer 10 from the current supply terminals 14a and 14b. In the present embodiment, the state in which the magnetization direction of the ferromagnetic layer 34 of the magnetization fixed layer 30 and the magnetization direction of the magnetization switching region 13 are parallel is associated with data “0”. In the data “0” state, the magnetization direction of the magnetization switching region 13 is the −Z direction, and the domain wall 12 exists at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11 b. On the other hand, the state where the magnetization directions of the magnetization switching region 13 and the ferromagnetic layer 34 are antiparallel is associated with the data “1”. In the data “1” state, the magnetization direction of the magnetization switching region 13 is the + Z direction, and the domain wall 12 exists at the boundary between the magnetization switching region 13 and the first magnetization fixed region 11 a.

 データ“1”の書き込み時には、書き込み電流IW1が、第1磁化固定領域11aから磁化反転領域13を通って第2磁化固定領域11bに流れる。この場合、磁化反転領域13には、第2磁化固定領域11bからスピン電子が注入される。注入された電子のスピンは、磁化反転領域13と第2磁化固定領域11bの境界にある磁壁を第1磁化固定領域11aの方向に駆動する。その結果、磁化反転領域13の磁化の向きは、+Z方向へスイッチする。つまり、スピントランスファー効果により、磁化反転領域13の磁化が反転し、その磁化の向きが+Z方向に変わる。

When data “1” is written, the write current IW1 flows from the first magnetization fixed region 11a through the magnetization switching region 13 to the second magnetization fixed region 11b. In this case, spin electrons are injected into the magnetization switching region 13 from the second magnetization fixed region 11b. The spin of the injected electrons drives the domain wall at the boundary between the magnetization switching region 13 and the second magnetization fixed region 11b in the direction of the first magnetization fixed region 11a. As a result, the magnetization direction of the magnetization switching region 13 is switched to the + Z direction. That is, due to the spin transfer effect, the magnetization of the magnetization switching region 13 is reversed and the magnetization direction is changed to the + Z direction.

 一方、データ“0”の書き込み時には、書き込み電流IW2が、第2磁化固定領域11bから磁化反転領域13を通って第1磁化固定領域11aに流れる。この場合、磁化反転領域13には、第1磁化固定領域11aからスピン電子が注入される。その結果、磁化反転領域13の磁化が反転し、その磁化の向きが-Z方向に変わる。このように、磁化記録層10内を平面的に流れる書き込み電流IW1、IW2によって、磁化反転領域13の磁化の方向がスイッチする。第1磁化固定領域11a及び第2磁化固定領域11bは、異なるスピンを有する電子の供給源の役割を果たしている。

On the other hand, when data “0” is written, the write current IW2 flows from the second magnetization fixed region 11b through the magnetization switching region 13 to the first magnetization fixed region 11a. In this case, spin electrons are injected into the magnetization switching region 13 from the first magnetization fixed region 11a. As a result, the magnetization of the magnetization switching region 13 is reversed and the magnetization direction is changed to the −Z direction. In this way, the magnetization direction of the magnetization switching region 13 is switched by the write currents IW1 and IW2 that flow in the magnetization recording layer 10 in a plane. The first magnetization fixed region 11a and the second magnetization fixed region 11b serve as a supply source of electrons having different spins.

 また、磁気抵抗素子1からのデータの読み出しは、以下の手順で行われる。データ読み出し時には、読み出し電流が磁化固定層30と磁化反転領域13との間を流れるように供給される。例えば、読み出し電流は、磁化固定領域11a、11bのいずれかから、磁化反転領域13及びトンネルバリヤ層32を経由して、磁化固定層30の強磁性層34へ流れる。あるいは、読み出し電流は、磁化固定層30の強磁性層34から、トンネルバリヤ層32及び磁化反転領域13を経由して、磁化固定領域11a、11bのいずれかへ流れる。その読み出し電流あるいは読み出し電位に基づいて、磁気抵抗素子の抵抗値が検出され、磁化反転領域13の磁化の向きがセンスされる。

Further, reading of data from the magnetoresistive element 1 is performed according to the following procedure. At the time of data reading, a read current is supplied so as to flow between the magnetization fixed layer 30 and the magnetization switching region 13. For example, the read current flows from one of the magnetization fixed regions 11 a and 11 b to the ferromagnetic layer 34 of the magnetization fixed layer 30 via the magnetization switching region 13 and the tunnel barrier layer 32. Alternatively, the read current flows from the ferromagnetic layer 34 of the magnetization fixed layer 30 via the tunnel barrier layer 32 and the magnetization switching region 13 to either of the magnetization fixed regions 11 a and 11 b. Based on the read current or read potential, the resistance value of the magnetoresistive element is detected, and the magnetization direction of the magnetization switching region 13 is sensed.

