WO2010067722A1 - Method for evaluating degree of malignancy of breast cancer, and kit for the evaluation - Google Patents

Method for evaluating degree of malignancy of breast cancer, and kit for the evaluation Download PDF

Info

Publication number
WO2010067722A1
WO2010067722A1 PCT/JP2009/070078 JP2009070078W WO2010067722A1 WO 2010067722 A1 WO2010067722 A1 WO 2010067722A1 JP 2009070078 W JP2009070078 W JP 2009070078W WO 2010067722 A1 WO2010067722 A1 WO 2010067722A1
Authority
WO
WIPO (PCT)
Prior art keywords
breast cancer
gene
expression
malignancy
expression level
Prior art date
Application number
PCT/JP2009/070078
Other languages
French (fr)
Japanese (ja)
Inventor
内野雅浩
小島弘子
和田健太
宇津木孝彦
Original Assignee
株式会社バイオマトリックス研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バイオマトリックス研究所 filed Critical 株式会社バイオマトリックス研究所
Publication of WO2010067722A1 publication Critical patent/WO2010067722A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a method for evaluating the grade of malignancy of breast cancer, and an array and a kit used for the evaluation method. Specifically, the present invention relates to a method for evaluating the possibility of metastasis and / or recurrence of breast cancer, and an array and kit used for the evaluation method.
  • Non-Patent Document 1 that approximately 40% of breast cancer patients die, despite the 5-year survival rate after resection surgery of the first breast cancer being 90% or more. That is, early diagnosis of breast cancer does not necessarily contribute to reducing the risk of metastasis or recurrence.
  • the risk of metastasis recurrence is added as a predictor of distant metastasis, such as tumor diameter, which is already known as a prognostic marker for breast cancer, and the presence or absence of axillary lymph node metastasis
  • the degree of undifferentiation of cancer cells (the more undifferentiated, the higher the grade).
  • about 1/3 of patients without axillary lymph node metastasis have recurrent metastasis
  • about 1/3 of patients with positive axillary lymph node metastasis have relapsed even after 10 years of local treatment. Is not allowed.
  • Non-Patent Document 1 discloses that estrogen receptor-positive breast cancer tends to cause bone metastasis. Yes. In other words, at present, the risk of metastasis recurrence for each breast cancer patient cannot be sufficiently predicted.
  • Non-patent document 1 discloses that these prognostic markers can be used to determine whether the prognosis is good or not in about 30% of patients, and about 30% of the remaining 70% have recurrence of metastasis. Therefore, a new prognostic marker that can determine the level of recurrence risk appropriately and accurately is needed.
  • ERBB2 epidermal growth factor receptor 2 or HER2 / neu
  • HER2 / neu epidermal growth factor receptor 2
  • the value as a prognostic marker for predicting the recurrence-free survival rate and overall survival rate of those who are positive for lymph node metastasis is considered to be low to moderate.
  • Research on methods for detecting cancer cells circulating in the bloodstream is also underway. In order to form metastases, cancer cells need to infiltrate the surrounding tissues, ride through the body circulation through the blood, stay in the capillary bed of the distant organ, and then infiltrate and proliferate there.
  • DNA microarray technology has made this possible, and gene expression analysis can be performed across the entire chromosome. Based on the analysis of gene expression patterns using DNA microarray technology and unsupervised analysis (unsupervised analysis that does not specify objective variables and automatically generates factors), breast cancer has five subtypes (basal-like).
  • Non-patent Documents 2-4 ERBB2 + group, normal tissue-like group, luminal A group, luminal B group
  • these five subtypes represent patient fractions that are clinically distinct.
  • patients in the basal-like group and the ERBB2 + group have a short survival time, while the estrogen receptor positive luminal A group has the best prognosis among all patient groups.
  • the supervised stratification method supervised analysis specifying objective variables
  • Non-Patent Documents 5 and 6 These patient stratification reports identified 70 gene expression profiles that could predict recurrence of distant metastases in breast cancer patients under 55 years of age who did not have lymph node metastasis. This retrospective study was a particularly useful report because it had no adjunct therapy affecting patient outcomes and had an observation period of more than 10 years. With this gene set, the characteristics of primary breast cancer were grouped into either a poor prognosis group in which recurrence of metastasis is expected or a good prognosis group in which the possibility of metastasis recurrence is low.
  • Non- Patent Document 7 discloses a microarray different from the above-mentioned test.
  • the expression profiles of these genes are considered useful for individualized treatment of individual breast cancer patients and are expected to reduce the number of patients receiving unnecessary adjuvant treatment.
  • Non-Patent Documents 5 and 6 and Non-Patent Document 7. In practice, it is not easy to compare these gene expression profiles. This is because these microarray analyzes use different array chips and different mathematical analysis methods. It has long been known that different gene arrays can be identified using different microarray chips, even though they represent the same biological phenomenon.
  • Patent Document 1 discloses a molecular signature divided into three elements for breast cancer prognosis: breast cancer patient survival possibility, breast cancer recurrence possibility, and metastatic characteristics.
  • Patent Document 2 discloses a prognostic marker group for cancer.
  • Patent Document 1 According to the technique disclosed in Patent Document 1, it is possible to select a molecular signature that correlates with statistical data of the survival rate, recurrence rate, and metastasis rate of the breast cancer patient group, In an individual patient, these three elements are not easily splittable. Therefore, it is doubtful whether the molecular signature group disclosed in Patent Document 1 will lead to individualized treatment of breast cancer patients, which may lead to confusion when determining the optimal prognosis treatment policy.
  • patent documents 1 and 2 disclose various cancer prognostic marker groups including breast cancer
  • these cancer prognostic marker groups include individual genes included in the marker group, or The function of the signaling pathway to which the gene belongs is not fully taken into account, and genes whose expression varies indirectly or secondaryly to the risk of recurrence of metastasis are also included.
  • DNA microarray analysis is useful in searching for new prognostic markers for predicting the risk of recurrence of metastasis in breast cancer patients, but as mentioned above, the composition or stratification of sample groups used for selection of candidate genes Because of this problem and the practical problem of the number of selected genetic markers, or the problem of the significance of the marker group, there is currently no gene set that can sufficiently and significantly predict the risk of recurrence of metastasis in each breast cancer patient. Therefore, the problem to be solved by the present invention is to overcome the above-mentioned problems, evaluate the malignancy of breast cancer to individual breast cancer patients early, appropriately and accurately, and determine the optimal prognosis treatment policy.
  • An object of the present invention is to provide an evaluation method that enables determination, and an array and a kit used therefor.
  • the present inventors have measured the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2.
  • the present inventors have found that malignancy of breast cancer can be evaluated. That is, the present invention provides the following method for evaluating the malignancy of breast cancer, and an array and kit used for the method.
  • [1] A method for evaluating the malignancy of breast cancer, (1) measuring the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 in a test sample; (2) evaluating the malignancy of breast cancer based on the expression pattern of the at least three genes.
  • (1) is a step of measuring the expression level of mRNA and / or polypeptide.
  • the expression level of the mRNA is measured using an array in which nucleic acids and / or nucleic acid fragments corresponding to the mRNA are immobilized.
  • the expression pattern in the test sample is selected from the group consisting of healthy individuals, non-lesional sites, low metastatic cancer cell lines, and tissues having low metastatic cancer.
  • the breast cancer malignancy is assessed to be low enough to approximate the gene expression pattern in the at least one control sample and / or the gene expression pattern in the test sample is high metastatic cancer cell lines and high [6] to [8] are steps for evaluating that the malignancy of breast cancer is higher as it approximates the expression pattern of the gene in at least one control sample selected from the group consisting of tissues derived from metastatic cancer.
  • the gene expression pattern in the test sample is selected from the group consisting of healthy individuals, non-lesional sites, low metastatic cancer cell lines, and tissues having low metastatic cancer.
  • the expression pattern of the gene in at least one control sample (A) When an expression pattern of a gene in which the expression level of at least one gene selected from the group consisting of CD44 and SOCS2 is increased, and / or (B) from the group consisting of BMP7, CD24, CXCL12, and PIK3RI When the expression level of at least one selected gene shows a reduced gene expression pattern.
  • An array for assessing the malignancy of breast cancer An array in which only nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on the support .
  • a kit for evaluating the malignancy of breast cancer, Primers and / or probes for detecting nucleic acids and / or nucleic acid fragments corresponding to mRNAs and / or mRNA fragments of three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 Contains a kit.
  • kits for evaluating the malignancy of breast cancer A kit comprising an antibody and / or an antibody fragment against a polypeptide and / or polypeptide fragment encoded by three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2.
  • the present invention it is possible to evaluate the malignancy of breast cancer at an early stage, appropriately and accurately, and to determine an optimal prognosis treatment policy for individual breast cancer patients. Useful and can also reduce the number of patients receiving unnecessary adjunct therapy.
  • FIG. 1 shows a diagram (photograph) of fluorescent immunostaining in Example 1.
  • FIG. FIG. 2 shows the expression level of mRNA measured by quantitative RT-PCR.
  • FIG. 3 shows clustering based on DNA microarray analysis.
  • FIG. 4 shows clustering (6 genes) based on DNA microarray analysis.
  • FIG. 5 shows clustering (3 genes) based on DNA microarray analysis.
  • FIG. 6 shows the expression level of mRNA measured by quantitative RT-PCR.
  • FIG. 7 shows a diagram of protein expression analysis by flow cytometry.
  • the method for evaluating the malignancy of breast cancer of the present invention comprises: (1) measuring the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 in a test sample; (2) evaluating the malignancy of breast cancer based on the expression patterns of the at least three genes.
  • the grade of malignancy of breast cancer means the bad nature of breast cancer, that is, the degree of ease of proliferation, metastasis, and recurrence.
  • breast cancer metastasis means that breast cancer cells reach lymph nodes (lymph node metastasis) and other organs (distant metastasis) and proliferate there.
  • recurrence of breast cancer means that the breast cancer becomes active again several months to several years after the treatment.
  • MCF7-14 cells disclosed in International Publication No. 2008/93886 pamphlet and MDA-MB-231 cells which are widely used are used as a breast cancer metastasis model, thereby considering the tissue type.
  • it can be set as the method of evaluating the malignancy of a breast cancer which excluded the noise by individual differences, such as age and the presence or absence of adjuvant therapy.
  • MCF7-14 cells are selected from the luminal type and low invasive / metastatic MCF7 breast cancer cell line, and confirmed to be highly invasive in vitro and highly metastatic in vivo. (International Publication No. 2008/93886 pamphlet).
  • MDA-MB-231 cells are known as basal / mesenchymal (mesenchymal) type and high malignant cells.
  • the evaluation method of the present invention compares gene expression profiles in MCF7 cells, MCF7-14 cells, and MDA-MB-231 cells as useful breast cancer metastasis models for evaluating the malignancy of breast cancer for selection of candidate genes.
  • the malignancy of breast cancer such as the possibility of recurrence of breast cancer metastasis, can be evaluated early and appropriately for each individual breast cancer patient.
  • a probe set whose expression level varies depending on the possibility of metastasis and / or recurrence a probe set whose expression level varies depending on the possibility of metastasis and / or recurrence, .
  • a 163 probe set (corresponding to the 144 gene) was found in which the expression level was more than doubled in both MCF7-14 and MDA-MB-231 cells compared to MCF7 cells ( Table 1 and Table 2).
  • Tables 1 and 2 for EST (expressed sequence tag), GenBank Accession No.
  • genes that have a direct causal relationship with the malignancy of breast cancer and genes that change expression indirectly or indirectly, so the functional relationship of the genes in the selection of genetic markers. It is also necessary to consider the role in metastasis recurrence mechanisms. In addition, considering that it is not clinically practical to analyze dozens or more gene markers, pathway analysis and network analysis are performed on these 144 genes, and functionally significant in the mechanism of metastasis recurrence Candidate genes were narrowed down.
  • genes encoding BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2, which are involved in pathways involved in foreign body metabolism such as cell migration / migration and drug excretion, were selected as markers for prognosis of breast cancer.
  • the gene set used in the present invention is selected from the group consisting of genes encoding BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2, and is composed of at least three genes.
  • BMP7 is Bone morphogenetic protein 7 gene (osteogenic protein 1, bone morphogenetic protein 7, NCBI Reference Sequences [RefSeq] ID: NM 001719).
  • CD24 is a glycosyl-phosphatidylinositol-linked sialoglycoprotein gene (NCBI Reference Sequences [RefSeq] ID: NM 012330), and the induction of CD24 expression in MDA-MB-231 cells suppresses the following cell migration promoting effect by CXCL12. (See Schabath H, Runz S, Joumaa S, Altevogt P. CD24 effects CXCR4 function in pre-Blymphosites and breast carcinoma cells. J Cell Sci.
  • CD44 is a hyaluronic acid receptor gene (NCBI Reference Sequences [RefSeq] ID: NM 000610), and CD44 (standard form) expression induction has been reported to enhance migration and invasion of MCF7 breast cancer cells ( Hill A, McFarlane S, Mulligan K, et al. Cortactin underpins CD44-promoted inversion and adhesion of breast cancer cells to bone mar.
  • CXCL12 is a chemokine [C-X-C motif] ligand 12 gene (stromal cell-derived factor 1 [SDF1], NCBI Reference Sequences [RefSeq] ID: NM 199168), and CCXCL12 cell induction
  • PIK3R1 is known to promote phosphoinositide-3-kinase gene (regularity subunit 1 [alpha], phosphatidylinositol 3-phosphate enzyme subunit, NCBI Reference Sequences [RefSeq] ID 150 N overexpression of dominant negative PIK3R1, or PI3 kina It has also been reported that the addition of an inhibitor of zeotide suppresses the motility of MDA-MB-231 cells (Slivea D, Rizzo MT, England D.
  • SOCS2 is a suppressor of cytokine signaling 2 gene (CIS2, Cish2, SSI2, STATI2, RefSeq ID: NM 003877). High expression of SOCS2 or low expression of BMP7 in primary breast cancer lesions is associated with the formation of bone metastases in breast cancer (Buijs JT, Henriquez NV, van Overveloped PG, et al.
  • test sample used in the present invention include biological samples such as mammary gland, milk, sentinel lymph node and blood collected from an individual.
  • tissues derived from healthy individuals biological samples such as milk, blood, non-lesional tissues, or mammary glands, milk, blood collected from breast cancer patients whose malignancy was confirmed by a prognostic survey , Biological samples such as metastatic diseased tissue, and breast cancer cell lines.
  • the mammary gland having a cancer or a breast cancer cell line having a different degree of metastasis may be used.
  • the MCF7 breast cancer cell line and the MDA-MB- It is preferred to use the 231 breast cancer cell line.
  • the expression level of the gene is measured from the amount of mRNA and / or fragment thereof transcribed from the gene or the amount of protein and / or fragment thereof translated from the mRNA.
  • the expression level of the gene in the test sample and the control sample can be measured by any method / means known to those skilled in the art.
  • Examples of the method for measuring the mRNA expression level include measuring the mRNA expression level using an array on which nucleic acids and / or nucleic acid fragments corresponding to mRNA are immobilized. Specifically, a DNA microarray ( DNA chip), oligonucleotide microarray, Northern blotting (Northern hybridization), in situ hybridization, RNase protection assay, reverse transcription polymerase chain reaction, etc. Can be used.
  • nucleic acid and / or nucleic acid fragment corresponding to mRNA examples include the nucleic acid and / or nucleic acid fragment used in the method as described above, and nucleic acid and / or nucleic acid fragment for detecting mRNA, cDNA synthesized from mRNA , Nucleic acids and / or nucleic acid fragments for detecting cRNA.
  • the method for measuring the protein expression level examples include a method for measuring the expression level of a polypeptide using an antibody and / or antibody fragment against the polypeptide and / or the polypeptide fragment, and specifically, Western blotting.
  • antibody fragments include, for example, Fab portions that bind to an antigen that is a polypeptide of an antibody.
  • the numerical values of the measured gene expression levels are patterned and compared between the test sample and the control sample.
  • the expression level of a housekeeping gene can be set as 1 as an internal control, and the relative expression level with respect to the internal control can be calculated for a control sample and a test sample to evaluate the malignancy of breast cancer.
  • the internal control in addition to a housekeeping gene such as GAPDH, a gene whose expression level is considered not to change between samples can be used.
  • the relative expression level of the expression level in the test sample relative to the expression level in at least one control sample may be calculated.
  • the expression level in can be calculated as a relative expression level and evaluated as a gene expression pattern in a test sample. If the level of expression level in the control sample is known in advance, the result may be a high or low value for each gene depending on the relative expression level of the test sample with respect to the control sample.
  • the expression pattern can be calculated as an expression ratio obtained by dividing the expression level in the test sample and the expression level in the control sample by the average value or the median value of the expression levels, respectively.
  • at least three genes are selected from the six genes, and the expression patterns of at least three genes are compared.
  • the expression level of each of the genes is compared to whether the expression level of SOCS2 or CD44 is high or the expression level of BMP7, CD24, CXCL12 or PIK3R1 is low compared to the control sample.
  • Various methods can be employed for the analysis and display of gene expression patterns. The most common method is to arrange the expression ratio of the test sample to the control sample in a graphical dendogram in which the column indicates the test sample and the control sample, and the row indicates each gene. The expression ratio of each gene can be visualized by color.
  • Such data display includes commercially available computer software, such as Silicon Genetics, Inc. “GeneSpring” can be used.
  • the malignancy of breast cancer can be evaluated appropriately and accurately at an early stage for each individual breast cancer patient.
  • the gene expression pattern in the test sample is at least one selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer.
  • the expression pattern of the gene in the test sample is derived from a tissue with a high metastatic cancer cell line and a high metastatic cancer
  • a method of evaluating that the malignancy of breast cancer is higher as the expression pattern of the gene is approximated to at least one control sample selected from the group consisting of
  • the gene expression pattern in the test sample is selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer.
  • control sample derived from a healthy individual include mammary gland tissue, lymph node tissue, milk, and blood derived from an individual who has not developed cancer.
  • non-lesion site-derived control sample includes, for example, mammary gland tissues other than cancer lesions among mammary gland tissues having cancer lesions of individuals who have developed cancer.
  • the low metastatic cancer cell line includes, for example, the MCF7 human breast cancer cell line.
  • a control sample derived from a tissue having low metastatic cancer includes, for example, a mammary gland tissue having a cancer lesion collected from an individual whose metastasis was not observed by a prognostic survey.
  • examples of the highly metastatic cancer cell line include an MDA-MB-231 human breast cancer cell line.
  • the control sample derived from a tissue having highly metastatic cancer includes, for example, a cancer lesion collected from an individual in which metastasis is observed by a prognostic survey or a tissue having a metastatic cancer lesion.
  • the most common method for analyzing the degree of approximation of the gene expression pattern is cluster analysis, and analysis software such as “GeneSpring” can also be used.
  • cluster analysis software such as “GeneSpring”
  • gene expression patterns in test samples, MCF7 cells, and MDA-MB-231 cells are compared by cluster analysis, and if they are classified into the same cluster as MCF7 cells, the malignancy is evaluated to be relatively low. On the contrary, if it is classified into the same cluster as MDA-MB-231 cells, it can be judged that the malignancy is relatively high.
  • the degree of approximation can be expressed visually by creating a tree diagram of the sample by hierarchical cluster analysis.
  • a hierarchical cluster analysis is performed, and a graphical dendrogram in which a column indicates a test sample and a control sample, and a row indicates each gene may be output.
  • the malignancy of breast cancer can be evaluated early and appropriately and accurately for individual breast cancer patients.
  • the expression patterns of four types, more preferably at least five types, and more preferably all six types the malignancy of breast cancer can be evaluated with higher accuracy.
  • the array or kit of the present invention is used in a method for measuring the expression level of the gene in a test sample, that is, the amount of mRNA transcribed from the gene or the expression level of a protein encoded by the gene.
  • the array of the present invention is an array for evaluating the malignancy of breast cancer, An array in which nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on a support It is.
  • the array of the present invention is an array for evaluating the malignancy of breast cancer, Only nucleic acids corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or nucleic acid fragments thereof are immobilized in a defined region on the support.
  • the kit of the present invention is a kit for evaluating the malignancy of breast cancer as a kit for measuring the expression level of mRNA, A kit comprising primers and / or probes for detecting mRNA of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or mRNA fragments thereof.
  • the kit of the present invention is a kit for evaluating the malignancy of breast cancer as a kit for measuring the expression level of a polypeptide
  • a kit comprising a polypeptide encoded by at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or an antibody and / or antibody fragment against the polypeptide fragment is there.
  • the base sequences of the probes need only correspond to the nucleic acid sequences of the six genes in the present invention.
  • the nucleic acid and / or nucleic acid fragment, and the primer and / or probe include polynucleotides and / or oligonucleotides corresponding to the base sequences of at least a part of the six genes in the present invention, and the length is several It can be 10 base pairs.
  • sequence information of the six genes in the present invention can be easily obtained from, for example, a database such as Genbank, nucleic acids and / or nucleic acid fragments corresponding to at least three genes based on the information used in the array or kit
  • the primers and / or probes for detecting the mRNA and / or the mRNA fragment thereof can be appropriately selected, designed and adjusted by those skilled in the art. They can also be used as probes in Northern blotting, primers in PCR, and the like.
  • an antibody against at least a part of a polypeptide encoded by the gene and / or an antibody fragment thereof contained in the kit of the present invention can be prepared by a person skilled in the art by any method, such as Western blotting or ELISA assay.
  • the polynucleotide / oligonucleotide, antibody or antibody fragment thereof may be labeled with an appropriate labeling substance such as a radioactive substance, a fluorescent substance, or a dye.
  • an appropriate labeling substance such as a radioactive substance, a fluorescent substance, or a dye.
  • the sequence is not particularly limited, but preferably the sequence shown in Table 3 described later is used.
  • the above array or kit includes other elements or components known to those skilled in the art depending on the configuration and purpose of use, such as various reagents, enzymes, buffers, reaction plates (containers), and the like. It is done.
  • Various reagents may include a reagent derived from a control sample for use as a control.
  • the human breast cancer cell lines are luminal type and low malignancy MCF7 breast cancer cell lines, MCF7-14 breast cancer cell lines that are highly invasive and metastatic selected from MCF7 cells, and basal / mesenchymal types, And a high-grade MDA-MB-231 breast cancer cell line.
  • MCF7 cells and MDA-MB-231 cells were purchased from Tohoku University Institute of Aging Medicine (TKG 0479) and American Type Culture Collection (ATCC, Manassas, VA, USA), respectively.
  • As the MCF7-14 cells cells (accession number: FERM BP-10944) prepared according to the method described in International Publication No. 2008/093886 were used.
  • Double-stranded cDNA was synthesized from the extracted total RNA by One-Cycle cDNA Synthesis Kit (Affymetrix) and purified by GeneChip Sample Cleanup Module (Affymetrix). Biotin-labeled cRNA was synthesized by GeneChip IVT Labeling Kit and purified by GeneChip Sample Cleanup Module. 15 mg of labeled cRNA was hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix) and the array image was scanned with GeneChip operating software (Affymetrix).
  • DNA microarray data analysis The DNA microarray data was analyzed using GeneSpring GX 7.3.1 software and MultiExperiment Viewer (MeV) 4.2 software (part of the TM4 Software Suite, open source). After normalizing the microarray data on each chip to the 50th percentile, the data value of each probe was normalized with the median of the data in all samples. The average linkage hierarchical clustering analysis was performed on genes of which detection flag was “present” in two or more of the three cells and the signal intensity was 50 or more in all cells. (Reverse transcription polymerase chain reaction) From 2 ⁇ g of the extracted total RNA, using SuperScript III reverse transcriptase (Invitrogen), reverse transcription (RT) reaction was performed at 50 ° C.
  • PCR and fluorescence intensity measurements were controlled by 7900HT Fast Real-Time PCR System (95 ° C., 10 min pre-incubation; 95 ° C., 15 sec denaturation, 60 ° C., 1 min annealing / elongation 40 cycles). Triplicate experiments for each primer were performed twice on all cells. (Quantitative RT-PCR data analysis) Quantitative RT-PCR data for each gene was normalized to the mRNA expression level of GAPDH as an internal control and used as a relative value to the expression level in MCF7 cells. Statistical analysis was performed by ANOVA and Tukey-Kramer multiple comparison, and P ⁇ 0.05 was considered significant.
  • FIG. 2 shows the mRNA expression levels of epithelial and mesenchymal markers measured by quantitative RT-PCR as relative mRNA expression levels normalized by the expression level of GAPDH mRNA. Although no significant difference was observed between MCF7 cells and MCF7-14 cells, the expression level of E-cadherin was significantly higher in MDA-MB-231 cells than in MCF7 cells and MCF7-14 cells. Low (P ⁇ 0.01), the expression level of the mesenchymal marker was significantly higher (P ⁇ 0.01, FIG. 2).
  • BMP7, CD24, CD44, CXCL12, PIK3R1, SOCS2 gene expression comparison When BMP7, CD24, CD44, CXCL12, PIK3R1, SOCS2 expression data were extracted from gene expression profiles of MCF7 cells, MCF7-14 cells, and MDA-MB-231 cells, and compared by cluster analysis, MCF7-14 cells were The cells were classified into the same cluster as MDA-MB-231 cells but not MCF7 cells (FIGS. 4 and 5).
  • the mRNA expression level of the gene measured by quantitative RT-PCR is shown in FIG. 6 as the relative mRNA expression level for MCF7 cells.
  • MCF7-14 and MDA-MB-231 cells did not show significant differences for CXCL12 compared to MCF7 cells, but the expression levels of CD44 and SOCS2 were significantly higher (P ⁇ 0.01). The expression levels of BMP7, CD24 and PIK3R1 were significantly lower (P ⁇ 0.01, FIG. 6). Also in the expression analysis at the protein level by flow cytometry, the cloned MCF7-14 cells had higher expression levels of CD44 and lower expression levels of CD24 than the cloned MCF7 cells (FIG. 7). .
  • MCF7-14 cells exhibit an epithelial type expression pattern with a relatively good prognosis at the expression level of the epithelial / mesenchymal marker, and the results of gene expression profiling with all the informative genes are also shown in FIG. It is very similar to MCF7 cells. However, by comparing the expression level of BMP7, CD24, CD44, CXCL12, PIK3R1, SOCS2 gene mRNA, or the protein encoded by them, MCF7-14 cells are clearly distinguished from MCF7 cells and have high malignancy. It was found to show an expression pattern similar to that of MDA-MB-231 cells. This indicates that the expression level of the gene truly reflects the risk of recurrence of metastasis.
  • MCF7-14 cells have been confirmed.
  • BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 gene expression It was shown that the risk of metastatic recurrence can be evaluated by measuring the amount. That is, when MCF7 cells are used as a negative control for breast cancer malignancy, MDA-MB-231 cells are used as a positive control for breast cancer malignancy, and MCF7 cells are evaluated for malignancy of breast cancer. The degree was judged to be high.
  • the MCF7-14 cell is a cell with low malignancy of breast cancer, like the MCF7 cell, but according to the method for evaluating malignancy of breast cancer of the present invention, Similar to MDA-MB-231 cells, it was determined that the cells had high malignancy of breast cancer.
  • the expression level of the 6 gene genes was measured by measuring the amount of mRNA transcribed from the gene using a DNA microarray and quantitative RT-PCR. Any other method that can be used to assess expression levels can be used.
  • the present invention is a method for evaluating the malignancy of breast cancer based on the expression levels of at most six genes, which is more practical than other molecular marker groups and has a high-throughput prognosis of breast cancer. I can expect.
  • the present invention can perform data analysis using general spreadsheet software or analysis software such as GeneSpring.
  • results obtained by the cluster analysis are easy to visually understand and are less likely to cause confusion in the prognosis of individual patients, and therefore are particularly useful when dealing with data from multiple samples simultaneously.
  • these expression level data are accumulated in a database and are reused for cluster analysis, so that it is expected that the accuracy and reliability of prognosis can be further improved, and are considered to be clinically useful data. .
  • the present invention is considered to be a useful tool for early, appropriate and accurate assessment of breast cancer malignancy and determination of an optimal prognostic treatment policy for individual breast cancer patients.

Abstract

Disclosed are: a method for evaluating the degree of malignancy of breast cancer, which is simple and rapid and has high reliability; and an array and a kit for use in the evaluation method. Specifically disclosed are: a method for evaluating the degree of malignancy of breast cancer based on the expression patterns of at least three genes selected from a group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1 and SOCS2 in a test sample, wherein the expression patterns are determined based on the expression levels of the at least three genes; an array for the above-mentioned evaluation, which comprises a support and nucleic acids corresponding to the at least three genes and/or fragments of the nucleic acids immobilized on a predetermined area on the support; a kit for the above-mentioned evaluation, which can detect mRNA molecules expressed from the at least three genes and/or fragments of the mRNA molecules; and a kit for the above-mentioned evaluation, which comprises antibodies directed against polypeptides encoded by the at least three genes and/or fragments of the polypeptides and/or fragments of the antibodies.

Description

乳癌の悪性度の評価方法および評価用キットBreast cancer malignancy evaluation method and evaluation kit
 本発明は、乳癌の悪性度の評価方法、ならびに該評価方法に用いるアレイ及びキットに関する。
 本発明は、具体的には、乳癌の転移および/または再発の可能性の評価方法、ならびに該評価方法に用いるアレイおよびキットに関する。
The present invention relates to a method for evaluating the grade of malignancy of breast cancer, and an array and a kit used for the evaluation method.
Specifically, the present invention relates to a method for evaluating the possibility of metastasis and / or recurrence of breast cancer, and an array and kit used for the evaluation method.
 乳癌は、英国、米国および日本において、最も一般的にみられる女性の癌である。現在国内の乳癌罹患者数は4万人を超えており、その数は未だに増加傾向にある。近年、マンモグラフィーまたは他の画像診断法を用いた医療機器の進歩により、乳癌の早期診断が可能になり、乳癌の治癒率は徐々に上昇していくことが見込まれている。
 しかし、早期診断により、乳癌の初期ステージで外科的摘出や放射線治療を受けたにもかかわらず、転移再発に至る患者は少なくない。実際、初発乳癌の切除手術後の5年生存率が90%以上であるにも関わらず、非特許文献1には、乳癌罹患者の約40%は死に至ることが開示されている。すなわち、乳癌の早期診断は、転移または再発リスクの低減に、必ずしも貢献していない。
 また、転移または再発を経験しない乳癌患者も数多くいるが、転移再発のリスクを抑えるため、副作用を引き起こす治療薬の投与を余儀なくされ、不要な治療を受けている患者が多い。
 反対に、実際には転移再発のリスクが高い患者に対して、温存治療の方針が示されることもある。したがって、個々の乳癌患者に対し、乳癌の転移再発の可能性を、早期に、適切かつ正確に評価し、最適な予後の治療方針を決定する必要がある。
 転移再発のリスクは、すでに乳癌の予後マーカーとして知られている腫瘍径、腋窩リンパ節転移の有無(腋窩リンパ節転移陰性の患者においては、血管侵襲の有無も遠隔転移を占う予測因子として追加される)、癌細胞の未分化度(未分化であるほど、gradeが高い)により評価されている。
 しかし、非特許文献1には、腋窩リンパ節転移がない患者の約1/3が遠隔転移再発をきたし、腋窩リンパ節転移陽性患者の約1/3が局所治療後10年を経ても再発転移が認められないことが開示されている。また、エストロゲンレセプター発現レベルの低値は、転移の高リスクと相関があることが知られているが、非特許文献1には、エストロゲンレセプター陽性乳癌では、骨転移をきたし易いことが開示されている。つまり、現状では、乳癌患者それぞれの転移再発リスクを十分に予測することができない。非特許文献1に、これらの予後マーカーで予後の良否を確信して判定できるのは患者の約30%で、残りの70%のうち約30%の患者が転移再発をきたすことが開示されているように、適切かつ正確に再発リスクの高低を判断できる新しい予後マーカーが必要である。
 様々なバイオマーカーが新しい乳癌予後マーカーの候補に挙げられている中で、ERBB2(epidermal growth factor receptor 2またはHER2/neu)は有望な予後マーカーとして注目を集めるようになったが、WHO基準によれば、リンパ節転移陽性思者の無再発生存率、全生存率を占うための予後マーカーとしての価値は、低~中程度とされている。
 また、流血中を循環している癌細胞を検出する方法に関する研究も進められている。転移巣を形成するために、癌細胞は周囲の組織に浸潤し、血液を介し体循環に乗り遠隔臓器の毛細血管床に留まり、さらにそこで浸潤増殖する必要がある。したがって、遠隔転移が生じる前にこの播種性癌細胞を検出するような方法が開発されれば、患者の予後予測に有用であると期待される。しかし、乳腺上皮マーカーであるサイトケラチン19の非特異的発現などの技術的な問題と、体循環に入った腫瘍細胞の0.1%未満しか転移巣を形成し得ないという事実により、播種性腫瘍細胞の予後マーカーとしての意義に一定の見解は得られていない。さらに、乳癌原発巣から抽出したタンパク質中のuPA(ウロキナーゼ型プラスミノーゲンアクチベーター)とPAI1(プラスミノーゲンアクチベーターインヒビター1)の活性値をELISA法により測定する方法が提案されているが、まだ実地臨床で広く活用されていない。
 乳癌患者の転移再発リスクを予測する新しい予後マーカーを探索する研究は、わずか1~3個のマーカーと患者転帰との相関関係を調べているものがほとんどであったが、本疾患の不均質性を考慮すると、乳癌の転移再発予測には、同時に多様なマーカーを解析することが必要であると考えられる。それを可能にしたのがDNAマイクロアレイ技術であり、染色体全域に渡って、遺伝子発現解析を行うことができる。DNAマイクロアレイ技術と、unsupervised analysis(目的変数を指定せず、自動生成的に要因分析をする教師なし解析)を用いた遺伝子発現パターンの解析をもとに、乳癌は5つの亜型(basal−like群、ERBB2+群、normal tissue−like群、luminal A群、luminal B群)に群別化されている(非特許文献2−4)。重要なことは、これらの5つの亜型が臨床的にはっきりと区別できる患者分画を表していることである。例えば、basal−like群とERBB2+群の患者は生存期間が短く、一方で、エストロゲンレセプター陽性のluminal A群はすべての患者群の中で最も予後が良い。乳癌患者を、それぞれ特徴的な臨床像を呈する亜型に分類することで、亜型特異的な治療標的を見つけ、効果的な治療を行うことができると期待される。
 乳癌の臨床像を予測し得る遺伝子発現パターンを決定するための別のアプローチは、対象患者を限定したsupervised層別化法(目的変数を指定する教師あり解析)である。これらの患者層別化の報告では、リンパ節転移を認めなかった55才未満の乳癌患者において、遠隔転移再発を予見し得る70遺伝子の発現プロファイルを同定した(非特許文献5および6)。この後視的研究は、患者転帰に影響を及ぼす補助療法を行っておらず、また10年以上の観察期間があったため、特に有益な報告であった。この遺伝子セットにより、初発乳がんの特性は、転移再発が予想される予後不良群か、転移再発を来たす可能性が低い予後良好群のいずれかに群別化された。また、前述の試験とは別のマイクロアレイによる76遺伝子の発現状況を後視的に解析することで、すべての年齢層でリンパ節転移陰性乳癌患者の転帰を予測し得ることが示された(非特許文献7)。これら遺伝子の発現プロファイルは、乳癌患者個々への個別化治療に有用と考えられ、不必要な補助治療を受ける患者の数も減らすことができると期待されている。
 しかし、非特許文献5および6と、非特許文献7に開示されたこれらの2つの遺伝子セット間で、3つの遺伝子しかオーバーラップが認められていない。また、実際には、これらの遺伝子発現プロファイルを比較することは、容易なことではない。なぜなら、これらのマイクロアレイ解析では異なるアレイチップを用いており、数学的な解析手法も異なっているからである。異なるマイクロアレイチップを用いると、生物学的に同じ現象を表しているにもかかわらず、異なる遺伝子群が同定されることは以前から知られていた。そのため、遺伝子発現量の差異を逆転写ポリメラーゼ連鎖反応(Reverse Transcriptase−Polymerase Chain Reaction、RT−PCR)によりmRNAレベルで、または免疫学的測定法によりタンパク質レベルで検証する必要があるが、70以上の遺伝子マーカーを解析することは、臨床上実用的ではない。また、supervised層別化の手法で決定された予後マーカー群の各々のマーカーが、必ずしも前述した乳癌の組織亜型をも反映しているとはいえない。これは、候補遺伝子の選択が、解析の対象となった患者群の構成および層別化の影響を強く受けるためである。
 特許文献1には、乳癌の予後診断のため、乳癌患者の生存可能性、乳癌再発の可能性、転移特性の3つの要素に分割した分子サインが開示されている。
 また、特許文献2には、癌の予後診断マーカー群が開示されている
Breast cancer is the most common female cancer in the UK, USA and Japan. Currently, the number of breast cancer patients in Japan exceeds 40,000, and the number is still increasing. In recent years, advancements in medical devices using mammography or other imaging techniques have enabled early diagnosis of breast cancer, and the cure rate of breast cancer is expected to increase gradually.
However, despite early surgical diagnosis and radiation therapy in early stages of breast cancer, many patients have metastasis recurrence due to early diagnosis. In fact, it is disclosed in Non-Patent Document 1 that approximately 40% of breast cancer patients die, despite the 5-year survival rate after resection surgery of the first breast cancer being 90% or more. That is, early diagnosis of breast cancer does not necessarily contribute to reducing the risk of metastasis or recurrence.
There are also many breast cancer patients who do not experience metastasis or recurrence, but in order to reduce the risk of metastasis recurrence, many patients are forced to administer therapeutic agents that cause side effects and are receiving unnecessary treatment.
Conversely, conservative treatment strategies may be presented for patients who are actually at high risk of metastatic recurrence. Therefore, it is necessary to assess the possibility of breast cancer metastasis recurrence early, appropriately and accurately for each breast cancer patient, and to determine an optimal prognostic treatment policy.
The risk of metastasis recurrence is added as a predictor of distant metastasis, such as tumor diameter, which is already known as a prognostic marker for breast cancer, and the presence or absence of axillary lymph node metastasis The degree of undifferentiation of cancer cells (the more undifferentiated, the higher the grade).
However, in Non-Patent Document 1, about 1/3 of patients without axillary lymph node metastasis have recurrent metastasis, and about 1/3 of patients with positive axillary lymph node metastasis have relapsed even after 10 years of local treatment. Is not allowed. Further, it is known that a low estrogen receptor expression level correlates with a high risk of metastasis, but Non-Patent Document 1 discloses that estrogen receptor-positive breast cancer tends to cause bone metastasis. Yes. In other words, at present, the risk of metastasis recurrence for each breast cancer patient cannot be sufficiently predicted. Non-patent document 1 discloses that these prognostic markers can be used to determine whether the prognosis is good or not in about 30% of patients, and about 30% of the remaining 70% have recurrence of metastasis. Therefore, a new prognostic marker that can determine the level of recurrence risk appropriately and accurately is needed.
While various biomarkers are listed as candidates for new breast cancer prognostic markers, ERBB2 (epidermal growth factor receptor 2 or HER2 / neu) has attracted attention as a prognostic prognostic marker. For example, the value as a prognostic marker for predicting the recurrence-free survival rate and overall survival rate of those who are positive for lymph node metastasis is considered to be low to moderate.
Research on methods for detecting cancer cells circulating in the bloodstream is also underway. In order to form metastases, cancer cells need to infiltrate the surrounding tissues, ride through the body circulation through the blood, stay in the capillary bed of the distant organ, and then infiltrate and proliferate there. Therefore, if a method for detecting this disseminated cancer cell before distant metastasis occurs is expected to be useful for predicting the prognosis of the patient. However, due to technical problems such as non-specific expression of cytokeratin 19 which is a mammary epithelial marker and the fact that less than 0.1% of tumor cells entering the systemic circulation can form metastatic foci, There is no consensus on the significance of tumor cells as a prognostic marker. Furthermore, a method has been proposed in which the activity values of uPA (urokinase-type plasminogen activator) and PAI1 (plasminogen activator inhibitor 1) in proteins extracted from breast cancer primary lesions are measured by ELISA. Not widely used in clinical practice.
Most studies that looked for new prognostic markers to predict the risk of metastatic recurrence in breast cancer patients have examined the correlation between just one to three markers and patient outcomes, but the heterogeneity of the disease In view of this, it is considered necessary to analyze various markers at the same time in order to predict the recurrence of breast cancer metastasis. DNA microarray technology has made this possible, and gene expression analysis can be performed across the entire chromosome. Based on the analysis of gene expression patterns using DNA microarray technology and unsupervised analysis (unsupervised analysis that does not specify objective variables and automatically generates factors), breast cancer has five subtypes (basal-like). Group, ERBB2 + group, normal tissue-like group, luminal A group, luminal B group) (Non-patent Documents 2-4). Importantly, these five subtypes represent patient fractions that are clinically distinct. For example, patients in the basal-like group and the ERBB2 + group have a short survival time, while the estrogen receptor positive luminal A group has the best prognosis among all patient groups. By classifying breast cancer patients into subtypes that each have a characteristic clinical picture, it is expected that subtype-specific treatment targets can be found and effective treatment can be performed.
Another approach to determine gene expression patterns that can predict the clinical picture of breast cancer is the supervised stratification method (supervised analysis specifying objective variables) that limits the target patient. These patient stratification reports identified 70 gene expression profiles that could predict recurrence of distant metastases in breast cancer patients under 55 years of age who did not have lymph node metastasis (Non-Patent Documents 5 and 6). This retrospective study was a particularly useful report because it had no adjunct therapy affecting patient outcomes and had an observation period of more than 10 years. With this gene set, the characteristics of primary breast cancer were grouped into either a poor prognosis group in which recurrence of metastasis is expected or a good prognosis group in which the possibility of metastasis recurrence is low. In addition, it was shown that retrospective analysis of the expression status of 76 genes by a microarray different from the above-mentioned test can predict the outcome of lymph node-negative breast cancer patients in all age groups (non- Patent Document 7). The expression profiles of these genes are considered useful for individualized treatment of individual breast cancer patients and are expected to reduce the number of patients receiving unnecessary adjuvant treatment.
However, only three genes overlap between these two gene sets disclosed in Non-Patent Documents 5 and 6 and Non-Patent Document 7. In practice, it is not easy to compare these gene expression profiles. This is because these microarray analyzes use different array chips and different mathematical analysis methods. It has long been known that different gene arrays can be identified using different microarray chips, even though they represent the same biological phenomenon. Therefore, it is necessary to verify the difference in gene expression level at the mRNA level by reverse transcription polymerase chain reaction (RT-PCR), or at the protein level by immunoassay. Analyzing genetic markers is not clinically practical. Moreover, it cannot be said that each marker of the prognostic marker group determined by the supervised stratification technique necessarily reflects the above-mentioned breast cancer tissue subtype. This is because the selection of candidate genes is strongly influenced by the composition and stratification of the patient group subjected to analysis.
Patent Document 1 discloses a molecular signature divided into three elements for breast cancer prognosis: breast cancer patient survival possibility, breast cancer recurrence possibility, and metastatic characteristics.
Patent Document 2 discloses a prognostic marker group for cancer.
特表2008−508895号公報Special table 2008-508895 gazette 特表2006−526998号公報JP 2006-526998 A
 特許文献1に開示された技術によれば、確かに、乳癌患者群の生存率、再発率、転移発生率の統計的データのそれぞれと相関のある分子サインを選択することは可能であるが、個々の患者において、これら3つの要素は容易に分割できるものではない。よって、特許文献1に開示された分子サイン群は、乳癌患者の個別化治療に結びつくかは疑問であり、最適な予後の治療方針を決定する場面において、かえって混乱を招く可能性がある。
 また、特許文献1および2には、乳癌を含めた、様々な癌の予後診断マーカー群が開示されているものの、これらの癌の予後診断マーカー群は、マーカー群に含まれる個々の遺伝子、またはその遺伝子が属するシグナリングパスウェイの機能を十分に考慮しておらず、転移再発リスクに対し、間接的あるいは二次的に発現変動する遺伝子も含まれている。
 以上のとおり、乳癌患者の転移再発リスクを予測する新しい予後マーカーの探索において、DNAマイクロアレイ解析は有用であるが、前述のように、候補遺伝子の選択のために用いるサンプル群の構成あるいは層別化の問題と、選択された遺伝子マーカー数の実用上の問題、またはマーカー群の意義上の問題のため、現状では、乳癌患者それぞれの転移再発リスクを十分にかつ有意に予測できる遺伝子セットはない。
 そこで、本発明が解決しようとする課題は、上記の問題点を克服し、個々の乳癌患者に対し、乳癌の悪性度を、早期に、適切かつ正確に評価し、最適な予後の治療方針の決定を可能にする評価方法、並びにそれに用いるアレイ、キットを提供することにある。
According to the technique disclosed in Patent Document 1, it is possible to select a molecular signature that correlates with statistical data of the survival rate, recurrence rate, and metastasis rate of the breast cancer patient group, In an individual patient, these three elements are not easily splittable. Therefore, it is doubtful whether the molecular signature group disclosed in Patent Document 1 will lead to individualized treatment of breast cancer patients, which may lead to confusion when determining the optimal prognosis treatment policy.
Moreover, although patent documents 1 and 2 disclose various cancer prognostic marker groups including breast cancer, these cancer prognostic marker groups include individual genes included in the marker group, or The function of the signaling pathway to which the gene belongs is not fully taken into account, and genes whose expression varies indirectly or secondaryly to the risk of recurrence of metastasis are also included.
As described above, DNA microarray analysis is useful in searching for new prognostic markers for predicting the risk of recurrence of metastasis in breast cancer patients, but as mentioned above, the composition or stratification of sample groups used for selection of candidate genes Because of this problem and the practical problem of the number of selected genetic markers, or the problem of the significance of the marker group, there is currently no gene set that can sufficiently and significantly predict the risk of recurrence of metastasis in each breast cancer patient.
Therefore, the problem to be solved by the present invention is to overcome the above-mentioned problems, evaluate the malignancy of breast cancer to individual breast cancer patients early, appropriately and accurately, and determine the optimal prognosis treatment policy. An object of the present invention is to provide an evaluation method that enables determination, and an array and a kit used therefor.
 本発明者らは、上記課題を解決するために鋭意検討した結果、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子の発現量を測定することにより、乳癌の悪性度を評価することができることを見出し、本発明を完成した。
 すなわち、本発明は、以下の乳癌の悪性度の評価方法ならびに該評価方法に用いるアレイおよびキットを提供する。
[1]乳癌の悪性度を評価する方法であって、
(1)被検試料における、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子の発現量を測定するステップと、
(2)前記少なくとも3種の遺伝子の発現パターンにより乳癌の悪性度を評価するステップと、を含む、方法。
[2]前記(1)が、mRNAおよび/またはポリペプチドの発現量を測定するステップである、[1]に記載の方法。
[3]前記mRNAに対応する、核酸および/または核酸断片が固定化されたアレイを用いて前記mRNAの発現量を測定する、[2]に記載の方法。
[4]前記mRNAに対応する、核酸および/または核酸断片を検出するためのプライマーおよび/またはプローブを用いて前記mRNAの発現量を測定する、[2]に記載の方法。
[5]前記ポリペプチドおよび/またはポリペプチド断片に対する、抗体および/または抗体断片を用いて前記ポリペプチドの発現量を測定する、[2]に記載の方法。
[6]前記(1)が、前記被検試料における前記遺伝子の発現量と対照試料における前記遺伝子の発現量を測定するステップである、[1]~[5]のいずれか1項に記載の方法。
[7]前記発現パターンが、前記遺伝子の発現量の発現比率からなる、[6]に記載の方法。
[8]前記発現パターンが、前記対照試料における前記遺伝子の発現量に対する前記被検試料における前記遺伝子の発現量から求められる相対発現量からなる、[6]に記載の方法。
[9]前記(2)が、前記被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が低いと評価し、および/または
 前記被検試料における遺伝子の発現パターンが、高転移性癌細胞株および高転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が高いと評価するステップである、[6]~[8]のいずれか1項に記載の方法。
[10]前記(2)が、前記被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンと比較して、
(A)CD44およびSOCS2からなる群から選択される少なくとも1種の遺伝子の発現量が増加した遺伝子の発現パターンを示す場合、および/または
(B)BMP7、CD24、CXCL12、およびPIK3RIからなる群から選択される少なくとも1種の遺伝子の発現量が減少した遺伝子の発現パターンを示す場合に、
乳癌の悪性度が高いと評価するステップである、[6]~[8]のいずれか1項に記載の方法。
[11]前記低転移性癌細胞株が、MCF7細胞である、[9]または[10]に記載の方法。
[12]前記高転移性癌細胞株が、MDA−MB−231細胞である、[9]に記載の方法。
[13]乳癌の悪性度を評価するためのアレイであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/または核酸断片が支持体上の定められた領域に固定化される、アレイ。
[14]乳癌の悪性度を評価するためのアレイであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/または核酸断片のみが支持体上の定められた領域に固定化される、アレイ。
[15]乳癌の悪性度を評価するためのキットであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される3種の遺伝子のmRNAおよび/またはmRNA断片に対応する核酸および/または核酸断片を検出するためのプライマーおよび/またはプローブを含有する、キット。
[16]乳癌の悪性度を評価するためのキットであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される3種の遺伝子にコードされたポリペプチドおよび/またはポリペプチド断片に対する抗体および/または抗体断片を含有する、キット。
As a result of intensive studies to solve the above problems, the present inventors have measured the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2. The present inventors have found that malignancy of breast cancer can be evaluated.
That is, the present invention provides the following method for evaluating the malignancy of breast cancer, and an array and kit used for the method.
[1] A method for evaluating the malignancy of breast cancer,
(1) measuring the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 in a test sample;
(2) evaluating the malignancy of breast cancer based on the expression pattern of the at least three genes.
[2] The method according to [1], wherein (1) is a step of measuring the expression level of mRNA and / or polypeptide.
[3] The method according to [2], wherein the expression level of the mRNA is measured using an array in which nucleic acids and / or nucleic acid fragments corresponding to the mRNA are immobilized.
[4] The method according to [2], wherein the expression level of the mRNA is measured using a primer and / or probe for detecting a nucleic acid and / or a nucleic acid fragment corresponding to the mRNA.
[5] The method according to [2], wherein the expression level of the polypeptide is measured using an antibody and / or antibody fragment against the polypeptide and / or polypeptide fragment.
[6] The method according to any one of [1] to [5], wherein (1) is a step of measuring an expression level of the gene in the test sample and an expression level of the gene in a control sample. Method.
[7] The method according to [6], wherein the expression pattern comprises an expression ratio of the expression level of the gene.
[8] The method according to [6], wherein the expression pattern includes a relative expression level obtained from the expression level of the gene in the test sample with respect to the expression level of the gene in the control sample.
[9] In (2), the gene expression pattern in the test sample is selected from the group consisting of healthy individuals, non-lesional sites, low metastatic cancer cell lines, and tissues having low metastatic cancer. The breast cancer malignancy is assessed to be low enough to approximate the gene expression pattern in the at least one control sample and / or the gene expression pattern in the test sample is high metastatic cancer cell lines and high [6] to [8] are steps for evaluating that the malignancy of breast cancer is higher as it approximates the expression pattern of the gene in at least one control sample selected from the group consisting of tissues derived from metastatic cancer. The method of any one of these.
[10] In the above (2), the gene expression pattern in the test sample is selected from the group consisting of healthy individuals, non-lesional sites, low metastatic cancer cell lines, and tissues having low metastatic cancer. Compared to the expression pattern of the gene in at least one control sample
(A) When an expression pattern of a gene in which the expression level of at least one gene selected from the group consisting of CD44 and SOCS2 is increased, and / or (B) from the group consisting of BMP7, CD24, CXCL12, and PIK3RI When the expression level of at least one selected gene shows a reduced gene expression pattern,
The method according to any one of [6] to [8], which is a step of evaluating that the malignancy of breast cancer is high.
[11] The method of [9] or [10], wherein the low metastatic cancer cell line is MCF7 cells.
[12] The method according to [9], wherein the highly metastatic cancer cell line is MDA-MB-231 cells.
[13] An array for assessing the malignancy of breast cancer,
An array in which nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on a support.
[14] An array for assessing the malignancy of breast cancer,
An array in which only nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on the support .
[15] A kit for evaluating the malignancy of breast cancer,
Primers and / or probes for detecting nucleic acids and / or nucleic acid fragments corresponding to mRNAs and / or mRNA fragments of three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 Contains a kit.
[16] A kit for evaluating the malignancy of breast cancer,
A kit comprising an antibody and / or an antibody fragment against a polypeptide and / or polypeptide fragment encoded by three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2.
 本発明によれば、個々の乳癌患者に対し、乳癌の悪性度を、早期に、適切かつ正確に評価し、最適な予後の治療方針を決定することができるため、乳癌患者の個別化治療に有用であり、不必要な補助治療を受ける患者の数を減らすこともできる。 According to the present invention, it is possible to evaluate the malignancy of breast cancer at an early stage, appropriately and accurately, and to determine an optimal prognosis treatment policy for individual breast cancer patients. Useful and can also reduce the number of patients receiving unnecessary adjunct therapy.
 図1は、実施例1における蛍光免疫染色の図(写真)を示す。
 図2は、定量RT−PCRにより測定したmRNAの発現量を示す。
 図3は、DNAマイクロアレイ解析に基づくクラスタリングを示す。
 図4は、DNAマイクロアレイ解析に基づくクラスタリング(6遺伝子)を示す。
 図5は、DNAマイクロアレイ解析に基づくクラスタリング(3遺伝子)を示す。
 図6は、定量RT−PCRにより測定したmRNAの発現量を示す。
 図7は、フローサイトメトリーによるタンパク質発現解析の図を示す。
1 shows a diagram (photograph) of fluorescent immunostaining in Example 1. FIG.
FIG. 2 shows the expression level of mRNA measured by quantitative RT-PCR.
FIG. 3 shows clustering based on DNA microarray analysis.
FIG. 4 shows clustering (6 genes) based on DNA microarray analysis.
FIG. 5 shows clustering (3 genes) based on DNA microarray analysis.
FIG. 6 shows the expression level of mRNA measured by quantitative RT-PCR.
FIG. 7 shows a diagram of protein expression analysis by flow cytometry.
 以下、本発明を実施するための最良の形態について詳細に説明する。なお、本発明は以下の実施するための最良の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明の乳癌の悪性度を評価する方法は、
(1)被検試料における、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子の発現量を測定するステップと、
(2)前記少なくとも3種の遺伝子の発現パターンにより乳癌の悪性度を評価するステップと、を含む、方法である。
 本発明において、乳癌の悪性度とは、乳癌の性質としての悪さ、すなわち増殖、転移、再発しやすさの程度であることを意味する。
 本発明において、乳癌の転移とは、乳癌細胞が、リンパ節(リンパ節転移)や他の臓器(遠隔転移)に辿り着き、そこで増殖することを意味する。
 本発明にいて、乳癌の再発とは、乳癌が、治療後、数ヵ月から数年を経て再び活動的になることを意味する。再発する部位によって、温存乳房や胸壁に起こる局所再発、腋窩リンパ節に起こる領域再発、そして乳房から離れた器官や組織、例えば肺、骨、肝臓、脳に起こる遠隔(全身)再発(すなわち転移)に分かれる。
 また、本発明において、乳癌の悪性度を評価することにより、乳癌の転移再発の可能性を、早期に、適切かつ正確に評価し、最適な予後の治療方針の決定を可能にすることができる。
 乳癌の悪性度を評価する方法において、評価対象である候補遺伝子の選択のためには、組織型を考慮した上で、年齢や補助療法の有無などの個体差によるノイズを排除したシンプルな乳癌転移モデルが必要である。
 本発明においては、国際公開第2008/93886号パンフレットに開示されるMCF7−14細胞と、広く利用されているMDA−MB−231細胞とを、乳癌転移モデルとして用いることにより、組織型を考慮した上で、年齢や補助療法の有無などの個体差によるノイズを排除した、乳癌の悪性度を評価する方法とすることができる。
 MCF7−14細胞は、luminal(上皮)typeかつ浸潤性/転移性の低いMCF7乳癌細胞株から選択された細胞であり、in vitroにおける高浸潤性、およびin vivoにおける高転移性が確認されている(国際公開第2008/93886号パンフレット)。
 また、MDA−MB−231細胞は、basal/mesenchymal(間葉)typeかつ悪性度の高い細胞として、知られている。
 本発明の評価方法は、候補遺伝子の選択のため、乳癌の悪性度を評価するための有用な乳癌転移モデルとして、MCF7細胞、MCF7−14細胞およびMDA−MB−231細胞における遺伝子発現プロファイルを比較したことにより、個々の乳癌患者に対し、乳癌の悪性度、例えば、乳癌の転移再発の可能性を、早期に、適切かつ正確に評価することができる方法である。
 本発明において、MCF7乳癌細胞、MCF7−14乳癌細胞およびMDA−MB−231乳癌細胞における遺伝子発現プロファイルを比較した結果、転移および/または再発の可能性に応じて発現量が変動するプローブセット、すなわち、MCF7細胞と比較し、MCF7−14細胞およびMDA−MB−231細胞の両方で、発現量に2倍以上の差異が認められた163プローブセット(144遺伝子に対応する)が見出された(表1および表2)。なお、表1および表2において、EST(expressed sequence tag)についてはGenBank Accession No.を、それ以外についてはRefseq IDを記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これら144遺伝子には、乳癌の悪性度と直接的な因果関係をもつ遺伝子と、間接的あるいは二次的に発現変動する遺伝子とが含まれるため、遺伝子マーカーの選択において、遺伝子の機能的な関わりや、転移再発メカニズムにおける役割を考慮することが必要である。加えて、数十以上の遺伝子マーカーを解析することは臨床上実用的ではないことも考慮し、これら144遺伝子について、パスウェイ解析、およびネットワーク解析を行い、転移再発のメカニズムにおいて、機能的に有意な候補遺伝子を絞込んだ。その結果、細胞移動・遊走や、薬剤排出などの異物代謝に関わるパスウェイに関与するBMP7、CD24、CD44、CXCL12、PIK3R1、SOCS2をそれぞれコードする遺伝子を、乳癌予後診断マーカーとして選択した。
 本発明において用いられる遺伝子セットは、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2をそれぞれコードする遺伝子からなる群から選択され、少なくとも3つ以上の遺伝子から構成される。
 本発明において、転移再発のメカニズムにおいて、機能的に有意な遺伝子である、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2から選ばれる少なくとも3種を評価することにより、個々の乳癌患者に対し、乳癌の悪性度を、早期に、適切かつ正確に評価することができる。
 BMP7は、Bone morphogenetic protein 7遺伝子(osteogenic protein 1、骨形成タンパク質7、NCBI Reference Sequences [RefSeq] ID:NM 001719)である。
 CD24は、グリコシル−ホスファチジルイノシトール結合型シアロ糖タンパク遺伝子(NCBI Reference Sequences [RefSeq] ID:NM 013230)であり、MDA−MB−231細胞におけるCD24の発現誘導は、CXCL12による下記細胞移動促進効果を抑制する(Schabath H,Runz S,Joumaa S,Altevogt P.CD24 affects CXCR4 function in pre−Blymphocytes and breast carcinoma cells.J Cell Sci 2006;119:314−25.を参照。)
 CD44は、ヒアルロン酸受容体遺伝子(NCBI Reference Sequences [RefSeq] ID:NM 000610)であり、CD44(standard form)の発現誘導は、MCF7乳癌細胞の移動および浸潤を増強することが報告されている(Hill A,McFarlane S,Mulligan K,et al.Cortactin underpins CD44−promoted invasion and adhesion of breast cancer cells to bone marrow endothelial cells.Oncogene 2006;25:6079−91.を参照)。
 CXCL12は、ケモカイン[C−X−C motif]リガンド 12遺伝子(stromal cell−derived factor 1 [SDF1]、NCBI Reference Sequences [RefSeq] ID: NM 199168)であり、CCXCL12の発現誘導は、MCF7細胞の移動を促進することが知られている
 PIK3R1は、phosphoinositide−3−kinase遺伝子(regulatory subunit 1 [alpha]、ホスファチジルイノシトール3−リン酸化酵素サブユニット、NCBI Reference Sequences [RefSeq] ID: NM 181504)であり、dominant negative PIK3R1の過剰発現、あるいはPI3キナーゼのインヒビターの添加は、MDA−MB−231細胞の運動性を抑制することも報告されている(Sliva D,Rizzo MT,English D.Phosphatidylinositol 3−kinase and NF−κB regulate motility of invasive MDA−MB−231 human breast cancer cells by the secretion of urokinase−type plasminogen activator.J Biol Chem 2002;277:3150−7.を参照)。
 SOCS2は、suppressor of cytokine signaling 2遺伝子(CIS2、Cish2、SSI2、STATI2、RefSeq ID: NM 003877)である。
 乳癌原発巣におけるSOCS2の高発現またはBMP7の低発現が、乳癌の骨転移巣の形成に関連する(Buijs JT,Henriquez NV,van Overveld PG,et al.Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer.Cancer Res 2007;67:8742−51.およびMinn AJ,Kang Y,Serganova I,et al.Distinct organ−specific metastatic potential of individual breast cancer cells and primary tumors.J Clin Invest 2005;115:44−55.を参照)。
 本発明において用いられる被検試料としては、個体より採取した乳腺、乳汁、センチネルリンパ節、血液等の生体試料が挙げられる。
 本発明において用いられる対照試料としては、健常個体由来の組織、乳汁、血液等の生体試料、非病変部の組織、または予後調査によって悪性度が確認された乳癌患者より採取した乳腺、乳汁、血液、転移病変組織等の生体試料、および乳癌細胞株が考えられる。
 好ましくは、前記癌を有する乳腺、または乳癌細胞株において、転移性の程度が異なるものを用いればよく、データの再現性や入手の容易さを考慮すると、MCF7乳癌細胞株と、MDA−MB−231乳癌細胞株を用いることが好適である。
 遺伝子の発現量は、遺伝子から転写されたmRNAおよび/またはその断片の量、または該mRNAから翻訳されたタンパク質および/またはその断片の量から、測定される。本発明において、被検試料および対照試料における遺伝子の発現量は、当業者に公知の任意の方法・手段により、測定することができる。
 mRNA発現量の測定法としては、例えば、mRNAに対応する核酸および/または核酸断片が固定化されたアレイを用いて、mRNA発現量を測定することが挙げられ、具体的には、DNAマイクロアレイ(DNAチップ)、オリゴヌクレオチドマイクロアレイ、ノーザンブロッティング(ノーザンハイブリダイゼーション)、in situ ハイブリダイゼーション、RNA分解酵素プロテクションアッセイ、および逆転写ポリメラーゼ連鎖反応等をはじめとする、ハイブリダイゼーションによる方法や、核酸増幅による方法を用いることができる。
 mRNAに対応する核酸および/または核酸断片としては、上述したような方法で用いられる核酸および/または核酸断片が挙げられ、mRNA、を検出するための核酸および/または核酸断片、mRNAから合成したcDNA、cRNAを検出するための核酸および/または核酸断片が挙げられる。
 タンパク質発現量の測定法としては、例えば、ポリペプチドおよび/またはポリペプチド断片に対する抗体および/または抗体断片を用いて、ポリペプチドの発現量を測定する方法が挙げられ、具体的には、ウェスタンブロッティング、ELISAアッセイ、フローサイトメトリー、プロテインアレイ、免疫組織染色、イムノクロマトグラフィーおよび酵母Two−Hybrid等を挙げることができる。
 本発明において、抗体断片とは、例えば、抗体のポリペプチドである抗原と結合するFab部分が挙げられる。
 遺伝子発現量の測定は、データの再現性を考慮し、同一試料の各遺伝子に対して複数のデータを得ることが望ましい。その場合、これらデータの平均値を各遺伝子の発現量とすることができる。また、これらデータの分散あるいは標準偏差の値から、再現性を検証することができる。
 少なくとも3種の遺伝子の発現パターンにより乳癌の悪性度を評価するステップとしては、測定された遺伝子の発現量の数値を、被検試料と対照試料とでパターン化して比較する。
 遺伝子のパターンとしては、例えば、内部コントロールとしてハウスキーピング遺伝子の発現量を1とし、内部コントロールに対する相対発現量を対照試料、被検試料について算出して、乳癌の悪性度を評価することもできる。内部コントロールは、GAPDHなどのハウスキーピング遺伝子の他、試料間で発現量が変化しないと考えられる遺伝子を用いることができる。さらに、被検試料における発現量の、少なくとも1つの対照試料における発現量に対する、相対発現量を算出してもよく、具体的には、対照試料における発現量を1としたときの、被検試料における発現量を相対発現量として算出し、被検試料における遺伝子の発現パターンとして評価することができる。予め、対照試料における発現量のレベルが既知である場合は、被検試料の対照試料に対する相対発現量によって、遺伝子ごとに高値、または低値という結果でもよい。
 また、例えば、被検試料における発現量および対照試料における発現量をそれぞれ、発現量の平均値または中央値で除した発現比率として、発現パターンを算出することもできる。
 本発明においては、上記6遺伝子から少なくとも3種の遺伝子を選択し、少なくとも3種の遺伝子の発現パターンを比較する。または、前記遺伝子それぞれの発現レベルについて、対照試料に対して、SOCS2またはCD44の発現レベルが高いか、BMP7、CD24、CXCL12またはPIK3R1の発現レベルが低いかを比較する。
 遺伝子の発現パターンの解析と表示は、様々な方法を採用することができる。最も一般的な方法は、列が被検試料および対照試料、行が各遺伝子を示すグラフィカル・デンドグラムに、被検試料の対照試料に対する発現比率を配列させる方法である。各遺伝子の発現比率は、色で視覚化することができる。そうしたデータ表示には商業上利用可能なコンピュータソフトウェア、例えば、SiliconGenetics, Inc.の「GeneSpring」を利用できる。また、一般的な表計算ソフトウェアを用いて、ヒストグラムによる表示と、分散分析(ANOVA)や多重比較等の統計解析を行うこともできる。
 少なくとも3種の遺伝子の発現パターンにより乳癌の悪性度を評価するステップにより、個々の乳癌患者に対し、乳癌の悪性度を、早期に、適切かつ正確に評価することができる。
 評価するステップとしては、被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が低いと評価し、かつ
 被検試料における遺伝子の発現パターンが、高転移性癌細胞株および高転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が高いと評価する、方法が挙げられる。
 また、評価するステップとしては、被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンと比較して、
(A)CD44およびSOCS2からなる群から選択される少なくとも1種の遺伝子の発現量が増加した場合、
(B)BMP7、CD24、CXCL12、およびPIK3RIからなる群から選択される少なくとも1種の遺伝子の発現量が減少した場合に、乳癌の悪性度が高いと評価する方法が挙げられる。
 本発明において、健常個体由来の対照試料とは、例えば、癌を発症していない個体由来の乳腺組織、リンパ節組織、乳汁、血液が挙げられる。
 本発明において、非病変部位由来の対照試料とは、例えば、癌を発症している個体の癌病変を有する乳腺組織のうち、癌病変以外の乳腺組織が挙げられる。
 本発明において、低転移性癌細胞株とは、例えば、MCF7ヒト乳癌細胞株が挙げられる。
 本発明において、低転移性癌を有する組織由来の対照試料とは、例えば、予後調査により転移が認められなかった個体から採取した癌病変を有する乳腺組織が挙げられる。
 本発明において、高転移性癌細胞株とは、例えば、MDA−MB−231ヒト乳癌細胞株が挙げられる。
 本発明において、高転移性癌を有する組織由来の対照試料とは、例えば、予後調査により転移が認められた個体から採取した癌病変あるいは転移癌病変を有する組織が挙げられる。
 遺伝子発現パターンの近似の程度を解析するための最も一般的な方法として、クラスタ解析が挙げられ、同じく「GeneSpring」などの解析ソフトウェアを利用できる。単純には、例えば、被検試料、MCF7細胞およびMDA−MB−231細胞における遺伝子発現パターンをクラスタ解析により比較し、MCF7細胞と同じクラスタに分類されれば、その悪性度は比較的低いと評価でき、反対にMDA−MB−231細胞と同じクラスタに分類されると、悪性度は比較的高いと判断できる。近似の度合いは、階層的クラスタ解析によってサンプルの樹形図を作成し、視覚的に表現することができる。具体的には、階層的クラスタ解析を行い、列が被検試料および対照試料、行が各遺伝子を示すグラフィカル・デンドログラムとして出力すればよい。高転移性乳癌細胞株の発現パターンに近似するほど、その悪性度が高いと評価できる。
 本発明においては、少なくとも3種の遺伝子の発現パターンを評価することにより、個々の乳癌患者に対し、乳癌の悪性度を、早期に、適切かつ正確に評価することができるが、好ましくは、少なくとも4種、より好ましくは、少なくとも5種、さらに好ましくは、6種全ての発現パターンを評価することにより、より精度高く、乳癌の悪性度を評価することができる。
 本発明のアレイまたはキットは、被検試料における該遺伝子の発現量、すなわち、該遺伝子から転写されるmRNA量、または該遺伝子がコードするタンパク質の発現量を測定する方法に用いられるものである。
 本発明のアレイは、乳癌の悪性度を評価するためのアレイであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/またはその核酸断片が支持体上の定められた領域に固定化される、アレイである。
 本発明のアレイは、乳癌の悪性度を評価するためのアレイであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/またはその核酸断片のみが支持体上の定められた領域に固定化される、アレイである。
 本発明のキットは、mRNAの発現量を測定するキットとしては、乳癌の悪性度を評価するためのキットであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子のmRNAおよび/またはそのmRNA断片を検出するためのプライマーおよび/またはプローブを含有する、キットである。
 また、本発明のキットは、ポリペプチドの発現量を測定するキットとしては、乳癌の悪性度を評価するためのキットであって、
 BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子にコードされたポリペプチドおよび/またはそのポリペプチド断片に対する抗体および/または抗体断片を含有する、キットである。
 例えば、本発明のアレイまたはキットに含まれる、少なくとも3種の遺伝子に対応する核酸またはその核酸断片の塩基配列、ならびに少なくとも3種の遺伝子のmRNAおよび/またはそのmRNA断片を検出するためのプライマーおよび/またはプローブの塩基配列は、本発明における6種の遺伝子の核酸配列に対応していればよい。
 核酸および/または核酸断片、ならびにプライマーおよび/またはプローブとしては、本発明における6種の遺伝子の少なくとも一部の塩基配列に対応するポリヌクレオチドおよび/またはオリゴヌクレオチドが挙げられ、その長さは、数十塩基対とすることができる。
 本発明における6種の遺伝子の配列情報については、例えば、Genbank等のデータベースから容易に入手できるので、アレイまたはキットに用いられる情報に基づき、少なくとも3種の遺伝子に対応する核酸および/または核酸断片、およびそのmRNAおよび/またはそのmRNA断片を検出するためのプライマーおよび/またはプローブは、当業者が適宜、選択・設計し、調整することができる。それらは、ノーザンブロッティングにおけるプローブ、PCRにおけるプライマー等としても使用することができる。また、本発明のキットに含まれる、該遺伝子がコードするポリペプチドの少なくとも一部に対する抗体および/またはその抗体断片は、当業者が任意の方法で作製でき、それらは、ウェスタンブロッティングやELISAアッセイなどの免疫学的測定法だけでなく、免疫染色法にも使用できる。さらに、必要に応じて、ポリヌクレオチド/オリゴヌクレオチド、抗体またはその抗体断片は、放射性物質、蛍光物質、色素等の適当な標識物質によって、標識されてもよい。
 本発明における遺伝子の一部の塩基配列をプライマーとして使用する場合、配列は特に限定されないが、好ましくは、後述の表3に記載の配列を使用する。
 上記のアレイまたはキットには、その構成および使用目的に応じて、当業者に公知の他の要素、または成分が含まれ、例えば、各種試薬、酵素、緩衝液、反応プレート(容器)等が挙げられる。各種試薬には、コントロールとして用いるための、対照試料由来の試薬が含まれうる。
Hereinafter, the best mode for carrying out the present invention will be described in detail. The present invention is not limited to the best mode for carrying out the following, and can be implemented with various modifications within the scope of the gist thereof.
The method for evaluating the malignancy of breast cancer of the present invention comprises:
(1) measuring the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 in a test sample;
(2) evaluating the malignancy of breast cancer based on the expression patterns of the at least three genes.
In the present invention, the grade of malignancy of breast cancer means the bad nature of breast cancer, that is, the degree of ease of proliferation, metastasis, and recurrence.
In the present invention, breast cancer metastasis means that breast cancer cells reach lymph nodes (lymph node metastasis) and other organs (distant metastasis) and proliferate there.
In the present invention, recurrence of breast cancer means that the breast cancer becomes active again several months to several years after the treatment. Depending on the site of recurrence, local recurrence in the preserved breast and chest wall, regional recurrence in the axillary lymph nodes, and distant (systemic) recurrence (ie, metastasis) in organs and tissues away from the breast, such as lung, bone, liver, and brain Divided into
Further, in the present invention, by evaluating the malignancy of breast cancer, the possibility of metastasis recurrence of breast cancer can be evaluated early and appropriately and accurately, and the optimal prognosis treatment policy can be determined. .
In the method of evaluating the malignancy of breast cancer, simple selection of candidate genes to be evaluated is simple breast cancer metastasis that takes into account the tissue type and eliminates noise due to individual differences such as age and the presence or absence of adjuvant therapy A model is needed.
In the present invention, MCF7-14 cells disclosed in International Publication No. 2008/93886 pamphlet and MDA-MB-231 cells which are widely used are used as a breast cancer metastasis model, thereby considering the tissue type. Above, it can be set as the method of evaluating the malignancy of a breast cancer which excluded the noise by individual differences, such as age and the presence or absence of adjuvant therapy.
MCF7-14 cells are selected from the luminal type and low invasive / metastatic MCF7 breast cancer cell line, and confirmed to be highly invasive in vitro and highly metastatic in vivo. (International Publication No. 2008/93886 pamphlet).
MDA-MB-231 cells are known as basal / mesenchymal (mesenchymal) type and high malignant cells.
The evaluation method of the present invention compares gene expression profiles in MCF7 cells, MCF7-14 cells, and MDA-MB-231 cells as useful breast cancer metastasis models for evaluating the malignancy of breast cancer for selection of candidate genes. As a result, the malignancy of breast cancer, such as the possibility of recurrence of breast cancer metastasis, can be evaluated early and appropriately for each individual breast cancer patient.
In the present invention, as a result of comparing gene expression profiles in MCF7 breast cancer cells, MCF7-14 breast cancer cells and MDA-MB-231 breast cancer cells, a probe set whose expression level varies depending on the possibility of metastasis and / or recurrence, , A 163 probe set (corresponding to the 144 gene) was found in which the expression level was more than doubled in both MCF7-14 and MDA-MB-231 cells compared to MCF7 cells ( Table 1 and Table 2). In Tables 1 and 2, for EST (expressed sequence tag), GenBank Accession No. And Refseq ID was described for other cases.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
These 144 genes include genes that have a direct causal relationship with the malignancy of breast cancer, and genes that change expression indirectly or indirectly, so the functional relationship of the genes in the selection of genetic markers. It is also necessary to consider the role in metastasis recurrence mechanisms. In addition, considering that it is not clinically practical to analyze dozens or more gene markers, pathway analysis and network analysis are performed on these 144 genes, and functionally significant in the mechanism of metastasis recurrence Candidate genes were narrowed down. As a result, genes encoding BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2, which are involved in pathways involved in foreign body metabolism such as cell migration / migration and drug excretion, were selected as markers for prognosis of breast cancer.
The gene set used in the present invention is selected from the group consisting of genes encoding BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2, and is composed of at least three genes.
In the present invention, by evaluating at least three types selected from BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 which are functionally significant genes in the mechanism of metastasis recurrence, The malignancy of breast cancer can be evaluated appropriately and accurately at an early stage.
BMP7 is Bone morphogenetic protein 7 gene (osteogenic protein 1, bone morphogenetic protein 7, NCBI Reference Sequences [RefSeq] ID: NM 001719).
CD24 is a glycosyl-phosphatidylinositol-linked sialoglycoprotein gene (NCBI Reference Sequences [RefSeq] ID: NM 012330), and the induction of CD24 expression in MDA-MB-231 cells suppresses the following cell migration promoting effect by CXCL12. (See Schabath H, Runz S, Joumaa S, Altevogt P. CD24 effects CXCR4 function in pre-Blymphosites and breast carcinoma cells. J Cell Sci.
CD44 is a hyaluronic acid receptor gene (NCBI Reference Sequences [RefSeq] ID: NM 000610), and CD44 (standard form) expression induction has been reported to enhance migration and invasion of MCF7 breast cancer cells ( Hill A, McFarlane S, Mulligan K, et al. Cortactin underpins CD44-promoted inversion and adhesion of breast cancer cells to bone mar.
CXCL12 is a chemokine [C-X-C motif] ligand 12 gene (stromal cell-derived factor 1 [SDF1], NCBI Reference Sequences [RefSeq] ID: NM 199168), and CCXCL12 cell induction PIK3R1 is known to promote phosphoinositide-3-kinase gene (regularity subunit 1 [alpha], phosphatidylinositol 3-phosphate enzyme subunit, NCBI Reference Sequences [RefSeq] ID 150 N overexpression of dominant negative PIK3R1, or PI3 kina It has also been reported that the addition of an inhibitor of zeotide suppresses the motility of MDA-MB-231 cells (Slivea D, Rizzo MT, England D. Phosphatidylinositol 3-kinase and NF-κB regulative motility in MD -231 human breast cancer cells by the section of urokinase-type plasminogen activator. J Biol Chem 2002; 277: 3150-7.).
SOCS2 is a suppressor of cytokine signaling 2 gene (CIS2, Cish2, SSI2, STATI2, RefSeq ID: NM 003877).
High expression of SOCS2 or low expression of BMP7 in primary breast cancer lesions is associated with the formation of bone metastases in breast cancer (Buijs JT, Henriquez NV, van Overveloped PG, et al. Bone morphogenetic protein 7 in the tent enveloment of the brain. methestes from breast cancer. Cancer Res 2007; 67: 8742-51. and Minn AJ, Kang Y, Serganova I, et al .. Distinct organic-specific biostatic. Invest 2005; 115: 44-55.).
Examples of the test sample used in the present invention include biological samples such as mammary gland, milk, sentinel lymph node and blood collected from an individual.
As a control sample used in the present invention, tissues derived from healthy individuals, biological samples such as milk, blood, non-lesional tissues, or mammary glands, milk, blood collected from breast cancer patients whose malignancy was confirmed by a prognostic survey , Biological samples such as metastatic diseased tissue, and breast cancer cell lines.
Preferably, the mammary gland having a cancer or a breast cancer cell line having a different degree of metastasis may be used. In view of data reproducibility and availability, the MCF7 breast cancer cell line and the MDA-MB- It is preferred to use the 231 breast cancer cell line.
The expression level of the gene is measured from the amount of mRNA and / or fragment thereof transcribed from the gene or the amount of protein and / or fragment thereof translated from the mRNA. In the present invention, the expression level of the gene in the test sample and the control sample can be measured by any method / means known to those skilled in the art.
Examples of the method for measuring the mRNA expression level include measuring the mRNA expression level using an array on which nucleic acids and / or nucleic acid fragments corresponding to mRNA are immobilized. Specifically, a DNA microarray ( DNA chip), oligonucleotide microarray, Northern blotting (Northern hybridization), in situ hybridization, RNase protection assay, reverse transcription polymerase chain reaction, etc. Can be used.
Examples of the nucleic acid and / or nucleic acid fragment corresponding to mRNA include the nucleic acid and / or nucleic acid fragment used in the method as described above, and nucleic acid and / or nucleic acid fragment for detecting mRNA, cDNA synthesized from mRNA , Nucleic acids and / or nucleic acid fragments for detecting cRNA.
Examples of the method for measuring the protein expression level include a method for measuring the expression level of a polypeptide using an antibody and / or antibody fragment against the polypeptide and / or the polypeptide fragment, and specifically, Western blotting. , ELISA assay, flow cytometry, protein array, immunohistochemical staining, immunochromatography, yeast Two-Hybrid and the like.
In the present invention, antibody fragments include, for example, Fab portions that bind to an antigen that is a polypeptide of an antibody.
In measuring the gene expression level, it is desirable to obtain a plurality of data for each gene of the same sample in consideration of the reproducibility of the data. In that case, the average value of these data can be used as the expression level of each gene. In addition, reproducibility can be verified from the variance or standard deviation of these data.
As a step of evaluating the malignancy of breast cancer based on the expression patterns of at least three kinds of genes, the numerical values of the measured gene expression levels are patterned and compared between the test sample and the control sample.
As a gene pattern, for example, the expression level of a housekeeping gene can be set as 1 as an internal control, and the relative expression level with respect to the internal control can be calculated for a control sample and a test sample to evaluate the malignancy of breast cancer. As the internal control, in addition to a housekeeping gene such as GAPDH, a gene whose expression level is considered not to change between samples can be used. Further, the relative expression level of the expression level in the test sample relative to the expression level in at least one control sample may be calculated. Specifically, the test sample when the expression level in the control sample is 1. The expression level in can be calculated as a relative expression level and evaluated as a gene expression pattern in a test sample. If the level of expression level in the control sample is known in advance, the result may be a high or low value for each gene depending on the relative expression level of the test sample with respect to the control sample.
In addition, for example, the expression pattern can be calculated as an expression ratio obtained by dividing the expression level in the test sample and the expression level in the control sample by the average value or the median value of the expression levels, respectively.
In the present invention, at least three genes are selected from the six genes, and the expression patterns of at least three genes are compared. Alternatively, the expression level of each of the genes is compared to whether the expression level of SOCS2 or CD44 is high or the expression level of BMP7, CD24, CXCL12 or PIK3R1 is low compared to the control sample.
Various methods can be employed for the analysis and display of gene expression patterns. The most common method is to arrange the expression ratio of the test sample to the control sample in a graphical dendogram in which the column indicates the test sample and the control sample, and the row indicates each gene. The expression ratio of each gene can be visualized by color. Such data display includes commercially available computer software, such as Silicon Genetics, Inc. “GeneSpring” can be used. In addition, display using a histogram and statistical analysis such as analysis of variance (ANOVA) or multiple comparison can be performed using general spreadsheet software.
By assessing the malignancy of breast cancer based on the expression patterns of at least three genes, the malignancy of breast cancer can be evaluated appropriately and accurately at an early stage for each individual breast cancer patient.
As the evaluation step, the gene expression pattern in the test sample is at least one selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer. Evaluate that the malignancy of breast cancer is low enough to approximate the expression pattern of the gene in the control sample of the species, and the expression pattern of the gene in the test sample is derived from a tissue with a high metastatic cancer cell line and a high metastatic cancer A method of evaluating that the malignancy of breast cancer is higher as the expression pattern of the gene is approximated to at least one control sample selected from the group consisting of
In the step of evaluating, the gene expression pattern in the test sample is selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer. Compared to the expression pattern of the gene in at least one control sample,
(A) When the expression level of at least one gene selected from the group consisting of CD44 and SOCS2 increases,
(B) A method for evaluating that the malignancy of breast cancer is high when the expression level of at least one gene selected from the group consisting of BMP7, CD24, CXCL12, and PIK3RI decreases.
In the present invention, examples of the control sample derived from a healthy individual include mammary gland tissue, lymph node tissue, milk, and blood derived from an individual who has not developed cancer.
In the present invention, the non-lesion site-derived control sample includes, for example, mammary gland tissues other than cancer lesions among mammary gland tissues having cancer lesions of individuals who have developed cancer.
In the present invention, the low metastatic cancer cell line includes, for example, the MCF7 human breast cancer cell line.
In the present invention, a control sample derived from a tissue having low metastatic cancer includes, for example, a mammary gland tissue having a cancer lesion collected from an individual whose metastasis was not observed by a prognostic survey.
In the present invention, examples of the highly metastatic cancer cell line include an MDA-MB-231 human breast cancer cell line.
In the present invention, the control sample derived from a tissue having highly metastatic cancer includes, for example, a cancer lesion collected from an individual in which metastasis is observed by a prognostic survey or a tissue having a metastatic cancer lesion.
The most common method for analyzing the degree of approximation of the gene expression pattern is cluster analysis, and analysis software such as “GeneSpring” can also be used. For example, gene expression patterns in test samples, MCF7 cells, and MDA-MB-231 cells are compared by cluster analysis, and if they are classified into the same cluster as MCF7 cells, the malignancy is evaluated to be relatively low. On the contrary, if it is classified into the same cluster as MDA-MB-231 cells, it can be judged that the malignancy is relatively high. The degree of approximation can be expressed visually by creating a tree diagram of the sample by hierarchical cluster analysis. Specifically, a hierarchical cluster analysis is performed, and a graphical dendrogram in which a column indicates a test sample and a control sample, and a row indicates each gene may be output. The closer to the expression pattern of the highly metastatic breast cancer cell line, the higher the malignancy can be evaluated.
In the present invention, by evaluating the expression patterns of at least three genes, the malignancy of breast cancer can be evaluated early and appropriately and accurately for individual breast cancer patients. By evaluating the expression patterns of four types, more preferably at least five types, and more preferably all six types, the malignancy of breast cancer can be evaluated with higher accuracy.
The array or kit of the present invention is used in a method for measuring the expression level of the gene in a test sample, that is, the amount of mRNA transcribed from the gene or the expression level of a protein encoded by the gene.
The array of the present invention is an array for evaluating the malignancy of breast cancer,
An array in which nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on a support It is.
The array of the present invention is an array for evaluating the malignancy of breast cancer,
Only nucleic acids corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or nucleic acid fragments thereof are immobilized in a defined region on the support. An array.
The kit of the present invention is a kit for evaluating the malignancy of breast cancer as a kit for measuring the expression level of mRNA,
A kit comprising primers and / or probes for detecting mRNA of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or mRNA fragments thereof.
Moreover, the kit of the present invention is a kit for evaluating the malignancy of breast cancer as a kit for measuring the expression level of a polypeptide,
A kit comprising a polypeptide encoded by at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 and / or an antibody and / or antibody fragment against the polypeptide fragment is there.
For example, the nucleic acid corresponding to at least three genes or the nucleic acid fragments thereof contained in the array or kit of the present invention, primers for detecting mRNA of at least three genes and / or mRNA fragments thereof, and The base sequences of the probes need only correspond to the nucleic acid sequences of the six genes in the present invention.
Examples of the nucleic acid and / or nucleic acid fragment, and the primer and / or probe include polynucleotides and / or oligonucleotides corresponding to the base sequences of at least a part of the six genes in the present invention, and the length is several It can be 10 base pairs.
Since the sequence information of the six genes in the present invention can be easily obtained from, for example, a database such as Genbank, nucleic acids and / or nucleic acid fragments corresponding to at least three genes based on the information used in the array or kit The primers and / or probes for detecting the mRNA and / or the mRNA fragment thereof can be appropriately selected, designed and adjusted by those skilled in the art. They can also be used as probes in Northern blotting, primers in PCR, and the like. In addition, an antibody against at least a part of a polypeptide encoded by the gene and / or an antibody fragment thereof contained in the kit of the present invention can be prepared by a person skilled in the art by any method, such as Western blotting or ELISA assay. It can be used not only for immunological assay methods, but also for immunostaining methods. Furthermore, if necessary, the polynucleotide / oligonucleotide, antibody or antibody fragment thereof may be labeled with an appropriate labeling substance such as a radioactive substance, a fluorescent substance, or a dye.
When a partial base sequence of the gene in the present invention is used as a primer, the sequence is not particularly limited, but preferably the sequence shown in Table 3 described later is used.
The above array or kit includes other elements or components known to those skilled in the art depending on the configuration and purpose of use, such as various reagents, enzymes, buffers, reaction plates (containers), and the like. It is done. Various reagents may include a reagent derived from a control sample for use as a control.
 以下、本発明を実施例によって説明するが、本発明の技術的範囲は、以下の実施例の記載によって、何ら限定して解釈されるものではない。また、特に記載の無い場合には、当業者に公知の、標準的な方法で行われた。
(ヒト乳癌細胞株)
 ヒト乳癌細胞株は、luminal typeであり、かつ悪性度が低いMCF7乳癌細胞株と、MCF7細胞から選択した高浸潤および転移性であるMCF7−14乳癌細胞株と、およびbasal/mesenchymal typeであり、かつ悪性度の高いMDA−MB−231乳癌細胞株とを用いた。
 MCF7細胞、およびMDA−MB−231細胞は、それぞれ東北大学加齢医学研究所(TKG 0479)、およびAmerican Type Culture Collection(ATCC,Manassas,VA,USA)から購入した。
 MCF7−14細胞は、国際公開第2008/093886号公報に記載の方法に準じて作成した細胞(受託番号:FERM BP−10944)を用いた。
(蛍光免疫染色)
 上記の細胞を、4%パラホルムアルデヒド(PFA)/リン酸緩衝溶液(PBS)溶液で固定し、スキムミルクで非特異的反応をブロッキングした後、マウス抗E−cadherinモノクローナル抗体(クローン、67A4;Santa Cruz Biotechnology, Inc.;希釈倍率、1:100希釈)およびマウス抗vimentinモノクローナル抗体(V9,DAKO,1:300)溶液を加え、室温で1時間、インキュベートした。0.1%Triton−X添加PBSで洗浄後、引き続き、Alexa Fluor 488標識ヤギ抗マウスIgG抗体溶液によるインキュベーション、4’6−diamidino−2−phenylindole(DAPI)による細胞核の対比染色を行った。蛍光像の観察は、ZEISS社のAxioVisionソフトウェアを用いた。
(total RNAの抽出)
 上記のヒト乳癌細胞株を、Thymidine−Hydroxyurea法により、細胞周期のS期に同調させた後、Qiagen社のRNeasy Miniキットを用いて、total RNAを抽出した。
(DNAマイクロアレイ解析)
 抽出したtotal RNAから、One−Cycle cDNA Synthesis Kit(Affymetrix)により二本鎖cDNAを合成し、GeneChip Sample Cleanup Module (Affymetrix)により精製した。GeneChip IVT Labeling Kitにより、ビオチン標識されたcRNAを合成し、GeneChip Sample Cleanup Moduleにより精製した。15mgの標識cRNAを、Human Genome U133 Plus 2.0 Array(Affymetrix)にハイブリダイズさせ、そのアレイイメージをGeneChip operatingソフトウェア(Affymetrix)でスキャンした。
(DNAマイクロアレイデータ解析)
 上記DNAマイクロアレイデータを、GeneSpring GX 7.3.1ソフトウェア、およびMultiExperiment Viewer(MeV)4.2ソフトウェア(part of the TM4 Software Suite, open source)を用いて解析した。各チップにおけるマイクロアレイデータを、第50百分位で正規化(normalization)した後、各プローブのデータ値を、全てのサンプルにおけるデータの中央値(median)で正規化した。
 3つの細胞のうち2つ以上の細胞でdetection flagが”present”であり、かつ全ての細胞においてシグナル強度が50以上の遺伝子を対象に、average linkage hierarchical clustering解析を行った。
(逆転写ポリメラーゼ連鎖反応)
 抽出したtotal RNA 2μgから、SuperScript III reverse transcriptase(Invitrogen)を用いて、逆転写(RT)反応を50℃で1時間行ってcDNAを合成し、85℃、5分間の加熱により、反応を停止させた。得られたcDNA0.2μLおよび0.5μMのプライマーを含む、7.5μLの反応溶液に、Power SYBRGreen PCR Master Mix(Applied Biosystems)2.5μLを加え、ポリメラーゼ連鎖反応(PCR)を行い、各PCRサイクル終了時における増幅産物の蛍光強度を測定した。本実験で用いたプライマーの塩基配列を、表3に示す。PCRおよび蛍光強度の測定は、7900HT Fast Real−Time PCR Systemにより制御した(95℃、10分間のプレインキュベーション;95℃、15秒間のデナチュレーションに続く、60℃、1分間のアニーリング/エロンゲーションのサイクルを40サイクル)。それぞれのプライマーに対するトリプリケイトの実験を、全ての細胞で2回行った。
Figure JPOXMLDOC01-appb-T000003
(定量RT−PCRデータ解析)
 各遺伝子の定量RT−PCRデータは、内部コントロールであるGAPDHのmRNA発現量に正規化し、MCF7細胞における発現量に対する相対値とした。統計学的解析は、ANOVAおよびTukey−Kramer multiple comparisonにより行い、P<0.05を有意とした。
(フローサイトメトリー)
 クローン化したMCF−7細胞およびMCF−7−14細胞を、Phycoerythrin(PE)標識抗CD44モノクローナル抗体(G44−26,BD Biosciences)またはPE標識抗CD24モノクローナル抗体(ML5,BD Biosciences)で染色し、FACSCalibur(BD Biosciences)を用いて、CD44およびCD24タンパク質の発現レベルを測定した。
(epithelialおよびmesenchymalマーカーの発現比較)
 蛍光免疫染色の結果から、MCF7細胞およびMCF7−14細胞では、細胞間接着面にE−cadherinの発現が認められたが、vimentinの発現は認められなかった(図1)。一方、MDA−MB−231細胞では、E−cadherinの発現は認められなかったが、細胞質にvimentinの発現が認められた(図1)。定量RT−PCRによって測定したepithelialおよびmesenchymalマーカーのmRNA発現レベルを、GAPDH mRNAの発現量で標準化した相対的mRNA発現レベルとして、図2に示す。MCF7細胞およびMCF7−14細胞との間に有意な差異は認められなかったが、MDA−MB−231細胞では、MCF7細胞およびMCF7−14細胞と比較して、E−cadherinの発現レベルが有意に低く(P<0.01)、mesenchymalマーカーの発現レベルは有意に高かった(P<0.01、図2)。MCF7−14細胞のepithelial/mesenchymalマーカーの発現レベルは、MCF7細胞と同様に、epithelial typeの発現パターンを示すことが分かった。
(DNAマイクロアレイデータのクラスタ解析)
 MCF7細胞、MCF7−14細胞およびMDA−MB−231細胞における、インフォーマティブな13,092遺伝子の遺伝子発現プロファイルを、相対比較によるグラフィカル デンドログラムで示す(図3)。MCF7−14細胞の遺伝子発現プロファイルは、MDA−MB−231細胞よりも、MCF7細胞に類似していることが分かった。
(BMP7、CD24、CD44、CXCL12、PIK3R1、SOCS2遺伝子の発現比較)
 MCF7細胞、MCF7−14細胞、およびMDA−MB−231細胞の遺伝子発現プロファイルから、BMP7、CD24、CD44、CXCL12、PIK3R1、SOCS2の発現データを抽出し、クラスタ解析により比較すると、MCF7−14細胞は、MCF7細胞ではなく、MDA−MB−231細胞と同じクラスタに分類された(図4、図5)。
 定量RT−PCRによって測定した該遺伝子のmRNA発現レベルを、MCF7細胞に対する相対的mRNA発現レベルとして、図6に示す。MCF7−14細胞およびMDA−MB−231細胞では、MCF7細胞と比較し、CXCL12については有意な差異は認められなかったが、CD44およびSOCS2の発現レベルは有意に高く(P<0.01)、BMP7、CD24およびPIK3R1の発現レベルは有意に低かった(P<0.01、図6)。
 フローサイトメトリーによるタンパク質レベルでの発現解析においても、クローン化したMCF7−14細胞は、クローン化したMCF7細胞と比較して、CD44の発現レベルが高く、CD24の発現レベルは低かった(図7)。
 以上のように、MCF7−14細胞は、epithelial/mesenchymalマーカーの発現レベルでは、予後が比較的良好とされるepithelial typeの発現パターンを示し、全てのインフォーマティブ遺伝子による遺伝子発現プロファイリングの結果も、MCF7細胞とよく類似している。
 しかし、BMP7、CD24、CD44、CXCL12、PIK3R1、SOCS2遺伝子のmRNA、あるいはそれらがコードするタンパク質の発現レベルを比較することにより、MCF7−14細胞は、MCF7細胞と明らかに区別され、悪性度の高いMDA−MB−231細胞と類似する発現パターンを示していることが分かった。このことは、前記遺伝子の発現レベルが真に転移再発リスクを反映することを示している。実際、in vitro wound healing assayやマウス移植モデルにおいて、MCF7−14細胞の高浸潤性および高転移性が確認されており、本実施例において、BMP7、CD24、CD44、CXCL12、PIK3R1、SOCS2遺伝子の発現量を測定することにより、転移再発リスクを評価することが可能であることが示された。
 すなわち、MCF7細胞を乳癌の悪性度の陰性対照として、MDA−MB−231細胞を乳癌の悪性度の陽性対照として、MCF7細胞の乳癌の悪性度を評価すると、MCF7−14細胞は、乳癌の悪性度が高いと判断された。
 epithelialおよびmesenchymalマーカーの発現比較からは、MCF7細胞同様に、MCF7−14細胞は、乳癌の悪性度が低い細胞であると判断されるが、本発明の乳癌の悪性度の評価方法によれば、MDA−MB−231細胞同様に、乳癌の悪性度が高い細胞であると判断された。このことは、国際公開第2008/93886号パンフレットに開示されている、MCF7細胞およびMCF7−14細胞のヌードマウス移植モデルにおける結果に合致する結果であった。
 本実施例では、上記6遺伝子遺伝子の発現量の測定を、該遺伝子から転写されるmRNA量をDNAマイクロアレイおよび定量RT−PCRで測定することにより行ったが、既に記載したように、6遺伝子の発現量を評価するために用いることのできる他の任意の方法を使用することができる。また、遺伝子がコードするタンパク質の発現量を測定することにより、例えば、ELISAアッセイなどの免疫学的測定法や免疫染色法により、実施することも可能である。いずれの方法も、他疾病の臨床検査にも使用されているため、汎用性が高く、検体採取から結果が得られるまでの時間も数日以内であり、臨床応用が十分に期待できる。また、本発明は、多くとも6つの遺伝子の発現量により乳癌の悪性度の評価を行う方法であり、他の分子マーカー群と比較して、実用性が高く、ハイスループットな乳癌の予後診断が見込める。
 本発明は、実施例で示したように、一般的な表計算ソフトによっても、GeneSpringなどの解析ソフトウェアによっても、データ解析を行うことができる。特に、クラスタ解析で得られた結果は、視覚的に理解しやすく、個々の患者の予後診断に混乱を招く可能性が低いため、多検体のデータを同時に扱う場合には、特に有用である。また、これら発現量データは、データベースに蓄積され、クラスタ解析に再活用されることで、予後診断の正確性および信頼性をより高めることができると期待され、臨床上有用なデータになると考えられる。
EXAMPLES Hereinafter, although an Example demonstrates this invention, the technical scope of this invention is not limited and interpreted by description of a following example at all. Also, unless otherwise noted, the standard methods known to those skilled in the art were used.
(Human breast cancer cell line)
The human breast cancer cell lines are luminal type and low malignancy MCF7 breast cancer cell lines, MCF7-14 breast cancer cell lines that are highly invasive and metastatic selected from MCF7 cells, and basal / mesenchymal types, And a high-grade MDA-MB-231 breast cancer cell line.
MCF7 cells and MDA-MB-231 cells were purchased from Tohoku University Institute of Aging Medicine (TKG 0479) and American Type Culture Collection (ATCC, Manassas, VA, USA), respectively.
As the MCF7-14 cells, cells (accession number: FERM BP-10944) prepared according to the method described in International Publication No. 2008/093886 were used.
(Fluorescent immunostaining)
The above cells were fixed with a 4% paraformaldehyde (PFA) / phosphate buffer solution (PBS) solution and non-specific reaction was blocked with skim milk, and then a mouse anti-E-cadherin monoclonal antibody (clone, 67A4; Santa Cruz; Biotechnology, Inc .; dilution factor, 1: 100 dilution) and mouse anti-vimentin monoclonal antibody (V9, DAKO, 1: 300) solution were added and incubated for 1 hour at room temperature. After washing with PBS containing 0.1% Triton-X, incubation with Alexa Fluor 488-labeled goat anti-mouse IgG antibody solution was followed by counterstaining of cell nuclei with 4'6-diamidino-2-phenylindole (DAPI). The observation of the fluorescence image was performed using ZEISS AxioVision software.
(Total RNA extraction)
The above human breast cancer cell line was synchronized with the S phase of the cell cycle by the Thymidine-Hydroxyurea method, and then total RNA was extracted using Qiagen's RNeasy Mini kit.
(DNA microarray analysis)
Double-stranded cDNA was synthesized from the extracted total RNA by One-Cycle cDNA Synthesis Kit (Affymetrix) and purified by GeneChip Sample Cleanup Module (Affymetrix). Biotin-labeled cRNA was synthesized by GeneChip IVT Labeling Kit and purified by GeneChip Sample Cleanup Module. 15 mg of labeled cRNA was hybridized to the Human Genome U133 Plus 2.0 Array (Affymetrix) and the array image was scanned with GeneChip operating software (Affymetrix).
(DNA microarray data analysis)
The DNA microarray data was analyzed using GeneSpring GX 7.3.1 software and MultiExperiment Viewer (MeV) 4.2 software (part of the TM4 Software Suite, open source). After normalizing the microarray data on each chip to the 50th percentile, the data value of each probe was normalized with the median of the data in all samples.
The average linkage hierarchical clustering analysis was performed on genes of which detection flag was “present” in two or more of the three cells and the signal intensity was 50 or more in all cells.
(Reverse transcription polymerase chain reaction)
From 2 μg of the extracted total RNA, using SuperScript III reverse transcriptase (Invitrogen), reverse transcription (RT) reaction was performed at 50 ° C. for 1 hour to synthesize cDNA, and the reaction was stopped by heating at 85 ° C. for 5 minutes. It was. 2.5 μL of Power SYBRGreen PCR Master Mix (Applied Biosystems) is added to 7.5 μL of the reaction solution containing 0.2 μL of cDNA and 0.5 μM of the primer, and polymerase chain reaction (PCR) is performed. The fluorescence intensity of the amplification product at the end was measured. Table 3 shows the base sequences of the primers used in this experiment. PCR and fluorescence intensity measurements were controlled by 7900HT Fast Real-Time PCR System (95 ° C., 10 min pre-incubation; 95 ° C., 15 sec denaturation, 60 ° C., 1 min annealing / elongation 40 cycles). Triplicate experiments for each primer were performed twice on all cells.
Figure JPOXMLDOC01-appb-T000003
(Quantitative RT-PCR data analysis)
Quantitative RT-PCR data for each gene was normalized to the mRNA expression level of GAPDH as an internal control and used as a relative value to the expression level in MCF7 cells. Statistical analysis was performed by ANOVA and Tukey-Kramer multiple comparison, and P <0.05 was considered significant.
(Flow cytometry)
Cloned MCF-7 and MCF-7-14 cells are stained with Physoerythrin (PE) labeled anti-CD44 monoclonal antibody (G44-26, BD Biosciences) or PE labeled anti-CD24 monoclonal antibody (ML5, BD Biosciences), The expression levels of CD44 and CD24 proteins were measured using FACSCalibur (BD Biosciences).
(Expression comparison of epithelial and mesenchymal markers)
As a result of the fluorescence immunostaining, E-cadherin expression was observed on the intercellular adhesion surface in MCF7 cells and MCF7-14 cells, but no vimentin expression was observed (FIG. 1). On the other hand, in MDA-MB-231 cells, expression of E-cadherin was not observed, but expression of vimentin was observed in the cytoplasm (FIG. 1). FIG. 2 shows the mRNA expression levels of epithelial and mesenchymal markers measured by quantitative RT-PCR as relative mRNA expression levels normalized by the expression level of GAPDH mRNA. Although no significant difference was observed between MCF7 cells and MCF7-14 cells, the expression level of E-cadherin was significantly higher in MDA-MB-231 cells than in MCF7 cells and MCF7-14 cells. Low (P <0.01), the expression level of the mesenchymal marker was significantly higher (P <0.01, FIG. 2). It was found that the expression level of epithelial / mesenchymal marker in MCF7-14 cells showed the expression pattern of epithelial type, similar to MCF7 cells.
(Cluster analysis of DNA microarray data)
Informal gene expression profiles of 13,092 genes in MCF7 cells, MCF7-14 cells and MDA-MB-231 cells are shown in a graphical dendrogram by relative comparison (FIG. 3). The gene expression profile of MCF7-14 cells was found to be more similar to MCF7 cells than MDA-MB-231 cells.
(BMP7, CD24, CD44, CXCL12, PIK3R1, SOCS2 gene expression comparison)
When BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 expression data were extracted from gene expression profiles of MCF7 cells, MCF7-14 cells, and MDA-MB-231 cells, and compared by cluster analysis, MCF7-14 cells were The cells were classified into the same cluster as MDA-MB-231 cells but not MCF7 cells (FIGS. 4 and 5).
The mRNA expression level of the gene measured by quantitative RT-PCR is shown in FIG. 6 as the relative mRNA expression level for MCF7 cells. MCF7-14 and MDA-MB-231 cells did not show significant differences for CXCL12 compared to MCF7 cells, but the expression levels of CD44 and SOCS2 were significantly higher (P <0.01). The expression levels of BMP7, CD24 and PIK3R1 were significantly lower (P <0.01, FIG. 6).
Also in the expression analysis at the protein level by flow cytometry, the cloned MCF7-14 cells had higher expression levels of CD44 and lower expression levels of CD24 than the cloned MCF7 cells (FIG. 7). .
As described above, MCF7-14 cells exhibit an epithelial type expression pattern with a relatively good prognosis at the expression level of the epithelial / mesenchymal marker, and the results of gene expression profiling with all the informative genes are also shown in FIG. It is very similar to MCF7 cells.
However, by comparing the expression level of BMP7, CD24, CD44, CXCL12, PIK3R1, SOCS2 gene mRNA, or the protein encoded by them, MCF7-14 cells are clearly distinguished from MCF7 cells and have high malignancy. It was found to show an expression pattern similar to that of MDA-MB-231 cells. This indicates that the expression level of the gene truly reflects the risk of recurrence of metastasis. In fact, in vitro wound healing assay and mouse transplantation model, high invasiveness and high metastasis of MCF7-14 cells have been confirmed. In this example, BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 gene expression It was shown that the risk of metastatic recurrence can be evaluated by measuring the amount.
That is, when MCF7 cells are used as a negative control for breast cancer malignancy, MDA-MB-231 cells are used as a positive control for breast cancer malignancy, and MCF7 cells are evaluated for malignancy of breast cancer. The degree was judged to be high.
From the comparison of the expression of epithelial and mesenchymal markers, it is determined that the MCF7-14 cell is a cell with low malignancy of breast cancer, like the MCF7 cell, but according to the method for evaluating malignancy of breast cancer of the present invention, Similar to MDA-MB-231 cells, it was determined that the cells had high malignancy of breast cancer. This result was consistent with the results in the nude mouse transplantation model of MCF7 cells and MCF7-14 cells disclosed in WO2008 / 93886.
In this example, the expression level of the 6 gene genes was measured by measuring the amount of mRNA transcribed from the gene using a DNA microarray and quantitative RT-PCR. Any other method that can be used to assess expression levels can be used. Further, by measuring the expression level of the protein encoded by the gene, for example, it can be performed by an immunological measurement method such as an ELISA assay or an immunostaining method. Since both methods are used for clinical examinations of other diseases, the versatility is high, and the time from obtaining a sample to obtaining a result is within several days, and clinical application can be sufficiently expected. In addition, the present invention is a method for evaluating the malignancy of breast cancer based on the expression levels of at most six genes, which is more practical than other molecular marker groups and has a high-throughput prognosis of breast cancer. I can expect.
As described in the embodiment, the present invention can perform data analysis using general spreadsheet software or analysis software such as GeneSpring. In particular, the results obtained by the cluster analysis are easy to visually understand and are less likely to cause confusion in the prognosis of individual patients, and therefore are particularly useful when dealing with data from multiple samples simultaneously. In addition, these expression level data are accumulated in a database and are reused for cluster analysis, so that it is expected that the accuracy and reliability of prognosis can be further improved, and are considered to be clinically useful data. .
 現在までのところ、病理組織学的に診断される組織型に合わせて治療法が決定されているが、予後予測の精度が低いため、不必要であるかもしれない治療でも行わざるを得ない状況にある。本発明は、個々の乳癌患者に対し、乳癌の悪性度を早期に、適切かつ正確に評価し、最適な予後の治療方針の決定する上で、有用なツールになり得ると考えられる。
To date, treatment methods have been determined according to the histopathologically diagnosed tissue type, but because the accuracy of prognosis prediction is low, it may be necessary to perform treatment that may be unnecessary It is in. The present invention is considered to be a useful tool for early, appropriate and accurate assessment of breast cancer malignancy and determination of an optimal prognostic treatment policy for individual breast cancer patients.

Claims (16)

  1.  乳癌の悪性度を評価する方法であって、
    (1)被検試料における、BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子の発現量を測定するステップと、
    (2)前記少なくとも3種の遺伝子の発現パターンにより乳癌の悪性度を評価するステップと、を含む、方法。
    A method for assessing the malignancy of breast cancer,
    (1) measuring the expression levels of at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 in a test sample;
    (2) evaluating the malignancy of breast cancer based on the expression pattern of the at least three genes.
  2.  前記(1)が、mRNAおよび/またはポリペプチドの発現量を測定するステップである、請求項1に記載の方法。 The method according to claim 1, wherein (1) is a step of measuring the expression level of mRNA and / or polypeptide.
  3.  前記mRNAに対応する、核酸および/または核酸断片が固定化されたアレイを用いて前記mRNAの発現量を測定する、請求項2に記載の方法。 The method according to claim 2, wherein the expression level of the mRNA is measured using an array corresponding to the mRNA and on which nucleic acids and / or nucleic acid fragments are immobilized.
  4.  前記mRNAに対応する、核酸および/または核酸断片を検出するためのプライマーおよび/またはプローブを用いて前記mRNAの発現量を測定する、請求項2に記載の方法。 The method according to claim 2, wherein the expression level of the mRNA is measured using a primer and / or probe for detecting a nucleic acid and / or a nucleic acid fragment corresponding to the mRNA.
  5.  前記ポリペプチドおよび/またはポリペプチド断片に対する、抗体および/または抗体断片を用いて前記ポリペプチドの発現量を測定する、請求項2に記載の方法。 The method according to claim 2, wherein the expression level of the polypeptide is measured using an antibody and / or antibody fragment against the polypeptide and / or polypeptide fragment.
  6.  前記(1)が、前記被検試料における前記遺伝子の発現量と対照試料における前記遺伝子の発現量を測定するステップである、請求項1~5のいずれか1項に記載の方法。 6. The method according to claim 1, wherein (1) is a step of measuring the expression level of the gene in the test sample and the expression level of the gene in a control sample.
  7.  前記発現パターンが、前記遺伝子の発現量の発現比率からなる、請求項6に記載の方法。 The method according to claim 6, wherein the expression pattern comprises an expression ratio of the expression level of the gene.
  8.  前記発現パターンが、前記対照試料における前記遺伝子の発現量に対する前記被検試料における前記遺伝子の発現量から求められる相対発現量からなる、請求項6に記載の方法。 The method according to claim 6, wherein the expression pattern comprises a relative expression level obtained from the expression level of the gene in the test sample with respect to the expression level of the gene in the control sample.
  9.  前記(2)が、前記被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が低いと評価し、および/または
     前記被検試料における遺伝子の発現パターンが、高転移性癌細胞株および高転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンに近似するほど、乳癌の悪性度が高いと評価するステップである、請求項6~8のいずれか1項に記載の方法。
    (2) is at least selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer, wherein the gene expression pattern in the test sample is It is evaluated that the malignancy of breast cancer is low enough to approximate the expression pattern of the gene in one control sample, and / or the expression pattern of the gene in the test sample is a highly metastatic cancer cell line and a highly metastatic cancer. 9. The step of evaluating that the malignancy of breast cancer is higher as it approximates the expression pattern of the gene in at least one control sample selected from the group consisting of tissue-derived tissue. The method described in 1.
  10.  前記(2)が、前記被検試料における遺伝子の発現パターンが、健常個体由来、非病変部位由来、低転移性癌細胞株、および低転移性癌を有する組織由来からなる群から選択される少なくとも1種の対照試料における遺伝子の発現パターンと比較して、
    (A)CD44およびSOCS2からなる群から選択される少なくとも1種の遺伝子の発現量が増加した遺伝子の発現パターンを示す場合、および/または
    (B)BMP7、CD24、CXCL12、およびPIK3RIからなる群から選択される少なくとも1種の遺伝子の発現量が減少した遺伝子の発現パターンを示す場合に、
    乳癌の悪性度が高いと評価するステップである、請求項6~8のいずれか1項に記載の方法。
    (2) is at least selected from the group consisting of a healthy individual, a non-lesion site, a low metastatic cancer cell line, and a tissue having a low metastatic cancer, wherein the gene expression pattern in the test sample is Compared to the gene expression pattern in one control sample,
    (A) When an expression pattern of a gene in which the expression level of at least one gene selected from the group consisting of CD44 and SOCS2 is increased, and / or (B) from the group consisting of BMP7, CD24, CXCL12, and PIK3RI When the expression level of at least one selected gene shows a reduced gene expression pattern,
    The method according to any one of claims 6 to 8, which is a step of evaluating that the malignancy of breast cancer is high.
  11.  前記低転移性癌細胞株が、MCF7細胞である、請求項9または10に記載の方法。 The method according to claim 9 or 10, wherein the low metastatic cancer cell line is MCF7 cells.
  12.  前記高転移性癌細胞株が、MDA−MB−231細胞である、請求項9に記載の方法。 The method according to claim 9, wherein the highly metastatic cancer cell line is MDA-MB-231 cells.
  13.  乳癌の悪性度を評価するためのアレイであって、
     BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/または核酸断片が支持体上の定められた領域に固定化される、アレイ。
    An array for assessing the grade of breast cancer,
    An array in which nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on a support.
  14.  乳癌の悪性度を評価するためのアレイであって、
     BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される少なくとも3種の遺伝子に対応する核酸および/または核酸断片のみが支持体上の定められた領域に固定化される、アレイ。
    An array for assessing the grade of breast cancer,
    An array in which only nucleic acids and / or nucleic acid fragments corresponding to at least three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 are immobilized on a defined region on the support .
  15.  乳癌の悪性度を評価するためのキットであって、
     BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される3種の遺伝子のmRNAおよび/またはmRNA断片に対応する核酸および/または核酸断片を検出するためのプライマーおよび/またはプローブを含有する、キット。
    A kit for evaluating the malignancy of breast cancer,
    Primers and / or probes for detecting nucleic acids and / or nucleic acid fragments corresponding to mRNAs and / or mRNA fragments of three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2 Contains a kit.
  16.  乳癌の悪性度を評価するためのキットであって、
     BMP7、CD24、CD44、CXCL12、PIK3R1、およびSOCS2からなる群から選択される3種の遺伝子にコードされたポリペプチドおよび/またはポリペプチド断片に対する抗体および/または抗体断片を含有する、キット。
    A kit for evaluating the malignancy of breast cancer,
    A kit comprising an antibody and / or an antibody fragment against a polypeptide and / or polypeptide fragment encoded by three genes selected from the group consisting of BMP7, CD24, CD44, CXCL12, PIK3R1, and SOCS2.
PCT/JP2009/070078 2008-12-08 2009-11-20 Method for evaluating degree of malignancy of breast cancer, and kit for the evaluation WO2010067722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312740A JP2010130993A (en) 2008-12-08 2008-12-08 Method for evaluating degree of malignancy of breast cancer, and array and kit for use in the evaluation method
JP2008-312740 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067722A1 true WO2010067722A1 (en) 2010-06-17

Family

ID=42242711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070078 WO2010067722A1 (en) 2008-12-08 2009-11-20 Method for evaluating degree of malignancy of breast cancer, and kit for the evaluation

Country Status (2)

Country Link
JP (1) JP2010130993A (en)
WO (1) WO2010067722A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133220A1 (en) * 2012-03-08 2013-09-12 学校法人産業医科大学 Cancer malignancy testing method, pluripotent tumorigenic cells, and preparation method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048978A2 (en) * 2005-10-28 2007-05-03 Biomerieux Sa Method for detecting cancer
WO2008093886A1 (en) * 2007-01-30 2008-08-07 Bio Matrix Research, Inc. Mcf7-derived cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048978A2 (en) * 2005-10-28 2007-05-03 Biomerieux Sa Method for detecting cancer
WO2008093886A1 (en) * 2007-01-30 2008-08-07 Bio Matrix Research, Inc. Mcf7-derived cell

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENG GZ. ET AL.: "Twist transcriptionally up- regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel.", CANCER RESEARCH, vol. 67, no. 5, 2007, pages 1979 - 1987 *
HIROKO KOJIMA ET AL.: "Koten'isei Saibo Kabu MCF7-14 Juritsu Oyobi Kaiseki-Gan Shinjun-Gan Ten'i Kanren Inshi no Tansaku", DAI 80 KAI NIPPON THE JAPANESE BIOCHEMICAL SOCIETY TAIKAI DAI 30 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN GODO TAIKAI KOEN YOSHISHU, 3T18-12, - 2007 *
MASAHIRO UCHINO ET AL.: "Sajiteki Idenshi Hatsugen Kaiseki ni yoru Koshinjun-Ten'isei Nyugan Saibo Kabu no Characterization", DAI 81 KAI THE JAPANESE BIOCHEMICAL SOCIETY DAI 31 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN GODO TAIKAI KOEN YOSHISHU 3P-1060, - 20 November 2007 (2007-11-20), pages 648 *
NORIKO GOTO ET AL.: "Nyugan Kan Saibo to Bunshi Hyoteki Chiryo", THE CELL, vol. 40, no. 3, 20 March 2008 (2008-03-20), pages 121 - 124 *
SUN M. ET AL.: "Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K.", CANCER RESEARCH, vol. 61, no. 16, 2001, pages 5985 - 5991 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133220A1 (en) * 2012-03-08 2013-09-12 学校法人産業医科大学 Cancer malignancy testing method, pluripotent tumorigenic cells, and preparation method therefor
JPWO2013133220A1 (en) * 2012-03-08 2015-07-30 学校法人産業医科大学 Method for testing malignancy of cancer, pluripotent tumorigenic cells and method for preparing the same

Also Published As

Publication number Publication date
JP2010130993A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP7042784B2 (en) How to Quantify Prostate Cancer Prognosis Using Gene Expression
US20220213563A1 (en) Gene expression profiles to predict breast cancer outcomes
ES2636470T3 (en) Gene expression markers to predict response to chemotherapy
US9234244B2 (en) Diagnostic tool for diagnosing benign versus malignant thyroid lesions
Borczuk et al. Lung adenocarcinoma global profiling identifies type II transforming growth factor-β receptor as a repressor of invasiveness
JP2015530072A (en) Breast cancer treatment with gemcitabine therapy
US20090298061A1 (en) Diagnostic Methods for the Prediction of Therapeutic Success, Recurrence Free and Overall Survival in Cancer Therapy
CN106834462A (en) One group of application of stomach oncogene
JP2016525883A (en) Prognostic classification and treatment of adenocarcinoma
JP2016537010A (en) Method and kit for predicting prognosis, and method and kit for treating breast cancer using radiation therapy
US20130143753A1 (en) Methods for predicting outcome of breast cancer, and/or risk of relapse, response or survival of a patient suffering therefrom
Han et al. Molecular testing and the pathologist's role in clinical trials of breast cancer
Lerebours et al. Hemoglobin overexpression and splice signature as new features of inflammatory breast cancer?
Arana Echarri et al. A phenomic perspective on factors influencing breast cancer treatment: Integrating aging and lifestyle in blood and tissue biomarker profiling
TW201827603A (en) Biomarker panel for prognosis of bladder cancer
CA3049844C (en) Algorithms and methods for assessing late clinical endpoints in prostate cancer
WO2010067722A1 (en) Method for evaluating degree of malignancy of breast cancer, and kit for the evaluation
JP2018500895A (en) Breast cancer treatment with taxane therapy
AU2014202370B2 (en) Gene Expression Profiles to Predict Breast Cancer Outcomes
US20220364178A1 (en) Urinary rna signatures in renal cell carcinoma (rcc)
AU2016228291A1 (en) Gene Expression Profiles to Predict Breast Cancer Outcomes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831826

Country of ref document: EP

Kind code of ref document: A1