WO2010067924A1 - 광대역 임피던스 매칭을 지원하는 내장형 안테나 - Google Patents

광대역 임피던스 매칭을 지원하는 내장형 안테나 Download PDF

Info

Publication number
WO2010067924A1
WO2010067924A1 PCT/KR2009/001599 KR2009001599W WO2010067924A1 WO 2010067924 A1 WO2010067924 A1 WO 2010067924A1 KR 2009001599 W KR2009001599 W KR 2009001599W WO 2010067924 A1 WO2010067924 A1 WO 2010067924A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ground
coupled
impedance matching
substrate
Prior art date
Application number
PCT/KR2009/001599
Other languages
English (en)
French (fr)
Inventor
김병남
Original Assignee
(주)에이스안테나
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이스안테나 filed Critical (주)에이스안테나
Priority to US13/133,582 priority Critical patent/US8743011B2/en
Priority to EP09832011.2A priority patent/EP2369675B1/en
Priority to CN2009801495780A priority patent/CN102246347A/zh
Priority to JP2011540587A priority patent/JP2012511857A/ja
Publication of WO2010067924A1 publication Critical patent/WO2010067924A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to an antenna, and more particularly, to an embedded antenna that supports impedance matching for broadband.
  • a mobile terminal has been required to have a small size and a light weight, and to receive a mobile communication service having a different frequency band using a single terminal.
  • CDMA services in the 824-894 MHz band commercially available in Korea
  • PCS services in the 1750-1870 MHz band CDMA services in the 832-925 MHz band commercially available in Japan
  • the 1850-1990 MHz band commercially available in the US.
  • Multi-band signal as needed among mobile communication services using various frequency bands such as PCS service, GSM service of 880 ⁇ 960 MHz band commercialized in Europe, China, and DCS service of 1710 ⁇ 1880 MHz band commercialized in some parts of Europe.
  • a composite terminal that can use services such as Bluetooth, Zigbee, WLAN, and GPS.
  • a multi-band antenna capable of operating in two or more bands desired should be used.
  • helical antennas and Planar Inverted F Antennas (PIFAs) are mainly used as antennas of mobile communication terminals.
  • the helical antenna is used together with the monopole antenna as an external antenna fixed to the top of the terminal.
  • the antenna operates as a monopole antenna when the antenna is extended from the terminal body, and as a ⁇ / 4 helical antenna when the antenna is extended.
  • These antennas have the advantage of obtaining high gain, but due to their omni-directional, SAR characteristics, which are harmful to the human body of electromagnetic waves, are not good.
  • the helical antenna is configured to protrude to the outside of the terminal, it is difficult to design the exterior suitable for the aesthetics and the portable function of the terminal, but the internal structure thereof has not been studied.
  • an inverted-F antenna is an antenna designed to have a low profile structure to overcome this disadvantage.
  • the inverted-F antenna reinforces the beam directed toward the ground plane of the entire beams generated by the current induced in the radiator to attenuate the beam directed to the human body, thereby improving SAR characteristics and reinforcing the beam directed toward the radiator.
  • it is possible to operate as a rectangular microstrip antenna whose length is a rectangular flat radiating portion, which is reduced in half.
  • Such an inverted-F antenna has a radiation characteristic with a directivity that attenuates the beam intensity toward the human body and strengthens the beam intensity toward the outside of the human body, and thus, an electromagnetic wave absorption rate is excellent when compared with a helical antenna.
  • the inverted-F antenna has a problem in that the frequency bandwidth is narrow.
  • the narrow frequency bandwidth of the inverted-F antenna is due to point matching where a match is made at a particular point in matching with the radiator.
  • the present invention proposes a broadband internal antenna for overcoming a narrowband problem of a planar inverted-F antenna.
  • a substrate A power supply member spaced apart from the substrate by a predetermined distance and supplied with an RF signal and spaced apart from the substrate by a predetermined distance in a first direction, and spaced apart from the power supply member in a second direction perpendicular to the first direction
  • An impedance matching / feeding unit including a grounding member having a predetermined length in a first direction; And a radiator extending from the ground member, wherein the impedance matching / feeding unit performs impedance matching by coupling between the feeding member and the grounding member, and the radiator receives coupling feeding from the feeding member.
  • An embedded antenna is provided to support wideband impedance matching.
  • the antenna may further include a feed pin formed vertically from the substrate and electrically connected to a feed point and the feed member.
  • the antenna may further include a ground pin formed vertically from the substrate and electrically connected to ground and the ground member.
  • the length of the ground member and the power feeding member in the first direction is preferably about 0.1 of the wavelength.
  • the antenna may further include a carrier to which the feed member, the ground member, and the radiator are coupled and fixed.
  • the carrier includes a planar top and a plurality of sidewall portions, the plurality of sidewall portions being coupled onto the substrate.
  • the power feeding member is coupled to a first surface of one of the sidewall portions of the plurality of sidewall portions, and the grounding member is coupled to a second surface opposite to the first surface and spaced apart from the predetermined distance.
  • the substrate A carrier coupled on the substrate;
  • An impedance comprising a grounding member coupled to a first side of one of the sidewalls of the carrier and electrically connected to ground and a feeding member coupled to a second side opposite the first side and receiving an RF signal Matching / feeding section;
  • a built-in antenna supporting wideband impedance matching including a radiator extending from the ground member and coupled to the carrier.
  • the present invention it is possible to overcome the narrowband problem of the planar inverted-F antenna, and more efficient space utilization is possible in a broadband internal antenna using coupling matching and coupling feeding.
  • FIG. 1 is a perspective view of a broadband internal antenna according to an embodiment of the present invention
  • FIG. 2 is a perspective view of the broadband internal antenna according to the embodiment of the present invention viewed from another direction;
  • FIG. 3 is a plan view of a broadband internal antenna according to an embodiment of the present invention.
  • FIG. 4 is a view showing the shape of a power feeding member and a grounding member according to another embodiment of the present invention.
  • FIG 5 illustrates an example of an antenna carrier to which an antenna is coupled according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of an antenna coupled to the antenna carrier shown in FIG. 5 according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of an antenna coupled to an antenna carrier shown in FIG. 5 in a direction different from that of FIG. 6 according to an embodiment of the present invention
  • FIG 8 illustrates a front view of a first sidewall portion of a carrier in an antenna according to an embodiment of the present invention.
  • FIG 9 illustrates a rear view of a first sidewall portion of an antenna carrier according to an embodiment of the present invention.
  • the built-in antenna supporting wideband impedance matching according to the present invention may be implemented using a carrier, but for convenience of description, an antenna having a structure without a carrier will be described first with reference to FIGS. 1 to 3. The structure will be described later.
