WO2010071150A1 - Precoated aluminum plate - Google Patents

Precoated aluminum plate Download PDF

Info

Publication number
WO2010071150A1
WO2010071150A1 PCT/JP2009/070974 JP2009070974W WO2010071150A1 WO 2010071150 A1 WO2010071150 A1 WO 2010071150A1 JP 2009070974 W JP2009070974 W JP 2009070974W WO 2010071150 A1 WO2010071150 A1 WO 2010071150A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum plate
film
fine particles
resin
precoat
Prior art date
Application number
PCT/JP2009/070974
Other languages
French (fr)
Japanese (ja)
Inventor
伸郎 服部
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008322876A external-priority patent/JP4638538B2/en
Priority claimed from JP2009075673A external-priority patent/JP5491754B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2009801495808A priority Critical patent/CN102245380A/en
Publication of WO2010071150A1 publication Critical patent/WO2010071150A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al

Definitions

  • the present invention relates to a pre-coated aluminum sheet made of an aluminum sheet, which is mainly used for industrial electronic devices, consumer electronic devices, automobile electrical components and the like.
  • housings covers and the like for consumer electronic devices such as optical disk drive devices assumed in Patent Document 1 and Patent Document 2
  • aluminum plates formed into a box shape by bending 90 degrees have been applied.
  • the technology for producing box-type housings by bending is to use a coiled plate, continuous molding with progressive molds is possible, and continuous molding technology using quick-drying press oil has been established. Therefore, a cleaning process after press molding is unnecessary, and it can be said that the method is excellent in productivity.
  • the case manufactured by bending since the case manufactured by bending always has a gap in the corner of the side wall, the following problems arise when the case needs to be sealed.
  • cases in which high sealing performance is required for the housing include, for example, automotive control electrical components installed in harsh environments such as engine rooms (control devices such as ECUs, hybrid and electric vehicle batteries, inverters, etc. In these cases, if the airtightness inside the housing cannot be maintained, moisture, oils, dust and the like may enter the housing and cause a failure.
  • Aluminum plate molded products are also used for lithium ion batteries and electrolytic capacitor cases. However, in applications where liquids such as electrolytes are placed inside, as in these cases, in order to prevent liquid leakage, However, the case is required to have high sealing performance. Further, even in consumer electronic devices used in a room such as a home, it is expected that the electromagnetic wave shielding property can be improved by enhancing the sealing property of the cover.
  • FIG. 3A is a schematic diagram of a box-shaped housing by bending
  • FIG. 3B is a schematic diagram of a box-shaped housing by drawing.
  • Patent Document 3 discloses a gel fraction of the pre-coated film as an intermolecular cross-linked state of a thermosetting resin formed on the surface of the aluminum plate ( When the value of Gel Fraction) is compared before and after the heat treatment at 220 ° C., the value of the gel fraction after the heat treatment is continuously reduced from the value of the gel fraction before the heat treatment.
  • the pre-coating satisfying high drawability by controlling the reduction rate from the value of the gel fraction before the heat treatment at the time of performing the heat treatment at 220 ° C. for 10 minutes to be less than 10%.
  • An aluminum plate is disclosed.
  • Patent Document 4 includes a thermoplastic resin film provided on the surface of an aluminum plate and a thermosetting resin coating layer provided on the surface of the thermoplastic resin film, thereby maintaining moldability.
  • a resin-coated laminated aluminum plate for an electronic component case that prevents the discoloration of the resin coating layer has been disclosed.
  • thermoplastic resin film a polyamide resin such as nylon or a saturated polyester resin such as PET is used as the thermoplastic resin film.
  • JP 2003-313684 A paragraphs 0020 to 0050
  • Japanese Patent No. 4134237 paragraphs 0024 to 0042
  • JP 2006-305841 A paragraphs 0024 to 0051
  • Japanese Patent No. 4003915 paragraphs 0017 to 0029
  • Patent Literature 1 and Patent Literature 2 are inventions that assume an optical disk drive as their application, and as described above, are considered to be inventions that presuppose that the housing is manufactured by bending. In the case of bending, as described above, it is considered that only molding with a quick-drying press oil is assumed. Therefore, it is considered that durability with a boiling chlorine-based cleaning chemical is not considered.
  • Patent Document 3 assumes drawing.
  • the continuous forming technique using the quick-drying press oil as described in the case of the bending process has not been sufficiently established. Therefore, many methods are still employed in which unnecessary pressing oil and abrasion powder are removed using a cleaning agent after molding using high-viscosity rust preventive oil or emulsion type wax. In such a method, it is not sufficient that the precoat film satisfies the moldability capable of following a large deformation, and the film is dissolved, peeled, discolored, and stuck to the chemical used in the cleaning process. The durability of the film in the cleaning process is indispensable.
  • a film laminate material made of a thermoplastic resin as a base resin and laminated on the surface of an aluminum plate uses a thermoplastic resin film.
  • a polyamide-based thermoplastic resin typified by nylon is used as a base resin, it has good adhesion to an aluminum plate and has excellent moldability.
  • the base resin is easily yellowed or browned.
  • a saturated polyester-based thermoplastic resin such as PET is used as the base resin, it has good adhesion to the aluminum plate, exhibits excellent moldability, and does not easily discolor the base resin even in high-temperature environments.
  • the base resin is easily hydrolyzed, it tends to be inferior in durability under a high-temperature and humid atmosphere.
  • the base resin when a polyolefin resin typified by polyethylene or polypropylene is used as a base resin, the base resin is basically composed of only carbon and hydrogen and does not contain nitrogen or oxygen. Therefore, there is no origin of functional groups and chemical bonds such as hydroxyl groups, carboxyl groups, ester bonds, isocyanate groups, urethane bonds, amino groups, and amide bonds, and the adhesiveness to the aluminum plate is poor.
  • pre-coated aluminum plate using a thermosetting resin with higher heat resistance and durability than the film laminate material, and it is washed during the process of washing and removing press oil and wear powder etc. in the cleaning agent after press molding.
  • Precoated aluminum with excellent film durability in the cleaning process that can prevent surface abnormalities such as dissolution, peeling, discoloration, and sticking of the precoat film even when cleaning in a high-capacity boiling chlorine-based cleaning agent Development of the board is desired.
  • a precoated aluminum plate that has excellent formability in drawing and does not impair the beautiful gloss appearance of the aluminum plate is more desired.
  • the present invention has been made in view of the above problems, and in a precoated aluminum plate using a thermosetting resin, in a boiling chlorine-based cleaning agent, no dissolution, peeling, discoloration, sticking, etc. of the film occurs. It aims at providing the precoat aluminum plate excellent in the durability of the film
  • thermosetting resin mainly composed of an epoxy resin that has excellent durability under a high-temperature and humid atmosphere is used to provide a pre-coated aluminum plate that has both high moldability and heat-resistant discoloration properties and excellent chemical resistance.
  • the pre-coated aluminum plate according to the first solution is formed on the surface of the aluminum plate with a pre-coated film (hereinafter referred to as a film as appropriate) containing a base resin that has been cross-linked and formed with fine particles.
  • a pre-coated film hereinafter referred to as a film as appropriate
  • the precoated aluminum plate is characterized in that the precoated film has a gel fraction of 50% or more and a surface roughness of 0.25 ⁇ m or more in terms of arithmetic average roughness (Ra). To do.
  • the gel fraction of the precoat film is 50% or more, the crosslink density of the precoat film is increased, and the fine particles added to the precoat film are prevented from falling off during the cleaning process. Can do.
  • chemical resistance, heat resistance, hydrolysis resistance and the like are improved, and durability of the film in the cleaning process is improved.
  • the surface roughness (arithmetic average roughness (Ra)) of the precoat film is controlled, and when the surface roughness Ra is 0.25 ⁇ m or more, the surface roughness of the precoat film is reduced. It becomes sufficiently large, and sticking between the films in the boiling chlorine-based cleaning agent is suppressed.
  • the fine particles are preferably inorganic fine particles or crosslinked organic fine particles. According to such a configuration, the fine particles are not melted by heat when the base resin is subjected to a crosslinking reaction, and the surface roughness Ra of the precoat film can be easily controlled.
  • the fine particles are preferably crosslinked spherical organic fine particles. According to such a structure, the form of the convex part of a precoat film
  • the base resin is preferably a crosslinked polyester resin obtained by crosslinking a polyester resin having a glass transition temperature of 25 to 65 ° C. with a melamine curing agent or an isocyanate curing agent.
  • the polyester resin preferably has a glass transition temperature of 35 to 60 ° C. According to such a configuration, the film becomes moderately flexible, and the drawability of the precoated aluminum plate is improved.
  • the surface roughness of the precoat film is preferably an arithmetic average roughness (Ra) of 0.25 to 0.55 ⁇ m. According to such a configuration, the irregular reflection of visible light on the surface of the precoat film is suppressed, and the precoat film is suppressed from being matted.
  • the matte state means that the gloss of the aluminum plate as the material is lost.
  • the proportion of the fine particles is preferably 1 to 50% by mass. According to such a configuration, the surface roughness Ra of the precoat film can be easily set to 0.25 ⁇ m or more by setting the ratio of the fine particles to 1% by mass or more. On the other hand, when the proportion of the fine particles is 50% by mass or less, the fine particles can be easily fixed to the base resin.
  • the particle diameter of the fine particles is preferably 1 to 50 ⁇ m. According to such a configuration, considering that the film thickness that can be applied with a general roll coater is about 1 to 20 ⁇ m by setting the particle size of the fine particles to 1 ⁇ m or more, the target film of the precoat film Even in the case of a relatively thin film thickness of 1 ⁇ m, the surface roughness Ra of the precoat film can be easily set to 0.25 ⁇ m or more. On the other hand, by setting the ratio of the fine particles to 50% by mass or less, the fine particles can be easily fixed to the base resin even if the target film thickness is 20 ⁇ m.
  • the precoat film preferably has a thickness of 1 to 20 ⁇ m.
  • the thickness of the film that can be applied by one application operation is generally 1 to 20 ⁇ m. Therefore, workability and productivity can be improved with the above configuration.
  • the pre-coated aluminum plate according to the second solution is a pre-coated aluminum plate in which a pre-coated film is formed on the surface of the aluminum plate, and the pre-coated film is an epoxy resin and a non-yellowing type
  • the isocyanate-based curing agent is made of a thermosetting resin that is cross-linked between molecules, and the gel fraction of the precoat film is 70% or more and 92% or less.
  • the precoat film is made of a thermosetting resin in which an epoxy resin is cross-linked between molecules, whereby durability in a high-temperature and humid atmosphere is improved.
  • the precoat film is composed of a thermosetting resin in which an epoxy resin and a non-yellowing type isocyanate curing agent are cross-linked between molecules, and the gel fraction of the precoat film is 70% or more and 92% or less.
  • the epoxy resin is flexible, has high drawability, is excellent in chemical resistance, and can avoid discoloration in a heat test.
  • the gel fraction of the precoat film is preferably 70% or more and 85% or less. According to such a configuration, the film can follow deep drawing with a larger amount of deformation by setting the gel fraction of the precoat film to 70% or more and 85% or less.
  • the non-yellowing type isocyanate curing agent is preferably a block type isocyanate compound. According to such a configuration, when the paint (resin solution) is stored at room temperature by using a block-type isocyanate compound as the non-yellowing type isocyanate curing agent, the isocyanate curing agent and the epoxy resin Can be prevented from reacting and curing, and since the curing reaction proceeds quickly in the heating process in the painting line, the paint storage life can be greatly extended while maintaining rapid bake curability. .
  • the precoat film contains inorganic fine particles or fine particles which are crosslinked organic fine particles in the thermosetting resin serving as a base resin, and the surface roughness is an arithmetic average roughness (Ra). It is preferable that it is 0.25 ⁇ m or more. According to such a configuration, the surface roughness (arithmetic average roughness (Ra)) of the precoat film is controlled by adding fine particles, and the surface roughness Ra is 0.25 ⁇ m or more, so The surface roughness of the film becomes sufficiently large, and adhesion between the films in the boiling chlorine-based cleaning agent is suppressed.
  • Ra arithmetic average roughness
  • the fine particles are preferably cross-linked spherical organic fine particles. According to such a structure, the form of the convex part of a precoat film
  • the surface roughness of the precoat film is preferably an arithmetic average roughness (Ra) of 0.25 to 0.55 ⁇ m. According to such a configuration, the irregular reflection of visible light on the surface of the precoat film is suppressed, and the precoat film is suppressed from being matted.
  • the matte state means that the gloss of the aluminum plate as the material is lost.
  • the invention of the above constitution (1) in the first solution means, even when washing is performed in a harsh boiling chlorine-based cleaning agent, dissolution, peeling, discoloration, sticking, etc. of the film do not occur. It is possible to provide a pre-coated aluminum plate with excellent film durability in the cleaning process. Thereby, since the manufacturing process which can be selected spreads, the application field of a precoat aluminum plate spreads. In addition, since the basic chemical resistance of the film has been improved, not only the durability of the film in the cleaning process after press molding is improved, but also the solvent resistance and chemical resistance in the actual use environment are improved. .
  • the surface roughness Ra of the precoat film can be easily controlled, and a precoat film having a stable surface roughness Ra can be obtained.
  • the burden on the press molding die can be reduced, so that the life of the press molding die can be improved.
  • the flexibility of the precoat film can be obtained moderately, and the drawability of the precoat aluminum plate can be improved. Therefore, it is possible to provide a precoated aluminum plate that can follow forming with large deformation such as drawing and ironing. As a result, it is possible to provide a casing with excellent hermeticity that is suitable for casings for industrial electronic devices, consumer electronic devices, and automobile electrical components. In addition, it is possible to provide a molded article having excellent heat discoloration resistance and hydrolysis resistance as compared with a film laminated aluminum plate. According to the invention of the configuration (6) in the first solving means, it is possible to provide a molded product having a beautiful gloss appearance of the aluminum plate.
  • the precoat film Even when the target film thickness is 1 ⁇ m and a relatively thin film thickness, the surface roughness Ra of the precoat film can be easily set to 0.25 ⁇ m or more.
  • the fine particles can be easily fixed to the base resin even when the target film thickness is a relatively large film thickness of 20 ⁇ m. According to the invention of the configuration (9) in the first solving means, workability and productivity can be improved.
  • the configuration of the above (10) in the second solution means it has excellent draw forming (working) properties, is excellent in durability under a high-temperature and humid atmosphere, has both chemical resistance, And the precoat aluminum plate which does not produce discoloration by a heat test can be provided. As a result, it is possible to supply a light and highly airtight casing that is excellent in reliability even in outdoor or in-vehicle environments at low cost and with excellent productivity. According to the invention of the configuration of the above (11) in the second solving means, it is possible to provide a precoated aluminum plate having a further (further) excellent drawability.
  • the degree of freedom in designing the shape of the hermetically sealed housing is increased, and various shapes of the housing can be obtained, and the applicable range of the housing is expanded.
  • the shelf life of the paint forming the precoat film is improved.
  • the risk that the paint will expire and become unusable is reduced, leading to a total cost reduction.
  • industrial waste is reduced, it leads to environmental improvement.
  • the invention of the above configuration (13) in the second solution means, even when washing is performed in a harsh boiling chlorine-based cleaning agent, dissolution, peeling, discoloration, sticking, etc. of the film do not occur. It is possible to provide a pre-coated aluminum plate with excellent film durability in the cleaning process. Thereby, since the manufacturing process which can be selected spreads, the application field of a precoat aluminum plate spreads. In addition, since the basic chemical resistance of the coating is improved, not only the durability of the coating is improved in the cleaning process after press molding, but also the chemical resistance in the actual use environment is improved. Furthermore, the surface roughness Ra of the precoat film can be easily controlled, and a precoat film having a stable surface roughness Ra can be obtained.
  • the load on the press molding die can be reduced, so that the life of the press molding die can be improved.
  • the configuration (15) in the second solving means it is possible to provide a molded product having a beautiful gloss appearance of the aluminum plate.
  • FIG. 1 is a partial cross-sectional view schematically showing a configuration of a precoated aluminum plate according to the present invention.
  • a precoated aluminum plate 1 has a surface of an aluminum plate 2 on which a precoat film 3 including an intermolecular cross-linked base resin 4 and fine particles 5 is formed.
  • the surface of the aluminum plate 2 means at least one surface of the aluminum plate 2.
  • the aluminum plate 2 referred to in the present invention is made of aluminum or an aluminum alloy, and the aluminum plate (aluminum plate or aluminum alloy plate) 2 used in the present invention is not particularly limited, and may be a product shape or a molding.
  • the method can be selected based on the strength required at the time of use.
  • a non-heat treatment type aluminum plate that is, a 1000 series industrial pure aluminum plate, a 3000 series Al—Mn alloy plate, and a 5000 series Al—Mg alloy plate can be preferably used.
  • aluminum plates such as A1050, A1100, A3003, and A3004 defined in JIS H4000 are recommended.
  • aluminum plates such as A5052 and A5182, prescribed
  • Various types of tempering (thermal refining) and plate thickness can be selected and used according to the purpose.
  • the aluminum plate 2 may be subjected to reactive base treatment, coating type base treatment, anodizing treatment, electrolytic etching treatment, degreasing treatment, and the like.
  • the precoat film 3 (film 3) includes a base resin 4 and fine particles 5 dispersed in the base resin 4, and is formed on the surface of the aluminum plate 2.
  • This precoat film 3 has a gel fraction of 50% or more and a surface roughness of 0.25 ⁇ m or more in terms of arithmetic average roughness (Ra).
  • the base resin 4 is a main component of the precoat film 3 and uses a conventionally known intercoat type resin used for a precoat aluminum plate or a precoat steel plate, and has a gel fraction of 50 as described later.
  • the intermolecular cross-linking reaction is performed so as to be at least%.
  • thermoplastic resins as the base resin as those that do not undergo intermolecular crosslinking by thermosetting reaction, but as described in the above-mentioned prior art, those using thermoplastic resins as the base resin have various points. This creates a practical problem. However, if a resin that performs intermolecular crosslinking by thermosetting reaction or the like is selected as the base resin 4, this resin originally has a functional group for intermolecular crosslinking, and thus has excellent adhesion to the aluminum plate 2. . Moreover, by cross-linking, chemical resistance and heat resistance can be increased, and hydrolysis resistance can be improved.
  • the intermolecular cross-linking resin used for the base resin 4 can be selected according to the usage environment and application after pressing. For example, it is desirable to use an epoxy-based resin for the base resin 4 if the hardness and heat resistance of the coating 3 are required. For applications that require weather resistance, antifouling properties, etc., the base resin It is desirable to use a fluorine-based resin for 4. Furthermore, when the product shape is strict and is used after being molded into a complicated shape, it is desirable to use a polyester-based resin that forms a relatively flexible coating 3 as the base resin 4.
  • polyester resin it is desirable to use a saturated polyester resin obtained by condensation polymerization of a polyhydric alcohol and a polybasic acid.
  • polyhydric alcohols include, for example, dihydric alcohols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,3-butylene glycol, 1,6-hexanediol, diethylene glycol, glycerin, trimethylolethane, Trihydric alcohols such as methylolpropane, and tetrahydric or higher alcohols can be used.
  • polybasic acids examples include dibasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, and sebacic acid, tribasic acids such as trimellitic anhydride, and tetravalent or higher polybasic acids.
  • a basic acid or the like can be used.
  • These polyhydric alcohols and polybasic acids may be subjected to condensation polymerization by using one kind or two or more kinds at the same time. Moreover, the glass transition temperature of a polyester resin changes by combining these components.
  • the glass transition temperature is one of the transition temperatures of the resin.
  • a resin at a temperature higher than the glass transition temperature is a soft rubber, and a resin at a temperature lower than the glass transition temperature is a hard glass. Therefore, in order for the film 3 to follow a process with large deformation such as deep drawing or ironing, it is theoretically necessary to set the glass transition temperature to the processing temperature or lower.
  • the high molecular structure of macromolecular substances is not uniform, for example, because the molecular weight has a wide range and a branched structure is formed in the molecule. Absent. Therefore, the glass transition temperature is merely a representative value, and the transition gradually occurs in a temperature range having a certain width.
  • the polyester resin has a relatively high elongation except for a part of the state (a state in which crystallization is promoted in a state of a thermoplastic resin that does not cause a cross-linking reaction) even if it is glassy below the glass transition temperature. Therefore, within a certain range, molding is possible even if a resin having a high glass transition temperature is used as the base resin 4. On the other hand, when the resin having an excessively low glass transition temperature is used as the base resin 4, the coating 3 becomes too soft and wrinkles are likely to enter.
  • the glass transition temperature is preferably in the range of 25 to 65 ° C. If the glass transition temperature is less than 25 ° C., the film 3 becomes too soft and easily wrinkles. On the other hand, if it exceeds 65 ° C., the workability of the precoated aluminum plate 1 is reduced, and the formable shape is limited.
  • the glass transition temperature is more preferably 35 to 60 ° C. By setting the glass transition temperature to 35 ° C. or higher, the flexibility of the film 3 can be made more appropriate, and by setting the glass transition temperature to 60 ° C. or lower, the workability of the precoated aluminum plate 1 can be easily improved.
  • the glass transition temperature here means what was measured by DSC method.
  • the crosslinking reaction does not occur only with the polyester resin.
  • a curing agent that reacts with the hydroxyl group or carboxyl group of the polyester resin is added, or a component having the same function as the curing agent is generated in the polyester resin itself.
  • functional groups that react with these hydroxyl groups and carboxyl groups include isocyanate groups, amino groups, hydroxyl groups, carboxyl groups, etc., and can be easily crosslinked by adding a substance having three or more of these functional groups as a curing agent. It is possible to promote the reaction.
  • curing agent examples include polyisocyanate compounds, melamine compounds, epoxy compounds, amino compounds, phenol compounds, urea compounds, and the like.
  • curing agent is a melamine type hardening
  • the fine particles 5 are for controlling the surface roughness Ra of the precoat film 3 in a predetermined manner, and are contained in the base resin 4 of the precoat film 3.
  • a method for controlling the surface roughness without containing the fine particles 5 in the precoat film 3 a method of physically roughening the surface by blasting or the like after forming the precoat film, or a roll having unevenness
  • a method of transferring the roughness of the roll by pressing the film onto the surface of the film is conceivable.
  • the precoat film whose surface roughness Ra is adjusted by these methods has a problem that the unevenness of the film surface becomes smooth in the cleaning solvent, and the predetermined surface roughness in the precoat film cannot be maintained.
  • the coating surfaces become smooth, and the coating surfaces tend to stick to each other in the boiling chlorine-based cleaning agent.
  • the uneven shape of the film surface does not change before and after the solvent cleaning, and therefore, even in the cleaning process using the boiling chlorine-based cleaning agent, Sticking can be prevented.
  • the type, form, size, amount of addition, etc. of the fine particles 5 are not particularly limited as long as the surface roughness Ra of the precoat film 3 can be controlled within a predetermined range by containing the fine particles 5 in the base resin 4. Good. Thereby, sticking of the films 3 in the boiling chlorine-based cleaning agent can be prevented.
  • the type of the fine particles 5 is desirably inorganic fine particles or crosslinked organic fine particles.
  • the other fine particles 5 include thermoplastic fine particles that are not cross-linked. However, when thermoplastic fine particles are used, the fine particles 5 are melted by the heat generated when the base resin 4 is subjected to a cross-linking reaction. Is not stable, and it is likely to be difficult to control the surface roughness Ra of the precoat film 3.
  • the fine particles 5 are not melted by the heat when the base resin 4 of the precoat film 3 is subjected to a crosslinking reaction, so that the precoat film 3 having a stable (uniform) surface roughness Ra is formed. Obtainable.
  • the convex portions of the precoat film 3 become hard. Therefore, in order to improve the life of the press molding die, it is more desirable that the fine particles 5 are crosslinked organic fine particles. Furthermore, it can be said that when the shape of the fine particles 5 is spherical, the shape of the convex portion of the precoat film 3 when viewed microscopically becomes smooth, and therefore the influence on the mold life is small. Therefore, it is more desirable that the fine particles 5 are cross-linked spherical organic fine particles.
  • crosslinked spherical organic fine particles for example, crosslinked urethane fine particles, crosslinked acrylic fine particles, silicone fine particles, crosslinked polystyrene fine particles and the like can be suitably used.
  • crosslinked urethane fine particles DAIMICBEAZ (registered trademark) (Daiichi Seika), Art Pearl (registered trademark) (Negami Kogyo), etc., manufactured by Dainichi Seika Co., Ltd. can be suitably used.
  • crosslinked acrylic fine particles examples include TAFTIC (registered trademark) AR (Toyobo), Riosphere (LIOSPHERE (registered trademark)) manufactured by Toyobo, Art Pearl (ART, PEARL, registered trademark) (Negami Kogyo) Techpolymer (registered trademark) (Sekisui Plastics Industry) can be used suitably.
  • silicone fine particles examples include silicone powder (Shin-Etsu Chemical) and TORAYFIL (registered trademark) (Toray Dow Corning). (Dow Corning)) and the like can be preferably used.
  • Non-spherical organic fine particles include, for example, silicone rubber powder (X-52-875 (Shin-Etsu Silicone)), PTFE powder (KT-300M (Kitamura)), cellulose powder (KC Flock (registered trademark) (Nippon Paper Industries). Chemical)), flat polyethylene particles (Sumitomo Seika) and the like.
  • silicone rubber powder X-52-875 (Shin-Etsu Silicone)
  • PTFE powder KT-300M (Kitamura)
  • cellulose powder KC Flock (registered trademark) (Nippon Paper Industries). Chemical)
  • flat polyethylene particles Silicone.
  • examples of the inorganic fine particles include nickel powder and talc powder
  • examples of the non-crosslinked organic fine particles include thermoplastic urethane beads and polystyrene latex.
  • the blending ratio is desirably 1 to 50% by mass.
  • the content is 3 to 30% by mass, and it is possible to suppress the appearance of the film 3 from being matted and to prevent the beautiful gloss appearance of the aluminum plate 2 as a material from being disturbed. More desirably, the content is 3 to 10% by mass.
  • the particle diameter of the fine particles 5 is not particularly limited, but considering that the film thickness that can be applied with a general roll coater is approximately 1 to 20 ⁇ m, the precoat film 3 is used when the average particle diameter is less than 1 ⁇ m. Even when the target film thickness is relatively thin as 1 ⁇ m, it is difficult to make the surface roughness Ra 0.25 ⁇ m or more. On the other hand, when the average particle diameter exceeds 50 ⁇ m, it is difficult to fix the fine particles 5 to the base resin 4 even when the target film thickness is 20 ⁇ m and a relatively thick film thickness. Therefore, the average particle size is desirably 1 to 50 ⁇ m.
  • the average particle size is desirably 1 to 30 ⁇ m. More desirably, it is 2 to 10 ⁇ m.
  • the average particle diameter is an integrated volume 50% particle diameter measured with a laser diffraction particle size distribution measuring instrument or the like in a state where the fine particles 5 are dispersed in water.
  • the gel fraction of the precoat film 3 is 50% or more.
  • the precoat film 3 contains the fine particles 5 in addition to the base resin 4 as an essential component, it is difficult to measure the gel fraction of the base resin 4 only in a strict sense. Therefore, in the present invention, the gel fraction of the precoat film 3 is substituted and defined by this gel fraction. If the gel fraction of the precoat film 3 is 50% or more, the crosslink density of the film 3 is high, and the fine particles 5 added to the precoat film 3 can be prevented from falling off in the washing step. Moreover, the film 3 excellent in chemical resistance, heat resistance and hydrolyzability can be obtained.
  • the gel fraction is desirably 65% or more. Furthermore, if the gel fraction is 75% or more, chemical resistance, heat resistance, hydrolyzability, durability of the film in the cleaning process, and the like are further increased, which is more desirable. In addition, since it is thought that a gel fraction is so large that it is so preferable, the upper limit of a gel fraction does not need to prescribe
  • the gel fraction can be measured by a method according to JIS K6796 (however, the extraction solvent is not xylene but 2-butanone). That is, the test material of the precoated aluminum plate 1 is immersed for 60 minutes in boiling 2-butanone (MEK), and the change in mass of the precoated aluminum plate 1 before and after immersion is measured. Thereafter, the mass change of only the precoat film 3 is calculated by measuring the mass of the aluminum plate 2 in which only the precoat film 3 is completely dissolved, and it is assumed that the component that has not eluted into the MEK has undergone a crosslinking reaction. The ratio is calculated as a gel fraction.
  • MEK 2-butanone
  • the surface of the precoat film 3 needs to be formed so that the surface roughness is 0.25 ⁇ m or more in terms of arithmetic average roughness (Ra).
  • Ra arithmetic average roughness
  • a feature of the precoated aluminum plate 1 of the present invention is that the precoat film 3 is not dissolved, peeled, discolored, or stuck even in a cleaning process using a boiling chlorine-based cleaning agent.
  • the surface roughness between the coatings 3 facing each other greatly affects. That is, when the surface roughness Ra is less than 0.25 ⁇ m, the surface of the film 3 becomes smooth.
  • the films 3 face each other and are washed with a boiling chlorine-based cleaning agent, a slight tackiness between the films 3 is slight. (tackiness) begins to occur. Furthermore, when the surface roughness Ra is less than 0.15 ⁇ m, the surface of the precoat film 3 becomes smoother. Therefore, when the films 3 face each other and are washed with a boiling chlorine-based cleaning agent, the films 3 are strongly bonded to each other. It sticks. As described above, the adhesion between the coatings 3 in the cleaning process is greatly related to the smoothness of the surface of the precoat coating 3, and the larger the surface roughness Ra, the more the contact between the coating surfaces when viewed microscopically. Since the area is small, the sticking between the coatings 3 is suppressed.
  • the upper limit value of the surface roughness Ra does not need to be specified.
  • the surface roughness Ra of the precoat film 3 is 0.55 ⁇ m or less in order to suppress the appearance of the film 3 from being matted and to not disturb the beautiful glossy appearance of the aluminum plate 2 as a material. It is desirable that The surface roughness Ra can be controlled by appropriately adjusting the particle diameter, blending ratio, film thickness and the like of the fine particles 5.
  • the surface roughness of the precoat film 3 is measured using, for example, a surface roughness measuring device (Surfcoder SE-30D manufactured by Kosaka Laboratory Ltd.), and the direction of the probe perpendicular to the rolling direction of each aluminum plate 2. And measuring the arithmetic average roughness (Ra) described in JIS B0601.
  • the precoat film 3 can contain a colorant and additives imparting various functions without departing from the scope of the present invention.
  • a colorant and additives imparting various functions for example, in order to further improve moldability, for example, lubrication of polyethylene wax, carnauba wax, microcrystalline wax, lanolin, TEFLON (registered trademark) wax, silicone wax, graphite lubricant, molybdenum lubricant, etc.
  • One or more agents can be added.
  • the conductive fine particles for example, metal fine particles including nickel fine particles, metal oxide fine particles, conductive carbon, graphite, etc. 1 type (s) or 2 or more types can be added.
  • the thickness of the precoat film 3 is preferably 1 to 20 ⁇ m from the viewpoint of workability and productivity.
  • a surface treatment film (not shown) may be provided on the surface of the aluminum plate 2 by surface treatment.
  • the surface of the aluminum plate 2 is preferably subjected to a ground treatment in order to improve the adhesion with the precoat film 3.
  • a ground treatment a conventionally known reactive type base coat and coating type base coat containing Cr, Zr or Ti can be used. That is, a phosphoric acid chromate film, a chromate chromate film, a zirconium phosphate film, a zirconium oxide film, a titanium phosphate film, a coating type chromate film, a coating type zirconium film, and the like can be used as appropriate.
  • Organic-inorganic hybrid-type ground treatment coatings obtained by combining these coatings with organic components may also be used.
  • the amount of Cr, Zr or Ti contained in the base treatment film component to the aluminum plate 2 is, for example, Since the conventional fluorescent X-ray method can be used for comparatively simple and quantitative measurement, the quality control of the precoated aluminum plate 1 can be performed without hindering productivity.
  • the adhesion amount of the base treatment film is preferably 10 to 50 mg / m 2 in terms of metal Cr, metal Zr or metal Ti. If the adhesion amount is less than 10 mg / m 2 , the entire surface of the aluminum plate 2 cannot be uniformly coated, and the corrosion resistance is lowered. Moreover, when it exceeds 50 mg / m ⁇ 2 >, when the precoat aluminum plate 1 is shape
  • the surface of the aluminum plate 2 can be subjected to a conventionally known treatment such as anodizing treatment or electrolytic etching treatment. When these treatments are performed, fine irregularities are formed on the surface of the aluminum plate 2, so that the adhesion of the precoat film 3 is greatly improved.
  • a method of only degreasing the surface of the aluminum plate 2 may be used.
  • a method of degreasing conventionally known methods such as degreasing with an organic drug, degreasing with a surfactant drug, degreasing with an alkaline drug, degreasing with an acid drug, and the like can be used.
  • organic chemicals and surfactant chemicals the degreasing ability is slightly inferior, and therefore degreasing with an alkaline chemical or an acid chemical is more productive.
  • the degreasing ability of alkaline chemicals can be controlled by the main component, concentration, and processing temperature of the alkali used.However, if the degreasing ability is increased, a lot of smut is generated, so that subsequent washing with water is sufficient. Otherwise, the adhesion of the precoat film 3 may be lowered.
  • magnesium when a variety containing a large amount of magnesium as an additive element is used for the aluminum plate 2, magnesium may remain on the surface and the adhesion of the precoat film 3 may be reduced with an alkaline chemical. Therefore, in this case, it is desirable to use or use an acid drug.
  • the method for producing the pre-coated aluminum plate 1 is not particularly limited, and a coating material containing a resin, a curing agent, and fine particles 5 as a base resin 4 is applied onto the aluminum plate 2 by a conventionally known method. Then, it can be obtained by causing a crosslinking reaction by heating. In order to set the gel fraction in the film 3 to 50% or more, it is desirable that the baking temperature when baking the paint is about 150 to 285 ° C.
  • the coating may be applied by any means such as brush, roll coater, curtain flow coater, roller curtain coater, electrostatic coating machine, blade coater, die coater, etc. It is desirable to use a roll coater in which the coating amount is uniform and the operation is simple.
  • the film thickness of the precoat film 3 is controlled by appropriately adjusting the conveyance speed of the aluminum plate 2, the rotation direction and rotation speed of the roll, the pressing pressure between the rolls (nip pressure), and the like.
  • the thickness of the coating 3 that can be applied by one coating operation is generally 1 to 20 ⁇ m. Therefore, the thickness of the precoat film 3 is desirably 1 to 20 ⁇ m in consideration of workability and productivity.
  • a precoated aluminum plate 1 according to the present invention is a precoated aluminum plate 1 having a precoat film 3 formed on the (outermost) surface of an aluminum plate 2.
  • the resin and the non-yellowing type isocyanate curing agent are composed of a thermosetting resin (base resin) 4 in which intermolecular crosslinking is performed, and the gel fraction is 70% or more and 92% or less.
  • the fine particles 5 are not essential components (configuration) of the present invention, they are illustrated because they are preferably included in the precoat film 3.
  • the surface of the aluminum plate 2 means at least one surface of the aluminum plate 2.
  • the precoat film 3 (film 3) comprises a thermosetting resin (base resin) 4 in which an epoxy resin (epoxy resin) and a non-yellowing type isocyanate curing agent are intermolecularly crosslinked, and the surface of the aluminum plate 2 Formed.
  • the gel fraction of the precoat film 3 is 70% or more and 92% or less.
  • a form containing fine particles 5 described later is desirable.
  • the base resin (thermosetting resin) 4 is a main component of the precoat film 3, an epoxy resin (epoxy) as a main agent, and a non-yellowing type isocyanate curing agent (isocyanate (no yellowing) as a curing agent. )), And the intermolecular crosslinking reaction is performed so that the gel fraction is 70% or more and 92% or less.
  • the mixing (blending) ratio of the epoxy resin and the non-yellowing type isocyanate curing agent is appropriately set depending on the type of the epoxy resin to be used.
  • thermoplastic resin as a base resin
  • a material that uses a thermoplastic resin as a base resin is heat resistant.
  • pre-coating material that uses a polyester-based thermosetting resin as a thermosetting resin with excellent drawability (processing), but as described in the above-mentioned prior art, it is also durable in a high-temperature and humid atmosphere. There are challenges.
  • thermosetting resin obtained by using an epoxy resin and a non-yellowing type isocyanate curing agent and having an intermolecular cross-linking reaction at a predetermined gel fraction is selected as the base resin 4
  • this resin is originally intermolecular. Since it has a functional group for crosslinking, the adhesiveness with the aluminum plate 2 is excellent.
  • the crosslinking reaction is carried out while controlling the gel fraction, chemical resistance and heat resistance are improved while maintaining drawability.
  • it does not have an ester group that is easily hydrolyzed durability under a high-temperature and humid atmosphere is also improved.
  • the epoxy resin (epoxy resin) used for the base resin 4 is a general term for resins having an epoxy group in which two carbon atoms and one oxygen atom are bonded in a triangular shape, and includes bisphenol A and epichlorohydrin.
  • a typical example is a bisphenol A type epoxy resin having a repeating unit.
  • bisphenol F type epoxy resin with reduced viscosity using bisphenol F instead of bisphenol A a flame retardant epoxy resin obtained by reacting bisphenol A with bromine, a heat resistant epoxy resin based on a novolac resin, Alicyclic epoxy resins, etc. are known, and any epoxy resin of the present invention, including modified epoxy resins that have been chemically modified, may be used as long as it can be made into a paint.
  • any epoxy resin of the present invention including modified epoxy resins that have been chemically modified, may be used as long as it can be made into a paint.
  • the glass transition temperature is the same as that of the first embodiment, description thereof is omitted. However, in order to control (control) such a glass transition temperature, the above-described bisphenol A type or bisphenol F type is used as a basic skeleton, and a method of modifying the molecular structure by a chemical reaction is taken. Since there is no particular limitation on the modification method, the modified epoxy resin subjected to modification can be used freely.
  • Epoxy resin has a higher glass transition temperature than polyester resin. This is advantageous for ensuring heat resistance and the like.
  • the glass transition temperature of the epoxy resin has been reported up to about 200 ° C., but if it is used for a precoat material premised on press molding, a glass transition temperature of 120 ° C. or higher is not very realistic ( Processability is reduced, and the shape that can be formed is limited).
  • the glass transition temperature is desirably 80 ° C. or lower.
  • the glass transition temperature here means what was measured by DSC method.
  • the epoxy resin has an epoxy group
  • the epoxy group can be thermoset by a chemical reaction.
  • bisphenol A type and bisphenol F type epoxy resins have a hydroxyl group in the molecule in addition to the epoxy group. Therefore, by adding a curing agent that reacts with these functional groups (hydroxyl groups), or by modifying the epoxy resin using a chemical reaction so that a component that acts like a curing agent is generated in the epoxy resin itself. By doing, an epoxy resin can be heat-hardened (thermosetting reaction), and a thermosetting resin can be obtained.
  • epoxy resin curing agents phenolic curing agents and amine (urea, melamine) curing agents including urea (urea) and melamine are generally used.
  • the non-yellowing type is used.
  • the isocyanate curing agent is used.
  • a phenolic curing agent is used, the phenolic hydroxyl group of the phenolic compound is known to react with an epoxy group, and it is easy to obtain a soft film having a large network in which the ends of the epoxy resin have reacted. As a result, a film having excellent moldability can be obtained, but there are problems that phenol is easily yellowed and chemical resistance is inferior.
  • a urea-based curing agent yellowing such as phenol can be avoided, but the obtained film is hard and it is difficult to obtain excellent moldability.
  • curing agent hardening reactivity is very low. As a method of improving the reactivity of this melamine curing agent, it is possible to use an acid catalyst together, but depending on the conditions, the curing reactivity may become too high, or it may turn yellow. difficult.
  • the isocyanate curing agent used in the present invention is a non-yellowing type.
  • Isocyanates compounds are classified into toluene diisocyanate (TDI), methylene bisphenyl diisocyanate (MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI) depending on the structure. being classified.
  • TDI system and the MDI system are easily yellowed (standard type), while the XDI system, the IPDI system, and the HDI system are hardly yellowed and are non-yellowing types.
  • Polyisocyanates obtained by modifying these non-yellowing types with polyhydric alcohols are also included in the isocyanate curing agents that can be used in the present invention.
  • the non-yellowing type isocyanate curing agent is desirably a block type isocyanate compound.
  • the block type here means that the active isocyanate group of the isocyanate compound is stabilized by a blocking agent such as an active hydrogen compound, and the reactivity is low at room temperature.
  • This blocking isocyanate compound has reactivity due to dissociation of the blocking agent due to heating such as baking treatment, and regeneration of the active isocyanate group.
  • Blocking agents for blocked isocyanate groups include alcohols such as methanol, ethanol, n-propanol and tert-butanol, phenols such as phenol, m-cresol, isooctylphenol and resorcinol, ⁇ -caprolactams, oximes, Examples include active methylene compounds such as acetylacetone, methyl ethyl ketone, and ethylene chlorohydrin, and sodium sulfite.
  • the gel fraction of the precoat film 3 is 70% or more and 92% or less.
  • the gel fraction of the precoat film 3 is substituted and defined by this gel fraction.
  • membrane 3 excellent in the drawability can be obtained. Furthermore, by setting the gel fraction of the film 3 to 85% or less, a further (further) excellent deep drawability can be obtained, which is more desirable.
  • the baking temperature when baking the coating film is desirably about 200 to 285 ° C. in terms of the material reaching temperature.
  • the gel fraction can be measured by a conformable method according to JIS K6796 (however, the extraction solvent is not xylene but 2-butanone is used). That is, the specimen of the precoated aluminum plate 1 is dunk for 60 minutes in boiling 2-butanone (MEK), and the change in mass of the precoated aluminum plate 1 before and after immersion is measured. Thereafter, the mass change of only the precoat film 3 is calculated by measuring the mass of the aluminum plate 2 in which only the precoat film 3 is completely dissolved, and it is assumed that the component that has not eluted into the MEK has undergone a crosslinking reaction. The ratio is calculated as a gel fraction.
  • MEK 2-butanone
  • the fine particles 5 are for controlling the surface roughness Ra of the precoat film 3 in a predetermined manner, and are desirably contained in the base resin 4 of the precoat film 3. Since the method for controlling the surface roughness without containing the fine particles 5 in the precoat film 3 is the same as in the first embodiment, the description thereof is omitted.
  • the type, form, size, addition amount, blending ratio, and particle size of the fine particles 5 are the same as those in the first embodiment, description thereof is omitted. Further, the crosslinked spherical organic fine particles constituting the fine particles are also the same as those in the first embodiment, and the description thereof is omitted.
  • the surface roughness of the precoat film 3 is the same as that of the first embodiment, and thus the description thereof will be omitted. However, in the cleaning process using the boiling chlorine-based cleaning agent, the adhesion between the precoat films 3 is the opposite film 3. The surface roughness between each other greatly affects.
  • the manufacturing method of the precoated aluminum plate 1 is not particularly limited, and the resin (epoxy resin) that is the base of the base resin 4, the curing agent (non-yellowing type isocyanate curing agent), and preferably the fine particles 5 are added.
  • the coating material to be contained can be obtained by applying a crosslinking reaction by heating after coating on the aluminum plate 2 by a conventionally known method.
  • the baking temperature when baking the paint is about 200 to 285 ° C.
  • the application of the paint is the same as in the first embodiment, and thus the description thereof is omitted. However, it may be performed using a bar coater.
  • the pre-coated aluminum plate of the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
  • the aluminum plate used as a material was a 0.3 mm thick material having an alloy number of A1100-H24. This was degreased with a weak alkaline degreasing agent, and then subjected to a phosphoric acid chromate treatment as a base treatment. The condition of the phosphoric acid chromate treatment was 20 mg / m 2 in terms of chromium adhesion.
  • the mechanical properties of the aluminum plate used were a tensile strength of 130 MPa, a proof stress of 120 MPa, and an elongation of 8%.
  • a paint containing various resin-based paints shown in Tables 1 and 2 and fine particles shown in Table 1 is added so that the dry film thickness becomes 6 ⁇ m.
  • a precoat film was formed by baking the paint so that the baking temperature was in the range of 150 to 285 ° C., and used as a test material.
  • no. In No. 20 after the bar coater coating and baking are completed, a stainless steel surface plate with a surface roughness Ra of about 0.5 ⁇ m is layered on the coating surface, and lightly sandwiched for 10 minutes with a hot press heated at 40 ° C. As a result, the surface roughness of the surface plate was transferred.
  • the base resin of the paint shown in Tables 1 and 2 is polyester melamine is a polyester resin blended with a melamine curing agent
  • polyester isocyanate is a polyester resin blended with an isocyanate curing agent
  • epoxy Urea is an epoxy resin blended with a urea curing agent
  • epoxy phenol is an epoxy resin blended with a phenol curing agent
  • epoxy acrylic is an intramolecular cross-linked acrylic modified epoxy resin. is there.
  • the glass transition temperatures shown in Tables 1 and 2 are glass transition temperatures in the respective resins.
  • crosslinked acrylic beads and crosslinked urethane beads are crosslinked organic fine particles
  • nickel powder and talc powder are inorganic fine particles
  • thermoplastic urethane beads and polystyrene latex are uncrosslinked organic fine particles.
  • the blending ratio was the mass% of the fine particles in the mass of the dry precoat film including the base resin and the fine particles.
  • the gel fraction and surface roughness Ra of the precoat film were measured.
  • test material (piece) obtained by cutting the test material into 10 cm ⁇ 10 cm was used, and the gel fraction of the film was measured. After the test material was dried at 80 ° C. for 60 minutes, the initial mass (a) was measured, and then the test material was immersed in boiled MEK for 60 minutes to elute uncrosslinked components, and then 150 The remaining MEK in the film was dried at 60 ° C. for 60 minutes, and the mass (b) after extraction was measured. Finally, the film was completely dissolved in fuming nitric acid, and the mass (c) of the aluminum plate alone was measured.
  • the surface roughness of the precoat film is measured by using a surface roughness measuring instrument (Surfcoder SE-30D manufactured by Kosaka Laboratory Ltd.) and scanning the probe in a direction perpendicular to the rolling direction of each aluminum plate.
  • the arithmetic average roughness (Ra) described in B0601 was measured.
  • cleaning process durability the durability of the film in the cleaning process, which is an essential object of the present invention.
  • FIG. 2 is a schematic diagram showing a process for producing a bottomed cylindrical container by drawing and ironing a test material.
  • the drawability of the test material was examined by the process shown in FIG. First, after blanking a cylindrical blank, drawing was performed. Next, a 12 mm ⁇ ⁇ 15 mmL cylindrical drawn product (intermediate molded product) was obtained by redrawing. The result of evaluating the film state of the intermediate molded product obtained at this time was defined as shallow drawability in Table 2. Next, iron was added to the intermediate molded product so that the reduction rate of the thickness of the cylindrical side wall portion was 20%, trimmed and processed into a cylindrical container shape having a final 10 mm ⁇ ⁇ 20 mmL to obtain a final molded product.
  • the result of evaluating the film state of the final molded product obtained at this time was defined as deep drawability in Table 2.
  • the press oil used was an aqueous emulsion wax mainly composed of a fatty acid ester and a surfactant.
  • the processing was performed only at room temperature (35 ° C.).
  • the evaluation of the film state is that for the shallow drawability, when the precoat film is not peeled off from the aluminum plate, the shallow drawability is good ( ⁇ ), and when it is peeled, the shallow drawability is poor ( ⁇ ). Judgment was made regarding the deep drawability, when the precoat film was not peeled off from the aluminum plate, the deep drawability was good ( ⁇ ), and when it was peeled, the deep drawability was judged as poor ( ⁇ ). . And both the shallow drawability and the deep drawability were judged to be good when the precoat film was not peeled off from the aluminum plate. Moreover, although the shallow drawability was good, it was judged that the drawability was slightly inferior for those having poor deep drawability.
  • the precoat film formed on the surface of the aluminum plate contains a base resin cross-linked between the molecules and fine particles, and the gel fraction of the precoat film is 50% or more
  • a thermosetting resin which is the object of the present invention
  • a surface roughness Ra 0.25 ⁇ m or more
  • a more desirable base resin it is possible to obtain a precoated aluminum plate having high formability comparable to that of the film laminate material in addition to the achievement of the object.
  • a precoated aluminum plate that does not interfere with the beautiful gloss appearance of the aluminum plate that is the material is used. You can see that
  • the pre-coated aluminum plate of the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
  • the pre-coated aluminum plate of the present invention has the essential purpose (essential performance) of the present invention, durability in a high-temperature wet environment (high-temperature wet durability), chemical resistance, heat discoloration resistance, aperture The moldability was examined.
  • the aluminum plate used as a material is the same as that in the first embodiment, and the description thereof is omitted.
  • a coating material in which various main agents (resin system) shown in Table 3 and various curing agents are blended on one side of an aluminum plate subjected to phosphoric acid chromate treatment is applied to a bar coater (bar coater) so that the dry film thickness becomes 6 ⁇ m.
  • a precoat film having a changed gel fraction was formed by baking the paint so that the baking temperature was in the range of 150 to 285 ° C., and used as a test material.
  • the glass transition temperature shown in Table 3 is a glass transition temperature in each said resin system.
  • the gel fraction of the precoat film was measured for the specimen prepared as described above.
  • test material was examined for durability under a high temperature wet environment (high temperature wet durability), chemical resistance, heat discoloration resistance, and drawability, which are essential objects of the present invention.
  • FIG. 2 is a schematic diagram showing a process for producing a bottomed cylindrical container by drawing and ironing a test material.
  • the drawability of the test material was examined by the process shown in FIG. First, drawing was performed after cylindrical blank punching (blanking). Next, a 12 mm ⁇ ⁇ 15 mmL cylindrical drawn product (intermediate molded product) was obtained by redrawing. The result of evaluating the film state of the intermediate molded product obtained at this time was defined as shallow drawability in Table 3. Next, the intermediate molded product was ironed so that the reduction rate of the thickness of the cylindrical side wall portion was 20%, trimmed, and processed into a final 10 mm ⁇ ⁇ 20 mmL cylindrical container shape to obtain the final molded product. .
  • the result of evaluating the film state of the final molded product obtained at this time was defined as the deep drawability in Table 3.
  • the press oil used was an aqueous emulsion wax mainly composed of a fatty acid ester and a surfactant.
  • the processing was performed at room temperature (35 ° C.).
  • the shallow drawability which is an essential performance of the present invention, is that when the precoat film is not peeled off from the aluminum plate, the shallow drawability is good (O), and when the peel is peeled off, the shallow drawability is formed. Judgment was poor ( ⁇ ). In addition, only the specimens that had good shallow drawability (O) were confirmed to have the desired deep drawing formability. As a result, the precoat film was not peeled off from the aluminum plate and the deep drawability was good. In the case where it was present, the moldability was particularly good ( ⁇ ), and when it was peeled off, it was regarded as defective ( ⁇ ).
  • Table 3 shows the results of durability (high temperature wet durability), chemical resistance, heat discoloration resistance, and drawability in a high temperature wet environment.
  • the underline in Table 3 indicates that the requirements defined in the present invention are not satisfied.
  • the main agent (resin system) used for the base resin needs to be an epoxy resin.
  • curing agent is not suitable as a hardening
  • the gel fraction of the base resin was less than 70%, No. As for 5, 7, 10, 11, 13, 15, 17, 19, and 21, all abnormalities such as whitening and dissolution occurred in the appearance of the film. Further, among the test materials having a gel fraction of 70% or more, No. 1 in which an epoxy resin and a phenolic curing agent were reacted. In No. 14, whitening occurred in the appearance of the film. Each of the test materials other than the above 10 types had good chemical resistance. From the above, in order to ensure chemical resistance, the gel fraction of the film (base resin) needs to satisfy 70% or more. Also, phenolic curing agents are not suitable as curing agents.
  • the influence of the gel fraction which shows a grade is also large.
  • the main agent resin type
  • the curing agent is an isocyanate type curing agent (no yellowing)
  • it is important that the gel fraction is 92% or less.
  • urea curing agents are not suitable as the curing agent.
  • the paint life which is a desirable object of the present invention, was examined for a paint containing an epoxy resin and a non-yellowing type isocyanate curing agent used when producing the precoated aluminum plate in the present invention.
  • the paint life is only a desirable characteristic for the present invention, even if these characteristics are not satisfied, those satisfying the results of the first embodiment can achieve the minimum object of the present invention. It is.
  • test material paint thus prepared (initial make-up of electrolytic bath) was placed in a sealed container and stored at room temperature for 7 days and 3 months. (Paint life) was determined. Here, if the viscosity of the paint (ford cup) is within 150 seconds, it was judged that there was a lifetime.
  • Table 4 shows the results for paint life.
  • the underline in Table 4 indicates that the requirements defined in the present invention are not satisfied.
  • test life As shown in Table 4, sample No. using a non-blocking type as the isocyanate curing agent. In 1, 3, 5, 7, and 9, all were solidified so that the viscosity of the paint could not be measured after 7 days, and the paint life was not sufficient. On the other hand, the test material No. using a block type isocyanate curing agent. 2, 4, 6, 8, and 10 all showed a slight increase (in seconds) at the stage after 3 months, and it was found to be reusable.
  • the type, quality, mechanical properties of the aluminum plate used as the material, the pretreatment method and the conditions before coating are the same as in the first embodiment.
  • a coating containing various fine particles (particle type, particle diameter ⁇ m) shown in Table 5 on a base resin made of an epoxy resin having a glass transition temperature of 77 ° C. and a non-yellowing type isocyanate curing agent on this aluminum plate was dried.
  • a precoat film was formed by baking so that the gel fraction was 80 ⁇ 5%, and used as a test material.
  • No. 11 and no. No. 13 is a test material not containing fine particles. No.
  • the gel fraction and surface roughness Ra of the precoat film were measured.
  • the method for measuring the gel fraction was the same as in the first example.
  • test material was examined for film durability (cleaning process durability) at the time of boiling tricyclene cleaning, which is a desirable object of the present invention, and other appearance properties.
  • Trichrene was used as a chlorine-based cleaning agent and boiled.
  • the coated surfaces of each test material were sandwiched between clips so as to face each other, immersed in the boiling trichrene for 10 minutes, and then taken out to confirm the appearance.
  • a film having no surface abnormality such as dissolution, peeling, discoloration, and adhesion between films was judged to be defective (x) if it had good cleaning process durability ( ⁇ ) and surface abnormality (such as adhesion).
  • Table 5 shows the results of cleaning process durability and appearance properties.
  • the underline in Table 5 indicates that the requirements defined in the present invention are not satisfied.
  • the precoated aluminum plate according to the present invention has been described in detail with reference to the best mode and examples, but the gist of the present invention is not limited to the above-described contents, and the scope of the right is claimed. Must be interpreted based on the description. Needless to say, the contents of the present invention can be modified and changed based on the above description.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