(MRAMへの集積化)

 上述の磁気抵抗素子1は、MRAMに集積化されて使用され得る。図10は、このようなMRAMの構成を示す概念図である。当該MRAMは、複数のメモリセル61がマトリックス状に配置されたメモリセルアレイ60を有している。各メモリセル61には、磁気抵抗素子1と、2つの選択トランジスタTR1、TR2とが集積化されている。選択トランジスタTR1のソース/ドレインの一方は、第1磁化固定領域11aに接続された電流供給端子14aに接続され、他方は第1ビット線BL1に接続されている。選択トランジスタTR2のソース/ドレインの一方は、第2磁化固定領域11bの電流供給端子14bに接続され、他方は第2ビット線BL2に接続されている。選択トランジスタTR1、TR2のゲートはワード線WLに接続されている。磁気抵抗素子1の磁化固定層30は、配線を介して接地線に接続されている。

(Integration into MRAM)

The magnetoresistive element 1 described above can be used by being integrated in an MRAM. FIG. 10 is a conceptual diagram showing the configuration of such an MRAM. The MRAM has a memory cell array 60 in which a plurality of memory cells 61 are arranged in a matrix. In each memory cell 61, a magnetoresistive element 1 and two select transistors TR1 and TR2 are integrated. One of the source / drain of the selection transistor TR1 is connected to the current supply terminal 14a connected to the first magnetization fixed region 11a, and the other is connected to the first bit line BL1. One of the source / drain of the selection transistor TR2 is connected to the current supply terminal 14b of the second magnetization fixed region 11b, and the other is connected to the second bit line BL2. The gates of the selection transistors TR1 and TR2 are connected to the word line WL. The magnetization fixed layer 30 of the magnetoresistive element 1 is connected to a ground line through wiring.

 ワード線WLは、Xセレクタ62に接続されている。Xセレクタ62は、データの書き込み・読み出しにおいて、対象のメモリセル61(以下、「選択メモリセル」という。)に対応するワード線WLを選択ワード線として選択する。第1ビット線BL1はY側電流終端回路64に接続されており、第2ビット線BL2はYセレクタ63に接続されている。Yセレクタ63は、選択メモリセルにつながる第2ビット線BL2を選択第2ビット線として選択する。Y側電流終端回路64は、選択メモリセルにつながる第1ビット線BL1を選択第1ビット線として選択する。

The word line WL is connected to the X selector 62. The X selector 62 selects a word line WL corresponding to a target memory cell 61 (hereinafter referred to as “selected memory cell”) as a selected word line in writing / reading data. The first bit line BL1 is connected to the Y-side current termination circuit 64, and the second bit line BL2 is connected to the Y selector 63. The Y selector 63 selects the second bit line BL2 connected to the selected memory cell as the selected second bit line. The Y-side current termination circuit 64 selects the first bit line BL1 connected to the selected memory cell as the selected first bit line.

 メモリセルアレイ60は、データの記録に用いられるメモリセル61に加え、データ読み出しの際に参照されるリファレンスセル61rを含んでいる。リファレンスセル61rの構造は、メモリセル61と同じである。リファレンスセル61rの列に沿って、第1リファレンスビット線BL1r及び第2リファレンスビット線BL2rが設けられている。

The memory cell array 60 includes a reference cell 61r that is referred to when reading data, in addition to the memory cell 61 used for data recording. The structure of the reference cell 61r is the same as that of the memory cell 61. A first reference bit line BL1r and a second reference bit line BL2r are provided along the column of reference cells 61r.

 データ書き込み時のMRAMの動作は、下記の通りである:Y側電流源回路65は、選択第2ビット線に対して所定の書き込み電流(IW1、IW2)の供給又は引き込みを行う。Y側電源回路66は、データ書き込み時、Y側電流終端回路64に所定の電圧を供給する。その結果、書き込み電流(IW1,IW2)は、Yセレクタ63へ流れ込む、あるいは、Yセレクタ63から流れ出す。これらXセレクタ62、Yセレクタ63、Y側電流終端回路64、Y側電流源回路65、及びY側電源回路66は、磁気抵抗素子1に書き込み電流IW1,IW2を供給するための書き込み電流供給回路を構成している。

The operation of the MRAM at the time of data writing is as follows: The Y-side current source circuit 65 supplies or draws a predetermined write current (IW1, IW2) to the selected second bit line. The Y-side power supply circuit 66 supplies a predetermined voltage to the Y-side current termination circuit 64 at the time of data writing. As a result, the write currents (IW1, IW2) flow into or out of the Y selector 63. These X selector 62, Y selector 63, Y side current termination circuit 64, Y side current source circuit 65, and Y side power supply circuit 66 are a write current supply circuit for supplying write currents IW 1 and IW 2 to the magnetoresistive element 1. Is configured.

 一方、データ読み出し時のMRAMの動作は下記の通りである:第1ビット線BL1は“Open”に設定される。読み出し電流負荷回路67は、選択第2ビット線に所定の読み出し電流を流す。また、読み出し電流負荷回路67は、選択ワード線に対応するリファレンスセル61rにつながる第2リファレンスビット線BL2rに所定の電流を流す。センスアンプ68は、第2リファレンスビット線BL2rの電位と選択第2ビット線の電位差から選択メモリセルに記憶されているデータを判別し、そのデータを出力する。

On the other hand, the operation of the MRAM during data reading is as follows: the first bit line BL1 is set to “Open”. The read current load circuit 67 supplies a predetermined read current to the selected second bit line. The read current load circuit 67 supplies a predetermined current to the second reference bit line BL2r connected to the reference cell 61r corresponding to the selected word line. The sense amplifier 68 determines the data stored in the selected memory cell from the potential difference between the second reference bit line BL2r and the selected second bit line, and outputs the data.

 以上には本発明の実施形態が様々に記載されているが、本発明は、上記の実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。

Although various embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.

 この出願は、2008年12月19日に出願された日本出願特願2008-324736を基礎とする優先権を主張し、その開示の全てをここに取り込む。

This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2008-324736 for which it applied on December 19, 2008, and takes in those the indications of all here.

Claims (11)


  1.  強磁性層である磁化記録層を具備し、前記磁化記録層が、反転可能な磁化を有する磁化反転領域と、前記磁化反転領域の第1境界に接続された第1磁化固定領域と、前記磁化反転領域の第2境界に接続された第2磁化固定領域とを有する磁気抵抗素子の初期化方法であって、

     前記磁化反転領域と前記第1磁化固定領域と前記第2磁化固定領域の磁化を、前記第1方向に向ける工程と、

     前記第1磁化固定領域と前記第2磁化固定領域との間で前記磁化反転領域を通るように電流を印加しながら、前記第1方向と反対の第2方向の成分を有する第1磁界を前記磁化記録層に印加する工程

    とを備える

     磁気抵抗素子の初期化方法。

    A magnetization recording layer, which is a ferromagnetic layer, wherein the magnetization recording layer has a magnetization reversal region having reversible magnetization, a first magnetization fixed region connected to a first boundary of the magnetization reversal region, and the magnetization An initialization method for a magnetoresistive element having a second magnetization fixed region connected to a second boundary of an inversion region,

    Directing the magnetizations of the magnetization switching region, the first magnetization fixed region, and the second magnetization fixed region in the first direction;

    A first magnetic field having a component in a second direction opposite to the first direction is applied while applying a current so as to pass through the magnetization switching region between the first magnetization fixed region and the second magnetization fixed region. Step of applying to the magnetic recording layer

    With

    A method for initializing a magnetoresistive element.

  2.  請求項1に記載の磁気抵抗素子の初期化方法であって、

     前記第1磁界の印加の後、前記電流の印加を停止した状態で前記第2方向の成分を有する第2磁界を前記磁化記録層に印加する工程

    を更に備える

     磁気抵抗素子の初期化方法。

    An initialization method for a magnetoresistive element according to claim 1,

    After applying the first magnetic field, applying a second magnetic field having a component in the second direction to the magnetization recording layer in a state where the application of the current is stopped

    Further comprising

    A method for initializing a magnetoresistive element.

  3.  請求項1又は2に記載の磁気抵抗素子の初期化方法であって、

     前記電流は、前記第2磁化固定領域から前記磁化反転領域を通って前記第1磁化固定領域に流され、

     前記第2磁化固定領域と前記磁化反転領域の磁化が前記第2方向に向けられる

     磁気抵抗素子の初期化方法。

    An initialization method for a magnetoresistive element according to claim 1 or 2,

    The current is passed from the second magnetization fixed region to the first magnetization fixed region through the magnetization switching region,

    Magnetization of the second magnetization fixed region and the magnetization switching region is directed in the second direction.

    A method for initializing a magnetoresistive element.

  4.  請求項3に記載の磁気抵抗素子の初期化方法であって、

     前記第1磁化固定領域の上に非磁性金属層が積層されている

     磁気抵抗素子の初期化方法。

    An initialization method for a magnetoresistive element according to claim 3,

    A nonmagnetic metal layer is laminated on the first magnetization fixed region.

    A method for initializing a magnetoresistive element.

  5.  請求項1乃至4のいずれか1項に記載の磁気抵抗素子の初期化方法であって、

     前記第1磁化固定領域と前記第2磁化固定領域とが、磁気的に対称である

     磁気抵抗素子の初期化方法。

    An initialization method for a magnetoresistive element according to any one of claims 1 to 4,

    The first magnetization fixed region and the second magnetization fixed region are magnetically symmetric.

    A method for initializing a magnetoresistive element.

  6.  請求項5に記載の磁気抵抗素子の初期化方法であって、

     前記第1磁化固定領域と前記第2磁化固定領域の厚さが、前記磁化反転領域の厚さより厚い

     磁気抵抗素子の初期化方法。

    An initialization method for a magnetoresistive element according to claim 5,

    The first magnetization fixed region and the second magnetization fixed region are thicker than the magnetization switching region.

    A method for initializing a magnetoresistive element.

  7.  請求項5又は6に記載の磁気抵抗素子の初期化方法であって、前記第1磁化固定領域と前記第2磁化固定領域の幅が、前記磁化反転領域の幅より広い

     磁気抵抗素子の初期化方法。

    7. The method of initializing a magnetoresistive element according to claim 5, wherein a width of the first magnetization fixed region and a second magnetization fixed region is wider than a width of the magnetization switching region.

    A method for initializing a magnetoresistive element.

  8.  強磁性層である磁化記録層を具備し、

     前記磁化記録層が、

      反転可能な磁化を有する磁化反転領域と、

      前記磁化反転領域の第1境界に接続され、磁化が第1方向に固定された第1磁化固定領域と、

      前記磁化反転領域の第2境界に接続され、磁化が前記第1方向と反対の第2方向に固定された第2磁化固定領域

    とを備え、

     前記第1磁化固定領域と前記第2磁化固定領域とが磁気的に対称である

     磁気抵抗素子。

    A magnetic recording layer that is a ferromagnetic layer;

    The magnetization recording layer is

    A magnetization reversal region having reversible magnetization;

    A first magnetization fixed region connected to a first boundary of the magnetization switching region and having magnetization fixed in a first direction;

    A second magnetization fixed region connected to the second boundary of the magnetization switching region and having magnetization fixed in a second direction opposite to the first direction

    And

    The first magnetization fixed region and the second magnetization fixed region are magnetically symmetric.

    Magnetoresistive element.

  9.  請求項8に記載の磁気抵抗素子であって、

     前記第1磁化固定領域と前記第2磁化固定領域の厚さが、前記磁化反転領域の厚さより厚い

     磁気抵抗素子。

    The magnetoresistive element according to claim 8,

    The first magnetization fixed region and the second magnetization fixed region are thicker than the magnetization switching region.

    Magnetoresistive element.

  10.  請求項8又は9に記載の磁気抵抗素子であって、前記第1磁化固定領域と前記第2磁化固定領域の幅が、前記磁化反転領域の幅より広い

     磁気抵抗素子。

    10. The magnetoresistive element according to claim 8, wherein a width of the first magnetization fixed region and a second magnetization fixed region is wider than a width of the magnetization switching region.

    Magnetoresistive element.