  • FIG. 1 is a view showing a perspective view of a broadband internal antenna according to an embodiment of the present invention
  • Figure 2 is a view showing a perspective view of the broadband internal antenna according to an embodiment of the present invention from another direction
  • Figure 3 Is a plan view showing a broadband internal antenna according to an embodiment of the present invention.
  • a built-in antenna supporting wideband impedance matching may include a substrate 100, a feeding point 102, an impedance matching / feeding unit 104, and a ground pin 106. ), A radiator 108 and a feed pin 110 may be included.
  • the impedance matching / feeding unit 104 also includes a feeding member 200 and a grounding member 300.
  • An RF signal is applied to the feed point 102, and the feed pin 110 is electrically connected to the feed point 102 and is formed perpendicular to the substrate.
  • the ground pin 106 is electrically connected to the ground of the terminal and is formed perpendicular to the substrate.
  • the impedance matching / feeding unit 104 is electrically connected to the feed pin 110 and electrically connected to the feed member 200 and the ground pin 106 which are formed perpendicular to the substrate 100 with a predetermined length. It includes a ground member 300 having a length and formed perpendicular to the substrate 100.
  • the power feeding member 200 and the grounding member 300 have a line shape, but the shapes of the power feeding member and the grounding member are not limited thereto, and may have various shapes. Another form of will be described with reference to the separate drawings.
  • the power supply member 200 and the ground member 300 constituting the impedance matching / feeding unit are disposed at a predetermined distance apart from each other.
  • the built-in antenna supporting broadband impedance matching is a ground member 300 and the power supply extending from the ground pin
  • the feeder member 200 further includes a feeding member 200 extending from the pin, and the feeding member and the grounding member 300 perform impedance matching and coupling feeding on the broadband.
  • the RF signal provided from the feed pin to the feed member 200 is coupled to the ground patch 300 spaced a predetermined distance, and this coupling is performed in a region having a predetermined length, compared to the conventional planar inverted-F antenna. Allows more impedance matching over broadband.
  • the lengths of the power feeding member 200 and the grounding member 300 may be set to about 0.1 wavelengths for impedance matching with respect to broadband, but may be appropriately changed according to the frequency band and the use frequency.
  • coupling feeding from the power feeding member 200 to the grounding member 300 by coupling causes the feeding of coupling to the impedance matching / feeding unit.
  • the feeding member 200 and the grounding member 300 are mutually at the same height. It may be formed to face each other, the height of the ground member 300 may be formed higher than the power feeding member 200.
  • the height of the power feeding member 200 and the grounding member 300 may be properly adjusted according to the required coupling amount.
  • FIG. 4 is a view showing the shape of the power feeding member and the grounding member according to another embodiment of the present invention.
  • the feeding member and the grounding member may be a grounding member or a feeding member having a plurality of protrusions 400 formed up and down on a line different from the line form shown in FIGS. 1 to 3.
  • feeding member and the grounding member may be implemented in more various forms as long as the structure is capable of inducing coupling in a region having a predetermined length in addition to the form shown in FIG. 4.
  • the radiator 108 extends from the ground member 300. 1 and 2, the radiator 108 is illustrated to be bent and extended parallel to the substrate after being vertically extended from the ground member 130. However, the shape of the radiator 108 is not limited thereto. It can be formed as.
  • the length of the radiator 108 is set according to the frequency band used, and the shape of the radiator 108 may also be variously set. 2 and 3 are those skilled in the art that the case in which the portion parallel to the substrate in the radiator is bent once L-shaped or the portion parallel to the substrate is implemented in the form of a line and a meander may be included in the scope of the present invention. Will be self explanatory.
  • the radiator is directly connected to the feed pin because the radiator is directly fed, but the radiator 108 of the antenna according to the embodiment of the present invention is fed by coupling feeding and extends from the ground patch. to be.
  • FIG. 5 is a diagram illustrating an example of an antenna carrier to which an antenna is coupled according to an embodiment of the present invention.
  • an antenna carrier to which an antenna is coupled may include a planar upper part 500 and a plurality of sidewall parts 502, 504, and 506.
  • the planar upper part 500 has a predetermined area as a part to which the radiator of the antenna is coupled.
  • a plurality of sidewall portions 502, 504, 506 supports the planar top 500 and is coupled to the substrate.
  • the relatively long length of the side wall portions 502, 504, 506 of the plurality of side wall portions 502, 504, 506 is coupled to the power supply member 200 and the ground member 300 of the impedance matching / feeding portion, and the second side wall portion ( 504 and the third sidewall portion 506 play a supporting role together with the first sidewall portion 502.
  • FIG. 6 is a perspective view illustrating an antenna coupled to an antenna carrier shown in FIG. 5 in accordance with an embodiment of the present invention
  • FIG. 7 illustrates the present invention in the antenna carrier shown in FIG. 5 in a direction different from that of FIG. 6.
  • Figure is a perspective view of the antenna coupled in accordance with one embodiment of the.
  • 8 is a diagram illustrating a front view of a first sidewall portion of a carrier in an antenna according to an embodiment of the present invention
  • FIG. 9 is a rear view of the first sidewall portion of an antenna carrier according to an embodiment of the present invention.
  • the antenna carrier 300 is coupled on the substrate, and the sidewall portions 502, 504, 506 are coupled on the substrate.
  • the ground pin 106 vertically formed from the substrate is vertically formed along the first surface 502a of the first sidewall portion 502, and the ground member 300 may be the ground pin 106. Extending from the first sidewall 502a of the first sidewall portion 502.
  • the radiator 108 extends vertically from the ground member 300.
  • a feed pin 110 and a feed pin 110 formed perpendicular to the substrate on the second surface 502b, which is a surface opposite to the first surface 502a of the first sidewall portion 502.
  • Feeding member 120 extending from the is coupled.
  • the power feeding member 120 and the grounding member 130 are spaced apart by a predetermined distance with the first sidewall portion 502 interposed therebetween, and the grounding member 130 is the first surface 502a of the first sidewall portion 502.
  • the feeding member 120 is coupled to the second side 502b of the first sidewall portion 502, and the separation distance between the ground member 130 and the feeding member 120 is the thickness of the first sidewall portion 502.
  • both sides of the carrier sidewall portion are used to implement a broadband impedance matching structure using the coupling of the power feeding member 120 and the ground member 130.
  • the structure in which the elements for impedance matching and feeding are formed on both sides of the carrier sidewall portion may reduce the size of the antenna as compared to the structure in which the elements for feeding and impedance matching are formed on the plane of the carrier.
  • the radiator 108 extending from the first sidewall portion 502 is coupled to the planar top 500 of the carrier.

Abstract

광대역에 대한 임피던스 매칭을 지원하는 내장형 안테나가 개시된다. 개시된 안테나는, 기판; 상기 기판과 소정 거리 이격되며 RF 신호를 급전받고 제1 방향으로 소정의 길이를 갖는 급전 부재 및 상기 기판과 소정거리 이격되고, 상기 급전 부재와 상기 제1 방향에 수직인 제2 방향으로 소정 거리 이격되며 제1 방향으로 소정의 길이를 갖는 접지 부재를 포함하는 임피던스 매칭/급전부; 및 상기 접지 부재로부터 연장되어 형성되는 방사체를 포함하되, 상기 임피던스 매칭/급전부는 상기 급전 부재 및 접지 부재 사이의 커플링에 의해 임피던스 매칭을 수행하며, 상기 방사체는 상기 급전 부재로부터 커플링 급전을 받는다, 개시된 안테나에 의하면, 평면 역-F 안테나의 협대역 문제를 극복할 수 있으며, 커플링 매칭 및 커플링 급전을 이용하는 광대역 내장형 안테나에서 보다 효율적인 공간 활용이 가능한 장점이 있다.

Description

광대역 임피던스 매칭을 지원하는 내장형 안테나
본 발명은 안테나에 관한 것으로서, 더욱 상세하게는 광대역에 대한 임피던스 매칭을 지원하는 내장형 안테나에 관한 것이다.
최근 이동통신 단말기는 소형화 및 경량화되면서도, 서로 다른 주파수 대역의 이동통신 서비스를 하나의 단말기를 이용하여 제공받을 수 있는 기능이 요구되고 있다. 예를 들어, 한국에서 상용화된 824~894 MHz 대역의 CDMA 서비스와, 1750~1870 MHz 대역의 PCS 서비스, 일본에서 상용화된 832~925 MHz 대역의 CDMA 서비스, 미국에서 상용화된 1850~1990 MHz 대역의 PCS 서비스, 유럽, 중국 등에 상용화된 880~960 MHz 대역의 GSM 서비스 및 유럽 일부 지역에서 상용화된 1710~1880 MHz 대역의 DCS 서비스 등의 다양한 주파수 대역을 이용한 이동통신 서비스 가운데 필요에 따라 다중 대역의 신호를 동시에 이용할 수 있는 단말기가 요구되고 있으며 이러한 다중 대역의 수용을 위해 광대역 특성을 가지는 안테나가 요구되고 있다.
이외에도 블루투스, 지그비, 무선랜, GPS 등과 같은 서비스를 이용할 수 있는 복합 단말기가 요구되고 있는 실정이다. 이와 같은 다중 대역의 서비스를 이용하기 위한 단말기에는 원하는 둘 이상의 대역에서 동작할 수 있는 다중 대역 안테나가 사용되어야 한다. 일반적으로 사용되는 이동통신 단말기의 안테나로는 헬리컬 안테나(helical antenna)와 평면 역-F 안테나(Planar Inverted F Antenna: PIFA)가 주로 사용된다.
여기서, 헬리컬 안테나는 단말기 상단에 고정된 외장형 안테나로서 모노폴 안테나와 함께 사용된다. 헬리컬 안테나와 모노폴 안테나가 병용되는 형태는 안테나를 단말기 본체로부터 인출(extended)하면 모노폴 안테나로 동작하고, 삽입(Retracted)하면 λ/4 헬리컬 안테나로 동작한다. 이러한 안테나는 높은 이득을 얻을 수 있는 장점이 있으나, 무지향성으로 인해 전자파 인체 유해기준인 SAR 특성이 좋지 않다. 또한, 헬리컬 안테나는 단말기의 외부에 돌출된 모양으로 구성되므로, 단말기의 미적외관 및 휴대기능에 적합한 외관 설계가 어려운데, 이에 대한 내장형의 구조는 아직 연구된 바 없다.
그리고, 역-F 안테나는 이러한 단점을 극복하기 위하여, 낮은 프로파일 구조를 갖도록 설계된 안테나이다. 역-F 안테나는 상기 방사부에 유기된 전류에 의해 발생되는 전체 빔 중 접지면측으로 향하는 빔이 재유기되어 인체에 향하는 빔을 감쇠시켜 SAR 특성을 개선하는 동시에 방사부 방향으로 유기되는 빔을 강화시키는 지향성을 가지며, 직사각형인 평판형 방사부의길이가 절반으로 감소된 직사각형의 마이크로 스트립 안테나로서 작동하게 되어 낮은 프로파일 구조를 실현할 수 있다.
이러한 역-F 안테나는 인체방향으로 빔의 세기를 감쇠시키며 인체 바깥 방햐으로 빔의 세기를 강하게 해주는 지향성을 갖는 방사 특성을 가지므로 헬리컬 안테나와 비교하였을 때 전자파 흡수율이 우수한 특성을 얻을 수 있다. 그러나, 역F 안테나는 주파수 대역폭이 협소한 문제점이 있다.
역-F 안테나가 주파수 대역폭이 협소해지는 것은 방사체와의 매칭 시 특정 포인트에서 매칭이 이루어지는 포인트 매칭에 기인한다.
이와 같은 포인트 매칭에 의한 협대역을 극복하기 위해 본 발명자에 의해 한국출원 제호가 제안되었으며, 이 출원은 비교적 긴 구간에서의 커플링 매칭 및 커플링 급전을 통해 기존 역-F 안테나의 좁은 대역폭을 극복할 수 있는 구조를 제안한다.
그러나, 이와 같은 커플링 매칭 및 커플링 급전을 위한 별도의 임피던스 매칭부가 비교적 큰 공간을 차지하면서 안테나의 사이즈가 커지는 문제점이 있었다.
본 발명에서는 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해, 평면 역-F 안테나의 협대역 문제를 극복하기 위한 광대역 내장형 안테나를 제안하고자 한다.
본 발명의 다른 목적은 커플링 매칭 및 커플링 급전을 이용하는 광대역 내자여 안테나에서 보다 효율적인 공간 활용이 가능한 광대역 내장형 안테나를 제안하는 것이다.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 용이하게 도출될 수 있을 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 기판; 상기 기판과 소정 거리 이격되며 RF 신호를 급전받고 제1 방향으로 소정의 길이를 갖는 급전 부재 및 상기 기판과 소정거리 이격되고, 상기 급전 부재와 상기 제1 방향에 수직인 제2 방향으로 소정 거리 이격되며 제1 방향으로 소정의 길이를 갖는 접지 부재를 포함하는 임피던스 매칭/급전부; 및 상기 접지 부재로부터 연장되어 형성되는 방사체를 포함하되, 상기 임피던스 매칭/급전부는 상기 급전 부재 및 접지 부재 사이의 커플링에 의해 임피던스 매칭을 수행하며, 상기 방사체는 상기 급전 부재로부터 커플링 급전을 받는 광대역 임피던스 매칭을 지원하는 내장형 안테나가 제공된다.
상기 안테나는 상기 기판으로부터 수직으로 형성되며 급전점 및 상기 급전 부재와 전기적으로 연결되는 급전핀을 더 포함할 수 있다.
상기 안테나는 상기 기판으로부터 수직으로 형성되며 접지 및 상기 접지 부재와 전기적으로 연결되는 접지핀을 더 포함할 수 있다.
상기 접지 부재 및 급전 부재의 제1 방향으로의 길이는 약 파장의 0.1인 것이 바람직하다.
상기 안테나는 상기 급전 부재, 접지 부재 및 방사체가 결합되어 고정되는 캐리어를 더 포함하는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
상기 캐리어는 평면 상부 및 복수의 측벽부를 포함하며, 상기 복수의 측벽부는 상기 기판상에 결합된다.
상기 급전 부재는 상기 복수의 측벽부 중 하나의 측벽부의 제1 면에 결합되며, 상기 접지 부재는 상기 제1 면에 대향하는 제2 면에 결합되어 소정 거리 이격된다.
본 발명의 다른 측면에 따르면, 기판; 상기 기판상에 결합되는 캐리어; 상기 캐리어의 측벽들 중 어느 하나의 측벽의 제1 면에 결합되며 접지와 전기적으로 연결되는 접지 부재 및 상기 제 1면과 대향하는 제2 면에 결합되며 RF 신호를 급전받는 급전 부재를 포함하는 임피던스 매칭/급전부; 및 상기 접지 부재로부터 연장되어 상기 캐리어에 결합되는 방사체를 포함하는 광대역 임피던스 매칭을 지원하는 내장형 안테나가 제공된다.
본 발명에 의하면, 본 발명에 의하면, 평면 역-F 안테나의 협대역 문제를 극복할 수 있으며, 커플링 매칭 및 커플링 급전을 이용하는 광대역 내장형 안테나에서 보다 효율적인 공간 활용이 가능한 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 광대역 내장형 안테나의 사시도를 도시한 도면.
도 2는 본 발명의 일 실시예에 따른 광대역 내장형 안테나를 다른 방향에서 바라본 사시도를 도시한 도면.
도 3은 본 발명의 일 실시예에 따른 광대역 내장형 안테나의 평면도를 도시한 도면.
도 4는 본 발명의 다른 실시예에 따른 급전 부재 및 접지 부재의 형태를 도시한 도면.
도 5는 본 발명의 일 실시예에 따른 안테나가 결합되는 안테나 캐리어의 일례를 도시한 도면.
도 6은 도 5에 도시된 안테나 캐리어에 본 발명의 일 실시예에 따른 안테나가 결합된 사시도를 도시한 도면.
도 7은 도 6과는 다른 방향에서 도 5에 도시된 안테나 캐리어에 본 발명의 일 실시예에 따른 안테나가 결합된 사시도를 도시한 도면.
도 8은 본 발명의 일 실시예에 따른 안테나에서 캐리어의 제1 측벽부의 정면도를 도시한 도면.
도 9는 본 발명의 일 실시예에 따른 안테나 캐리어의 제1 측벽부의 배면도를 도시한 도면
이하에서, 첨부된 도면을 참조하여 본 발명에 의한 광대역 임피던스 매칭을 지원하는 내장형 안테나의 바람직한 실시예를 상세히 설명한다.
본 발명에 의한 광대역 임피던스 매칭을 지원하는 내장형 안테나는 캐리어를 이용하여 구현될 수 있으나, 설명의 편의를 위해 캐리어를 생략한 구조의 안테나를 도 1 내지 도 3을 참조하여 먼저 설명하고 캐리어에 구현된 구조를 후에 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 광대역 내장형 안테나의 사시도를 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 광대역 내장형 안테나를 다른 방향에서 바라본 사시도를 도시한 도면이며, 도 3은 본 발명의 일 실시예에 따른 광대역 내장형 안테나의 평면도를 도시한 도면이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 광대역 임피던스 매칭을 지원하는 내장형 안테나는 기판(100), 급전점(102), 임피던스 매칭/급전부(104), 접지핀(106), 방사체(108) 및 급전핀(110)을 포함할 수 있다. 또한, 임피던스 매칭/급전부(104)는 급전 부재(200) 및 접지 부재(300)를 포함한다.
급전점(102)으로는 RF 신호가 인가되며, 급전핀(110)은 급전점(102)과 전기적으로 연결되어 기판에 수직으로 형성된다. 접지핀(106)은 단말기의 접지와 전기적으로 연결되며 기판과 수직으로 형성되는 구조이다.
임피던스 매칭/급전부(104)는 급전핀(110)과 전기적으로 연결되며 소정의 길이를 가지고 기판(100)과 수직으로 형성되는 급전 부재(200) 및 접지핀(106)과 전기적으로 연결되며 소정 길이를 가지고 기판(100)과 수직으로 형성되는 접지 부재(300)을 포함한다.
도 1 내지 도 3에서, 급전 부재(200) 및 접지 부재(300)는 라인 형태를 가지고 있으나, 급전 부재 및 접지 부재의 형태가 이에 한정되는 것은 아니며 다양한 형태를 가질 수 있고, 급전 부재 및 접지 부재의 또 다른 형태는 별도의 도면을 참조하여 설명하기로 한다.
도 3에 도시된 바와 같이, 임피던스 매칭/급전부를 구성하는 급전 부재(200) 및 접지 부재(300)는 소정 거리 이격되어 배치된다.
종래의 평면 역-F 안테나는 급전핀과 접지핀에 수직으로 방사체가 결합되나, 본 발명의 일 실시예에 따른 광대역 임피던스 매칭을 지원하는 내장형 안테나는 접지핀으로부터 연장되는 접지 부재(300) 및 급전핀으로부터 연장되는 급전 부재(200)를 추가적으로 포함하며, 급전 부재 및 접지 부재(300)는 광대역에 대한 임피던스 매칭 및 커플링 급전을 수행하게 된다.
급전핀으로부터 급전 부재(200)에 제공되는 RF 신호는 소정 거리 이격된 접지 패치(300)로 커플링되며, 소정의 길이를 가지는 영역에서 이루어지는 이와 같은 커플링은 기존의 평면 역-F 안테나에 비해 보다 광대역에 대한 임피던스 매칭이 가능하도록 한다.
광대역에 대한 임피던스 매칭을 위해 급전 부재(200) 및 접지 부재(300)의 길이는 약 0.1 파장으로 설정될 수 있으나, 이는 주파수 대역 및 사용 주파수에 따라 적절히 변경될 수 있다.
또한, 커플링에 의해 RF 신호는 급전 부재(200)로부터 접지 부재(300)로 전달되는 커플링 급전이 임피던스 매칭/급전부에서 이루어진다.
도 1 및 도 2를 참조하면, 급전 부재(200)가 접지 부재(300)에 비해 보다 높은 위치에서 형성되는 경우가 도시되어 있으나, 급전 부재(200)와 접지 부재(300)는 동일 높이에서 서로 마주보도록 형성될 수도 있으며, 접지 부재(300)의 높이가 급전 부재(200)에 비해 높게 형성될 수도 있다.
즉, 급전 부재(200) 및 접지 부재(300)는 요구되는 커플링량에 따라 그 높이가 적절하게 조절될 수 있다.
도 4는 본 발명의 다른 실시예에 따른 급전 부재 및 접지 부재의 형태를 도시한 도면이다.
도 4를 참조하면, 급전 부재 및 접지 부재는 도 1 내지 도 3에 도시된 라인 형태와는 다른 라인에 상하로 다수의 돌출부(400)가 형성된 접지 부재 또는 급전 부재가 사용될 수 있다.
이와 같이 다수의 돌출부(400)를 라인 형태에 추가적으로 형성함으로써 커플링에 필요한 보다 큰 캐패시턴스를 확보할 수 있으며, 이를 통해 보다 광대역에 대한 임피던스 매칭이 수행될 수 있다. 또한, 보다 광대역에 대한 임피던스 매칭을 위해 캐패시턴스값이 다변화될 필요가 있으며, 도 4와 같이 라인 형태에 상하로 돌출부가 형성된 구조는 커플링을 위한 캐패시턴스의 다변화를 도모할 수 있다.
물론, 도 4에 도시된 형태 이외에도 소정의 길이를 가진 영역에서 커플링을 유도할 수 있는 구조라면 급전 부재 및 접지 부재가 보다 다양한 형태로 구현될 수 있다는 점을 당업자라면 이해할 수 있을 것이다.
방사체(108)는 접지 부재(300)로부터 연장된다. 도 1 및 도 2를 참조하면, 방사체(108)는 접지 부재(130)로부터 수직으로 연장된 후 절곡되어 기판과 평행하게 형성되는 구조가 도시되어 있으나, 방사체의 형태가 이에 한정되는 것은 아니며 다양한 형태로 형성될 수 있을 것이다.
방사체(108)의 길이는 사용 주파수 대역에 따라 설정되며, 방사체의 형태 역시 다양하게 설정될 수 있다. 도 2 및 도 3에는 방사체에서 기판과 평행한 부분이 한번 절곡된 L자형이나 기판과 평행한 부분이 라인 형태 및 미앤더 형태로 구현되는 경우도 본 발명의 범주에 포함될 수 있다는 점은 당업자에게 있어 자명할 것이다.
일반적인 평면 역-F 안테나에서 방사체는 직접 급전을 받으므로 급전핀과 전기적으로 연결되나, 본 발명의 실시예에 따른 안테나의 방사체(108)는 커플링 급전에 의해 급전을 받으며 접지 패치로부터 연장되는 구조이다.
도 5는 본 발명의 일 실시예에 따른 안테나가 결합되는 안테나 캐리어의 일례를 도시한 도면이다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 안테나가 결합되는 안테나 캐리어는 평면 상부(500)및 다수의 측벽부(502, 504, 506)를 포함할 수 있다.
평면 상부(500)는 안테나의 방사체가 결합되는 부분으로서 소정의 면적을 가지고 있다.
다수의 측벽부(502, 504, 506)는 평면 상부(500)를 지지하며 기판과 결합된다. 다수의 측벽부(502, 504, 506) 중 비교적 길이가 긴 제1 측벽부(502)에는 임피던스 매칭/급전부의 급전 부재(200) 및 접지 부재(300)가 결합되며, 제2 측벽부(504) 및 제3 측벽부(506)는 제1 측벽부(502)와 함께 지지 역할을 수행한다.
도 6은 도 5에 도시된 안테나 캐리어에 본 발명의 일 실시예에 따른 안테나가 결합된 사시도를 도시한 도면이고, 도 7은 도 6과는 다른 방향에서 도 5에 도시된 안테나 캐리어에 본 발명의 일 실시예에 따른 안테나가 결합된 사시도를 도시한 도면이다. 또한, 도 8은 본 발명의 일 실시예에 따른 안테나에서 캐리어의 제1 측벽부의 정면도를 도시한 도면이고, 도 9는 본 발명의 일 실시예에 따른 안테나 캐리어의 제1 측벽부의 배면도를 도시한 도면이다.
도 6 및 도 7을 참조하면, 안테나 캐리어(300)는 기판상에 결합되며, 측벽부(502, 504, 506)는 기판 상부에 결합된다.
도 8을 참조하면, 기판으로부터 수직으로 형성되는 접지핀(106)은 제1 측벽부(502)의 제1 면(502a)을 따라 수직으로 형성되며, 접지 부재(300)는 접지핀(106)으로부터 연장되어 제1 측벽부(502)의 제1 면(502a)에 형성된다.
또한, 방사체(108)는 접지 부재(300)로부터 수직으로 연장된다.
한편, 도 9를 참조하면, 제1 측벽부(502)의 제1 면(502a)에 대향하는 면인 제2 면(502b)에는 기판으로부터 수직으로 형성되는 급전핀(110) 및 급전핀(110)으로부터 연장되는 급전 부재(120)가 결합된다.
즉, 급전 부재(120) 및 접지 부재(130)는 제1 측벽부(502)를 사이에 두고 소정 거리 이격되며, 접지 부재(130)는 제1 측벽부(502)의 제1 면(502a)에 결합되고 급전 부재(120)는 제1 측벽부(502)의 제2 면(502b)에 결합되며, 접지 부재(130) 및 급전 부재(120)의 이격 거리는 제1 측벽부(502)의 두께에 상응한다.
본 발명에서는 급전 부재(120) 및 접지 부재(130)의 커플링을 이용한 광대역 임피던스 매칭 구조를 구현하기 위해 캐리어 측벽부의 양면을 이용한다.
이와 같이, 임피던스 매칭 및 급전을 위한 엘리먼트가 캐리어 측벽부의 양면에 형성되는 구조는 기존의 급전 및 임피던스 매칭을 위한 엘리먼트가 캐리어의 평면 상부에 형성되는 구조에 비해 안테나의 사이즈를 줄일 수 있다.
캐리어의 평면 상부(500)에는 제1 측벽부(502)로부터 연장되는 방사체(108)가 결합된다.

Claims (10)

  1. 기판;
    상기 기판과 소정 거리 이격되며 RF 신호를 급전받고 제1 방향으로 소정의 길이를 갖는 급전 부재 및 상기 기판과 소정거리 이격되고, 상기 급전 부재와 상기 제1 방향에 수직인 제2 방향으로 소정 거리 이격되며 제1 방향으로 소정의 길이를 갖는 접지 부재를 포함하는 임피던스 매칭/급전부; 및
    상기 접지 부재로부터 연장되어 형성되는 방사체를 포함하되,
    상기 임피던스 매칭/급전부는 상기 급전 부재 및 접지 부재 사이의 커플링에 의해 임피던스 매칭을 수행하며, 상기 방사체는 상기 급전 부재로부터 커플링 급전을 받는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  2. 제1항에 있어서,
    상기 기판으로부터 수직으로 형성되며 급전점 및 상기 급전 부재와 전기적으로 연결되는 급전핀을 더 포함하는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  3. 제2항에 있어서,
    상기 기판으로부터 수직으로 형성되며 접지 및 상기 접지 부재와 전기적으로 연결되는 접지핀을 더 포함하는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  4. 제1항에 있어서,
    상기 접지 부재 및 급전 부재의 제1 방향으로의 길이는 약 파장의 0.1인 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  5. 제1항에 있어서,
    상기 급전 부재, 접지 부재 및 방사체가 결합되어 고정되는 캐리어를 더 포함하는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  6. 제5항에 있어서,
    상기 캐리어는 평면 상부 및 복수의 측벽부를 포함하며, 상기 복수의 측벽부는 상기 기판상에 결합되는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  7. 제6항에 있어서, 상기 급전 부재는 상기 복수의 측벽부 중 하나의 측벽부의 제1 면에 결합되며, 상기 접지 부재는 상기 제1 면에 대향하는 제2 면에 결합되어 소정 거리 이격되는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  8. 기판;
    상기 기판상에 결합되는 캐리어;
    상기 캐리어의 측벽들 중 어느 하나의 측벽의 제1 면에 결합되며 접지와 전기적으로 연결되는 접지 부재 및 상기 제 1면과 대향하는 제2 면에 결합되며 RF 신호를 급전받는 급전 부재를 포함하는 임피던스 매칭/급전부; 및
    상기 접지 부재로부터 연장되어 상기 캐리어에 결합되는 방사체를 포함하는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  9. 제8항에 있어서,
    상기 제1 면에는 접지와 전기적으로 연결되며 기판으로부터 수직으로 형성되어 상기 접지 부재와 연결되는 접지핀이 결합되고, 상기 제2 면에는 급전점과 전기적으로 연결되며 기판으로부터 수직으로 형성되어 상기 급전 부재와 연결되는 급전 핀이 결합되는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
  10. 제8항에 있어서,
    상기 캐리어에는 상기 측벽들의 상부에 형성되는 평면 상부가 구비되며, 상기 방사체는 상기 접지부재로부터 연장되어 상기 평면 상부에 형성되는 것을 특징으로 하는 광대역 임피던스 매칭을 지원하는 내장형 안테나.
PCT/KR2009/001599 2008-12-10 2009-03-30 광대역 임피던스 매칭을 지원하는 내장형 안테나 WO2010067924A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/133,582 US8743011B2 (en) 2008-12-10 2009-03-30 Internal antenna supporting wideband impedance matching
EP09832011.2A EP2369675B1 (en) 2008-12-10 2009-03-30 Internal antenna supporting wideband impedance matching
CN2009801495780A CN102246347A (zh) 2008-12-10 2009-03-30 支持宽带阻抗匹配的内置天线
JP2011540587A JP2012511857A (ja) 2008-12-10 2009-03-30 広帯域インピーダンスマッチングをサポートする内蔵型アンテナ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080125477 2008-12-10
KR10-2008-0125477 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010067924A1 true WO2010067924A1 (ko) 2010-06-17

Family

ID=42242898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001599 WO2010067924A1 (ko) 2008-12-10 2009-03-30 광대역 임피던스 매칭을 지원하는 내장형 안테나

Country Status (6)

Country Link
US (1) US8743011B2 (ko)
EP (1) EP2369675B1 (ko)
JP (1) JP2012511857A (ko)
KR (2) KR101075095B1 (ko)
CN (1) CN102246347A (ko)
WO (1) WO2010067924A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201345050A (zh) * 2012-04-27 2013-11-01 Univ Nat Taiwan Science Tech 可雙頻操作之圓極化天線
US10090596B2 (en) * 2014-07-10 2018-10-02 Google Llc Robust antenna configurations for wireless connectivity of smart home devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013139A (ja) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
US20040051665A1 (en) * 2002-09-18 2004-03-18 Kuo-Cheng Chen Broadband couple-fed planar antennas with coupled metal strips on the ground plane
US20040113845A1 (en) * 2002-12-16 2004-06-17 Filtronic Lk Oy Antenna for flat radio device
US20080180333A1 (en) * 2006-11-16 2008-07-31 Galtronics Ltd. Compact antenna

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100533624B1 (ko) * 2002-04-16 2005-12-06 삼성전기주식회사 듀얼 피딩 포트를 갖는 멀티밴드 칩 안테나 및 이를사용하는 이동 통신 장치
JP3739740B2 (ja) * 2002-11-28 2006-01-25 京セラ株式会社 表面実装型アンテナおよびアンテナ装置
JP4102411B2 (ja) * 2006-04-13 2008-06-18 株式会社東芝 移動通信端末
KR100799875B1 (ko) * 2006-11-22 2008-01-30 삼성전기주식회사 칩 안테나 및 이를 포함하는 이동통신 단말기
CN101911388B (zh) * 2008-01-08 2014-04-09 Ace技术株式会社 多频段内置天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1013139A (ja) * 1996-06-19 1998-01-16 Murata Mfg Co Ltd 表面実装型アンテナおよびこれを用いた通信機
US20040051665A1 (en) * 2002-09-18 2004-03-18 Kuo-Cheng Chen Broadband couple-fed planar antennas with coupled metal strips on the ground plane
US20040113845A1 (en) * 2002-12-16 2004-06-17 Filtronic Lk Oy Antenna for flat radio device
US20080180333A1 (en) * 2006-11-16 2008-07-31 Galtronics Ltd. Compact antenna

Also Published As

Publication number Publication date
EP2369675A1 (en) 2011-09-28
JP2012511857A (ja) 2012-05-24
EP2369675A4 (en) 2017-06-28
CN102246347A (zh) 2011-11-16
KR101075095B1 (ko) 2011-10-19
US20110241963A1 (en) 2011-10-06
KR20110057109A (ko) 2011-05-31
KR20100067008A (ko) 2010-06-18
EP2369675B1 (en) 2018-08-29
KR101130024B1 (ko) 2012-03-28
US8743011B2 (en) 2014-06-03

Similar Documents

Publication Publication Date Title
WO2010119998A1 (ko) 커플링 매칭을 이용한 광대역 안테나
WO2009145437A2 (ko) 다중 대역에 대한 임피던스 매칭을 지원하는 내장형 안테나
WO2010119999A1 (ko) 방사체 종단이 단락된 커플링 매칭을 이용한 광대역 안테나
WO2009134013A2 (ko) 지연파 구조를 이용한 광대역 내장형 안테나
WO2009088231A2 (ko) 다중 대역 내장형 안테나
CN101512835B (zh) 多频带天线布置
US7230574B2 (en) Oriented PIFA-type device and method of use for reducing RF interference
WO2010030128A2 (ko) 전자기적 커플링을 이용한 다중 대역 안테나
US20050200535A1 (en) Antenna structures and their use in wireless communication devices
EP1476919A1 (en) ORIENTED PIFA−TYPE DEVICE AND METHOD OF USE FOR REDUCING RF INTERFERENCE
KR100616545B1 (ko) 이중 커플링 급전을 이용한 다중밴드용 적층형 칩 안테나
WO2012026635A1 (ko) 용량성 소자를 가지는 안테나
WO2011122821A2 (ko) 개선된 임피던스 매칭을 지원하는 전자기 결합을 이용한 광대역 내장형 안테나
US6292144B1 (en) Elongate radiator conformal antenna for portable communication devices
EP2991163B1 (en) Decoupled antennas for wireless communication
WO2010071265A1 (ko) 급전 패치가 기판상에 결합된 광대역 임피던스 매칭을 지원하는 내장형 안테나
KR100420546B1 (ko) 휴대용 무선통신 단말용 축전지 안테나
WO2010067924A1 (ko) 광대역 임피던스 매칭을 지원하는 내장형 안테나
KR100735356B1 (ko) 커플링 패턴을 구비한 광대역 안테나
CN112582781A (zh) 辐射元件以及基站天线
CN210430081U (zh) 辐射元件以及基站天线
KR101090114B1 (ko) 전자기 결합을 이용한 광대역 내장형 안테나
KR100876475B1 (ko) 내장형 안테나
KR100649492B1 (ko) 이동통신 단말기의 다중 대역 내장형 안테나
Hsiao et al. Dual-frequency PIFA with a rolled radiating arm for GSM/DCS operation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149578.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13133582

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009832011

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE