WO2010070991A1 - Liquid mixture separation membrane, method for changing composition of liquid mixture using same, and device for separating liquid mixture - Google Patents

Liquid mixture separation membrane, method for changing composition of liquid mixture using same, and device for separating liquid mixture Download PDF

Info

Publication number
WO2010070991A1
WO2010070991A1 PCT/JP2009/069000 JP2009069000W WO2010070991A1 WO 2010070991 A1 WO2010070991 A1 WO 2010070991A1 JP 2009069000 W JP2009069000 W JP 2009069000W WO 2010070991 A1 WO2010070991 A1 WO 2010070991A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid mixture
liquid
separation membrane
composition
membrane
Prior art date
Application number
PCT/JP2009/069000
Other languages
French (fr)
Japanese (ja)
Inventor
応明 河合
清 新木
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2010070991A1 publication Critical patent/WO2010070991A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/11Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis

Definitions

  • the present invention relates to a separation membrane for a liquid mixture capable of changing the composition of a liquid mixture containing a hydrocarbon liquid and an alcohol liquid, a method for changing the composition of a liquid mixture using the same, and a liquid mixture separation device.
  • Membrane separation technology has been used in various fields including the field of food and medicine and water treatment from the viewpoint of energy saving and low environmental load.
  • Conventional membrane separation techniques have been dominated by solid / liquid separation, for example, as used in the food field.
  • the application of membrane separation technology in ethanol production using biomass that is, enrichment of a specific component (eg water or alcohol in this case) from a liquid mixture, as represented by membrane separation of water and ethanol
  • the liquid separation operation has been performed using a membrane separation technique to change the composition of the liquid mixture.
  • Patent Documents 1 to 3 discloses a separation membrane used for changing the composition of a liquid mixture containing a paraffinic hydrocarbon liquid and an olefinic hydrocarbon liquid by a separation operation.
  • Patent Document 4 discloses a fuel supply device for an internal combustion engine that includes a component adjustment unit that adjusts a fuel component composition by separating an alcohol component from fuel, using a zeolite membrane or a mesoporous silica membrane as a separation membrane. It is disclosed.
  • Patent Document 5 uses a film made of an inorganic metal oxide and / or a film made of a polymer compound that separates a mixed fuel obtained by adding an ethanol fuel to a hydrocarbon-based fuel into a hydrocarbon-rich fuel and an ethanol-rich fuel.
  • a fuel supply device having a conventional separation membrane.
  • As the separation membrane a test result using an MFI zeolite membrane having a thickness of about 25 microns formed on a cordierite plate is disclosed.
  • the conventional separation membrane is not only satisfactory in permeation performance, but over time compared to its initial performance. It was found that the permeation performance deteriorates significantly. The cause of the deterioration is not clear, but it is presumed that the alcohols in the liquid mixture are likely to have adverse effects by reacting with the conventional separation membrane material and / or adsorbing on the pores.
  • the present invention is for a liquid mixture having a high permeation performance and a high performance durability, which is used to change the composition at the time of supplying a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid by a separation operation and the composition after permeation through a membrane. It is an object of the present invention to provide a separation membrane, a method for changing the composition of a liquid mixture using the separation membrane, and a liquid mixture separation device.
  • a separation membrane consisting essentially of carbon is suitable for separation of a liquid mixture containing a hydrocarbon liquid and an alcohol liquid. That is, according to the present invention, the following separation membrane for a liquid mixture, a method for changing the composition of a liquid mixture using the same, and a liquid mixture separation device are provided.
  • a separation membrane for a liquid mixture that is substantially composed of carbon and that can change the composition of the liquid mixture by allowing a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid to pass through.
  • [7] A method for changing a composition of a liquid mixture, wherein the composition of the liquid mixture is changed by allowing the liquid mixture to permeate through the liquid mixture separation membrane according to any one of [1] to [6].
  • the weight fraction of alcohols in the mixed vapor on the membrane permeation side of the separation membrane for liquid mixture is The method for changing the composition of the liquid mixture according to [7], wherein the composition is higher than the weight fraction of alcohols in the mixed vapor in equilibrium with the supply liquid mixture.
  • the liquid mixture separation membrane according to any one of [1] to [6] is disposed, and has a porous base material that supports the separation membrane.
  • the separation membrane for a liquid mixture According to the separation membrane for a liquid mixture, the method for changing the composition of the liquid mixture, and the liquid mixture separation device of the present invention, the components of the liquid mixture containing the hydrocarbon liquid and the alcohol liquid can be changed.
  • the separation membrane for a liquid mixture of the present invention has excellent permeation performance (selectivity and permeation flux) and high performance durability.
  • the separation membrane 11 for a liquid mixture of the present invention is a separation membrane that is substantially made of carbon and that can change the composition of the liquid mixture before and after permeation by allowing a liquid mixture containing a hydrocarbon liquid and an alcohol liquid to permeate. is there. More specifically, it is a porous carbon film substantially made of carbon disposed on the surface of the porous substrate 1.
  • “consisting essentially of carbon” means containing 50% or more of carbon in a mass ratio.
  • the composition change method of the liquid mixture of the present invention is a method of changing the composition of the liquid mixture using the liquid mixture separation membrane 11.
  • the liquid mixture that can be used in the composition changing method of the present invention includes a hydrocarbon-based liquid and an alcohol liquid.
  • the hydrocarbon liquid can be classified into paraffins, olefins, naphthenes, aromatics, etc., but n-pentane, n-hexane, n-heptane, n-octane, n-dodecane, 2-methylbutane, 1 -Pentene, 1-hexene, 1-octene, cyclopentane, cyclohexane, benzene, toluene, o-xylene, m-xylene, p-xylene and the like.
  • the alcohol liquid include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, and 2-butanol.
  • FIG. 1 shows an embodiment of a separation membrane assembly 100 in which a separation membrane 11 for liquid mixture of the present invention (also simply referred to as a separation membrane 11) is disposed.
  • a separation membrane 11 is formed on the inner wall surface 5 of the through-hole 2 formed along the longitudinal direction 60 of the monolithic porous substrate 1, and seal portions 12 are disposed on both end surfaces 4 and 4 (FIG. 3).
  • the seal portion 12 is disposed so as not to block the through-hole 2 over the entire end faces 4 and 4 of the porous substrate 1 (monolith-shaped substrate 1a).
  • the separation membrane arrangement body 100 allows the liquid mixture to flow into the through-hole 2 from the opening 51 of the through-hole 2 of the monolithic substrate 1a, and a part of the liquid mixture (passing fluid) passes through the inner wall surface 5 of the through-hole 2.
  • the liquid mixture is separated by passing through the separation membrane 11 disposed on the inside and flowing into the monolith-shaped substrate 1a and discharging it from the side surface 3 of the monolith-shaped substrate 1a.
  • the liquid mixture flows from the end surface 4 of the monolithic substrate 1 a into the monolithic substrate by the seal portion 12, and the fluid passing through the separation membrane 11 and the liquid mixture flowing from the end surface 4 are mixed together from the side surface 3. Prevent spillage.
  • the separation membrane 11 of the present invention is preferably a carbon membrane obtained by carbonizing a precursor carbon-containing layer by thermal decomposition in an oxygen inert atmosphere.
  • the thermal decomposition is preferably performed at 400 to 1000 ° C., more preferably 450 to 900 ° C.
  • the oxygen inert atmosphere refers to an atmosphere in which a precursor for forming a carbon film is not oxidized even when heated in the above temperature range. Specifically, an atmosphere such as an inert gas such as nitrogen or argon or a vacuum is used. Say.
  • the precursor for forming a carbon film by thermal decomposition is not particularly limited as long as it contains carbon, but examples thereof include polyethylene glycol, ethyl cellulose, and other resins.
  • the resin for example, a resin mainly composed of a polyimide resin, a phenol resin, a polyamideimide resin, or the like can be preferably used.
  • a main component means the component contained 50 mass% or more of the whole.
  • the thickness of the carbon film is preferably 0.05 to 5.0 ⁇ m, more preferably 0.05 to 1.0 ⁇ m. When the thickness is less than 0.05 ⁇ m, defects may occur in the carbon film, and when the thickness is more than 5.0 ⁇ m, the permeation flux when the mixture is separated may be reduced.
  • the average pore diameter of the carbon film is preferably 0.2 to 100 nm, and more preferably 0.2 to 10 nm. The average pore diameter can be measured by a gas adsorption method.
  • the porous substrate 1 can be made of any material such as metal and ceramics as long as the strength, permeation performance, corrosion resistance, etc. are sufficient.
  • Alumina particles having an average particle size of 0.3 to 10 ⁇ m are deposited on a substrate, which is a monolithic alumina porous substrate having a size of 10 to 100 ⁇ m and an average pore size of 1 to 30 ⁇ m, by filtration, and then fired to obtain a thickness of 10 to After forming a first surface dense layer having an average pore diameter of 1000 to 3 ⁇ m and further depositing alumina particles having an average particle diameter of 0.03 to 1 ⁇ m on the first surface dense layer by filtration film formation, The second surface dense layer having a thickness of 1 to 100 ⁇ m and an average pore diameter of 0.01 to 0.5 ⁇ m is preferably formed by firing.
  • the porosity is preferably 20 to 80%, and more preferably 30 to 70%.
  • the particles constituting the porous substrate 1 are preferably ceramic particles, and specifically, alumina particles, silica particles, cordierite particles, zirconia particles, mullite particles, and the like are preferable.
  • the shape of the porous substrate 1 is not particularly limited, and the shape is determined according to the purpose, such as a disk shape, a polygonal plate shape, a cylinder shape such as a cylinder or a square tube, a column shape such as a column or a prism. Can do.
  • the size of the porous substrate is not particularly limited, and the size of the porous substrate can be determined according to the purpose as long as it satisfies the required strength as a support and does not impair the permeability of the fluid to be separated. it can. Since the ratio of the membrane area to the volume is large, a monolith shape is particularly desirable. “Monolith-shaped substrate” refers to a lotus-like or honeycomb-shaped substrate having a plurality of through holes formed in the longitudinal direction 60.
  • the seal portion 12 examples include a glass seal and a metal seal.
  • a glass seal is preferable because it is easy to match the thermal expansion coefficient with the porous substrate.
  • It does not specifically limit as a physical property of the glass used for a glass seal, It is preferable to have a thermal expansion coefficient near the thermal expansion coefficient of a porous base material.
  • the glass used for the glass seal is preferably lead-free glass that does not contain lead.
  • the porous base material 1 serving as the base material for forming the separation membrane 11 is manufactured by extrusion molding and baking in the conventional manufacturing method of the porous monolithic base material 1a.
  • a glass paste is applied to both end faces 4 and 4 of the porous substrate 1 and heated at a predetermined temperature to form a seal portion 12 as shown in FIG.
  • a glass paste is applied to the surface of the porous substrate 1.
  • the part to which the glass paste is applied is not particularly limited, and gas, liquid, fine particles in the surface of the porous substrate 1 from the porous substrate 1 to the outside, or from the outside to the porous substrate 1. It is preferable to apply to the part which is going to prevent that etc. move.
  • a glass paste is applied to both end surfaces 4 and 4 of the porous substrate 1 (monolithic substrate 1a).
  • the glass material applied to the surface of the porous substrate 1 as a glass paste lead-free glass containing no lead is preferable. Further, the glass material preferably has a softening point of 600 to 1000 ° C., more preferably 700 to 1000 ° C. If the temperature is lower than 600 ° C., the glass may be melted during heating in the formation process of the separation membrane 11. If the temperature is higher than 1000 ° C., the sintering of the particles constituting the porous substrate 1 proceeds more than necessary. May end up.
  • the glass paste can be produced by dispersing powdered glass in a solvent such as water. Alternatively, the polymer may be added in addition to a solvent such as water.
  • a film forming step for forming a film made of a precursor solution for forming the separation film 11 on the porous substrate 1 is performed.
  • the method of passing the precursor solution through the through-hole 2 of the monolith-shaped substrate 1a may be any method as long as the film thickness becomes uniform, and is not particularly limited. Preferably, it can be mentioned.
  • a polyimide solution and / or a phenol solution is obtained by dissolving polyimide resin and / or phenol resin in a suitable organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • concentration of the polyimide and / or phenol in the polyimide solution and / or phenol solution is not particularly limited, but is preferably 1 to 15% by mass from the viewpoint of making the solution easy to form a film.
  • a drying process for drying the film (coat layer) made of the precursor solution is performed.
  • the film made of the precursor solution is ventilated while passing hot air from the opening 51 on one end face 4 to the opening 51 on the other end face 4.
  • a heat treatment step is performed on the polyimide film and / or the phenol film in a vacuum or in an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • a separation membrane 11 carbon membrane
  • the separation membrane 11 is obtained by carbonizing the precursor resin layer by thermal decomposition in an oxygen inert atmosphere.
  • carbonization is performed at a temperature of less than 400 ° C.
  • the polyimide membrane and / or the phenol membrane are not sufficiently carbonized, and the selectivity as a molecular sieve membrane and the permeation rate are lowered.
  • the permeation rate decreases due to shrinkage of the pore diameter.
  • the composition change method of the liquid mixture of the present invention is a method of changing the composition of the liquid mixture using the liquid mixture separation membrane 11 described above.
  • the liquid mixture may be supplied as a liquid to allow gas permeation (permeation vaporization method, pervaporation method), or the liquid may be once vaporized by heating to allow gas permeation (vapor permeation method). Further, gas may be permeated by heating until a part of the liquid is vaporized.
  • the liquid mixture separation apparatus 101 of the present invention includes a separation unit that partitions the raw material side space and the permeation side space, a supply unit that supplies the liquid mixture to the raw material side space, and a separation membrane for the liquid mixture from the permeation side space.
  • a permeation recovery unit that recovers the permeated liquid and / or the permeated gas.
  • the separation unit is constituted by a SUS module 37 having the porous substrate 1 that includes the liquid mixture separation membrane 11 described above and supports the separation membrane 11.
  • the supply unit is constituted by a raw material tank 35 and a circulation pump 36, and the permeation recovery unit is constituted by a cooling trap 38 and a vacuum pump 39 which are cooling devices.
  • the raw material tank 35 heats and holds a liquid mixture (raw material) containing a hydrocarbon-based liquid and an alcohol liquid, which is placed in the tank, at a predetermined temperature (for example, 50 ° C.).
  • the SUS module 37 has a supply liquid introduction port 37a and a supply liquid discharge port 37b so as to communicate with the raw material side space 31, and the permeate vapor recovery for discharging the permeate vapor to the outside in the permeation side space 32.
  • a mouth 37c is formed.
  • the liquid mixture in the raw material tank 35 is configured to be supplied to the raw material side space 31 of the SUS module 37 by the circulation pump 36.
  • the SUS module 37 is configured such that the monolithic base material 1a on which a carbon film is formed can be placed at predetermined positions on both outer peripheral portions thereof via o-rings 33.
  • the SUS module 37 is partitioned into the raw material side space 31 and the permeation side space 32 by the o-ring 33, the glass seal (seal part 12) and the separation membrane 11.
  • a cooling trap 38 and a vacuum pump 39 are provided on the permeate vapor recovery port 37c side of the SUS module 37, and the permeate vapor discharged from the permeate vapor recovery port 37c is collected by the liquid N 2 trap. Yes.
  • the raw material is supplied to the raw material side space 31 of the SUS module 37 by the circulation pump 36 from the supply liquid introduction port 37a, and the raw material discharged from the supply liquid discharge port 37b is returned to the raw material tank 35. Circulate.
  • the above-mentioned liquid mixture is used as a raw material. Using this liquid mixture as a supply mixture from the supply introduction port 37a, at least a part of the supply mixture is brought into contact with the membrane supply side 11a of the separation membrane in a liquid state.
  • the permeated vapor that permeates to the membrane permeation side 11b of the separation membrane 11 and is discharged from the permeated vapor recovery port 37c is recovered by the liquid N 2 trap.
  • the degree of vacuum in the transmission side space 32 is controlled by a pressure controller under a predetermined reduced pressure (for example, about 0.5 Torr). Thereby, the composition of the liquid mixture can be changed.
  • zeolite membranes and mesoporous silica membranes are composed of silicon elements, which may react with alcohols, or alcohols are materials of silicon elements such as zeolite membranes and mesoporous silica membranes. It may have an adverse effect such as adsorbing and blocking the pores.
  • the carbon membrane can solve the above problems in the separation of a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid.
  • one end face 4 of the monolith-shaped substrate 1a is closed and evacuated from the opposite end face 4 with a commercially available rotary vacuum pump. It was confirmed that the pressure reached 100 Pa or less.
  • the monolith-shaped substrate 1a on which the resin layer is formed is heat-treated at 600 ° C. for 1 hour in a nitrogen atmosphere (temperature increase rate 300 ° C./h) to carbonize the resin layer, whereby the through-hole 2 of the monolith-shaped substrate 1a.
  • a carbon membrane (separation membrane 11) formed on the inner surface was obtained.
  • the carbon content of the carbon film was measured by a fully automatic elemental analyzer, it was 70% or more.
  • the film thickness of the carbon film was about 0.5 microns from cross-sectional observation by SEM.
  • the permeability coefficient (pressure 0.1 MPa) of the membrane was determined using various single component gases. Using the apparatus shown in FIG. 7, a single component gas permeation test was performed.
  • the monolithic substrate 1a on which the carbon film is formed is placed in a predetermined position (SUS module 137) in which the monolithic base material 1a is housed in a SUS casing through o-rings 133 at both ends.
  • the SUS module 137 is partitioned into a gas supply side space 131 and a gas permeation side space 132 by the o-ring 133, the glass seal (seal part 12) and the separation membrane 11.
  • gas supply side space 131 Since the gas supply side space 131 is closed at the subsequent stage of the SUS module 137, gas is supplied from the supply gas introduction port 137 a to the supply side space 131 of the SUS module 137 with an evaluation gas cylinder connected to the supply side. The gas supplied and discharged from the supply gas discharge port 137b stays and gives a predetermined pressure to the membrane.
  • the gas supply side space 131 was 0.1 MPa in gauge pressure, and the permeation side space 132 was atmospheric pressure.
  • the gas permeation coefficient (gas permeation coefficient (nmol / Pa ⁇ m 2 ⁇ s) was measured with a dry gas meter or soap film flow meter provided on the gas recovery port 137c side for a certain time. “Nmol” indicates “10 ⁇ 9 mol.” The results are shown in FIG.6 and Table 1. A result that a gas having a molecular diameter equal to or smaller than the molecular diameter of N 2 has a large permeability coefficient was obtained.
  • ⁇ Membrane performance evaluation test, pervaporation test> Using the apparatus (mixture separation apparatus 101) shown in FIG. 5, a pervaporation test was performed, and the performance of the membrane was evaluated.
  • a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid (having a sufficient capacity for the apparatus system) placed in the raw material tank 35 was heated and held at a predetermined temperature (for example, 50 ° C.).
  • the monolithic substrate 1a on which the carbon film was formed was placed in a predetermined position (SUS module 37) in which the monolith-shaped substrate 1a was housed in a SUS casing through o-rings 33 at both ends.
  • the raw material (liquid mixture) is supplied from the supply liquid introduction port 37a to the raw material side space 31 of the SUS module 37 by the circulation pump 36, and the raw material discharged from the supply liquid discharge port 37b is returned to the raw material tank 35.
  • the linear velocity during circulation was 1.4 m per second.
  • the permeated vapor that permeated the separation membrane 11 and discharged from the permeated vapor recovery port 37c was recovered with a liquid N 2 trap.
  • the degree of vacuum in the transmission side space 32 was controlled by a pressure controller under a predetermined reduced pressure (for example, about 0.5 Torr).
  • the initial permeation flux was calculated by averaging the total recovered amount in 30 minutes after 30 minutes from the start of the test. Further, with 5 hours and 30 minutes after the start of the test as a starting point, the total recovered amount in the subsequent 30 minutes was averaged to calculate the permeation flux after 6 hours.
  • the permeation vaporization (pervaporation) test was performed with the apparatus, and the liquefied product of the permeated vapor collected in the liquid nitrogen trap was subjected to gas chromatography analysis to quantify the composition of the permeated vapor. Similar to the permeation flux, the initial vapor composition and the vapor composition after 6 hours were measured. From the above, membrane performance evaluation (separability, permeation flux) was performed.
  • Example 1 O-Xylene (reagent) was selected as the hydrocarbon-based liquid, and ethanol (reagent) was selected as the alcohol liquid, and a mixture of 50% by mass each was used as the feed liquid (raw material, liquid mixture).
  • the initial composition of the permeate side vapor was 3% by mass of o-xylene and 97% by mass of ethanol.
  • the initial permeation flux (permeated vapor amount per unit membrane area per unit time) at that time was 0.5 kg / m 2 h.
  • Example 2 The same test as in Example 1 was conducted, except that o-xylene (reagent) was selected as the hydrocarbon liquid and n-butanol (reagent) was selected as the alcohol liquid, and 50% by mass of each was used as the feed liquid. It was. As a result, the initial composition of the permeate side vapor was 9% by mass of o-xylene and 91% by mass of butanol. Further, the permeated vapor flux (permeated vapor amount) at that time was 0.3 kg / m 2 h. Since preliminary tests revealed that the n-butanol fraction of the vapor equilibrated with the feed liquid was about 56% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.3 kg / m 2 h which was the same as the initial value.
  • Example 3 The same test as in Example 1 was performed except that the temperature of the supply liquid was set to 70 ° C. As a result, the initial composition of the permeate side vapor was 3% by mass of o-xylene and 97% by mass of ethanol. Further, the initial permeation flux at that time was 0.7 kg / m 2 h. Since the preliminary test revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 75% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.7 kg / m 2 h which was the same as the initial value.
  • Example 4 N-octane (reagent) and o-xylene (reagent) were selected as the hydrocarbon-based liquid, and ethanol (reagent) was selected as the alcohol liquid, and a mixture of 33.3% by mass was used as the feed solution.
  • the initial composition of the permeate side vapor was 2% by mass of n-octane, 5% by mass of o-xylene, and 93% by mass of ethanol. Further, the initial permeation flux at that time was 0.4 kg / m 2 h.
  • Example 5 The same test as in Example 4 was performed except that the transmission side vacuum was controlled at 450 torr. As a result, the initial composition of the permeate side vapor was 3% by mass of n-octane, 8% by mass of o-xylene, and 89% by mass of ethanol. The initial permeation flux at that time was 0.05 kg / m 2 h. Since preliminary tests revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 70% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.04 kg / m 2 h.
  • Example 6 In ⁇ Production of carbon film>, a carbon film was produced in the same manner except that the thermal decomposition temperature of the resin layer was set to 450 ° C. When the carbon content of the carbon film was measured, it was 50% or more. The film thickness of the carbon film was about 1 micron.
  • Example 2 The test was performed in the same manner as in Example 1 except that the carbon films having different thermal decomposition temperatures in the production method were used. As a result, the initial composition of the permeate side vapor was 5% by mass of o-xylene and 95% by mass of ethanol. Further, the initial permeation flux at that time was 0.4 kg / m 2 h. Since the preliminary test revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 92% by mass, separation exceeding the vapor-liquid equilibrium was realized. The vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.4 kg / m 2 h.
  • Example 7 In ⁇ Production of carbon film>, a carbon film was produced in the same manner except that the raw material resin was a commercially available phenol resin (Perval S899 manufactured by Airwater) and the thermal decomposition temperature of the resin layer was 550 ° C. When the carbon content of the carbon film was measured, it was 90% or more. The film thickness of the carbon film was about 0.5 microns. The permeability coefficient (pressure 0.1 MPa) of the membrane was determined using various single component gases. The results are shown in FIG.
  • the test was performed in the same manner as in Example 4 except that the above carbon film having a different kind of raw material resin and a different thermal decomposition temperature was used.
  • the initial composition of the permeate side vapor was 1% by mass of n-octane, 2% by mass of o-xylene, and 97% by mass of ethanol.
  • the initial permeation flux at that time was 0.7 kg / m 2 h. Since preliminary tests revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 70% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.7 kg / m 2 h which was the same as the initial value.
  • the obtained seeding sol is placed in a stainless steel 300 ml pressure vessel in which a fluororesin inner cylinder is disposed, and the monolith-shaped substrate having a diameter of 30 mm and a length of 160 mm is immersed in the sol for 110 hours at 110 ° C. Reacted.
  • the support after the reaction was dried at 80 ° C. after boiling and washing. It was confirmed by X-ray diffraction of the crystal particles after the reaction that MFI-type zeolite was deposited and present on the inner surface of the through-holes of the monolithic substrate.
  • MFI-type zeolite membrane formed on the inner surface of the through straight hole of the monolith-shaped substrate was obtained.
  • the thickness of the MFI zeolite membrane was about 12 microns.
  • the initial permeation flux at that time was 0.03 kg / m 2 h. Further, after 6 hours, the vapor composition was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.01 kg / m 2 h.
  • Comparative Example 2 (MFI zeolite membrane)
  • o-xylene (reagent) was selected as the hydrocarbon liquid
  • n-butanol (reagent) was selected as the alcohol liquid
  • 50% by mass of each was used as the feed liquid. It was.
  • the initial composition of the permeate side vapor was 51% by mass of o-xylene and 49% by mass of n-butanol.
  • the initial permeation flux at that time was 0.02 kg / m 2 h.
  • the vapor composition after 6 hours was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.004 kg / m 2 h.
  • the initial composition of the permeate side vapor was n-octane 36 mass%, o-xylene 39 mass%, and ethanol 25 mass%. Further, the initial permeation flux at that time was 0.08 kg / m 2 h. However, the vapor composition after 6 hours was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.01 kg / m 2 h.
  • Example 4 (mesoporous silica film) Based on the manufacturing method disclosed in Example 3 of WO2007 / 094267, silica sol was applied and heat-treated to obtain a mesoporous silica film formed on the inner surface of the through-hole of the monolithic substrate.
  • the mesoporous silica film had a thickness of about 0.5 microns.
  • the initial composition of the permeate side vapor was 48 mass% n-octane, 49 mass% o-xylene, and 3 mass% ethanol.
  • the initial permeation flux at that time was 0.02 kg / m 2 h.
  • the amount of recovered permeated steam decreased sharply during the subsequent test, and a recovered amount sufficient to measure the composition and permeated amount was not obtained after 6 hours.
  • the separation membrane for liquid mixture, the method for changing the composition of the liquid mixture, and the liquid mixture separation device of the present invention can be used to change the components of the liquid mixture including hydrocarbon liquid and alcohol liquid.
  • 1 porous substrate, 1a: monolith-shaped substrate, 2: through hole (through straight hole), 3: side surface, 4: end surface, 5: inner wall surface, 11: separation membrane, 11a: membrane supply side, 11b: Membrane permeation side, 12: seal part, 31: raw material side space, 32: permeation side space, 33: o-ring, 35: raw material tank, 36: circulation pump, 37: module made by SUS, 37a: supply liquid inlet, 37b: Supply liquid discharge port, 37c: Permeate vapor recovery port, 38: Cooling trap, 39: Vacuum pump, 51: Opening, 60: Longitudinal direction, 100: Separation membrane arrangement, 101: Mixture separation device, 131: Gas supply side space, 132: permeation side space, 133: o-ring, 137: SUS module, 137a: supply gas introduction port, 137b: supply gas discharge port, 137c: gas recovery port.