  11.  請求項8乃至10のいずれか1項に記載の磁気抵抗素子であって、

     前記第1磁化固定領域の上に非磁性金属層が積層されている

     磁気抵抗素子。

    The magnetoresistive element according to any one of claims 8 to 10,

    A nonmagnetic metal layer is laminated on the first magnetization fixed region.

    Magnetoresistive element.
PCT/JP2009/071042 2008-12-19 2009-12-17 Method for initializing magnetoresistive element, and magnetoresistive element WO2010071174A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543001A JP5472821B2 (en) 2008-12-19 2009-12-17 Method for initializing magnetoresistive element and magnetoresistive element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-324736 2008-12-19
JP2008324736 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010071174A1 true WO2010071174A1 (en) 2010-06-24

Family

ID=42268844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071042 WO2010071174A1 (en) 2008-12-19 2009-12-17 Method for initializing magnetoresistive element, and magnetoresistive element

Country Status (2)

Country Link
JP (1) JP5472821B2 (en)
WO (1) WO2010071174A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039015A (en) * 2010-08-10 2012-02-23 Nec Corp Magnetic random access memory and initialization method thereof
JPWO2014065049A1 (en) * 2012-10-25 2016-09-08 日本電気株式会社 Domain wall displacement type memory cell and its initialization processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191032A (en) * 2003-12-24 2005-07-14 Toshiba Corp Magnetic storage device and method of writing magnetic information
WO2005069368A1 (en) * 2004-01-15 2005-07-28 Japan Science And Technology Agency Current injection magnetic domain wall moving element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936627B2 (en) * 2006-12-12 2011-05-03 Nec Corporation Magnetoresistance effect element and MRAM
JP2008226919A (en) * 2007-03-08 2008-09-25 Nec Corp Magnetic random access memory and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191032A (en) * 2003-12-24 2005-07-14 Toshiba Corp Magnetic storage device and method of writing magnetic information
WO2005069368A1 (en) * 2004-01-15 2005-07-28 Japan Science And Technology Agency Current injection magnetic domain wall moving element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012039015A (en) * 2010-08-10 2012-02-23 Nec Corp Magnetic random access memory and initialization method thereof
JPWO2014065049A1 (en) * 2012-10-25 2016-09-08 日本電気株式会社 Domain wall displacement type memory cell and its initialization processing method

Also Published As

Publication number Publication date
JPWO2010071174A1 (en) 2012-05-31
JP5472821B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5338666B2 (en) Domain wall random access memory
JP5366014B2 (en) Magnetic random access memory and initialization method thereof
JP5062481B2 (en) Magnetic memory cell, magnetic random access memory, and data read / write method to magnetic random access memory
JP5206414B2 (en) Magnetic memory cell and magnetic random access memory
JP5077732B2 (en) Magnetic memory cell, magnetic random access memory, semiconductor device, and manufacturing method of semiconductor device
JP3863536B2 (en) Magnetic random access memory and data writing method of the magnetic random access memory
JP5146836B2 (en) Magnetic random access memory and manufacturing method thereof
JP5488465B2 (en) Magnetic random access memory and initialization method and writing method of magnetic random access memory
JP5299735B2 (en) Domain wall random access memory
JP5201539B2 (en) Magnetic random access memory
JP5545213B2 (en) Magnetic random access memory and initialization method thereof
JP5257831B2 (en) Magnetic random access memory and initialization method thereof
JP2007273495A (en) Magnetic memory device and method of driving same
JPWO2007119446A1 (en) MRAM and data read / write method of MRAM
JP5472820B2 (en) Magnetoresistive element, MRAM and method for initializing magnetoresistive element
JP5278769B2 (en) Magnetic recording apparatus and magnetization fixing method
JP5360600B2 (en) Magnetic random access memory and initialization method of magnetic random access memory
JP2009200123A (en) Magnetic random access memory
JP5445029B2 (en) Magnetoresistive element and domain wall random access memory
JP5472821B2 (en) Method for initializing magnetoresistive element and magnetoresistive element
JP2002353417A (en) Magnetoresistive effect element and magnetic memory device
JP3977816B2 (en) Magnetic random access memory and data writing method of the magnetic random access memory
JP2002353418A (en) Magnetoresistive effect element and magnetic memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543001

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833477

Country of ref document: EP

Kind code of ref document: A1