A precoated aluminum plate (1) has a precoated film (3) on an aluminum plate (2), wherein the precoated film includes molecular cross-linked base resin (4) and particles (5), wherein said precoated film (3) includes 50% or more of gel fraction and has a surface roughness of 0.25 μm or more in the arithmetic average (Ra).

Description

プレコートアルミニウム板Pre-coated aluminum plate
 本発明は、主に産業用電子機器、民生用電子機器、自動車用電装品等に使用される、アルミニウム板を素材としたプレコートアルミニウム板(Pre-coated Aluminum Sheet)に関する。 The present invention relates to a pre-coated aluminum sheet made of an aluminum sheet, which is mainly used for industrial electronic devices, consumer electronic devices, automobile electrical components and the like.
 特許文献1や特許文献2で想定する光ディスクドライブ装置等の民生用電子機器の筐体類(カバー等)は、アルミニウム板を90度曲げ加工にて箱型形状に成形したものが適用されてきた。曲げ加工により箱型筐体を製作する技術は、コイル状の板を使用し、順送金型による連続成形が可能であり、また、速乾性プレス油を使用した連続成形技術も確立していることから、プレス成形後の洗浄工程も不要であり、生産性に優れた方法といえる。しかし一方で、曲げ加工で製作した筐体は、側壁部のコーナーに隙間が必ず存在するため、筐体に密閉性が必要となる場合には、以下のような課題が生じる。 As housings (covers and the like) for consumer electronic devices such as optical disk drive devices assumed in Patent Document 1 and Patent Document 2, aluminum plates formed into a box shape by bending 90 degrees have been applied. . The technology for producing box-type housings by bending is to use a coiled plate, continuous molding with progressive molds is possible, and continuous molding technology using quick-drying press oil has been established. Therefore, a cleaning process after press molding is unnecessary, and it can be said that the method is excellent in productivity. However, on the other hand, since the case manufactured by bending always has a gap in the corner of the side wall, the following problems arise when the case needs to be sealed.
 筐体に、高い密閉性が要求される例としては、例えば、エンジンルーム等の過酷な環境に設置される自動車制御用電装品(ECU等の制御装置やハイブリッド車・電気自動車の電池、インバーター類等)等が考えられ、これらでは、筐体内部の密閉性を保つことができないと、水分やオイル類、砂埃等が筐体内部に侵入して、故障の原因となるおそれがある。また、リチウムイオン電池や電解コンデンサーのケースにもアルミニウム板の成形品が使用されているが、これらのように、内部に電解液等の液体物を入れて使用する用途では、液漏れを防ぐためにも、ケースには高い密閉性が要求される。さらに、家庭等の室内で利用される民生用電子機器でも、カバーの密閉性を高めることで、電磁波シールド性を高めることが期待できる。これらのように、密閉性の高い筐体を製作するためには、曲げ加工よりも絞り加工によって、隙間のない箱型筐体に成形する方法が有利である。なお、図3(a)に、曲げ加工による箱型筐体の模式図、(b)に、絞り加工による箱型筐体の模式図を示す。 Examples of cases in which high sealing performance is required for the housing include, for example, automotive control electrical components installed in harsh environments such as engine rooms (control devices such as ECUs, hybrid and electric vehicle batteries, inverters, etc. In these cases, if the airtightness inside the housing cannot be maintained, moisture, oils, dust and the like may enter the housing and cause a failure. Aluminum plate molded products are also used for lithium ion batteries and electrolytic capacitor cases. However, in applications where liquids such as electrolytes are placed inside, as in these cases, in order to prevent liquid leakage, However, the case is required to have high sealing performance. Further, even in consumer electronic devices used in a room such as a home, it is expected that the electromagnetic wave shielding property can be improved by enhancing the sealing property of the cover. As described above, in order to manufacture a case with high hermeticity, a method of forming a box-type case without a gap by drawing rather than bending is advantageous. FIG. 3A is a schematic diagram of a box-shaped housing by bending, and FIG. 3B is a schematic diagram of a box-shaped housing by drawing.
 ここで、これらの筐体類にプレコートアルミニウム板を適用する際、素材であるアルミニウム板はもとより、プレコート皮膜にも、絞り加工に伴う大きな変形に追随することが求められる。以下に絞り加工を想定した発明に関する文献として、特許文献3と特許文献4を例示する。
 絞り加工に伴うプレコート皮膜の大きな変形を想定したプレコートアルミニウム板として、例えば、特許文献3には、アルミニウム板の表面に形成された熱硬化樹脂の分子間架橋状態として、プレコート皮膜のゲル分率(Gel Fraction)の値を220℃の加熱処理を行った前後で比較した場合に、当該加熱処理後のゲル分率の値が、前記加熱処理前のゲル分率の値から連続的に減ずるようにし、220℃の前記加熱処理を10分間行った時点における当該加熱処理前のゲル分率の値からの減少幅が10%未満であるように制御することによって、高い絞り成形性を満足させたプレコートアルミニウム板が開示されている。
Here, when applying a pre-coated aluminum plate to these cases, it is required that the pre-coated film not only follows the large deformation accompanying the drawing process, but also the pre-coated film. Examples of Patent Document 3 and Patent Document 4 are listed below as documents related to the invention assuming drawing.
As a pre-coated aluminum plate that assumes a large deformation of the pre-coated film associated with the drawing process, for example, Patent Document 3 discloses a gel fraction of the pre-coated film as an intermolecular cross-linked state of a thermosetting resin formed on the surface of the aluminum plate ( When the value of Gel Fraction) is compared before and after the heat treatment at 220 ° C., the value of the gel fraction after the heat treatment is continuously reduced from the value of the gel fraction before the heat treatment. The pre-coating satisfying high drawability by controlling the reduction rate from the value of the gel fraction before the heat treatment at the time of performing the heat treatment at 220 ° C. for 10 minutes to be less than 10%. An aluminum plate is disclosed.
 前記に挙げたプレコートアルミニウム材以外の技術としては、電解コンデンサーのケースでは、加工性に優れた熱可塑性樹脂フィルムをラミネートしたフィルムラミネートアルミニウム板が使用されている。フィルムラミネートアルミニウム板は、皮膜を構成する樹脂の分子が架橋されていないため、皮膜は大きな変形が可能であり、絞り加工に対しては有利な特性を有する。また、それらの中には、塩素系溶剤での洗浄薬剤耐久性を高めたものも存在する。例えば、特許文献4には、アルミニウム板の表面に設けられる熱可塑性樹脂フィルムと、この熱可塑性樹脂フィルムの表面に設けられる熱硬化性樹脂塗膜層とを備えることで、成形加工性を維持しつつ、樹脂塗膜層の変色の防止等を図った電子部品ケース用樹脂被覆積層アルミニウム板が開示されている。また、熱可塑性樹脂フィルムとしては、ナイロン等のポリアミド系樹脂や、PET等の飽和ポリエステル系樹脂を使用することが記載されている。
特開2003-313684号公報(段落0020~0050) 特許第4134237号公報(段落0024~0042) 特開2006-305841号公報(段落0024~0051) 特許第4003915号公報(段落0017~0029)
As a technique other than the pre-coated aluminum material mentioned above, a film laminated aluminum plate obtained by laminating a thermoplastic resin film excellent in workability is used in the case of an electrolytic capacitor. The film-laminated aluminum plate has a characteristic that is advantageous for drawing because the resin molecules constituting the film are not cross-linked, and thus the film can be greatly deformed. Some of them have improved durability of cleaning chemicals with chlorinated solvents. For example, Patent Document 4 includes a thermoplastic resin film provided on the surface of an aluminum plate and a thermosetting resin coating layer provided on the surface of the thermoplastic resin film, thereby maintaining moldability. On the other hand, a resin-coated laminated aluminum plate for an electronic component case that prevents the discoloration of the resin coating layer has been disclosed. Further, it is described that a polyamide resin such as nylon or a saturated polyester resin such as PET is used as the thermoplastic resin film.
JP 2003-313684 A (paragraphs 0020 to 0050) Japanese Patent No. 4134237 (paragraphs 0024 to 0042) JP 2006-305841 A (paragraphs 0024 to 0051) Japanese Patent No. 4003915 (paragraphs 0017 to 0029)
 しかし、従来の技術においては、以下に示すような問題点を有している。
 特許文献1および特許文献2に記載の発明は、その用途として光ディスクドライブを想定した発明であるため、前記の通り、曲げ加工による筐体製作を前提とした発明と考えられる。曲げ加工の場合、前記したように、速乾性プレス油による成形のみを想定していると思われるため、沸騰塩素系洗浄薬剤での耐久性は考慮されていないと考えられる。
However, the conventional technique has the following problems.
The inventions described in Patent Literature 1 and Patent Literature 2 are inventions that assume an optical disk drive as their application, and as described above, are considered to be inventions that presuppose that the housing is manufactured by bending. In the case of bending, as described above, it is considered that only molding with a quick-drying press oil is assumed. Therefore, it is considered that durability with a boiling chlorine-based cleaning chemical is not considered.
 特許文献3に記載の発明は、絞り加工を想定したものである。アルミニウム板の変形量が大きい絞り加工においては、前記曲げ加工の場合に記載したような、速乾性プレス油を使用した連続成形技術が十分に確立されていない。そのため、高粘度の防錆油やエマルジョン型のワックスを使用して成形した後、洗浄剤を用いて不要なプレス油や磨耗粉の除去を行う方法が依然として多く採用されている。このような方法では、プレコート皮膜は、大きな変形に追従できる成形性を満足するだけでは不十分であり、洗浄工程で使用される薬剤に対して、皮膜の溶解、剥離、変色、くっつき(sticking)といった問題が生じない、洗浄工程での皮膜の耐久性が不可欠となる。ここで、洗浄工程の中でも、トリクレン等の塩素系溶剤の沸騰液に浸漬させるような過酷な洗浄方法を行う場合には、特許文献3に記載の技術では、成形品の皮膜の溶解、剥離、変色、くっつき等が発生して、外観不良の原因となる場合がある。 The invention described in Patent Document 3 assumes drawing. In the drawing process where the deformation amount of the aluminum plate is large, the continuous forming technique using the quick-drying press oil as described in the case of the bending process has not been sufficiently established. Therefore, many methods are still employed in which unnecessary pressing oil and abrasion powder are removed using a cleaning agent after molding using high-viscosity rust preventive oil or emulsion type wax. In such a method, it is not sufficient that the precoat film satisfies the moldability capable of following a large deformation, and the film is dissolved, peeled, discolored, and stuck to the chemical used in the cleaning process. The durability of the film in the cleaning process is indispensable. Here, in the cleaning process, when performing a harsh cleaning method such as immersing in a boiling liquid of a chlorinated solvent such as trichlene, the technique described in Patent Document 3 dissolves, peels off the film of the molded article, Discoloration, sticking, etc. may occur, causing appearance defects.
 特許文献4に記載されているような、熱可塑性樹脂をベース樹脂としてフィルム作製し、このフィルムをアルミニウム板の表面にラミネートしたフィルムラミネート材は、熱可塑性樹脂フィルムを使用するため、耐熱性については自ずと限界がある。例えば、ナイロンに代表されるポリアミド系の熱可塑性樹脂をベース樹脂にする場合は、アルミニウム板との密着性は良く、優れた成形性も得られるが、高温環境では比較的短時間で、熱によりベース樹脂が黄変色あるいは褐変色しやすいという問題がある。さらに、PET等の飽和ポリエステル系の熱可塑性樹脂をベース樹脂にする場合は、アルミニウム板との密着性は良く、優れた成形性を示し、高温環境でも、容易にはベース樹脂が熱変色しない特長があるが、ベース樹脂は加水分解し易いため、高温湿潤雰囲気下での耐久性に劣る傾向がある。 As described in Patent Document 4, a film laminate material made of a thermoplastic resin as a base resin and laminated on the surface of an aluminum plate uses a thermoplastic resin film. Naturally there is a limit. For example, when a polyamide-based thermoplastic resin typified by nylon is used as a base resin, it has good adhesion to an aluminum plate and has excellent moldability. There is a problem that the base resin is easily yellowed or browned. Furthermore, when a saturated polyester-based thermoplastic resin such as PET is used as the base resin, it has good adhesion to the aluminum plate, exhibits excellent moldability, and does not easily discolor the base resin even in high-temperature environments. However, since the base resin is easily hydrolyzed, it tends to be inferior in durability under a high-temperature and humid atmosphere.
 その他、ポリエチレンやポリプロピレンに代表されるポリオレフィン系の樹脂をベース樹脂にすると、ベース樹脂は原則炭素と水素だけから構成されており、窒素や酸素が含まれない。従って水酸基やカルボキシル基、エステル結合、イソシアネート基、ウレタン結合、アミノ基、アミド結合といった官能基や化学結合の起点が無く、アルミニウム板との接着性に劣ることとなる。 In addition, when a polyolefin resin typified by polyethylene or polypropylene is used as a base resin, the base resin is basically composed of only carbon and hydrogen and does not contain nitrogen or oxygen. Therefore, there is no origin of functional groups and chemical bonds such as hydroxyl groups, carboxyl groups, ester bonds, isocyanate groups, urethane bonds, amino groups, and amide bonds, and the adhesiveness to the aluminum plate is poor.
 そのため、フィルムラミネート材よりも耐熱耐久性の高い熱硬化性樹脂を使用したプレコートアルミニウム板であって、プレス成形後にプレス油や磨耗粉等を洗浄剤中にて洗浄除去する工程の際に、洗浄能力の高い沸騰塩素系洗浄剤中で洗浄する場合においても、プレコート皮膜の溶解、剥離、変色、くっつき等の表面異常となることを防止できる、洗浄工程での皮膜の耐久性に優れたプレコートアルミニウム板の開発が望まれている。さらに、洗浄工程での皮膜の優れた耐久性に加え、絞り加工における成形性に優れると共に、アルミニウム板のもつ美しい光沢外観を損なわないプレコートアルミニウム板が、より望まれている。 Therefore, it is a pre-coated aluminum plate using a thermosetting resin with higher heat resistance and durability than the film laminate material, and it is washed during the process of washing and removing press oil and wear powder etc. in the cleaning agent after press molding. Precoated aluminum with excellent film durability in the cleaning process that can prevent surface abnormalities such as dissolution, peeling, discoloration, and sticking of the precoat film even when cleaning in a high-capacity boiling chlorine-based cleaning agent Development of the board is desired. Furthermore, in addition to the excellent durability of the coating film in the cleaning process, a precoated aluminum plate that has excellent formability in drawing and does not impair the beautiful gloss appearance of the aluminum plate is more desired.
 本発明は前記課題に鑑みてなされたものであり、熱硬化性樹脂を使用したプレコートアルミニウム板において、沸騰塩素系洗浄剤中で、皮膜の溶解、剥離、変色、くっつき等が生じることのない、洗浄工程での皮膜の耐久性に優れたプレコートアルミニウム板を提供することを目的とする。
 さらに、より望ましい形態として、洗浄工程での皮膜の耐久性に優れると共に、絞り加工が行われた場合においても、フィルムラミネート材と遜色のない高い成形性や、優れた外観性状を兼ね備えたプレコートアルミニウム板を提供することを目的とする。
The present invention has been made in view of the above problems, and in a precoated aluminum plate using a thermosetting resin, in a boiling chlorine-based cleaning agent, no dissolution, peeling, discoloration, sticking, etc. of the film occurs. It aims at providing the precoat aluminum plate excellent in the durability of the film | membrane in the washing | cleaning process.
Furthermore, as a more desirable form, pre-coated aluminum that has excellent durability of the film in the cleaning process, and has high formability comparable to that of a film laminate material and excellent appearance properties even when drawn. The purpose is to provide a board.
 また、高温湿潤雰囲気下での耐久性に優れるエポキシ樹脂を主体とする熱硬化性樹脂を使用し、高い成形性と耐熱変色性を両立し、耐薬品性にも優れたプレコートアルミニウム板を提供することを目的とする。 In addition, a thermosetting resin mainly composed of an epoxy resin that has excellent durability under a high-temperature and humid atmosphere is used to provide a pre-coated aluminum plate that has both high moldability and heat-resistant discoloration properties and excellent chemical resistance. For the purpose.
 第1の解決手段 First solution
(1)第1の解決手段によるプレコートアルミニウム板は、アルミニウム板の表面に、分子間架橋(cross link)されたベース樹脂と、微粒子と、を含むプレコート皮膜(以下、適宜、皮膜という)が形成されたプレコートアルミニウム板であって、前記プレコート皮膜は、ゲル分率が50%以上であり、かつ、表面粗さが、算術平均粗さ(Ra)で、0.25μm以上であることを特徴とする。 (1) The pre-coated aluminum plate according to the first solution is formed on the surface of the aluminum plate with a pre-coated film (hereinafter referred to as a film as appropriate) containing a base resin that has been cross-linked and formed with fine particles. The precoated aluminum plate is characterized in that the precoated film has a gel fraction of 50% or more and a surface roughness of 0.25 μm or more in terms of arithmetic average roughness (Ra). To do.
 このような構成によれば、プレコート皮膜のゲル分率が50%以上であることにより、プレコート皮膜の架橋密度が高くなり、プレコート皮膜中に添加した微粒子が洗浄工程で脱落するのを防止することができる。また、耐薬品性、耐熱性、耐加水分解性等が向上し、また、洗浄工程での皮膜の耐久性が向上する。さらに、微粒子を添加することで、プレコート皮膜の表面粗さ(算術平均粗さ(Ra))が制御され、この表面粗さRaが0.25μm以上であることにより、プレコート皮膜の表面粗さが十分に大きなものとなり、沸騰塩素系洗浄剤中における皮膜同士のくっつきが抑制される。 According to such a configuration, when the gel fraction of the precoat film is 50% or more, the crosslink density of the precoat film is increased, and the fine particles added to the precoat film are prevented from falling off during the cleaning process. Can do. In addition, chemical resistance, heat resistance, hydrolysis resistance and the like are improved, and durability of the film in the cleaning process is improved. Furthermore, by adding fine particles, the surface roughness (arithmetic average roughness (Ra)) of the precoat film is controlled, and when the surface roughness Ra is 0.25 μm or more, the surface roughness of the precoat film is reduced. It becomes sufficiently large, and sticking between the films in the boiling chlorine-based cleaning agent is suppressed.
(2)前記微粒子は、無機微粒子、または、架橋された有機微粒子であることが好ましい。
 このような構成によれば、ベース樹脂を架橋反応させる際の熱によって、微粒子が溶融することがなく、プレコート皮膜の表面粗さRaを制御しやすくなる。
(2) The fine particles are preferably inorganic fine particles or crosslinked organic fine particles.
According to such a configuration, the fine particles are not melted by heat when the base resin is subjected to a crosslinking reaction, and the surface roughness Ra of the precoat film can be easily controlled.
(3)前記微粒子は、架橋された球状の有機微粒子であることが好ましい。
 このような構成によれば、プレコート皮膜の凸部の形態が滑らかとなり、プレス成形用金型の負担が軽減する。
(3) The fine particles are preferably crosslinked spherical organic fine particles.
According to such a structure, the form of the convex part of a precoat film | membrane becomes smooth and the burden of the metal mold | die for press molding is reduced.
(4)前記ベース樹脂は、ガラス転移温度が25~65℃のポリエステル樹脂を、メラミン系硬化剤、または、イソシアネート系硬化剤にて架橋反応させた架橋ポリエステル樹脂であることが好ましい。
(5)前記ポリエステル樹脂は、ガラス転移温度が35~60℃であることが好ましい。
 これらのような構成によれば、皮膜が適度に柔軟となり、プレコートアルミニウム板の絞り成形性が向上する。
(4) The base resin is preferably a crosslinked polyester resin obtained by crosslinking a polyester resin having a glass transition temperature of 25 to 65 ° C. with a melamine curing agent or an isocyanate curing agent.
(5) The polyester resin preferably has a glass transition temperature of 35 to 60 ° C.
According to such a configuration, the film becomes moderately flexible, and the drawability of the precoated aluminum plate is improved.
(6)前記プレコート皮膜の表面粗さは、算術平均粗さ(Ra)で、0.25~0.55μmであることが好ましい。
 このような構成によれば、プレコート皮膜の表面における可視光の乱反射が抑制され、プレコート皮膜が艶消し(mat)状態になることが抑制される。なお、ここでの艶消し状態とは、素材であるアルミニウム板の持つ艶が失われることをいう。
(6) The surface roughness of the precoat film is preferably an arithmetic average roughness (Ra) of 0.25 to 0.55 μm.
According to such a configuration, the irregular reflection of visible light on the surface of the precoat film is suppressed, and the precoat film is suppressed from being matted. Here, the matte state means that the gloss of the aluminum plate as the material is lost.
(7)前記プレコート皮膜において、前記微粒子が占める比率は1~50質量%であることが好ましい。
 このような構成によれば、微粒子が占める比率を1質量%以上にすることで、容易にプレコート皮膜の表面粗さRaを0.25μm以上とすることができる。他方で微粒子が占める比率を50質量%以下とすることで、容易に微粒子をベース樹脂に固定することができる。
(7) In the precoat film, the proportion of the fine particles is preferably 1 to 50% by mass.
According to such a configuration, the surface roughness Ra of the precoat film can be easily set to 0.25 μm or more by setting the ratio of the fine particles to 1% by mass or more. On the other hand, when the proportion of the fine particles is 50% by mass or less, the fine particles can be easily fixed to the base resin.
(8)前記微粒子の粒子径は1~50μmであることが好ましい。
 このような構成によれば、微粒子の粒径を1μm以上にすることで、一般的なロールコータで塗装できる皮膜厚さが、おおよそ1~20μm程度であることを考えると、プレコート皮膜の狙い皮膜厚さが1μmと比較的薄い膜厚の場合でも、容易にプレコート皮膜の表面粗さRaを0.25μm以上とすることができる。他方で微粒子が占める比率を50質量%以下とすることで、狙い皮膜厚さが20μmと比較的厚い膜厚の場合であっても、容易に微粒子をベース樹脂に固定することができる。
(8) The particle diameter of the fine particles is preferably 1 to 50 μm.
According to such a configuration, considering that the film thickness that can be applied with a general roll coater is about 1 to 20 μm by setting the particle size of the fine particles to 1 μm or more, the target film of the precoat film Even in the case of a relatively thin film thickness of 1 μm, the surface roughness Ra of the precoat film can be easily set to 0.25 μm or more. On the other hand, by setting the ratio of the fine particles to 50% by mass or less, the fine particles can be easily fixed to the base resin even if the target film thickness is 20 μm.
(9)前記プレコート皮膜の膜厚は1~20μmであることが好ましい。
 通常の場合、1回の塗布作業によって塗布できる皮膜の厚さは、1~20μmとなるのが一般的である。したがって、上記構成にすることで、作業性および生産性を向上することができる。
(9) The precoat film preferably has a thickness of 1 to 20 μm.
In general, the thickness of the film that can be applied by one application operation is generally 1 to 20 μm. Therefore, workability and productivity can be improved with the above configuration.
 第2の解決手段 Second solution
(10)第2の解決手段によるプレコートアルミニウム板は、アルミニウム板の表面に、プレコート皮膜が形成されたプレコートアルミニウム板であって、前記プレコート皮膜は、エポキシ系樹脂と無黄変(non yellowing)タイプのイソシアネート系硬化剤とが分子間架橋された熱硬化性樹脂からなり、前記プレコート皮膜のゲル分率が70%以上92%以下であることを特徴とする。 (10) The pre-coated aluminum plate according to the second solution is a pre-coated aluminum plate in which a pre-coated film is formed on the surface of the aluminum plate, and the pre-coated film is an epoxy resin and a non-yellowing type The isocyanate-based curing agent is made of a thermosetting resin that is cross-linked between molecules, and the gel fraction of the precoat film is 70% or more and 92% or less.
 このような構成によれば、プレコート皮膜が、エポキシ系樹脂が分子間架橋された熱硬化性樹脂からなることによって、高温湿潤雰囲気下での耐久性が向上する。また、プレコート皮膜が、エポキシ系樹脂と無黄変タイプのイソシアネート系硬化剤とが分子間架橋された熱硬化性樹脂からなり、プレコート皮膜のゲル分率が70%以上92%以下であることによって、エポキシ系樹脂としては柔軟で、高い絞り成形性を有しつつ、耐薬品性にも優れ、かつ、耐熱試験での変色も回避することができる。 According to such a configuration, the precoat film is made of a thermosetting resin in which an epoxy resin is cross-linked between molecules, whereby durability in a high-temperature and humid atmosphere is improved. The precoat film is composed of a thermosetting resin in which an epoxy resin and a non-yellowing type isocyanate curing agent are cross-linked between molecules, and the gel fraction of the precoat film is 70% or more and 92% or less. The epoxy resin is flexible, has high drawability, is excellent in chemical resistance, and can avoid discoloration in a heat test.
(11)前記プレコート皮膜のゲル分率は、70%以上85%以下であることが好ましい。
 このような構成によれば、プレコート皮膜のゲル分率を、70%以上85%以下とすることによって、より変形量の大きい深絞り成形にも皮膜が追従することができる。
(11) The gel fraction of the precoat film is preferably 70% or more and 85% or less.
According to such a configuration, the film can follow deep drawing with a larger amount of deformation by setting the gel fraction of the precoat film to 70% or more and 85% or less.
(12)前記無黄変タイプのイソシアネート系硬化剤は、ブロック型イソシアネート化合物であることが好ましい。
 このような構成によれば、無黄変タイプのイソシアネート系硬化剤を、ブロック型イソシアネート化合物とすることによって、常温で塗料(樹脂溶液)を保管する際に、イソシアネート系硬化剤とエポキシ系樹脂とが反応して硬化するのを抑制することができるとともに、塗装ラインでの加熱工程では速やかに硬化反応が進むため、速やかな焼付け硬化性を維持しつつ、塗料保管寿命を大幅に伸ばすことができる。
(12) The non-yellowing type isocyanate curing agent is preferably a block type isocyanate compound.
According to such a configuration, when the paint (resin solution) is stored at room temperature by using a block-type isocyanate compound as the non-yellowing type isocyanate curing agent, the isocyanate curing agent and the epoxy resin Can be prevented from reacting and curing, and since the curing reaction proceeds quickly in the heating process in the painting line, the paint storage life can be greatly extended while maintaining rapid bake curability. .
(13)前記プレコート皮膜は、ベース樹脂となる前記熱硬化性樹脂中に、無機微粒子または架橋された有機微粒子である微粒子を含み、かつ、表面粗さが、算術平均粗さ(Ra)で、0.25μm以上であることが好ましい。
 このような構成によれば、微粒子を添加することで、プレコート皮膜の表面粗さ(算術平均粗さ(Ra))が制御され、この表面粗さRaが0.25μm以上であることによって、プレコート皮膜の表面粗さが十分に大きなものとなり、沸騰塩素系洗浄剤中における皮膜同士のくっつきが抑制される。
(13) The precoat film contains inorganic fine particles or fine particles which are crosslinked organic fine particles in the thermosetting resin serving as a base resin, and the surface roughness is an arithmetic average roughness (Ra). It is preferable that it is 0.25 μm or more.
According to such a configuration, the surface roughness (arithmetic average roughness (Ra)) of the precoat film is controlled by adding fine particles, and the surface roughness Ra is 0.25 μm or more, so The surface roughness of the film becomes sufficiently large, and adhesion between the films in the boiling chlorine-based cleaning agent is suppressed.
(14)前記微粒子は、架橋された球状の有機微粒子であることが好ましい。
 このような構成によれば、プレコート皮膜の凸部の形態が滑らかとなり、プレス成形用金型の負担が軽減する。
(14) The fine particles are preferably cross-linked spherical organic fine particles.
According to such a structure, the form of the convex part of a precoat film | membrane becomes smooth and the burden of the metal mold | die for press molding is reduced.
(15)前記プレコート皮膜の表面粗さは、算術平均粗さ(Ra)で、0.25~0.55μmであることが好ましい。
 このような構成によれば、プレコート皮膜の表面における可視光の乱反射が抑制され、プレコート皮膜が艶消し状態になることが抑制される。なお、ここでの艶消し状態とは、素材であるアルミニウム板の持つ光沢が失われることをいう。
(15) The surface roughness of the precoat film is preferably an arithmetic average roughness (Ra) of 0.25 to 0.55 μm.
According to such a configuration, the irregular reflection of visible light on the surface of the precoat film is suppressed, and the precoat film is suppressed from being matted. Here, the matte state means that the gloss of the aluminum plate as the material is lost.
 第1の解決手段の効果 Effect of the first solution
 上記第1の解決手段における上記(1)の構成の発明によれば、過酷な沸騰塩素系洗浄剤中で洗浄を行っても、皮膜の溶解、剥離、変色、くっつき等が生じることのない、洗浄工程での皮膜の耐久性に優れたプレコートアルミニウム板の提供が可能となる。これにより、選択できる製造工程が広がるため、プレコートアルミニウム板の応用分野が広がる。また、皮膜の基本的な耐薬品性が向上しているため、プレス成形後の洗浄工程での皮膜の耐久性向上のみならず、実使用環境下での耐溶剤性や耐薬品性が向上する。
 上記第1の解決手段における上記(2)の構成の発明によれば、プレコート皮膜の表面粗さRaが制御しやすくなり、安定した表面粗さRaのプレコート皮膜を得ることができる。
 上記第1の解決手段における上記(3)の構成の発明によれば、プレス成形用金型の負担を軽減させることができるため、プレス成形用金型の寿命を向上させることができる。
According to the invention of the above constitution (1) in the first solution means, even when washing is performed in a harsh boiling chlorine-based cleaning agent, dissolution, peeling, discoloration, sticking, etc. of the film do not occur. It is possible to provide a pre-coated aluminum plate with excellent film durability in the cleaning process. Thereby, since the manufacturing process which can be selected spreads, the application field of a precoat aluminum plate spreads. In addition, since the basic chemical resistance of the film has been improved, not only the durability of the film in the cleaning process after press molding is improved, but also the solvent resistance and chemical resistance in the actual use environment are improved. .
According to the invention of the configuration (2) in the first solving means, the surface roughness Ra of the precoat film can be easily controlled, and a precoat film having a stable surface roughness Ra can be obtained.
According to the invention of the configuration (3) in the first solving means, the burden on the press molding die can be reduced, so that the life of the press molding die can be improved.
 上記第1の解決手段における上記(4),(5)の構成の発明によれば、プレコート皮膜の柔軟性を適度に得ることができ、プレコートアルミニウム板の絞り成形性を向上させることができる。そのため、絞り加工やしごき加工のような変形の大きい成形に追従できるプレコートアルミニウム板の提供が可能となる。これにより、産業用電子機器や民生用電子機器、自動車電装品の筐体に好適な、密閉性に優れた筐体を提供することが可能となる。また、フィルムラミネートアルミニウム板と比較して、耐熱変色性や耐加水分解性等に優れた成形品を提供することが可能となる。
 上記第1の解決手段における上記(6)の構成の発明によれば、アルミニウム板のもつ美しい光沢外観の成形品を提供することが可能となる。
According to the inventions of the above constitutions (4) and (5) in the first solving means, the flexibility of the precoat film can be obtained moderately, and the drawability of the precoat aluminum plate can be improved. Therefore, it is possible to provide a precoated aluminum plate that can follow forming with large deformation such as drawing and ironing. As a result, it is possible to provide a casing with excellent hermeticity that is suitable for casings for industrial electronic devices, consumer electronic devices, and automobile electrical components. In addition, it is possible to provide a molded article having excellent heat discoloration resistance and hydrolysis resistance as compared with a film laminated aluminum plate.
According to the invention of the configuration (6) in the first solving means, it is possible to provide a molded product having a beautiful gloss appearance of the aluminum plate.
 上記第1の解決手段における上記(7),(8)の構成の発明によれば、一般的なロールコータで塗装できる皮膜厚さが、おおよそ1~20μm程度であることを考えると、プレコート皮膜の狙い皮膜厚さが1μmと比較的薄い膜厚の場合でも、容易にプレコート皮膜の表面粗さRaを0.25μm以上とすることができる。他方で、狙い皮膜厚さが20μmと比較的厚い膜厚の場合であっても、容易に微粒子をベース樹脂に固定することができる。
 上記第1の解決手段における上記(9)の構成の発明によれば、作業性および生産性を向上することができる。
According to the inventions of the above constitutions (7) and (8) in the first solving means, considering that the film thickness that can be applied with a general roll coater is approximately 1 to 20 μm, the precoat film Even when the target film thickness is 1 μm and a relatively thin film thickness, the surface roughness Ra of the precoat film can be easily set to 0.25 μm or more. On the other hand, the fine particles can be easily fixed to the base resin even when the target film thickness is a relatively large film thickness of 20 μm.
According to the invention of the configuration (9) in the first solving means, workability and productivity can be improved.
 第2の解決手段の効果 Effect of the second solution
 上記第2の解決手段における上記(10)の構成の発明によれば、優れた絞り成形(加工)性を有するとともに、高温湿潤雰囲気下での耐久性にも優れ、耐薬品性を兼ね備えるとともに、かつ、耐熱試験での変色も生じないプレコートアルミニウム板を提供することができる。その結果、屋外や車載環境下でも信頼性に優れた、軽くて密閉性の高い筐体を、低コスト、かつ、優れた生産性で供給することができる。
 上記第2の解決手段における上記(11)の構成の発明によれば、いっそう(さらなる)優れた絞り成形性を有するプレコートアルミニウム板の提供が可能となる。その結果、密閉筐体の形状設計自由度が高まり、多様な形状の筐体が得られるとともに、筐体の適用範囲が広がる。
 上記第2の解決手段における上記(12)の構成の発明によれば、プレコート皮膜を形成する塗料の保管寿命が向上する。その結果、塗料が期限切れとなり使えなくなるリスクが低下するため、トータルコストダウンにつながる。また、産業廃棄物が減るため、環境改善にもつながる。
According to the invention of the configuration of the above (10) in the second solution means, it has excellent draw forming (working) properties, is excellent in durability under a high-temperature and humid atmosphere, has both chemical resistance, And the precoat aluminum plate which does not produce discoloration by a heat test can be provided. As a result, it is possible to supply a light and highly airtight casing that is excellent in reliability even in outdoor or in-vehicle environments at low cost and with excellent productivity.
According to the invention of the configuration of the above (11) in the second solving means, it is possible to provide a precoated aluminum plate having a further (further) excellent drawability. As a result, the degree of freedom in designing the shape of the hermetically sealed housing is increased, and various shapes of the housing can be obtained, and the applicable range of the housing is expanded.
According to the invention of the above constitution (12) in the second solving means, the shelf life of the paint forming the precoat film is improved. As a result, the risk that the paint will expire and become unusable is reduced, leading to a total cost reduction. In addition, since industrial waste is reduced, it leads to environmental improvement.
 上記第2の解決手段における上記(13)の構成の発明によれば、過酷な沸騰塩素系洗浄剤中で洗浄を行っても、皮膜の溶解、剥離、変色、くっつき等が生じることのない、洗浄工程での皮膜の耐久性に優れたプレコートアルミニウム板の提供が可能となる。これにより、選択できる製造工程が広がるため、プレコートアルミニウム板の応用分野が広がる。また、皮膜の基本的な耐薬品性が向上しているため、プレス成形後の洗浄工程での皮膜の耐久性向上のみならず、実使用環境下での耐薬品性が向上する。さらに、プレコート皮膜の表面粗さRaが制御し易くなり、安定した表面粗さRaのプレコート皮膜を得ることができる。
 上記第2の解決手段における上記(14)の構成の発明によれば、プレス成形用金型の負担を軽減させることができるため、プレス成形用金型の寿命を向上させることができる。
 上記第2の解決手段における上記(15)の構成の発明によれば、アルミニウム板の持つ美しい光沢外観の成形品を提供することが可能となる。
According to the invention of the above configuration (13) in the second solution means, even when washing is performed in a harsh boiling chlorine-based cleaning agent, dissolution, peeling, discoloration, sticking, etc. of the film do not occur. It is possible to provide a pre-coated aluminum plate with excellent film durability in the cleaning process. Thereby, since the manufacturing process which can be selected spreads, the application field of a precoat aluminum plate spreads. In addition, since the basic chemical resistance of the coating is improved, not only the durability of the coating is improved in the cleaning process after press molding, but also the chemical resistance in the actual use environment is improved. Furthermore, the surface roughness Ra of the precoat film can be easily controlled, and a precoat film having a stable surface roughness Ra can be obtained.
According to the invention of the above configuration (14) in the second solving means, the load on the press molding die can be reduced, so that the life of the press molding die can be improved.
According to the invention of the configuration (15) in the second solving means, it is possible to provide a molded product having a beautiful gloss appearance of the aluminum plate.
本発明に係るプレコートアルミニウム板の構成を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the structure of the precoat aluminum plate which concerns on this invention. 実施例において、供試材を絞り加工、および、しごき加工することで、有底円筒容器を作製する工程を示す模式図である。In an Example, it is a schematic diagram which shows the process of producing a bottomed cylindrical container by carrying out drawing processing and ironing of a test material. (a)は、曲げ加工による箱型筐体を示す模式図、(b)は、絞り加工による箱型筐体を示す模式図である。(A) is a schematic diagram which shows the box-type housing | casing by a bending process, (b) is a schematic diagram which shows the box-type housing | casing by a drawing process.
  1 プレコートアルミニウム板
  2 アルミニウム板
  3 プレコート皮膜
  4 ベース樹脂
  5 微粒子
DESCRIPTION OF SYMBOLS 1 Precoat aluminum plate 2 Aluminum plate 3 Precoat film 4 Base resin 5 Fine particle
 第1実施形態 First embodiment
 以下、適宜図面を参照して、本発明に係るプレコートアルミニウム板の最良の形態について具体的に説明する。
 参照する図面において、図1は、本発明に係るプレコートアルミニウム板の構成を模式的に示す部分断面図である。
Hereinafter, the best mode of the precoated aluminum plate according to the present invention will be specifically described with reference to the drawings as appropriate.
In the drawings to be referred to, FIG. 1 is a partial cross-sectional view schematically showing a configuration of a precoated aluminum plate according to the present invention.
≪プレコートアルミニウム板≫
 図1に示すように、プレコートアルミニウム板1は、アルミニウム板2の表面に、分子間架橋されたベース樹脂4と、微粒子5と、を含むプレコート皮膜3が形成されたものである。ここで、アルミニウム板2の表面とは、アルミニウム板2の少なくとも一方の面を意味する。以下、各構成について説明する。
≪Pre-coated aluminum plate≫
As shown in FIG. 1, a precoated aluminum plate 1 has a surface of an aluminum plate 2 on which a precoat film 3 including an intermolecular cross-linked base resin 4 and fine particles 5 is formed. Here, the surface of the aluminum plate 2 means at least one surface of the aluminum plate 2. Each configuration will be described below.
<アルミニウム板>
 本発明でいうアルミニウム板2は、アルミニウムまたはアルミニウム合金からなるものであり、本発明で用いられるアルミニウム板(アルミニウム板またはアルミニウム合金板)2としては、特に制限されるものではなく、製品形状や成形方法、使用時に求められる強度等に基づいて選択することができる。一般的には、非熱処理型のアルミニウム板、すなわち、1000系の工業用純アルミニウム板、3000系のAl-Mn系合金板、5000系のAl-Mg系合金板が好適に使用することができる。特に、しごき加工(ironing process)を伴う深い容器形状の筐体を製作する場合には、JIS H4000に規定されるA1050、A1100、A3003、A3004等のアルミニウム板が推奨される。また、比較的浅い容器形状の筐体を作成する場合には、JIS H4000に規定される、A5052やA5182等のアルミニウム板が推奨される。調質(thermal refining)、板厚についても、目的に応じて種々のものを選定して使用することができる。また、後記するように、アルミニウム板2に、反応型下地処理、塗布型下地処理、陽極酸化処理、電解エッチング処理、脱脂処理等を施してもよい。
<Aluminum plate>
The aluminum plate 2 referred to in the present invention is made of aluminum or an aluminum alloy, and the aluminum plate (aluminum plate or aluminum alloy plate) 2 used in the present invention is not particularly limited, and may be a product shape or a molding. The method can be selected based on the strength required at the time of use. In general, a non-heat treatment type aluminum plate, that is, a 1000 series industrial pure aluminum plate, a 3000 series Al—Mn alloy plate, and a 5000 series Al—Mg alloy plate can be preferably used. . In particular, when manufacturing a case having a deep container shape with an ironing process, aluminum plates such as A1050, A1100, A3003, and A3004 defined in JIS H4000 are recommended. Moreover, when producing a comparatively shallow container-shaped housing | casing, aluminum plates, such as A5052 and A5182, prescribed | regulated to JISH4000 are recommended. Various types of tempering (thermal refining) and plate thickness can be selected and used according to the purpose. Further, as will be described later, the aluminum plate 2 may be subjected to reactive base treatment, coating type base treatment, anodizing treatment, electrolytic etching treatment, degreasing treatment, and the like.
<プレコート皮膜>
 プレコート皮膜3(皮膜3)は、ベース樹脂4と、このベース樹脂4中に分散された微粒子5を含むものであり、アルミニウム板2の表面に形成される。このプレコート皮膜3は、ゲル分率が50%以上、かつ、表面粗さが、算術平均粗さ(Ra)で、0.25μm以上である。
<Precoat film>
The precoat film 3 (film 3) includes a base resin 4 and fine particles 5 dispersed in the base resin 4, and is formed on the surface of the aluminum plate 2. This precoat film 3 has a gel fraction of 50% or more and a surface roughness of 0.25 μm or more in terms of arithmetic average roughness (Ra).
[ベース樹脂]
 ベース樹脂4は、プレコート皮膜3の主成分となるものであり、従来公知のプレコートアルミニウム板やプレコート鋼板に使用される分子間架橋型の樹脂を使用し、後記するように、ゲル分率が50%以上となるように分子間架橋反応させる。
[Base resin]
The base resin 4 is a main component of the precoat film 3 and uses a conventionally known intercoat type resin used for a precoat aluminum plate or a precoat steel plate, and has a gel fraction of 50 as described later. The intermolecular cross-linking reaction is performed so as to be at least%.
 熱硬化反応による分子間架橋を行わないものとして、熱可塑性樹脂をベース樹脂とするフィルムラミネート材もあるが、前記従来技術で説明したとおり、熱可塑性樹脂をベース樹脂にするものは、様々な点で実用上の問題が生じる。しかし、熱硬化反応等による分子間架橋を行う樹脂をベース樹脂4に選定すると、この樹脂は、もともと分子間架橋するための官能基を有しているため、アルミニウム板2との密着性に優れる。また、架橋されることで、耐薬品性や耐熱性が高くなると共に、耐加水分解性についても向上させることが可能となる。 There are film laminates that use thermoplastic resins as the base resin as those that do not undergo intermolecular crosslinking by thermosetting reaction, but as described in the above-mentioned prior art, those using thermoplastic resins as the base resin have various points. This creates a practical problem. However, if a resin that performs intermolecular crosslinking by thermosetting reaction or the like is selected as the base resin 4, this resin originally has a functional group for intermolecular crosslinking, and thus has excellent adhesion to the aluminum plate 2. . Moreover, by cross-linking, chemical resistance and heat resistance can be increased, and hydrolysis resistance can be improved.
 ベース樹脂4に使用する分子間架橋型の樹脂は、プレス後の使用環境や用途に応じて選定することができる。例えば、皮膜3の硬さや耐熱性が求められる用途であれば、ベース樹脂4にエポキシ系樹脂を使用するのが望ましく、耐候性や防汚性等が必要とされる用途の場合は、ベース樹脂4にフッ素系樹脂を使用するのが望ましい。さらに、製品形状が厳しく、複雑形状に成形して使用する場合には、比較的柔軟な皮膜3となるポリエステル系樹脂をベース樹脂4に使用するのが望ましい。 The intermolecular cross-linking resin used for the base resin 4 can be selected according to the usage environment and application after pressing. For example, it is desirable to use an epoxy-based resin for the base resin 4 if the hardness and heat resistance of the coating 3 are required. For applications that require weather resistance, antifouling properties, etc., the base resin It is desirable to use a fluorine-based resin for 4. Furthermore, when the product shape is strict and is used after being molded into a complicated shape, it is desirable to use a polyester-based resin that forms a relatively flexible coating 3 as the base resin 4.
 ここで、製品形状を考えた場合、前記したように、曲げ加工にて箱型形状に成形するような場合では、速乾性プレス油を使用した連続成形技術も確立しているため、十分な洗浄状態が必要となる用途で無ければ、プレス成形後の洗浄工程は必ずしも必要ではない。言い換えると、洗浄が必要となるような高粘度の防錆油やエマルジョン(emulsion)型のワックスを使用して成形する製品形状は、深絞り形状等、複雑形状となる場合の方が多いといえる。したがって、プレコートアルミニウム板1における洗浄工程での皮膜3の耐久性の付与は、高い成形性を得ることができるポリエステル系樹脂と組み合わせるのが、より望ましい形態と考えられる。 Here, when considering the product shape, as described above, in the case of forming into a box shape by bending, since continuous forming technology using quick-drying press oil has been established, sufficient cleaning If it is not an application that requires a state, a cleaning step after press molding is not necessarily required. In other words, it can be said that the shape of products molded using high-viscosity rust preventive oil or emulsion type wax that needs to be cleaned is often complex shapes such as deep-drawn shapes. . Therefore, it is considered that the durability of the coating 3 in the cleaning step in the precoated aluminum plate 1 is combined with a polyester resin capable of obtaining high moldability in a more desirable form.
 ポリエステル樹脂としては、多価アルコールと多塩基酸を縮合重合させることによって得られた飽和ポリエステル樹脂を用いるのが望ましい。このうち、多価アルコールとしては、例えば、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコール等の二価アルコールや、グリセリン、トリメチロールエタン、トリメチロールプロパン等の三価アルコール、さらには、四価以上のアルコール類等を用いることができる。また、多塩基酸としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、アジピン酸、セバシン酸等の二塩基酸や、無水トリメリット酸等の三塩基酸、さらには、四価以上の多塩基酸等を用いることができる。これらの多価アルコールおよび多塩基酸は、一種類もしくは二種類以上同時に使用して縮合重合させてもよい。また、これらの成分を組み合わせることにより、ポリエステル樹脂のガラス転移温度が変化する。 As the polyester resin, it is desirable to use a saturated polyester resin obtained by condensation polymerization of a polyhydric alcohol and a polybasic acid. Among these, polyhydric alcohols include, for example, dihydric alcohols such as ethylene glycol, propylene glycol, neopentyl glycol, 1,3-butylene glycol, 1,6-hexanediol, diethylene glycol, glycerin, trimethylolethane, Trihydric alcohols such as methylolpropane, and tetrahydric or higher alcohols can be used. Examples of polybasic acids include dibasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, and sebacic acid, tribasic acids such as trimellitic anhydride, and tetravalent or higher polybasic acids. A basic acid or the like can be used. These polyhydric alcohols and polybasic acids may be subjected to condensation polymerization by using one kind or two or more kinds at the same time. Moreover, the glass transition temperature of a polyester resin changes by combining these components.
 ガラス転移温度は樹脂の転移温度の一つであり、一般に、ガラス転移温度以上の温度での樹脂は柔らかいゴム状、ガラス転移温度以下の温度での樹脂は硬いガラス状とされる。従って、深絞り加工やしごき加工のような変形の大きい加工に皮膜3が追従するためには、理論上はガラス転移温度を加工温度以下にすることが必要となる。しかし実際には、高分子物質は、分子量に幅があり、分子内に枝分かれ構造が生じる等、一次構造は均一ではなく、分子同士の配列等、高次構造もミクロに見ると均一とはいえない。したがって、ガラス転移温度はあくまで代表値であり、ある程度幅をもった温度範囲で徐々に転移が生じる。また、ポリエステル樹脂は、ガラス転移温度以下のガラス状であっても、一部の状態(架橋反応をさせない熱可塑性樹脂の状態で結晶化を促進させた状態)を除き、比較的高い伸びがあるため、ある程度の範囲であれば、高いガラス転移温度を有する樹脂をベース樹脂4としても、成形は可能である。逆に、ガラス転移温度が低すぎる樹脂をベース樹脂4にした場合には、皮膜3が柔らかくなりすぎて、疵が入りやすくなる。 The glass transition temperature is one of the transition temperatures of the resin. Generally, a resin at a temperature higher than the glass transition temperature is a soft rubber, and a resin at a temperature lower than the glass transition temperature is a hard glass. Therefore, in order for the film 3 to follow a process with large deformation such as deep drawing or ironing, it is theoretically necessary to set the glass transition temperature to the processing temperature or lower. However, in reality, the high molecular structure of macromolecular substances is not uniform, for example, because the molecular weight has a wide range and a branched structure is formed in the molecule. Absent. Therefore, the glass transition temperature is merely a representative value, and the transition gradually occurs in a temperature range having a certain width. In addition, the polyester resin has a relatively high elongation except for a part of the state (a state in which crystallization is promoted in a state of a thermoplastic resin that does not cause a cross-linking reaction) even if it is glassy below the glass transition temperature. Therefore, within a certain range, molding is possible even if a resin having a high glass transition temperature is used as the base resin 4. On the other hand, when the resin having an excessively low glass transition temperature is used as the base resin 4, the coating 3 becomes too soft and wrinkles are likely to enter.
 本発明において、ベース樹脂4にポリエステル樹脂を使用する場合、そのガラス転移温度は、25~65℃の範囲であることが望ましい。ガラス転移温度が25℃未満では、皮膜3が柔らかくなりすぎて疵が入りやすく、一方、65℃を超えると、プレコートアルミニウム板1の加工性が低下し、成形可能な形状が限定されてしまう。なお、ガラス転移温度は、35~60℃であることがより望ましい。ガラス転移温度を35℃以上とすることで、皮膜3の柔軟性をより適度にしやすくなり、ガラス転移温度を60℃以下とすることで、プレコートアルミニウム板1の加工性を向上させやすくなる。なお、ここでいうガラス転移温度とは、DSC法によって測定されたものをいう。 In the present invention, when a polyester resin is used as the base resin 4, the glass transition temperature is preferably in the range of 25 to 65 ° C. If the glass transition temperature is less than 25 ° C., the film 3 becomes too soft and easily wrinkles. On the other hand, if it exceeds 65 ° C., the workability of the precoated aluminum plate 1 is reduced, and the formable shape is limited. The glass transition temperature is more preferably 35 to 60 ° C. By setting the glass transition temperature to 35 ° C. or higher, the flexibility of the film 3 can be made more appropriate, and by setting the glass transition temperature to 60 ° C. or lower, the workability of the precoated aluminum plate 1 can be easily improved. In addition, the glass transition temperature here means what was measured by DSC method.
 また、前記のポリエステル樹脂だけでは、架橋反応は起きない。本発明で要求される架橋反応を起こすためには、ポリエステル樹脂が有する水酸基やカルボキシル基と反応する硬化剤を添加するか、ポリエステル樹脂自体に、硬化剤と同様の働きをする成分が生成するように、化学反応を利用してポリエステル樹脂を改質することが必要である。これらの水酸基やカルボキシル基と反応する官能基としては、イソシアネート基、アミノ基、水酸基、カルボキシル基等があり、これらの官能基を3個以上有する物質を硬化剤として添加することで、容易に架橋反応を促進することが可能である。このような硬化剤としては、ポリイソシアネート化合物や、メラミン化合物、エポキシ化合物、アミノ化合物、フェノール化合物、ウレア化合物等が挙げられる。なお、本発明でポリエステル系樹脂をベース樹脂4に使用する場合、その硬化剤は、メラミン系硬化剤またはイソシアネート系硬化剤であることが望ましい。これらの硬化剤は、塗料化が容易、常温での保存性と焼付け温度での即反応性を兼ね備える、焼付けにより変色が起こりにくい等の利点がある。 Moreover, the crosslinking reaction does not occur only with the polyester resin. In order to cause the crosslinking reaction required in the present invention, a curing agent that reacts with the hydroxyl group or carboxyl group of the polyester resin is added, or a component having the same function as the curing agent is generated in the polyester resin itself. In addition, it is necessary to modify the polyester resin using a chemical reaction. Functional groups that react with these hydroxyl groups and carboxyl groups include isocyanate groups, amino groups, hydroxyl groups, carboxyl groups, etc., and can be easily crosslinked by adding a substance having three or more of these functional groups as a curing agent. It is possible to promote the reaction. Examples of such a curing agent include polyisocyanate compounds, melamine compounds, epoxy compounds, amino compounds, phenol compounds, urea compounds, and the like. In addition, when using polyester-type resin for the base resin 4 by this invention, it is desirable that the hardening | curing agent is a melamine type hardening | curing agent or an isocyanate type hardening | curing agent. These curing agents are advantageous in that they can be easily made into a paint, have both storability at room temperature and immediate reactivity at the baking temperature, and hardly cause discoloration by baking.
[微粒子]
 微粒子5は、プレコート皮膜3の表面粗さRaを所定に制御するためのものであり、プレコート皮膜3のベース樹脂4中に含有させる。
 プレコート皮膜3中に微粒子5を含有させること無く、表面粗さを制御する方法としては、プレコート皮膜を形成した後に、ブラスト処理等で物理的に表面を粗面化する方法や、凹凸のあるロールを皮膜の表面に押し当てて、ロールの持つ粗さを転写させる方法等が考えられる。しかしながら、これらの方法で表面粗さRaを調整したプレコート皮膜は、洗浄溶剤中に、皮膜表面の凹凸が滑らかとなり、プレコート皮膜における所定の表面粗さを維持することができないという問題がある。その結果、皮膜表面が平滑となり、沸騰塩素系洗浄剤中に、皮膜の表面同士がくっつきやすくなる。しかし、ベース樹脂4中に微粒子5を含有させたプレコート皮膜3では、溶剤洗浄前後で、皮膜表面の凹凸形状は変化しないため、沸騰塩素系洗浄剤を用いた洗浄工程においても、皮膜3同士のくっつきを防ぐことができる。
[Fine particles]
The fine particles 5 are for controlling the surface roughness Ra of the precoat film 3 in a predetermined manner, and are contained in the base resin 4 of the precoat film 3.
As a method for controlling the surface roughness without containing the fine particles 5 in the precoat film 3, a method of physically roughening the surface by blasting or the like after forming the precoat film, or a roll having unevenness A method of transferring the roughness of the roll by pressing the film onto the surface of the film is conceivable. However, the precoat film whose surface roughness Ra is adjusted by these methods has a problem that the unevenness of the film surface becomes smooth in the cleaning solvent, and the predetermined surface roughness in the precoat film cannot be maintained. As a result, the coating surfaces become smooth, and the coating surfaces tend to stick to each other in the boiling chlorine-based cleaning agent. However, in the precoat film 3 in which the fine particles 5 are contained in the base resin 4, the uneven shape of the film surface does not change before and after the solvent cleaning, and therefore, even in the cleaning process using the boiling chlorine-based cleaning agent, Sticking can be prevented.
 微粒子5の種類、形態、大きさ、添加量等は、特に制限されるものではなく、ベース樹脂4に微粒子5を含有させることで、プレコート皮膜3の表面粗さRaを所定の範囲に制御できればよい。これにより、沸騰塩素系洗浄剤中での皮膜3同士のくっつきを防ぐことができる。ただし、微粒子5の種類としては、無機微粒子、または、架橋された有機微粒子であることが望ましい。これ以外の微粒子5としては、架橋されていない熱可塑性の微粒子があるが、熱可塑性微粒子を使用した場合には、ベース樹脂4を架橋反応させる際の熱によって、微粒子5が溶融し、微粒子5の形態が安定せず、プレコート皮膜3の表面粗さRaを制御することが難しくなるという問題が生じやすい。無機微粒子や架橋された有機微粒子であれば、プレコート皮膜3のベース樹脂4を架橋反応させる際の熱によって、微粒子5が溶融しないため、安定した(均一な)表面粗さRaのプレコート皮膜3を得ることができる。 The type, form, size, amount of addition, etc. of the fine particles 5 are not particularly limited as long as the surface roughness Ra of the precoat film 3 can be controlled within a predetermined range by containing the fine particles 5 in the base resin 4. Good. Thereby, sticking of the films 3 in the boiling chlorine-based cleaning agent can be prevented. However, the type of the fine particles 5 is desirably inorganic fine particles or crosslinked organic fine particles. The other fine particles 5 include thermoplastic fine particles that are not cross-linked. However, when thermoplastic fine particles are used, the fine particles 5 are melted by the heat generated when the base resin 4 is subjected to a cross-linking reaction. Is not stable, and it is likely to be difficult to control the surface roughness Ra of the precoat film 3. In the case of inorganic fine particles or crosslinked organic fine particles, the fine particles 5 are not melted by the heat when the base resin 4 of the precoat film 3 is subjected to a crosslinking reaction, so that the precoat film 3 having a stable (uniform) surface roughness Ra is formed. Obtainable.
 なお、微粒子5として、無機系の微粒子を使用した場合、プレコート皮膜3の凸部は硬くなる。そのため、プレス成形用金型の寿命を向上させるため、微粒子5は、架橋された有機微粒子であることがより望ましい。さらに、微粒子5の形態が球状であるほうが、ミクロに見た場合のプレコート皮膜3の凸部の形態が滑らかとなるため、金型寿命への影響が少ないといえる。よって、微粒子5は、架橋された球状の有機微粒子であることがさらに望ましい。 When inorganic fine particles are used as the fine particles 5, the convex portions of the precoat film 3 become hard. Therefore, in order to improve the life of the press molding die, it is more desirable that the fine particles 5 are crosslinked organic fine particles. Furthermore, it can be said that when the shape of the fine particles 5 is spherical, the shape of the convex portion of the precoat film 3 when viewed microscopically becomes smooth, and therefore the influence on the mold life is small. Therefore, it is more desirable that the fine particles 5 are cross-linked spherical organic fine particles.
 このような架橋された球状の有機微粒子としては、例えば、架橋ウレタン微粒子、架橋アクリル系微粒子、シリコーン微粒子、架橋ポリスチレン微粒子等を好適に使用することができる。架橋ウレタン微粒子の例として、大日精化社製のダイミックビーズ(DAIMICBEAZ,登録商標)(大日精化)、アートパール(ART PEARL,登録商標)(根上工業)等を好適に使用することができ、架橋アクリル微粒子の例として、東洋紡製のタフチック(TAFTIC,登録商標)AR(東洋紡)、リオスフィア(LIOSPHERE,登録商標)(東洋インキ製造)、アートパール(ART PEARL,登録商標)(根上工業)、テクポリマー(techpolymer,登録商標)(積水化成品工業)等を好適に使用することができ、シリコーン微粒子の例として、シリコーンパウダー(信越化学)、トレフィル(TORAYFIL,登録商標)(東レ・ダウコーニング(Dow Corning))等を好適に使用することができる。なお、球状ではない有機微粒子としては、例えば、シリコーンゴムパウダー(X-52-875(信越シリコーン))、PTFE粉末(KT-300M(喜多村))、セルロースパウダー(KCフロック(登録商標)(日本製紙ケミカル))、扁平ポリエチレン粒子(住友精化)等が挙げられる。また、無機微粒子としては、例えば、ニッケル粉やタルク粉等が挙げられ、架橋されていない有機微粒子としては、例えば、熱可塑ウレタンビーズやポリスチレンラテックス等が挙げられる。 As such crosslinked spherical organic fine particles, for example, crosslinked urethane fine particles, crosslinked acrylic fine particles, silicone fine particles, crosslinked polystyrene fine particles and the like can be suitably used. As examples of crosslinked urethane fine particles, DAIMICBEAZ (registered trademark) (Daiichi Seika), Art Pearl (registered trademark) (Negami Kogyo), etc., manufactured by Dainichi Seika Co., Ltd. can be suitably used. Examples of crosslinked acrylic fine particles include TAFTIC (registered trademark) AR (Toyobo), Riosphere (LIOSPHERE (registered trademark)) manufactured by Toyobo, Art Pearl (ART, PEARL, registered trademark) (Negami Kogyo) Techpolymer (registered trademark) (Sekisui Plastics Industry) can be used suitably. Examples of silicone fine particles include silicone powder (Shin-Etsu Chemical) and TORAYFIL (registered trademark) (Toray Dow Corning). (Dow Corning)) and the like can be preferably used. Non-spherical organic fine particles include, for example, silicone rubber powder (X-52-875 (Shin-Etsu Silicone)), PTFE powder (KT-300M (Kitamura)), cellulose powder (KC Flock (registered trademark) (Nippon Paper Industries). Chemical)), flat polyethylene particles (Sumitomo Seika) and the like. Examples of the inorganic fine particles include nickel powder and talc powder, and examples of the non-crosslinked organic fine particles include thermoplastic urethane beads and polystyrene latex.
微粒子5の配合比率について、特に制限はないが、プレコート皮膜3に占める比率が、1質量%未満では、表面粗さRaを0.25μm以上とするのが難しく、沸騰塩素系洗浄剤を用いた洗浄工程では、プレコート皮膜3の表面同士が、くっつき易くなる。一方、50質量%を超えると、微粒子5をベース樹脂4に固定しておくのが難しくなる。よって、配合比率は、1~50質量%であることが望ましい。なお、3~30質量%であることがより望ましく、また、皮膜3の外観が艶消し状態になるのを抑制し、素材であるアルミニウム板2の持つ美しい光沢外観を妨げないことを考慮すると、3~10質量%であることがさらに望ましい。 Although there is no restriction | limiting in particular about the compounding ratio of the microparticles | fine-particles, If the ratio occupied to the precoat film 3 is less than 1 mass%, it is difficult to make surface roughness Ra 0.25 micrometer or more, and the boiling chlorine type | system | group cleaning agent was used. In the cleaning process, the surfaces of the precoat film 3 are easily adhered to each other. On the other hand, when it exceeds 50 mass%, it becomes difficult to fix the fine particles 5 to the base resin 4. Therefore, the blending ratio is desirably 1 to 50% by mass. In addition, it is more desirable that the content is 3 to 30% by mass, and it is possible to suppress the appearance of the film 3 from being matted and to prevent the beautiful gloss appearance of the aluminum plate 2 as a material from being disturbed. More desirably, the content is 3 to 10% by mass.
 微粒子5の粒子径についても、特に制限はないが、一般的なロールコータで塗装できる皮膜厚さが、おおよそ1~20μm程度であることを考えると、平均粒子径が1μm未満では、プレコート皮膜3の狙い皮膜厚さが1μmと比較的薄い膜厚の場合でも、表面粗さRaを0.25μm以上とするのが難しい。一方、平均粒子径が50μmを超えると、狙い皮膜厚さが20μmと比較的厚い膜厚の場合であっても、微粒子5をベース樹脂4に固定しておくのが難しい。よって、平均粒子径は、1~50μmであることが望ましい。なお、皮膜3の外観が艶消し状態になるのを抑制し、素材であるアルミニウム板2の持つ美しい光沢外観を妨げないことを考慮すると、平均粒子径は、1~30μmであることが望ましく、2~10μmであることがさらに望ましい。なお、ここでいう平均粒子径とは、微粒子5を水に分散させた状態で、レーザー回折式粒度分布測定器等で測定した積算体積50%粒子径である。 The particle diameter of the fine particles 5 is not particularly limited, but considering that the film thickness that can be applied with a general roll coater is approximately 1 to 20 μm, the precoat film 3 is used when the average particle diameter is less than 1 μm. Even when the target film thickness is relatively thin as 1 μm, it is difficult to make the surface roughness Ra 0.25 μm or more. On the other hand, when the average particle diameter exceeds 50 μm, it is difficult to fix the fine particles 5 to the base resin 4 even when the target film thickness is 20 μm and a relatively thick film thickness. Therefore, the average particle size is desirably 1 to 50 μm. In view of suppressing the appearance of the coating 3 from being matted and not disturbing the beautiful gloss appearance of the aluminum plate 2 as a material, the average particle size is desirably 1 to 30 μm. More desirably, it is 2 to 10 μm. Here, the average particle diameter is an integrated volume 50% particle diameter measured with a laser diffraction particle size distribution measuring instrument or the like in a state where the fine particles 5 are dispersed in water.
[プレコート皮膜のゲル分率:50%以上]
 本発明では、プレコート皮膜3のゲル分率を50%以上とする。ここで、プレコート皮膜3は、ベース樹脂4のほかに微粒子5を必須成分として含むため、厳密な意味でのベース樹脂4のみのゲル分率を測定することは難しい。したがって、本発明では、プレコート皮膜3のゲル分率にて代用し、このゲル分率で規定することとする。
 プレコート皮膜3のゲル分率を50%以上とすれば、皮膜3の架橋密度が高く、プレコート皮膜3中に添加した微粒子5が洗浄工程で脱落するのを防止することができる。また、耐薬品性、耐熱性、加水分解性に優れた皮膜3を得ることができ、その結果、沸騰塩素系洗浄剤中での皮膜3の溶解、剥離、変色、くっつき等を防ぐことができる。なお、これらの効果を向上させるため、ゲル分率は、65%以上であることが望ましい。さらに、ゲル分率が75%以上となれば、耐薬品性、耐熱性、加水分解性、洗浄工程での皮膜の耐久性等がさらに高まるため、より望ましい。なお、ゲル分率は、大きければ大きいほど望ましいと考えられるため、ゲル分率の上限値は、特に規定する必要はない。また、ゲル分率を50%以上とするため、塗膜を焼き付ける際の焼付け温度は、150~285℃程度とするのが望ましい。
[Gel fraction of precoat film: 50% or more]
In the present invention, the gel fraction of the precoat film 3 is 50% or more. Here, since the precoat film 3 contains the fine particles 5 in addition to the base resin 4 as an essential component, it is difficult to measure the gel fraction of the base resin 4 only in a strict sense. Therefore, in the present invention, the gel fraction of the precoat film 3 is substituted and defined by this gel fraction.
If the gel fraction of the precoat film 3 is 50% or more, the crosslink density of the film 3 is high, and the fine particles 5 added to the precoat film 3 can be prevented from falling off in the washing step. Moreover, the film 3 excellent in chemical resistance, heat resistance and hydrolyzability can be obtained. As a result, dissolution, peeling, discoloration, sticking, etc. of the film 3 in the boiling chlorine-based cleaning agent can be prevented. . In order to improve these effects, the gel fraction is desirably 65% or more. Furthermore, if the gel fraction is 75% or more, chemical resistance, heat resistance, hydrolyzability, durability of the film in the cleaning process, and the like are further increased, which is more desirable. In addition, since it is thought that a gel fraction is so large that it is so preferable, the upper limit of a gel fraction does not need to prescribe | regulate in particular. In order to set the gel fraction to 50% or more, it is desirable that the baking temperature when baking the coating film is about 150 to 285 ° C.
 ゲル分率の測定方法は、JIS K6796に準拠した方法で行うことができる(ただし、抽出溶剤はキシレンではなく、2-ブタノンを使用する)。すなわち、沸騰させた2-ブタノン(MEK)中にプレコートアルミニウム板1の供試材を60分間浸漬し、浸漬前後におけるプレコートアルミニウム板1の質量変化を測定する。その後、プレコート皮膜3のみを完全溶解させたアルミニウム板2の質量を測定することで、プレコート皮膜3だけの質量変化を計算し、MEKへ溶出しなかった成分は架橋反応しているとの仮定のもとで、その比率をゲル分率として算出する。 The gel fraction can be measured by a method according to JIS K6796 (however, the extraction solvent is not xylene but 2-butanone). That is, the test material of the precoated aluminum plate 1 is immersed for 60 minutes in boiling 2-butanone (MEK), and the change in mass of the precoated aluminum plate 1 before and after immersion is measured. Thereafter, the mass change of only the precoat film 3 is calculated by measuring the mass of the aluminum plate 2 in which only the precoat film 3 is completely dissolved, and it is assumed that the component that has not eluted into the MEK has undergone a crosslinking reaction. The ratio is calculated as a gel fraction.
[プレコート皮膜の表面粗さ]
 プレコート皮膜3の表面は、表面粗さが、算術平均粗さ(Ra)で0.25μm以上となるように形成される必要がある。本発明のプレコートアルミニウム板1の特徴は、沸騰塩素系洗浄剤を用いた洗浄工程においても、プレコート皮膜3の溶解、剥離、変色、くっつき等が生じないことにあるが、このうち、プレコート皮膜3同士のくっつきについては、向かい合った皮膜3同士の表面粗さが大きく影響する。すなわち、表面粗さRaが0.25μm未満では、皮膜3の表面が平滑となるため、皮膜3同士を向かい合わせて沸騰塩素系洗浄剤にて洗浄した場合に、皮膜3間に軽微ながらタック感(tackiness)が生じ始める。さらに、表面粗さRaが0.15μm未満では、プレコート皮膜3の表面がさらに平滑となるため、皮膜3同士を向かい合わせて沸騰塩素系洗浄剤にて洗浄した場合に、皮膜3同士が強固にくっついてしまう。このように、洗浄工程における皮膜3同士のくっつきは、プレコート皮膜3の表面の平滑性が大きく関与しており、表面粗さRaが大きくなればなるほど、ミクロに見た場合の皮膜表面同士の接触面積が小さくなるため、皮膜3同士のくっつきが抑制される。
[Surface roughness of precoat film]
The surface of the precoat film 3 needs to be formed so that the surface roughness is 0.25 μm or more in terms of arithmetic average roughness (Ra). A feature of the precoated aluminum plate 1 of the present invention is that the precoat film 3 is not dissolved, peeled, discolored, or stuck even in a cleaning process using a boiling chlorine-based cleaning agent. About the adhesion between each other, the surface roughness between the coatings 3 facing each other greatly affects. That is, when the surface roughness Ra is less than 0.25 μm, the surface of the film 3 becomes smooth. Therefore, when the films 3 face each other and are washed with a boiling chlorine-based cleaning agent, a slight tackiness between the films 3 is slight. (tackiness) begins to occur. Furthermore, when the surface roughness Ra is less than 0.15 μm, the surface of the precoat film 3 becomes smoother. Therefore, when the films 3 face each other and are washed with a boiling chlorine-based cleaning agent, the films 3 are strongly bonded to each other. It sticks. As described above, the adhesion between the coatings 3 in the cleaning process is greatly related to the smoothness of the surface of the precoat coating 3, and the larger the surface roughness Ra, the more the contact between the coating surfaces when viewed microscopically. Since the area is small, the sticking between the coatings 3 is suppressed.
 皮膜3同士のくっつきを抑制するという観点では、表面粗さRaは大きければ大きいほど望ましいと考えられるため、表面粗さRaの上限値は、特に規定する必要はない。しかし、表面粗さRaが大きくなると、皮膜3の表面では、可視光が乱反射されやすくなり、皮膜3の表面状態は、艶消し状態の外観となる。皮膜3の外観が艶消し状態になるのを抑制し、素材であるアルミニウム板2の持つ美しい光沢外観を妨げないことを考慮するには、プレコート皮膜3の表面粗さRaは、0.55μm以下であることが望ましい。なお、表面粗さRaは、微粒子5の粒子径や配合比率、皮膜厚等を適宜調整することにより、制御することができる。また、プレコート皮膜3の表面粗さの測定は、例えば、表面粗さ測定器(小坂研究所社製サーフコーダSE-30D)を使用し、探針を各アルミニウム板2の圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ(Ra)を測定することにより行うことができる。 Since it is considered that the larger the surface roughness Ra is, the higher the surface roughness Ra is, from the viewpoint of suppressing the adhesion between the coating films 3, the upper limit value of the surface roughness Ra does not need to be specified. However, when the surface roughness Ra is increased, visible light is likely to be irregularly reflected on the surface of the coating 3, and the surface of the coating 3 has a matte appearance. The surface roughness Ra of the precoat film 3 is 0.55 μm or less in order to suppress the appearance of the film 3 from being matted and to not disturb the beautiful glossy appearance of the aluminum plate 2 as a material. It is desirable that The surface roughness Ra can be controlled by appropriately adjusting the particle diameter, blending ratio, film thickness and the like of the fine particles 5. The surface roughness of the precoat film 3 is measured using, for example, a surface roughness measuring device (Surfcoder SE-30D manufactured by Kosaka Laboratory Ltd.), and the direction of the probe perpendicular to the rolling direction of each aluminum plate 2. And measuring the arithmetic average roughness (Ra) described in JIS B0601.
[その他]
 プレコート皮膜3には、本発明の範囲から外れない範囲で、着色剤や、様々な機能を付与する添加剤を含有させることができる。
 例えば、成形性を更に向上させるため、例えば、ポリエチレンワックス、カルナウバワックス、マイクロクリスタリンワックス、ラノリン、テフロン(TEFLON,登録商標)ワックス、シリコーン系ワックス、グラファイト系潤滑剤、モリブデン系潤滑剤等の潤滑剤を、1種または2種以上添加することができる。また、電子機器等で要求されるアース確保を目的とした導電性を付与するため、導電性微粒子として、例えば、ニッケル微粒子をはじめとする金属微粒子、金属酸化物微粒子、導電性カーボン、グラファイト等を、1種または2種以上添加することができる。さらに、放熱性を高めたい場合には、例えば、カーボン、グラファイト、酸化チタン等の金属酸化物、セラミック粉等の放熱性添加剤を、1種または2種以上添加することができる。そして、防汚性が要求される場合には、フッ素系化合物やシリコーン系化合物を添加してもよい。
 また、後記するように、プレコート皮膜3の厚さは、作業性および生産性の観点から、1~20μmであることが望ましい。
[Others]
The precoat film 3 can contain a colorant and additives imparting various functions without departing from the scope of the present invention.
For example, in order to further improve moldability, for example, lubrication of polyethylene wax, carnauba wax, microcrystalline wax, lanolin, TEFLON (registered trademark) wax, silicone wax, graphite lubricant, molybdenum lubricant, etc. One or more agents can be added. In addition, in order to provide conductivity for the purpose of securing the earth required by electronic devices, etc., as the conductive fine particles, for example, metal fine particles including nickel fine particles, metal oxide fine particles, conductive carbon, graphite, etc. 1 type (s) or 2 or more types can be added. Furthermore, when it is desired to improve heat dissipation, one or more heat dissipation additives such as metal oxides such as carbon, graphite, and titanium oxide, and ceramic powder can be added. And when antifouling property is requested | required, you may add a fluorine-type compound and a silicone type compound.
As will be described later, the thickness of the precoat film 3 is preferably 1 to 20 μm from the viewpoint of workability and productivity.
 以上、本発明の最良の実施形態について説明したが、本発明は前記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で変更することができる。
 例えば、アルミニウム板2の表面に、下地処理により、下地処理皮膜(図示省略)を設けてもよい。
Although the best embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be changed without departing from the scope of the present invention.
For example, a surface treatment film (not shown) may be provided on the surface of the aluminum plate 2 by surface treatment.
<下地処理>
 アルミニウム板2の表面は、プレコート皮膜3との密着性を高めるため、下地処理を施すことが望ましい。望ましい下地処理としては、Cr、ZrまたはTiを含有する従来公知の反応型下地処理皮膜および塗布型下地処理皮膜を利用することができる。即ち、リン酸クロメート皮膜、クロム酸クロメート皮膜、リン酸ジルコニウム皮膜、酸化ジルコニウム皮膜、リン酸チタン皮膜、塗布型クロメート皮膜、塗布型ジルコニウム皮膜等を適宜使用することができる。これらの皮膜に有機成分を組み合わせた有機無機ハイブリッド型の下地処理皮膜でもよい。なお、近年、環境対応の流れから六価クロムを嫌う傾向があり、六価クロムを含まないリン酸クロメート皮膜や、リン酸ジルコニウム皮膜、酸化ジルコニウム皮膜、リン酸チタン皮膜、塗布型ジルコニウム皮膜等を使用するのが望ましい。
<Pretreatment>
The surface of the aluminum plate 2 is preferably subjected to a ground treatment in order to improve the adhesion with the precoat film 3. As a desirable base treatment, a conventionally known reactive type base coat and coating type base coat containing Cr, Zr or Ti can be used. That is, a phosphoric acid chromate film, a chromate chromate film, a zirconium phosphate film, a zirconium oxide film, a titanium phosphate film, a coating type chromate film, a coating type zirconium film, and the like can be used as appropriate. Organic-inorganic hybrid-type ground treatment coatings obtained by combining these coatings with organic components may also be used. In recent years, there has been a tendency to dislike hexavalent chromium from the trend of environmental measures, and phosphate chromate films that do not contain hexavalent chromium, zirconium phosphate films, zirconium oxide films, titanium phosphate films, coated zirconium films, etc. It is desirable to use it.
 なお、本発明では下地処理皮膜の膜厚として、下地処理皮膜成分中に含まれるCr、ZrまたはTiのアルミニウム板2への付着量(金属Cr、金属Zrまたは金属Ti換算値)を、例えば、従来公知の蛍光X線法を用いて、比較的、簡便かつ定量的に測定することができるため、生産性を阻害することなくプレコートアルミニウム板1の品質管理を行うことできる。なお、下地処理皮膜の付着量としては、金属Cr、金属Zrまたは金属Ti換算値で10~50mg/mであることが望ましい。付着量が10mg/m未満では、アルミニウム板2の全面を均一に被覆することができず、耐食性が低下する。また、50mg/mを超えると、プレコートアルミニウム板1を成形した際に、下地処理の皮膜自体に割れが生じやすくなる。 In the present invention, as the film thickness of the base treatment film, the amount of Cr, Zr or Ti contained in the base treatment film component to the aluminum plate 2 (metal Cr, metal Zr or metal Ti equivalent value) is, for example, Since the conventional fluorescent X-ray method can be used for comparatively simple and quantitative measurement, the quality control of the precoated aluminum plate 1 can be performed without hindering productivity. The adhesion amount of the base treatment film is preferably 10 to 50 mg / m 2 in terms of metal Cr, metal Zr or metal Ti. If the adhesion amount is less than 10 mg / m 2 , the entire surface of the aluminum plate 2 cannot be uniformly coated, and the corrosion resistance is lowered. Moreover, when it exceeds 50 mg / m < 2 >, when the precoat aluminum plate 1 is shape | molded, it will become easy to produce a crack in the membrane | film | coat itself of a surface treatment.
 また、生産性を考慮しない場合には、アルミニウム板2の表面に陽極酸化処理や電解エッチング処理等の従来公知の処理を行うこともできる。これらの処理を行うと、アルミニウム板2の表面に微細な凹凸が形成されるため、プレコート皮膜3の密着性が大きく向上する。 If productivity is not taken into consideration, the surface of the aluminum plate 2 can be subjected to a conventionally known treatment such as anodizing treatment or electrolytic etching treatment. When these treatments are performed, fine irregularities are formed on the surface of the aluminum plate 2, so that the adhesion of the precoat film 3 is greatly improved.
 さらに、耐食性をそれほど求めず簡易な方法で済ませたい場合には、アルミニウム板2の表面を脱脂処理のみする手法でもかまわない。脱脂の手法としては、有機系薬剤による脱脂、界面活性剤系薬剤による脱脂、アルカリ系薬剤での脱脂、酸系薬剤による脱脂等、従来公知の方法を用いることができる。ただし、有機系薬剤や界面活性剤系薬剤の場合には、脱脂能力がやや劣るため、アルカリ系薬剤や酸系薬剤による脱脂の方が生産性はよくなる。アルカリ系薬剤の脱脂能力は、使用するアルカリの主成分、濃度、処理温度によってコントロールできるが、脱脂能力を強くした場合には、多くのスマット(smut)が発生するため、その後の水洗を十分に行わないと、かえってプレコート皮膜3の密着性が低下する場合もある。また、アルミニウム板2に、添加元素としてマグネシウムを多く含む品種を使用する場合には、アルカリ系薬剤では、マグネシウムが表面に残ってプレコート皮膜3の密着性が低下する場合がある。そのため、この場合には、酸系薬剤を使用または併用することが望ましい。 Furthermore, when it is desired to use a simple method without requiring much corrosion resistance, a method of only degreasing the surface of the aluminum plate 2 may be used. As a method of degreasing, conventionally known methods such as degreasing with an organic drug, degreasing with a surfactant drug, degreasing with an alkaline drug, degreasing with an acid drug, and the like can be used. However, in the case of organic chemicals and surfactant chemicals, the degreasing ability is slightly inferior, and therefore degreasing with an alkaline chemical or an acid chemical is more productive. The degreasing ability of alkaline chemicals can be controlled by the main component, concentration, and processing temperature of the alkali used.However, if the degreasing ability is increased, a lot of smut is generated, so that subsequent washing with water is sufficient. Otherwise, the adhesion of the precoat film 3 may be lowered. In addition, when a variety containing a large amount of magnesium as an additive element is used for the aluminum plate 2, magnesium may remain on the surface and the adhesion of the precoat film 3 may be reduced with an alkaline chemical. Therefore, in this case, it is desirable to use or use an acid drug.
≪プレコートアルミニウム板の製造方法≫
 次に、プレコートアルミニウム板1の製造方法の一例について、適宜、図1を参照して説明する。
 プレコートアルミニウム板1の製造方法については、特に制限されるものではなく、ベース樹脂4の元となる樹脂、硬化剤および微粒子5を含む塗料を、従来公知の方法にてアルミニウム板2の上に塗布した後、加熱により架橋反応させることによって得ることができる。なお、皮膜3中のゲル分率を50%以上とするため、塗料を焼き付ける際の焼付温度を、150~285℃程度とするのが望ましい。
≪Pre-coated aluminum sheet manufacturing method≫
Next, an example of the manufacturing method of the precoat aluminum plate 1 is demonstrated with reference to FIG. 1 suitably.
The method for producing the pre-coated aluminum plate 1 is not particularly limited, and a coating material containing a resin, a curing agent, and fine particles 5 as a base resin 4 is applied onto the aluminum plate 2 by a conventionally known method. Then, it can be obtained by causing a crosslinking reaction by heating. In order to set the gel fraction in the film 3 to 50% or more, it is desirable that the baking temperature when baking the paint is about 150 to 285 ° C.
 ここで塗料の塗布は、はけ、ロールコータ、カーテンフローコータ、ローラーカーテンコータ、静電塗装機、ブレードコータ、ダイコータ等、いずれの手段で行ってもよいが、量産する場合には、特に、塗布量が均一となると共に、作業が簡便なロールコータを使用するのが望ましい。ロールコータで塗布する場合、プレコート皮膜3の膜厚の制御は、アルミニウム板2の搬送速度、ロールの回転方向と回転速度、ロール間の押し付け圧(ニップ圧)等を適宜調整することによって行うが、通常の場合、1回の塗布作業によって塗布できる皮膜3の厚さは、1~20μmとなるのが一般的である。したがって、プレコート皮膜3の厚さは、作業性および生産性を考慮すると1~20μmであることが望ましい。 Here, the coating may be applied by any means such as brush, roll coater, curtain flow coater, roller curtain coater, electrostatic coating machine, blade coater, die coater, etc. It is desirable to use a roll coater in which the coating amount is uniform and the operation is simple. When coating with a roll coater, the film thickness of the precoat film 3 is controlled by appropriately adjusting the conveyance speed of the aluminum plate 2, the rotation direction and rotation speed of the roll, the pressing pressure between the rolls (nip pressure), and the like. In general, the thickness of the coating 3 that can be applied by one coating operation is generally 1 to 20 μm. Therefore, the thickness of the precoat film 3 is desirably 1 to 20 μm in consideration of workability and productivity.
 第2実施形態 Second embodiment
≪プレコートアルミニウム板≫
 図1に示すように、本発明に係るプレコートアルミニウム板1は、アルミニウム板2の(最)表面に、プレコート皮膜3が形成されたプレコートアルミニウム板1であって、このプレコート皮膜3は、エポキシ系樹脂と無黄変タイプのイソシアネート系硬化剤とが分子間架橋された熱硬化性樹脂(ベース樹脂)4からなり、かつ、ゲル分率が70%以上92%以下である。なお、微粒子5は、本発明の必須成分(構成)ではないが、プレコート皮膜3中に含まれるのが望ましいため、図示した。ここで、アルミニウム板2の表面とは、アルミニウム板2の少なくとも一方の面を意味する。以下、各構成について説明する。
≪Pre-coated aluminum plate≫
As shown in FIG. 1, a precoated aluminum plate 1 according to the present invention is a precoated aluminum plate 1 having a precoat film 3 formed on the (outermost) surface of an aluminum plate 2. The resin and the non-yellowing type isocyanate curing agent are composed of a thermosetting resin (base resin) 4 in which intermolecular crosslinking is performed, and the gel fraction is 70% or more and 92% or less. Although the fine particles 5 are not essential components (configuration) of the present invention, they are illustrated because they are preferably included in the precoat film 3. Here, the surface of the aluminum plate 2 means at least one surface of the aluminum plate 2. Each configuration will be described below.
<アルミニウム板>
 第1実施形態と同様であるので、説明を省略する。
<Aluminum plate>
Since it is the same as that of 1st Embodiment, description is abbreviate | omitted.
<プレコート皮膜>
 プレコート皮膜3(皮膜3)は、エポキシ系樹脂(エポキシ樹脂)と無黄変タイプのイソシアネート系硬化剤とが分子間架橋された熱硬化性樹脂(ベース樹脂)4からなり、アルミニウム板2の表面に形成される。また、このプレコート皮膜3のゲル分率は、70%以上92%以下である。ベース樹脂4中には、後記する微粒子5を含む形態が望ましい。
<Precoat film>
The precoat film 3 (film 3) comprises a thermosetting resin (base resin) 4 in which an epoxy resin (epoxy resin) and a non-yellowing type isocyanate curing agent are intermolecularly crosslinked, and the surface of the aluminum plate 2 Formed. The gel fraction of the precoat film 3 is 70% or more and 92% or less. In the base resin 4, a form containing fine particles 5 described later is desirable.
[ベース樹脂]
 ベース樹脂(熱硬化性樹脂)4は、プレコート皮膜3の主成分となるものであり、主剤としてエポキシ系樹脂(エポキシ)、硬化剤として無黄変タイプのイソシアネート系硬化剤(イソシアネート(無黄変))を使用し、ゲル分率が70%以上92%以下となるよう分子間架橋反応させる。なお、エポキシ系樹脂と無黄変タイプのイソシアネート系硬化剤との混合(配合)比率は、使用するエポキシ樹脂等の種類によって、適宜設定する。
[Base resin]
The base resin (thermosetting resin) 4 is a main component of the precoat film 3, an epoxy resin (epoxy) as a main agent, and a non-yellowing type isocyanate curing agent (isocyanate (no yellowing) as a curing agent. )), And the intermolecular crosslinking reaction is performed so that the gel fraction is 70% or more and 92% or less. In addition, the mixing (blending) ratio of the epoxy resin and the non-yellowing type isocyanate curing agent is appropriately set depending on the type of the epoxy resin to be used.
 熱硬化反応による分子間架橋を行わないものとしては、熱可塑性樹脂をベース樹脂とするフィルムラミネート材があるが、前記従来技術で説明したとおり、熱可塑性樹脂をベース樹脂にするものは、耐熱性などで課題が生じる。また、絞り成形(加工)性に優れた熱硬化性樹脂としてポリエステル系の熱硬化性樹脂を使用したプレコート材もあるが、やはり前記従来技術で説明したとおり、高温湿潤雰囲気下での耐久性に課題がある。しかし、エポキシ系樹脂と無黄変タイプのイソシアネート系硬化剤を使用し、所定のゲル分率で分子間架橋反応させた熱硬化性樹脂をベース樹脂4に選定すると、この樹脂は、もともと分子間架橋するための官能基を有しているため、アルミニウム板2との密着性に優れる。また、ゲル分率をコントロールしながら架橋反応しているため、絞り成形性を維持しつつ、耐薬品性や耐熱性が向上する。また、加水分解しやすいエステル基を有していないため、高温湿潤雰囲気下での耐久性も向上する。 There is a film laminate material that uses a thermoplastic resin as a base resin as a material that does not undergo intermolecular crosslinking by a thermosetting reaction. However, as described in the prior art, a material that uses a thermoplastic resin as a base resin is heat resistant. A problem arises. There is also a pre-coating material that uses a polyester-based thermosetting resin as a thermosetting resin with excellent drawability (processing), but as described in the above-mentioned prior art, it is also durable in a high-temperature and humid atmosphere. There are challenges. However, when a thermosetting resin obtained by using an epoxy resin and a non-yellowing type isocyanate curing agent and having an intermolecular cross-linking reaction at a predetermined gel fraction is selected as the base resin 4, this resin is originally intermolecular. Since it has a functional group for crosslinking, the adhesiveness with the aluminum plate 2 is excellent. Moreover, since the crosslinking reaction is carried out while controlling the gel fraction, chemical resistance and heat resistance are improved while maintaining drawability. Moreover, since it does not have an ester group that is easily hydrolyzed, durability under a high-temperature and humid atmosphere is also improved.
 ベース樹脂4に使用するエポキシ樹脂(エポキシ系樹脂)とは、二個の炭素原子と一個の酸素原子が三角形状に結合してなるエポキシ基を持つ樹脂の総称であって、ビスフェノールAとエピクロルヒドリンを繰り返し単位とするビスフェノールA型エポキシ樹脂が代表的なものとして知られる。その他に、ビスフェノールAの変わりにビスフェノールFを用いて低粘度化させたビスフェノールF型エポキシ樹脂、ビスフェノールAに臭素を反応させた難燃性エポキシ樹脂、ノボラック樹脂を基本骨格とした耐熱性エポキシ樹脂、脂環式エポキシ樹脂などが知られ、それらを化学的に改質した変性エポキシ樹脂を含め、本発明のエポキシ樹脂としては、塗料化できればいずれのものを使用しても良いが、性能、塗料化の容易さ、塗料寿命と反応性のバランス、価格、安全性などを考慮すると、ビスフェノールA型もしくはビスフェノールF型の基本骨格を持つ、エポキシ樹脂もしくはその変性物を使用するのが望ましい。 The epoxy resin (epoxy resin) used for the base resin 4 is a general term for resins having an epoxy group in which two carbon atoms and one oxygen atom are bonded in a triangular shape, and includes bisphenol A and epichlorohydrin. A typical example is a bisphenol A type epoxy resin having a repeating unit. In addition, bisphenol F type epoxy resin with reduced viscosity using bisphenol F instead of bisphenol A, a flame retardant epoxy resin obtained by reacting bisphenol A with bromine, a heat resistant epoxy resin based on a novolac resin, Alicyclic epoxy resins, etc. are known, and any epoxy resin of the present invention, including modified epoxy resins that have been chemically modified, may be used as long as it can be made into a paint. In view of the ease of coating, the balance between paint life and reactivity, price, safety, etc., it is preferable to use an epoxy resin having a basic skeleton of bisphenol A type or bisphenol F type or a modified product thereof.
 ガラス転移温度は、第1実施形態と同様であるので説明を省略する。ただし、このようなガラス転移温度を制御(コントロール)するためには、前記したビスフェノールA型やビスフェノールF型を基本骨格とし、化学反応によって分子構造を改質する手法をとるが、本発明では、改質方法について特に制限を設けないため、改質を行った変性エポキシ樹脂を自由に使用することができる。 Since the glass transition temperature is the same as that of the first embodiment, description thereof is omitted. However, in order to control (control) such a glass transition temperature, the above-described bisphenol A type or bisphenol F type is used as a basic skeleton, and a method of modifying the molecular structure by a chemical reaction is taken. Since there is no particular limitation on the modification method, the modified epoxy resin subjected to modification can be used freely.
 エポキシ樹脂は、ポリエステル樹脂などと比較すると、高いガラス転移温度を持つ。これは、耐熱性などを確保するためには有利である。エポキシ樹脂のガラス転移温度は、高いものでは200℃程度のものまで報告されているが、プレス成形を前提としたプレコート材に使用する場合であれば、120℃以上のものはあまり現実的でない(加工性が低下し、成形可能な形状が限定されてしまう)。本発明に使用するエポキシ樹脂では、ガラス転移温度は、80℃以下であることが望ましい。なお、ここでいうガラス転移温度とは、DSC法によって測定されたものをいう。 Epoxy resin has a higher glass transition temperature than polyester resin. This is advantageous for ensuring heat resistance and the like. The glass transition temperature of the epoxy resin has been reported up to about 200 ° C., but if it is used for a precoat material premised on press molding, a glass transition temperature of 120 ° C. or higher is not very realistic ( Processability is reduced, and the shape that can be formed is limited). In the epoxy resin used in the present invention, the glass transition temperature is desirably 80 ° C. or lower. In addition, the glass transition temperature here means what was measured by DSC method.
 エポキシ樹脂は、エポキシ基を有しているため、このエポキシ基が化学反応することにより、熱硬化反応することができる。また、ビスフェノールA型やビスフェノールF型のエポキシ樹脂は、エポキシ基以外に分子内に水酸基を有している。したがって、これらの官能基(水酸基)と反応する硬化剤を添加するか、エポキシ樹脂自体に、硬化剤と同様の働きをする成分が生成するように、化学反応を利用してエポキシ樹脂を改質することにより、エポキシ樹脂は、加熱硬化(熱硬化反応)することができ、熱硬化性樹脂を得ることができる。
 エポキシ樹脂の硬化剤としては、フェノール系硬化剤、尿素(ウレア)やメラミンなどを含むアミン(尿素、メラミン)系硬化剤などが一般的に使用されているが、本発明では、無黄変タイプのイソシアネート系硬化剤を用いる。フェノール系硬化剤を使用した場合、フェノール化合物の有するフェノール系水酸基は、エポキシ基と反応することが知られており、エポキシ樹脂の末端同士が反応した網目の大きい柔らかい皮膜が得られやすい。その結果、成形性に優れる皮膜が得られるが、フェノールが黄変しやすいことや、耐薬品性が劣ることなどが課題としてある。また、尿素系の硬化剤を使用した場合は、フェノールのような黄変を避けることはできるが、得られた皮膜は、硬く、優れた成形性を得ることは難しい。また、メラミン系の硬化剤については、硬化反応性が極めて低い。このメラミン系硬化剤の反応性を改善する方法として、酸触媒の併用なども可能ではあるが、条件によって、硬化反応性が高くなりすぎたり、黄変したりする場合があるため、使いこなすのが難しい。
Since the epoxy resin has an epoxy group, the epoxy group can be thermoset by a chemical reaction. Further, bisphenol A type and bisphenol F type epoxy resins have a hydroxyl group in the molecule in addition to the epoxy group. Therefore, by adding a curing agent that reacts with these functional groups (hydroxyl groups), or by modifying the epoxy resin using a chemical reaction so that a component that acts like a curing agent is generated in the epoxy resin itself. By doing, an epoxy resin can be heat-hardened (thermosetting reaction), and a thermosetting resin can be obtained.
As epoxy resin curing agents, phenolic curing agents and amine (urea, melamine) curing agents including urea (urea) and melamine are generally used. In the present invention, the non-yellowing type is used. The isocyanate curing agent is used. When a phenolic curing agent is used, the phenolic hydroxyl group of the phenolic compound is known to react with an epoxy group, and it is easy to obtain a soft film having a large network in which the ends of the epoxy resin have reacted. As a result, a film having excellent moldability can be obtained, but there are problems that phenol is easily yellowed and chemical resistance is inferior. When a urea-based curing agent is used, yellowing such as phenol can be avoided, but the obtained film is hard and it is difficult to obtain excellent moldability. Moreover, about melamine type hardening | curing agent, hardening reactivity is very low. As a method of improving the reactivity of this melamine curing agent, it is possible to use an acid catalyst together, but depending on the conditions, the curing reactivity may become too high, or it may turn yellow. difficult.
 本発明で用いるイソシアネート系硬化剤は、無黄変タイプのものを使用する。イソシアネート(化合物)は、その構造によって、トルエンジイソシアネート(TDI)系、メチレンビスフェニルジイソシアネート(MDI)系、キシリレンジイソシアネート(XDI)系、イソホロンジイソシアネート(IPDI)系、ヘキサメチレンジイソシアネート(HDI)系などに分類される。TDI系やMDI系は、黄変しやすい(標準タイプ)とされ、一方、XDI系、IPDI系、HDI系は、黄変しにくい、無黄変タイプとされる。また、これら無黄変タイプのものを多価アルコール等で変性したポリイソシアネート等も、本発明で使用できるイソシアネート系硬化剤に含まれる。 The isocyanate curing agent used in the present invention is a non-yellowing type. Isocyanates (compounds) are classified into toluene diisocyanate (TDI), methylene bisphenyl diisocyanate (MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI) depending on the structure. being classified. The TDI system and the MDI system are easily yellowed (standard type), while the XDI system, the IPDI system, and the HDI system are hardly yellowed and are non-yellowing types. Polyisocyanates obtained by modifying these non-yellowing types with polyhydric alcohols are also included in the isocyanate curing agents that can be used in the present invention.
 無黄変タイプのイソシアネート系硬化剤は、ブロック型イソシアネート化合物であることが望ましい。ここでいうブロック型とは、イソシアネート化合物の活性イソシアネート基が、活性水素化合物等のブロック化剤によって、安定化されたものであり、常温では反応性が低い。このブロック型イソシアネート化合物は、焼付処理等の加熱によって、ブロック化剤が解離して、活性イソシアネート基が再生され、反応性を有することとなる。
 ブロック型イソシアネート基のブロック化剤としては、メタノール、エタノール、n-プロパノール及びtert-ブタノール等のアルコール類、フェノール、m-クレゾール、イソオクチルフェノール及びレゾルシノール等のフェノール類、ε-カプロラクタム類、オキシム類、アセチルアセトン、メチルエチルケトン及びエチレンクロルヒドリン等の活性メチレン化合物類ならびに亜硫酸ナトリウム等が挙げられる。
The non-yellowing type isocyanate curing agent is desirably a block type isocyanate compound. The block type here means that the active isocyanate group of the isocyanate compound is stabilized by a blocking agent such as an active hydrogen compound, and the reactivity is low at room temperature. This blocking isocyanate compound has reactivity due to dissociation of the blocking agent due to heating such as baking treatment, and regeneration of the active isocyanate group.
Blocking agents for blocked isocyanate groups include alcohols such as methanol, ethanol, n-propanol and tert-butanol, phenols such as phenol, m-cresol, isooctylphenol and resorcinol, ε-caprolactams, oximes, Examples include active methylene compounds such as acetylacetone, methyl ethyl ketone, and ethylene chlorohydrin, and sodium sulfite.
[プレコート皮膜のゲル分率:70%以上92%以下]
 本発明では、プレコート皮膜3のゲル分率を70%以上92%以下とする。ここで、プレコート皮膜3として、ベース樹脂4中に微粒子5を含む場合には、厳密な意味でのベース樹脂4のみのゲル分率を測定することは難しい。したがって、本発明では、プレコート皮膜3のゲル分率にて代用し、このゲル分率で規定することとする。
 プレコート皮膜3のゲル分率を70%以上とすれば、皮膜3の架橋密度が高くなり、耐薬品性、耐熱性に優れた皮膜3を得ることができる。また、ゲル分率を92%以下とすれば、皮膜3が過度に硬化するのを防ぐことができるため、絞り成形性に優れた皮膜3を得ることができる。さらに、皮膜3のゲル分率を85%以下とすることによって、いっそう(さらなる)優れた深絞り成形性を得ることができるので、より望ましい。このように、ゲル分率を70%以上92%以下とするためには、塗膜を焼き付ける際の焼付け温度は、材料到達温度で200~285℃程度とするのが望ましい。
[Gel fraction of precoat film: 70% or more and 92% or less]
In the present invention, the gel fraction of the precoat film 3 is 70% or more and 92% or less. Here, when the precoat film 3 includes the fine particles 5 in the base resin 4, it is difficult to measure the gel fraction of the base resin 4 in a strict sense. Therefore, in the present invention, the gel fraction of the precoat film 3 is substituted and defined by this gel fraction.
When the gel fraction of the precoat film 3 is 70% or more, the crosslink density of the film 3 is increased, and the film 3 having excellent chemical resistance and heat resistance can be obtained. Moreover, since it can prevent that the film | membrane 3 hardens | cures too much if a gel fraction shall be 92% or less, the film | membrane 3 excellent in the drawability can be obtained. Furthermore, by setting the gel fraction of the film 3 to 85% or less, a further (further) excellent deep drawability can be obtained, which is more desirable. Thus, in order to make the gel fraction 70% or more and 92% or less, the baking temperature when baking the coating film is desirably about 200 to 285 ° C. in terms of the material reaching temperature.
 ゲル分率の測定方法は、JIS K6796に準拠した(conformable)方法で行うことができる(ただし、抽出溶剤はキシレンではなく、2-ブタノンを使用する)。すなわち、沸騰させた2-ブタノン(MEK)中に、プレコートアルミニウム板1の供試材を60分間浸漬(dunk)し、浸漬前後におけるプレコートアルミニウム板1の質量変化を測定する。その後、プレコート皮膜3のみを完全溶解させたアルミニウム板2の質量を測定することで、プレコート皮膜3だけの質量変化を計算し、MEKへ溶出しなかった成分は架橋反応しているとの仮定のもとで、その比率をゲル分率として算出する。 The gel fraction can be measured by a conformable method according to JIS K6796 (however, the extraction solvent is not xylene but 2-butanone is used). That is, the specimen of the precoated aluminum plate 1 is dunk for 60 minutes in boiling 2-butanone (MEK), and the change in mass of the precoated aluminum plate 1 before and after immersion is measured. Thereafter, the mass change of only the precoat film 3 is calculated by measuring the mass of the aluminum plate 2 in which only the precoat film 3 is completely dissolved, and it is assumed that the component that has not eluted into the MEK has undergone a crosslinking reaction. The ratio is calculated as a gel fraction.
[微粒子]
 微粒子5は、プレコート皮膜3の表面粗さRaを所定に制御するためのものであって、プレコート皮膜3のベース樹脂4中に含有させるのが望ましい。
 プレコート皮膜3中に微粒子5を含有させることなく、表面粗さを制御する方法は、第1実施形態と同様であるので説明を省略する。
[Fine particles]
The fine particles 5 are for controlling the surface roughness Ra of the precoat film 3 in a predetermined manner, and are desirably contained in the base resin 4 of the precoat film 3.
Since the method for controlling the surface roughness without containing the fine particles 5 in the precoat film 3 is the same as in the first embodiment, the description thereof is omitted.
 微粒子5の種類、形態、大きさ、添加量等および配合比率、粒子径については、第1実施形態と同様であるので説明を省略する。また、微粒子を構成する架橋された球状の有機微粒子についても、第1実施形態と同様であるので説明を省略する。 Since the type, form, size, addition amount, blending ratio, and particle size of the fine particles 5 are the same as those in the first embodiment, description thereof is omitted. Further, the crosslinked spherical organic fine particles constituting the fine particles are also the same as those in the first embodiment, and the description thereof is omitted.
[プレコート皮膜の表面粗さ]
 プレコート皮膜3の表面粗さについては、第1実施形態と同様であるので説明を省略するが、沸騰塩素系洗浄剤を用いた洗浄工程において、プレコート皮膜3同士のくっつきについては、向かい合った皮膜3同士の表面粗さが大きく影響する。
[Surface roughness of precoat film]
The surface roughness of the precoat film 3 is the same as that of the first embodiment, and thus the description thereof will be omitted. However, in the cleaning process using the boiling chlorine-based cleaning agent, the adhesion between the precoat films 3 is the opposite film 3. The surface roughness between each other greatly affects.
[その他]
 第1実施形態と同様であるので、説明を省略する。
[Others]
Since it is the same as that of 1st Embodiment, description is abbreviate | omitted.
<下地処理>
 第1実施形態と同様であるので、説明を省略する。
<Pretreatment>
Since it is the same as that of 1st Embodiment, description is abbreviate | omitted.
≪プレコートアルミニウム板の製造方法≫
 次に、プレコートアルミニウム板1の製造方法の一例について説明する。
 プレコートアルミニウム板1の製造方法については、特に制限されるものではなく、ベース樹脂4の元となる樹脂(エポキシ樹脂)、硬化剤(無黄変タイプのイソシアネート系硬化剤)及び望ましくは微粒子5を含む塗料を、従来公知の方法により、アルミニウム板2の上に塗布した後、加熱により架橋反応させることによって得ることができる。なお、皮膜3中のゲル分率を70%以上92%以下とするため、塗料を焼き付ける際の焼付温度を、200~285℃程度とするのが望ましい。
≪Pre-coated aluminum sheet manufacturing method≫
Next, an example of the manufacturing method of the precoat aluminum plate 1 is demonstrated.
The manufacturing method of the precoated aluminum plate 1 is not particularly limited, and the resin (epoxy resin) that is the base of the base resin 4, the curing agent (non-yellowing type isocyanate curing agent), and preferably the fine particles 5 are added. The coating material to be contained can be obtained by applying a crosslinking reaction by heating after coating on the aluminum plate 2 by a conventionally known method. In order to set the gel fraction in the film 3 to 70% or more and 92% or less, it is desirable that the baking temperature when baking the paint is about 200 to 285 ° C.
 ここで、塗料の塗布は、第1実施形態と同様であるので説明を省略するが、更にバーコータを用いて行ってもよい。 Here, the application of the paint is the same as in the first embodiment, and thus the description thereof is omitted. However, it may be performed using a bar coater.
 第1実施形態 First embodiment
 次に、本発明のプレコートアルミニウム板について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例と、を対比させて具体的に説明する。 Next, the pre-coated aluminum plate of the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
 [第1実施例]
 第1実施例では、本発明におけるプレコートアルミニウム板について、本発明の必須の目的である洗浄工程での皮膜の耐久性について調べた。
[First embodiment]
In the first example, the durability of the film in the cleaning step, which is an essential object of the present invention, was examined for the precoated aluminum plate in the present invention.
 本発明に係るプレコートアルミニウム板の検討にあたり、素材として使用したアルミニウム板は、合金番号A1100-H24の板厚0.3mm材を使用した。これを弱アルカリ脱脂剤にてアルカリ脱脂した後、下地処理としてリン酸クロメート処理を施した。リン酸クロメート処理の条件はクロム付着量で20mg/mとした。また、使用したアルミニウム板の機械的性質は、引張強さ130MPa、耐力120MPa、伸び8%であった。次に、リン酸クロメート処理を施したアルミニウム板の片面に、表1、2に示す各種樹脂系の塗料に表1に示す微粒子を含有させた塗料を、乾燥皮膜厚さが6μmとなるようにバーコーターで塗布した後、焼付温度が150~285℃の範囲となるように塗料を焼き付けることによってプレコート皮膜を形成し、供試材とした。なお、微粒子を配合していないNo.20は、バーコーター塗装、焼付けが済んだ後、塗装表面に表面粗さRaが約0.5μmのステンレス製定盤を重ねて、40℃で加温したホットプレス(hot press)で10分間軽くはさむことにより、定盤の表面粗さを転写させた。 In the study of the precoated aluminum plate according to the present invention, the aluminum plate used as a material was a 0.3 mm thick material having an alloy number of A1100-H24. This was degreased with a weak alkaline degreasing agent, and then subjected to a phosphoric acid chromate treatment as a base treatment. The condition of the phosphoric acid chromate treatment was 20 mg / m 2 in terms of chromium adhesion. The mechanical properties of the aluminum plate used were a tensile strength of 130 MPa, a proof stress of 120 MPa, and an elongation of 8%. Next, on one side of an aluminum plate that has been subjected to a phosphoric acid chromate treatment, a paint containing various resin-based paints shown in Tables 1 and 2 and fine particles shown in Table 1 is added so that the dry film thickness becomes 6 μm. After coating with a bar coater, a precoat film was formed by baking the paint so that the baking temperature was in the range of 150 to 285 ° C., and used as a test material. In addition, no. In No. 20, after the bar coater coating and baking are completed, a stainless steel surface plate with a surface roughness Ra of about 0.5 μm is layered on the coating surface, and lightly sandwiched for 10 minutes with a hot press heated at 40 ° C. As a result, the surface roughness of the surface plate was transferred.
 ここで、表1、2に示す塗料のベース樹脂は、ポリエステルメラミンは、ポリエステル系樹脂にメラミン系硬化剤を配合したもの、ポリエステルイソシアネートは、ポリエステル系樹脂にイソシアネート系硬化剤を配合したもの、エポキシウレアは、エポキシ系樹脂にウレア系硬化剤を配合したもの、エポキシフェノールは、エポキシ系樹脂にフェノール系硬化剤を配合したもの、エポキシアクリルは、分子内架橋型アクリル変性エポキシ樹脂を使用したものである。また、表1、2に示すガラス転移温度は、前記の各樹脂におけるガラス転移温度である。 Here, the base resin of the paint shown in Tables 1 and 2 is polyester melamine is a polyester resin blended with a melamine curing agent, polyester isocyanate is a polyester resin blended with an isocyanate curing agent, epoxy Urea is an epoxy resin blended with a urea curing agent, epoxy phenol is an epoxy resin blended with a phenol curing agent, and epoxy acrylic is an intramolecular cross-linked acrylic modified epoxy resin. is there. Further, the glass transition temperatures shown in Tables 1 and 2 are glass transition temperatures in the respective resins.
 また、表1、2に示す微粒子については、架橋アクリルビーズと架橋ウレタンビーズは架橋された有機微粒子、ニッケル粉とタルク粉は無機微粒子、熱可塑ウレタンビーズとポリスチレンラテックスは架橋されていない有機微粒子である。なお、配合比率は、ベース樹脂と微粒子を含めた乾燥プレコート皮膜の質量に占める微粒子の質量%とした。 As for the fine particles shown in Tables 1 and 2, crosslinked acrylic beads and crosslinked urethane beads are crosslinked organic fine particles, nickel powder and talc powder are inorganic fine particles, and thermoplastic urethane beads and polystyrene latex are uncrosslinked organic fine particles. is there. The blending ratio was the mass% of the fine particles in the mass of the dry precoat film including the base resin and the fine particles.
 以上のようにして製作した供試材について、プレコート皮膜のゲル分率および表面粗さRaを測定した。 For the specimens manufactured as described above, the gel fraction and surface roughness Ra of the precoat film were measured.
(ゲル分率の測定)
 供試材を10cm×10cmに切り出した試験材(片)を使用し、皮膜のゲル分率を測定した。試験材は80℃にて60分間乾燥させた後、初期質量(a)を測定し、次に沸騰させたMEK中に供試材を60分間浸漬して未架橋成分を溶出させた後、150℃にて60分間乾燥させて皮膜中の残存MEKを乾燥し、抽出後質量(b)を測定した。最後に発煙硝酸中にて皮膜を完全に溶解し、アルミニウム板だけの質量(c)を測定した。ここで、(a)-(c)がもともとのプレコート皮膜のみの質量であり、(b)-(c)が架橋している皮膜質量とみなせるため、次式で表せるゲル分率が、皮膜の架橋度を表すこととなる。
(ゲル分率)=((b)-(c)/(a)-(c))×100 (単位%)
(Measurement of gel fraction)
A test material (piece) obtained by cutting the test material into 10 cm × 10 cm was used, and the gel fraction of the film was measured. After the test material was dried at 80 ° C. for 60 minutes, the initial mass (a) was measured, and then the test material was immersed in boiled MEK for 60 minutes to elute uncrosslinked components, and then 150 The remaining MEK in the film was dried at 60 ° C. for 60 minutes, and the mass (b) after extraction was measured. Finally, the film was completely dissolved in fuming nitric acid, and the mass (c) of the aluminum plate alone was measured. Here, since (a)-(c) is the mass of the original precoat film only, and (b)-(c) can be regarded as a crosslinked film mass, the gel fraction expressed by the following formula is It represents the degree of crosslinking.
(Gel fraction) = ((b)-(c) / (a)-(c)) × 100 (unit%)
(表面粗さRaの測定)
 プレコート皮膜の表面粗さの測定は、表面粗さ測定器(小坂研究所社製サーフコーダSE-30D)を使用し、探針を各アルミニウム板の圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ(Ra)を測定した。
(Measurement of surface roughness Ra)
The surface roughness of the precoat film is measured by using a surface roughness measuring instrument (Surfcoder SE-30D manufactured by Kosaka Laboratory Ltd.) and scanning the probe in a direction perpendicular to the rolling direction of each aluminum plate. The arithmetic average roughness (Ra) described in B0601 was measured.
 次に、前記供試材について、本発明の必須の目的である洗浄工程での皮膜の耐久性(以下、適宜、洗浄工程耐久性という)について調べた。 Next, the durability of the film in the cleaning process, which is an essential object of the present invention (hereinafter referred to as “cleaning process durability”), was examined for the specimen.
(洗浄工程耐久性)
 塩素系洗浄剤としてトリクレンを使用し、これを沸騰させた。供試材の塗装面同士が向かい合うようにしてクリップで挟み、沸騰トリクレン中に10分間浸漬した後、取り出して外観を確認した。皮膜の溶解、皮膜の剥離、皮膜の変色、皮膜同士のくっつき等の表面異常がないものを、洗浄工程耐久性が良好(○)、表面異常があるものを、不良(×)と判断した。
 これらの結果を表1に示す。なお、表1において、本発明の構成を満たさないものについては、下線を引いて示し、微粒子を含有しないものについては、「-」で示す。
(Washing process durability)
Trichrene was used as a chlorine-based cleaning agent and boiled. The coated surfaces of the test materials were sandwiched between clips so as to face each other, dipped in boiling tricyclen for 10 minutes, and then taken out to confirm the appearance. Those having no surface abnormality such as dissolution of the film, peeling of the film, discoloration of the film, and adhesion between the films were judged to have good cleaning process durability (◯) and those having surface abnormality to be defective (×).
These results are shown in Table 1. In Table 1, those not satisfying the configuration of the present invention are underlined, and those not containing fine particles are indicated by “−”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、No.1~16については、本発明の構成を満たすため、いずれも皮膜の溶解、皮膜の剥離、皮膜の変色、皮膜同士のくっつき等の表面異常が発生せず、洗浄工程耐久性が良好であった。
 一方、No.17は、微粒子を含まず、表面粗さも本発明の範囲を満たさないため、皮膜同士のくっつき(表中、くっつきと記載)が生じ、洗浄工程耐久性が不良であった。No.18は、表面粗さが本発明の範囲を満たさないため、皮膜同士のくっつきが生じ、洗浄工程耐久性が不良であった。No.19は、皮膜のゲル分率が本発明の範囲を満たさないため、皮膜同士がくっつくと共に、皮膜の色調が白く変色(表中、白化と記載)した。No.20は、表面粗さが、沸騰トリクレン中への浸漬前では本発明の範囲を満たすものの、微粒子を含まないため、沸騰トリクレン中への浸漬中に皮膜表面の凹凸が滑らかになり、皮膜同士のくっつきが生じた。
As shown in Table 1, no. Nos. 1 to 16 satisfy the constitution of the present invention, and all of them were free from surface abnormalities such as dissolution of the film, peeling of the film, discoloration of the film, and adhesion between the films, and the cleaning process durability was good. .
On the other hand, no. No. 17 contained no fine particles, and the surface roughness did not satisfy the scope of the present invention, so that the films were stuck to each other (denoted as stuck in the table), and the cleaning process durability was poor. No. In No. 18, since the surface roughness did not satisfy the range of the present invention, the films were stuck to each other and the cleaning process durability was poor. No. No. 19, since the gel fraction of the film did not satisfy the scope of the present invention, the films adhered to each other and the color of the film changed to white (denoted as whitening in the table). No. No. 20, although the surface roughness satisfies the scope of the present invention before immersion in boiling trichrene, it does not contain fine particles, so the unevenness of the coating surface becomes smooth during immersion in boiling trichrene, Sticking occurred.
 このように、本発明の構成を満たせば、洗浄工程での皮膜の耐久性に優れたプレコートアルミニウム板となることがわかる。 Thus, it can be seen that, if the configuration of the present invention is satisfied, a precoated aluminum plate having excellent durability of the coating film in the cleaning process is obtained.
[第2実施例]
 第2実施例では、本発明におけるプレコートアルミニウム板について、さらに望ましい形態について調べるため、絞り成形性、外観性状について調べた。なお、これらの特性は、本発明としてはあくまで望ましい特性に過ぎないため、これらの特性を満たさない場合でも、第1実施例の洗浄工程耐久性を満たしているものは、本発明の最低限の目的は達するものである。
 供試材の作製方法、プレコート皮膜のゲル分率、および、表面粗さRaの測定等については、前記第1実施例と同様であるため、ここでは、説明を省略する。
[Second Embodiment]
In the second example, the drawability and appearance properties were examined in order to investigate a more desirable form of the precoated aluminum plate in the present invention. Since these characteristics are only desirable characteristics for the present invention, even if these characteristics are not satisfied, those satisfying the cleaning process durability of the first embodiment are the minimum of the present invention. The purpose is to reach.
Since the preparation method of the test material, the gel fraction of the precoat film, the measurement of the surface roughness Ra, and the like are the same as those in the first example, description thereof is omitted here.
(絞り成形性)
 図2は、供試材を絞り加工、および、しごき加工することで、有底円筒容器を作製する工程を示す模式図である。図2に示す工程により、供試材の絞り成形性を調べた。まず円筒ブランク打ち抜きの後、絞り加工を行った。次に、再絞り加工にて、12mmφ×15mmLの円筒絞り成形品(中間成形品)を得た。この時点で得られた中間成形品での皮膜状態を評価した結果を、表2中の浅絞り成形性とした。次に、中間成形品に、円筒側壁部の板厚減少率が20%となるようにしごきを加え、トリミングをして最終10mmφ×20mmLの円筒容器形状に加工し、最終成形品を得た。この時点で得られた最終成形品での皮膜状態を評価した結果を、表2中の深絞り成形性とした。なお、プレス油には脂肪酸エステルと界面活性剤を主成分とする水系エマルジョンワックスを使用した。また、加工は室温(35℃)のみにて行った。
(Drawing formability)
FIG. 2 is a schematic diagram showing a process for producing a bottomed cylindrical container by drawing and ironing a test material. The drawability of the test material was examined by the process shown in FIG. First, after blanking a cylindrical blank, drawing was performed. Next, a 12 mmφ × 15 mmL cylindrical drawn product (intermediate molded product) was obtained by redrawing. The result of evaluating the film state of the intermediate molded product obtained at this time was defined as shallow drawability in Table 2. Next, iron was added to the intermediate molded product so that the reduction rate of the thickness of the cylindrical side wall portion was 20%, trimmed and processed into a cylindrical container shape having a final 10 mmφ × 20 mmL to obtain a final molded product. The result of evaluating the film state of the final molded product obtained at this time was defined as deep drawability in Table 2. The press oil used was an aqueous emulsion wax mainly composed of a fatty acid ester and a surfactant. The processing was performed only at room temperature (35 ° C.).
 皮膜状態の評価は、浅絞り成形性については、アルミニウム板からプレコート皮膜が剥がれなかった場合を、浅絞り成形性が良好(○)、剥がれた場合を、浅絞り成形性が不良(×)と判断し、深絞り成形性にいては、アルミニウム板からプレコート皮膜が剥がれなかった場合を、深絞り成形性が良好(○)、剥がれた場合を、深絞り成形性が不良(×)と判断した。そして、浅絞り成形性、深絞り成形性のいずれも、アルミニウム板からプレコート皮膜が剥がれなかった場合を、絞り成形性が良好と判断した。また、浅絞り成形性が良好であるものの、深絞り成形性で不良であったものについては、絞り成形性がやや劣るものと判断した。 The evaluation of the film state is that for the shallow drawability, when the precoat film is not peeled off from the aluminum plate, the shallow drawability is good (◯), and when it is peeled, the shallow drawability is poor (×). Judgment was made regarding the deep drawability, when the precoat film was not peeled off from the aluminum plate, the deep drawability was good (○), and when it was peeled, the deep drawability was judged as poor (×). . And both the shallow drawability and the deep drawability were judged to be good when the precoat film was not peeled off from the aluminum plate. Moreover, although the shallow drawability was good, it was judged that the drawability was slightly inferior for those having poor deep drawability.
(外観性状)
 バーコーター塗装、焼付けが済んだプレコート皮膜の外観を目視で観察した。艶消し状態、ムラ、黄変色等が生じなかったものを、外観性状が良好(○)と判断した。また、これらのいずれかが生じたものを、外観性状がやや劣るものと判断し、表2中、艶消し性(艶消しが強いか否か)が強かったものを、"艶消×"、艶消し性がやや強かったものを、"艶消△"、ムラ(uneven)が生じたものを、"ムラ×"、やや黄色く変色したものを、"黄変色△"と記載した。なお、ここでの外観性状とは、素材であるアルミニウム板の持つ美しい光沢外観に基づくものであり、洗浄工程耐久性での皮膜の変色等とは異なる基準である。
 これらの結果を表2に示す。なお、表2において、本発明の好ましい構成を満たさないものについては、下線を引いて示し、微粒子を含有しないものについては、「-」で示す。
(Appearance properties)
The appearance of the precoat film after bar coating and baking was visually observed. When the matte state, unevenness, yellow discoloration, etc. did not occur, the appearance properties were judged as good (◯). In addition, if any of these occurred, the appearance properties were judged to be slightly inferior, and in Table 2, those with strong matting properties (whether matting was strong or not) The matte property was described as “matte △”, the product with unevenness (uneven), the “smooth ×”, and the product with slightly yellowish discoloration as “yellow discoloration Δ”. Here, the appearance property is based on the beautiful gloss appearance of the aluminum plate as a material, and is a standard different from the discoloration of the film in the cleaning process durability.
These results are shown in Table 2. In Table 2, those not satisfying the preferred configuration of the present invention are underlined, and those not containing fine particles are indicated by “−”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(絞り成形性)
 表2に示すように、No.1~7、9~13、は、ベース樹脂として、より望ましいものを使用しているため、絞り成形性が良好であった。一方、No.8は、ポリエステル系樹脂のガラス転移温度が高すぎるため、浅絞り成形性は良好であったものの、深絞り成形性が不良であり、絞り成形性にやや劣った。No.14、No.15は、エポキシ系樹脂を使用したため、浅絞り成形性は良好であったものの、深絞り成形性が不良であり、絞り成形性にやや劣った。No.16は、分子内架橋型アクリル変性エポキシ樹脂を使用したため、浅絞り成形性は良好であったものの、深絞り成形性が不良であり、絞り成形性にやや劣った。
(Drawing formability)
As shown in Table 2, no. Nos. 1 to 7 and 9 to 13 had better drawability because more desirable base resins were used. On the other hand, no. In No. 8, since the glass transition temperature of the polyester resin was too high, the shallow drawability was good, but the deep drawability was poor and the drawability was slightly inferior. No. 14, no. Since No. 15 used an epoxy resin, the shallow drawability was good, but the deep drawability was poor and the drawability was slightly inferior. No. No. 16 used an intramolecular cross-linked acrylic modified epoxy resin, and although the shallow drawability was good, the deep drawability was poor and the drawability was slightly inferior.
(外観性状)
 表2に示すように、No.1、3、4、6~9、12、14、16は、皮膜の表面粗さが望ましい範囲であり、また、微粒子として、より望ましいものを使用しているため、外観性状が良好であった。一方、No.2、No.5、No.10、No.11、No.13は、皮膜の表面粗さが望ましい範囲ではないため、艶消し性の強い、あるいは、やや強い外観となった。また、No.11は、微粒子として架橋していない有機微粒子を使用したため、場所によって表面粗さにばらつきがあり、全体としてムラのある外観となった。なお、No.15は、エポキシフェノールを使用したものであるが、エポキシフェノールを使用すると、皮膜に黄変色が起こりやすいため、No.15では、皮膜の外観が黄色く変色した。
(Appearance properties)
As shown in Table 2, no. Nos. 1, 3, 4, 6 to 9, 12, 14, and 16 have a desirable surface roughness because the surface roughness of the film is in a desirable range and more desirable fine particles are used. . On the other hand, no. 2, no. 5, no. 10, no. 11, no. Since the surface roughness of the film 13 was not in a desirable range, the appearance was strong or slightly strong. No. No. 11 used organic fine particles that were not crosslinked as fine particles, so that the surface roughness varied depending on the location, and the appearance was uneven as a whole. In addition, No. No. 15 uses epoxy phenol, but when epoxy phenol is used, yellowing of the film tends to occur. In No. 15, the appearance of the film turned yellow.
 このように、本発明の構成を満たす範囲において、さらに望ましい構成とすることで、洗浄工程での皮膜の耐久性に優れる他、成形性、外観性状にも優れたプレコートアルミニウム板となることがわかる。 As described above, it can be seen that a more desirable configuration within the range satisfying the configuration of the present invention results in a precoated aluminum plate having excellent formability and appearance properties in addition to excellent durability of the film in the cleaning process. .
 なお、今回明確なデータは得られていないが、微粒子に無機微粒子を使用すると、プレコート皮膜の凸部は硬くなるため、プレス成形用金型の寿命を低下させることは十分に予想される。同様に粒子の形態としても球状であるほうが、ミクロに見た場合のプレコート皮膜の凸部の形態が滑らかとなるため、金型寿命への影響が少ないと考えることに不合理性は無い。 Although clear data has not been obtained this time, when inorganic fine particles are used as the fine particles, the convex portions of the precoat film become hard, and it is sufficiently expected to reduce the life of the press molding die. Similarly, when the particle shape is spherical, the shape of the convex portion of the precoat film is smooth when viewed microscopically, so there is no irrationality in considering that the influence on the mold life is small.
 以上の結果から、プレコートアルミニウム板において、アルミニウム板の表面に形成されたプレコート皮膜が、分子間架橋されたベース樹脂と、微粒子と、を含み、かつ、プレコート皮膜のゲル分率を50%以上、表面粗さRaを0.25μm以上とすることで、本発明の目的である、熱硬化性樹脂を使用すると共に、沸騰塩素系洗浄剤における洗浄工程での皮膜の耐久性に優れるプレコートアルミニウム板とすることができることがわかる。
 さらに、ベース樹脂として、より望ましいものを使用することで、前記目的の達成に加え、フィルムラミネート材と遜色のない高い成形性を備えるプレコートアルミニウム板とすることができることがわかる。また、微粒子として、より望ましいものを使用し、表面粗さRaをより望ましい範囲とすることで、前記目的の達成に加え、素材であるアルミニウム板の持つ美しい光沢外観を妨げないプレコートアルミニウム板とすることができることがわかる。
From the above results, in the precoated aluminum plate, the precoat film formed on the surface of the aluminum plate contains a base resin cross-linked between the molecules and fine particles, and the gel fraction of the precoat film is 50% or more, By using a thermosetting resin, which is the object of the present invention, with a surface roughness Ra of 0.25 μm or more, a precoated aluminum plate excellent in the durability of the film in a cleaning process in a boiling chlorine-based cleaning agent and You can see that you can.
Furthermore, it can be seen that by using a more desirable base resin, it is possible to obtain a precoated aluminum plate having high formability comparable to that of the film laminate material in addition to the achievement of the object. Further, by using more desirable fine particles and setting the surface roughness Ra in a more desirable range, in addition to achieving the above object, a precoated aluminum plate that does not interfere with the beautiful gloss appearance of the aluminum plate that is the material is used. You can see that
 第2実施形態 Second embodiment
 次に、本発明のプレコートアルミニウム板について、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例と、を対比させて具体的に説明する。 Next, the pre-coated aluminum plate of the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
[第1実施例]
 第1実施例では、本発明におけるプレコートアルミニウム板について、本発明の必須の目的(必須性能)である高温湿潤環境下での耐久性(高温湿潤耐久性)、耐薬品性、耐熱変色性、絞り成形性について調べた。
[First embodiment]
In the first embodiment, the pre-coated aluminum plate of the present invention has the essential purpose (essential performance) of the present invention, durability in a high-temperature wet environment (high-temperature wet durability), chemical resistance, heat discoloration resistance, aperture The moldability was examined.
 本発明に係るプレコートアルミニウム板の検討にあたり、素材として使用したアルミニウム板は、第1実施形態と同様であるので説明を省略する。ただし、リン酸クロメート処理を施したアルミニウム板の片面に、表3に示す各種主剤(樹脂系)と各種硬化剤とを配合した塗料を、乾燥皮膜厚さが6μmとなるようにバーコーター(バーコータ)で塗布した後、焼付温度が150~285℃の範囲となるように塗料を焼き付けることによってゲル分率を変更したプレコート皮膜を形成し、供試材とした。また、表3に示すガラス転移温度は、前記の各樹脂系におけるガラス転移温度である。 In the examination of the pre-coated aluminum plate according to the present invention, the aluminum plate used as a material is the same as that in the first embodiment, and the description thereof is omitted. However, a coating material in which various main agents (resin system) shown in Table 3 and various curing agents are blended on one side of an aluminum plate subjected to phosphoric acid chromate treatment is applied to a bar coater (bar coater) so that the dry film thickness becomes 6 μm. After coating, a precoat film having a changed gel fraction was formed by baking the paint so that the baking temperature was in the range of 150 to 285 ° C., and used as a test material. Moreover, the glass transition temperature shown in Table 3 is a glass transition temperature in each said resin system.
 以上のようにして製作した供試材について、プレコート皮膜のゲル分率を測定した。 The gel fraction of the precoat film was measured for the specimen prepared as described above.
(ゲル分率の測定)
 第1実施形態と同様であるので、説明を省略する。
(Measurement of gel fraction)
Since it is the same as that of 1st Embodiment, description is abbreviate | omitted.
 次に、各供試材について、本発明の必須の目的である高温湿潤環境下での耐久性(高温湿潤耐久性)、耐薬品性、耐熱変色性、絞り成形性について調べた。 Next, each test material was examined for durability under a high temperature wet environment (high temperature wet durability), chemical resistance, heat discoloration resistance, and drawability, which are essential objects of the present invention.
(高温湿潤(環境)耐久性)
 供試材から切り出した平板状試験材を使用し、温度85℃、湿度85%RHに設定した恒温恒湿槽に1000時間放置した後、皮膜の外観を目視にて確認した。その結果、皮膜に異常がなかったものを良好(○)、皮膜に変色・剥がれ・膨れ・割れなどの外観異常が生じたものを外観異常(×)とした。
(High temperature wet (environmental) durability)
A flat plate test material cut out from the test material was used and left in a constant temperature and humidity chamber set to a temperature of 85 ° C. and a humidity of 85% RH for 1000 hours, and then the appearance of the film was visually confirmed. As a result, a film having no abnormalities was evaluated as good (◯), and a film having abnormal appearance such as discoloration, peeling, swelling, and cracking was defined as an abnormal appearance (×).
(耐薬品性)
 供試材から切り出した平板状試験材を使用し、環状エステルのγ-ブチルラクトンに常温で10分間浸漬し、皮膜の外観を目視にて確認した。その結果、皮膜に異常がなかったものを良好(○)、皮膜に変色・剥がれ・膨れ・割れなどの外観異常が生じたものを外観異常(×)とした。
(chemical resistance)
A flat test material cut out from the test material was used, immersed in cyclic ester γ-butyllactone at room temperature for 10 minutes, and the appearance of the film was visually confirmed. As a result, a film having no abnormalities was evaluated as good (◯), and a film having abnormal appearance such as discoloration, peeling, swelling, and cracking was defined as an abnormal appearance (×).
(耐熱変色性)
 供試材から切り出した平板状試験材を使用し、温度270℃に設定した箱型加熱槽に1分間放置した後、皮膜の外観を目視にて確認した。その結果、皮膜に異常がなかったものを良好(○)、皮膜に変色・剥がれ・膨れ・割れなどの外観異常が生じたものを外観異常(×)とした。
(Heat-resistant discoloration)
A flat test material cut out from the test material was used and left in a box-type heating tank set at a temperature of 270 ° C. for 1 minute, and then the appearance of the film was visually confirmed. As a result, a film having no abnormalities was evaluated as good (◯), and a film having abnormal appearance such as discoloration, peeling, swelling, and cracking was defined as an abnormal appearance (×).
(絞り成形性)
 図2は、供試材を絞り加工、および、しごき加工することで、有底円筒容器を作製する工程を示す模式図である。図2に示す工程により、供試材の絞り成形性を調べた。まず、円筒ブランク打ち抜き(ブランキング(blanking))の後、絞り加工を行った。次に、再絞り加工にて、12mmφ×15mmLの円筒絞り成形品(中間成形品)を得た。この時点で得られた中間成形品での皮膜状態を評価した結果を、表3中の浅絞り成形性とした。次に、中間成形品に、円筒側壁部の板厚減少率が20%となるようにしごき加工を加え、トリミングをして最終10mmφ×20mmLの円筒容器形状に加工し、最終成形品を得た。この時点で得られた最終成形品での皮膜状態を評価した結果を、表3中の深絞り成形性とした。なお、プレス油には脂肪酸エステルと界面活性剤を主成分とする水系エマルジョンワックスを使用した。また、加工は、室温(35℃)で行った。
(Drawing formability)
FIG. 2 is a schematic diagram showing a process for producing a bottomed cylindrical container by drawing and ironing a test material. The drawability of the test material was examined by the process shown in FIG. First, drawing was performed after cylindrical blank punching (blanking). Next, a 12 mmφ × 15 mmL cylindrical drawn product (intermediate molded product) was obtained by redrawing. The result of evaluating the film state of the intermediate molded product obtained at this time was defined as shallow drawability in Table 3. Next, the intermediate molded product was ironed so that the reduction rate of the thickness of the cylindrical side wall portion was 20%, trimmed, and processed into a final 10 mmφ × 20 mmL cylindrical container shape to obtain the final molded product. . The result of evaluating the film state of the final molded product obtained at this time was defined as the deep drawability in Table 3. The press oil used was an aqueous emulsion wax mainly composed of a fatty acid ester and a surfactant. The processing was performed at room temperature (35 ° C.).
 皮膜状態の評価は、本発明の必須性能である浅絞り成形性については、アルミニウム板からプレコート皮膜が剥がれなかった場合を、浅絞り成形性が良好(○)、剥がれた場合を、浅絞り成形性が不良(×)と判断した。また、浅絞り成形性が良好(○)であった供試材についてのみ、望ましい性能である深絞り成形性を確認し、その結果、アルミニウム板からプレコート皮膜が剥がれず深絞り成形性が良好であった場合には、特に成形性良好(◎)、剥がれた場合を不良(△)とした。 For the evaluation of the film state, the shallow drawability, which is an essential performance of the present invention, is that when the precoat film is not peeled off from the aluminum plate, the shallow drawability is good (O), and when the peel is peeled off, the shallow drawability is formed. Judgment was poor (×). In addition, only the specimens that had good shallow drawability (O) were confirmed to have the desired deep drawing formability. As a result, the precoat film was not peeled off from the aluminum plate and the deep drawability was good. In the case where it was present, the moldability was particularly good (◎), and when it was peeled off, it was regarded as defective (Δ).
 表3に高温湿潤環境下での耐久性(高温湿潤耐久性)、耐薬品性、耐熱変色性、絞り成形性についての結果を示す。なお、表3中の下線は、本発明で規定する要件を満たさないことを示す。 Table 3 shows the results of durability (high temperature wet durability), chemical resistance, heat discoloration resistance, and drawability in a high temperature wet environment. In addition, the underline in Table 3 indicates that the requirements defined in the present invention are not satisfied.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(高温湿潤(環境)耐久性)
 表3に示すように、ベース樹脂の樹脂系としてポリエステル樹脂を使用した、No.17~22については、いずれも皮膜外観に、白化、割れ、ふくれ(swelling)などの異常が発生した。また、ベース樹脂の樹脂系としてエポキシ樹脂を使用した各供試材の中では、硬化剤として、メラミン系硬化剤を使用したNo.10は、皮膜が溶融し、外観異常となった。また、このNo.10はゲル分率が0であり、エポキシ樹脂とメラミン計硬化剤がまったく反応していなかった。以上の7種類以外の各供試材は、いずれも高温湿潤環境での耐久性が良好な結果となった。
 以上から、高温湿潤環境下での耐久性を確保するためには、ベース樹脂に用いる主剤(樹脂系)は、エポキシ樹脂である必要がある。また、硬化剤とある程度反応している必要があるため、硬化剤としてメラミン系硬化剤は、適当でない。
(High temperature wet (environmental) durability)
As shown in Table 3, a polyester resin was used as the resin system of the base resin. In all of Nos. 17 to 22, abnormalities such as whitening, cracking, and swelling occurred in the appearance of the film. Among the test materials using an epoxy resin as the resin system of the base resin, No. 1 using a melamine-based curing agent as the curing agent. In No. 10, the coating melted and the appearance was abnormal. In addition, this No. No. 10 had a gel fraction of 0, and the epoxy resin and the melamine meter curing agent did not react at all. Each of the test materials other than the above seven types had good durability in a high temperature and humid environment.
From the above, in order to ensure durability in a high-temperature and humid environment, the main agent (resin system) used for the base resin needs to be an epoxy resin. Moreover, since it is necessary to react to some extent with a hardening | curing agent, a melamine type hardening | curing agent is not suitable as a hardening | curing agent.
(耐薬品性)
 表3に示すように、ベース樹脂のゲル分率が70%未満であった、No.5、7、10、11、13、15、17、19、21については、いずれも皮膜外観に、白化や溶解などの異常が発生した。また、ゲル分率が70%以上の各供試材の中では、エポキシ樹脂とフェノール系硬化剤を反応させた、No.14は、皮膜外観に、白化が発生した。以上の10種類以外の各供試材は、いずれも耐薬品性が良好な結果となった。
 以上から、耐薬品性を確保するためには、皮膜(ベース樹脂)のゲル分率は70%以上を満たす必要がある。また、硬化剤としてフェノール系硬化剤は、適当でない。
(chemical resistance)
As shown in Table 3, the gel fraction of the base resin was less than 70%, No. As for 5, 7, 10, 11, 13, 15, 17, 19, and 21, all abnormalities such as whitening and dissolution occurred in the appearance of the film. Further, among the test materials having a gel fraction of 70% or more, No. 1 in which an epoxy resin and a phenolic curing agent were reacted. In No. 14, whitening occurred in the appearance of the film. Each of the test materials other than the above 10 types had good chemical resistance.
From the above, in order to ensure chemical resistance, the gel fraction of the film (base resin) needs to satisfy 70% or more. Also, phenolic curing agents are not suitable as curing agents.
(耐熱変色性)
 表3に示すように、硬化剤としてフェノール系硬化剤を使用した、No.13と14及び硬化剤として無黄変タイプではない標準タイプのイソシアネート系硬化剤を使用した、No.9については、皮膜の黄変色が見られた。以上の3種類以外の各供試材は、いずれも耐熱変色性が良好な結果となった。
 以上から、耐熱変色性を確保するためには、硬化剤の選択が重要であって、フェノール系硬化剤は適当でなく、また、硬化剤がイソシアネート系硬化剤である場合には、無黄変タイプのものを選択する必要がある。
(Heat-resistant discoloration)
As shown in Table 3, a phenolic curing agent was used as the curing agent. Nos. 13 and 14 and a standard type isocyanate curing agent that is not a non-yellowing type were used as curing agents. For No. 9, yellowing of the film was observed. Each of the sample materials other than the above three types had good heat discoloration.
From the above, it is important to select a curing agent in order to ensure heat discoloration, and a phenolic curing agent is not suitable, and when the curing agent is an isocyanate curing agent, no yellowing occurs. It is necessary to select the type.
(絞り成形性)
 表3に示すように、エポキシ樹脂とイソシアネート系硬化剤(無黄変)とを組み合わせた各供試材において、ゲル分率が92%を超える、No.6と8については、皮膜剥離が発生した。また、硬化剤としてウレア系硬化剤を使用した、No.11と12についても、皮膜剥離が発生した。また、アクリル変性自己加工型エポキシ樹脂についても、ゲル分率が高いNo.16については、皮膜剥離が発生した。以上の5種類以外の各供試材は、いずれも浅絞り成形性が良好な結果となった。
 以上から、絞り成形性(浅絞り成形性)は、主剤となる樹脂(系)と硬化剤との種類(組み合わせ)の影響を受け、さらに、主剤(樹脂系)と硬化剤との架橋反応の程度を示すゲル分率の影響も大きいことがわかる。特に、主剤(樹脂系)がエポキシ樹脂で、硬化剤がイソシアネート系硬化剤(無黄変)の組み合わせの場合には、ゲル分率が92%以下であることが重要である。また、硬化剤としてウレア系硬化剤は、適当でない。
(Drawing formability)
As shown in Table 3, in each test material in which an epoxy resin and an isocyanate curing agent (non-yellowing) were combined, the gel fraction exceeded 92%. For 6 and 8, film peeling occurred. In addition, no. For 11 and 12, film peeling occurred. In addition, the acrylic modified self-processed epoxy resin also has a high gel fraction. For 16, peeling of the film occurred. Each of the test materials other than the above five types had good shallow drawability.
From the above, the drawability (shallow drawability) is affected by the type (combination) of the main resin (system) and the curing agent, and the crosslinking reaction between the main agent (resin system) and the curing agent. It turns out that the influence of the gel fraction which shows a grade is also large. In particular, when the main agent (resin type) is an epoxy resin and the curing agent is an isocyanate type curing agent (no yellowing), it is important that the gel fraction is 92% or less. Also, urea curing agents are not suitable as the curing agent.
 次に、浅絞り成形性が良好であった各供試材について、深絞り成形(加工)性を確認した。表3に示すように、エポキシ樹脂とイソシアネート系硬化剤(無黄変)とを組み合わせた各供試材について、ゲル分率が85%を超える、No.2と4では、深絞り(試験)において、皮膜が剥離した。また、アクリル変性自己架橋型エポキシ樹脂のNo.15と、ポリエステル樹脂を使用したNo.22も、深絞り試験において、皮膜が剥離した。その結果、深絞り成形性を満たしたのは、エポキシ樹脂とイソシアネート系硬化剤とを組み合わせたNo.1、3、5、7、9の5種類、エポキシ樹脂とメラミン系硬化剤とを組み合わせたが、結果的に架橋反応していなかったNo.10、エポキシ樹脂とフェノール系硬化剤とを組み合わせたNo.13、14の2種類、ポリエステル樹脂を使用したNo.17~21の5種類の、合計13種類であった。
 特に、主剤(樹脂系)がエポキシ樹脂で、硬化剤がイソシアネート系硬化剤(無黄変)の場合には、ゲル分率が85%以下である場合に、優れた深絞り成形性が得られることがわかった。
Next, the deep drawability (working) property was confirmed about each test material with favorable shallow drawability. As shown in Table 3, with respect to each test material in which an epoxy resin and an isocyanate curing agent (no yellowing) are combined, the gel fraction exceeds 85%. In 2 and 4, the film peeled off during deep drawing (test). In addition, No. of acrylic modified self-crosslinking epoxy resin. 15 and No. 15 using polyester resin. No. 22 was peeled off in the deep drawing test. As a result, it was No. which combined the epoxy resin and the isocyanate curing agent that satisfied the deep drawability. Nos. 1, 3, 5, 7, and 9 were combined with an epoxy resin and a melamine curing agent. No. 10, a combination of epoxy resin and phenolic curing agent. No. 13 and No. 14 using polyester resin. There were a total of 13 types of 5 types from 17 to 21.
In particular, when the main agent (resin) is an epoxy resin and the curing agent is an isocyanate curing agent (no yellowing), excellent deep drawability is obtained when the gel fraction is 85% or less. I understood it.
(まとめ)
 表3に示すように、高温湿潤環境下での耐久性(高温湿潤耐久性)、耐薬品性、耐熱変色性、絞り成形性(浅絞り成形性)の4つの必須性能をすべて満足するものは、No.1~4の4種類であった。
 したがって、プレコートアルミニウム板のプレコート皮膜の構成として、エポキシ樹脂と無黄変タイプのイソシアネート系硬化剤とを組み合わせて、ゲル分率を70%以上92%以下となるように反応させることが、本発明では、必須であることがわかった。
 さらに望ましい性能である深絞り成形性も満足したものは、No.1とNo.3の2種類であって、プレコートアルミニウム板のプレコート皮膜の構成として、エポキシ樹脂と無黄変タイプのイソシアネート系硬化剤とを組み合わせて、ゲル分率を70%以上85%以下となるように反応させることが、本発明では、望ましいことがわかった。
(Summary)
As shown in Table 3, those that satisfy all four essential performances of durability under high temperature and humidity (high temperature wet durability), chemical resistance, heat discoloration resistance, and drawability (shallow drawability) , No. There were four types of 1-4.
Therefore, as a constitution of the precoat film of the precoat aluminum plate, the epoxy resin and the non-yellowing type isocyanate curing agent are combined and reacted so that the gel fraction becomes 70% or more and 92% or less. Then it turned out to be essential.
Further, No. 1 which satisfies the deep drawing formability, which is a desirable performance. 1 and No. The composition of the pre-coated aluminum plate is a combination of an epoxy resin and a non-yellowing type isocyanate curing agent, and reacts so that the gel fraction is 70% or more and 85% or less. It has been found desirable in the present invention.
[第2実施例]
 第2実施例では、本発明におけるプレコートアルミニウム板を製造する際に使用する、エポキシ樹脂と無黄変タイプのイソシアネート系硬化剤を含む塗料について、本発明の望ましい目的である塗料寿命について調べた。なお、塗料寿命は、本発明としてはあくまで望ましい特性に過ぎないため、これらの特性を満たさない場合でも、第1実施例の結果を満たしているものは、本発明の最低限の目的は達するものである。
[Second Embodiment]
In the second example, the paint life, which is a desirable object of the present invention, was examined for a paint containing an epoxy resin and a non-yellowing type isocyanate curing agent used when producing the precoated aluminum plate in the present invention. In addition, since the paint life is only a desirable characteristic for the present invention, even if these characteristics are not satisfied, those satisfying the results of the first embodiment can achieve the minimum object of the present invention. It is.
 市販されているビスフェノールA型もしくはビスフェノールF型のエポキシ樹脂(変性エポキシ樹脂も含む)に対して、ブロック型のイソシアネート系硬化剤または非ブロック型のイソシアネート系硬化剤を混合し、粘度調整用希釈溶剤として、トルエンを混合することにより、塗料を作製し、供試材とした。
 このエポキシ樹脂とイソシアネート系硬化剤の混合比率は、それぞれ固形分重量換算で、5:1の比率に固定した。また、粘度調整用希釈溶剤は、建浴直後の初期粘度が、#4フォードカップ粘度で100秒(±5秒以内)となるように、添加量を調整した。
Mixing block type isocyanate curing agent or non-blocking type isocyanate curing agent with commercially available bisphenol A type or bisphenol F type epoxy resin (including modified epoxy resin), diluting solvent for viscosity adjustment As a sample material, a paint was prepared by mixing toluene.
The mixing ratio of the epoxy resin and the isocyanate curing agent was fixed at a ratio of 5: 1 in terms of solid content weight. The viscosity adjusting diluent was adjusted so that the initial viscosity immediately after the bath was # 4 Ford cup viscosity of 100 seconds (within ± 5 seconds).
(塗料寿命)
 このようにして建浴(initial make-up of electrolytic bath,調整)した供試材塗料を、密閉容器に入れて室温で7日間および3ヶ月間保管した後、再度粘度を調査し、塗料の寿命(塗料寿命)を判定した。ここでは、塗料粘度(フォードカップ(ford cup))が150秒以内であれば寿命ありと判断した。
(Paint life)
The test material paint thus prepared (initial make-up of electrolytic bath) was placed in a sealed container and stored at room temperature for 7 days and 3 months. (Paint life) was determined. Here, if the viscosity of the paint (ford cup) is within 150 seconds, it was judged that there was a lifetime.
 表4に塗料寿命についての結果を示す。なお、表4中の下線は、本発明で規定する要件を満たさないことを示す。 Table 4 shows the results for paint life. In addition, the underline in Table 4 indicates that the requirements defined in the present invention are not satisfied.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(塗料寿命)
 表4に示すように、イソシアネート系硬化剤として非ブロック型を使用した、供試材No.1、3、5、7、9では、いずれも7日後の段階で、塗料粘度が測定できないほど固化しており、塗料寿命が十分でない結果となった。一方、ブロック型のイソシアネート系硬化剤を使用した供試材No.2、4、6、8、10では、いずれも3ヶ月後の段階での(秒数の)増加はわずかであり、再使用可能であることがわかった。
(Paint life)
As shown in Table 4, sample No. using a non-blocking type as the isocyanate curing agent. In 1, 3, 5, 7, and 9, all were solidified so that the viscosity of the paint could not be measured after 7 days, and the paint life was not sufficient. On the other hand, the test material No. using a block type isocyanate curing agent. 2, 4, 6, 8, and 10 all showed a slight increase (in seconds) at the stage after 3 months, and it was found to be reusable.
[第3実施例]
 第3実施例では、本発明におけるプレコートアルミニウム板のさらに望ましい形態について調べるため、プレコートアルミニウム板の洗浄工程耐久性について調査した。なお、洗浄工程耐久性は、本発明としてはあくまで望ましい特性に過ぎないため、これらの特性を満たさない場合でも、第1実施例の結果を満たしているものは、本発明の最低限の目的は達するものである。
[Third embodiment]
In the third example, the durability of the precoated aluminum plate was investigated in order to investigate a more desirable form of the precoated aluminum plate in the present invention. The durability of the cleaning process is only a desirable characteristic for the present invention. Therefore, even if these characteristics are not satisfied, those satisfying the results of the first embodiment are the minimum object of the present invention. To reach.
 素材として使用したアルミニウム板の品種・質別・機械的性質、塗装前の下地処理方法とその条件は、第1実施例と同一である。このアルミニウム板にガラス転移温度が77℃のエポキシ樹脂と無黄変タイプのイソシアネート硬化剤からなるベース樹脂に、表5に示す各種微粒子(粒子種、粒子径μm)を含む塗料を、乾燥皮膜厚さが6μmとなるようにバーコーターで塗布した後、ゲル分率が80±5%となるように焼き付けることによって、プレコート皮膜を形成し、供試材とした。
 なお、No.11とNo.13は微粒子を配合していない供試材であって、特にNo.13は、バーコーター塗装、焼付けが済んだ後、塗装表面に表面粗さRaが約0.5μmのステンレス製定盤を重ねて、40℃で加温したホットプレスで10分間軽くはさむことにより、定盤の表面粗さを転写させた。
 また、表5に示す微粒子について、架橋アクリル(ビーズ(bead))と架橋ウレタン(ビーズ)は架橋された有機微粒子、ニッケル粉とタルク粉は無機微粒子、熱可塑ウレタン(ビーズ)は架橋されていない有機微粒子である。なお、配合比率は、ベース樹脂と微粒子を含めた乾燥プレコート皮膜の質量に占める微粒子の質量%とした。
The type, quality, mechanical properties of the aluminum plate used as the material, the pretreatment method and the conditions before coating are the same as in the first embodiment. A coating containing various fine particles (particle type, particle diameter μm) shown in Table 5 on a base resin made of an epoxy resin having a glass transition temperature of 77 ° C. and a non-yellowing type isocyanate curing agent on this aluminum plate was dried. After coating with a bar coater so as to be 6 μm, a precoat film was formed by baking so that the gel fraction was 80 ± 5%, and used as a test material.
In addition, No. 11 and no. No. 13 is a test material not containing fine particles. No. 13, after the bar coater coating and baking were completed, a stainless steel surface plate with a surface roughness Ra of about 0.5 μm was layered on the coated surface, and lightly sandwiched with a hot press heated at 40 ° C. for 10 minutes. The surface roughness of the board was transferred.
Further, for the fine particles shown in Table 5, crosslinked acrylic (bead) and crosslinked urethane (bead) are crosslinked organic fine particles, nickel powder and talc powder are inorganic fine particles, and thermoplastic urethane (beads) are not crosslinked. Organic fine particles. The blending ratio was the mass% of the fine particles in the mass of the dry precoat film including the base resin and the fine particles.
 以上のようにして製作した供試材について、プレコート皮膜のゲル分率および表面粗さRaを測定した。なお、ゲル分率の測定方法は、第1実施例と同一とした。 For the specimens manufactured as described above, the gel fraction and surface roughness Ra of the precoat film were measured. The method for measuring the gel fraction was the same as in the first example.
(表面粗さRaの測定)
 プレコート皮膜の表面粗さについては、表面粗さ測定器(小坂研究所社製サーフコーダSE-30D)を使用し、探針を各アルミニウム板の圧延方向に直交する方向に走査して、JIS B0601に記載の算術平均粗さ(Ra)を測定した。
(Measurement of surface roughness Ra)
As for the surface roughness of the precoat film, a surface roughness measuring device (Surfcoder SE-30D manufactured by Kosaka Laboratory Co., Ltd.) was used, and the probe was scanned in a direction perpendicular to the rolling direction of each aluminum plate. JIS B0601 The arithmetic average roughness (Ra) described in 1 was measured.
 次に、前記供試材について、本発明の望ましい目的である沸騰トリクレン洗浄時の皮膜耐久性(洗浄工程耐久性)と、その他外観性状について調べた。 Next, the test material was examined for film durability (cleaning process durability) at the time of boiling tricyclene cleaning, which is a desirable object of the present invention, and other appearance properties.
(洗浄工程耐久性)
 塩素系洗浄剤としてトリクレンを使用し、これを沸騰させた。各供試材の塗装面同士が向かい合うようにしてクリップで挟み、その沸騰トリクレン中に10分間浸漬した後、取り出して外観を確認した。皮膜の溶解、剥離、変色、皮膜同士のくっつき等の表面異常がないものを、洗浄工程耐久性が良好(○)、表面異常(くっつき等)があるものを、不良(×)と判断した。
(Washing process durability)
Trichrene was used as a chlorine-based cleaning agent and boiled. The coated surfaces of each test material were sandwiched between clips so as to face each other, immersed in the boiling trichrene for 10 minutes, and then taken out to confirm the appearance. A film having no surface abnormality such as dissolution, peeling, discoloration, and adhesion between films was judged to be defective (x) if it had good cleaning process durability (◯) and surface abnormality (such as adhesion).
(外観性状)
 バーコーター塗装、焼付けが済んだ、プレコート皮膜の外観を目視で観察した。艶消し状態、ムラ、黄変色等が生じなかったものを、外観性状が良好(○)と判断した。また、これらのいずれかが生じたものを、外観性状がやや劣る(×)と判断した。
(Appearance properties)
The appearance of the precoat film after bar coating and baking was visually observed. When the matte state, unevenness, yellow discoloration, etc. did not occur, the appearance properties were judged as good (◯). Moreover, it was judged that the appearance property was slightly inferior (x) when any of these occurred.
 表5に洗浄工程耐久性及び外観性状についての結果を示す。なお、表5中の下線は、本発明で規定する要件を満たさないことを示す。 Table 5 shows the results of cleaning process durability and appearance properties. In addition, the underline in Table 5 indicates that the requirements defined in the present invention are not satisfied.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(洗浄工程耐久性)
 表5に示すように、No.1~10は、いずれも皮膜中に微粒子を添加することにより、表面粗さRaを0.25μm以上としたため、洗浄工程耐久性が良好であった。
 一方、No.11は微粒子を含まず、表面粗さも本発明の範囲を満たさないため、皮膜同士のくっつきが生じ、洗浄工程耐久性が不良であった。また、No.12は、表面粗さが本発明の範囲を満たさないため、皮膜同士のくっつきが生じ、洗浄工程耐久性が不良であった。また、No.13は、表面粗さが沸騰トリクレン中への浸漬前では本発明の範囲を満たすものの、微粒子を含まないため沸騰トリクレン中への浸漬中に皮膜表面の凹凸が滑らかになり、皮膜同士のくっつきが生じた。
(Washing process durability)
As shown in Table 5, no. In all of Nos. 1 to 10, since the surface roughness Ra was set to 0.25 μm or more by adding fine particles into the film, the cleaning process durability was good.
On the other hand, no. No. 11 contained no fine particles, and the surface roughness did not satisfy the scope of the present invention, so that the films were stuck together, and the durability of the cleaning process was poor. No. In No. 12, since the surface roughness did not satisfy the range of the present invention, the films were stuck to each other, and the durability of the cleaning process was poor. No. No. 13, although the surface roughness satisfies the scope of the present invention before immersion in boiling trichrene, since it does not contain fine particles, the unevenness of the coating surface becomes smooth during immersion in boiling trichrene, and the coatings stick to each other. occured.
(外観性状)
 洗浄工程耐久性が良好であったNo.1~10について、微粒子が架橋されていない有機微粒子であるNo.8は、バーコーター塗装後の焼付け工程において微粒子が溶融するため、外観が不均一(外観不均一)となった。また、このNo.8およびNo.2、5、7、10の5種類は、表面粗さRaが0.55μmを超えているため、皮膜の艶消し性が強く(艶消し)、素材であるアルミニウムの光沢が損なわれていた。
(Appearance properties)
No. with good washing process durability. Nos. 1 to 10 are organic fine particles in which the fine particles are not crosslinked. No. 8 had a non-uniform appearance (non-uniform appearance) because the fine particles melted in the baking process after bar coater coating. In addition, this No. 8 and no. In the five types 2, 5, 7, and 10, the surface roughness Ra exceeded 0.55 μm, so the matteness of the film was strong (matte) and the luster of the aluminum material was impaired.
 なお、今回明確なデータは得られていないが、微粒子に無機微粒子を使用すると、プレコート皮膜の凸部は硬くなるため、プレス成形用金型の寿命を低下させることは十分に予想される。同様に粒子の形態としても球状であるほうが、ミクロに見た場合のプレコート皮膜の凸部の形態が滑らかとなるため、金型寿命への影響が少ないと考えることに不合理性はない。 Although clear data has not been obtained this time, when inorganic fine particles are used as the fine particles, the convex portions of the precoat film become hard, and it is sufficiently expected to reduce the life of the press molding die. Similarly, when the particle shape is spherical, the shape of the convex portion of the precoat film is smooth when viewed microscopically, so there is no irrationality in considering that the influence on the mold life is small.
 以上、本発明に係るプレコートアルミニウム板について最良の実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更等することができることはいうまでもない。 The precoated aluminum plate according to the present invention has been described in detail with reference to the best mode and examples, but the gist of the present invention is not limited to the above-described contents, and the scope of the right is claimed. Must be interpreted based on the description. Needless to say, the contents of the present invention can be modified and changed based on the above description.

Claims (15)

  1.  アルミニウム板の表面にプレコート皮膜が形成されたプレコートアルミニウム板であって、
     前記プレコート皮膜は、分子間架橋されたベース樹脂と、微粒子とからなり、
     前記プレコート皮膜は、ゲル分率が50%以上であり、かつ、表面粗さが、算術平均粗さ(Ra)で、0.25μm以上であることを特徴とするプレコートアルミニウム板。
    A precoated aluminum plate having a precoat film formed on the surface of the aluminum plate,
    The precoat film is composed of a base resin cross-linked between molecules and fine particles,
    The precoat film has a gel fraction of 50% or more and a surface roughness of 0.25 μm or more in terms of arithmetic average roughness (Ra).
  2.  請求項1に記載のプレコートアルミニウム板であって、前記微粒子は、架橋された有機微粒子であることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the fine particles are crosslinked organic fine particles.
  3.  請求項2に記載のプレコートアルミニウム板であって、前記微粒子は、球状であることを特徴とするプレコートアルミニウム板。 3. The precoated aluminum plate according to claim 2, wherein the fine particles are spherical.
  4.  請求項1に記載のプレコートアルミニウム板であって、前記ベース樹脂は、ガラス転移温度が25~65℃のポリエステル樹脂を、メラミン系硬化剤、または、イソシアネート系硬化剤にて架橋反応させた架橋ポリエステル樹脂であることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the base resin is a crosslinked polyester obtained by crosslinking a polyester resin having a glass transition temperature of 25 to 65 ° C. with a melamine curing agent or an isocyanate curing agent. A precoated aluminum plate, which is a resin.
  5.  請求項1に記載のプレコートアルミニウム板であって、前記ポリエステル樹脂は、ガラス転移温度が35~60℃であることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the polyester resin has a glass transition temperature of 35 to 60 ° C.
  6.  請求項1に記載のプレコートアルミニウム板であって、前記プレコート皮膜の表面粗さが、算術平均粗さ(Ra)で、0.25~0.55μmであることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the surface roughness of the precoat film is an arithmetic average roughness (Ra) of 0.25 to 0.55 μm.
  7.  請求項1に記載のプレコートアルミニウム板であって、前記プレコート皮膜において前記微粒子が占める比率が1~50質量%であることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the proportion of the fine particles in the precoat film is 1 to 50% by mass.
  8.  請求項1に記載のプレコートアルミニウム板であって、前記微粒子の粒子径が1~50μmであることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the fine particles have a particle diameter of 1 to 50 μm.
  9.  請求項1に記載のプレコートアルミニウム板であって、前記プレコート皮膜の膜厚が1~20μmであることを特徴とするプレコートアルミニウム板。 2. The precoated aluminum plate according to claim 1, wherein the precoat film has a thickness of 1 to 20 μm.
  10.  アルミニウム板の表面に、プレコート皮膜が形成されたプレコートアルミニウム板であって、
     前記プレコート皮膜は、エポキシ系樹脂と無黄変タイプのイソシアネート系硬化剤とが分子間架橋された熱硬化性樹脂からなり、
     前記プレコート皮膜のゲル分率が、70%以上92%以下であることを特徴とするプレコートアルミニウム板。
    A precoated aluminum plate having a precoated film formed on the surface of the aluminum plate,
    The precoat film is composed of a thermosetting resin in which an epoxy resin and a non-yellowing type isocyanate curing agent are intermolecularly crosslinked,
    The precoated aluminum plate, wherein the gel fraction of the precoat film is 70% or more and 92% or less.
  11.  請求項10に記載のプレコートアルミニウム板であって、前記プレコート皮膜のゲル分率が、70%以上85%以下であることを特徴とするプレコートアルミニウム板。 The precoated aluminum plate according to claim 10, wherein the gel fraction of the precoated film is 70% or more and 85% or less.
  12.  請求項10に記載のプレコートアルミニウム板であって、前記無黄変タイプのイソシアネート系硬化剤が、ブロック型イソシアネート化合物であることを特徴とするプレコートアルミニウム板。 11. The precoated aluminum plate according to claim 10, wherein the non-yellowing type isocyanate curing agent is a block type isocyanate compound.
  13.  請求項10に記載のプレコートアルミニウム板であって、前記プレコート皮膜は、ベース樹脂となる前記熱硬化性樹脂の中に、無機微粒子または架橋された有機微粒子である微粒子を含み、かつ、表面粗さが、算術平均粗さ(Ra)で、0.25μm以上であることを特徴とするプレコートアルミニウム板。 The precoated aluminum plate according to claim 10, wherein the precoat film includes inorganic fine particles or fine particles which are crosslinked organic fine particles in the thermosetting resin serving as a base resin, and has a surface roughness. The arithmetic average roughness (Ra) is 0.25 μm or more, and a pre-coated aluminum plate.
  14.  請求項13に記載のプレコートアルミニウム板であって、前記微粒子が、架橋された球状の有機微粒子であることを特徴とするプレコートアルミニウム板。 14. The precoated aluminum plate according to claim 13, wherein the fine particles are cross-linked spherical organic fine particles.
  15.  請求項13に記載のプレコートアルミニウム板であって、前記プレコート皮膜の表面粗さが、算術平均粗さ(Ra)で、0.25~0.55μmであることを特徴とするプレコートアルミニウム板。 14. The precoated aluminum plate according to claim 13, wherein the surface roughness of the precoat film is an arithmetic average roughness (Ra) of 0.25 to 0.55 μm.
PCT/JP2009/070974 2008-12-18 2009-12-16 Precoated aluminum plate WO2010071150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801495808A CN102245380A (en) 2008-12-18 2009-12-16 Precoated aluminum plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-322876 2008-12-18
JP2008322876A JP4638538B2 (en) 2008-12-18 2008-12-18 Pre-coated aluminum plate
JP2009-075673 2009-03-26
JP2009075673A JP5491754B2 (en) 2009-03-26 2009-03-26 Pre-coated aluminum plate

Publications (1)

Publication Number Publication Date
WO2010071150A1 true WO2010071150A1 (en) 2010-06-24

Family

ID=42268821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070974 WO2010071150A1 (en) 2008-12-18 2009-12-16 Precoated aluminum plate

Country Status (4)

Country Link
CN (1) CN102245380A (en)
MY (1) MY161076A (en)
TW (2) TWI494472B (en)
WO (1) WO2010071150A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189542A (en) * 2012-03-13 2013-09-26 Kobe Steel Ltd Coating material composition and coating material-coated metal material obtained by using the same
JP5572269B1 (en) * 2014-03-24 2014-08-13 日新製鋼株式会社 Painted metal plate and exterior building materials
JP5572270B1 (en) * 2014-03-24 2014-08-13 日新製鋼株式会社 Painted metal plate and exterior building materials
JP2015204444A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Pre-coated aluminum plate for capacitor case
EP3495052A4 (en) * 2016-08-02 2020-03-18 Nippon Steel Nisshin Co., Ltd. Painted metal plate and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402846B1 (en) * 2017-03-10 2018-10-10 新日鐵住金株式会社 Organic resin coated steel sheet
CN112048115B (en) * 2019-06-06 2023-09-26 神华(北京)新材料科技有限公司 Composite material of metal and polyolefin, preparation method and container thereof
CN110722045B (en) * 2019-10-28 2021-04-02 安徽工业大学 Deep barrel high-reduction-rate deep drawing process

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166125A (en) * 1993-12-13 1995-06-27 Kobe Steel Ltd Resin-coated aluminium or aluminium alloy material excellent in press forming properties and corrosion resistance and its production
JPH1044305A (en) * 1996-08-01 1998-02-17 Kobe Steel Ltd Precoated metal plate excellent in antiblocking
JPH10204656A (en) * 1997-01-17 1998-08-04 Kobe Steel Ltd Precoat metallic sheet excellent in pressure mark resistance
JP2002097408A (en) * 2000-09-25 2002-04-02 Sumitomo Metal Ind Ltd Coating film having excellent weatherability and metal plate coated therewith
JP2004017454A (en) * 2002-06-14 2004-01-22 Furukawa Electric Co Ltd:The Resin coated metal sheet material and electric/electronic equipment using the same
JP2004330703A (en) * 2003-05-09 2004-11-25 Kobe Steel Ltd Resin coated metal sheet and manufacturing method thereof
JP2006035842A (en) * 2004-02-17 2006-02-09 Kobe Steel Ltd Resin-coated metal sheet with excellent processing, welding and corrosion resistance properties, and finished piece and production process using the resin-coated metal sheet
JP2006305841A (en) * 2005-04-27 2006-11-09 Kobe Steel Ltd Precoated aluminum sheet and its manufacturing method
JP2007290358A (en) * 2006-03-27 2007-11-08 Kobe Steel Ltd Precoated metal sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07166125A (en) * 1993-12-13 1995-06-27 Kobe Steel Ltd Resin-coated aluminium or aluminium alloy material excellent in press forming properties and corrosion resistance and its production
JPH1044305A (en) * 1996-08-01 1998-02-17 Kobe Steel Ltd Precoated metal plate excellent in antiblocking
JPH10204656A (en) * 1997-01-17 1998-08-04 Kobe Steel Ltd Precoat metallic sheet excellent in pressure mark resistance
JP2002097408A (en) * 2000-09-25 2002-04-02 Sumitomo Metal Ind Ltd Coating film having excellent weatherability and metal plate coated therewith
JP2004017454A (en) * 2002-06-14 2004-01-22 Furukawa Electric Co Ltd:The Resin coated metal sheet material and electric/electronic equipment using the same
JP2004330703A (en) * 2003-05-09 2004-11-25 Kobe Steel Ltd Resin coated metal sheet and manufacturing method thereof
JP2006035842A (en) * 2004-02-17 2006-02-09 Kobe Steel Ltd Resin-coated metal sheet with excellent processing, welding and corrosion resistance properties, and finished piece and production process using the resin-coated metal sheet
JP2006305841A (en) * 2005-04-27 2006-11-09 Kobe Steel Ltd Precoated aluminum sheet and its manufacturing method
JP2007290358A (en) * 2006-03-27 2007-11-08 Kobe Steel Ltd Precoated metal sheet

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189542A (en) * 2012-03-13 2013-09-26 Kobe Steel Ltd Coating material composition and coating material-coated metal material obtained by using the same
KR20160106763A (en) * 2014-03-24 2016-09-12 닛신 세이코 가부시키가이샤 Coated Metal Plate and Exterior Building Material
KR20160106765A (en) * 2014-03-24 2016-09-12 닛신 세이코 가부시키가이샤 Coated Metal Plate and Exterior Building Material
WO2015145482A1 (en) * 2014-03-24 2015-10-01 日新製鋼株式会社 Coated metal plate and exterior building material
WO2015145481A1 (en) * 2014-03-24 2015-10-01 日新製鋼株式会社 Coated metal plate and exterior building material
JP2015182286A (en) * 2014-03-24 2015-10-22 日新製鋼株式会社 Coated metal plate and exterior building material
JP2015182287A (en) * 2014-03-24 2015-10-22 日新製鋼株式会社 Coated metal plate and exterior building material
JP5572270B1 (en) * 2014-03-24 2014-08-13 日新製鋼株式会社 Painted metal plate and exterior building materials
JP5572269B1 (en) * 2014-03-24 2014-08-13 日新製鋼株式会社 Painted metal plate and exterior building materials
US10077367B2 (en) 2014-03-24 2018-09-18 Nisshin Steel Co., Ltd. Coated metal plate and exterior building material
KR101726317B1 (en) 2014-03-24 2017-04-12 닛신 세이코 가부시키가이샤 Coated Metal Plate and Exterior Building Material
KR101726312B1 (en) 2014-03-24 2017-04-12 닛신 세이코 가부시키가이샤 Coated Metal Plate and Exterior Building Material
RU2649100C1 (en) * 2014-03-24 2018-03-29 Ниссин Стил Ко., Лтд. Coated metal plate and external building material
US9999904B2 (en) 2014-03-24 2018-06-19 Nisshin Steel Co., Ltd. Coated metal plate and exterior building material
JP2015204444A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Pre-coated aluminum plate for capacitor case
EP3495052A4 (en) * 2016-08-02 2020-03-18 Nippon Steel Nisshin Co., Ltd. Painted metal plate and method for manufacturing same

Also Published As

Publication number Publication date
MY161076A (en) 2017-04-14
TW201343968A (en) 2013-11-01
TW201038768A (en) 2010-11-01
CN102245380A (en) 2011-11-16
TWI494472B (en) 2015-08-01
TWI424086B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
WO2010071150A1 (en) Precoated aluminum plate
RU2559455C1 (en) Profiled and coated metallic material, composite product, obtained by connection of profiled metal-coated material with moulded product of thermoplastic resin composition, and method of composite product obtaining
TWI410467B (en) Silicate-free coated metal plate
EP2116369B1 (en) Coated steel sheet and television panel made of the sheet
KR101069025B1 (en) Precoated metal sheet and process for producing the same
MX2008011452A (en) Coated steel sheet, works, panels for thin televisions and process for production of coated steel sheet.
TW202126479A (en) Packaging material for molding
JP5426824B2 (en) Pre-coated metal plate and manufacturing method thereof
JP5491754B2 (en) Pre-coated aluminum plate
JP4638538B2 (en) Pre-coated aluminum plate
JP5587015B2 (en) Pre-coated aluminum plate for molding and molded container
KR970004371B1 (en) Zinc-plated steel plate having high press formability and corrosion resistance
JP4783051B2 (en) Pre-coated aluminum plate and manufacturing method thereof
RU2618047C2 (en) Coated metallic moulding
JP5646875B2 (en) Pre-coated aluminum plate for drawing and container-shaped molded products
JP2007044922A (en) Precoated metal sheet, its manufacturing method and coated metal formed product
JP6313639B2 (en) Pre-coated aluminum plate for capacitor case
KR101306495B1 (en) Precoated aluminum sheet for forming and container-shaped formed article
JP3966520B2 (en) Pre-coated metal plate and manufacturing method thereof
JP5587016B2 (en) Pre-coated aluminum plate for molding and molded container
JP2016179545A (en) COATED Al-CONTAINING METAL SHAPED MATERIAL, COMPLEX HAVING COATED Al-CONTAINING METAL SHAPED MATERIAL AND MOLDING OF THERMOPLASTIC RESIN COMPOSITION BONDED TOGETHER, AND METHOD FOR PRODUCING THE SAME
JP2003103697A (en) Precoated metal sheet excellent in pressing moldability
WO2016092786A1 (en) Treatment liquid for shaped metallic materials
JPH07232129A (en) Precoated steel plate excelling in workability and contamination resistance at high temperature
JPH1015482A (en) Galvanized steel sheet excellent in lubricity, press formability and resistance to corrosion and coil deformation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149580.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833453

Country of ref document: EP

Kind code of ref document: A1