WO2010070909A1 - High-temperature-resistant bacterium capable of producing 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium - Google Patents

High-temperature-resistant bacterium capable of producing 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium Download PDF

Info

Publication number
WO2010070909A1
WO2010070909A1 PCT/JP2009/006953 JP2009006953W WO2010070909A1 WO 2010070909 A1 WO2010070909 A1 WO 2010070909A1 JP 2009006953 W JP2009006953 W JP 2009006953W WO 2010070909 A1 WO2010070909 A1 WO 2010070909A1
Authority
WO
WIPO (PCT)
Prior art keywords
5kga
strain
gluconobacter
fad
gene
Prior art date
Application number
PCT/JP2009/006953
Other languages
French (fr)
Japanese (ja)
Inventor
松下一信
イチポンサイチャナ
外山博英
足立収生
ヂュアンティップムーンマンミー
Original Assignee
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学 filed Critical 国立大学法人山口大学
Publication of WO2010070909A1 publication Critical patent/WO2010070909A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/58Aldonic, ketoaldonic or saccharic acids

Definitions

  • the present invention relates to a thermotolerant bacterium capable of producing 5-ketogluconic acid (5KGA) at a high temperature, and a method for producing 5KGA using the thermotolerant bacterium.
  • 5KGA 5-ketogluconic acid
  • Gluconobacter is a type of acetic acid bacterium that can oxidize a wide range of compounds such as sugar, sugar alcohol, and sugar acid, and accumulate the oxidized product in a medium with high yield.
  • Enzymes involved in these oxidation reactions are dehydrogenases such as D-glucose, D-sorbitol, D-mannitol, glycerol, gluconic acid, ketogluconic acid and the like. All of these dehydrogenases are tightly bound to the surface layer of the cytoplasmic membrane, and the electrons extracted from the substrate are transferred to the terminal ubiquinone oxidase via ubiquinone, generating bioenergy along with the electron transfer reaction. To do.
  • Non-patent Document 1 It is known that the oxidation of D-glucose to keto-D-gluconic acid is catalyzed by an enzyme present outside the cell membrane. D-glucose is oxidized to glucono- ⁇ -lactone by membrane-bound pyrroloquinoline quinone (PQQ) -glucose dehydrogenase, and glucono- ⁇ -lactone is converted to D-gluconic acid by gluconolactonase. .
  • PQQ membrane-bound pyrroloquinoline quinone
  • glucono- ⁇ -lactone is converted to D-gluconic acid by gluconolactonase.
  • the present inventors have reported that the formation of ketogluconic acid found in Gluconobacter is catalyzed by two types of membrane-bound gluconate dehydrogenase (Non-patent Document 1).
  • FAD-containing 2-ketogluconic acid-producing enzyme that is, FAD-gluconate dehydrogenase (FAD-GADH)
  • PQQ-containing 5-keto-D-ketogluconic acid-producing enzyme That is, PQQ-glycerol dehydrogenase (PQQ-GLDH: Pyrroloquinoline-quinone-glycerol-dehydrogenase) (FIG. 1).
  • PQQ-GLDH Pyrroloquinoline-quinone-glycerol-dehydrogenase
  • PQQ-GLDH is a D-arabitol dehydrogenase, It is known as an oxidase of various sugar alcohols such as D-sorbitol dehydrogenase or glycerol dehydrogenase. PQQ-GLDH can react with a wide variety of substrates, but has high stereospecificity in which the reaction is catalyzed according to the so-called “Bertrand-Hudson method”.
  • This enzyme can oxidize only the C5 position of D-gluconic acid to produce 5KGA from D-gluconic acid, but the enzyme affinity with D-gluconic acid is low.
  • the gene for this enzyme was cloned from Gluconobacter suboxydans IFO 3255 and two open reading frames were found. One is presumed to encode a hydrophobic region protein of the 5-transmembrane region, and the other encodes a dehydrogenase subunit similar to several PQQ-dependent enzymes, particularly membrane-bound glucose dehydration. Similar to the PQQ domain of elementary enzymes.
  • 2KGA reductase and 5KGA reductase located in the cytoplasm function to convert and assimilate 2KGA and 5KGA into D-gluconic acid after being transported to the cytoplasm by transport proteins.
  • 5KGA is a useful substance used as a raw material for tartaric acid, xylic acid, vitamin C and important fragrance compounds (Non-patent Document 4). Gray et al. Provide a method for producing vitamin C using 5KGA, which is a method that can be industrially produced under milder conditions than the Reichsteind method that is industrially performed today (Patent Document 1). 2).
  • Gluconobacter strains produce 2KGA and 5KGA from D-glucose.
  • 5KGA by Gluconobacter bacteria produces 2KGA as a major byproduct, and the production of the two ketogluconic acids competes in vivo.
  • the present inventors have reported a method of selecting Gluconobacter bacteria that specifically produce 5KGA having a conversion rate of 80% or more from a wild strain with respect to a D-glucose substrate (Patent Document 3). .
  • the main object of the present invention is to provide a high temperature resistant bacterium applicable to industrial 5KGA production.
  • thermophilic bacteria In order to screen for strains that can grow 5KGA and grow at a high temperature of 37 ° C. where thermophilic bacteria cannot grow, the present inventors have a total of about 1500 strains, including gluconobacter stocks and isolates from Thailand, etc. As a strain that does not produce a brown compound in a medium using a glucose-gluconic acid medium and develops a color by the resorcinol method, three novel high-temperature-resistant Gluconobacter spp. Wild strain) was isolated.
  • the FAD-GADH gene system of the above-mentioned high temperature resistant wild strain having the ability to produce high 5KGA is used by using a simple method called electroporation without using the complicated method of the three-parent joining method described in Non-Patent Document 5.
  • a high-temperature-resistant mutant strain capable of specifically producing 5KGA was created, and the present invention was completed.
  • the present invention provides the following (1) to (6).
  • thermotolerant bacterium according to (1) above, wherein the mutant strain is a mutant strain in which the FAD-gluconate dehydrogenase (FAD-GADH) gene is disrupted.
  • FAD-GADH FAD-gluconate dehydrogenase
  • thermotolerant bacterium according to (2) above which is a mutant strain having 5KGA producing ability of 170 mM or more and 90 mM or more, respectively.
  • a plasmid in which a kanamycin cassette is inserted into a PCR product obtained by amplifying a DNA fragment having the nucleotide sequence shown in SEQ ID NOs: 7, 8, and 9 from a mutant strain in which the FAD-GADH gene is disrupted is introduced into the cell.
  • the high-temperature resistant bacterium according to (2) above which is a strain constructed by introduction and homologous recombination.
  • Gluconobacter / Frateuri THE42 strain (Accession number NITE BP-655), Gluconobacter / Flateuri THG42 strain (Accession number NITE BP-657), Gluconobacter Frateuri THF55 strain (Accession number NITE BP-659) , Gluconobacter frateuri THE42 gndG :: Km strain (Accession number NITE BP-656), Gluconobacter frateuri THG42 gndG :: Km strain (Accession number NITE BP-658), Gluconobacter frateuri THF55 gndG: One or more kinds of 5-keto-D-gluconic acid-producing bacteria selected from Km strain (Accession No. NITE BP-660).
  • 5KGA which is a raw material for useful industrial products
  • 5KGA can be cultured under high temperature conditions, and in order to maintain an appropriate temperature during the culture, the high cooling cost required for psychrophilic bacteria is reduced. can do.
  • the high temperature resistant mutant strain having 5KGA production ability specifically produces 5KGA, the purification process is easy and industrially advantageous.
  • FIG. 3 is a schematic diagram of a genome fragment obtained from a high temperature resistant Gluconobacter frateuri THF55 strain.
  • Gluconobacter frateurii THF55 strain is a drawing showing the effect of adding CaCl 2 to Growth and 5KGA producing bacteria.
  • thermotolerant bacteria of the present invention include 20 g glucose, 20 g sodium gluconate, 3 g polypeptone, 3 g yeast extract in 1 L with distilled water and cultured in a 2% glucose-gluconic acid medium at 37 ° C. for 72 hours.
  • a high-temperature-resistant wild strain having 5KGA-producing ability belonging to the genus Gluconobacter or a mutant strain thereof having a 5KGA concentration of 45 mM or more in the culture supernatant measured using 2% glucose-gluconic acid When cultured in a medium at 30 ° C.
  • the 5KGA concentration in the culture supernatant measured using the resorcinol reagent is 50 mM or more, particularly 5 mM or more, particularly high temperature resistant wild strains belonging to the genus Gluconobacter belonging to the genus Gluconobacter The mutant is preferred.
  • the measurement method using the resorcinol reagent as described in the examples below, the method described in Methods in Enzymology vol.3 p.248-249 and the Agricultural Chemistry Experiments (Supplement) Volume 2, A method according to the method described in Kyoto University Faculty of Agriculture, Department of Agricultural Chemistry, page 682 can be exemplified.
  • the genus Gluconobacter include Gluconobacter oxydans, Gluconobacter oxydans, and Gluconobacter frateurii.
  • the high-temperature resistant wild strain of the present invention can be obtained by the following screening method. That is, as an initial screening, one colony is inoculated into a glucose-gluconic acid medium from a high-temperature-resistant Gluconobacter bacterium stored in an appropriate medium such as a potato agar medium and cultured at 30 ° C. to 37 ° C. for 2 to 3 days. The strain that produced the brown compound in the medium is excluded as a 2,5-diketogluconic acid (2,5DKGA) producing strain. 2,5DKGA is a 2KGA oxidation product catalyzed by membrane-bound FAD-2-ketogluconate dehydrogenase present in some Gluconobacter species.
  • Strains that produce a large amount of 2,5DKGA form a large amount of 2KGA and the formation of 5KGA is expected to be low, so it is desirable to exclude those strains.
  • the remaining bacteria are further cultured in a glucose-gluconic acid medium at 30 to 38 ° C., and 5KGA producing strain is selected by quantifying 5KGA in the culture solution.
  • the production amount of 5KGA can be examined, for example, by a color development reaction with a resorcinol reagent that develops color by a reduction reaction.
  • Preferred examples of the high-temperature-resistant gluconobacter genus strain screened in this manner include Gluconobacter frateuri THE42 strain, Gluconobacter frateuri THG42 strain, and Gluconobacter frateuri THF55 strain.
  • the above-mentioned wild strains belonging to the genus Gluconobacter were deposited on October 9, 2008 at the Patent Evaluation Microorganism Depositary Center of the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) Has been.
  • the accession number is Gluconobacter frateuri THE42 strain, the accession number NITE BP-655, Gluconobacter frateuri THG42 strain is the accession number NITE BP-657, Gluconobacter frateuri THF55 strain, the accession number NITE BP- 659.
  • the mutant strain of the genus Gluconobacter having high temperature resistance of 5KGA of the present invention can be selected not only from the above wild strain but also from the 2,5DKGA production strain as a parent strain and involved in the formation of the parent strain 2KGA.
  • Preferred examples include those that have been specifically modified to produce 5KGA by disrupting the FAD-GADH gene, which is the enzyme to be used.
  • the defective strain in which the FAD-GADH gene is disrupted is normal by deleting the FAD-GADH gene on the chromosome of the wild strain or a part of its DNA sequence, or inserting a drug resistance gene into the gene.
  • the FAD-GADH gene on the chromosome is disrupted by transforming the fungus with DNA containing a gene that has been modified so that it does not produce a functional enzyme, and causing homologous recombination with a normal gene on the chromosome It can produce by doing.
  • Such gene disruption by homologous recombination gene replacement has already been established as a method using linear DNA or plasmid.
  • the production of the FAD-GADH gene disrupted strain of the high-temperature-resistant Gluconobacter bacterium according to the present invention can be performed, for example, by the following operation method and procedure.
  • Cloning the target FAD-GADH gene Cloning of the FAD-GADH gene can be performed by PCR using primers designed from the region maintained in the dehydrogenase subunit in the gene of the genus Gluconobacter or Erwinia GADH, FAD- Although it can be performed by hybridization using the GADH gene, the most efficient method is to use a primer designed on the basis of the FAD-GADH gene sequence reported in the Gluconobacter oxydans 621H genome. Using the genomic DNA obtained in 1) as a template, PCR can be performed, and a gene containing the full length of the FAD-GADH gene can be amplified and obtained by PCR.
  • ABI PRISM 310 manufactured by PE Biosystems
  • the entire sequence of the cloned gene is software such as GENETYX-MAC (Software Development, Tokyo, Japan) and Clone Manager (Scientific and Educational Software, Cary, NC)
  • GENETYX-MAC Software Development, Tokyo, Japan
  • Clone Manager Scientific and Educational Software, Cary, NC
  • BLAST http://www.ncbi.nlm.nih.gov/BLAST/
  • CLUSTAL W www.ebi.ac.uk/clustalw
  • Examples of the DNA fragment obtained by cloning the FAD-GADH gene of the present invention include gndF (SEQ ID NO: 7), gndG (SEQ ID NO: 8), gndH (SEQ ID NO: 9) and the like.
  • a preferred example is gndG that encodes a subunit that contains.
  • a plasmid for disrupting the FAD-GADH gene was obtained by incorporating the PCR-amplified FAD-GADH gene into an E. coli vector such as pGEM-T Easy Vector that cannot replicate in the high temperature resistant Gluconobacter genus. It can be prepared by inserting a cassette made of a drug resistant substance such as kanamycin into the restriction enzyme site of DNA.
  • a FAD-GADH gene disruption strain is prepared by introducing a plasmid.
  • the FAD-GADH gene disruption strain was prepared by subjecting the gene disruption plasmid to an electric pulse method (Agric. Biol. Chem.,: 54: 443-447, 1990, Res. Microbiol., 144: 181-185, 1993) and plasmids are introduced into cells by highly efficient gene transfer methods such as transconjugation, and FAD-GADH gene is disrupted (or inactivated) by homologous recombination to chromosomes. Can be performed.
  • Confirmation of the disruption of the FAD-GADH gene is performed by applying a strain having a drug resistance gene fragment inserted into a chromosome onto a plate medium containing an appropriate concentration of the drug, and transforming the strain into a high temperature resistant Gluconobacter genus. This can be done by selecting bacteria and confirming that the selected bacterial strain has lost enzyme activity for 2KGA production.
  • mutant strain disrupted in the FAD-GADH gene prepared as described above was cultured using a resorcinol reagent when cultured in a 2% glucose-gluconic acid medium at 30 ° C. and 37 ° C. for 72 hours.
  • Suitable examples include mutants having 5KGA production ability, in which the concentration of 5KGA in the supernatant is 150 mM or more, preferably 170 mM or more, and 80 mM or more, preferably 90 mM or more.
  • the transformed high-temperature-resistant Gluconobacter genus of the present invention can be prepared by using an appropriate medium such as potato agar medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 2 g agar, 100 ml potato extract with distilled water. 1L) and can be stored at a low temperature of 0 to 5 ° C. Long-term storage can be performed at ⁇ 80 ° C. using a potato medium containing 50% glycerol.
  • an appropriate medium such as potato agar medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 2 g agar, 100 ml potato extract with distilled water. 1L) and can be stored at a low temperature of 0 to 5 ° C. Long-term storage can be performed at ⁇ 80 ° C. using a potato medium containing 50% glycerol.
  • mutant strains of the transformed high temperature resistant Gluconobacter genus of the present invention are examples of mutant strains of the transformed high temperature resistant Gluconobacter genus of the present invention.
  • the mutant strain of Gluconobacter frateuri THE42 strain (Accession number NITE BP-655) is Gluconobacter frateuri THE42 gndG :: Km strain, the accession number NITE BP-656, and Gluconobacter frateuri THG 42
  • the mutant strain of the strain (Accession No. NITE BP-657) is Gluconobacter Frateuri THG42 gndG :: Km strain, the accession No. NITE BP-658, and the Gluconobacter Frateuri THF 55 strain (Accession No.
  • NITE BP- 659) is Gluconobacter frateuri THF55 gndG :: Km, and has the accession number NITE BP-660, respectively, and the National Institute of Technology and Evaluation of the National Institute of Technology and Evaluation (1000 Japan) Has been deposited on October 9, 2008 in the prefecture Kisarazu Kazusa legs bowed in 2-5-8).
  • the wild strain or mutant strain of the high temperature-resistant Gluconobacter genus of the present invention can be grown and cultured under aerobic conditions, and 5KGA can be produced and accumulated in the medium.
  • the culture of the high temperature resistant Gluconobacter genus of the present invention can be performed using a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, and the like.
  • a carbon source include monosaccharides such as glucose, galactose, fructose and mannose, disaccharides such as lactose, sucrose and maltose, gluconates such as sodium gluconate and potassium gluconate, glycerin, maltitol, lacriitol, mannitol Sugar alcohols such as sorbitol, xylitol, and arabitol are used, among which glucose or gluconic acid is preferable, and glucose is most preferable.
  • nitrogen source for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea or the like can be used alone or in combination.
  • inorganic salt for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, or the like can be used.
  • various nutrients such as polypeptone, meat extract, yeast extract, potato extract, and corn steep liquor can be appropriately added to the medium as necessary.
  • a cofactor to the medium for the enzyme involved in 5KGA production. It has been clarified that PQQ-GLDH involved in the production of 5KGA of the present invention causes a structural change of the enzyme when a high temperature resistant Gluconobacter bacterium is grown at high temperature. Therefore, the enzyme activity can be maintained at a high level by supplementing the medium with a cofactor.
  • cofactors include magnesium ions, calcium ions, ammonium ions, sodium ions, and potassium ions. These ions include magnesium chloride, magnesium carbonate, calcium chloride, calcium carbonate, ammonium carbonate, sodium carbonate, and potassium carbonate.
  • Compounds can be added to the medium. Preferred compounds are magnesium chloride, magnesium carbonate, calcium chloride, and calcium carbonate, and most preferred is calcium chloride. The amount of these compounds added to the medium is 1 to 50 mM, preferably 5 mM.
  • the coenzyme pyrroloquinoline quinone may be mentioned as a cofactor added to the medium for the enzyme activity involved in the production of 5KGA in the present invention.
  • PQQ coenzyme pyrroloquinoline quinone
  • supplementation of the coenzyme to the medium can be performed to increase the production of 5KGA.
  • the addition amount of PQQ is 0.1 to 100 ⁇ M, preferably 1 to 10 ⁇ M.
  • PQQ can be used in combination with the magnesium ion, calcium ion, ammonium ion, sodium ion, potassium ion and the like.
  • Cultivation can usually be performed at a temperature of 28 ° C. to 38 ° C., preferably 30 to 37 ° C. under aerobic conditions such as aeration stirring or shaking.
  • the pH during the culture is preferably in the range of about 5 to 7, and the pH during the culture can be adjusted by adding an acid or an alkali.
  • 5KGA By culturing for 1 to 7 days, preferably 2 to 5 days, 5KGA can be obtained. Production of 5KGA is seen in the first growth stage, but the highest production is seen in the stable growth period.
  • Recovery of 5KGA from the cultured cells and medium of the high-temperature-resistant Gluconobacter genus of the present invention can be performed according to a general fermentation production method, for example, known methods such as centrifugation, membrane separation, column chromatography, etc. This method can be used.
  • the reaction product of the resorcinol reagent and D-glucose was a red compound, and in the case of 5KGA, a black brownish green precipitate was formed. On the other hand, D-gluconic acid and 2KGA were not found in the confirmed reaction product.
  • 24 strains (Table 1) isolated in the initial screening were prepared from potato medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 100 ml potato extract. 1 ⁇ l with distilled water), and 10 ⁇ l of the culture solution was inoculated into 1 ml of 2% glucose-gluconic acid medium and cultured at 30 ° C. for 36 hours or 37 ° C. for 48 hours. The culture solution was reacted with a resorcinol reagent. Furthermore, growth and 5KGA accumulation were compared by measuring the absorbance of the reaction product produced by the reaction.
  • thermotolerant bacteria The formation of 5KGA by the selected three thermotolerant bacteria was confirmed by TLC in FIG. 2. Regarding the characteristics of the growth and production of the three strains, 2KGA and 5KGA production at 30 ° C. and 37 ° C. Production Gluconobacter suboxydans IFO 12528 bacteria were compared and examined. The results are shown in Table 2. The three thermotolerant bacteria were the same in both growth and production of 2KGA as the main product. After culturing at 30 ° C. for 48 hours, the thermophilic bacteria showed lower growth, lower 2KGA production, and higher 5KGA production than the thermotolerant bacteria.
  • the FAD-GADH structural gene has been reported in the genomic sequence of Gluconobacter oxydans 621H (Nature Biotechnology 23: 195-200, 2005) ). It is composed of three subunits (dehydrogenase subunit, cytochrome subunit, and small subunit).
  • a gndL-F primer (SEQ ID NO: 1) and a gndL-R primer (SEQ ID NO: 2) designed based on the FAD-GADH gene sequence were used as PCR primers.
  • mGeneAmpPCR System 2400 manufactured by Perkin Elmer
  • the PCR temperature cycle was performed as follows. One cycle at 95 ° C. for 30 seconds, followed by 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 1 minute, and 68 ° C. for 1 minute were maintained at 37 ° C. at the end of all cycles.
  • DNA fragments were separated on an agarose gel and purified with QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) or MagExtracter DNA fragment purification kit (Toyobo, Tokyo, Japan). This resulted in a 525 bp product of PCR. This sequence was found to be homologous to GOX1231, which is a dehydrogenase subunit of the FAD-GADH gene of Gluconobacter oxydans 621H.
  • F-igL-1 SEQ ID NO: 3
  • F-igL-2 sequence
  • PCR was performed by adding 2 mM MgCl 2 and 0.5% DMSO to TaKaRa LA Taq TM (manufactured by Takara Bio Inc.) using a recircularized EcoRI digest of genomic DNA as a template.
  • One cycle at 95 ° C. for 30 seconds, followed by 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 1 minute, and 68 ° C. for 6 minutes were maintained at 37 ° C. at the end of all cycles.
  • the entire sequences of the dehydrogenase and small subunit genes were prepared by using F-igL-1 (SEQ ID NO: 3) and R-igL-2 of primers using a template obtained by recirculating a SacII or EcoRI digest of genomic DNA. Amplified with (SEQ ID NO: 4).
  • the cytochrome C subunit gene was obtained from an in vitro cloning method.
  • Sequences were identified by sequencing 6 ORF fragments containing 3 ORFs (gndF, gndG, gndH) predicted from the FAD-GADH gene obtained from each strain and 3 ORFs encoding proteins with unknown functions.
  • the sequencing was performed using ABI PRISM 310 (PE Biosystems). Sequence data was analyzed using GENETYX-MAC (Software Development Corporation) and Clone Manager (Scientific and Educational Software). Homology search and alignment analysis were performed using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and CLUSTAL W (www.ebi.ac.uk/clustalw), respectively. .
  • BLAST http://www.ncbi.nlm.nih.gov/BLAST/
  • CLUSTAL W www.ebi.ac.uk/clustalw
  • ORF-1, ORF-2, and ORF-3 showed homology to proteins of unknown function encoded by GOX1234, GOX1233, and GOX1229 shown in the genome of Gluconobacter oxydans 621H.
  • the three ORFs of gndF, gndG, and gndH had 76%, 89%, and 68% identity to GOX1232, GOX1231, and GOX1230, which were confirmed to be FAD-GADH genes in the genome.
  • the sequence obtained in this study has already been registered as Accession No.47AB478873 in DNA Data Bank of Japan (DDBJ).
  • GndF The determined amino acid sequence of GndF was reported by Berks, B. C. et al. (Molecular Microbiology 35: 260-274, 2000), and there was a tat-dependent special signal sequence containing two arginine residues. I found out that GndF is also a small subunit of FAD-GADH. To GndS of Gluconobacter dioxyacetonicus IFO3271 revealed in a report by Toyama.H et al. (Applied ⁇ Environmental Microbiology 73: 6551-6556, 2007) % Identity.
  • GndG The determined amino acid sequence of GndG showed a glycine box (GxGxxG) which is a signal for binding of FAD to the N-terminus so that similar sequences can be seen in several FAD-containing enzymes.
  • GndG had a region sequence maintained in the glucose-methanol-choline (GMC) oxidoreductase family, a protein family that binds FAD as a cofactor. Further, it showed 61% identity with GndL of FAD-GADH dehydrogenase subunit of Gluconobacter dioxyacetonicus IFO3271 found by Toyama.
  • GndH is similar to many membrane-bound cytochrome c subunits found in Gluconobacter bacteria, such as alcohol dehydrogenase, sorbitol dehydrogenase, and aldehyde dehydrogenase. Three heme c-binding motifs (CxxCH) The sequence is shown. Furthermore, it showed 44% identity to GndC of Gluconobacter dioxyacetonicus IFO3271 (20).
  • the prepared plasmid was introduced into Gluconobacter by electroporation, and the introduced cells were cultured in potato medium at 30 ° C. for 6 hours for gene recombination. After 2-3 days, the colonies obtained on SG agar medium (1% sorbitol, 1% glycerol, 0.3% polypeptone, 0.3% yeast extract, 2% agar) containing 50 ⁇ g / ml kanamycin were picked up.
  • Membrane-bound enzyme activity for D-arabitol and glucose in wild and mutant strains was prepared from cells grown at 30 ° C. and 37 ° C. by membrane fractionation. Bioscience Biotechnology and Biochemistry 69: 1120-1129, 2005). Membrane-bound enzyme activity was measured by reducing activity using ferricyanide and PMS and expressed as ferricyanide reductase activity or PMS-DCIP reductase activity (FIGS. 6a and b).
  • Ferricyanide reductase activity was measured using potassium ferricyanide as an electron acceptor.
  • a reaction solution containing 0.1 M substrate, McIlvaine buffer (McB, pH 5.0), and an appropriate amount of enzyme solution was incubated for 5 minutes, and then 0.1 M potassium ferricyanide. Of 0.1 ml of was added and stirred. After incubation for a certain period of time, the reaction was stopped by adding 0.5 ml Norl reagent (0.3% Fe 2 (SO 4 ) 3 , 8.1% phosphoric acid, 0.3% SDS).
  • the mixture was diluted with 3.5 ml of distilled water so that the total amount of the mixture became 5 ml, and the absorbance at 660 nm was measured with a spectrophotometer U2000 (manufactured by Hitachi, Ltd.).
  • One unit of enzyme activity was defined as the amount of enzyme that oxidized 1 ⁇ mol of substrate per minute.
  • the phenazine mesosulfate (PMS) reducing activity of the membrane fraction was measured at 25 ° C. in 1 ml reaction solution with 100 mM substrate, 0.2 mM PMS, 1.2 mM NaN 3 , appropriate amount of enzyme, McB (pH 5. 0) was subjected to a coupling reaction with 0.11 mM 2,6-dichlorophenolindophenol (DCIP), and a blue fading of 600 nm was measured with a spectrophotometer U2000 (manufactured by Hitachi, Ltd.).
  • One unit of enzyme activity was the amount of enzyme that oxidized 1 ⁇ mol of substrate per minute in this assay system.
  • the D-arabitol dehydrogenase activity of the wild strain and the mutant strain grown at 30 ° C. was the same, but the D-gluconate dehydrogenase activity was 30% of that of the wild strain. More than that.
  • the decrease in activity was due to inactivation of the gndG gene encoding the FAD-GADH dehydrogenase subunit, and the PQQ-GLDH activity in response to D-gluconic acid was maintained.
  • the D-arabitol dehydrogenase activity of the mutant strain is the same as that in the wild strain.
  • the D-gluconate dehydrogenase activity in the mutant was reduced in the same manner as at 30 ° C.
  • the addition of PQQ increased the activity by a factor of 2 or more in both the wild strain and the mutant strain. This indicates that PQQ necessary for PQQ-GLDH is insufficient when the fungus grows at high temperature.
  • the mutant strain of the genus Gluconobacter of the present invention specifically produces 5KGA, the purification process is facilitated, and therefore the novel strain of the present invention is highly likely to be used industrially. .

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a high-temperature-resistant bacterium which can be applied to the industrial production of 5KGA. Specifically disclosed are: a high-temperature-resistant bacterium which belongs to the genus Gluconobacter and is capable of producing 5KGA at 30 to 38°C, or a mutant strain of the high-temperature-resistant bacterium which is produced by disrupting an FAD-GADH gene in the high-temperature-resistant bacterium; and a method for producing 5KGA, which is characterized by culturing the high-temperature-resistant bacterium at 30 to 37°C in the presence of PQQ and/or a Ca ion to produce 5KGA and collecting 5KGA.

Description

5-ケトグルコン酸産生能を有する高温耐性菌、及び高温耐性菌を用いた5-ケトグルコン酸の製造方法High temperature resistant bacteria having ability to produce 5-ketogluconic acid, and method for producing 5-ketogluconic acid using high temperature resistant bacteria
 本発明は、高温で5-ケトグルコン酸(5KGA)産生能を有する高温耐性菌、及び該高温耐性菌を用いた5KGAの製造法に関する。 The present invention relates to a thermotolerant bacterium capable of producing 5-ketogluconic acid (5KGA) at a high temperature, and a method for producing 5KGA using the thermotolerant bacterium.
 グルコノバクターは、糖、糖アルコール、糖酸などの広い範囲の化合物を酸化することができ、酸化された産物を高い収率で培地中に蓄積できる酢酸菌の種類である。これらの酸化反応に関与する酵素は、D-グルコース、D-ソルビトール、D-マンニトール、グリセロール、グルコン酸、ケトグルコン酸等それぞれの脱水素酵素である。それら全ての脱水素酵素は、細胞質膜表層に固く結合しており、基質から引き抜かれた電子は、ユビキノンを介して末端のユビキノン酸化酵素へ伝達され、その電子伝達反応に伴って生物エネルギーを生成する。 Gluconobacter is a type of acetic acid bacterium that can oxidize a wide range of compounds such as sugar, sugar alcohol, and sugar acid, and accumulate the oxidized product in a medium with high yield. Enzymes involved in these oxidation reactions are dehydrogenases such as D-glucose, D-sorbitol, D-mannitol, glycerol, gluconic acid, ketogluconic acid and the like. All of these dehydrogenases are tightly bound to the surface layer of the cytoplasmic membrane, and the electrons extracted from the substrate are transferred to the terminal ubiquinone oxidase via ubiquinone, generating bioenergy along with the electron transfer reaction. To do.
 D-グルコースのケト-D-グルコン酸への酸化は、細胞膜外に存在する酵素により触媒されることが知られている。D-グルコースは、膜結合ピロロキノリンキノン(PQQ)-グルコース脱水素酵素により、グルコノ-δ-ラクトンへ酸化され、グルコノ-δ-ラクトンは、グルコノラクトナーゼにより、D-グルコン酸へ変換される。グルコノバクター菌で見られたケトグルコン酸の形成は、膜結合グルコン酸脱水素酵素の2つのタイプにより触媒されることを本発明者らは報告している(非特許文献1)。1つは、FAD含有2-ケトグルコン酸生産酵素、すなわちFAD-グルコン酸脱水素酵素(FAD-GADH:Gluconate 2-dehydrogenase flavoprotein)、もう1つは、PQQ含有5ケト-D-ケトグルコン酸生産酵素、すなわちPQQ-グリセロ-ル脱水素酵素(PQQ-GLDH:Pyrroloquinoline quinone-glycerol dehydrogenase)である(図1)。また、FAD-GADHが、3つのサブユニットを持つことは、Shinagawaらにより報告されており(非特許文献2)、3つのサブユニットとは、FAD含有脱水素酵素サブユニット、three-heme含有チトクロームCサブユニット、そして未公知の小さなサブユニットである。5KGA生産を触媒する後者の酵素は、PQQ含有ポリオール脱水素酵素と同一であることが、Matsushitaらにより明らかにされており(非特許文献3)、PQQ-GLDHは、D-アラビトール脱水素酵素、D-ソルビトール脱水素酵素、あるいはグリセロール脱水素酵素など、種々の糖アルコールの酸化酵素として知られている。PQQ-GLDHは、多方面の基質と反応できるが、いわゆる「Bertrand-Hudson法」に従って反応が触媒される高い立体特異性をもつ。この酵素は、5KGAをD-グルコン酸から生産するために、D-グルコン酸のC5位置だけを酸化することができるが、D-グルコン酸との酵素親和性は低い。この酵素の遺伝子は、グルコノバクター・サブオキシダンス IFO3255からクローニングされ、2つのオープンリーディングフレームが見出された。1つは、5-膜貫通領域の疎水性領域蛋白をコードすると推定され、もう1つは、いくつかのPQQ依存酵素に類似した脱水素酵素サブユニットをコードしていて、特に膜結合グルコース脱水素酵素のPQQドメインに類似している。一方、細胞質に位置する2KGA還元酵素や5KGA還元酵素は、輸送蛋白により、細胞質に輸送された後で、2KGAや5KGAをそれぞれD-グルコン酸へ変換し、資化するために機能している。 It is known that the oxidation of D-glucose to keto-D-gluconic acid is catalyzed by an enzyme present outside the cell membrane. D-glucose is oxidized to glucono-δ-lactone by membrane-bound pyrroloquinoline quinone (PQQ) -glucose dehydrogenase, and glucono-δ-lactone is converted to D-gluconic acid by gluconolactonase. . The present inventors have reported that the formation of ketogluconic acid found in Gluconobacter is catalyzed by two types of membrane-bound gluconate dehydrogenase (Non-patent Document 1). One is FAD-containing 2-ketogluconic acid-producing enzyme, that is, FAD-gluconate dehydrogenase (FAD-GADH), and the other is PQQ-containing 5-keto-D-ketogluconic acid-producing enzyme, That is, PQQ-glycerol dehydrogenase (PQQ-GLDH: Pyrroloquinoline-quinone-glycerol-dehydrogenase) (FIG. 1). In addition, it has been reported by Shinagawa et al. That FAD-GADH has three subunits (Non-patent Document 2). The three subunits are FAD-containing dehydrogenase subunits and three-heme-containing cytochromes. C subunit, and unknown small subunit. It has been clarified by Matsushita et al. That the latter enzyme that catalyzes 5KGA production is the same as the PQQ-containing polyol dehydrogenase (Non-patent Document 3). PQQ-GLDH is a D-arabitol dehydrogenase, It is known as an oxidase of various sugar alcohols such as D-sorbitol dehydrogenase or glycerol dehydrogenase. PQQ-GLDH can react with a wide variety of substrates, but has high stereospecificity in which the reaction is catalyzed according to the so-called “Bertrand-Hudson method”. This enzyme can oxidize only the C5 position of D-gluconic acid to produce 5KGA from D-gluconic acid, but the enzyme affinity with D-gluconic acid is low. The gene for this enzyme was cloned from Gluconobacter suboxydans IFO 3255 and two open reading frames were found. One is presumed to encode a hydrophobic region protein of the 5-transmembrane region, and the other encodes a dehydrogenase subunit similar to several PQQ-dependent enzymes, particularly membrane-bound glucose dehydration. Similar to the PQQ domain of elementary enzymes. On the other hand, 2KGA reductase and 5KGA reductase located in the cytoplasm function to convert and assimilate 2KGA and 5KGA into D-gluconic acid after being transported to the cytoplasm by transport proteins.
 5KGAは酒石酸、キシル酸、ビタミンCや重要な香料化合物などの原料となる有用な物質である(非特許文献4)。Greyらは、5KGAを使用したビタミンCの生産方法を提供しており、今日工業的に行われているReichsteind法よりも、緩和な条件下で工業的に製造可能な方法である(特許文献1、2)。 5KGA is a useful substance used as a raw material for tartaric acid, xylic acid, vitamin C and important fragrance compounds (Non-patent Document 4). Gray et al. Provide a method for producing vitamin C using 5KGA, which is a method that can be industrially produced under milder conditions than the Reichsteind method that is industrially performed today (Patent Document 1). 2).
 ほとんどのグルコノバクター菌株は、D-グルコースから2KGAと5KGAを生産する。このように、グルコノバクター菌による5KGAは、主な副生産物として2KGAを生産し、2つのケトグルコン酸の生産は生体内で競合する。本発明者らは、D-グルコ-スの基質に対し、変換率が80%以上である5KGAを特異的に生産するグルコノバクター菌を野生株から選別する方法を報告した(特許文献3)。また、2KGA生産がFAD-GADH遺伝子に触媒されることから、グルコノバクター・オキシダンス 621H(グルコノバクター・サブオキシダンス IFO12528と同一)のFAD-GADH欠損変異株を作製し、D-グルコースからほとんど特異的に5KGAを生産させたという報告がある(非特許文献5)。しかしながら、この常温菌株を使った5KGAの生産のための最適温度は20℃近辺である。工業的規模の培養工程では、培養温度の上昇を下げるための冷却装置が必要である。コスト削減の面からも、より高温で5KGAを生産する菌株が望まれている。本発明者らは、タイ国において、種々の材料から得られた菌株について高温耐性を有するグルコノバクター属菌を報告した(非特許文献6)。しかしながら、高い5KGA生産株については明らにしていない。 Most Gluconobacter strains produce 2KGA and 5KGA from D-glucose. Thus, 5KGA by Gluconobacter bacteria produces 2KGA as a major byproduct, and the production of the two ketogluconic acids competes in vivo. The present inventors have reported a method of selecting Gluconobacter bacteria that specifically produce 5KGA having a conversion rate of 80% or more from a wild strain with respect to a D-glucose substrate (Patent Document 3). . Also, since 2KGA production is catalyzed by the FAD-GADH gene, a FAD-GADH-deficient mutant of Gluconobacter oxydans 621H (identical to Gluconobacter suboxydans IFO12528) was prepared from D-glucose. There is a report that 5KGA was produced almost specifically (Non-patent Document 5). However, the optimum temperature for the production of 5KGA using this cold strain is around 20 ° C. In an industrial scale culture process, a cooling device is required to reduce the increase in culture temperature. From the viewpoint of cost reduction, a strain that produces 5KGA at a higher temperature is desired. The present inventors reported the gluconobacter genus microbe which has high temperature tolerance about the strain obtained from various materials in Thailand (nonpatent literature 6). However, the high 5KGA production strain is not disclosed.
米国特許公報第2421621号U.S. Pat. No. 2,421,621 米国特許公報第2421612号U.S. Pat. No. 2,421,612 特開2008-237191号公報JP 2008-237191 A
 本発明は、工業的な5KGA生産に応用できる高温耐性菌を提供することをその主な課題とする。 The main object of the present invention is to provide a high temperature resistant bacterium applicable to industrial 5KGA production.
 本発明者等は、常温菌が生育できない37℃の高温で生育し、5KGAを生産できる菌株をスクリーニングするため、グルコノバクター属の保存菌株やタイ国等からの分離菌株の合わせて1500株について、グルコースーグルコン酸培地を用いて、培地中に茶色化合物を生産しない株で、かつレゾルシノール法にて発色する菌株として、新規な3種の高5KGA産生能を有する高温耐性グルコノバクター属菌(野生株)を分離した。さらに、非特許文献5記載の三親接合法なる煩雑な方法を使わず、エレクトロポレーション法という簡便な方法を用いて、上記の高5KGA産生能を有する高温耐性野生株のFAD-GADH遺伝子系の破壊を行うことにより、5KGAを特異的に生産できる高温耐性変異株を作出し、本発明を完成させた。 In order to screen for strains that can grow 5KGA and grow at a high temperature of 37 ° C. where thermophilic bacteria cannot grow, the present inventors have a total of about 1500 strains, including gluconobacter stocks and isolates from Thailand, etc. As a strain that does not produce a brown compound in a medium using a glucose-gluconic acid medium and develops a color by the resorcinol method, three novel high-temperature-resistant Gluconobacter spp. Wild strain) was isolated. Furthermore, the FAD-GADH gene system of the above-mentioned high temperature resistant wild strain having the ability to produce high 5KGA is used by using a simple method called electroporation without using the complicated method of the three-parent joining method described in Non-Patent Document 5. As a result, a high-temperature-resistant mutant strain capable of specifically producing 5KGA was created, and the present invention was completed.
 すなわち、本発明は以下の(1)~(6)を提供する。 That is, the present invention provides the following (1) to (6).
 (1)グルコノバクター属に属する5-ケト-D-グルコン酸(5KGA)産生能を有する高温耐性野生株、又はその変異株であって、20gグルコース、20gグルコン酸ナトリウム、3gポリペプトン、3g酵母エキスを蒸留水で1Lとする2%グルコース-グルコン酸培地で37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度が45mM以上となることを特徴とする5KGA産生能を有する高温耐性菌。 (1) A high-temperature tolerant wild strain having the ability to produce 5-keto-D-gluconic acid (5KGA) belonging to the genus Gluconobacter, or a mutant thereof, comprising 20 g glucose, 20 g sodium gluconate, 3 g polypeptone, 3 g yeast 5KGA in which the concentration of 5KGA in the culture supernatant measured with resorcinol reagent is 45 mM or more when cultured in a 2% glucose-gluconic acid medium made up to 1 L with distilled water at 37 ° C. for 72 hours. High-temperature-resistant bacteria that have productivity.
 (2)変異株が、FAD-グルコン酸脱水素酵素(FAD-GADH)遺伝子を破壊した変異株であることを特徴とする上記(1)に記載の高温耐性菌。 (2) The thermotolerant bacterium according to (1) above, wherein the mutant strain is a mutant strain in which the FAD-gluconate dehydrogenase (FAD-GADH) gene is disrupted.
 (3)FAD-GADH遺伝子を破壊した変異株が、2%グルコース-グルコン酸培地で、30℃及び37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度がそれぞれ170mM以上及び90mM以上となる5KGA産生能を有する変異株であることを特徴とする上記(2)に記載の高温耐性菌。 (3) When a mutant strain in which the FAD-GADH gene is disrupted is cultured in a 2% glucose-gluconic acid medium at 30 ° C. and 37 ° C. for 72 hours, the concentration of 5KGA in the culture supernatant measured using a resorcinol reagent is The thermotolerant bacterium according to (2) above, which is a mutant strain having 5KGA producing ability of 170 mM or more and 90 mM or more, respectively.
 (4)FAD-GADH遺伝子を破壊した変異株が、配列番号7,8,9に示す塩基配列を有するDNA断片を増幅して得られたPCR産物に、カナマイシンカセットを挿入したプラスミドを細胞内に導入して相同組み換えを行うことにより構築した株であることを特徴とする上記(2)に記載の高温耐性菌。 (4) A plasmid in which a kanamycin cassette is inserted into a PCR product obtained by amplifying a DNA fragment having the nucleotide sequence shown in SEQ ID NOs: 7, 8, and 9 from a mutant strain in which the FAD-GADH gene is disrupted is introduced into the cell. The high-temperature resistant bacterium according to (2) above, which is a strain constructed by introduction and homologous recombination.
 (5)グルコノバクター・フラテウリ THE42株(受託番号 NITE BP-655)、グルコノバクター・フラテウリ THG42株(受託番号 NITE BP-657)、グルコノバクター・フラテウリ THF55株(受託番号 NITE BP-659)、グルコノバクター・フラテウリ THE42 gndG::Km株(受託番号 NITE BP-656)、グルコノバクター・フラテウリ THG42 gndG::Km株(受託番号 NITE BP-658)、グルコノバクター・フラテウリ THF55 gndG::Km株(受託番号 NITE BP-660)から選ばれる1種以上の5-ケト-D-グルコン酸産生能を有する高温耐性菌。 (5) Gluconobacter / Frateuri THE42 strain (Accession number NITE BP-655), Gluconobacter / Flateuri THG42 strain (Accession number NITE BP-657), Gluconobacter Frateuri THF55 strain (Accession number NITE BP-659) , Gluconobacter frateuri THE42 gndG :: Km strain (Accession number NITE BP-656), Gluconobacter frateuri THG42 gndG :: Km strain (Accession number NITE BP-658), Gluconobacter frateuri THF55 gndG: One or more kinds of 5-keto-D-gluconic acid-producing bacteria selected from Km strain (Accession No. NITE BP-660).
 (6)上記(1)~(5)のいずれかに記載の高温耐性菌を、ピロロキノリンキノン及び/又はCaイオン存在下、30~37℃で培養して5KGAを生産させ、5KGAを採取することを特徴とする、5KGAの製造方法。 (6) The high-temperature resistant bacterium according to any one of (1) to (5) above is cultured at 30 to 37 ° C. in the presence of pyrroloquinoline quinone and / or Ca ions to produce 5KGA, and 5KGA is collected. A method for producing 5KGA, wherein
 本発明により、有用な工業製品の原料となる5KGAを、高温条件下で培養することが可能となり、培養中の適正な温度を維持するために、常温菌では必要とされる高い冷却コストを削減することができる。また、5KGA産生能を有する高温耐性変異株は5KGAを特異的に生産するため、精製工程が容易で工業的に有利である。 According to the present invention, 5KGA, which is a raw material for useful industrial products, can be cultured under high temperature conditions, and in order to maintain an appropriate temperature during the culture, the high cooling cost required for psychrophilic bacteria is reduced. can do. Moreover, since the high temperature resistant mutant strain having 5KGA production ability specifically produces 5KGA, the purification process is easy and industrially advantageous.
グルコースから5KGA及び2KGAを生成する酵素反応を示す図面である。It is drawing which shows the enzyme reaction which produces | generates 5KGA and 2KGA from glucose. 分離された高温耐性グルコノバクター属菌による培地中の2KGAと5KGAの生産を示す図面に代わる写真である。(1:D-グルコース、2:NaGA、3:2KGA、4:5KGA、5:培地、6:THE42、7:THF55、8:THG42、9:THE42、10:THF55、11:THG42、ただし、6-8は30℃で、9-11は37℃で培養した。)It is a photograph replaced with drawing which shows the production of 2KGA and 5KGA in the culture medium by the isolate | separated high temperature tolerance Gluconobacter genus bacteria. (1: D-glucose, 2: NaGA, 3: 2 KGA, 4: 5 KGA, 5: medium, 6: THE42, 7: THF55, 8: THG42, 9: THE42, 10: THF55, 11: THG42, where 6 -8 was cultured at 30 ° C and 9-11 was cultured at 37 ° C.) 高温耐性グルコノバクター・フラテウリ THF55株から得られたゲノム断片の模式図である。FIG. 3 is a schematic diagram of a genome fragment obtained from a high temperature resistant Gluconobacter frateuri THF55 strain. 高温耐性グルコノバクター属菌のカナマイシン耐性カセットでの変異をPCRで確認したことを示す図面に代わる写真である。(M:マーカーであるλDNA、1:THE42、2:THE42 gndG::Km、3:THF55、4:THF55 gndG::Km、5:THG42、6:THG42 gndG::Km)It is the photograph replaced with drawing which shows that the variation | mutation in the kanamycin resistance cassette of the high temperature tolerance Gluconobacter genus microbe was confirmed by PCR. (M: Marker λDNA, 1: THE42, 2: THE42, gndG :: Km, 3: THF55, 4: THF55, gndG :: Km, 5: THG42, 6: THG42, gndG :: Km) 高温耐性グルコノバクター属菌のFAD欠損株による2KGAと5KGAの生産を示す図面に代わる写真である。(1:D-グルコース、2:NaGA、3:2KGA、4:5KGA、5:培地、6:THE42 gndG::Km、7:THF55 gndG::Km、8:THG42 gndG::Km、9:THE42 gndG::Km、10:THF55 gndG::Km、11:THG42 gndG::Km、ただし、6-8は30℃で、9-11は37℃で培養した。)It is the photograph replaced with drawing which shows the production of 2KGA and 5KGA by the FAD deficient strain of the high temperature tolerance Gluconobacter genus bacteria. (1: D-glucose, 2: NaGA, 3: 2KGA, 4: 5KGA, 5: medium, 6: THE42 gndG :: Km, 7: THF55 gndG :: Km, 8: THG42 gndG :: Km, 9: THE42 (gndG :: Km, 10: THF55, gndG :: Km, 11: THG42, gndG :: Km, where 6-8 were cultured at 30 ° C. and 9-11 were cultured at 37 ° C.) 高温耐性グルコノバクター属菌のD-アラビトールとD-グルコースに対する膜結合酵素の活性を示す図面である。(a:30℃で培養、b:37℃で培養、グレイのカラム:コファクター無添加で培養したD-アラビトールの活性、黒のカラム:15μMPQQと10mMCaCl添加で培養したD-アラビトールの活性、白のカラム:コファクター無添加で培養したD-グルコースの活性、斜線のカラム:15μMPQQと10mMCaCl添加で培養したD-グルコースの活性)1 is a drawing showing the activity of a membrane-bound enzyme for D-arabitol and D-glucose of a high temperature resistant Gluconobacter genus. (A: cultured at 30 ° C., b: cultured at 37 ° C., gray column: activity of D-arabitol cultured with no cofactor added, black column: activity of D-arabitol cultured with 15 μMPQQ and 10 mM CaCl 2 added, White column: activity of D-glucose cultured without cofactor addition, hatched column: activity of D-glucose cultured with addition of 15 μMPQQ and 10 mM CaCl 2 ) 高温耐性グルコノバクター属菌のケトグルコン酸生産を示す図面である。(a:30℃で培養、b:37℃で培養、グレイのカラム:2KGA濃度、黒のカラム:5KGA濃度)It is drawing which shows ketogluconic acid production of high temperature tolerance Gluconobacter genus bacteria. (A: cultured at 30 ° C., b: cultured at 37 ° C., gray column: 2 KGA concentration, black column: 5 KGA concentration) 高温耐性グルコノバクター・フラテウリ THF55株の37℃での培養において、菌の生育と5KGA生産へのCaClの添加効果を示す図面である。(a:生育曲線(黒の四角:0mM、黒のダイヤモンド型2.5mM、白の三角:5mM、4方クロス:7.5mM、6方クロス:10mM)、b:5KGA生産量)In culture at 37 ° C. of temperature resistance Gluconobacter frateurii THF55 strain is a drawing showing the effect of adding CaCl 2 to Growth and 5KGA producing bacteria. (A: Growth curve (black square: 0 mM, black diamond type 2.5 mM, white triangle: 5 mM, 4-way cross: 7.5 mM, 6-way cross: 10 mM), b: 5 KGA production)
 本発明の高温耐性菌としては、20gグルコース、20gグルコン酸ナトリウム、3gポリペプトン、3g酵母エキスを蒸留水で1Lとする2%グルコース-グルコン酸培地で37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度が45mM以上となるグルコノバクター属に属する5KGA産生能を有する高温耐性野生株、又はその変異株であれば特に制限されないが、2%グルコース-グルコン酸培地で30℃で48時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度が50mM以上、特に55mM以上となるグルコノバクター属に属する5KGA産生能を有する高温耐性野生株やその変異株が好ましい。上記レゾルシノール試薬を用いた測定方法としては、後述の実施例に記載されているように、Methods in Enzymology vol.3 p.248~249に記載の方法や農芸化学実験書(増補)第2巻、京都大学農学部農芸化学教室編、682頁に記載の方法に準じた方法を例示することができる。また、上記グルコノバクター属菌としては、例えばグルコノバクター・サブオキシダンス(Gluconobacter suboxydans)、グルコノバクター・オキシダンス(Gluconobacter oxydans)、グルコノバクター・フラテウリ(Gluconobacter frateurii)などがあげられる。 The thermotolerant bacteria of the present invention include 20 g glucose, 20 g sodium gluconate, 3 g polypeptone, 3 g yeast extract in 1 L with distilled water and cultured in a 2% glucose-gluconic acid medium at 37 ° C. for 72 hours. There is no particular limitation as long as it is a high-temperature-resistant wild strain having 5KGA-producing ability belonging to the genus Gluconobacter or a mutant strain thereof having a 5KGA concentration of 45 mM or more in the culture supernatant measured using 2% glucose-gluconic acid When cultured in a medium at 30 ° C. for 48 hours, the 5KGA concentration in the culture supernatant measured using the resorcinol reagent is 50 mM or more, particularly 5 mM or more, particularly high temperature resistant wild strains belonging to the genus Gluconobacter belonging to the genus Gluconobacter The mutant is preferred. As the measurement method using the resorcinol reagent, as described in the examples below, the method described in Methods in Enzymology vol.3 p.248-249 and the Agricultural Chemistry Experiments (Supplement) Volume 2, A method according to the method described in Kyoto University Faculty of Agriculture, Department of Agricultural Chemistry, page 682 can be exemplified. Examples of the genus Gluconobacter include Gluconobacter oxydans, Gluconobacter oxydans, and Gluconobacter frateurii.
 本発明の高温耐性野生株は、以下のスクリーニング法で得ることができる。すなわち、初期スクリーニングとして、適切な培地、例えばポテト寒天培地に保存した高温耐性グルコノバクター属菌から1つのコロニーをグルコース-グルコン酸培地に接種し、30℃~37℃で2~3日間培養し、培地中に茶色の化合物を生産した菌株を2,5-ジケトグルコン酸(2,5DKGA)生産株として除外する。2,5DKGAは,いくつかのグルコノバクター属菌に存在する膜結合FAD-2-ケトグルコン酸脱水素酵素により触媒された2KGA酸化産物である。2,5DKGAを多く生産する菌株は、2KGAを多く形成し、5KGA形成は低いと予想されるため、それらの菌株は除くことが望ましい。残りの菌について、さらに30~38℃で、グルコース-グルコン酸培地で培養し、培養液の5KGAを定量することで、5KGA生産株を選ぶ。5KGAの生産量は、例えば、還元反応により発色するレゾルシノール試薬による発色反応などで調べることができる。このようにしてスクリーニングされた高温耐性グルコノバクター属の野生株として、グルコノバクター・フラテウリ THE42株、グルコノバクター・フラテウリ THG42株、グルコノバクター・フラテウリ THF55株を好適に例示することができる。 The high-temperature resistant wild strain of the present invention can be obtained by the following screening method. That is, as an initial screening, one colony is inoculated into a glucose-gluconic acid medium from a high-temperature-resistant Gluconobacter bacterium stored in an appropriate medium such as a potato agar medium and cultured at 30 ° C. to 37 ° C. for 2 to 3 days. The strain that produced the brown compound in the medium is excluded as a 2,5-diketogluconic acid (2,5DKGA) producing strain. 2,5DKGA is a 2KGA oxidation product catalyzed by membrane-bound FAD-2-ketogluconate dehydrogenase present in some Gluconobacter species. Strains that produce a large amount of 2,5DKGA form a large amount of 2KGA and the formation of 5KGA is expected to be low, so it is desirable to exclude those strains. The remaining bacteria are further cultured in a glucose-gluconic acid medium at 30 to 38 ° C., and 5KGA producing strain is selected by quantifying 5KGA in the culture solution. The production amount of 5KGA can be examined, for example, by a color development reaction with a resorcinol reagent that develops color by a reduction reaction. Preferred examples of the high-temperature-resistant gluconobacter genus strain screened in this manner include Gluconobacter frateuri THE42 strain, Gluconobacter frateuri THG42 strain, and Gluconobacter frateuri THF55 strain.
 上記の高温耐性グルコノバクター属の野生株は、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に2008年10月9日に寄託されている。受託番号は、グルコノバクター・フラテウリ THE42株が、受託番号 NITE BP-655、グルコノバクター・フラテウリ THG42株が、受託番号 NITE BP-657、グルコノバクター・フラテウリ THF55株が、受託番号 NITE BP-659である。 The above-mentioned wild strains belonging to the genus Gluconobacter were deposited on October 9, 2008 at the Patent Evaluation Microorganism Depositary Center of the National Institute of Technology and Evaluation (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture, Japan) Has been. The accession number is Gluconobacter frateuri THE42 strain, the accession number NITE BP-655, Gluconobacter frateuri THG42 strain is the accession number NITE BP-657, Gluconobacter frateuri THF55 strain, the accession number NITE BP- 659.
 本発明の高温で5KGA生産能を有する高温耐性グルコノバクター属菌の変異株は、親株として上記野生株だけではなく、2,5DKGA生産株からも選ぶことができ、親株の2KGAを形成に関与する酵素であるFAD-GADH遺伝子を破壊することによって、特異的に5KGAの生産を行うよう改変されたものを好適に例示することができる。FAD-GADH遺伝子が破壊された欠損株は、野生株の染色体上のFAD-GADH遺伝子、又はその一部のDNA配列を欠失、あるいは該遺伝子の内部に薬剤耐性遺伝子を挿入するなどして正常に機能する酵素を産生しないように修飾した遺伝子を含むDNAで菌を形質転換し、染色体上の正常な遺伝子との間で相同組換えを起こさせることにより、染色体上のFAD-GADH遺伝子を破壊することによって作製することができる。このような相同組換えの遺伝子置換による遺伝子破壊は、直鎖状DNAやプラスミドを用いる方法として既に確立している。本発明の高温耐性グルコノバクター属菌のFAD-GADH遺伝子破壊株の作製は、例えば、以下の操作方法、手順で行なうことができる。 The mutant strain of the genus Gluconobacter having high temperature resistance of 5KGA of the present invention can be selected not only from the above wild strain but also from the 2,5DKGA production strain as a parent strain and involved in the formation of the parent strain 2KGA. Preferred examples include those that have been specifically modified to produce 5KGA by disrupting the FAD-GADH gene, which is the enzyme to be used. The defective strain in which the FAD-GADH gene is disrupted is normal by deleting the FAD-GADH gene on the chromosome of the wild strain or a part of its DNA sequence, or inserting a drug resistance gene into the gene. The FAD-GADH gene on the chromosome is disrupted by transforming the fungus with DNA containing a gene that has been modified so that it does not produce a functional enzyme, and causing homologous recombination with a normal gene on the chromosome It can produce by doing. Such gene disruption by homologous recombination gene replacement has already been established as a method using linear DNA or plasmid. The production of the FAD-GADH gene disrupted strain of the high-temperature-resistant Gluconobacter bacterium according to the present invention can be performed, for example, by the following operation method and procedure.
 1)高温耐性グルコノバクター属菌からDNAの抽出を行う。高温耐性グルコノバクター属菌のからのゲノムDNA抽出法は、Sambrookらの方法(Sambrook, J., et al,1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.)により行うことができる。 1) Extract DNA from high temperature resistant Gluconobacter spp. Genomic DNA extraction from high-temperature-resistant Gluconobacter spp. (Sambrook, brookJ., Et al, 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor , NY).
 2)ターゲットとなるFAD-GADH遺伝子のクローニングをする。FAD-GADH遺伝子のクローニングは、常温性グルコノバクター属菌や、エルビニア菌のGADHの遺伝子の中の脱水素酵素サブユニットに維持されている領域からデザインしたプライマーを用いたPCR法や、FAD-GADH遺伝子を用いたハイブリダイゼーションにより行うことができるが、最も効率的な方法としては、グルコノバクター・オキシダンス 621Hのゲノムで報告されている、FAD-GADH遺伝子の配列を基にデザインしたプライマーを用い、1)で得られたゲノムDNAを鋳型としてPCRを行い、FAD-GADH遺伝子の全長を含む遺伝子をPCRにより増幅・取得することができる。クローニングした遺伝子の全配列は、ABI PRISM 310(PE Biosystems社製)を使用して、GENETYX-MAC(Software Development, Tokyo, Japan)やClone Manager(Scientific and Educational Software, Cary, NC)などのソフトウエアで解析し、配列データを得ることができる。また、ホモロジー検索や整列解析(alignment)は、それぞれBLAST(http://www.ncbi.nlm.nih.gov/BLAST/)やCLUSTAL W(www.ebi.ac.uk/clustalw)を使用して得ることができる。 2) Cloning the target FAD-GADH gene. Cloning of the FAD-GADH gene can be performed by PCR using primers designed from the region maintained in the dehydrogenase subunit in the gene of the genus Gluconobacter or Erwinia GADH, FAD- Although it can be performed by hybridization using the GADH gene, the most efficient method is to use a primer designed on the basis of the FAD-GADH gene sequence reported in the Gluconobacter oxydans 621H genome. Using the genomic DNA obtained in 1) as a template, PCR can be performed, and a gene containing the full length of the FAD-GADH gene can be amplified and obtained by PCR. Using ABI PRISM 310 (manufactured by PE Biosystems), the entire sequence of the cloned gene is software such as GENETYX-MAC (Software Development, Tokyo, Japan) and Clone Manager (Scientific and Educational Software, Cary, NC) To obtain sequence data. For homology search and alignment analysis, BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and CLUSTAL W (www.ebi.ac.uk/clustalw) are used, respectively. Obtainable.
 本発明のFAD-GADH遺伝子をクローニングして得られるDNA断片としては、gndF(配列番号7)、gndG(配列番号8)、gndH(配列番号9)などを挙げることができるが、中でも、触媒部位を含むサブユニットをコードしているgndGを好適に例示することができる。これらのDNA断片は増幅して、FAD-GADH遺伝子破壊用プラスミドに使用することができる。 Examples of the DNA fragment obtained by cloning the FAD-GADH gene of the present invention include gndF (SEQ ID NO: 7), gndG (SEQ ID NO: 8), gndH (SEQ ID NO: 9) and the like. A preferred example is gndG that encodes a subunit that contains. These DNA fragments can be amplified and used as a plasmid for FAD-GADH gene disruption.
 3)クローニングした遺伝子の配列情報を基に、FAD-GADH遺伝子破壊用プラスミドを作製する。FAD-GADH遺伝子の破壊用プラスミドの作製は、高温耐性グルコノバクター属菌内で複製不可能なpGEM-T Easy Vector等の大腸菌ベクターに、PCRで増幅したFAD-GADH遺伝子を組み込み、得られたDNAの制限酵素サイトに、カナマイシン等の薬剤耐性物質等からなるカセットを挿入して作製することができる。 3) Prepare a FAD-GADH gene disruption plasmid based on the sequence information of the cloned gene. A plasmid for disrupting the FAD-GADH gene was obtained by incorporating the PCR-amplified FAD-GADH gene into an E. coli vector such as pGEM-T Easy Vector that cannot replicate in the high temperature resistant Gluconobacter genus. It can be prepared by inserting a cassette made of a drug resistant substance such as kanamycin into the restriction enzyme site of DNA.
 4)ついで、プラスミド導入によるFAD-GADH遺伝子破壊株の作製を行う。FAD-GADH遺伝子破壊株の作製は、上記遺伝子破壊用プラスミドを、高温耐性グルコノバクター属菌への電気パルス法(Agric. Biol. Chem., 54:443-447, 1990、Res. Microbiol., 144:181-185, 1993)や、プラスミドを接合法(transconjugation)などの高効率遺伝子導入法により細胞内に導入し、染色体への相同性組換えにより、FAD-GADH遺伝子を破壊(又は不活性化)することにより行うことができる。FAD-GADH遺伝子の破壊の確認は、薬剤耐性遺伝子断片が染色体に挿入されている菌株を、適切な濃度の当該薬剤を含むプレート培地上に塗布することにより形質転換された高温耐性グルコノバクター属菌を選抜し、選抜した菌株で2KGA生産のための酵素活性が消失していることを確認することにより行うことができる。 4) Next, a FAD-GADH gene disruption strain is prepared by introducing a plasmid. The FAD-GADH gene disruption strain was prepared by subjecting the gene disruption plasmid to an electric pulse method (Agric. Biol. Chem.,: 54: 443-447, 1990, Res. Microbiol., 144: 181-185, 1993) and plasmids are introduced into cells by highly efficient gene transfer methods such as transconjugation, and FAD-GADH gene is disrupted (or inactivated) by homologous recombination to chromosomes. Can be performed. Confirmation of the disruption of the FAD-GADH gene is performed by applying a strain having a drug resistance gene fragment inserted into a chromosome onto a plate medium containing an appropriate concentration of the drug, and transforming the strain into a high temperature resistant Gluconobacter genus. This can be done by selecting bacteria and confirming that the selected bacterial strain has lost enzyme activity for 2KGA production.
 上記の如くして作製された、FAD-GADH遺伝子を破壊した変異株としては、2%グルコース-グルコン酸培地で、30℃及び37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度がそれぞれ150mM以上、好ましくは170mM以上、及び80mM以上、好ましくは90mM以上となる5KGA産生能を有する変異株を好適に例示することができる。また、本発明の形質転換した高温耐性グルコノバクター属菌は、適切な培地、例えばポテト寒天培地(20gグリセロール、5gグルコース、10g酵母エキス、10gポリペプトン、2g寒天、100mlのポテトエキスを蒸留水で1Lとする)で、0~5℃の低温で保存しておくことができる。長期間の保存は50%グリセロールを含むポテト培地を用い、-80℃で行うことができる。 The mutant strain disrupted in the FAD-GADH gene prepared as described above was cultured using a resorcinol reagent when cultured in a 2% glucose-gluconic acid medium at 30 ° C. and 37 ° C. for 72 hours. Suitable examples include mutants having 5KGA production ability, in which the concentration of 5KGA in the supernatant is 150 mM or more, preferably 170 mM or more, and 80 mM or more, preferably 90 mM or more. In addition, the transformed high-temperature-resistant Gluconobacter genus of the present invention can be prepared by using an appropriate medium such as potato agar medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 2 g agar, 100 ml potato extract with distilled water. 1L) and can be stored at a low temperature of 0 to 5 ° C. Long-term storage can be performed at −80 ° C. using a potato medium containing 50% glycerol.
 本発明の形質転換した高温耐性グルコノバクター属菌の変異株としては次の菌があげられる。グルコノバクター・フラテウリ THE42株(受託番号 NITE BP-655)の変異株が、グルコノバクター・フラテウリ THE42 gndG::Km株で、受託番号 NITE BP-656として、また、グルコノバクター・フラテウリTHG 42株(受託番号 NITE BP-657)の変異株は、グルコノバクター・フラテウリ THG42 gndG::Km株で、受託番号 NITE BP-658として、さらに、グルコノバクター・フラテウリ THF55株(受託番号 NITE BP-659)の変異株は、グルコノバクター・フラテウリ THF55 gndG::Kmで、受託番号 NITE BP-660として、それぞれ独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8)に2008年10月9日に寄託されている。 The following are examples of mutant strains of the transformed high temperature resistant Gluconobacter genus of the present invention. The mutant strain of Gluconobacter frateuri THE42 strain (Accession number NITE BP-655) is Gluconobacter frateuri THE42 gndG :: Km strain, the accession number NITE BP-656, and Gluconobacter frateuri THG 42 The mutant strain of the strain (Accession No. NITE BP-657) is Gluconobacter Frateuri THG42 gndG :: Km strain, the accession No. NITE BP-658, and the Gluconobacter Frateuri THF 55 strain (Accession No. NITE BP-) 659) is Gluconobacter frateuri THF55 gndG :: Km, and has the accession number NITE BP-660, respectively, and the National Institute of Technology and Evaluation of the National Institute of Technology and Evaluation (1000 Japan) Has been deposited on October 9, 2008 in the prefecture Kisarazu Kazusa legs bowed in 2-5-8).
 本発明の5KGAの生産においては、本発明の高温耐性グルコノバクター属菌の野生株又は変異株を、好気条件下で増殖培養し、培地中に5KGAを生成蓄積させることができる。 In the production of 5KGA of the present invention, the wild strain or mutant strain of the high temperature-resistant Gluconobacter genus of the present invention can be grown and cultured under aerobic conditions, and 5KGA can be produced and accumulated in the medium.
 本発明の高温耐性グルコノバクター属菌の培養は、炭素源、窒素源及び無機塩等を含む通常の栄養培地を用いて行うことができる。炭素源として、例えば、グルコース、ガラクトース、フルクトースやマンノースなどの単糖類、ラクトース、シュークロース、マルトースなどの二糖類、グルコン酸ナトリウムやグルコン酸ポタジウムなどのグルコン酸塩、グリセリン、マルチトール、ラクリトール、マンニトール、ソルビトール、キシリトール、アラビトールなどの糖アルコール類が用いられ、このうち、グルコース又はグルコン酸が好ましく、グルコースが最も好ましい。 The culture of the high temperature resistant Gluconobacter genus of the present invention can be performed using a normal nutrient medium containing a carbon source, a nitrogen source, an inorganic salt, and the like. Examples of the carbon source include monosaccharides such as glucose, galactose, fructose and mannose, disaccharides such as lactose, sucrose and maltose, gluconates such as sodium gluconate and potassium gluconate, glycerin, maltitol, lacriitol, mannitol Sugar alcohols such as sorbitol, xylitol, and arabitol are used, among which glucose or gluconic acid is preferable, and glucose is most preferable.
 窒素源としては、例えばアンモニア、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム又は尿素等をそれぞれ単独もしくは混合して用いることができる。また、無機塩として、例えばリン酸一水素カリウム、リン酸ニ水素カリウム又は硫酸マグネシウム等を使用することができる。この他にも必要に応じて、ポリペプトン、肉エキス、酵母エキス、ポテトエキス、コーンスティープリカー等の各種栄養素を培地に適宜添加することもできる。 As the nitrogen source, for example, ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, urea or the like can be used alone or in combination. Further, as the inorganic salt, for example, potassium monohydrogen phosphate, potassium dihydrogen phosphate, magnesium sulfate, or the like can be used. In addition, various nutrients such as polypeptone, meat extract, yeast extract, potato extract, and corn steep liquor can be appropriately added to the medium as necessary.
 また、本発明においては、5KGAの生産に関わる酵素のために培地にコファクターを添加することが好ましい。本発明の5KGAの生産に関わるPQQ-GLDHは、高温耐性グルコノバクター属菌を高温で生育するとき、酵素の構造的な変化を起こすことが明らかになっている。そのため、培地にコファクターを補充することにより酵素の活性を高い状態で維持することができる。コファクターとしては、マグネシウムイオン、カルシウムイオン、アンモニウムイオン、ナトリウムイオン、カリウムイオンがあげられ、これらのイオンは、塩化マグネシウム、炭酸マグネシウム、塩化カルシウム、炭酸カルシウム、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウムなどの化合物で培地中に添加することができる。好ましい化合物としては、塩化マグネシウム、炭酸マグネシウム、塩化カルシウム、炭酸カルシウムであり、最も好ましいのは、塩化カルシウムである。これらの化合物の培地への添加量は、1~50mM、好ましくは5mMである。 In the present invention, it is preferable to add a cofactor to the medium for the enzyme involved in 5KGA production. It has been clarified that PQQ-GLDH involved in the production of 5KGA of the present invention causes a structural change of the enzyme when a high temperature resistant Gluconobacter bacterium is grown at high temperature. Therefore, the enzyme activity can be maintained at a high level by supplementing the medium with a cofactor. Examples of cofactors include magnesium ions, calcium ions, ammonium ions, sodium ions, and potassium ions. These ions include magnesium chloride, magnesium carbonate, calcium chloride, calcium carbonate, ammonium carbonate, sodium carbonate, and potassium carbonate. Compounds can be added to the medium. Preferred compounds are magnesium chloride, magnesium carbonate, calcium chloride, and calcium carbonate, and most preferred is calcium chloride. The amount of these compounds added to the medium is 1 to 50 mM, preferably 5 mM.
 さらに、本発明における5KGAの生産に関わる酵素活性のため、培地に添加するコファクターとして、補酵素のピロロキノリンキノン(PQQ)があげられる。酵素活性を維持するために、補酵素の培地への補充を行い、5KGAの生産を高めることができる。PQQの添加量は、0.1~100μM、好ましくは1~10μMを培地中に添加する。PQQは上記マグネシウムイオン、カルシウムイオン、アンモニウムイオン、ナトリウムイオン、カリウムイオン等と併用することができる。 Furthermore, the coenzyme pyrroloquinoline quinone (PQQ) may be mentioned as a cofactor added to the medium for the enzyme activity involved in the production of 5KGA in the present invention. In order to maintain the enzyme activity, supplementation of the coenzyme to the medium can be performed to increase the production of 5KGA. The addition amount of PQQ is 0.1 to 100 μM, preferably 1 to 10 μM. PQQ can be used in combination with the magnesium ion, calcium ion, ammonium ion, sodium ion, potassium ion and the like.
 培養は、通常、通気撹拌又は振盪等の好気的条件下、28℃~38℃、好ましくは30~37℃の温度で行うことができる。培養時のpHは約5~7の範囲がよく、培養中のpH調整は酸又はアルカリを添加することにより行うことができる。培養期間は、1~7日間、好ましくは2~5日間行うことにより5KGAが得られる。5KGAの生産は、最初の成長段階で見られるが、最も高い生産量は、成長安定期に見られる。 Cultivation can usually be performed at a temperature of 28 ° C. to 38 ° C., preferably 30 to 37 ° C. under aerobic conditions such as aeration stirring or shaking. The pH during the culture is preferably in the range of about 5 to 7, and the pH during the culture can be adjusted by adding an acid or an alkali. By culturing for 1 to 7 days, preferably 2 to 5 days, 5KGA can be obtained. Production of 5KGA is seen in the first growth stage, but the highest production is seen in the stable growth period.
 本発明の高温耐性グルコノバクター属菌の培養菌体及び培地からの5KGAの回収は、一般的な発酵生産法に準じて行うことができ、例えば遠心分離、膜分離、カラムクロマトグラフィー等の公知の方法を用いることができる。 Recovery of 5KGA from the cultured cells and medium of the high-temperature-resistant Gluconobacter genus of the present invention can be performed according to a general fermentation production method, for example, known methods such as centrifugation, membrane separation, column chromatography, etc. This method can be used.
 以下、本発明を更に詳しく説明するため、実施例を挙げるが本発明はこれに限定されない。 Hereinafter, in order to describe the present invention in more detail, examples will be given, but the present invention is not limited to them.
<グルコノバクター菌の高温耐性5KGA生産株のスクリーニング>
1.野生株のスクリーニング
 スクリーニング実験に使用する全てのグルコノバクター菌は、タイ国の種々の材料からMoonmangmee, D.らの方法(Bioscience, Biotechnology and Biochemistry 64: 2306-2315, 2000)で分離し、ポテト寒天培地(20gグリセロール、5gグルコース、10g酵母エキス、10gポリペプトン、2g寒天、100mlのポテトエキスを蒸留水で1Lとする)に保存した。初期スクリーニングのために、分離菌全てから1つのコロニーを2%グルコース-グルコン酸培地(20gグルコース、20gグルコン酸ナトリウム、3gポリペプトン、3g酵母エキスを蒸留水で1Lとする)に接種し、30℃で48時間、又は37℃で60時間培養し、培地中に茶色の化合物を生産した菌株を2,5-ジケトグルコン酸生産株として除外した。その後、200μlの培地と、1mlのレゾルシノール(Resorcinol)試薬(0.5%Resorcinol49ml、濃塩酸168ml、蒸留水273ml)とを、80℃で20分間反応させた。レゾルシノール試薬とD-グルコースの反応生成物は赤い化合物で、5KGAの場合は黒い茶系緑色の沈殿が生じた。一方、D-グルコン酸と2KGAは確認反応生産物には見出されなかった。高温耐性の5KGA生産株として最も優れた菌株を得るために、初期スクリーニングで分離した24株の菌(表1)をポテト培地(20gグリセロール、5gグルコース、10g酵母エキス、10gポリペプトン、100mlのポテトエキスを蒸留水で1Lとする)で1日予備培養し、その後、培養液10μlを2%グルコース-グルコン酸培地の1mlに接種し、30℃で36時間、又は37℃で48時間培養した。培養液は、レゾルシノール試薬で反応させた。さらに、生育と5KGA蓄積は、反応で生じた反応生産物の吸光度を測定することにより比較した。
<Screening of high temperature resistant 5KGA production strain of Gluconobacter>
1. Wild strain screening All Gluconobacter strains used in the screening experiments were isolated from various Thai materials by the method of Moonmangmee, D. et al. (Bioscience, Biotechnology and Biochemistry 64: 2306-2315, 2000). It was stored in an agar medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 2 g agar, 100 ml of potato extract made up to 1 L with distilled water). For initial screening, one colony from all isolates was inoculated into 2% glucose-gluconate medium (20 g glucose, 20 g sodium gluconate, 3 g polypeptone, 3 g yeast extract to 1 L with distilled water) and 30 ° C. The strains that were cultured for 48 hours at 37 ° C. or 60 hours at 37 ° C. and produced brown compounds in the medium were excluded as 2,5-diketogluconic acid producing strains. Thereafter, 200 μl of the medium and 1 ml of Resorcinol reagent (49% of 0.5% Resorcinol, 168 ml of concentrated hydrochloric acid, 273 ml of distilled water) were reacted at 80 ° C. for 20 minutes. The reaction product of the resorcinol reagent and D-glucose was a red compound, and in the case of 5KGA, a black brownish green precipitate was formed. On the other hand, D-gluconic acid and 2KGA were not found in the confirmed reaction product. In order to obtain the best strain as a high temperature resistant 5KGA production strain, 24 strains (Table 1) isolated in the initial screening were prepared from potato medium (20 g glycerol, 5 g glucose, 10 g yeast extract, 10 g polypeptone, 100 ml potato extract. 1 μl with distilled water), and 10 μl of the culture solution was inoculated into 1 ml of 2% glucose-gluconic acid medium and cultured at 30 ° C. for 36 hours or 37 ° C. for 48 hours. The culture solution was reacted with a resorcinol reagent. Furthermore, growth and 5KGA accumulation were compared by measuring the absorbance of the reaction product produced by the reaction.
2.2KGAと5KGAの決定
 2KGAと5KGAは、それぞれ2KGA還元酵素と5KGA還元酵素により、Saichana. Iらの方法(Bioscience, Biotechnology and Biochemistry 71: 2478-2486, 2007)に準じて酵素的に定量した。2KGAと5KGAの定性分析は、薄層クロマトグラフィー分析で行った。サンプルはシリカゲル60プレート(メルク製)にスポットし、酢酸エチル:酢酸:メタノール:無イオン水(6:1.5:1.5:1)を含む溶媒で展開した。プレートを乾燥し、発色試薬(2gのジフェニルアミン、2mlのアニリン、100mlのアセトン、15mlのリン酸の使用前調整液)をスプレーし、発色するまで120℃で10~20分間加熱した。5KGAと2KGAは、それぞれ濃紫色と、赤褐色のスポットとして現れた。
2.2 Determination of KGA and 5KGA 2KGA and 5KGA were enzymatically quantified with 2KGA reductase and 5KGA reductase, respectively, according to the method of Saichana. I et al. (Bioscience, Biotechnology and Biochemistry 71: 2478-2486, 2007). . Qualitative analysis of 2KGA and 5KGA was performed by thin layer chromatography analysis. The sample was spotted on a silica gel 60 plate (Merck) and developed with a solvent containing ethyl acetate: acetic acid: methanol: non-ionized water (6: 1.5: 1.5: 1). Plates were dried and sprayed with a coloring reagent (2 g diphenylamine, 2 ml aniline, 100 ml acetone, 15 ml phosphoric acid pre-use preparation) and heated at 120 ° C. for 10-20 minutes until color developed. 5KGA and 2KGA appeared as dark purple and reddish brown spots, respectively.
3.スクリーニング結果
 24分離株の中の3株、THE42,THF55,THG42について、30℃、37℃の両方で5KGAの高い生産が見られた(表1)。
3. Screening results Three of the 24 isolates, THE42, THF55, and THG42, showed high production of 5 KGA at both 30 ° C and 37 ° C (Table 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 選ばれた3つの高温耐性菌による5KGAの形成は、図2のTLCにより確認し、3つの菌株の生育と生産の特徴については、30℃と37℃における2KGAと5KGA生産を、常温菌の5KGA生産グルコノバクター・サブオキシダンス IFO12528菌と、比較して検討した。結果を表2に示した。3つの高温耐性菌は、生育も、主生産物として2KGAを生産することも同じであった。30℃、48時間の培養で、常温菌は高温耐性菌に比べ、低い生育、低い2KGA生産、高い5KGA生産を示した。37℃では、30℃よりも全ての菌の生育が遅いことから、2KGAと5KGAの生産物を高めるために培養時間を72時間とした。常温菌は、37℃でほとんど成長せず、低い2KGAと5KGAの生産を示した。この温度で3つの高温耐性菌は、30℃と比較して、生育、及び2KGAと5KGAの生産は低いものの、常温菌では不可能であった37℃での成長と5KGA生産の可能性を示した。 The formation of 5KGA by the selected three thermotolerant bacteria was confirmed by TLC in FIG. 2. Regarding the characteristics of the growth and production of the three strains, 2KGA and 5KGA production at 30 ° C. and 37 ° C. Production Gluconobacter suboxydans IFO 12528 bacteria were compared and examined. The results are shown in Table 2. The three thermotolerant bacteria were the same in both growth and production of 2KGA as the main product. After culturing at 30 ° C. for 48 hours, the thermophilic bacteria showed lower growth, lower 2KGA production, and higher 5KGA production than the thermotolerant bacteria. At 37 ° C., the growth of all the bacteria was slower than at 30 ° C., so that the culture time was 72 hours in order to increase 2KGA and 5KGA products. Thermophilic bacteria grew little at 37 ° C, indicating low 2KGA and 5KGA production. Three thermotolerant bacteria at this temperature showed growth and growth at 37 ° C and the possibility of 5KGA production, which was not possible with room temperature bacteria, although growth and production of 2KGA and 5KGA were low compared to 30 ° C. It was.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<高温耐性グルコノバクター菌の変異株の作製>
 高温耐性グルコノバクター菌について、特異的に5KGAを生産する菌を作製した。2KGAはFAD-グルコン酸脱水素酵素(FAD-GADH)により生成される。5KGAと競合して、主生産物に2KGAを生産する分離した高温耐性グルコノバクター菌において、FAD-GADH遺伝子を破壊することにより、2KGA生産を排除した。以下のクローニングに使用するプライマーは、表3に示した。
<Production of mutant strain of high temperature resistant Gluconobacter>
About high temperature tolerance Gluconobacter microbe, the microbe which produces 5KGA specifically was produced. 2KGA is produced by FAD-gluconate dehydrogenase (FAD-GADH). In isolated high temperature resistant Gluconobacter bacteria that compete with 5KGA and produce 2KGA as the main product, 2KGA production was eliminated by disrupting the FAD-GADH gene. The primers used for the following cloning are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1.高温耐性グルコノバクター菌からFAD-グルコン酸脱水素酵素遺伝子のクローニング
 FAD-GADH構造遺伝子は、グルコノバクター・オキシダンス 621Hのゲノム配列中で報告されている(Nature Biotechnology 23: 195-200, 2005)。3つのサブユニット(脱水素酵素サブユニット、チトクロムサブユニット、小サブユニット)から構成されている。このFAD-GADH遺伝子の配列を基にデザインしたgndL-Fプライマー(配列番号1)とgndL-Rのプライマー(配列番号2)をPCR用プライマーとした。この配列は、エルビニア・シプリペディ(Journal of Bacteriology 179: 6566-6572, 1997)、グルコノバクター・ジオキシアセトニカスIFO3271(Microbiology 73: 6551-6556, 2007)、グルコノバクター・オキシダンス 621H(Nature Biotechnology 23: 195-200, 2005)のGADH遺伝子の中の脱水素酵素サブユニットに保存されている領域から設計した。このプライマーペアを、各高温耐性菌のゲノムDNAを鋳型として使用し、PuReTaq Ready-To-Go PCR Beads kit(GE Healthcare社製)を用いてPCRを行った。PCRは、mGeneAmpPCR System 2400(Perkin Elmer社製)を用い、PCRの温度サイクルは、以下のように行った。95℃で30秒を1サイクル、その後、95℃で30秒、55℃で1分、68℃で1分を25サイクル行い、すべてのサイクルが終了すると最後は37℃に保った。DNA断片は、アガロースゲルで分離し、QIAquick Gel Extraction Kit(Qiagen, Hilden, Germany)やMagExtracter DNA fragment purification kit(Toyobo, Tokyo, Japan)で精製した。この結果、PCRの525bp生産物が得られた。この配列は、グルコノバクター・オキシダンス 621HのFAD-GADH遺伝子の脱水素酵素サブユニットであるGOX1231と相同性が見られた。
1. Cloning of the FAD-gluconate dehydrogenase gene from thermotolerant Gluconobacter fungus The FAD-GADH structural gene has been reported in the genomic sequence of Gluconobacter oxydans 621H (Nature Biotechnology 23: 195-200, 2005) ). It is composed of three subunits (dehydrogenase subunit, cytochrome subunit, and small subunit). A gndL-F primer (SEQ ID NO: 1) and a gndL-R primer (SEQ ID NO: 2) designed based on the FAD-GADH gene sequence were used as PCR primers. This sequence is represented by Elvinia cypripedi (Journal of Bacteriology 179: 6566-6572, 1997), Gluconobacter dioxyacetonicus IFO 3271 (Microbiology 73: 6551-6556, 2007), Gluconobacter oxydans 621H (Nature Biotechnology) 23: 195-200, 2005) from the region conserved in the dehydrogenase subunit in the GADH gene. PCR was carried out using this primer pair using PuReTaq Ready-To-Go PCR Beads kit (manufactured by GE Healthcare) using the genomic DNA of each thermotolerant bacterium as a template. For PCR, mGeneAmpPCR System 2400 (manufactured by Perkin Elmer) was used, and the PCR temperature cycle was performed as follows. One cycle at 95 ° C. for 30 seconds, followed by 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 1 minute, and 68 ° C. for 1 minute were maintained at 37 ° C. at the end of all cycles. DNA fragments were separated on an agarose gel and purified with QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) or MagExtracter DNA fragment purification kit (Toyobo, Tokyo, Japan). This resulted in a 525 bp product of PCR. This sequence was found to be homologous to GOX1231, which is a dehydrogenase subunit of the FAD-GADH gene of Gluconobacter oxydans 621H.
 遺伝子の全配列を得るために、上記PCR生産物をシークエンスして得られた配列からデザインした特異的なプライマーペアである、F-igL-1(配列番号3)とF-igL-2(配列番号4)を用い、ゲノムDNAのEcoRI消化物の再環状化したものを鋳型として、TaKaRa LA TaqTM(タカラバイオ社製)に2mM MgClと0.5%DMSOを添加してPCRを行った。95℃で30秒を1サイクル、その後、95℃で30秒、55℃で1分、68℃で6分を25サイクル行い、すべてのサイクルが終了すると最後は37℃に保った。脱水素酵素と小サブユニットの遺伝子の全配列は、ゲノムDNAのSacII又はEcoRI消化物を再環状化したものを鋳型として、プライマーのF-igL-1(配列番号3)とR-igL-2(配列番号4)で増幅した。
 チトクロームCサブユニットの遺伝子は、in vitroクローニング法から得られた。
In order to obtain the entire sequence of the gene, F-igL-1 (SEQ ID NO: 3) and F-igL-2 (sequence) are specific primer pairs designed from the sequence obtained by sequencing the PCR product. Using No. 4), PCR was performed by adding 2 mM MgCl 2 and 0.5% DMSO to TaKaRa LA Taq ™ (manufactured by Takara Bio Inc.) using a recircularized EcoRI digest of genomic DNA as a template. One cycle at 95 ° C. for 30 seconds, followed by 25 cycles of 95 ° C. for 30 seconds, 55 ° C. for 1 minute, and 68 ° C. for 6 minutes were maintained at 37 ° C. at the end of all cycles. The entire sequences of the dehydrogenase and small subunit genes were prepared by using F-igL-1 (SEQ ID NO: 3) and R-igL-2 of primers using a template obtained by recirculating a SacII or EcoRI digest of genomic DNA. Amplified with (SEQ ID NO: 4).
The cytochrome C subunit gene was obtained from an in vitro cloning method.
 各菌株から得られたFAD-GADH遺伝子由来と予測される3つのORF(gndF、gndG、gndH)と、機能不明のタンパク質をコードする3ORFを含む6kb以上の断片をシークエンスし、配列を同定した。配列は、ABI PRISM 310(PE Biosystems社製)を使用して行った。配列データは、GENETYX-MAC(Software Development社製)やClone Manager(Scientific and Educational Software社製)を使用して解析した。ホモロジー検索や整列解析(alignment)は、それぞれBLAST(http://www.ncbi.nlm.nih.gov/BLAST/)とCLUSTAL W(www.ebi.ac.uk/clustalw)を使用して行った。1例としてTHF55菌株から得られた断片地図を図3に示した。ORF-1、ORF-2、ORF-3は、グルコノバクター・オキシダンス 621Hのゲノムで示されているGOX1234、GOX1233、GOX1229でコード化されている機能不明タンパク質に相同性を示した。gndF、gndG、gndHの3つのORFは、ゲノムでFAD-GADH遺伝子と確認されたGOX1232、GOX1231,GOX1230に76%、89%、68%の同一性があった。この研究で得られた配列は、DNA Data Bank of Japan(DDBJ)にAccession No. AB478873として登録済みである。 Sequences were identified by sequencing 6 ORF fragments containing 3 ORFs (gndF, gndG, gndH) predicted from the FAD-GADH gene obtained from each strain and 3 ORFs encoding proteins with unknown functions. The sequencing was performed using ABI PRISM 310 (PE Biosystems). Sequence data was analyzed using GENETYX-MAC (Software Development Corporation) and Clone Manager (Scientific and Educational Software). Homology search and alignment analysis were performed using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and CLUSTAL W (www.ebi.ac.uk/clustalw), respectively. . As an example, a fragment map obtained from the THF55 strain is shown in FIG. ORF-1, ORF-2, and ORF-3 showed homology to proteins of unknown function encoded by GOX1234, GOX1233, and GOX1229 shown in the genome of Gluconobacter oxydans 621H. The three ORFs of gndF, gndG, and gndH had 76%, 89%, and 68% identity to GOX1232, GOX1231, and GOX1230, which were confirmed to be FAD-GADH genes in the genome. The sequence obtained in this study has already been registered as Accession No.47AB478873 in DNA Data Bank of Japan (DDBJ).
 決定したGndFのアミノ酸配列は、N末端に、Berks, B. C.らが報告した(Molecular Microbiology 35: 260-274, 2000)、2つのアルギニン残基を含むtat依存の特殊なシグナル配列が存在することがわかった。GndFはまた、FAD-GADHの小サブユニットとして、Toyama.Hらの報告(Applied and Environmental Microbiology 73:6551-6556, 2007)で明らかにされたグルコノバクター・ジオキシアセトニカス IFO3271のGndSへ44%の同一性を示した。 The determined amino acid sequence of GndF was reported by Berks, B. C. et al. (Molecular Microbiology 35: 260-274, 2000), and there was a tat-dependent special signal sequence containing two arginine residues. I found out that GndF is also a small subunit of FAD-GADH. To GndS of Gluconobacter dioxyacetonicus IFO3271 revealed in a report by Toyama.H et al. (Applied バ Environmental Microbiology 73: 6551-6556, 2007) % Identity.
 決定したGndGのアミノ酸配列は、いくつかのFAD含有酵素に同様の配列がみられるように、N末端にFADが結合するためのシグナルであるグリシンボックス(GxGxxG)を示した。GndGは、コファクターとしてのFADと結合する蛋白ファミリーであるグルコース-メタノール-コリン(GMC)酸化還元酵素ファミリーの中に維持された領域配列を持っていた。また、前記Toyama. Hらが見出したグルコノバクター・ジオキシアセトニカス IFO3271のFAD-GADHの脱水素酵素サブユニッのGndLと61%の同一性を示した。 The determined amino acid sequence of GndG showed a glycine box (GxGxxG) which is a signal for binding of FAD to the N-terminus so that similar sequences can be seen in several FAD-containing enzymes. GndG had a region sequence maintained in the glucose-methanol-choline (GMC) oxidoreductase family, a protein family that binds FAD as a cofactor. Further, it showed 61% identity with GndL of FAD-GADH dehydrogenase subunit of Gluconobacter dioxyacetonicus IFO3271 found by Toyama.
 GndHは、アルコール脱水素酵素、ソルビトール脱水素酵素、アルデヒド脱水素酵素のように、グルコノバクター菌で見出される膜結合の多くのチトクロームcサブユニットと類似し、3つのヘムc結合モチーフ(CxxCH)配列を示した。さらに、グルコノバクター・ジオキシアセトニカス IFO3271(20)のGndCに44%の同一性を示した。 GndH is similar to many membrane-bound cytochrome c subunits found in Gluconobacter bacteria, such as alcohol dehydrogenase, sorbitol dehydrogenase, and aldehyde dehydrogenase. Three heme c-binding motifs (CxxCH) The sequence is shown. Furthermore, it showed 44% identity to GndC of Gluconobacter dioxyacetonicus IFO3271 (20).
2.高温耐性グルコノバクター属菌のFAD-GADH依存変異株の構築
 テンプレートとするゲノムDNAは、Marmurの方法(J. Mol. Biol. 3: 208-218, 1961)に準じて、対数増殖期におけるグルコノバクター菌から分離した。gndGの破壊のためのプラスミドは、大腸菌 DH5α株から、QIA Prep Spin Miniprep kit(Qiagen社製)を使用して調製した。
 F-gnDH-3プライマー(配列番号5)とR-gnDH-2プライマー(配列番号6)を使用し、テンプレートのゲノムDNAを増幅して得られた1.9kbのPCR断片のSmaIサイトに、pTKmからKmrカセットを含むEcoRV断片を挿入することにより構築した(pGEM-CA-F::Km)。制限酵素切断パターンの分析により、KmrカセットはgndGと同じ転写方向に挿入したことを確認した。作製したプラスミドをエレクトロポレーションで、グルコノバクター菌へ導入し、導入した細胞は、遺伝子組み換えのために30℃で6時間、ポテト培地で培養した。2~3日後、カナマイシン50μg/mlを含むSG寒天培地(1%ソルビトール、1%グリセロール、0.3%ポリペプトン、0.3%酵母エキス、2%寒天)上に得られたコロニーをピックアップしてカナマイシン50μg/mlを含む1mlのSG培地(1%ソルビトール、1%グリセロール、0.3%ポリペプトン、0.3%酵母エキス)へ接種した。その後、変異株は、カナマイシン50μg/mlと、アンピシリン50μg/ml添加又は無添加の2つの新しい寒天培地に接種し、カナマイシン耐性コロニーでアンピシリンに耐性を示さないものを選抜した。Kmrカセットの挿入領域をカバーして増幅するプライマーを用いたPCRで遺伝子破壊を確かめた(図4)。その結果、THE42,THF55,THG42株からのgndG:Km変異株が得られ、3つの変異株全ては、TLC分析から2KGA生産性がないことを確認した(図5)。
2. Construction of FAD-GADH Dependent Mutant of High Temperature Resistant Gluconobacter genus The template genomic DNA is glucosylated in logarithmic growth phase according to Marmur's method (J. Mol. Biol. 3: 208-218, 1961). Isolated from Novacter. A plasmid for disrupting gndG was prepared from E. coli DH5α strain using QIA Prep Spin Miniprep kit (Qiagen).
Using the F-gnDH-3 primer (SEQ ID NO: 5) and the R-gnDH-2 primer (SEQ ID NO: 6), the template genomic DNA was amplified to the SmaI site of the 1.9 kb PCR fragment obtained. Was constructed by inserting an EcoRV fragment containing the Kmr cassette (pGEM-CA-F :: Km). Analysis of the restriction enzyme cleavage pattern confirmed that the Kmr cassette was inserted in the same transcription direction as gndG. The prepared plasmid was introduced into Gluconobacter by electroporation, and the introduced cells were cultured in potato medium at 30 ° C. for 6 hours for gene recombination. After 2-3 days, the colonies obtained on SG agar medium (1% sorbitol, 1% glycerol, 0.3% polypeptone, 0.3% yeast extract, 2% agar) containing 50 μg / ml kanamycin were picked up. 1 ml of SG medium (1% sorbitol, 1% glycerol, 0.3% polypeptone, 0.3% yeast extract) containing 50 μg / ml kanamycin was inoculated. Subsequently, the mutant strains were inoculated into two new agar media with or without kanamycin 50 μg / ml and ampicillin 50 μg / ml, and kanamycin-resistant colonies that did not show resistance to ampicillin were selected. The gene disruption was confirmed by PCR using a primer that covers and amplifies the insertion region of the Kmr cassette (FIG. 4). As a result, gndG: Km mutant strains from the THE42, THF55, and THG42 strains were obtained, and all three mutant strains were confirmed to have no 2KGA productivity from TLC analysis (FIG. 5).
3.酵素活性による変異株の確認
 野生株と変異株のD-アラビトールやグルコースに対する膜結合酵素活性は、30℃と37℃で生育させた細胞から膜分画により調製し、Toyama. Hらの方法(Bioscience Biotechnology and Biochemistry 69: 1120-1129, 2005)で行った。膜結合酵素活性は、フェリシアナイドとPMSを用いた還元活性により測定し、フェリシアナイド還元酵素活性、あるいはPMS-DCIP還元酵素活性として表した(図6a,b)。
3. Confirmation of Mutant by Enzyme Activity Membrane-bound enzyme activity for D-arabitol and glucose in wild and mutant strains was prepared from cells grown at 30 ° C. and 37 ° C. by membrane fractionation. Bioscience Biotechnology and Biochemistry 69: 1120-1129, 2005). Membrane-bound enzyme activity was measured by reducing activity using ferricyanide and PMS and expressed as ferricyanide reductase activity or PMS-DCIP reductase activity (FIGS. 6a and b).
 フェリシアナイド還元酵素活性は、カリウムフェリシアナイドを電子受容体として測定した。25℃で、0.1Mの基質、McIlvaine buffer(McB,pH5.0)、及び適当な量の酵素液を含む0.9mlの反応液を、5分間インキュベート後、0.1Mのカリウムフェリシアナイドの0.1mlを添加し、撹拌した。一定時間のインキュベート後、0.5ml Dupanol試薬(0.3% Fe(SO、8.1%リン酸、0.3%SDS)を添加して反応を止めた。色が安定するため20分間放置した後、混合液の総量が5mlになるよう3.5mlの蒸留水で希釈し、分光光度計U2000(日立製作所社製)で、660nmの吸光度を測定した。酵素活性の1ユニットは、1分間に1μモルの基質を酸化した酵素の量とした。 Ferricyanide reductase activity was measured using potassium ferricyanide as an electron acceptor. At 25 ° C, 0.9 ml of a reaction solution containing 0.1 M substrate, McIlvaine buffer (McB, pH 5.0), and an appropriate amount of enzyme solution was incubated for 5 minutes, and then 0.1 M potassium ferricyanide. Of 0.1 ml of was added and stirred. After incubation for a certain period of time, the reaction was stopped by adding 0.5 ml Dupanol reagent (0.3% Fe 2 (SO 4 ) 3 , 8.1% phosphoric acid, 0.3% SDS). After being allowed to stand for 20 minutes to stabilize the color, the mixture was diluted with 3.5 ml of distilled water so that the total amount of the mixture became 5 ml, and the absorbance at 660 nm was measured with a spectrophotometer U2000 (manufactured by Hitachi, Ltd.). One unit of enzyme activity was defined as the amount of enzyme that oxidized 1 μmol of substrate per minute.
 膜画分のフェナジンメソスルフェイト(PMS)還元活性は、25℃で、1mlの反応液中、100mMの基質、0.2mMのPMS、1.2mMのNaN、適量の酵素、McB(pH5.0)を、0.11mMの2,6-ジクロロフェノールインドフェノール(DCIP)とカップリング反応させ、600nmの青色の退色を分光光度計U2000(日立製作所社製)で測定した。酵素活性の1ユニットは、このアッセイ系で1分間に1μモルの基質を酸化した酵素の量とした。 The phenazine mesosulfate (PMS) reducing activity of the membrane fraction was measured at 25 ° C. in 1 ml reaction solution with 100 mM substrate, 0.2 mM PMS, 1.2 mM NaN 3 , appropriate amount of enzyme, McB (pH 5. 0) was subjected to a coupling reaction with 0.11 mM 2,6-dichlorophenolindophenol (DCIP), and a blue fading of 600 nm was measured with a spectrophotometer U2000 (manufactured by Hitachi, Ltd.). One unit of enzyme activity was the amount of enzyme that oxidized 1 μmol of substrate per minute in this assay system.
 図6aに示すように、30℃で生育した野生株と変異株のD-アラビトール脱水素酵素活性は、同じであったが、D-グルコン酸脱水素酵素活性は変異株で野生株の30%以上減少した。活性の減少は、FAD-GADHの脱水素酵素サブユニットをコードするgndG遺伝子の不活性化によるのであり、D-グルコン酸に反応するPQQ-GLDH活性はそのまま維持した。図6bでは、野生株と変異株において、37℃で生育した細胞からの膜結合酵素活性が、30℃での活性より低く、変異株のD-アラビトール脱水素酵素活性は野生株と同じであったが、変異株におけるD-グルコン酸脱水素酵素活性が、30℃の場合と同じように減少したことを示した。また、37℃では、PQQの添加により、野生株と変異株両方で、活性が2倍以上増加した。このことは、菌が高温で生育するときに、PQQ-GLDHに必要なPQQが不足していることを示している。 As shown in FIG. 6a, the D-arabitol dehydrogenase activity of the wild strain and the mutant strain grown at 30 ° C. was the same, but the D-gluconate dehydrogenase activity was 30% of that of the wild strain. More than that. The decrease in activity was due to inactivation of the gndG gene encoding the FAD-GADH dehydrogenase subunit, and the PQQ-GLDH activity in response to D-gluconic acid was maintained. In FIG. 6b, the membrane-bound enzyme activity from cells grown at 37 ° C. in the wild strain and the mutant strain is lower than that at 30 ° C., and the D-arabitol dehydrogenase activity of the mutant strain is the same as that in the wild strain. However, it was shown that the D-gluconate dehydrogenase activity in the mutant was reduced in the same manner as at 30 ° C. In addition, at 37 ° C., the addition of PQQ increased the activity by a factor of 2 or more in both the wild strain and the mutant strain. This indicates that PQQ necessary for PQQ-GLDH is insufficient when the fungus grows at high temperature.
<FAD-GADH欠損変異株による5KGAの生産>
 野生株と変異株は、2%グルコース-2%グルコン酸培地で30℃と37℃で培養し、2KGAと5KGAの生産量を培養時間に沿って測定した(図7a,b)。37℃における野生株の生育は30℃よりわずかに低く、30℃と37℃両方で主生産物として2KGAを生産しており、生産量も5KGAの2倍以上であった。2つの生産物の生産は、最初の生育段階から見られたが、最も高い生産量は、生育定常期に見られた。30℃では、2KGAと5KGAの減少が培養60時間以降に見られたが、これは37℃の培養では見られなかった。gndG::Km変異株による5KGAの生産を、野生株と比較した場合、30℃で、3つの変異株全てで、5KGA生産が主で2KGA生産はわずかとなった。2KGAと5KGAの最も高い生産量は、野生株と同様に60時間後に見られた。37℃においても、変異株はやはり5KGAを主に生産し、2KGAの生産はわずかであったが、生産量は30℃での生産量の半分であった。最終的な変換の収量は、37℃、96時間培養で原料の50%であった。
<Production of 5KGA by FAD-GADH-deficient mutant>
Wild and mutant strains were cultured in 2% glucose-2% gluconic acid medium at 30 ° C. and 37 ° C., and the production amounts of 2KGA and 5KGA were measured along the culture time (FIGS. 7a and b). The growth of the wild strain at 37 ° C. was slightly lower than 30 ° C., 2KGA was produced as the main product at both 30 ° C. and 37 ° C., and the production amount was more than twice that of 5KGA. Production of the two products was seen from the first growth stage, while the highest production was seen in the stationary growth phase. At 30 ° C, a decrease in 2KGA and 5KGA was seen after 60 hours of culture, but this was not seen in culture at 37 ° C. When the production of 5KGA by the gndG :: Km mutant strain was compared with that of the wild strain, all of the three mutant strains were mainly 5KGA production and only 2KGA production was slight at 30 ° C. The highest production of 2KGA and 5KGA was seen after 60 hours, similar to the wild type. Even at 37 ° C., the mutant strains still produced mainly 5KGA, and production of 2KGA was slight, but the production amount was half of that at 30 ° C. The final conversion yield was 50% of the raw material after culturing at 37 ° C. for 96 hours.
<高温での5KGA生産の改良>
 37℃での野生株と変異株のPQQ-GLDH活性はコファクター(PQQ及び/又はCa2+)の添加に依存する。そこで、種々の濃度のCaClをグルコノバクター属 THF55(gndG::Km)の培地に添加して、37℃で培養した結果(図8a)、培養3日後に5KGAの蓄積を確認した。CaCl添加による生育への効果は認められないが、5mMのCaCl添加で、5KGAの生産に高い効果を起こした。これは原料の90%が5KGAに変換される収率であった。5mMより高い濃度のCaCl添加では、5KGA生産は減少し、生育もわずかに阻害された。この結果より、37℃の培養において、5KGA生産を増加させる適正なCaClの添加濃度は5mMであった(図8b)。
<Improvement of 5KGA production at high temperature>
The wild-type and mutant PQQ-GLDH activities at 37 ° C. depend on the addition of cofactors (PQQ and / or Ca 2+ ). Accordingly, various concentrations of CaCl 2 were added to a medium of Gluconobacter THF55 (gndG :: Km) and cultured at 37 ° C. (FIG. 8a). As a result, accumulation of 5KGA was confirmed after 3 days of culture. Although the effect on growth by addition of CaCl 2 was not observed, the addition of 5 mM CaCl 2 produced a high effect on 5KGA production. This was a yield in which 90% of the raw material was converted to 5KGA. Addition of CaCl 2 at a concentration higher than 5 mM reduced 5KGA production and slightly inhibited growth. From this result, the appropriate concentration of CaCl 2 for increasing 5KGA production in the culture at 37 ° C. was 5 mM (FIG. 8b).
 本発明の菌株を用いた5KGAの発酵生産法は、高温条件下で培養することにより、培地を冷却する必要がなくなり、コストを大幅に削減することができる。また、本発明のグルコノバクター属菌の変異株は、5KGAを特異的に生産するため精製工程が容易になることから、本発明の新規な菌株は、工業的に利用される可能性が高い。 In the 5KGA fermentation production method using the strain of the present invention, it is not necessary to cool the medium by culturing under high temperature conditions, and the cost can be greatly reduced. In addition, since the mutant strain of the genus Gluconobacter of the present invention specifically produces 5KGA, the purification process is facilitated, and therefore the novel strain of the present invention is highly likely to be used industrially. .

Claims (6)

  1. グルコノバクター属に属する5-ケト-D-グルコン酸(5KGA)産生能を有する高温耐性野生株、又はその変異株であって、20gグルコース、20gグルコン酸ナトリウム、3gポリペプトン、3g酵母エキスを蒸留水で1Lとする2%グルコース-グルコン酸培地で37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度が45mM以上となることを特徴とする5KGA産生能を有する高温耐性菌。 A high-temperature-resistant wild strain having the ability to produce 5-keto-D-gluconic acid (5KGA) belonging to the genus Gluconobacter, or a mutant thereof, and distilled 20 g glucose, 20 g sodium gluconate, 3 g polypeptone, 3 g yeast extract 5KGA production ability characterized by the fact that when cultured in a 2% glucose-gluconic acid medium made up to 1 L with water at 37 ° C. for 72 hours, the 5KGA concentration in the culture supernatant measured using resorcinol reagent is 45 mM or more. High temperature resistant bacteria.
  2. 変異株が、FAD-グルコン酸脱水素酵素(FAD-GADH)遺伝子を破壊した変異株であることを特徴とする請求項1に記載の高温耐性菌。 2. The thermotolerant bacterium according to claim 1, wherein the mutant strain is a mutant strain in which the FAD-gluconate dehydrogenase (FAD-GADH) gene is disrupted.
  3. FAD-GADH遺伝子を破壊した変異株が、2%グルコース-グルコン酸培地で、30℃及び37℃で72時間培養したとき、レゾルシノール試薬を用いて測定した培養上清中の5KGA濃度がそれぞれ170mM以上及び90mM以上となる5KGA産生能を有する変異株であることを特徴とする請求項2に記載の高温耐性菌。 When a mutant strain in which the FAD-GADH gene was disrupted was cultured in a 2% glucose-gluconic acid medium at 30 ° C. and 37 ° C. for 72 hours, the 5KGA concentration in the culture supernatant measured using a resorcinol reagent was 170 mM or more. The high-temperature-resistant bacterium according to claim 2, which is a mutant having 5 KGA producing ability of 90 mM or more.
  4. FAD-GADH遺伝子を破壊した変異株が、配列番号7,8,9に示す塩基配列を有するDNA断片を増幅して得られたPCR産物に、カナマイシンカセットを挿入したプラスミドを細胞内に導入して相同組み換えを行うことにより構築した株であることを特徴とする請求項2に記載の高温耐性菌。 A mutant strain in which the FAD-GADH gene is disrupted introduces a plasmid into which the kanamycin cassette is inserted into the PCR product obtained by amplifying the DNA fragment having the nucleotide sequence shown in SEQ ID NOs: 7, 8, and 9 into the cell. The thermotolerant bacterium according to claim 2, which is a strain constructed by homologous recombination.
  5. グルコノバクター・フラテウリ THE42株(受託番号 NITE BP-655)、グルコノバクター・フラテウリ THG42株(受託番号 NITE BP-657)、グルコノバクター・フラテウリ THF55株(受託番号 NITE BP-659)、グルコノバクター・フラテウリ THE42 gndG::Km株(受託番号 NITE BP-656)、グルコノバクター・フラテウリ THG42 gndG::Km株(受託番号 NITE BP-658)、グルコノバクター・フラテウリ THF55 gndG::Km株(受託番号 NITE BP-660)から選ばれる1種以上の5-ケト-D-グルコン酸産生能を有する高温耐性菌。 Gluconobacter frateuri THE42 strain (Accession number NITE BP-655), Gluconobacter frateuri THG42 strain (Accession number NITE BP-657), Gluconobacter frateuri THF55 strain (Accession number NITE BP-659), Glucono Bacter Frateuri THE42 gndG :: Km strain (Accession number NITE BP-656), Gluconobacter Frateuri THG42 gndG :: Km strain (Accession number NITE BP-658), Gluconobacter Frateuri THF55 gndG: Km strain One or more kinds of 5-keto-D-gluconic acid-producing bacteria selected from the trust number NITE BP-660).
  6. 請求項1~5のいずれかに記載の高温耐性菌を、ピロロキノリンキノン及び/又はCaイオン存在下、30~37℃で培養して5KGAを生産させ、5KGAを採取することを特徴とする、5KGAの製造方法。
     
    The high-temperature resistant bacterium according to any one of claims 1 to 5 is cultured in the presence of pyrroloquinoline quinone and / or Ca ions at 30 to 37 ° C to produce 5KGA, and 5KGA is collected. 5KGA manufacturing method.
PCT/JP2009/006953 2008-12-17 2009-12-17 High-temperature-resistant bacterium capable of producing 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium WO2010070909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-320867 2008-12-17
JP2008320867A JP2012044868A (en) 2008-12-17 2008-12-17 High-temperature-resistant bacterium producible of 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium

Publications (1)

Publication Number Publication Date
WO2010070909A1 true WO2010070909A1 (en) 2010-06-24

Family

ID=42268588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006953 WO2010070909A1 (en) 2008-12-17 2009-12-17 High-temperature-resistant bacterium capable of producing 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium

Country Status (2)

Country Link
JP (1) JP2012044868A (en)
WO (1) WO2010070909A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012029580A (en) * 2010-07-28 2012-02-16 Mitsubishi Gas Chemical Co Inc Method for increasing production of protein in cultured cell

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KAZUNOBU MATSUSHITA: "Thailand de Bunri sareta Tainetsusei Sakusankin no Kino Kaiseki to sono Riyo", BIOSCIENCE & INDUSTRY, vol. 66, no. 3, 1 March 2008 (2008-03-01), pages 130 - 134 *
SAICHANA I. ET AL.: "Production of 5-keto-D- gluconic acid by thermotolerant gluconobacter strains defective in FAD-gluconate dehydrogenase.", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2009, 5 March 2009 (2009-03-05), pages 260 *
SAICHANA I. ET AL.: "Screening of thermotolerant gluconobacter strains for production of 5-keto- D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase.", APPL. ENVIRON. MICROBIOL., vol. 75, no. 13, July 2009 (2009-07-01), pages 4240 - 4247 *
SHINAGAWA E. ET AL.: "Production of 5-keto-D- gluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone(PQQ)-dependent membrane-bound D-gluconate dehydrogenase.", J. MOL. CATAL. B ENZYM., vol. 6, no. 3, 11 March 1999 (1999-03-11), pages 341 - 350 *
TOYAMA H.: "Microbial biochemistry for stable 5-keto-gluconate fermentation.", REP. NODA INST. SCI. RES., no. 50, 1 March 2007 (2007-03-01), pages 63 - 65 *

Also Published As

Publication number Publication date
JP2012044868A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
Meyer et al. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans
Hattori et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature
JP2010035448A (en) Modified flavin adenine-dependent glucose dehydrogenase with improved substrate specificity
Cui et al. Highly efficient bioreduction of 2-hydroxyacetophenone to (S)-and (R)-1-phenyl-1, 2-ethanediol by two substrate tolerance carbonyl reductases with cofactor regeneration
Yuan et al. Enhancement of 5-keto-D-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy
KR20120038030A (en) Xylitol producing microorganism introduced with arabinose metabolic pathway and production method of xylitol using the same
Habe et al. Heterologous expression of membrane-bound alcohol dehydrogenase–encoding genes for glyceric acid production using Gluconobacter sp. CHM43 and its derivatives
Wei et al. Functions of membrane-bound alcohol dehydrogenase and aldehyde dehydrogenase in the bio-oxidation of alcohols in Gluconobacter oxydans DSM 2003
Chen et al. Correlation between ethanol resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria
Saichana et al. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase
Liu et al. Identification of NAD-dependent xylitol dehydrogenase from Gluconobacter oxydans WSH-003
US20210024901A1 (en) Method for changing coenzyme activity and preference of glucose dehydrogenase and use thereof
CN108949649B (en) Engineering bacterium and application thereof in producing levodopa
CN111349644A (en) Bacterial strain and method for biosynthesis of isoprene glycol
WO2010070909A1 (en) High-temperature-resistant bacterium capable of producing 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium
CN108949647B (en) Engineering bacterium and application thereof in production of L-tyrosine
Sode et al. Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabolically engineered Escherichia coli strain capable of PQQ biosynthesis
WO2010050231A1 (en) Scyllo-inositol-producing cell and scyllo-inositol production method using said cells
Schweiger et al. Vinyl ketone reduction by three distinct Gluconobacter oxydans 621H enzymes
KR101202737B1 (en) Method for Producing Ethanol from Glycerol by Using Recombinant Yeast
WO2013080881A1 (en) Method for producing flavin-adenine dinucleotide dependent glucose dehydrogenase
KR102011415B1 (en) Novel CO2 reductase from Rhodobacter aestuarii and thereof
Kataoka et al. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus
CN108949654B (en) Engineering bacterium and application thereof in production of alpha-ketoglutaric acid
CN108949656B (en) Engineering bacterium and application thereof in production of pyruvic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833216

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP