WO2010069153A1 - 一种资源、负载控制方法、系统、装置、基站及终端 - Google Patents

一种资源、负载控制方法、系统、装置、基站及终端 Download PDF

Info

Publication number
WO2010069153A1
WO2010069153A1 PCT/CN2009/001510 CN2009001510W WO2010069153A1 WO 2010069153 A1 WO2010069153 A1 WO 2010069153A1 CN 2009001510 W CN2009001510 W CN 2009001510W WO 2010069153 A1 WO2010069153 A1 WO 2010069153A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal
load
service data
component
Prior art date
Application number
PCT/CN2009/001510
Other languages
English (en)
French (fr)
Inventor
赵锐
潘学明
索士强
肖国军
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2008102398662A external-priority patent/CN101754380B/zh
Priority claimed from CN200810247071A external-priority patent/CN101772078A/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2010069153A1 publication Critical patent/WO2010069153A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a resource, a load control method, a system, a device, a base station, and a terminal. Background technique
  • a carrier aggregation system is a system that aggregates (or connects) multiple carrier resources.
  • LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • multiple LTE carriers or The resources of the component carrier are used in connection.
  • These member carriers can be bound as the entire bandwidth of the system, assigned to one user or multiple users.
  • a higher peak rate can be provided when assigned to a user.
  • a plurality of consecutive component carriers may be aggregated, as shown in FIG. 1, or a plurality of discontinuous component carriers may be aggregated, as shown in FIG. 2. Both methods provide greater transmission bandwidth.
  • each component carrier in the carrier aggregation system is required to be as consistent as possible with LTE Release 8 (Release 8), thereby ensuring that the terminal of LTE Release 8 can work normally on each component carrier.
  • the terminal of the LTE Release 8 can only access one of the multiple component carriers of the carrier aggregation system, which may cause the load on the single member carrier wave to be too high. As a result, resources are tight and the complexity of resource scheduling is high.
  • An object of the embodiments of the present invention is to provide a resource control method, system, base station, and terminal in a carrier aggregation system, so as to implement flexible control of a carrier resource.
  • a method for controlling a resource in a carrier aggregation system includes: a base station specifying, for a terminal in a non-service data transmission state in a carrier aggregation system, a main carrier wave that needs to be monitored by the terminal;
  • the base station After receiving the service data transmission request, the base station determines a carrier transmission configuration of the service data, and indicates that the terminal monitors the resource control information on the configured transmission carrier;
  • the base station After completing the service data transmission with the terminal, the base station determines the primary carrier transmission configuration, and instructs the terminal to listen to the resource control information on the configured primary transmission carrier.
  • the resource control method in another carrier aggregation system includes: listening to a default or designated main carrier wave when the terminal is in a non-service data transmission state;
  • the terminal receives and sends , ,
  • a resource control system in a carrier aggregation system includes: a base station, configured to specify, by a base station in a non-service data transmission state in a carrier aggregation system, a primary carrier that needs to be monitored by the terminal; After transmitting the request, determining a carrier transmission configuration of the service data, and instructing the terminal to listen to the resource control information on the configured transmission carrier; after completing the service data transmission with the terminal, determining a primary carrier transmission configuration, and indicating that the terminal is in The configured transmission primary carrier listens for resource control information.
  • the terminal when in the non-service data transmission state, listens to the default or specified main carrier wave; in the process of converting the non-service data transmission state into the service data transmission state, receiving the transmitted transmission carrier configuration indication, and on the configured carrier Listening to the resource control information; after completing the service data transmission with the base station, receiving an indication sent by the base station to listen for the resource control information on the configured transmission primary carrier, and listening to the resource control information on the transmission primary carrier according to the indication.
  • a specifying unit configured to specify, by a terminal in a carrier aggregation system that is in a non-service data transmission state, a primary carrier that needs to be monitored by the terminal;
  • a carrier transmission configuration determining unit configured to determine a carrier transmission configuration of the service data
  • a first indication unit configured to: after receiving the service data transmission request, indicate, to the terminal, a carrier transmission configuration of the service data determined by the carrier transmission configuration determining unit;
  • a primary carrier transmission configuration determining unit configured to determine a primary carrier transmission configuration
  • a second indication unit configured to: after the base station completes the service data transmission with the terminal, the primary carrier transmission configuration indication determined by the primary carrier transmission configuration determining unit to the terminal.
  • an indication receiving unit configured to receive, in a process of converting the non-service data transmission state to the service data transmission state, the received transmission carrier configuration indication
  • the monitoring unit is configured to monitor a default or designated primary carrier when the terminal is in a non-service data transmission state; and in a process of converting the non-service data transmission state to the service data transmission state, according to the transmission carrier configuration received by the receiving unit Instructing to listen to the resource control information on the configured carrier; after the terminal completes the service data transmission with the base station, the resource control information is monitored on the transmission primary carrier.
  • the base station specifies, for the terminal in the non-service data transmission state of the carrier aggregation system, the primary carrier that needs to be monitored by the terminal, and after receiving the service data transmission request, the base station determines the carrier of the service data. Transmitting the configuration, and instructing the terminal to listen to the resource control information on the configured transmission carrier. After completing the service data transmission with the terminal, the base station determines the primary carrier transmission configuration, and instructs the terminal to monitor resource control on the configured transmission primary carrier.
  • the terminal power consumption is not required, and the terminal does not always listen to the control message on the PDCCH of multiple member carriers, and further, In the service data transmission state, multiple component carriers are used for parallel transmission, and the system can use the large bandwidth to bring the frequency diversity gain.
  • Another object of the embodiments of the present invention is to provide a load control method and apparatus for implementing , . . ⁇ * _' . , wave convergence, so as to avoid the problem of raising the anti-Beiqi ifj and improve resource utilization.
  • a load monitoring unit configured to perform load monitoring on a component carrier in the carrier aggregation system, to obtain a load monitoring result of the component carrier
  • a load adjustment unit configured to adjust a load of the component carrier according to the load monitoring result of the member carrier wave.
  • the load monitoring result of the member carrier is obtained by performing load monitoring on the component carrier in the carrier aggregation system; and the load of the component carrier is adjusted according to the load monitoring result of the member carrier wave.
  • FIG. 1 is a schematic diagram of aggregation of multiple consecutive component carriers in the prior art
  • FIG. 2 is a schematic diagram of aggregation of multiple discontinuous component carriers in the prior art
  • FIG. 3 is a schematic diagram of the principle of the first embodiment in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the principle of the third embodiment in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the principle of the fourth solution in the embodiment of the present invention.
  • FIG. 7 is a flowchart of an embodiment of a resource control method in a carrier aggregation system from a base station perspective according to an embodiment of the present invention
  • FIG. 8 is a flowchart of an embodiment of a resource control method in a carrier aggregation system according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a specific embodiment of a resource control method according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of an embodiment of a base station according to the present invention.
  • FIG. 11 is a block diagram of an embodiment of a terminal of the present invention.
  • FIG. 12 is a schematic overall flowchart of a load control method according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of load conditions of component carriers when no load adjustment is performed in a carrier aggregation system according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of load conditions of each member carrier wave after load adjustment in a carrier aggregation system according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a process for balancing a carrier load in a carrier aggregation system according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a load control apparatus according to an embodiment of the present invention. detailed description , ⁇ , > _ , ⁇ o: J. I , .
  • the present invention provides a resource control system, a music station, a station and a terminal in a carrier aggregation system to implement flexible control of carrier resources.
  • the carrier aggregation system in the embodiment of the present invention may be an LTE-A system or the like.
  • the LTE system and the LTE-A system use the Physical Downlink Control Channel (PDCCH) to schedule carrier resources.
  • the PDCCH scheduling carrier resource in the carrier aggregation system may be designed as follows: Solution 1: Each component carrier independently transmits a PDCCH, and the PDCCH in each component carrier only schedules a specified carrier set. The physical resources of the same member in the wave.
  • the principle of this scheme can be exemplarily shown in Fig. 3.
  • the PDCCH is separately transmitted in the subframes of the component carrier 1, the component carrier 2, and the component carrier 3.
  • the PDCCH occupies the first few OFDM symbols of the entire bandwidth of the component carrier to transmit control information, and may be occupied according to various conditions, for example, 4 symbols.
  • the PDCCH is used to control physical resources in the component carrier.
  • the PDCCH can control physical resources in a subframe, such as a Physical Downlink Sharing Channel (PDSCH).
  • PDSCH includes a physical resource for transmitting data on a resource that does not include control information, and is used for transmitting service data, and is located in a downlink data area and occupies a certain bandwidth.
  • the arrows in the figure indicate the control relationship of the PDCCH to the PDSCH.
  • the PDCCH schedules the same component carrier in the specified carrier set and the PDSCH in the same subframe.
  • the PDCCH and its scheduled PDSCH can appear in the same subframe because there is no problem of needing to relock other frequency points.
  • the UE needs to monitor the PDCCH on multiple component carriers, and the power consumption is large;
  • the UE needs to perform parallel blind detection of multiple PDCCHs on multiple component carriers according to the LTE R8 method, and the blind detection complexity is proportional to the number of component carriers;
  • Solution 2 Multiple independent PDCCHs are carried on one member carrier, and each PDCCH schedules physical resources of one component carrier in a specified carrier set.
  • the scheduling members are respectively .. CT , , , , , , ,
  • the Wanmo can be a change in case.
  • the PDCCH design of the LTE R8 has a large reusability, and it is not necessary to define a new downlink control information (Downlink Control Information, DCI, which mainly defines resource indications of uplink and downlink traffic channels in different transmission modes) format;
  • DCI Downlink Control Information
  • Missing/missing a certain PDCCH does not affect resource scheduling on other component carriers; 4) The UE only needs to listen to the control channel on one component carrier, and the power consumption is small.
  • the UE needs to blindly detect multiple PDCCHs on one component carrier, and the blind detection complexity is multiplied;
  • the PDSCH data and the PDCCH may be transmitted in the same subframe for the case where the PDCCH and the PDSCH to which the scheduled PDSCH are located in the same member set in the specified carrier set; and the PDSCH data and the PDCCH cannot be used when the PDCCH and the PDSCH to which the scheduled PDSCH are located in different component carriers.
  • the UE transmits the PDCCH, and the UE needs to re-lock the frequency of the PDSCH to receive data. Therefore, there are two timing relationships in the downlink, which are more complicated;
  • a plurality of PDCCHs are carried on one component carrier, and the physical resources of the control area are relatively tight;
  • Solution 3 The downlink control information of the different component carriers is coded together and carried on the PDCCH of one component carrier in the specified carrier set.
  • the principle of this scheme can be exemplarily shown in Fig. 5.
  • the downlink control information of the resources of the member carrier 1, the member carrier 2, and the component carrier 3 are respectively coded together and carried on the PDCCH of the component carrier 2.
  • a UE only needs to listen to the control channel on a certain component carrier, and the power consumption is small;
  • a UE only needs to blindly check a PDCCH on a certain component carrier, and the blind detection complexity is similar to that of LTE R8;
  • the control channel has lower resource overhead (since at least a portion of the CRC overhead can be saved).
  • a new DCI format needs to be defined to support resource scheduling of multiple component carriers
  • the PDSCH data and the PDCCH may be transmitted in the same subframe; and in the case where the PDCCH and the PDSCH scheduled by the PDCCH are located in different component carriers, the PDSCH data and the PDCCH cannot be in the PDCCH.
  • the same subframe is transmitted. The reason is that the UE needs to re-lock the frequency of the PDSCH to receive data after decoding the PDCCH. Therefore, there are two timing relationships in the downlink, which is complicated.
  • Scheme 4 Control the downlink control information of different component carriers to be coded together and mapped to the specified a PDCCH .
  • the principle of this scheme can be exemplarily shown in Fig. 6.
  • the downlink control information of the resources on the component carrier 1, the component carrier 2, and the component carrier 3 are respectively coded together and mapped to the PDCCH of each component carrier.
  • a UE needs to blindly check a PDCCH on multiple member carriers, and the blind detection complexity is similar to that of R8;
  • control channel has less resource overhead (at least a part of the CRC is saved);
  • the PDCCH and the PDSCH may be transmitted in the same subframe, and there is no problem of relocking the frequency;
  • a new DCI format needs to be defined to support resource scheduling of multiple component carriers
  • FIG. 7 shows a flowchart for describing the embodiment from the base station side.
  • the base station specifies, for the terminal in the non-service data transmission state in the LTE-A system, a primary carrier that needs to be monitored by the terminal.
  • the primary carrier that is required by the terminal to be monitored by the terminal in the non-service data transmission state in the LTE-A system may be specified by default, or may be specified according to the base station configuration and/or the terminal configuration. For the latter, the base station also needs to notify the terminal of the primary carrier specified according to the base station configuration and/or the terminal configuration.
  • the designated primary carrier that needs to be monitored by the terminal may be at least one primary carrier.
  • the terminal can learn the PDSCH to be detected by monitoring the PDCCH on the primary carrier, so as to obtain information about the system broadcast message and the like from the PDSCH.
  • the base station may determine the transmission configuration of the primary carrier by using the foregoing first scheme. If the number of designated primary carriers is one, it may be the case that one of the component carriers in the first scheme is used as the primary carrier; if the number of designated primary carriers is multiple, multiple component carriers may be used according to the principle in the first scheme. As the primary carrier.
  • the terminal in the non-service data transmission state in the LTE-A system may be a terminal in an idle state.
  • the base station specifies that the terminal resides on the primary carrier and listens to the primary carrier. Therefore, as described above, the terminal can learn the PDSCH to be detected by monitoring the PDCCH on the primary carrier, and further obtain information of content such as system broadcast messages from the PDSCH.
  • the terminal in the LTE-A system that is in a non-service data transmission state may also be in the wireless state. . , , _ _ resource path system 3 ⁇ 4 terminal process, but the process of M Ding.
  • the transmission of a broadcast message, the paging process, and the random access procedure of the terminal will all occur on the designated primary carrier.
  • the base station After receiving the service data transmission request, the base station determines a carrier transmission configuration of the service data, and instructs the terminal to listen to the resource control information on the configured transmission carrier.
  • the service data transmission request received by the base station may be a service data transmission indication sent by the network side, or may be a service data transmission request sent by the LTE-A terminal (hereinafter referred to as the terminal).
  • the carrier transmission configuration of the service data is determined. Specifically, the number of component carriers in the LTE-A system used for transmitting the service data and any carrier transmission configuration scheme adapted to the number of the component carriers in the foregoing schemes 1 to 4 may be determined.
  • the carrier transmission configuration for determining the service data may be determined according to the class level and/or service condition of the terminal, and the resource scheduling situation.
  • the class level of the terminal includes the capabilities of the terminal determined by the ability of the terminal in the system to receive/transmit bandwidth.
  • the service situation includes requirements for Quality of Service (QoS) in the system, such as requirements for service transmission rate and transmission delay of a certain type of service.
  • QoS Quality of Service
  • RRC Radio Resource Control
  • Layer 1/Layer 2 Layer 1/Layer 2 (Layersl/Layer2 L1/ L2) Control signaling indication.
  • the transmission carrier here, including the component carrier in the LTE-A system, is not limited to the primary (Master) carrier, but may also be a slave carrier.
  • the base station can perform uplink or downlink service data transmission with the terminal.
  • the PDCCH is used to indicate the downlink PDSCH resource, or is used to schedule the uplink service resource to indicate which resources of the uplink carrier the terminal can currently transmit.
  • the base station After completing the service data transmission with the terminal, the base station determines a primary carrier transmission configuration, and indicates that the terminal monitors the resource control information on the configured primary transmission carrier.
  • the terminal and the base station may complete uplink or downlink service data transmission.
  • the determining the primary carrier transmission configuration may be determined by using the primary carrier transmission configuration in the foregoing scheme 1. Moreover, the base station can reselect the primary carrier according to the load of the uplink primary carrier, that is, the primary carrier determined here may be different from the primary carrier in the foregoing S701.
  • the terminal is instructed to listen to the resource control information on the configured transmission primary carrier, and the RRC signaling may be used to instruct the terminal to switch from monitoring the state of the control information of the specified multiple component carriers to monitoring only the primary carrier PDCCH information.
  • the RRC signaling may be used to instruct the terminal to switch from monitoring the state of the control information of the specified multiple component carriers to monitoring only the primary carrier PDCCH information.
  • it can also be indicated by L1/L2 control signaling.
  • the base station is configured to monitor the resource control information on the configured transmission primary carrier, or after the base station completes the service data transmission with the terminal, the base station starts a timer T1, and when the timer T1 ends, the base station passes the upper layer.
  • the trigger/configuration message instructs the terminal to switch from monitoring the state of the control information of the specified plurality of component carriers to the state of monitoring only the primary carrier PDCCH information. , , but the primary carrier reselected according to the load of the component carrier.
  • FIG. 8 shows a flowchart of the embodiment, the method includes:
  • the transmission configuration of the primary carrier may be the default, so that the terminal listens on the default primary carrier.
  • the transmission configuration of the primary carrier may also be specified by the base station after the terminal accesses the network. For example, the base station specifies the primary carrier according to the configuration of the base station and/or the configuration of the terminal, so that the terminal needs to receive the primary carrier transmission configuration indication sent by the base station. Thus, the monitoring is performed on the primary carrier designated by the base station.
  • the default or designated primary carrier may be at least one primary carrier.
  • the number L of the at least one primary carrier is not greater than the total number of component carriers N of the carrier aggregation system
  • the terminal monitors the default or specified primary carrier, and the terminal can obtain the information of the system broadcast message and the like from the PDSCH by monitoring the PDCCH on the primary carrier to obtain the PDSCH to be detected.
  • the base station may use the foregoing solution 1 to determine the transmission configuration of the primary carrier. If the number of designated primary carriers is one, it may be a case where one component carrier in scheme 1 is used as the primary carrier. If the number of designated primary carriers is multiple, multiple member carriers may be used according to the principle in scheme 1. Primary carrier.
  • the terminal In the LTE-A system, the terminal is in a non-service data transmission state, and the terminal may be in an idle state.
  • the base station specifies that the terminal resides on the primary carrier and listens to the primary carrier. Therefore, as described above, the terminal can learn the PDSCH to be detected by listening to the PDCCH on the primary carrier, and further obtain information about the content such as the system broadcast message from the PDSCH.
  • the terminal is in a non-service data transmission state, and the terminal may be in the process of establishing a radio resource control connection, but the terminal does not perform uplink and downlink service data transmission.
  • the reception, paging (Paging) process of the broadcast message and the random access procedure of the terminal will all occur on the designated primary carrier.
  • the terminal In the process of converting the non-service data transmission state to the service data transmission state, the terminal receives the sent transmission carrier configuration indication, and monitors the resource control information on the configured carrier.
  • the terminal may receive the transmission carrier configuration indication sent by the base station through RRC signaling or L1/L2 control signaling.
  • the transmission carrier configuration includes one of the foregoing schemes 1 to 4.
  • the transmission carrier configuration indication refers to an indication corresponding to the adopted scheme.
  • the terminal can listen to the resource control information on the configured carrier.
  • the transmission carrier here includes a component carrier in the LTE-A system, and is not limited to a primary (Master) carrier, and may also be a secondary (Slave) carrier.
  • the terminal can perform uplink or downlink service data transmission with the base station.
  • the terminal obtains the PDSCH resource for downlink by monitoring the PDCCH, or obtains the uplink service resource, so that the terminal can transmit the service on the indicated uplink carrier resource.
  • S803 After the terminal completes the service data transmission with the base station, the terminal monitors the resource control signal on the primary carrier. The terminal completes the service data transmission with the base station, and the terminal and the base station complete the uplink or downlink service data transmission.
  • the terminal may receive the sent primary carrier transmission configuration indication, so as to monitor the resource control information on the primary carrier according to the indicated primary carrier transmission configuration.
  • the sent primary carrier transmission configuration indication is a primary carrier transmission configuration determined and indicated for the base station.
  • the base station can reselect the uplink primary carrier according to the load of the uplink primary carrier, that is, the primary carrier indicated here may be different from the primary carrier in the foregoing S801.
  • the primary carrier transmission configuration indication received by the terminal may be received through R C signaling or may be received through L1/L2 control signaling.
  • the primary carrier here may not be the same member carrier as the previous primary carrier.
  • the terminal may enable a timer ⁇ 2 before the resource control information is monitored on the primary carrier.
  • the terminal monitors the resource control information on the primary carrier.
  • the configuration of the timer ⁇ 2 can be notified to the terminal by the base station through higher layer signaling, for example, by RRC signaling to notify the configuration of the terminal timer ⁇ 2.
  • FIG. 1 A specific embodiment of the resource control method in the carrier aggregation system of the present invention is described below, and is described from the perspective of the base station and the terminal in combination with the foregoing embodiment.
  • the principle can be referred to FIG.
  • the base station specifies, according to the configuration of the base station and/or the terminal configuration, a primary carrier that needs to be monitored by the terminal according to the scheme 1 in the non-service data transmission state of the LTE-A system, and indicates the designated primary carrier to the terminal. .
  • the sending and paging process of the broadcast message by the base station may be completed on one of the indicated primary carriers.
  • the terminal receives the primary carrier transmission configuration indication sent by the base station, and performs monitoring according to the first scheme on a primary carrier designated by the base station.
  • the terminal can obtain the PDSCH that needs to be detected by monitoring the PDCCH according to the first one of the indicated primary carriers, and further obtain the information of the system broadcast message and the like from the PDSCH.
  • the random access procedure of the terminal may be completed on a designated primary carrier.
  • S903 The terminal initiates a downlink service data transmission request to the base station.
  • the base station After receiving the downlink service data transmission request sent by the terminal, the base station determines that the carrier transmission configuration of the service data is three component carriers and scheme four, and indicates, by using RRC signaling, that the terminal performs three transmissions according to scheme four. The resource control information is monitored on the carrier.
  • the terminal In the process of converting the non-service data transmission state to the service data transmission state, the terminal receives the sent transmission carrier configuration indication, and monitors the resource control information according to the scheme 4 on the configured three component carriers.
  • the base station After completing the downlink service data transmission with the terminal, the base station determines that the primary carrier transmission configuration is a new primary carrier, and adopts the first scheme, and starts the timer T1. When the timer T1 ends, the base station indicates the terminal through RRC signaling. Listening to the state of the control information of the specified multiple component carriers to the state of monitoring only the primary carrier PDCCH information and instructing the terminal to adopt the scheme 1 in the configuration . , , , ⁇ ⁇
  • a new master wave listens for resource control information.
  • S907 The terminal receives the sent primary carrier transmission configuration indication, so that the resource control information is monitored according to the scheme 1 on the new primary carrier according to the indicated primary carrier transmission configuration.
  • the base station specifies, for the terminal in the non-service data transmission state of the LTE-A system, the primary carrier that needs to be monitored by the terminal.
  • the base station determines the carrier transmission configuration of the service data, and indicates The terminal monitors the resource control information on the configured transmission carrier, and after the base station completes the service data transmission with the terminal, determines the primary carrier transmission configuration, and instructs the terminal to listen to the resource control information on the configured transmission primary carrier. It fully embodies the flexibility of resource control in the carrier aggregation system, and reduces the power consumption of the terminal, without requiring the terminal to always listen to the control information on the PDCCH of multiple component carriers, and further, in the service data transmission state. Using multiple component carriers for parallel transmission, the system can use the large bandwidth to bring the frequency diversity gain.
  • a resource control system in the carrier aggregation system of the present invention, where the system includes: a base station, configured to specify, by a terminal in a non-service data transmission state in the LTE-A system, a primary carrier that needs to be monitored by the terminal; After the service data transmission request, determining the carrier transmission configuration of the service data, and instructing the terminal to listen to the resource control information on the configured transmission carrier; after completing the service data transmission with the terminal, determining the primary carrier transmission configuration, and indicating the terminal Monitor resource control information on the configured transport primary carrier.
  • the terminal when in the non-service data transmission state, listens to the default or designated primary carrier; in the process of converting the non-service data transmission state into the service data transmission state, receiving the transmitted transmission carrier configuration indication, and monitoring on the configured carrier
  • the receiving base station sends an indication of the resource control information on the configured transmission primary carrier, and monitors the resource control information on the transmission primary carrier according to the indication.
  • the base station specifies, for a terminal in a non-service data transmission state in the LTE-A system, a primary carrier that needs to be monitored by the terminal, and listens to a default or designated primary when the terminal is in a non-service data transmission state.
  • the carrier wave includes at least one primary carrier wave, and each component carrier independently transmits a PDCCH, and the PDCCH in each component carrier only schedules physical resources in the same member carrier wave in the specified carrier set.
  • the base station determines and indicates the carrier transmission configuration of the service data of the terminal, and receives the transmission in the process that the terminal is converted from the non-service data transmission state to the service data transmission state.
  • the incoming transmission carrier configuration includes the number of component carriers in the LTE-A system used for transmitting the service data and any carrier transmission configuration scheme adapted to the number of the component carriers in the following schemes one to four:
  • Solution 1 Each component carrier independently transmits a PDCCH, and the PDCCH in each component carrier only schedules physical resources in the same component carrier in the specified carrier set;
  • Solution 2 Multiple independent PDCCHs are carried on one component carrier, and each PDCCH schedules physical resources of one component carrier in a specified carrier set;
  • Solution 3 The downlink control information of the different component carriers is coded together and carried on the PDCCH of one component carrier in the specified carrier set;
  • ⁇ T is on the PDCCH of the carrier.
  • the base station determines and indicates the primary carrier transmission configuration to the terminal, and the configured configuration sent by the base station after the terminal completes the service data transmission with the base station.
  • the indication of the monitoring resource control information on the transmission primary carrier includes at least one primary carrier, and each component carrier independently transmits the PDCCH, and the PDCCH in each component carrier only schedules physical resources in the same component carrier in the specified carrier set.
  • FIG. 10 shows a block diagram of an embodiment of the base station. As shown in FIG. 10, the base station includes:
  • a specifying unit 101 configured to specify, for a terminal in a non-service data transmission state in the LTE-A system, a primary carrier that needs to be monitored by the terminal;
  • the carrier transmission configuration determining unit 102 is configured to determine a carrier transmission configuration of the service data.
  • the first indication unit 103 is configured to: after receiving the service data transmission request, indicate, to the carrier transmission configuration of the service data determined by the carrier transmission configuration determining unit 102. Terminal
  • a primary carrier transmission configuration determining unit 104 configured to determine a primary carrier transmission configuration
  • the second indication unit 105 is configured to: after the base station completes the service data transmission with the terminal, indicate the primary carrier transmission configuration determined by the primary carrier transmission configuration determining unit 104 to the terminal.
  • the specifying unit 101 specifies, for a terminal in a non-service data transmission state in the LTE-A system, a primary carrier that needs to be monitored by the terminal, includes at least one primary carrier, and each component carrier transmits independently.
  • the PDCCH, and the PDCCH in each component carrier only schedules physical resources in the same component carrier in the specified carrier set.
  • the carrier transmission configuration of the service data determined by the carrier transmission configuration determining unit 102 includes the number of member carriers in the LTE-A system used for transmitting the service data, and the following components 1 to 4 are adapted to the member.
  • Each component carrier independently transmits a PDCCH, and the PDCCH in each component carrier only schedules physical resources in the same member carrier in the specified carrier set;
  • Solution 2 Carrying multiple independent PDCCHs on one component carrier, and each PDCCH scheduling physical resources of one component carrier in a specified carrier set;
  • Solution 3 The downlink control information of the different component carriers is coded together and carried on the PDCCH of one component carrier in the specified carrier set;
  • Solution 4 Downlink control information for controlling different member carriers is coded together and mapped to the PDCCH of each component carrier in the specified carrier set.
  • the primary carrier wave transmission configuration determined by the primary carrier wave transmission configuration determining unit 114 includes at least one primary carrier, and each member carrier wave independently transmits a PDCCH, and each member carries a PDCCH in the carrier wave. Only physical resources within the same component carrier in the specified carrier set are scheduled.
  • FIG. 11 shows a block diagram of an embodiment of the terminal. As shown in FIG. 11, the terminal includes:
  • the indication receiving unit 111 is configured to receive the sent transmission carrier configuration indication in a process in which the terminal is converted from the non-service data transmission state to the service data transmission state;
  • the monitoring unit 112 is configured to: when the terminal is in a non-service data transmission state, monitor a default or a designated main carrier wave; in a process in which the terminal is converted from a non-service data transmission state to a service data transmission state, The transmission carrier configuration indication received by the root unit ii i is allocated resource control information; after the terminal completes the service data transmission with the base station, the resource control information is monitored on the transmission primary carrier.
  • the indication receiving unit 111 receives the sent transmission carrier configuration indication, including the number of component carriers in the LTE-A system used for transmitting the service data. And any carrier transmission configuration scheme adapted to the number of the member carriers in the following schemes one to four:
  • Each component carrier independently transmits a PDCCH, and the PDCCH in each member carrier only schedules physical resources in the same member carrier wave in the specified carrier set;
  • Solution 2 Multiple independent PDCCHs are carried on one member carrier, and each PDCCH schedules physical resources of one component carrier in a specified carrier set;
  • Solution 3 The downlink control information of the different component carriers is coded together and carried on the PDCCH of one component carrier in the specified carrier set;
  • Solution 4 Downlink control information for controlling different component carriers is coded together and mapped to a PDCCH of each component carrier in the specified carrier set.
  • the base station specifies, for the terminal in the non-service data transmission state of the LTE-A system, the primary carrier that needs to be monitored by the terminal.
  • the base station determines the carrier transmission configuration of the service data, and indicates The terminal monitors the resource control information on the configured transmission carrier, and after the base station completes the service data transmission with the terminal, determines the primary carrier transmission configuration, and instructs the terminal to listen to the resource control information on the configured transmission primary carrier. It fully embodies the flexibility of resource control in the carrier aggregation system, and reduces the power consumption of the terminal, without requiring the terminal to always listen to the control information on the PDCCH of multiple component carriers, and further, in the service data transmission state. Using multiple component carriers for parallel transmission, the system can use the large bandwidth to bring the frequency diversity gain.
  • the embodiment of the present invention provides a load control method and device for implementing carrier load balancing of a carrier aggregation system, thereby avoiding the problem of excessive carrier load in the carrier aggregation system and improving resource utilization.
  • the bearer control method and apparatus can be applied to determine the main carrier transmission configuration according to the load of the component carrier after the base station and the terminal complete the service data transmission.
  • the embodiment of the present invention considers the problem of LTE Release 8 compatibility, and combines the characteristics of the carrier aggregation system, that is, considering the power consumption of the user terminal (UE) and the overhead/delay of resource scheduling, etc., and provides a method suitable for carrier aggregation.
  • Carrier load balancing technology solution in the system is, considering the power consumption of the user terminal (UE) and the overhead/delay of resource scheduling, etc., and provides a method suitable for carrier aggregation.
  • the carrier aggregation system in the embodiment of the present invention may be an LTE-A system or the like.
  • the so-called carrier load balancing in the embodiment of the present invention is understood to be that, in the carrier aggregation system, the UEs carried on the at least one component carrier are allotted to other component carriers, so that the load occupancy ratio of each component carrier is equivalent, thereby avoiding a single The load on the component carrier is too heavy, which improves resource utilization.
  • a load control method provided by an embodiment of the present invention generally includes the following steps:
  • the load control can be implemented by the base station.
  • the base station measures and counts the load of the component carriers caused by the UEs in the RRC (Radio Resource Control) connection state on each component carrier in the carrier aggregation system.
  • the load monitoring result of each component carrier can be obtained by measuring and counting the bandwidth of each member carrier, the number of UEs in the R C connection state on each component carrier, the service type of the UE, and the resources occupied by the UE.
  • the load monitoring result of the component carrier may include the load occupancy ratio of the component carrier, and the load occupied by each terminal on the member carrier wave.
  • the load occupancy ratio of the component carrier is the ratio of the total load occupied by all terminal services carried on the member carrier to the total bandwidth of the component carrier.
  • VoIP voice over IP
  • the same service and terminal have different load occupancy ratios for the two member carriers.
  • the load monitoring result of the component carrier has a wide range of applications, for example: It can be used as a basis for the inter-carrier load balancing algorithm; it can be broadcast as system control information, so that the UE selects a suitable resident carrier when searching for a cell; The monitoring result is mapped to the attraction degree factor of the member carrier wave to the UE, and the attraction degree factor can be broadcasted as system control information, so that the UE selects a suitable resident carrier in the cell search; the UE random access process is completed, but If there is no service occurrence, the load monitoring result of the M-home component carrier can be performed, and the UE is switched between carriers.
  • the step S102 is performed according to the load monitoring result of the component carrier wave in the carrier aggregation system, and the operation of adjusting the load of the component carrier in the carrier aggregation system may be performed by the base station actively, or may be a carrier switching request of the receiving terminal. After that, it is performed according to the carrier switching request of the terminal.
  • the implementation of the load of the component carrier can be implemented in various ways. For example, according to the load occupancy ratio of each component carrier in the carrier aggregation system and the load occupied by each terminal on the component carrier, the load of the component carrier in the carrier aggregation system is adjusted according to the preset load occupancy ratio difference threshold.
  • the purpose of setting the load occupancy ratio difference threshold in advance is to make the load occupancy ratio of each member wave after the load adjustment is equal, and the difference is as small as possible to achieve the load balancing of each component carrier.
  • the load monitoring result of the component carrier is compared with a preset load threshold; and the load of the component carrier is adjusted by using the comparison result.
  • the different component carriers may correspond to different load thresholds, and the load monitoring result of the component carrier is compared with a preset load threshold corresponding to the component carrier.
  • different component carriers can also correspond to the same load threshold.
  • the load of the component carrier is adjusted.
  • the service of the at least one terminal on the member carrier wave is switched to another member carrier wave.
  • the carrier aggregation system is further adjusted according to the preset load occupancy state difference threshold.
  • the load occupancy state value threshold may be
  • the difference threshold of the load occupancy ratio may also be the difference threshold of the load of each component carrier.
  • the threshold used in the step of comparing the load monitoring result of the component carrier with the preset load threshold may set a threshold of different content according to the content of the load monitoring result of the component carrier. If the load monitoring result of the component carrier includes the load occupancy ratio of the component carrier, the corresponding threshold can be set to the load occupancy ratio threshold. If the load monitoring result of the component carrier includes the number of user terminals carried on the component carrier, the corresponding threshold may be set to the threshold of the user terminal. There are many other thresholds for other content, such as the number of Radio Network Temporary Identity (RNTI) and so on.
  • RNTI Radio Network Temporary Identity
  • each component carrier before the load adjustment is as shown in Figure 3, where UE1, UE2, UE3> UE4, UE5, and UE6 are the loads already existing on the respective component carriers, and the load caused by each UE is different.
  • UE7 enters the RRC state on component carrier 1. At this time, first, according to the service status of the UE 7, the load status brought by the UE7 for the component carrier 1 is determined, and the load of the current component carriers is calculated. As shown in FIG.
  • the load balancing operation between the component carriers is triggered, if the sum of the original load of the member carrier wave 1 and the load of the UE7 If the component carrier load threshold is not exceeded, the UE 7 can directly access the component carrier 1.
  • the iterative water injection algorithm is adopted, and the load balancing of the newly accessed UE7 is prioritized, and the load of the UE7 is successively injected on each component carrier to select the optimal member.
  • the carrier is used as the destination carrier for handover. It can be seen from Fig. 3 that the current load of the component carrier 2 is the smallest, and therefore, the component carrier 2 is selected as the destination carrier of the UE7 handover.
  • the load of each component carrier after switching is shown in Figure 4.
  • the load balancing between the component carriers may be performed on other existing UEs, so that the load occupancy ratio of each component carrier is further averaged.
  • the base station After the base station determines the target component carrier to which the terminal is handed over and the terminal that needs to perform handover between the component carriers, the base station transmits, to the terminal, indication information for switching between component carriers.
  • the indication information may be sent through the RRC higher layer control signaling, and the terminal to be switched is switched to the target component carrier by the interaction of the high layer signaling.
  • the indication information may also be sent through the control signaling of the L1/L2, and the control signaling of the L1/L2 indicates that the terminal to be switched is switched to the target component carrier, specifically
  • the destination member of the handover may be indicated by the downlink control signaling sent to the terminal.
  • the specific bit for indicating a target carrier of a handover in a DCI indication of a PDCCH, it may be specified that if the specific bit is set to NULL, it indicates that the terminal resides on a current component carrier. , on the current member carrier , ⁇ carrier information, then the terminal needs to switch to the target component carrier according to the indication of the specific bit in the DCI.
  • the terminal randomly/default selects one component carrier as the primary carrier from all component carriers of the system; or selects according to the load condition of the member carrier wave in the current broadcast message, or the carrier attraction factor.
  • One member carrier is used as the primary carrier. Then, the terminal camps on the primary carrier and only listens to the control information of the primary carrier.
  • the control message is monitored by the primary carrier, including system messages, broadcast control messages, paging messages, and the like.
  • the random access process of the terminal is performed on the main carrier wave.
  • the carrier switching request may be actively sent to the base station according to the load condition of the component carrier in the broadcast message, that is, the current primary carrier is requested to be switched to another component carrier.
  • the base station After receiving the carrier switching request sent by the terminal, the base station decides to switch the terminal to the member carrier with the lightest load according to the current load of each component carrier.
  • the base station side determines whether a load balancing operation between the component carriers is required, and if necessary, the base station side performs a load balancing control process between the component carriers. .
  • the carrier aggregation system has only three component carriers, namely: member carrier 1, member carrier 2, and component carrier 3. There are five terminals in the idle (IDLE) state, all of which reside on member carrier 2.
  • the number of terminals in the RRC connected state can be used as the load of the component carrier.
  • the corresponding load threshold is also the number of terminals, for example, it can be set to 3.
  • Member carrier 2 is the primary carrier of UE1, UE2, UE3> UE4 and UE5.
  • the specific load balancing control process between the member carriers includes: selecting a terminal that needs to perform carrier switching and a target member corresponding to the handover according to the load condition of each member carrier wave, the load threshold of the member carrier wave, and the service status of each terminal Carrier. It is assumed that the preferred terminal is UE2 and UE4, and the corresponding target component carrier is component carrier 1; the preferred terminal is UE5, and the corresponding target component carrier is component carrier 3, and UE1 and UE3 remain on component carrier 2.
  • UE2 and UE4 are switched to component carrier 1 through RRC higher layer signaling or L1/L2 control signaling, and UE5 is switched to component carrier 3.
  • the base station continuously counts the load of each member carrier wave.
  • the process switches the terminal UE3 and UE8 to the component carrier 3, UE1, UE6 and UE7 remain on the component carrier 2, and UE2 and UE4 remain in the member carrier wave 1
  • the terminal returns from the RRC connection state to the idle state, the UE still resides on the component carrier before exiting the RRC connection state.
  • the primary carrier of UE1, UE6>UE7 is the carrier wave of the component carrier 2, UE2, and UE4.
  • the primary carrier of UE3 UE5, UE8 is component carrier 3.
  • a load control device provided by an embodiment of the present invention is described below.
  • a load control apparatus includes:
  • the load monitoring unit 11 is configured to perform load monitoring on the component carriers in the carrier aggregation system, and obtain a monitoring result of the component carrier.
  • the load adjustment unit 12 is configured to adjust the load of the component carrier according to the load monitoring result of the component carrier.
  • the load adjustment unit 12 includes:
  • the comparing unit 121 is configured to compare the load monitoring result of the component carrier with a load threshold corresponding to the component carrier in advance.
  • the adjusting unit 122 is configured to adjust the load of the component carrier by using the comparison result of the comparing unit 121.
  • the adjusting unit 122 adjusts the load of the component carrier when the load monitoring result of the component carrier exceeds a preset load threshold.
  • the adjusting unit 122 switches the service of the at least one terminal on the component carrier to another component carrier when the load monitoring of the component carrier exceeds a preset load threshold.
  • the adjusting unit 122 may control, by using the RRC high-layer control signaling, or the layer 1/layer 2 control signaling, the terminal that needs to perform the carrier switching to switch to the target component carrier corresponding to the terminal.
  • the adjusting unit 122 includes:
  • the first adjusting unit 21 is configured to: when the load monitoring result of the component carrier exceeds a preset load threshold, switch traffic of at least one terminal on the component carrier to another component carrier, and then trigger a second adjustment Unit 22.
  • the second adjusting unit 22 is configured to: after receiving the trigger of the first adjusting unit 21, adjust a load of a component carrier in the carrier aggregation system according to a preset load occupancy state difference threshold.
  • the load monitoring unit 11 includes:
  • the load occupancy state determining unit 111 is configured to detect, for each component carrier in the carrier aggregation system, a bandwidth of the component carrier and a load occupation state of each terminal on the component carrier, to obtain a load occupation state of the member carrier.
  • the occupied state of the load may be a load occupancy ratio, a simple load, or the like.
  • the load monitoring result determining unit 112 is configured to generate a load monitoring result of the component carrier by using a load occupancy state of each component carrier and a load occupation state of each terminal on the member carrier wave.
  • the load adjustment unit 12 may further adjust according to a load occupancy state of each member wave in the carrier wave aggregation system and a load occupancy state of each terminal on the component carrier according to a preset load occupancy state difference threshold value. The load of the member carrier wave in the carrier aggregation system.
  • the device further includes: >j- 2; jj, 1* i» ° ⁇ ,
  • the device may further include:
  • the attractance degree determining unit 14 is configured to determine, according to the load monitoring result of the component carrier, a degree of attraction of the component carrier to the terminal.
  • the broadcast unit 13 can also be used to broadcast the degree of attraction factor by system control information.
  • the load adjustment unit 12 may switch the service of the terminal to the target component carrier according to the carrier switching request of the terminal and the load monitoring result of the component carrier in the carrier aggregation system.
  • the load control device may be located at a base station.
  • the load monitoring result of the component carrier wave is obtained by monitoring the component carrier in the carrier aggregation system; and the load of the member carrier is adjusted according to the load monitoring result of the component carrier. Therefore, the load adjustment of the component carriers in the carrier wave aggregation system is realized, so as to achieve the load balancing effect of the component carriers, avoiding the problem that the carrier load is too high in the carrier wave aggregation system, and improving the resource utilization rate ⁇ , the spirit of the invention And scope.
  • the present invention cover the modifications and modifications of the invention, and the scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

_ . . , . , , - ,, , -,,
一衧^源、 栽控制万法、 系统、 置、 丞 夂 ^端 技术领域
本发明涉及无线通信技术领域, 特别涉及一种资源、 负载控制方法、 系 统、 装置、 基站及终端。 背景技术
载波聚合系统是一种将多个载波资源聚合(或称连接)起来使用的系统。 如正在发展中的先进的长期演进(Long Term Evolution Advanced, LTE-A )系 统, 该系统为了支持比 LTE系统更宽的系统带宽, 例如 100 MHz的系统带宽, 将多个 LTE栽波(或称成员载波 )的资源连接起来使用。 可以绑定这些成员载 波作为系统的整个带宽, 分配给一个用户或多个用户。 在分配给一个用户时, 可以提供更高的峰值速率。
LTE-A系统中, 具体地, 可以是将多个连续的成员载波进行聚合, 如图 1 所示, 或者, 也可以是将多个不连续的成员载波进行聚合, 如图 2所示。 两种 方式都可以提供更大的传输带宽。
载波聚合系统中, 如何灵活的实现载波资源控制, 目前还没有这样的方 案。
另夕卜,目前要求载波聚合系统中的每个成员载波与 LTE版本 8( Release 8 ) 尽量一致,从而保证 LTE Release 8的终端能够在每一个成员载波上正常工作。 但是, 对于 LTE-A系统来说, LTE Release 8的终端只能接入到载波聚合系统 的多个成员载波中的一个成员载波, 那么有可能会造成单个成员栽波上的负 栽过高, 从而导致资源紧张, 并且资源调度的复杂性较高。
因此, 现有载波聚合系统中还存在载波负载过高, 资源利用率较差的问 题。 发明内容
本发明实施例的一个目的是提供一种载波聚合系统中的资源控制方法、 系统、 基站及终端, 以实现灵活控制栽波资源。
本发明实施例提供的一种载波聚合系统中的资源控制方法, 包括: 基站为载波聚合系统中处于非业务数据传输状态的终端指定需要所述终 端监听的主栽波;
基站接收到业务数据传输请求后, 确定业务数据的载波传输配置, 并指 示所述终端在配置的传输载波上监听资源控制信息;
基站完成与终端的业务数据传输后, 确定主载波传输配置, 并指示所述 终端在配置的传输主载波上监听资源控制信息。
本发明实施例提供的另一种载波聚合系统中的资源控制方法, 包括: 终端处于非业务数据传输状态时, 监听默认或指定的主栽波;
终端由非业务数据传输状态转换为业务数据传输状态的过程中, 接收发 , ,
终端完成与基站的业务数据传输后, 在传输主载波上监听资源控制信息。 本发明实施例提供的一种载波聚合系统中的资源控制系统, 包括: 基站, 用于为载波聚合系统中处于非业务数据传输状态的终端指定需要 所述终端监听的主载波; 收到业务数据传输请求后, 确定业务数据的载波传 输配置, 并指示所述终端在配置的传输栽波上监听资源控制信息; 完成与终 端的业务数据传输后, 确定主载波传输配置, 并指示所述终端在配置的传输 主载波上监听资源控制信息。
终端, 处于非业务数据传输状态时, 监听默认或指定的主栽波; 由非业 务数据传输状态转换为业务数据传输状态的过程中, 接收发来的传输载波配 置指示, 并在配置的载波上监听资源控制信息; 完成与基站的业务数据传输 后, 接收基站发来的在配置的传输主载波上监听资源控制信息的指示, 并根 据该指示在传输主载波上监听资源控制信息。
本发明实施例提供的一种基站, 包括:
指定单元, 用于为载波聚合系统中处于非业务数据传输状态的终端指定 需要所述终端监听的主载波;
载波传输配置确定单元, 用于确定业务数据的载波传输配置;
第一指示单元, 用于接收到业务数据传输请求后, 将载波传输配置确定 单元确定的业务数据的载波传输配置指示给终端;
主载波传输配置确定单元, 用于确定主载波传输配置;
第二指示单元, 用于在基站完成与终端的业务数据传输后, 将主载波传 输配置确定单元确定的主载波传输配置指示给所述终端。
本发明实施例提供的一种终端, 包括:
指示接收单元, 用于在终端由非业务数据传输状态转换为业务数据传输 状态的过程中, 接收发来的传输载波配置指示;
监听单元, 用于在终端处于非业务数据传输状态时, 监听默认或指定的 主载波; 在终端由非业务数据传输状态转换为业务数据传输状态的过程中, 根据指示接收单元接收的传输载波配置指示, 在配置的载波上监听资源控制 信息; 在终端完成与基站的业务数据传输后, 在传输主载波上监听资源控制 信息。
由以上本发明实施例提供的技术方案可见, 基站为载波聚合系统中处于 非业务数据传输状态的终端指定需要所述终端监听的主载波, 基站接收到业 务数据传输请求后, 确定业务数据的载波传输配置, 并指示所述终端在配置 的传输载波上监听资源控制信息, 基站完成与终端的业务数据传输后, 确定 主载波传输配置, 并指示所述终端在配置的传输主载波上监听资源控制信息, 这样的方式, 可以实现载波聚合系统中对资源控制的灵活性, 而且, 氐了 终端功耗, 而不需要终端总是在多个成员栽波的 PDCCH上监听控制消息,再 者, 在业务数据传输状态中利用多个成员载波并行传输, 可以利用系统的大 带宽带来频率分集增益。
本发明实施例的另一目的是提供一种负载控制方法及装置, 用以实现载 , . . β * _' . , 波聚兮糸统的 波 均 , 从而避 统 升 反贝飒 ifj 的问题, 提高资源利用率。
本发明实施例提供的一种负载控制方法包括:
对载波聚合系统中的成员载波进行负载监测, 得到成员载波的负载监测 结果;
根据所述成员载波的负载监测结果, 调整成员载波的负载。
本发明实施例提供的一种负载控制装置包括:
负载监测单元, 用于对载波聚合系统中的成员载波进行负载监测, 得到 成员载波的负载监测结果;
负载调整单元, 用于根据所述成员栽波的负载监测结果, 调整成员载波 的负载。
本发明实施例通过对载波聚合系统中的成员载波进行负载监测, 得到成 员载波的负载监测结果; 根据所述成员栽波的负载监测结果, 调整成员载波 的负载。 从而实现了载波聚合系统的载波负载均衡, 避免载波聚合系统中存 在的载波负载过高的问题, 提高资源利用率。 附图说明
图 1为现有技术中多个连续的成员载波进行聚合的示意图;
图 2为现有技术中多个不连续的成员载波进行聚合的示意图;
图 3为本发明实施例中方案一的原理示意图;
图 4为本发明实施例中方案二的原理示意图;
图 5为本发明实施例中方案三的原理示意图;
图 6为本发明实施例中方案四的原理示意图;
图 7 为本发明实施例中载波聚合系统中的资源控制方法从基站角度描述 的实施例的流程图;
图 8 为本发明实施例中载波聚合系统中的资源控制方法从终端角度描述 的实施例的流程图;
图 9为本发明实施例中资源控制方法的特定实施例的原理示意图; 图 10为本发明基站实施例的框图;
图 11为本发明终端实施例的框图;
图 12为本发明实施例提供的负载控制方法的总体流程示意图;
图 13为本发明实施例提供的载波聚合系统下的没有进行负载调整时的各 成员载波的负载情况示意图;
图 14为本发明实施例提供的载波聚合系统下进行了负载调整后的各成员 栽波的负载情况示意图;
图 15为本发明实施例提供的对载波聚合系统中的载波负载进行均衡过程 的示意图;
图 16为本发明实施例提供的负载控制装置的结构示意图。 具体实施方式 , . ^ , > _ , <o: J. I , . 本发明买施例提供一种载波聚合系统中的资源控制万 、 乐 、 丞站及 终端, 以实现灵活控制载波资源。
为了使本领域技术人员更好地理解本发明方案, 下面结合附图和实施方 式对本发明实施例作进一步地详细说明。 本发明实施例中的载波聚合系统可 以是 LTE-A系统等。
本领域技术人员知道, LTE系统及 LTE-A系统中, 采用物理下行控制信 道( Physical Downlink Control Channel, PDCCH )调度载波资源。 本发明实施 例中,对载波聚合系统中 PDCCH调度载波资源的设计,可以有下面几种方案: 方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定栽波集合中同一成员栽波内的物理资源。
该方案的原理可以如图 3示例性地显示出来。 成员载波 1、 成员载波 2和 成员载波 3的子帧内都独立发送 PDCCH, PDCCH占据成员载波整个带宽的 前几个 OFDM符号, 以传输控制信息, 具体地根据各种情况, 例如可以占用 1-4个符号。 PDCCH用于控制所在成员载波中的物理资源。
基于动态调度, PDCCH可以控制所在子帧中的物理资源, 如物理下行共 享信道( Physical Downlink Sharing Channel, PDSCH )。 PDSCH包括在不包含 控制信息的资源上传输数据的物理资源, 用于传输业务数据, 位于下行数据 区域, 占用一定带宽。
图中的箭头表明 PDCCH对于 PDSCH的控制关系,从图中可见, PDCCH 调度指定载波集合中同一成员载波且同一子帧内的 PDSCH。
该方案具有如下优点:
1 )最大限度地重用了 LTE Release8的设计, 不需要定义额外的 PDCCH 结构和信令格式, 协议改动小;
2 )灵活支持各成员载波独立的链路自适应;
3 )如果用户设备 ( User Equipment, UE ) 漏检或错检某一成员载波上的 PDCCH, 其他成员载波上的 PDCCH不受影响;
4 ) PDCCH与其调度的 PDSCH可以出现在同一个子帧, 因为不存在需要 重新锁定其他频点的问题。
该方案的缺点是:
1 ) UE需要在多个成员载波上监听 PDCCH, 功耗大;
2 ) UE 需要分别按照 LTE R8 的做法在多个成员载波上并行盲检多条 PDCCH, 盲检复杂度与成员载波个数成正比关系;
3 ) 由于每条 PDCCH都加入了循环冗余校验位 (Cyclical Redundancy Check, CRC ) (按照 LTE R8的做法是加入 16bits的 CRC校验位), 当多条 PDCCH并行时, CRC开销较大。
方案二: 在一个成员栽波上承载多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源。
该方案的原理可以如图 4示例性地显示出来。 图 4中, 分别调度成员载
Figure imgf000006_0001
.. CT , 、 , , , 、
该万茉可以讥是对万 一的改 。
该方案具有如下优点:
1 )灵活支持各成员载波独立的链路自适应;
2 )对 LTE R8的 PDCCH设计重用度较大, 不需要定义新的下行控制信 息(Downlink Control Information, DCI, 主要定义了在不同传输模式下的上 下行业务信道的资源指示)格式;
3 ) 漏检 /错检某一条 PDCCH不会影响其他成员载波上的资源调度; 4 ) UE只需要在一个成员载波上监听控制信道, 功耗小。
该方案的缺点是:
1 ) UE需要在一个成员载波上盲检多条 PDCCH, 盲检复杂度成倍增长;
2 ) 由于每条 PDCCH都加入了 CRC校验位 (按照 LTE R8的做法是加入 16bits的 CRC校验位), 当多条 PDCCH并行时, CRC开销较大;
3 )对于 PDCCH与其调度的 PDSCH位于指定载波集合中同一成员栽波 的情况, PDSCH数据与 PDCCH可以在同一子帧发送; 而对于 PDCCH与其 调度的 PDSCH位于不同成员载波的情况, PDSCH数据与 PDCCH无法在同 一子帧发送, 原因是 UE解码出 PDCCH之后需要重新锁定 PDSCH所在频点 来接收数据。 因此下行存在两种时序关系, 较为复杂;
4 )一个成员载波上承载多条 PDCCH, 控制区域的物理资源较为紧张;
5 ) DCI格式中需要增加新的信息域, 用以支持指示所调度的成员载波编 号。
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上。
该方案的原理可以如图 5示例性地显示出来。 图 5 中, 分别调度成员载 波 1、成员栽波 2和成员载波 3上资源的下行控制信息编码在一起, 并承载于 成员载波 2的 PDCCH上。
该方案具有如下优点:
1 ) 某一 UE只需要在某一成员载波上监听控制信道, 功耗小;
2 ) 某一 UE只需要在某一成员载波上盲检一条 PDCCH, 盲检复杂度与 LTE R8相似;
3 )相比方案一和二, 控制信道的资源开销更小 (由于至少可以节省一部 分 CRC开销)。
该方案的缺点是:
1 ) 需要定义新的 DCI格式, 以支持多个成员载波的资源调度;
2 ) 由于仅有一条 PDCCH, 它的错检 /漏检带来的影响比方案一更严重;
3 )对于 PDCCH与其调度的 PDSCH位于指定载波集合中同一成员载波 的情况, PDSCH数据与 PDCCH可以在同一子帧发送; 而对于 PDCCH与其 调度的 PDSCH位于不同成员载波的情况, PDSCH数据与 PDCCH无法在同 一子帧发送, 原因是 UE解码出 PDCCH之后需要重新锁定 PDSCH所在频点 来接收数据, 因此下行存在两种时序关系, 较为复杂。
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 一 PDCCH
该方案的原理可以如图 6示例性地显示出来。 图 6中, 分别调度成员载 波 1、成员载波 2和成员载波 3上资源的下行控制信息编码在一起, 并映射到 每一成员载波的 PDCCH上。
该方案具有如下优点:
1 )某一 UE需要在多个成员栽波上盲检一条 PDCCH, 盲检复杂度与 R8 相似;
2 )相比方案一, 控制信道的资源开销更小 (至少节省了一部分 CRC开 销);
3 )由于 PDCCH所占用的载波数总是大于等于 PDSCH所占用的载波数, PDCCH和 PDSCH可以在同一个子帧发送, 不存在重新锁定频率的问题;
4 ) 由于 PDCCH映射在多个成员载波上, 多个成员栽波上控制区域的物 理资源开销比较平衡。
该方案的缺点是:
1 ) 需要定义新的 DCI格式, 以支持多个成员载波的资源调度;
2 ) 由于仅有一条 PDCCH, 它的错检 /漏检带来的影响比方案一更严重; 3 ) UE需要同时在多个成员栽波上监听控制信道。
基于上述载波聚合系统中 PDCCH调度载波资源的四种设计方案,下面介 绍本发明载波聚合系统中的资源控制方法实施例, 图 7示出了从基站侧来描 述该实施例的流程图, 该方法包括:
S701 : 基站为 LTE-A系统中处于非业务数据传输状态的终端指定需要所 述终端监听的主载波。
所述基站为 LTE-A系统中处于非业务数据传输状态的终端指定的需要所 述终端监听的主载波, 可以是默认指定的, 也可以是根据基站配置和 /或终端 配置指定的。 对于后者, 基站还需要将根据基站配置和 /或终端配置指定的主 载波通知给所述终端。
所述指定的需要所迷终端监听的主载波, 可以是至少一个主载波。 当然, 对于 N个成员载波的载波聚合系统, 所述至少一个主载波的数目 L不大于载 波聚合系统的总成员载波数目 N, L<=N。
指定终端监听的主载波后,终端可以通过监听主载波上的 PDCCH获知需 要检测的 PDSCH, 从而从 PDSCH上得到系统广播消息等内容的信息。
当所述指定的主载波数目为至少一个时, 基站可以釆用前面提到的方案 一来确定主载波的传输配置。 如指定的主载波数目为一个时, 可以是方案一 中的一个成员载波作为主栽波的情况; 如指定的主载波数目为多个时, 可以 按照方案一中的原理, 将多个成员载波作为主载波。
所述 LTE-A系统中处于非业务数据传输状态的终端, 可以是处于空闲状 态的终端。 这样, 基站指定所述终端驻留在主载波上并监听该主载波。 从而, 如前所述, 终端可以通过监听主载波上的 PDCCH获知需要检测的 PDSCH, 进一步从 PDSCH上得到系统广播消息等内容的信息。
所述 LTE-A系统中处于非业务数据传输状态的终端, 也可以是处于无线 . 、 、 、 _ _ 资源径制¾接 立过程的终端, 但 、 M丁 双 输的过程。
一般地, 广播消息的发送、 寻呼(Paging )过程及终端的随机接入过程, 都将在所述指定的主载波上发生。
S702: 基站接收到业务数据传输请求后, 确定业务数据的载波传输配置, 并指示所述终端在配置的传输载波上监听资源控制信息。
基站接收到的业务数据传输请求, 可以是网络侧发来的业务数据传输指 示, 也可以是 LTE-A终端 (以下简称终端)发来的业务数据传输请求。
所述确定业务数据的载波传输配置, 具体地, 可以确定传输业务数据所 使用的 LTE-A系统中的成员载波数以及上述方案一至四中适应该成员载波数 的任一载波传输配置方案。
所述确定业务数据的载波传输配置, 可以才艮据终端的类别等级和 /或业务 情况、 及资源调度情况确定。 终端的类别等级包括由系统中终端能够接收 /发 送带宽这一要素决定的终端的能力。业务情况包括系统中对服务盾量( Quality of Service, QoS )的要求,如某种类别业务对业务传输速率和传输时延的要求。
指示所述终端在配置的传输载波上监听资源控制信息, 具体地, 可以是 通过无线资源控制(Radio Resource Control, RRC )信令指示, 也可以是通过 层一 /层二(Layersl/Layer2 L1/L2 )控制信令指示。
指示所述终端在配置的传输载波上监听资源控制信息, 可以指示所述终 端采用所述确定的前述方案一至方案四中所对应的方案监听资源控制信息。 这里的传输载波, 包括 LTE-A 系统中的成员载波, 并不限于主(Master )载 波, 也可以是辅助 (Slave )载波。
之后, 基站可以与终端进行上行或下行的业务数据传输。 在这个过程中, PDCCH用于指示下行 PDSCH资源, 或者用于调度上行业务资源 以指示终 端当前可以在上行载波的哪些资源上传输业务。
S703: 基站完成与终端的业务数据传输后, 确定主载波传输配置, 并指 示所述终端在配置的传输主载波上监听资源控制信息。
所述基站完成与终端的业务数据传输后, 可以是终端与基站完成上行或 下行的业务数据传输。
所述确定主载波传输配置, 可以是确定采用前述方案一中的主载波传输 配置。 而且, 基站可以根据上行主载波的负载重新选择主栽波, 也就是说, 这里确定的主载波, 可以与前述 S701中的主载波不同。
指示所述终端在配置的传输主载波上监听资源控制信息, 可以通过 RRC 信令指示终端从监听指定的多个成员载波的控制信息的状态切换到仅监听主 载波 PDCCH信息。 另外, 也可以通过 L1/L2控制信令指示。
所述指示所述终端在配置的传输主载波上监听资源控制信息, 也可以是 在基站完成与终端的业务数据传输后, 基站开启一个定时器 Tl, 当定时器 T1 计时结束时, 基站通过高层的触发 /配置消息(RRC信令)指示终端从监听指 定的多个成员载波的控制信息的状态切换到仅监听主载波 PDCCH信息的状 态。 , , 而是根据成员载波的负载进行重新选取的主载波。
下面从终端侧来描述本发明载波聚合系统中的资源控制方法实施例,图 8 示出了该实施例的流程图, 该方法包括:
S801: 终端处于非业务数据传输状态时, 监听默认或指定的主载波。 终端处于非业务数据传输状态时, 主载波的传输配置可以是默认的, 这 样, 终端在默认的主载波上监听。 此外, 主载波的传输配置也可以是终端在 接入网络后由基站指定的,例如基站根据基站配置和 /或终端配置指定主载波, 这样, 终端需要接收基站发来的主载波传输配置指示, 从而在基站指定的主 载波上进行监听。
所述默认或指定的主载波, 可以是至少一个主载波。 当然, 对于 N个成 员载波的载波聚合系统, 所述至少一个主载波的数目 L不大于载波聚合系统 的总成员载波数目 N,
终端监听默认或指定的主载波,终端可以通过监听主载波上的 PDCCH获 知需要检测的 PDSCH, 从而从 PDSCH上得到系统广播消息等内容的信息。
当所述指定的主载波数目为至少一个时, 基站可以采用前面提到的方案 一来确定主载波的传输配置。 如指定的主载波数目为一个时, 可以是方案一 中的一个成员载波作为主载波的情况; 如指定的主载波数目为多个时, 可以 按照方案一中的原理, 将多个成员载波作为主载波。
所述 LTE-A系统中终端处于非业务数据传输状态, 可以是终端处于空闲 状态。 这样, 基站指定所述终端驻留在主载波上并监听该主载波。 从而, 如 前所述, 终端可以通过监听主载波上的 PDCCH获知需要检测的 PDSCH, 进 一步从 PDSCH上得到系统广播消息等内容的信息。
所述 LTE-A系统中终端处于非业务数据传输状态, 可以是终端处于无线 资源控制连接建立过程, 但是该终端没有进行上行、 下行业务数据传输的过 程。
一般地, 广播消息的接收、 寻呼(Paging )过程及终端的随机接入过程, 都将在所述指定的主载波上发生。
S802: 终端由非业务数据传输状态转换为业务数据传输状态的过程中, 接收发来的传输载波配置指示, 并在配置的载波上监听资源控制信息。
终端由非业务数据传输状态转换为业务数据传输状态的过程中, 可以通 过 RRC信令或 L1/L2控制信令接收基站发来的传输载波配置指示。
所述传输栽波配置, 包括前述方案一至方案四中的一种, 则所述传输载 波配置指示, 是指采用的方案所对应的指示。 从而, 终端可以在配置的载波 上监听资源控制信息。 这里的传输载波, 包括 LTE-A系统中的成员载波, 并 不限于主(Master )载波, 也可以是辅助 (Slave )载波。
之后, 终端可以与基站进行上行或下行的业务数据传输。 在这个过程中, 终端通过监听 PDCCH获得用于下行的 PDSCH资源,或者获得上行业务资源, 从而终端可以在指示的上行载波资源上传输业务。
S803: 终端完成与基站的业务数据传输后, 在主载波上监听资源控制信 所述终端完成与基站的业务数据传输, 可以是终端与基站完成上行或下 行的业务数据传输。
终端完成与基站的业务数据传输后, 在主载波上监听资源控制信息之前, 可以接收发来的主载波传输配置指示, 从而根据指示的主载波传输配置在主 载波上监听资源控制信息。 所述发来的主栽波传输配置指示, 如前面实施例 中所示, 为基站确定并指示的主栽波传输配置。 而且, 基站可以根据上行主 载波的负载重新选择上行主载波, 也就是说, 这里指示的主载波, 可以与前 述 S801中的主栽波不同。
终端接收发来的主载波传输配置指示, 可以通过 R C信令接收, 也可以 通过 L1/L2控制信令接收。
需要说明的是, 这里的主载波可能会与之前的主载波不是相同的成员载 波。
终端完成与基站的业务数据传输之后, 在主载波上监听资源控制信息之 前, 终端可以开启一个定时器 Τ2, 当定时器 Τ2计时结束时, 终端在主载波 上监听资源控制信息。 特别地, 定时器 Τ2的配置可以由基站通过高层信令通 知给终端, 例如通过 RRC信令通知终端定时器 Τ2的配置。
以下给出一个本发明载波聚合系统中的资源控制方法的特定实施例, 并 结合上述实施例从基站以及终端的角度描述, 其原理可以参考图 9。
S901 : 基站根据基站配置和 /或终端配置为 LTE-A系统中处于非业务数据 传输状态的终端指定需要所述终端按照方案一监听的一个主载波, 并将指定 的主载波指示给所述终端。
其中, 基站进行广播消息的发送、 寻呼过程, 可以在指示的一个主载波 上完成。
S902: 终端接收基站发来的主载波传输配置指示, 在基站指定的一个主 载波上按照方案一进行监听。
终端可以在指示的一个主载波上按照方案一通过监听 PDCCH获知需要 检测的 PDSCH, 进一步从 PDSCH上得到系统广播消息等内容的信息。
其中, 终端的随机接入过程可以在指定的一个主载波上完成。
S903: 终端发起下行业务数据传输请求到基站。
S904: 基站接收到终端发来的下行业务数据传输请求后, 确定业务数据 的载波传输配置为三个成员载波以及方案四, 并通过 RRC信令指示所述终端 按照方案四在配置的三个传输载波上监听资源控制信息。
S905: 终端由非业务数据传输状态转换为业务数据传输状态的过程中, 接收发来的传输载波配置指示, 并在配置的三个成员载波上按照方案四监听 资源控制信息。
S906: 基站完成与终端的下行业务数据传输后, 确定主载波传输配置为 新的一个主载波且采用方案一, 开启定时器 T1 , 当定时器 T1计时结束时, 基站通过 RRC信令指示终端从监听指定的多个成员载波的控制信息的状态切 换到仅监听主载波 PDCCH信息的状态并指示所述终端采用方案一在配置的 . , , , ,^ ^
一个新的主 ^波上监听资源控制信息。
S907: 终端接收发来的主载波传输配置指示, 从而根据指示的主载波传 输配置在新的一个主载波上按照方案一监听资源控制信息。
由上述实施例可见, 基站为 LTE-A系统中处于非业务数据传输状态的终 端指定需要所述终端监听的主载波, 基站接收到业务数据传输请求后, 确定 业务数据的载波传输配置, 并指示所述终端在配置的传输载波上监听资源控 制信息, 基站完成与终端的业务数据传输后, 确定主载波传输配置, 并指示 所述终端在配置的传输主载波上监听资源控制信息, 这样的方式, 充分体现 了载波聚合系统中对资源控制的灵活性, 而且, 降低了终端功耗, 而不需要 终端总是在多个成员载波的 PDCCH上监听控制信息,再者,在业务数据传输 状态中利用多个成员载波并行传输, 可以利用系统的大带宽带来频率分集增 益。
以下介绍本发明载波聚合系统中的资源控制系统的实施例, 该系统包括: 基站, 用于为 LTE-A系统中处于非业务数据传输状态的终端指定需要所 述终端监听的主载波; 收到业务数据传输请求后, 确定业务数据的载波传输 配置, 并指示所述终端在配置的传输载波上监听资源控制信息; 完成与终端 的业务数据传输后, 确定主载波传输配置, 并指示所述终端在配置的传输主 载波上监听资源控制信息。
终端, 处于非业务数据传输状态时, 监听默认或指定的主载波; 由非业 务数据传输状态转换为业务数据传输状态的过程中, 接收发来的传输载波配 置指示, 并在配置的载波上监听资源控制信息; 完成与基站的业务数据传输 后, 接收基站发来的在配置的传输主载波上监听资源控制信息的指示, 并根 据该指示在传输主载波上监听资源控制信息。
优选地, 所述系统中, 所述基站为 LTE-A系统中处于非业务数据传输状 态的终端指定需要所述终端监听的主载波, 以及终端处于非业务数据传输状 态时监听默认或指定的主栽波, 包括至少一个主栽波, 且每个成员载波独立 发送 PDCCH, 且每个成员载波内的 PDCCH仅调度指定载波集合中同一成员 栽波内的物理资源。
优选地, 所述系统中, 所述基站收到业务数据传输请求后确定并指示给 终端的业务数据的载波传输配置, 以及终端由非业务数据传输状态转换为业 务数据传输状态的过程中接收发来的传输载波配置, 包括传输业务数据所使 用的 LTE-A系统中的成员载波数以及下面方案一至四中适应该成员载波数的 任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员载波内的物理资源;
方案二: 在一个成员载波上承栽多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承栽于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 i ^ « - ^ ^^r r ,
夂^ T 一成贝载波的 PDCCH上。
优选地, 所述系统中, 所述基站完成与终端的业务数据传输后, 确定并 指示给终端的主载波传输配置, 以及终端完成与基站的业务数据传输后接收 到的基站发来的在配置的传输主载波上监听资源控制信息的指示, 包括至少 一个主载波,且每个成员载波独立发送 PDCCH,且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员载波内的物理资源。
以下介绍本发明基站的实施例, 图 10示出了该基站实施例的框图, 如图 10所示, 该基站包括:
指定单元 101, 用于为 LTE-A系统中处于非业务数据传输状态的终端指 定需要所述终端监听的主载波;
载波传输配置确定单元 102, 用于确定业务数据的载波传输配置; 第一指示单元 103, 用于接收到业务数据传输请求后, 将载波传输配置确 定单元 102确定的业务数据的载波传输配置指示给终端;
主载波传输配置确定单元 104, 用于确定主载波传输配置;
第二指示单元 105, 用于在基站完成与终端的业务数据传输后, 将主载波 传输配置确定单元 104确定的主载波传输配置指示给所述终端。
优选地, 所述基站中, 所述指定单元 101为 LTE-A系统中处于非业务数 据传输状态的终端指定需要所述终端监听的主载波, 包括至少一个主载波, 且每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH仅调度指定 载波集合中同一成员载波内的物理资源。
优选地, 所述基站中, 所述载波传输配置确定单元 102确定的业务数据 的载波传输配置, 包括传输业务数据所使用的 LTE-A系统中的成员栽波数以 及下面方案一至四中适应该成员载波数的任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员栽波内的物理资源;
方案二: 在一个成员载波上承载多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员栽波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员载波的 PDCCH上。
优选地,所述基站中,所述主栽波传输配置确定单元 114确定的主栽波传 输配置包括至少一个主载波, 且每个成员栽波独立发送 PDCCH, 且每个成员 栽波内的 PDCCH仅调度指定载波集合中同一成员载波内的物理资源。
以下介绍本发明终端的实施例, 图 11示出了该终端实施例的框图, 如图 11所示, 该终端包括:
指示接收单元 111 , 用于在终端由非业务数据传输状态转换为业务数据传 输状态的过程中, 接收发来的传输载波配置指示;
监听单元 112, 用于在终端处于非业务数据传输状态时, 监听默认或指定 的主栽波; 在终端由非业务数据传输状态转换为业务数据传输状态的过程中, 根 单元 ii i 接收的传输载波配置指示, 在配 资源 控制信息; 在终端完成与基站的业务数据传输后, 在传输主载波上监听资源 控制信息。
优选地, 终端由非业务数据传输状态转换为业务数据传输状态的过程中, 所述指示接收单元 111 接收发来的传输载波配置指示包括传输业务数据所使 用的 LTE-A系统中的成员载波数以及下面方案一至四中适应该成员载波数的 任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员栽波内的 PDCCH 仅调度指定栽波集合中同一成员栽波内的物理资源;
方案二: 在一个成员栽波上承栽多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员载波的 PDCCH上。
由以上实施例可见, 基站为 LTE-A系统中处于非业务数据传输状态的终 端指定需要所述终端监听的主载波, 基站接收到业务数据传输请求后, 确定 业务数据的载波传输配置, 并指示所述终端在配置的传输载波上监听资源控 制信息, 基站完成与终端的业务数据传输后, 确定主载波传输配置, 并指示 所述终端在配置的传输主载波上监听资源控制信息, 这样的方式, 充分体现 了载波聚合系统中对资源控制的灵活性, 而且, 降低了终端功耗, 而不需要 终端总是在多个成员载波的 PDCCH上监听控制信息,再者,在业务数据传输 状态中利用多个成员载波并行传输, 可以利用系统的大带宽带来频率分集增 益。
进一步地, 本发明实施例提供了一种负载控制方法及装置, 用以实现载 波聚合系统的载波负载均衡, 从而避免载波聚合系统中存在的载波负栽过高 的问题, 提高资源利用率。 该负栽控制方法及装置可以应用于上述基站与终 端完成业务数据传输后, 根据成员载波的负载对主栽波传输配置进行确定。
本发明实施例考虑到 LTE Release 8兼容的问题, 并结合载波聚合系统的 特点, 即同时考虑用户终端(UE )功耗和资源调度的开销 /延时等因素, 给出 一种适用于载波聚合系统中的载波负载均衡技术方案。
本发明实施例所述载波聚合系统可以是 LTE-A系统等。
本发明实施例中所谓的载波负载均衡, 可以理解为在载波聚合系统中, 将至少一个成员载波上承载的 UE, 均摊到其他成员载波上, 使得各成员载波 的负载占用比例相当, 从而避免单个成员载波上负载过重的现象, 提高资源 利用率。
参见图 12, 本发明实施例提供的一种负载控制方法总体包括步骤:
5101、 对载波聚合系统中的成员载波进行实时的负载监测, 得到成员载 波的负栽监测结果。
5102、 居载波聚合系统中的成员载波的负载监测结果, 调整该载波聚 / s ^ ± - 合 -兀 T 力 贝執波的员载。
负栽控制可以由基站来实现。 基站对载波聚合系统中各个成员载波上由 处于无线资源控制 (RRC, Radio Resource Control )连接状态的 UE所造成的 成员载波的负载情况进行测量和统计。 具体地, 可以通过测量和统计各个成 员载波的带宽、 各个成员载波上处于 R C连接状态的 UE的个数、 UE的业 务类型、 以及 UE占用的资源等, 得到各个成员载波的负载监测结果。
成员载波的负载监测结果, 可以包括成员载波的负载占用比例, 以及该 成员栽波上各终端占用的负栽等。 所谓成员载波的负载占用比例, 即成员栽 波上承载的所有终端业务所占用的总的负栽与该成员载波的总带宽的比例。
例如: 一个基于 IP的语音传输( VoIP, Voice over IP )的业务与一个流媒 体的业务相比, VoIP业务对于成员载波带来的负载远比流媒体业务带来的负 栽要小。
再例如: 对于一个成员载波的带宽为 20MHz和一个成员载波的带宽为 5MHz,相同的业务和终端,对这两个成员栽波造成的负载占用比例是不同的。
成员载波的负载监测结果具有广泛的应用, 例如: 可以作为载波间负载 均衡算法的依据; 可以作为系统控制信息进行广播,使得 UE在小区搜索时选 择合适的驻留载波; 可以将成员载波的负栽监测结果映射为该成员栽波对 UE 的吸引程度因子, 这个吸引程度因子可以作为系统控制信息进行广播, 使得 UE在小区搜索时选择合适的驻留载波; 在 UE随机接入过程完成, 但未伴随 有业务发生的情况下,可以才 M居成员载波的负载监测结果,对 UE进行载波间 切换。
所述步驟 S102根据栽波聚合系统中的成员栽波的负载监测结果, 调整该 载波聚合系统中的成员载波的负载的操作可以是基站主动进行的, 也可以是 在接收到终端的载波切换请求后, 根据该终端的栽波切换请求进行的。
具体调整成员载波的负载的实现方式可以有多种。 例如: 根据载波聚合 系统中每一成员载波的负载占用比例, 以及该成员载波上各终端占用的负载, 按照预先设置的负载占用比例差值阈值, 调整载波聚合系统中的成员载波的 负载。 其中, 预先设置所述负载占用比例差值阈值的目的, 是为了使得负载 调整后的各成员栽波的负载占用比例相当, 相差尽量小, 以达到各成员载波 的负栽均衡。
再例如: 将成员载波的负载监测结果与预先设置的负载门限进行比较; 利用比较结果调整成员载波的负载。 其中, 不同成员载波可以对应不同的负 载门限, 将成员载波的负载监测结果与预先设置的与该成员载波相对应的负 载门限进行比较。 当然, 不同成员载波也可以对应同一负载门限。
较佳地, 当成员载波的负载监测结果超过预先设置的负载门限时, 调整 成员载波的负载。
较佳地, 当成员载波的负栽监测结果超过预先设置的负载门限时, 将该 成员栽波上的至少一个终端的业务切换到另一成员栽波上。
并且较佳地, 将成员载波上的至少一个终端的业务切换到另一成员载波 上之后, 根据预先设置的负载占用状态差值阈值, 进一步调整载波聚合系统 中 的负载。 所述负载占用状态 值阈值, 可
载占用比例的差值阈值, 也可以是各成员载波的负载的差值阈值。
其中, 将成员载波的负载监测结果与预先设置的负载门限进行比较的步 骤中所使用的门限, 可以根据成员载波的负载监测结果的内容的不同, 而设 置不同内容的门限。 如果成员载波的负载监测结果包含成员载波的负载占用 比例, 则相应的门限可以设置为负载占用比例门限。 如果成员载波的负载监 测结果包含成员载波上承载的用户终端的个数, 则相应的门限可以设置为用 户终端的个数门限。 其他内容的门限还可以有很多, 例如无线网络临时识别 号 (RNTI, Radio Network Temporary Identity )个数等等。
在对载波聚合系统中的成员载波进行负载调整时, 需要考虑的因素有很 多, 例如: 载波聚合系统中各成员载波上的各个 UE的负载、 UE的 RNTI个 数、 UE的业务的类型、 每个不同类型业务占用的资源等等, 下面举例说明。
假设载波聚合系统中有 4个成员载波, 所有的成员载波具有相同的带宽, 成员载波的负载门限也是相同的。 负载调整前各成员载波的负载情况如图 3 所示, 其中 UE1、 UE2、 UE3> UE4、 UE5、 UE6是已经在各自成员载波上存 在的负载,各个 UE造成的负载是不一样的。 UE7是在成员载波 1上进入 RRC 状态的。 此时, 首先, 根据 UE7的业务状况, 确定 UE7为成员载波 1带来的 负载状况, 并计算当前各成员载波的负载。 如图 3所示, 成员载波 1的原有 负载与 UE7的负载之和大于成员载波负载门限, 则触发成员载波间的负载均 衡操作, 如果成员栽波 1的原有负载与 UE7的负载之和没有超过成员载波负 载门限, 则 UE7可以直接接入成员载波 1。
在触发了成员载波间的负载均衡操作时, 采用迭代的注水算法, 优先考 虑对新接入的 UE7的负载均衡,对 UE7的负载在各个成员载波上进行逐次的 注水算法, 选择最优的成员载波作为切换的目的载波。 从图 3 可以看出, 成 员载波 2当前的负载最小, 因此,选择成员载波 2作为 UE7切换的目的载波。 切换后的各个成员载波的负载情况如图 4所示。
进一步, 在切换了 UE7接入的成员载波之后, 也可以对其它已经存在的 UE 进行成员载波间负载均衡, 使得各个成员载波的负载占用比例进一步平 均。
下面对本发明实施例中提供的载波切换机制进行说明。
基站在确定了将终端切换到的目标成员载波和需要进行成员载波间切换 的终端之后, 基站向该终端发送进行成员载波间切换的指示信息。
所述指示信息可以通过 RRC的高层控制信令发送, 通过高层信令的交互 指示待切换的终端切换到目标成员载波上。
L1/L2的控制信令的延迟比较小,因此所述指示信息也可以通过 L1/L2的 控制信令发送, 通过 L1/L2 的控制信令指示待切换的终端切换到目标成员载 波上, 具体地, 可以通过在发送给该终端的下行控制信令中指示切换的目标 成员栽波。 例如: 在 LTE系统中, 可以通过在 PDCCH的 DCI指示中增加用 于指示切换的目标成员载波的特定比特, 可以规定如果该特定比特设置为 NULL, 则表示指示终端驻留在当前的成员载波上, 在当前的成员载波上进行 , ν 载波的信息, 那么终端需要才艮据 DCI中该特定比特的指示, 切换到目标成员 载波上。
下面结合终端接入成员栽波和业务发生的过程, 对本发明实施例进行说 明。
终端在小区搜索的过程中, 从系统的所有成员载波中随机 /默认的选择一 个成员载波作为主载波; 或者根据当前广播消息中的成员栽波的负载情况, 或者载波吸引因子, 综合考虑之后选择一个成员载波作为主载波。 然后, 终 端驻留在该主载波上, 仅监听主载波的控制信息。
当终端处于空闲状态的时候, 通过主载波监听控制消息, 其中包括系统 消息、 广播控制消息、 寻呼消息等。 终端的随机接入过程等都是在主栽波上 进行。
当终端进入 RRC连接状态后, 如果还没有业务发生, 则可以根据广播消 息中的成员载波的负载情况, 主动向基站发送载波切换请求, 即请求将当前 的主载波切换为另一成员载波。 基站收到终端发送的载波切换请求后, 根据 当前各个成员载波的负载, 决定将终端切换到负载最轻的成员载波上。
当终端进入 RRC连接状态后, 如果有业务(上行和 /或下行业务)发生, 基站侧判断是否需要进行成员载波间的负载均衡操作, 如果需要, 则基站侧 执行成员载波间的负载均衡控制过程。
例如, 如图 5所示, 假设载波聚合系统只有 3个成员载波, 分别是: 成 员载波 1、 成员栽波 2、 成员载波 3。 处于空闲 (IDLE )状态的终端有 5个, 都驻留在成员栽波 2上。
可以采用处于 RRC连接状态的终端数作为成员载波的负载, 当然, 相应 的负载门限也是终端数目, 例如可以设为 3。
当终端处于空闲状态时, 只监听主栽波的控制信息。 成员载波 2是 UE1、 UE2、 UE3> UE4和 UE5的主载波。
当 UE1、 UE2、 UE3、 UE4、 UE5通过主载波进入 RRC连接状态时, 成 员载波 2的负栽超过了负载门限, 触发成员载波间的负栽均衡控制过程。
具体的成员栽波间的负载均衡控制过程包括: 根据各个成员栽波的负载 状况、 成员栽波的负载门限、 以及各个终端的业务状况, 优选出需要进行载 波切换的终端和对应切换的目标成员载波。假设优选出的终端是 UE2和 UE4, 对应的目标成员载波是成员载波 1;优选出的终端还有 UE5,对应的目标成员 载波是成员载波 3, UE1和 UE3仍然保留在成员载波 2上。
通过 RRC高层信令或者 L1/L2控制信令将 UE2和 UE4切换到成员载波 1上, 将 UE5切换到成员载波 3上。
进一步, 基站持续对各个成员栽波的负载情况进行统计。
当 UE6、 UE7、 UE8通过成员载波 2进入 RRC连接状态时, 那么成员载 波 2上的终端的个数超过了载波负栽门限, 需要触发成员载波间的负载均衡 控制过程。 这里假设该过程将终端 UE3和 UE8切换到成员载波 3上, UE1、 UE6和 UE7仍然保留在成员载波 2上, UE2和 UE4仍然保留在成员栽波 1 当终端从 RRC连接状态回到空闲状态的时候, UE仍然驻留在退出 RRC 连接状态之前的成员载波上, 这时 UE1、 UE6> UE7的主载波为成员载波 2 , UE2、 UE4的主栽波为成员载波 1, UE3 UE5、 UE8的主载波为成员载波 3。
下面介绍一下本发明实施例提供的一种负载控制装置。
参见图 6, 本发明实施例提供的一种负载控制装置包括:
负载监测单元 11, 用于对载波聚合系统中的成员载波进行负栽监测, 得 到成员载波的负栽监测结果。
负载调整单元 12, 用于根据成员载波的负载监测结果, 调整成员载波的 负载。
较佳地, 所述负载调整单元 12包括:
比较单元 121,用于将成员载波的负载监测结果与预先设置与该成员载波 相对应的负载门限进行比较。
调整单元 122,用于利用所述比较单元 121的比较结果调整成员载波的负 载。
较佳地, 所述调整单元 122, 当成员载波的负载监测结果超过预先设置的 负载门限时, 调整成员载波的负载。
较佳地, 所述调整单元 122, 当成员载波的负栽监测结杲超过预先设置的 负载门限时, 将该成员载波上的至少一个终端的业务切换到另一成员载波上。
较佳地, 所述调整单元 122可以通过 RRC高层控制信令, 或层 1/层 2的 控制信令, 控制需要进行载波切换的终端切换到该终端对应的目标成员载波 上。
较佳地, 所述调整单元 122包括:
第一调整单元 21, 用于当所述成员载波的负载监测结果超过预先设置的 负载门限时, 将所述成员载波上的至少一个终端的业务切换到另一成员载波 上, 然后触发第二调整单元 22。
第二调整单元 22, 用于接收到所述第一调整单元 21的触发后,根据预先 设置的负载占用状态差值阈值, 调整载波聚合系统中的成员载波的负载。
较佳地, 所述负载监测单元 11包括:
负载占用状态确定单元 111, 用于对载波聚合系统中每一成员载波, 检测 该成员载波的带宽以及该成员载波上各终端的负载占用状态, 得到该成员载 波的负载占用状态。
其中, 所述的负栽占用状态, 可以是负载占用比例, 也可以是单纯的负 载等等。
负载监测结果确定单元 112, 用于利用每一成员载波的负栽占用状态, 以 及该成员栽波上各终端的负载占用状态生成该成员载波的负栽监测结果。
所述负载调整单元 12, 还可以根据栽波聚合系统中每一成员栽波的负载 占用状态, 以及该成员载波上各终端的负栽占用状态, 按照预先设置的负载 占用状态差值阈值, 调整载波聚合系统中的成员栽波的负栽。
较佳地, 所述装置还包括: >j- 2; jj, 1* i» ° ^ ,
广踏早 13 , 用于通过系统控制信息厂播成贝载波的贝 ¾«U 2¾ 。 较佳地, 所述装置还可以包括:
吸引程度因子确定单元 14, 用于根据所述成员载波的负载监测结果, 确 定该成员载波对终端的吸引程度因子。
广播单元 13, 还可以用于通过系统控制信息广播所述吸引程度因子。 所述负载调整单元 12, 可以根据终端的载波切换请求, 以及所述载波聚 合系统中成员载波的负载监测结果, 将所述终端的业务切换到目标成员载波 上。
本发明实施例所述的负载控制装置可以位于基站。
综上所述, 本发明实施例通过对载波聚合系统中的成员载波进行负栽监 测, 得到成员栽波的负载监测结果; 才艮据成员载波的负载监测结果, 调整成 员载波的负载。 从而实现了栽波聚合系统中成员载波的负载调整, 以达到成 员载波的负载均衡的效果, 避免栽波聚合系统中存在的载波负载过高的问题, 提高资源利用率 ^ ^ 、, 发明的精神和范围。 这样, ^若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

WO 2010/069153 . , 丄、 PCT/CN2009/001510
1、 一种载波聚合系统中的资源控制方法, 其特征在于, 包括: 基站为载波聚合系统中处于非业务数据传输状态的终端指定需要所述终 端监听的主载波;
基站接收到业务数据传输请求后, 确定业务数据的载波传输配置, 并指 示所述终端在配置的传输栽波上监听资源控制信息;
基站完成与终端的业务数据传输后, 确定主载波传输配置, 并指示所述 终端在配置的传输主载波上监听资源控制信息。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站为载波聚合系统中 处于非业务数据传输状态的终端指定的需要所述终端监听的主载波, 包括默 认指定的需要所述终端监听的主栽波。
3、 如权利要求 1所述的方法, 其特征在于, 所述基站为载波聚合系统中 处于非业务数据传输状态的终端指定的需要所述终端监听的主载波, 包括基 站根据基站配置和 /或终端配置指定的需要所述终端监听的主载波,
则所述方法还包括: 基站将根据基站配置和 /或终端配置指定的主载波通 知给所述终端。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述基站为栽波聚合系 统中处于非业务数据传输状态的终端指定需要所述终端监听的主载波, 包括 至少一个主载波。
5、 如权利要求 4所述的方法, 其特征在于, 所述至少一个主栽波上, 每 个成员载波独立发送物理下行控制信道 PDCCH , 且每个成员载波内的 PDCCH仅调度指定载波集合中同一成员载波内的物理资源。
6、 如权利要求 1所述的方法, 其特征在于, 所述基站接收到的业务数据 传输请求, 包括:
网络侧发来的业务数据传输指示; 或,
终端发来的业务数据传输请求。
7、 如权利要求 1所述的方法, 其特征在于, 所述确定业务数据的载波传 输配置, 包括确定传输业务数据所使用的载波聚合系统中的成员载波数以及 下面方案一至四中适应该成员载波数的任一栽波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定栽波集合中同一成员载波内的物理资源;
方案二: 在一个成员栽波上承栽多个独立的 PDCCH, 每个 PDCCH调度 指定栽波集合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 栽波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员载波的 PDCCH上。
8、 如权利要求 1所述的方法, 其特征在于, 所述确定业务数据的载波传 输配置, 包括根据终端的类别等级和 /或业务情况、 及资源调度情况确定。
WO 2010/069153. . -, ,, , , ,. , , , , , ^ ,■ ,, . PCT/CN2009/001510, , . y、 秋利要求 1所述的万法, 其特征在于, 所述指 TF^ Θ己直的传输 载波上监听资源控制信息, 包括:
通过无线资源控制 RRC信令指示终端在配置的传输载波上监听资源控制 信息; 或,
通过层 1 L1/层 2 L2控制信令指示终端在配置的传输载波上监听资源控制 信息。
10、 如权利要求 1 所述的方法, 其特征在于, 所述基站完成与终端的业 务数据传输后确定主载波传输配置, 包括基站根据上行主载波的负载重新选 择主载波。
11、 如权利要求 10所述的方法, 其特征在于, 所述重新选择的主载波包 括至少一个主载波上, 且每个成员载波独立发送 PDCCH, 且每个成员载波内 的 PDCCH仅调度指定载波集合中同一成员载波内的物理资源。
12、 如权利要求 1 所述的方法, 其特征在于, 基站完成与终端的业务数 据传输后, 还包括:
基站开启定时器, 当定时器计时结束时, 基站指示所述终端在配置的传 输主载波上监听资源控制信息。
13、 一种载波聚合系统中的资源控制方法, 其特征在于, 包括: 终端处于非业务数据传输状态时, 监听默认或指定的主载波;
终端由非业务数据传输状态转换为业务数据传输状态的过程中, 接收发 来的传输栽波配置指示, 并在配置的载波上监听资源控制信息;
终端完成与基站的业务数据传输后, 在传输主载波上监听资源控制信息。
14、 如权利要求 13所述的方法, 其特征在于, 所述监听指定的主载波之 前, 还包括:
终端接收基站发来的主载波传输配置指示。
15、 如权利要求 13所述的方法, 其特征在于, 所述监听默认或指定的主 载波, 包括至少一个主载波。
16、 如权利要求 15所述的方法, 其特征在于, 所述至少一个主栽波上, 每个成员栽波独立发送 PDCCH, 且每个成员载波内的 PDCCH仅调度指定载 波集合中同一成员载波内的物理资源。
17、 如权利要求 13所述的方法, 其特征在于, 所述终端由非业务数据传 输状态转换为业务数据传输状态的过程中接收发来的传输栽波配置指示, 包 括:
终端由非业务数据传输状态转换为业务数据传输状态的过程中, 通过 RRC信令或 L1/L2控制信令接收发来的传输载波配置指示。
18、 如权利要求 13所述的方法, 其特征在于, 所述接收发来的传输载波 配置指示, 包括传输业务数据所使用的载波聚合系统中的成员栽波数以及下 面方案一至四中适应该成员载波数的任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员载波内的物理资源;
方案二: 在一个成员载波上承载多个独立的 PDCCH, 每个 PDCCH调度 , WO 2010/069153 , . ,, „ χ„ , , , , _ ^ ,- PCT/CN2009/001510 指疋 反杲合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 栽波集合中每一成员载波的 PDCCH上。
19、 如权利要求 13所述的方法, 其特征在于, 所述终端完成与基站的业 务数据传输后, 在传输主载波上监听资源控制信息之前, 还包括:
终端接收发来的主载波传输配置指示。
20、 如权利要求 19所述的方法, 其特征在于, 所述终端接收发来的主载 波传输配置指示, 包括:
终端通过 RRC信令或 L1/L2控制信令接收发来的主载波传输配置指示。
21、 如权利要求 13所述的方法, 其特征在于, 所述终端完成与基站的业 务数据传输之后, 还包括:
终端开启定时器, 当定时器计时结束时, 终端在传输主载波上监听资源 控制信息。
22、 一种载波聚合系统中的资源控制系统, 其特征在于, 包括: 基站, 用于为载波聚合系统中处于非业务数据传输状态的终端指定需要 所述终端监听的主载波; 收到业务数据传输请求后, 确定业务数据的载波传 输配置, 并指示所述终端在配置的传输载波上监听资源控制信息; 完成与终 端的业务数据传输后, 确定主栽波传输配置, 并指示所述终端在配置的传输 主载波上监听资源控制信息;
终端, 处于非业务数据传输状态时, 监听默认或指定的主载波; 由非业 务数据传输状态转换为业务数据传输状态的过程中 , 接收发来的传输载波配 置指示, 并在配置的载波上监听资源控制信息; 完成与基站的业务数据传输 后, 接收基站发来的在配置的传输主载波上监听资源控制信息的指示, 并根 据该指示在传输主载波上监听资源控制信息。
23、 如权利要求 22所述的系统, 其特征在于, 所述基站为载波聚合系统 中处于非业务数据传输状态的终端指定需要所述终端监听的主载波, 以及终 端处于非业务数据传输状态时监听默认或指定的主载波, 包括至少一个主载 波, 且每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH仅调度 指定载波集合中同一成员载波内的物理资源。
24、 如权利要求 22所述的系统, 其特征在于, 所述基站收到业务数据传 输请求后确定并指示给终端的业务数据的栽波传输配置, 以及终端由非业务 数据传输状态转换为业务数据传输状态的过程中接收发来的传输载波配置, 包括传输业务数据所使用的载波聚合系统中的成员载波数以及下面方案一至 四中适应该成员载波数的任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员载波内的物理资源;
方案二: 在一个成员载波上承载多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源; 方茉三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员载波的 PDCCH上。
25、 如权利要求 22所述的系统, 其特征在于, 所述基站完成与终端的业 务数据传输后, 确定并指示给终端的主载波传输配置, 以及终端完成与基站 的业务数据传输后接收到的基站发来的在配置的传输主栽波上监听资源控制 信息的指示, 包括至少一个主载波, 且每个成员载波独立发送 PDCCH, 且每 个成员载波内的 PDCCH仅调度指定载波集合中同一成员载波内的物理资源。
26、 一种基站, 其特征在于, 包括:
指定单元, 用于为载波聚合系统中处于非业务数据传输状态的终端指定 需要所述终端监听的主载波;
载波传输配置确定单元, 用于确定业务数据的载波传输配置;
第一指示单元, 用于接收到业务数据传输请求后, 将载波传输配置确定 单元确定的业务数据的载波传输配置指示给终端;
主载波传输配置确定单元, 用于确定主载波传输配置;
第二指示单元, 用于在基站完成与终端的业务数据传输后, 将主载波传 输配置确定单元确定的主载波传输配置指示给所述终端。
27、 如权利要求 26所述的基站, 其特征在于, 所述指定单元为栽波聚合 系统中处于非业务数据传输状态的终端指定需要所述终端监听的主载波, 包 括至少一个主载波, 且每个成员栽波独立发送 PDCCH, 且每个成员载波内的 PDCCH仅调度指定载波集合中同一成员载波内的物理资源。
28、 如权利要求 26所述的基站, 其特征在于, 所述载波传输配置确定单 元确定的业务数据的载波传输配置, 包括传输业务数据所使用的载波聚合系 统中的成员载波数以及下面方案一至四中适应该成员载波数的任一载波传输 配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员栽波内的 PDCCH 仅调度指定载波集合中同一成员栽波内的物理资源;
方案二: 在一个成员载波上承载多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员载波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员栽波的 PDCCH上。
29、 如权利要求 26所述的基站, 其特征在于, 所述主载波传输配置确定 单元确定的主载波传输配置包括至少一个主载波, 且每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH仅调度指定载波集合中同一成员载波 内的物理资源。
30、 一种终端, 其特征在于, 包括:
指示接收单元, 用于在终端由非业务数据传输状态转换为业务数据传输 状态的过程中, 接收发来的传输载波配置指示;
监听单元, 用于在终端处于非业务数据传输状态时, 监听默认或指定的 主载波; 在终端由非业务数据传输状态转换为业务数据传输状态的过程中, 根据指示接收单元接收的传输栽波配置指示, 在配置的载波上监听资源控制 信息; 在终端完成与基站的业务数据传输后, 在传输主载波上监听资源控制 信息。
31、 如权利要求 30所述的终端, 其特征在于, 终端由非业务数据传输状 态转换为业务数据传输状态的过程中, 所述指示接收单元接收发来的传输载 波配置指示包括传输业务数据所使用的载波聚合系统中的成员载波数以及下 面方案一至四中适应该成员栽波数的任一载波传输配置方案:
方案一: 每个成员载波独立发送 PDCCH, 且每个成员载波内的 PDCCH 仅调度指定载波集合中同一成员载波内的物理资源;
方案二: 在一个成员载波上承载多个独立的 PDCCH, 每个 PDCCH调度 指定载波集合中一个成员栽波的物理资源;
方案三: 控制不同成员载波的下行控制信息编码在一起, 并承载于指定 载波集合中一个成员载波的 PDCCH上;
方案四: 控制不同成员载波的下行控制信息编码在一起, 并映射到指定 载波集合中每一成员载波的 PDCCH上。
32、 一种负载控制方法, 其特征在于, 该方法包括:
对载波聚合系统中的成员载波进行负载监测, 得到成员载波的负载监测 结果;
根据所述成员载波的负载监测结果, 调整成员载波的负载。
33、 根据权利要求 32所述的方法, 其特征在于, 根据所述成员栽波的负 载监测结果, 调整成员载波的负栽的步骤包括:
将所述成员载波的负栽监测结果与预先设置的负栽门限进行比较; 利用所述比较结果调整所述载波聚合系统中的成员栽波的负载。
34、 根据权利要求 33所述的方法, 其特征在于, 利用所述比较结果调整 所述载波聚合系统中的成员载波的负栽的步骤包括:
当所述成员载波的负载监测结果超过预先设置的负载门限时, 调整所述 成员载波的负载。
35、 根据权利要求 34所述的方法, 其特征在于, 调整所述成员载波的负 栽之后, 该方法还包括:
根据预先设置的负载占用状态差值阈值, 调整所述载波聚合系统中的另 一成员载波的负载。
36、 根据权利要求 33至 35任一权利要求所述的方法, 其特征在于, 预 先为各个成员栽波设置与其对应的负载门限。
37、 根据权利要求 32所述的方法, 其特征在于, 所述对载波聚合系统中 的成员载波进行负载监测, 得到成员载波的负载监测结果的步骤包括:
对所述载波聚合系统中每一成员载波, 检测该成员载波的带宽以及该成 员载波上各终端占用的负载, 得到该成员载波的负载占用比例; WO 2010/069153 , „ , , , , β , PCT/CN2009/001510 , . 利用母一成员载波的负载占用比例, 以及该成员载波上谷终端占用的负 载生成该成员载波的负栽监测结果。
38、 根据权利要求 37所述的方法, 其特征在于, 根据所述成员载波的负 栽监测结果, 调整成员载波的负栽的步骤包括:
根据所述栽波聚合系统中每一成员载波的负载占用比例, 以及该成员载 波上各终端占用的负载, 按照预先设置的负载占用比例差值阈值, 调整所述 载波聚合系统中的成员载波的负载。
39、 根据权利要求 33或 38所述的方法, 其特征在于, 调整所述栽波聚 合系统中的成员载波的负载的步骤包括:
通过无线资源控制 RRC高层控制信令, 或层 1/层 2的控制信令, 控制需 要进行载波切换的终端切换到目标成员载波上。
40、 根据权利要求 32所述的方法, 其特征在于, 该方法还包括: 通过系统控制信息广播所述成员载波的负载监测结果。
41、 根据权利要求 32所述的方法, 其特征在于, 该方法还包括: 根据所述成员载波的负载监测结果, 确定该成员载波对终端的吸引程度 因子;
通过系统控制信息广播所述吸引程度因子。
42、 根据权利要求 32所述的方法, 其特征在于, 根据所述成员载波的负 载监测结果, 调整成员载波的负载的步骤包括:
接收来自终端的载波切换请求;
根据所述载波切换请求, 以及所述载波聚合系统中成员载波的负载监测 结果, 将所述终端的业务切换到目标成员载波。
43、 一种负载控制装置, 其特征在于, 所述装置包括:
负载监测单元, 用于对载波聚合系统中的成员载波进行负载监测, 得到 成员栽波的负载监测结果;
负载调整单元, 用于根据所述成员载波的负载监测结果, 调整成员栽波 的负栽。
44、根据权利要求 43所述的装置,其特征在于, 所述负载调整单元包括: 比较单元, 用于将所述成员栽波的负载监测结果与预先设置与该成员载 波相对应的负载门限进行比较;
调整单元, 用于利用所述比较结果调整成员载波的负载。
45、 根据权利要求 44所述的装置, 其特征在于, 所述调整单元, 当所述 成员载波的负载监测结果超过预先设置的负载门限时, 调整成员载波的负载。
46、 根据权利要求 45所述的装置, 其特征在于, 所述调整单元, 当所述 成员载波的负载监测结果超过预先设置的负载门限时, 将所述成员载波上的 至少一个终端的业务切换到另一成员载波上。
47、 根据权利要求 46所述的装置, 其特征在于, 所述调整单元包括: 第一调整单元, 用于当所述成员栽波的负栽监测结果超过预先设置的负 载门限时, 将所述成员栽波上的至少一个终端的业务切换到另一成员栽波上, 然后触发第二调整单元; WO 2010/069153 ,, ,、 , , , , PCT/CN2009/001510 „ ^ 第二调整单 L, 用于接收到所述第一调整单 G的触发后, 根据预无设置 的负栽占用状态差值阈值, 调整所述载波聚合系统中的另一成员载波的负载。
48、根据权利要求 43所述的装置,其特征在于, 所述负载监测单元包括: 负载占用状态确定单元, 用于对所述载波聚合系统中每一成员载波, 检 测该成员载波的带宽以及该成员载波上各终端的负载占用状态, 得到该成员 载波的负载占用状态;
负载监测结果确定单元, 用于利用每一成员载波的负载占用状态, 以及
49、 根据权利要求
Figure imgf000026_0001
根 据所述载波聚合系统中每一成员载波的负载占用状态, 以及该成员载波上各 终端的负载占用状态, 按照预先设置的负载占用状态差值阈值, 调整所述载 波聚合系统中的成员载波的负载。
50、 根据权利要求 43所述的装置, 其特征在于, 所述装置还包括: 广播单元, 用于通过系统控制信息广播所述成员载波的负载监测结果。
51、 根据权利要求 43所述的装置, 其特征在于, 所述装置还包括: 吸引程度因子确定单元, 用于根据所述成员载波的负载监测结果, 确定 该成员载波对终端的吸引程度因子;
广播单元, 用于通过系统控制信息广播所述吸引程度因子。
52、 根据权利要求 43所述的装置, 其特征在于, 所述负载调整单元, 根 据终端的载波切换请求, 以及所述载波聚合系统中成员载波的负载监测结果, 将所述终端的业务切换到目标成员载波上。
PCT/CN2009/001510 2008-12-19 2009-12-18 一种资源、负载控制方法、系统、装置、基站及终端 WO2010069153A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810239866.2 2008-12-19
CN2008102398662A CN101754380B (zh) 2008-12-19 2008-12-19 载波聚合系统中的资源控制方法、系统、基站及终端
CN200810247071.6 2008-12-31
CN200810247071A CN101772078A (zh) 2008-12-31 2008-12-31 一种负载控制方法及装置

Publications (1)

Publication Number Publication Date
WO2010069153A1 true WO2010069153A1 (zh) 2010-06-24

Family

ID=42268278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001510 WO2010069153A1 (zh) 2008-12-19 2009-12-18 一种资源、负载控制方法、系统、装置、基站及终端

Country Status (1)

Country Link
WO (1) WO2010069153A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258811B2 (en) 2011-02-11 2016-02-09 Broadcom Corporation Signaling method to enable controlled TX deferring in mixed license and unlicensed spectrum in carrier aggregation in future LTE-A networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469570A (zh) * 2002-07-20 2004-01-21 深圳市中兴通讯股份有限公司 一种多载波负载平衡方法
CN101047488A (zh) * 2006-03-30 2007-10-03 中兴通讯股份有限公司 基于多载波高速下行分组接入系统的载波资源处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469570A (zh) * 2002-07-20 2004-01-21 深圳市中兴通讯股份有限公司 一种多载波负载平衡方法
CN101047488A (zh) * 2006-03-30 2007-10-03 中兴通讯股份有限公司 基于多载波高速下行分组接入系统的载波资源处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9258811B2 (en) 2011-02-11 2016-02-09 Broadcom Corporation Signaling method to enable controlled TX deferring in mixed license and unlicensed spectrum in carrier aggregation in future LTE-A networks

Similar Documents

Publication Publication Date Title
US9363788B2 (en) Efficient variable rate for broadcast/multicast service
US10492239B2 (en) User terminal and base station
US10849100B2 (en) Method and apparatus for receiving multimedia broadcast/multicast service in mobile communication system
US20180035340A1 (en) Base station and user terminal in mobile communication system
RU2642842C1 (ru) Способ и устройство для приема службы широковещательной многоадресной передачи мультимедиа в системе мобильной связи
JP6386046B2 (ja) 通信端末および方法
WO2021163460A1 (en) Methods for power saving sensing and resource allocation
JP2017504252A (ja) LTE eMBMSサービス拡張
JP2016527838A (ja) インフラ機器、無線通信ネットワークおよび方法
WO2008083580A1 (fr) Procédé et dispositif de transfert de messages système
JP6732206B2 (ja) 無線端末及び基地局
JP2024029220A (ja) ユーザ装置、基地局および通信システム
US11310631B2 (en) Radio terminal and base station
JP5289531B2 (ja) 移動体通信システム及び移動端末
WO2010069153A1 (zh) 一种资源、负载控制方法、系统、装置、基站及终端
JP2016001929A (ja) 通信方法、移動体通信システム、基地局及び移動端末
JP5822996B2 (ja) 通信方法、移動体通信システム、基地局及び移動端末
JP2013219808A (ja) 通信方法、移動体通信システム及び移動端末
JP4841630B2 (ja) 移動体通信システム及び移動端末
US20220346015A1 (en) Sidelink discontinuous reception management for groupcast and broadcast
JP2023082184A (ja) 通信制御方法、基地局、ユーザ装置及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC

122 Ep: pct application non-entry in european phase

Ref document number: 09832835

Country of ref document: EP

Kind code of ref document: A1