Abstract

A liquid mixture separation membrane, which has high permeation performance and high performance durability, and is used for changing the composition of a liquid mixture after being permeated therethrough by separating operations, from the composition of the liquid mixture when supplied thereto, said liquid mixture containing a hydrocarbon liquid and an alcohol liquid.  A method for changing the composition of a liquid mixture, said method using the separation membrane.  A device for separating a liquid mixture.  The liquid mixture separation membrane is substantially composed of carbon, and is capable of changing the composition of a liquid mixture, which contains a hydrocarbon liquid and an alcohol liquid, by having the liquid mixture permeate therethrough.  Specifically, the liquid mixture separation membrane is a carbon membrane which is obtained by carbonizing a resin layer, which serves as the precursor, by thermal decomposition in an oxygen inert atmosphere.

Description

液体混合物用分離膜、それを用いた液体混合物の組成変化方法、及び液体混合物分離装置Separation membrane for liquid mixture, method for changing composition of liquid mixture using the same, and liquid mixture separation device
 本発明は、炭化水素系液体とアルコール類液体を含む液体混合物の組成を変化させることが可能な液体混合物用分離膜、それを用いた液体混合物の組成変化方法、及び液体混合物分離装置に関する。 The present invention relates to a separation membrane for a liquid mixture capable of changing the composition of a liquid mixture containing a hydrocarbon liquid and an alcohol liquid, a method for changing the composition of a liquid mixture using the same, and a liquid mixture separation device.
 膜分離技術は、省エネルギーおよび低環境負荷の観点から、食薬品分野や水処理分野をはじめとした様々な分野で利用されてきている。従来の膜分離技術は、例えば食品分野で用いられてきたように、固体/液体分離が多くを占めてきた。しかし、近年、バイオマスを利用したエタノール製造における膜分離技術の応用、すなわち水とエタノールとの膜分離に代表されるように、液体混合物からある特定の成分(例えばこの場合水又はアルコール)を富化した液体の分離操作を膜分離技術を用いて行い、液体混合物の組成を変化させることが行われるようになってきた。 Membrane separation technology has been used in various fields including the field of food and medicine and water treatment from the viewpoint of energy saving and low environmental load. Conventional membrane separation techniques have been dominated by solid / liquid separation, for example, as used in the food field. However, in recent years, the application of membrane separation technology in ethanol production using biomass, that is, enrichment of a specific component (eg water or alcohol in this case) from a liquid mixture, as represented by membrane separation of water and ethanol The liquid separation operation has been performed using a membrane separation technique to change the composition of the liquid mixture.
 膜分離技術を用いた液体混合物の分離操作に関しては、上記のように水系を中心として発展してきたが、近年、非水系分野、例えば石油精製プロセスや石油化学工業分野への適用が研究されてきている(例えば、特許文献1~3)。例えば、特許文献2には分離操作によりパラフィン系炭化水素液体とオレフィン系炭化水素液体を含む液体混合物の組成を変化させるのに用いる分離膜が示されている。 As described above, the separation operation of the liquid mixture using the membrane separation technology has been developed mainly in the aqueous system, but in recent years, the application to the non-aqueous field such as the oil refining process and the petrochemical industry has been studied. (For example, Patent Documents 1 to 3). For example, Patent Document 2 discloses a separation membrane used for changing the composition of a liquid mixture containing a paraffinic hydrocarbon liquid and an olefinic hydrocarbon liquid by a separation operation.
 膜分離技術に関しては、このような炭化水素系同士の液体混合物の分離以外に、最近は、特に燃料分野における内燃機関の始動性の向上や高効率燃焼・クリーン化のために、炭化水素系液体とアルコール類液体を含む液体混合物の分離への適用の試みが開示されている(例えば、特許文献4~6)。 Regarding membrane separation technology, in addition to the separation of liquid mixtures between hydrocarbons, recently, hydrocarbon liquids have been developed to improve the startability of internal combustion engines in the field of fuels and to achieve high efficiency combustion and cleanliness. Attempts have been made to apply it to the separation of liquid mixtures containing alcohol and alcohol liquids (for example, Patent Documents 4 to 6).
 特許文献4には、ゼオライト膜またはメソポーラスシリカ膜を分離膜とする、燃料の中からアルコール成分を分離することにより燃料成分組成を調整する成分調整部を備えている、内燃機関の燃料供給装置が開示されている。 Patent Document 4 discloses a fuel supply device for an internal combustion engine that includes a component adjustment unit that adjusts a fuel component composition by separating an alcohol component from fuel, using a zeolite membrane or a mesoporous silica membrane as a separation membrane. It is disclosed.
 特許文献5には、炭化水素系燃料にエタノール燃料を添加した混合燃料を、炭化水素リッチ燃料とエタノールリッチ燃料に分離する、無機金属酸化物からなる膜及び/又は高分子化合物からなる膜を用いた分離膜を備えた燃料供給装置が開示されている。分離膜としては、特に、コージェライト板上に形成した厚み約25ミクロンのMFIゼオライト膜を用いた試験結果が開示されている。 Patent Document 5 uses a film made of an inorganic metal oxide and / or a film made of a polymer compound that separates a mixed fuel obtained by adding an ethanol fuel to a hydrocarbon-based fuel into a hydrocarbon-rich fuel and an ethanol-rich fuel. There has been disclosed a fuel supply device having a conventional separation membrane. As the separation membrane, a test result using an MFI zeolite membrane having a thickness of about 25 microns formed on a cordierite plate is disclosed.
特開平10-180046号公報Japanese Patent Laid-Open No. 10-180046 特開平10-180057号公報Japanese Patent Laid-Open No. 10-180057 特開2000-157843号公報JP 2000-157843 A 特開2008-106623号公報JP 2008-106623 A 特開2007-255226号公報JP 2007-255226 A 特表2008-536043号公報Special table 2008-536043
 しかし、これらの分離膜は、その選択性と透過流束(透過液量)という透過性能が満足いくものでなかった。 However, these separation membranes did not satisfy the permeation performance of their selectivity and permeation flux (permeate amount).
 本発明者らが、透過性能の優れた分離膜を研究、開発していく際において、上記従来の分離膜は透過性能が満足いくものではないばかりか、その初期性能に比べ、時間が経つとその透過性能が著しく劣化することを見出した。その劣化原因は定かではないが、液体混合物中のアルコール類が従来の分離膜の材料と反応及び/または細孔に吸着して悪影響を与えている可能性が高いと推察された。 When the inventors researched and developed a separation membrane with excellent permeation performance, the conventional separation membrane is not only satisfactory in permeation performance, but over time compared to its initial performance. It was found that the permeation performance deteriorates significantly. The cause of the deterioration is not clear, but it is presumed that the alcohols in the liquid mixture are likely to have adverse effects by reacting with the conventional separation membrane material and / or adsorbing on the pores.
 本発明は、分離操作により炭化水素系液体とアルコール類液体を含む液体混合物の供給時の組成と膜透過後の組成とを変化させるのに用いる、透過性能が高く性能耐久性の高い液体混合物用分離膜、それを用いた液体混合物の組成変化方法、及び液体混合物分離装置を提供することを目的とする。 The present invention is for a liquid mixture having a high permeation performance and a high performance durability, which is used to change the composition at the time of supplying a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid by a separation operation and the composition after permeation through a membrane. It is an object of the present invention to provide a separation membrane, a method for changing the composition of a liquid mixture using the separation membrane, and a liquid mixture separation device.
 上記課題を解決するために、本発明者らが鋭意努力した結果、実質的に炭素からなる分離膜が炭化水素系液体とアルコール類液体を含む液体混合物の分離に好適であることを見出した。すなわち、本発明によれば、以下の液体混合物用分離膜、それを用いた液体混合物の組成変化方法、及び液体混合物分離装置が提供される。 As a result of diligent efforts by the present inventors to solve the above problems, it has been found that a separation membrane consisting essentially of carbon is suitable for separation of a liquid mixture containing a hydrocarbon liquid and an alcohol liquid. That is, according to the present invention, the following separation membrane for a liquid mixture, a method for changing the composition of a liquid mixture using the same, and a liquid mixture separation device are provided.
[1] 実質的に炭素からなり、炭化水素系液体とアルコール類液体を含む液体混合物を透過させることにより、前記液体混合物の組成を変化可能な液体混合物用分離膜。 [1] A separation membrane for a liquid mixture that is substantially composed of carbon and that can change the composition of the liquid mixture by allowing a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid to pass through.
[2] 当該液体混合物用分離膜は、炭素を質量比において50%以上含む前記[1]に記載の液体混合物用分離膜。 [2] The separation membrane for liquid mixture according to [1], wherein the separation membrane for liquid mixture contains 50% or more of carbon in a mass ratio.
[3] 前駆体である炭素含有層を酸素不活性雰囲気下で熱分解することにより得られる炭素膜であり、前記炭化水素系液体と前記アルコール類液体を含む前記液体混合物を透過させることにより、前記液体混合物の組成を変化可能な前記[1]又は[2]に記載の液体混合物用分離膜。 [3] A carbon film obtained by thermally decomposing a carbon-containing layer as a precursor in an oxygen inert atmosphere, and allowing the liquid mixture containing the hydrocarbon-based liquid and the alcohol liquid to pass through, The separation membrane for liquid mixture according to [1] or [2], wherein the composition of the liquid mixture can be changed.
[4] 前記前駆体である前記炭素含有層が樹脂層である前記[3]に記載の液体混合物用分離膜。 [4] The separation membrane for liquid mixture according to [3], wherein the carbon-containing layer that is the precursor is a resin layer.
[5] 前記樹脂層を形成する樹脂が、ポリイミド系樹脂とフェノール系樹脂からなる群から選ばれる少なくとも1種である前記[4]に記載の液体混合物用分離膜。 [5] The separation membrane for liquid mixture according to [4], wherein the resin forming the resin layer is at least one selected from the group consisting of a polyimide resin and a phenol resin.
[6] 当該液体混合物用分離膜を支持する多孔質支持体上に形成されている前記[1]~[5]のいずれかに記載の液体混合物用分離膜。 [6] The separation membrane for liquid mixture according to any one of [1] to [5], which is formed on a porous support that supports the separation membrane for liquid mixture.
[7] 前記[1]~[6]のいずれかに記載の液体混合物用分離膜に前記液体混合物を透過させることにより、前記液体混合物の組成を変化させる液体混合物の組成変化方法。 [7] A method for changing a composition of a liquid mixture, wherein the composition of the liquid mixture is changed by allowing the liquid mixture to permeate through the liquid mixture separation membrane according to any one of [1] to [6].
[8] 前記液体混合物を供給液体混合物として前記液体混合物用分離膜に膜供給側から透過させた場合に、前記液体混合物用分離膜の膜透過側の混合蒸気中のアルコール類の重量分率が、前記供給液体混合物と平衡する混合蒸気中のアルコール類の重量分率より高い前記[7]に記載の液体混合物の組成変化方法。 [8] When the liquid mixture is passed through the separation membrane for liquid mixture from the membrane supply side as a supply liquid mixture, the weight fraction of alcohols in the mixed vapor on the membrane permeation side of the separation membrane for liquid mixture is The method for changing the composition of the liquid mixture according to [7], wherein the composition is higher than the weight fraction of alcohols in the mixed vapor in equilibrium with the supply liquid mixture.
[9] 前記[1]~[6]のいずれかに記載の液体混合物用分離膜が配設され、これを支持する多孔質基材を有し、前記多孔質基材によって原料側空間と透過側空間とを区画する分離部と、前記原料側空間に前記液体混合物を供給する供給部と、前記透過側空間から前記液体混合物用分離膜を透過した透過液および/又は透過ガスを回収する透過回収部と、を含む液体混合物分離装置。 [9] The liquid mixture separation membrane according to any one of [1] to [6] is disposed, and has a porous base material that supports the separation membrane. A separation unit that divides the side space, a supply unit that supplies the liquid mixture to the raw material side space, and a permeate that collects the permeated liquid and / or the permeated gas that has permeated the liquid mixture separation membrane from the permeate side space. A liquid mixture separator including a recovery unit.
[10] 前記透過回収部は、前記透過ガスを冷却液化する冷却装置を備える前記[9]に記載の液体混合物分離装置。 [10] The liquid mixture separation device according to [9], wherein the permeation recovery unit includes a cooling device that liquefies the permeated gas.
 本発明の液体混合物用分離膜、液体混合物の組成変化方法、液体混合物分離装置によれば、炭化水素系液体とアルコール類液体を含む液体混合物の成分を変化させることができる。本発明の液体混合物用分離膜は、透過性能(選択性と透過流束)が優れており、かつ性能耐久性が高い。 According to the separation membrane for a liquid mixture, the method for changing the composition of the liquid mixture, and the liquid mixture separation device of the present invention, the components of the liquid mixture containing the hydrocarbon liquid and the alcohol liquid can be changed. The separation membrane for a liquid mixture of the present invention has excellent permeation performance (selectivity and permeation flux) and high performance durability.
本発明の液体混合物用分離膜の配設された分離膜配設体の一実施形態を示す図である。It is a figure which shows one Embodiment of the separation membrane arrangement | positioning body by which the separation membrane for liquid mixtures of this invention was arrange | positioned. 分離膜を配設する前の多孔質基材の端面及び外周面近傍の断面図である。It is sectional drawing of the end surface of a porous base material before arrangement | positioning a separation membrane, and outer peripheral surface vicinity. 分離膜を配設した多孔質基材の端面及び外周面近傍の断面図である。It is sectional drawing of the end surface of the porous base material which arrange | positioned the separation membrane, and outer peripheral surface vicinity. 本発明の分離膜が配設された多孔質基材を備えるSUS製モジュールを示す断面図である。It is sectional drawing which shows the module made from SUS provided with the porous base material by which the separation membrane of this invention was arrange | positioned. 液体混合物分離装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of a liquid mixture separator. 分離膜の透過係数を示すグラフである。It is a graph which shows the permeability coefficient of a separation membrane. 単成分ガスの透過試験に用いた装置を示す模式図である。It is a schematic diagram which shows the apparatus used for the permeation | transmission test of single component gas.
 以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.
 本発明の液体混合物用分離膜11は、実質的に炭素からなり、炭化水素系液体とアルコール類液体を含む液体混合物を透過させることにより、透過前後で液体混合物の組成を変化可能な分離膜である。より具体的には、多孔質基材1の表面に配設された実質的に炭素からなる多孔質の炭素膜である。本明細書において、「実質的に炭素からなる」とは、炭素を質量比において50%以上含むことを意味する。 The separation membrane 11 for a liquid mixture of the present invention is a separation membrane that is substantially made of carbon and that can change the composition of the liquid mixture before and after permeation by allowing a liquid mixture containing a hydrocarbon liquid and an alcohol liquid to permeate. is there. More specifically, it is a porous carbon film substantially made of carbon disposed on the surface of the porous substrate 1. In this specification, “consisting essentially of carbon” means containing 50% or more of carbon in a mass ratio.
 本発明の液体混合物の組成変化方法は、この液体混合物用分離膜11を用いて、液体混合物の組成を変化させる方法である。本発明の組成変化方法に用いることのできる液体混合物は、炭化水素系液体とアルコール類液体を含むものである。炭化水素系液体としては、パラフィン類、オレフィン類、ナフテン類、芳香族類などに分類できるが、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ドデカン、2-メチルブタン、1-ペンテン、1-ヘキセン、1-オクテン、シクロペンタン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン等が挙げられる。また、アルコール類液体としては、メタノール、エタノール、1-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール等が挙げられる。 The composition change method of the liquid mixture of the present invention is a method of changing the composition of the liquid mixture using the liquid mixture separation membrane 11. The liquid mixture that can be used in the composition changing method of the present invention includes a hydrocarbon-based liquid and an alcohol liquid. The hydrocarbon liquid can be classified into paraffins, olefins, naphthenes, aromatics, etc., but n-pentane, n-hexane, n-heptane, n-octane, n-dodecane, 2-methylbutane, 1 -Pentene, 1-hexene, 1-octene, cyclopentane, cyclohexane, benzene, toluene, o-xylene, m-xylene, p-xylene and the like. Examples of the alcohol liquid include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, and 2-butanol.
 図1に、本発明の液体混合物用分離膜11(単に、分離膜11ともいう)の配設された分離膜配設体100の一実施形態を示す。モノリス形状の多孔質基材1の長手方向60に沿って形成された貫通孔2の内壁面5に分離膜11が形成され、両端面4,4にシール部12が配設されている(図3参照)。シール部12は、多孔質基材1(モノリス形状基材1a)の両端面4,4全体に貫通孔2を塞がないようにして配設されている。 FIG. 1 shows an embodiment of a separation membrane assembly 100 in which a separation membrane 11 for liquid mixture of the present invention (also simply referred to as a separation membrane 11) is disposed. A separation membrane 11 is formed on the inner wall surface 5 of the through-hole 2 formed along the longitudinal direction 60 of the monolithic porous substrate 1, and seal portions 12 are disposed on both end surfaces 4 and 4 (FIG. 3). The seal portion 12 is disposed so as not to block the through-hole 2 over the entire end faces 4 and 4 of the porous substrate 1 (monolith-shaped substrate 1a).
 分離膜配設体100は、液体混合物をモノリス形状基材1aの貫通孔2の開口部51から貫通孔2内に流入させ、液体混合物の一部(通過流体)を貫通孔2の内壁面5に配設された分離膜11を通過させてモノリス形状基材1a内部に流入させ、モノリス形状基材1aの側面3から外部に排出することにより液体混合物を分離するものである。シール部12により、液体混合物がモノリス形状基材1aの端面4からモノリス形状基材内部に流入して、分離膜11を通過した通過流体と端面4から流入した液体混合物とが混ざって側面3から流出することを防止する。 The separation membrane arrangement body 100 allows the liquid mixture to flow into the through-hole 2 from the opening 51 of the through-hole 2 of the monolithic substrate 1a, and a part of the liquid mixture (passing fluid) passes through the inner wall surface 5 of the through-hole 2. The liquid mixture is separated by passing through the separation membrane 11 disposed on the inside and flowing into the monolith-shaped substrate 1a and discharging it from the side surface 3 of the monolith-shaped substrate 1a. The liquid mixture flows from the end surface 4 of the monolithic substrate 1 a into the monolithic substrate by the seal portion 12, and the fluid passing through the separation membrane 11 and the liquid mixture flowing from the end surface 4 are mixed together from the side surface 3. Prevent spillage.
 本発明の分離膜11は、前駆体である炭素含有層を酸素不活性雰囲気下で熱分解することにより炭化して得られる炭素膜であることが好ましい。また、熱分解は、400~1000℃で行うことが好ましく、450~900℃で行うことがさらに好ましい。酸素不活性雰囲気は、炭素膜とするための前駆体が、上記温度範囲で加熱されても酸化されない雰囲気をいい、具体的には、窒素、アルゴン等の不活性ガス中や真空中等の雰囲気をいう。 The separation membrane 11 of the present invention is preferably a carbon membrane obtained by carbonizing a precursor carbon-containing layer by thermal decomposition in an oxygen inert atmosphere. The thermal decomposition is preferably performed at 400 to 1000 ° C., more preferably 450 to 900 ° C. The oxygen inert atmosphere refers to an atmosphere in which a precursor for forming a carbon film is not oxidized even when heated in the above temperature range. Specifically, an atmosphere such as an inert gas such as nitrogen or argon or a vacuum is used. Say.
 熱分解により炭素膜とするための前駆体としては、炭素を含有する限りにおいて特に限定されるものではないが、ポリエチレングリコール、エチルセルロース、その他樹脂等を例示できる。樹脂においては、例えばポリイミド系樹脂、フェノール系樹脂、ポリアミドイミド樹脂等を主成分とするものを好適に用いることができる。ここで、主成分とは、全体の50質量%以上含有される成分をいう。 The precursor for forming a carbon film by thermal decomposition is not particularly limited as long as it contains carbon, but examples thereof include polyethylene glycol, ethyl cellulose, and other resins. As the resin, for example, a resin mainly composed of a polyimide resin, a phenol resin, a polyamideimide resin, or the like can be preferably used. Here, a main component means the component contained 50 mass% or more of the whole.
 炭素膜の厚さは、0.05~5.0μmであることが好ましく、0.05~1.0μmであることが更に好ましい。0.05μmより薄いと、炭素膜に欠陥が生じることがあり、5.0μmより厚いと混合物を分離する場合の透過流束が低下することがある。炭素膜の平均細孔径は、0.2~100nmであることが好ましく、0.2~10nmであることが更に好ましい。平均細孔径は、ガス吸着法により測定することが可能である。 The thickness of the carbon film is preferably 0.05 to 5.0 μm, more preferably 0.05 to 1.0 μm. When the thickness is less than 0.05 μm, defects may occur in the carbon film, and when the thickness is more than 5.0 μm, the permeation flux when the mixture is separated may be reduced. The average pore diameter of the carbon film is preferably 0.2 to 100 nm, and more preferably 0.2 to 10 nm. The average pore diameter can be measured by a gas adsorption method.
 本実施形態の分離膜配設体100において、多孔質基材1は、強度、透過性能、耐食性などが十分であれば材質を問わず、金属やセラミックスが使え、特に限定されないが、平均粒子径10~100μm、平均細孔径1~30μmのモノリス形状のアルミナ多孔質基材である基材上に平均粒子径0.3~10μmのアルミナ粒子をろ過製膜により堆積後、焼成し、厚み10~1000μm、平均細孔径0.1~3μmの第一表面緻密層を形成し、さらにその第一表面緻密層の上に更に平均粒子径0.03~1μmのアルミナ粒子をろ過製膜により堆積後、焼成して厚み1~100μm、平均細孔径0.01~0.5μmの第二表面緻密層を形成したものであることが好ましい。また、気孔率は、20~80%であることが好ましく、30~70%であることが更に好ましい。多孔質基材1を構成する粒子としては、セラミックス粒子が好ましく、具体的には、アルミナ粒子、シリカ粒子、コージェライト粒子、ジルコニア粒子、ムライト粒子等が好ましい。 In the separation membrane assembly 100 of the present embodiment, the porous substrate 1 can be made of any material such as metal and ceramics as long as the strength, permeation performance, corrosion resistance, etc. are sufficient. Alumina particles having an average particle size of 0.3 to 10 μm are deposited on a substrate, which is a monolithic alumina porous substrate having a size of 10 to 100 μm and an average pore size of 1 to 30 μm, by filtration, and then fired to obtain a thickness of 10 to After forming a first surface dense layer having an average pore diameter of 1000 to 3 μm and further depositing alumina particles having an average particle diameter of 0.03 to 1 μm on the first surface dense layer by filtration film formation, The second surface dense layer having a thickness of 1 to 100 μm and an average pore diameter of 0.01 to 0.5 μm is preferably formed by firing. Further, the porosity is preferably 20 to 80%, and more preferably 30 to 70%. The particles constituting the porous substrate 1 are preferably ceramic particles, and specifically, alumina particles, silica particles, cordierite particles, zirconia particles, mullite particles, and the like are preferable.
 多孔質基材1の形状は、特に限定されず、円板状、多角形板状、円筒、角筒等の筒状、円柱、角柱等の柱状等、目的に合わせてその形状を決定することができる。また、多孔質基材の大きさは、特に限定されず、支持体として必要な強度を満たすとともに、分離する流体の透過性を損なわない範囲で、目的に合わせてその大きさを決定することができる。容積に対する膜面積比率が大きいことから、特にモノリス形状であることが望ましい。「モノリス形状基材」とは、長手方向60に複数の貫通孔が形成されたレンコン状あるいはハニカム状の基材を言う。 The shape of the porous substrate 1 is not particularly limited, and the shape is determined according to the purpose, such as a disk shape, a polygonal plate shape, a cylinder shape such as a cylinder or a square tube, a column shape such as a column or a prism. Can do. The size of the porous substrate is not particularly limited, and the size of the porous substrate can be determined according to the purpose as long as it satisfies the required strength as a support and does not impair the permeability of the fluid to be separated. it can. Since the ratio of the membrane area to the volume is large, a monolith shape is particularly desirable. “Monolith-shaped substrate” refers to a lotus-like or honeycomb-shaped substrate having a plurality of through holes formed in the longitudinal direction 60.
 シール部12としては、ガラスシール、金属シールを挙げることができ、これらの中でも、多孔質基材との熱膨張係数を合わせやすい点に優れることより、ガラスシールが好ましい。ガラスシールに用いるガラスの物性としては、特に限定されないが、多孔質基材の熱膨張係数に近い熱膨張係数を有することが好ましい。また、ガラスシールに用いるガラスとしては、鉛を含まない無鉛ガラス等が好ましい。 Examples of the seal portion 12 include a glass seal and a metal seal. Among these, a glass seal is preferable because it is easy to match the thermal expansion coefficient with the porous substrate. Although it does not specifically limit as a physical property of the glass used for a glass seal, It is preferable to have a thermal expansion coefficient near the thermal expansion coefficient of a porous base material. The glass used for the glass seal is preferably lead-free glass that does not contain lead.
 次に、本発明の液体混合物用分離膜11の製造方法について説明する。あらかじめ、分離膜11を形成する基材となる多孔質基材1を、従来の多孔質のモノリス形状基材1aの製造方法の押出成形および焼成により製造する。 Next, a method for producing the separation membrane 11 for liquid mixture of the present invention will be described. In advance, the porous base material 1 serving as the base material for forming the separation membrane 11 is manufactured by extrusion molding and baking in the conventional manufacturing method of the porous monolithic base material 1a.
 次に、多孔質基材1の両端面4,4にガラスペーストを塗布し、所定温度で加熱することにより、図2に示すようなシール部12を形成する。まず、多孔質基材1の表面に、ガラスペーストを塗布する。ガラスペーストを塗布する部分は、特に限定されず、多孔質基材1の表面の中で、多孔質基材1内から外部に、又は外部から多孔質基材1内に、ガス、液体、微粒子等が移動することを防止しようとする部分に塗布することが好ましい。本実施形態においては、多孔質基材1(モノリス形状基材1a)の両端面4,4にガラスペーストを塗布する。 Next, a glass paste is applied to both end faces 4 and 4 of the porous substrate 1 and heated at a predetermined temperature to form a seal portion 12 as shown in FIG. First, a glass paste is applied to the surface of the porous substrate 1. The part to which the glass paste is applied is not particularly limited, and gas, liquid, fine particles in the surface of the porous substrate 1 from the porous substrate 1 to the outside, or from the outside to the porous substrate 1. It is preferable to apply to the part which is going to prevent that etc. move. In the present embodiment, a glass paste is applied to both end surfaces 4 and 4 of the porous substrate 1 (monolithic substrate 1a).
 ガラスペーストとして多孔質基材1の表面に塗布するガラス材料としては、鉛を含まない無鉛ガラスが好ましい。また、ガラス材料としては、軟化点が600~1000℃であることが好ましく、700~1000℃であることが更に好ましい。600℃より低いと、分離膜11の形成工程での加熱時にガラスが溶融してしまうことがあり、1000℃より高いと、多孔質基材1を構成する粒子の焼結を必要以上に進行させてしまうことがある。ガラスペーストは粉末状のガラスを水等の溶媒に分散させることにより作製することができる。また、水等の溶媒に加えて高分子等を添加して作製しても良い。 As the glass material applied to the surface of the porous substrate 1 as a glass paste, lead-free glass containing no lead is preferable. Further, the glass material preferably has a softening point of 600 to 1000 ° C., more preferably 700 to 1000 ° C. If the temperature is lower than 600 ° C., the glass may be melted during heating in the formation process of the separation membrane 11. If the temperature is higher than 1000 ° C., the sintering of the particles constituting the porous substrate 1 proceeds more than necessary. May end up. The glass paste can be produced by dispersing powdered glass in a solvent such as water. Alternatively, the polymer may be added in addition to a solvent such as water.
 次に、多孔質基材1に対して分離膜11とするための前駆体溶液からなる膜を成膜する成膜工程を行う。成膜工程において、モノリス形状基材1aの貫通孔2内に前駆体溶液を通す方法としては膜厚が均一となる方法であれば良く、特に限定するものではないが、ディップ成膜の方法を好適に挙げることができる。 Next, a film forming step for forming a film made of a precursor solution for forming the separation film 11 on the porous substrate 1 is performed. In the film forming step, the method of passing the precursor solution through the through-hole 2 of the monolith-shaped substrate 1a may be any method as long as the film thickness becomes uniform, and is not particularly limited. Preferably, it can be mentioned.
 本発明の一実施形態における成膜工程において成膜に使用する分離膜とするための前駆体溶液としては、ポリイミド溶液および/又はフェノール溶液を用いることが好ましい。ポリイミド溶液および/又はフェノール溶液は、ポリイミド樹脂および/又はフェノール樹脂を、N-メチル-2-ピロリドン(NMP)等の適当な有機溶媒に溶解させたものである。ポリイミド溶液および/又はフェノール溶液中のポリイミドおよび/又はフェノールの濃度は、特に制限はないが、溶液を成膜しやすい粘度とする観点から、1~15質量%とすることが好ましい。 It is preferable to use a polyimide solution and / or a phenol solution as a precursor solution for forming a separation membrane used for film formation in the film formation step in one embodiment of the present invention. The polyimide solution and / or phenol solution is obtained by dissolving polyimide resin and / or phenol resin in a suitable organic solvent such as N-methyl-2-pyrrolidone (NMP). The concentration of the polyimide and / or phenol in the polyimide solution and / or phenol solution is not particularly limited, but is preferably 1 to 15% by mass from the viewpoint of making the solution easy to form a film.
 次に、前駆体溶液からなる膜(コート層)を乾燥させる乾燥工程を行う。乾燥工程では、例えば、一方の端面4の開口部51から他方の端面4の開口部51へと熱風を通過させながら前駆体溶液からなる膜の通風乾燥を行う。 Next, a drying process for drying the film (coat layer) made of the precursor solution is performed. In the drying step, for example, the film made of the precursor solution is ventilated while passing hot air from the opening 51 on one end face 4 to the opening 51 on the other end face 4.
 乾燥工程の後、ポリイミド膜および/又はフェノール膜に対し、真空、あるいは窒素雰囲気やアルゴン雰囲気等の不活性雰囲気下において、加熱処理工程(炭化)を行う。400~1000℃程度の温度範囲で熱分解することによって炭化させることにより、図3に示すような分離膜11(炭素膜)となる。つまり、分離膜11は、前駆体である樹脂層を酸素不活性雰囲気下で熱分解することにより炭化して得られる。一般に、400℃未満の温度で炭化を行うと、ポリイミド膜および/又はフェノール膜が十分に炭化されず、分子ふるい膜としての選択性や透過速度が低下する。一方、1000℃を超える温度で炭化を行うと、細孔径が収縮することにより透過速度が減少する。 After the drying step, a heat treatment step (carbonization) is performed on the polyimide film and / or the phenol film in a vacuum or in an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere. By carbonizing by thermal decomposition in a temperature range of about 400 to 1000 ° C., a separation membrane 11 (carbon membrane) as shown in FIG. 3 is obtained. That is, the separation membrane 11 is obtained by carbonizing the precursor resin layer by thermal decomposition in an oxygen inert atmosphere. In general, when carbonization is performed at a temperature of less than 400 ° C., the polyimide membrane and / or the phenol membrane are not sufficiently carbonized, and the selectivity as a molecular sieve membrane and the permeation rate are lowered. On the other hand, when carbonization is performed at a temperature exceeding 1000 ° C., the permeation rate decreases due to shrinkage of the pore diameter.
 本発明の液体混合物の組成変化方法は、上述の液体混合物用分離膜11を用いて、液体混合物の組成を変化させる方法である。液体混合物を液体で供給してガス透過させる方法(浸透気化法、パーベーパレション法)でも良いし、液体を加熱により一旦全て気化して、ガス透過(ベーパパーミエーション法)させても良い。また、液体の一部が気化する状態まで加熱してガス透過させても良い。 The composition change method of the liquid mixture of the present invention is a method of changing the composition of the liquid mixture using the liquid mixture separation membrane 11 described above. The liquid mixture may be supplied as a liquid to allow gas permeation (permeation vaporization method, pervaporation method), or the liquid may be once vaporized by heating to allow gas permeation (vapor permeation method). Further, gas may be permeated by heating until a part of the liquid is vaporized.
 具体的には、図4及び図5に示すような混合物分離装置101を用いて行うことができる。すなわち、本発明の液体混合物分離装置101は、原料側空間と透過側空間とを区画する分離部と、原料側空間に液体混合物を供給する供給部と、透過側空間から液体混合物用分離膜を透過した透過液および/又は透過ガスを回収する透過回収部と、を含む。分離部は、上述の液体混合物用分離膜11を備えてこれを支持する多孔質基材1を有するSUS製モジュール37によって構成されている。また、供給部は、原料タンク35、循環ポンプ36によって構成され、透過回収部は、冷却装置である冷却トラップ38、真空ポンプ39によって構成されている。 Specifically, it can be performed using a mixture separation apparatus 101 as shown in FIGS. That is, the liquid mixture separation apparatus 101 of the present invention includes a separation unit that partitions the raw material side space and the permeation side space, a supply unit that supplies the liquid mixture to the raw material side space, and a separation membrane for the liquid mixture from the permeation side space. A permeation recovery unit that recovers the permeated liquid and / or the permeated gas. The separation unit is constituted by a SUS module 37 having the porous substrate 1 that includes the liquid mixture separation membrane 11 described above and supports the separation membrane 11. The supply unit is constituted by a raw material tank 35 and a circulation pump 36, and the permeation recovery unit is constituted by a cooling trap 38 and a vacuum pump 39 which are cooling devices.
 原料タンク35は、タンク内に入れられた、炭化水素系液体とアルコール類液体を含む液体混合物(原料)を所定の温度(例えば50℃)に加熱保持する。 The raw material tank 35 heats and holds a liquid mixture (raw material) containing a hydrocarbon-based liquid and an alcohol liquid, which is placed in the tank, at a predetermined temperature (for example, 50 ° C.).
 SUS製モジュール37には、原料側空間31に連通するように供給液導入口37aと供給液排出口37bとが形成され、透過側空間32には透過蒸気を外部に排出するための透過蒸気回収口37cが形成されている。原料タンク35内の液体混合物は、循環ポンプ36によって、SUSモジュール37の原料側空間31に供給されるように構成されている。 The SUS module 37 has a supply liquid introduction port 37a and a supply liquid discharge port 37b so as to communicate with the raw material side space 31, and the permeate vapor recovery for discharging the permeate vapor to the outside in the permeation side space 32. A mouth 37c is formed. The liquid mixture in the raw material tank 35 is configured to be supplied to the raw material side space 31 of the SUS module 37 by the circulation pump 36.
 SUS製モジュール37は、炭素膜が形成されたモノリス形状基材1aを、その両端外周部にo-リング33を介して所定の位置に設置できるように構成されている。SUS製モジュール37は、o-リング33、ガラスシール(シール部12)および分離膜11により、原料側空間31と透過側空間32に区画されることになる。 The SUS module 37 is configured such that the monolithic base material 1a on which a carbon film is formed can be placed at predetermined positions on both outer peripheral portions thereof via o-rings 33. The SUS module 37 is partitioned into the raw material side space 31 and the permeation side space 32 by the o-ring 33, the glass seal (seal part 12) and the separation membrane 11.
 SUS製モジュール37の透過蒸気回収口37c側には、冷却トラップ38、真空ポンプ39が設けられ、透過蒸気回収口37cから排出される透過蒸気を液体Nトラップにて回収するように構成されている。 A cooling trap 38 and a vacuum pump 39 are provided on the permeate vapor recovery port 37c side of the SUS module 37, and the permeate vapor discharged from the permeate vapor recovery port 37c is collected by the liquid N 2 trap. Yes.
 上記構成により、循環ポンプ36にてSUS製モジュール37の原料側空間31に、供給液導入口37aより原料を供給し、供給液排出口37bから排出された原料を原料タンク35に戻すことで原料を循環させる。本発明の液体混合物の分離方法では、原料としては、上述の液体混合物を用いる。この液体混合物を供給導入口37aより供給混合液として、少なくとも当該供給混合液の一部を液体状態で分離膜の膜供給側11aに接触させる。真空ポンプ39にて分離膜11の支持体側を減圧することで、分離膜11の膜透過側11bへ透過し、透過蒸気回収口37cから排出される透過蒸気を液体Nトラップにて回収する。透過側空間32の真空度は圧力制御機により所定の減圧下(例えば約0.5Torr)に制御する。これにより、液体混合物の組成を変化させることができる。 With the above configuration, the raw material is supplied to the raw material side space 31 of the SUS module 37 by the circulation pump 36 from the supply liquid introduction port 37a, and the raw material discharged from the supply liquid discharge port 37b is returned to the raw material tank 35. Circulate. In the method for separating a liquid mixture of the present invention, the above-mentioned liquid mixture is used as a raw material. Using this liquid mixture as a supply mixture from the supply introduction port 37a, at least a part of the supply mixture is brought into contact with the membrane supply side 11a of the separation membrane in a liquid state. By depressurizing the support side of the separation membrane 11 with the vacuum pump 39, the permeated vapor that permeates to the membrane permeation side 11b of the separation membrane 11 and is discharged from the permeated vapor recovery port 37c is recovered by the liquid N 2 trap. The degree of vacuum in the transmission side space 32 is controlled by a pressure controller under a predetermined reduced pressure (for example, about 0.5 Torr). Thereby, the composition of the liquid mixture can be changed.
 ところで、炭化水素系液体とアルコール類液体を含む液体混合物の分離において、公知のゼオライト膜やメソポーラスシリカ膜を用いた場合、その透過性能が満足いくものではないばかりか、その初期性能に比べ、6時間程度の時間が経つとその透過性能が著しく劣化することを発明者らは見出した。ゼオライト膜やメソポーラスシリカ膜を用いた場合、炭化水素系液体同士の液体混合物の分離(例えばn-ヘプタンとトルエンの液体混合物、およびn-オクタンとo-キシレンの混合物)では、このような経時変化は見られなかった事から、混合液体中のアルコール類成分が何らかの悪影響を与えているものと推察された。具体的には、ゼオライト膜やメソポーラスシリカ膜はシリコン元素から構成されているが、これがアルコール類と反応するのかも知れないし、あるいは、アルコール類がゼオライト膜やメソポーラスシリカ膜といったシリコン元素を含む材料の細孔に吸着して閉塞する等の悪影響を与えているのかもしれない。一方、炭素膜では、炭化水素系液体とアルコール類液体を含む液体混合物の分離において、上記の問題点を解決できる。 By the way, when a known zeolite membrane or mesoporous silica membrane is used in the separation of a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid, not only the permeation performance is satisfactory, but the initial performance is 6%. The inventors have found that the permeation performance is remarkably deteriorated after about an hour. In the case of using a zeolite membrane or mesoporous silica membrane, separation with a liquid mixture of hydrocarbon liquids (for example, a liquid mixture of n-heptane and toluene, and a mixture of n-octane and o-xylene) changes with time. It was speculated that the alcohol component in the mixed liquid had some adverse effects. Specifically, zeolite membranes and mesoporous silica membranes are composed of silicon elements, which may react with alcohols, or alcohols are materials of silicon elements such as zeolite membranes and mesoporous silica membranes. It may have an adverse effect such as adsorbing and blocking the pores. On the other hand, the carbon membrane can solve the above problems in the separation of a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid.
 以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
(実施例1~5)
<多孔質基材の作製>
 長手方向60に沿って直径2.5mmの貫通直線孔(貫通孔2)を55個設けた、直径30mm、長さ160mmの多孔質アルミナ質の円柱状基材(モノリス形状基材1a)を押出成形および焼成により作製した。更に、モノリス形状基材1aの両端部4,4にガラスの溶融によりシールを施し(シール部12)、後の試験に供した(図2参照)。
(Examples 1 to 5)
<Preparation of porous substrate>
Extruded porous alumina columnar substrate (monolithic substrate 1a) having a diameter of 30 mm and a length of 160 mm provided with 55 through straight holes (through holes 2) having a diameter of 2.5 mm along the longitudinal direction 60 It was produced by molding and firing. Furthermore, both ends 4 and 4 of the monolith-shaped substrate 1a were sealed by melting glass (seal part 12) and subjected to a later test (see FIG. 2).
<炭素膜の作製>
 モノリス形状基材1aの貫通直線孔2内面に、市販のポリイミド系樹脂(宇部興産社製UワニスS)を溶媒に溶解した溶液をディップコートし、コート層を形成した。貫通直線孔2に温風を吹き込み、溶媒を粗方乾燥させた後、乾燥器にて大気中300℃で1時間乾燥させた。この工程を4回繰返し、モノリス形状基材1aの貫通直線孔2の内面に、樹脂層を形成した。形成した樹脂層が貫通直線孔内全面にわたって被覆されたか否かを調べるべく、モノリス形状基材1aの一方の端面4を塞ぎ、反対側の端面4より市販の回転式真空ポンプで真空引きした所、100Pa以下に達したことを確認した。樹脂層が形成されたモノリス形状基材1aを、窒素雰囲気中600℃で1時間熱処理(昇温速度300℃/h)し、樹脂層を炭化させることにより、モノリス形状基材1aの貫通孔2内面に形成された炭素膜(分離膜11)を得た。当該炭素膜の炭素分を全自動元素分析装置により測定したところ70%以上であった。また、炭素膜の膜厚はSEMによる断面観察より約0.5ミクロンであった。
<Production of carbon film>
A solution obtained by dissolving a commercially available polyimide resin (U varnish S manufactured by Ube Industries Co., Ltd.) in a solvent was dip coated on the inner surface of the through straight hole 2 of the monolithic substrate 1a to form a coat layer. Hot air was blown into the through straight holes 2 to dry the solvent roughly, and then dried in the air at 300 ° C. for 1 hour. This process was repeated four times, and a resin layer was formed on the inner surface of the through straight hole 2 of the monolithic substrate 1a. In order to check whether or not the formed resin layer is covered over the entire surface of the through-hole linear hole, one end face 4 of the monolith-shaped substrate 1a is closed and evacuated from the opposite end face 4 with a commercially available rotary vacuum pump. It was confirmed that the pressure reached 100 Pa or less. The monolith-shaped substrate 1a on which the resin layer is formed is heat-treated at 600 ° C. for 1 hour in a nitrogen atmosphere (temperature increase rate 300 ° C./h) to carbonize the resin layer, whereby the through-hole 2 of the monolith-shaped substrate 1a. A carbon membrane (separation membrane 11) formed on the inner surface was obtained. When the carbon content of the carbon film was measured by a fully automatic elemental analyzer, it was 70% or more. The film thickness of the carbon film was about 0.5 microns from cross-sectional observation by SEM.
<透過係数>
 当該膜(実施例1~5の膜)の透過係数(加圧0.1MPa)を各種単成分ガスを用いて求めた。図7に示す装置を用い、単成分ガスの透過試験を実施した。前記、炭素膜が形成されたモノリス形状基材1aを、その両端外周部にo-リング133を介してSUS製ケーシングに収納したもの(SUS製モジュール137)を所定の位置に設置する。SUS製モジュール137はo-リング133、ガラスシール(シール部12)および分離膜11により、ガス供給側空間131とガス透過側空間132に区画されることになる。ガス供給側空間131はSUS製モジュール137の後段にて閉塞されているため、供給側に接続した評価ガスのボンベにてSUS製モジュール137の供給側空間131に、供給ガス導入口137aよりガスを供給し、供給ガス排出口137bから排出されたガスは留まり、膜に所定の圧力を与える。本実験では、ガス供給側空間131はゲージ圧力で0.1MPaとし、透過側空間132は大気圧とした。透過流量が安定したことを確認した後、一定の時間でガス回収口137c側に備えた乾式ガスメータまたは石鹸膜流量計で測定した、ガス透過係数(ガス透過係数(nmol/Pa・m・s)を求めた。「nmol」は、「10-9mol」を示す。結果を図6及び表1に示す。Nの分子径以下のガスは、透過係数が大きいという結果が得られた。
<Transmission coefficient>
The permeability coefficient (pressure 0.1 MPa) of the membrane (the membranes of Examples 1 to 5) was determined using various single component gases. Using the apparatus shown in FIG. 7, a single component gas permeation test was performed. The monolithic substrate 1a on which the carbon film is formed is placed in a predetermined position (SUS module 137) in which the monolithic base material 1a is housed in a SUS casing through o-rings 133 at both ends. The SUS module 137 is partitioned into a gas supply side space 131 and a gas permeation side space 132 by the o-ring 133, the glass seal (seal part 12) and the separation membrane 11. Since the gas supply side space 131 is closed at the subsequent stage of the SUS module 137, gas is supplied from the supply gas introduction port 137 a to the supply side space 131 of the SUS module 137 with an evaluation gas cylinder connected to the supply side. The gas supplied and discharged from the supply gas discharge port 137b stays and gives a predetermined pressure to the membrane. In this experiment, the gas supply side space 131 was 0.1 MPa in gauge pressure, and the permeation side space 132 was atmospheric pressure. After confirming that the permeation flow rate was stable, the gas permeation coefficient (gas permeation coefficient (nmol / Pa · m 2 · s) was measured with a dry gas meter or soap film flow meter provided on the gas recovery port 137c side for a certain time. “Nmol” indicates “10 −9 mol.” The results are shown in FIG.6 and Table 1. A result that a gas having a molecular diameter equal to or smaller than the molecular diameter of N 2 has a large permeability coefficient was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<膜の性能評価試験、浸透気化(パーベーパレーション)試験>
 図5に示す装置(混合物分離装置101)を用い、浸透気化(パーベーパレーション)試験を行い、膜の性能評価を実施した。原料タンク35内に入れられた、炭化水素系液体とアルコール類液体を含む液体混合物(装置系に対して十分な容量を有する)を所定の温度(例えば50℃)に加熱保持した。前記、炭素膜が形成されたモノリス形状基材1aを、その両端外周部にo-リング33を介してSUS製ケーシングに収納したもの(SUS製モジュール37)を所定の位置に設置した。
<Membrane performance evaluation test, pervaporation test>
Using the apparatus (mixture separation apparatus 101) shown in FIG. 5, a pervaporation test was performed, and the performance of the membrane was evaluated. A liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid (having a sufficient capacity for the apparatus system) placed in the raw material tank 35 was heated and held at a predetermined temperature (for example, 50 ° C.). The monolithic substrate 1a on which the carbon film was formed was placed in a predetermined position (SUS module 37) in which the monolith-shaped substrate 1a was housed in a SUS casing through o-rings 33 at both ends.
 循環ポンプ36にてSUS製モジュール37の原料側空間31に、供給液導入口37aより原料(液体混合物)を供給し、供給液排出口37bから排出された原料を原料タンク35に戻すことで原料を循環させた。循環の際の線速度は毎秒1.4mであった。真空ポンプ39にて分離膜11の支持体側を減圧することで、分離膜11を透過し、透過蒸気回収口37cから排出される透過蒸気を液体Nトラップにて回収した。透過側空間32の真空度は圧力制御機により所定の減圧下(例えば約0.5Torr)に制御した。試験開始後30分を基点としてその後30分間での全回収量を平均して、初期透過流束を算出した。また、試験開始後5時間30分を基点として、その後30分間での全回収量を平均して、6時間後透過流束を算出した。 The raw material (liquid mixture) is supplied from the supply liquid introduction port 37a to the raw material side space 31 of the SUS module 37 by the circulation pump 36, and the raw material discharged from the supply liquid discharge port 37b is returned to the raw material tank 35. Was circulated. The linear velocity during circulation was 1.4 m per second. By reducing the pressure on the support side of the separation membrane 11 with the vacuum pump 39, the permeated vapor that permeated the separation membrane 11 and discharged from the permeated vapor recovery port 37c was recovered with a liquid N 2 trap. The degree of vacuum in the transmission side space 32 was controlled by a pressure controller under a predetermined reduced pressure (for example, about 0.5 Torr). The initial permeation flux was calculated by averaging the total recovered amount in 30 minutes after 30 minutes from the start of the test. Further, with 5 hours and 30 minutes after the start of the test as a starting point, the total recovered amount in the subsequent 30 minutes was averaged to calculate the permeation flux after 6 hours.
 当該装置にて、浸透気化(パーベーパレーション)試験を行い、液体窒素トラップにて回収された透過蒸気の液化物をガスクロマトグラフィー分析にかけ、透過蒸気の組成を定量した。透過流束と同様に、初期蒸気組成および6時間後蒸気組成を測定した。以上より、膜の性能評価(分離性、透過流束)を実施した。 The permeation vaporization (pervaporation) test was performed with the apparatus, and the liquefied product of the permeated vapor collected in the liquid nitrogen trap was subjected to gas chromatography analysis to quantify the composition of the permeated vapor. Similar to the permeation flux, the initial vapor composition and the vapor composition after 6 hours were measured. From the above, membrane performance evaluation (separability, permeation flux) was performed.
(実施例1)
 炭化水素系液体としてo-キシレン(試薬)、アルコール類液体としてエタノール(試薬)を選択し、それぞれ50質量%ずつ混合したものを供給液(原料、液体混合物)とした。供給液温度(=系全体の温度をみなし得る)は50℃、透過側空間の真空度は0.5torrに制御した。結果、透過側蒸気の初期組成はo-キシレン3質量%、エタノール97質量%となった。またその際の初期透過流束(単位膜面積単位時間当たりの透過蒸気量)は0.5kg/mhであった。供給液と平衡する蒸気のエタノール分率は約92質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束も初期と同様の0.5kg/mhであった。
(Example 1)
O-Xylene (reagent) was selected as the hydrocarbon-based liquid, and ethanol (reagent) was selected as the alcohol liquid, and a mixture of 50% by mass each was used as the feed liquid (raw material, liquid mixture). The feed liquid temperature (= the temperature of the entire system can be considered) was controlled to 50 ° C., and the degree of vacuum in the transmission side space was controlled to 0.5 torr. As a result, the initial composition of the permeate side vapor was 3% by mass of o-xylene and 97% by mass of ethanol. Further, the initial permeation flux (permeated vapor amount per unit membrane area per unit time) at that time was 0.5 kg / m 2 h. Since the preliminary test revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 92% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.5 kg / m 2 h which was the same as the initial value.
(実施例2)
 炭化水素系液体としてo-キシレン(試薬)、アルコール類液体としてn-ブタノール(試薬)を選択し、それぞれ50質量%ずつ混合したものを供給液とした以外は実施例1と同様の試験を行った。結果、透過側蒸気の初期組成はo-キシレン9質量%、ブタノール91質量%となった。またその際の透過蒸気流束(透過蒸気量)は0.3kg/mhであった。供給液と平衡する蒸気のn-ブタノール分率は約56質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束も初期と同様の0.3kg/mhであった。
(Example 2)
The same test as in Example 1 was conducted, except that o-xylene (reagent) was selected as the hydrocarbon liquid and n-butanol (reagent) was selected as the alcohol liquid, and 50% by mass of each was used as the feed liquid. It was. As a result, the initial composition of the permeate side vapor was 9% by mass of o-xylene and 91% by mass of butanol. Further, the permeated vapor flux (permeated vapor amount) at that time was 0.3 kg / m 2 h. Since preliminary tests revealed that the n-butanol fraction of the vapor equilibrated with the feed liquid was about 56% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.3 kg / m 2 h which was the same as the initial value.
(実施例3)
 供給液の温度を70℃にした以外は、実施例1と同様の試験を行った。結果、透過側蒸気の初期組成はo-キシレン3質量%、エタノール97質量%となった。またその際の初期透過流束は0.7kg/mhであった。供給液と平衡する蒸気のエタノール分率は約75質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束も初期と同様の0.7kg/mhであった。
Example 3
The same test as in Example 1 was performed except that the temperature of the supply liquid was set to 70 ° C. As a result, the initial composition of the permeate side vapor was 3% by mass of o-xylene and 97% by mass of ethanol. Further, the initial permeation flux at that time was 0.7 kg / m 2 h. Since the preliminary test revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 75% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.7 kg / m 2 h which was the same as the initial value.
(実施例4)
 炭化水素系液体としてn-オクタン(試薬)、o-キシレン(試薬)、アルコール類液体としてエタノール(試薬)を選択し、それぞれ33.3質量%ずつ混合したものを供給液とした。供給液温度(=系全体の温度をみなし得る)は50℃、透過側空間の真空度は0.5torrに制御した。結果、透過側蒸気の初期組成はn-オクタン2質量%、o-キシレン5質量%、エタノール93質量%となった。またその際の初期透過流束は0.4kg/mhであった。供給液と平衡する蒸気のエタノール分率は約70質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束も初期と同様の0.4kg/mhであった。
(Example 4)
N-octane (reagent) and o-xylene (reagent) were selected as the hydrocarbon-based liquid, and ethanol (reagent) was selected as the alcohol liquid, and a mixture of 33.3% by mass was used as the feed solution. The feed liquid temperature (= the temperature of the entire system can be considered) was controlled to 50 ° C., and the degree of vacuum in the transmission side space was controlled to 0.5 torr. As a result, the initial composition of the permeate side vapor was 2% by mass of n-octane, 5% by mass of o-xylene, and 93% by mass of ethanol. Further, the initial permeation flux at that time was 0.4 kg / m 2 h. Since preliminary tests revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 70% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.4 kg / m 2 h, which was the same as the initial value.
(実施例5)
 透過側真空度を450torrに制御した以外は、実施例4と同様の試験を行った。結果、透過側蒸気の初期組成はn-オクタン3質量%、o-キシレン8質量%、エタノール89質量%となった。またその際の初期透過流束は0.05kg/mhであった。供給液と平衡する蒸気のエタノール分率は約70質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束は0.04kg/mhであった。
(Example 5)
The same test as in Example 4 was performed except that the transmission side vacuum was controlled at 450 torr. As a result, the initial composition of the permeate side vapor was 3% by mass of n-octane, 8% by mass of o-xylene, and 89% by mass of ethanol. The initial permeation flux at that time was 0.05 kg / m 2 h. Since preliminary tests revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 70% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.04 kg / m 2 h.
(実施例6)
 <炭素膜の作製>において、樹脂層の熱分解温度を450℃にした以外は同様に炭素膜を作製した。当該炭素膜の炭素分を測定したところ50%以上であった。また、当該炭素膜の膜厚は約1ミクロンであった。
(Example 6)
In <Production of carbon film>, a carbon film was produced in the same manner except that the thermal decomposition temperature of the resin layer was set to 450 ° C. When the carbon content of the carbon film was measured, it was 50% or more. The film thickness of the carbon film was about 1 micron.
 作製法における熱分解温度の異なる上記炭素膜を用いた以外は、実施例1と同様に試験を行った。結果、透過側蒸気の初期組成はo-キシレン5質量%、エタノール95質量%となった。またその際の初期透過流束は0.4kg/mhであった。供給液と平衡する蒸気のエタノール分率は約92質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束は0.4kg/mhであった。 The test was performed in the same manner as in Example 1 except that the carbon films having different thermal decomposition temperatures in the production method were used. As a result, the initial composition of the permeate side vapor was 5% by mass of o-xylene and 95% by mass of ethanol. Further, the initial permeation flux at that time was 0.4 kg / m 2 h. Since the preliminary test revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 92% by mass, separation exceeding the vapor-liquid equilibrium was realized. The vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.4 kg / m 2 h.
(実施例7)
 <炭素膜の作製>において、原料樹脂を市販のフェノール系樹脂(エアウォーター社製ペルバールS899)、樹脂層の熱分解温度を550℃にした以外は同様に炭素膜を作製した。当該炭素膜の炭素分を測定したところ90%以上であった。また、当該炭素膜の膜厚は約0.5ミクロンであった。当該膜の透過係数(加圧0.1MPa)を各種単成分ガスを用いて求めた。結果を図6及び表1に示す。
(Example 7)
In <Production of carbon film>, a carbon film was produced in the same manner except that the raw material resin was a commercially available phenol resin (Perval S899 manufactured by Airwater) and the thermal decomposition temperature of the resin layer was 550 ° C. When the carbon content of the carbon film was measured, it was 90% or more. The film thickness of the carbon film was about 0.5 microns. The permeability coefficient (pressure 0.1 MPa) of the membrane was determined using various single component gases. The results are shown in FIG.
 作製法における原料樹脂の種類と熱分解温度が異なる上記炭素膜を用いた以外は、実施例4と同様に試験を行った。結果、透過側蒸気の初期組成はn-オクタン1質量%、o-キシレン2質量%、エタノール97質量%となった。またその際の初期透過流束は0.7kg/mhであった。供給液と平衡する蒸気のエタノール分率は約70質量%であることが予備試験より判明していたため、気液平衡を超えた分離が実現した。また、6時間後蒸気組成は初期組成とほぼ同じであり、6時間後透過流束も初期と同様の0.7kg/mhであった。 The test was performed in the same manner as in Example 4 except that the above carbon film having a different kind of raw material resin and a different thermal decomposition temperature was used. As a result, the initial composition of the permeate side vapor was 1% by mass of n-octane, 2% by mass of o-xylene, and 97% by mass of ethanol. Further, the initial permeation flux at that time was 0.7 kg / m 2 h. Since preliminary tests revealed that the ethanol fraction of the vapor equilibrated with the feed liquid was about 70% by mass, separation exceeding the vapor-liquid equilibrium was realized. Further, the vapor composition after 6 hours was almost the same as the initial composition, and the permeation flux after 6 hours was 0.7 kg / m 2 h which was the same as the initial value.
(比較例1~2(MFIゼオライト膜))
 以下により、MFIゼオライト膜を得た。
(Comparative Examples 1 and 2 (MFI zeolite membrane))
An MFI zeolite membrane was obtained as follows.
(種付け用ゾルの調製)
 40質量%のテトラプロピルアンモニウムヒドロキシド溶液(SACHEM社製)31.22gと、テトラプロピルアンモニウムブロミド(和光純薬工業株式会社製)16.29gとを混合し、さらに蒸留水71.25g、約30質量%シリカゾル(商品名:スノーテックS、日産化学株式会社)82gを加えて、室温にて撹拌して種付け用ゾルとした。
(Preparation of seeding sol)
A mixture of 31.22 g of a 40% by mass tetrapropylammonium hydroxide solution (manufactured by SACHEM) and 16.29 g of tetrapropylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.), and further 71.25 g of distilled water, about 30 82% by mass of silica sol (trade name: Snowtech S, Nissan Chemical Co., Ltd.) was added and stirred at room temperature to obtain a seeding sol.
(ゼオライト種結晶の生成)
 得られた種付け用ゾルを、フッ素樹脂製内筒が内部に配設されたステンレス製300ml耐圧容器内に入れ、直径30mm、長さ160mmの前記モノリス形状基材を浸漬し、110℃で12時間反応させた。反応後の支持体は、煮沸洗浄の後、80℃で乾燥した。反応後の結晶粒子のX線回折により、モノリス形状基材の貫通直線孔の内面にMFI型ゼオライトが析出、存在することが確認された。
(Formation of zeolite seed crystals)
The obtained seeding sol is placed in a stainless steel 300 ml pressure vessel in which a fluororesin inner cylinder is disposed, and the monolith-shaped substrate having a diameter of 30 mm and a length of 160 mm is immersed in the sol for 110 hours at 110 ° C. Reacted. The support after the reaction was dried at 80 ° C. after boiling and washing. It was confirmed by X-ray diffraction of the crystal particles after the reaction that MFI-type zeolite was deposited and present on the inner surface of the through-holes of the monolithic substrate.
(膜形成用ゾルの調製)
 40質量%のテトラプロピルアンモニウムヒドロキシド溶液(SACHEM社製)0.80gと、テトラプロピルアンモニウムブロミド(和光純薬株式会社製)0.42gとを混合し、さらに蒸留水193.26g、約30質量%シリカゾル(商品名:スノーテックスS、日産化学株式会社製)6.3gを加えて、室温にて30分間マグネチックスターラーで撹拌して膜形成用ゾルとした。
(Preparation of film-forming sol)
40% by mass of tetrapropylammonium hydroxide solution (manufactured by SACHEM) 0.80 g and tetrapropylammonium bromide (manufactured by Wako Pure Chemical Industries, Ltd.) 0.42 g were mixed, and further distilled water 193.26 g, about 30 masses. 6.3 g of% silica sol (trade name: Snowtex S, manufactured by Nissan Chemical Co., Ltd.) was added and stirred with a magnetic stirrer at room temperature for 30 minutes to obtain a film-forming sol.
(ゼオライト膜の形成)
 得られた膜形成用ゾルを、上記と同様に、フッ素樹脂製内筒が内部に配設されたステンレス製300ml耐圧容器内に入れ、上記ゼオライト種結晶が析出した多孔質アルミナ質モノリス形状基材を浸漬し、160℃で24時間反応させた。反応後の支持体は、5回の煮沸洗浄の後、80℃で16時間乾燥した。ゼオライト膜を成長させることを目的として、(ゼオライト膜の形成)のここまでの操作を再度繰り返した。当該モノリス形状基材を大気中500℃4時間熱処理し、テトラプロピルアンモニウムを除去して、モノリス形状基材の貫通直線孔内面に形成されたMFI型ゼオライト膜を得た。当該MFIゼオライト膜の膜厚は約12ミクロンであった。
(Formation of zeolite membrane)
The obtained film-forming sol was placed in a stainless steel 300 ml pressure-resistant container having a fluororesin inner cylinder disposed therein in the same manner as described above, and the porous alumina monolith-shaped substrate on which the zeolite seed crystals were deposited Was immersed and reacted at 160 ° C. for 24 hours. The support after the reaction was dried at 80 ° C. for 16 hours after boiling and washing 5 times. For the purpose of growing a zeolite membrane, the above operations of (formation of zeolite membrane) were repeated again. The monolith-shaped substrate was heat-treated in the atmosphere at 500 ° C. for 4 hours to remove tetrapropylammonium, and an MFI-type zeolite membrane formed on the inner surface of the through straight hole of the monolith-shaped substrate was obtained. The thickness of the MFI zeolite membrane was about 12 microns.
(比較例1(MFIゼオライト膜))
 炭化水素系液体としてn-オクタン(試薬)、o-キシレン(試薬)、アルコール類液体としてエタノール(試薬)を選択し、それぞれ33.3質量%ずつ混合したものを供給液とした。供給液温度(=系全体の温度をみなし得る)は50℃、透過側空間の真空度は0.5torrに制御した。結果、透過側蒸気の初期組成はn-オクタン46質量%、o-キシレン8質量%、エタノール46質量%となった。またその際の初期透過流束は0.03kg/mhであった。また、6時間後蒸気組成は初期組成とほぼ同じであったが、6時間後透過流束は試験途中で急激に低下し、0.01kg/mhであった。
(Comparative Example 1 (MFI zeolite membrane))
N-octane (reagent) and o-xylene (reagent) were selected as the hydrocarbon-based liquid, and ethanol (reagent) was selected as the alcohol liquid, and a mixture of 33.3% by mass was used as the feed solution. The feed liquid temperature (= the temperature of the entire system can be considered) was controlled to 50 ° C., and the degree of vacuum in the transmission side space was controlled to 0.5 torr. As a result, the initial composition of the permeate side vapor was 46% by mass of n-octane, 8% by mass of o-xylene, and 46% by mass of ethanol. Further, the initial permeation flux at that time was 0.03 kg / m 2 h. Further, after 6 hours, the vapor composition was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.01 kg / m 2 h.
(比較例2(MFIゼオライト膜))
 炭化水素系液体としてo-キシレン(試薬)、アルコール類液体としてn-ブタノール(試薬)を選択し、それぞれ50質量%ずつ混合したものを供給液とした以外は比較例1と同様の試験を行った。結果、透過側蒸気の初期組成はo-キシレン51質量%、n-ブタノール49質量%となった。またその際の初期透過流束は0.02kg/mhであった。また、6時間後蒸気組成は初期組成とほぼ同じであったが、6時間後透過流束は試験途中で急激に低下し、0.004kg/mhとなった。
(Comparative Example 2 (MFI zeolite membrane))
The same test as in Comparative Example 1 was conducted, except that o-xylene (reagent) was selected as the hydrocarbon liquid and n-butanol (reagent) was selected as the alcohol liquid, and 50% by mass of each was used as the feed liquid. It was. As a result, the initial composition of the permeate side vapor was 51% by mass of o-xylene and 49% by mass of n-butanol. The initial permeation flux at that time was 0.02 kg / m 2 h. Further, the vapor composition after 6 hours was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.004 kg / m 2 h.
(比較例3(DDRゼオライト膜))
 特開2004-066188に開示されている製法を用い、前記モノリス形状基材の貫通直線孔内面に形成されたDDRゼオライト膜を得た。当該DDRゼオライト膜の膜厚は約10ミクロンであった。
(Comparative Example 3 (DDR zeolite membrane))
Using the manufacturing method disclosed in Japanese Patent Application Laid-Open No. 2004-066188, a DDR zeolite membrane formed on the inner surface of the straight through hole of the monolith-shaped substrate was obtained. The thickness of the DDR zeolite membrane was about 10 microns.
 比較例1と同様の供給液、温度、真空度として試験を行った結果、透過側蒸気の初期組成はn-オクタン36質量%、o-キシレン39質量%、エタノール25質量%となった。またその際の初期透過流束は0.08kg/mhであった。しかし、また、6時間後蒸気組成は初期組成とほぼ同じであったが、6時間後透過流束は試験途中で急激に低下し、0.01kg/mhとなった。 As a result of the test using the same supply liquid, temperature, and vacuum as in Comparative Example 1, the initial composition of the permeate side vapor was n-octane 36 mass%, o-xylene 39 mass%, and ethanol 25 mass%. Further, the initial permeation flux at that time was 0.08 kg / m 2 h. However, the vapor composition after 6 hours was almost the same as the initial composition, but after 6 hours, the permeation flux rapidly decreased during the test to 0.01 kg / m 2 h.
(比較例4(メソポーラスシリカ膜))
 WO2007/094267の実施例3に開示されている製法を基に、シリカゾルを塗布、熱処理することにより、前記モノリス形状基材の貫通直線孔内面に形成されたメソポーラスシリカ膜を得た。当該メソポーラスシリカ膜の膜厚は約0.5ミクロンであった。
(Comparative Example 4 (mesoporous silica film))
Based on the manufacturing method disclosed in Example 3 of WO2007 / 094267, silica sol was applied and heat-treated to obtain a mesoporous silica film formed on the inner surface of the through-hole of the monolithic substrate. The mesoporous silica film had a thickness of about 0.5 microns.
 比較例1と同様の供給液、温度、真空度として試験を行った結果、透過側蒸気の初期組成はn-オクタン48質量%、o-キシレン49質量%、エタノール3質量%となった。またその際の初期透過流束は0.02kg/mhであった。しかし、その後の試験途中で明らかに透過蒸気回収量が急激に減少したのが確認でき、6時間後にはその組成および透過量を測定できるだけの回収量が得られなかった。 As a result of the test using the same supply liquid, temperature, and vacuum as in Comparative Example 1, the initial composition of the permeate side vapor was 48 mass% n-octane, 49 mass% o-xylene, and 3 mass% ethanol. The initial permeation flux at that time was 0.02 kg / m 2 h. However, it was confirmed that the amount of recovered permeated steam decreased sharply during the subsequent test, and a recovered amount sufficient to measure the composition and permeated amount was not obtained after 6 hours.
 実施例、及び比較例の分離膜を表2に、試験結果を表3~4にまとめて示す。 The separation membranes of Examples and Comparative Examples are summarized in Table 2, and the test results are summarized in Tables 3 to 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表に示すように、実施例1~7の分離膜では、炭化水素系液体とアルコール類液体の液体混合物を分離することができた。一方、比較例1~4の分離膜では、これらを充分に分離することができなかった。また、実施例1~7は、初期の透過蒸気流束が比較例1~4よりも大きく、6時間後もほとんど変化せず、耐久性があった。 As shown in the table, in the separation membranes of Examples 1 to 7, it was possible to separate the liquid mixture of hydrocarbon liquid and alcohol liquid. On the other hand, the separation membranes of Comparative Examples 1 to 4 could not be sufficiently separated. In Examples 1 to 7, the initial permeate vapor flux was larger than those of Comparative Examples 1 to 4, and hardly changed after 6 hours, and was durable.
 本発明の液体混合物用分離膜、液体混合物の組成変化方法、液体混合物分離装置は、炭化水素系液体とアルコール類液体を含む液体混合物の成分を変化させることに利用することができる。 The separation membrane for liquid mixture, the method for changing the composition of the liquid mixture, and the liquid mixture separation device of the present invention can be used to change the components of the liquid mixture including hydrocarbon liquid and alcohol liquid.
1:多孔質基材、1a:モノリス形状基材、2:貫通孔(貫通直線孔)、3:側面、4:端面、5:内壁面、11:分離膜、11a:膜供給側、11b:膜透過側、12:シール部、31:原料側空間、32:透過側空間、33:o-リング、35:原料タンク、36:循環ポンプ、37:SUS製モジュール、37a:供給液導入口、37b:供給液排出口、37c:透過蒸気回収口、38:冷却トラップ、39:真空ポンプ、51:開口部、60:長手方向、100:分離膜配設体、101:混合物分離装置、131:ガス供給側空間、132:透過側空間、133:o-リング、137:SUS製モジュール、137a:供給ガス導入口、137b:供給ガス排出口、137c:ガス回収口。 1: porous substrate, 1a: monolith-shaped substrate, 2: through hole (through straight hole), 3: side surface, 4: end surface, 5: inner wall surface, 11: separation membrane, 11a: membrane supply side, 11b: Membrane permeation side, 12: seal part, 31: raw material side space, 32: permeation side space, 33: o-ring, 35: raw material tank, 36: circulation pump, 37: module made by SUS, 37a: supply liquid inlet, 37b: Supply liquid discharge port, 37c: Permeate vapor recovery port, 38: Cooling trap, 39: Vacuum pump, 51: Opening, 60: Longitudinal direction, 100: Separation membrane arrangement, 101: Mixture separation device, 131: Gas supply side space, 132: permeation side space, 133: o-ring, 137: SUS module, 137a: supply gas introduction port, 137b: supply gas discharge port, 137c: gas recovery port.

Claims (10)

  1.  実質的に炭素からなり、炭化水素系液体とアルコール類液体を含む液体混合物を透過させることにより、前記液体混合物の組成を変化可能な液体混合物用分離膜。 A separation membrane for a liquid mixture, which is substantially composed of carbon and can change the composition of the liquid mixture by allowing a liquid mixture containing a hydrocarbon-based liquid and an alcohol liquid to pass through.
  2.  当該液体混合物用分離膜は、炭素を質量比において50%以上含む請求項1に記載の液体混合物用分離膜。 The separation membrane for liquid mixture according to claim 1, wherein the separation membrane for liquid mixture contains 50% or more of carbon in a mass ratio.
  3.  前駆体である炭素含有層を酸素不活性雰囲気下で熱分解することにより得られる炭素膜であり、前記炭化水素系液体と前記アルコール類液体を含む前記液体混合物を透過させることにより、前記液体混合物の組成を変化可能な請求項1又は2に記載の液体混合物用分離膜。 A carbon film obtained by thermally decomposing a carbon-containing layer as a precursor under an oxygen inert atmosphere, and allowing the liquid mixture containing the hydrocarbon-based liquid and the alcohol liquid to permeate the liquid mixture. The separation membrane for a liquid mixture according to claim 1, wherein the composition of the liquid mixture can be changed.
  4.  前記前駆体である前記炭素含有層が樹脂層である請求項3に記載の液体混合物用分離膜。 The separation membrane for a liquid mixture according to claim 3, wherein the carbon-containing layer that is the precursor is a resin layer.
  5.  前記樹脂層を形成する樹脂が、ポリイミド系樹脂とフェノール系樹脂からなる群から選ばれる少なくとも1種である請求項4に記載の液体混合物用分離膜。 The separation membrane for a liquid mixture according to claim 4, wherein the resin forming the resin layer is at least one selected from the group consisting of a polyimide resin and a phenol resin.
  6.  当該液体混合物用分離膜を支持する多孔質支持体上に形成されている請求項1~5のいずれか1項に記載の液体混合物用分離膜。 The separation membrane for liquid mixture according to any one of claims 1 to 5, which is formed on a porous support that supports the separation membrane for liquid mixture.
  7.  請求項1~6のいずれか1項に記載の液体混合物用分離膜に前記液体混合物を透過させることにより、前記液体混合物の組成を変化させる液体混合物の組成変化方法。 A method for changing a composition of a liquid mixture, wherein the composition of the liquid mixture is changed by allowing the liquid mixture to permeate the separation membrane for a liquid mixture according to any one of claims 1 to 6.
  8.  前記液体混合物を供給液体混合物として前記液体混合物用分離膜に膜供給側から透過させた場合に、前記液体混合物用分離膜の膜透過側の混合蒸気中のアルコール類の重量分率が、前記供給液体混合物と平衡する混合蒸気中のアルコール類の重量分率より高い請求項7に記載の液体混合物の組成変化方法。 When the liquid mixture is permeated into the liquid mixture separation membrane from the membrane supply side as a supply liquid mixture, the weight fraction of alcohols in the mixed vapor on the membrane permeation side of the liquid mixture separation membrane is the supply mixture. 8. The method of changing the composition of a liquid mixture according to claim 7, wherein the composition is higher than the weight fraction of alcohols in the mixed vapor equilibrated with the liquid mixture.
  9.  請求項1~6のいずれか1項に記載の液体混合物用分離膜が配設され、これを支持する多孔質基材を有し、前記多孔質基材によって原料側空間と透過側空間とを区画する分離部と、
     前記原料側空間に前記液体混合物を供給する供給部と、
     前記透過側空間から前記液体混合物用分離膜を透過した透過液および/又は透過ガスを回収する透過回収部と、を含む液体混合物分離装置。
    A separation membrane for a liquid mixture according to any one of claims 1 to 6 is provided, and has a porous base material that supports the separation membrane, and the raw material side space and the permeation side space are separated by the porous base material. A separating section to partition;
    A supply unit for supplying the liquid mixture to the raw material side space;
    A liquid mixture separation device comprising: a permeate and / or a permeate collection unit that collects a permeate and / or a permeate gas that has permeated through the liquid mixture separation membrane from the permeate space.
  10.  前記透過回収部は、前記透過ガスを冷却液化する冷却装置を備える請求項9に記載の液体混合物分離装置。 10. The liquid mixture separation device according to claim 9, wherein the permeation recovery unit includes a cooling device that liquefies the permeated gas.
PCT/JP2009/069000 2008-12-19 2009-11-06 Liquid mixture separation membrane, method for changing composition of liquid mixture using same, and device for separating liquid mixture WO2010070991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-323548 2008-12-19
JP2008323548 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010070991A1 true WO2010070991A1 (en) 2010-06-24

Family

ID=42268667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069000 WO2010070991A1 (en) 2008-12-19 2009-11-06 Liquid mixture separation membrane, method for changing composition of liquid mixture using same, and device for separating liquid mixture

Country Status (1)

Country Link
WO (1) WO2010070991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767329A4 (en) * 2011-10-11 2015-06-24 Ngk Insulators Ltd Ceramic filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858106A (en) * 1981-09-30 1983-04-06 Kuraray Co Ltd Separation of mixed liquid
JPH03284335A (en) * 1990-03-31 1991-12-16 Ube Ind Ltd Asymmetric separation membrane and separation by pervaporization
JPH0461920A (en) * 1990-06-27 1992-02-27 Toyobo Co Ltd Separation membrane for separating liquid
JP2001062257A (en) * 1999-08-27 2001-03-13 Ube Ind Ltd Fluid separation membrane module and separation
JP2001232156A (en) * 2000-02-23 2001-08-28 Kanebo Ltd Pervaporation separation method or vapor separation method using molecular sieve type carbon film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858106A (en) * 1981-09-30 1983-04-06 Kuraray Co Ltd Separation of mixed liquid
JPH03284335A (en) * 1990-03-31 1991-12-16 Ube Ind Ltd Asymmetric separation membrane and separation by pervaporization
JPH0461920A (en) * 1990-06-27 1992-02-27 Toyobo Co Ltd Separation membrane for separating liquid
JP2001062257A (en) * 1999-08-27 2001-03-13 Ube Ind Ltd Fluid separation membrane module and separation
JP2001232156A (en) * 2000-02-23 2001-08-28 Kanebo Ltd Pervaporation separation method or vapor separation method using molecular sieve type carbon film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767329A4 (en) * 2011-10-11 2015-06-24 Ngk Insulators Ltd Ceramic filter
US9427687B2 (en) 2011-10-11 2016-08-30 Ngk Insulators, Ltd. Ceramic filter

Similar Documents

Publication Publication Date Title
Shu et al. High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water
US8361197B2 (en) Structure provided with zeolite separation membrane, method for producing same, method for separating mixed fluids and device for separating mixed fluids
WO2010070992A1 (en) Method for separating liquid mixture, and device for separating liquid mixture
Rodrigues et al. Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin
JP5624542B2 (en) Carbon membrane manufacturing method, carbon membrane, and separation apparatus
EP2324901B1 (en) Pyrolized carbon molecular sieve particles and methods of making and using the same
Tanco et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties
Kim et al. Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation
Hou et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes
US20100304953A1 (en) Zeolite Membranes for Separation of Mixtures Containing Water, Alcohols, or Organics
JP2011502042A (en) Hybrid membrane structure of amorphous silica
WO2014069676A1 (en) Ceramic separation membrane structure, and repair method thereof
JP5523560B2 (en) Carbon membrane composite, method for producing the same, and separation membrane module
Li et al. Thin carbon/SAPO-34 microporous composite membranes for gas separation
WO2002024310A1 (en) Mixed matrix membranes with pyrolized carbon sieve particles and methods of making and using the same
Fasolin et al. Single-step process to produce alumina supported hydroxy-sodalite zeolite membranes
US11786870B2 (en) CMS membrane, method for the production thereof and use thereof
WO2011018919A1 (en) Mixture separation membrane, method for altering composition of mixture using same, and mixture separation device
US20190070568A1 (en) Permeation membrane and method for producing a permeation membrane
JP2001232156A (en) Pervaporation separation method or vapor separation method using molecular sieve type carbon film
WO2010125898A1 (en) Separation membrane for concentration of hydrochloric acid, method for concentration of hydrochloric acid, and apparatus for concentration of hydrochloric acid
WO2010070991A1 (en) Liquid mixture separation membrane, method for changing composition of liquid mixture using same, and device for separating liquid mixture
US20170282117A1 (en) Gas separation method
KR20180007394A (en) Hollow fiber membrane having carbon molecular sieve supported by inorganic support and a method for gas separation using the same
JP2016175063A (en) Regeneration method of membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP