WO2010067506A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2010067506A1
WO2010067506A1 PCT/JP2009/005767 JP2009005767W WO2010067506A1 WO 2010067506 A1 WO2010067506 A1 WO 2010067506A1 JP 2009005767 W JP2009005767 W JP 2009005767W WO 2010067506 A1 WO2010067506 A1 WO 2010067506A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
image
region
image display
eye image
Prior art date
Application number
PCT/JP2009/005767
Other languages
French (fr)
Japanese (ja)
Inventor
清夫 榎
Original Assignee
株式会社有沢製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所 filed Critical 株式会社有沢製作所
Publication of WO2010067506A1 publication Critical patent/WO2010067506A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing

Definitions

  • the present invention relates to an image display device.
  • a stereoscopic image display device in which a liquid crystal display and a phase difference plate are combined is known (for example, see Patent Document 1).
  • the pixels of the liquid crystal display are alternately arranged with the right-eye pixel region and the left-eye pixel region for each line in the horizontal direction, and the right-eye region and the left-eye region so that the phase difference plate also corresponds thereto.
  • the phase difference plate also corresponds thereto.
  • the pixels of the liquid crystal display are alternately arranged with the right-eye pixel region and the left-eye pixel region for each line in the horizontal direction.
  • the amount of image information is half that of the case where the same liquid crystal display is used for planar (two-dimensional) image display. For this reason, there has been a problem that the resolution in a specific direction, for example, the vertical direction is lowered.
  • pixels each including a plurality of sub-pixels that individually emit image light are two-dimensionally arranged to switch between a two-dimensional image and a three-dimensional image.
  • Polarization that causes the image generation unit to generate and the polarization state of the image light emitted from one of the plurality of subpixels to be different from the polarization state of the image light emitted from the other subpixel in each of the pixels
  • a control unit, and the image generation unit includes a two-dimensional image having the whole pixel as a unit, a right-eye image having one subpixel as a unit, and a left-eye image having another subpixel as a unit
  • An image display device that generates any of the above is provided.
  • FIG. 3 is a schematic top view showing a usage state of the stereoscopic image display system 10.
  • FIG. 6 is a diagram illustrating a state in which an image is displayed on the stereoscopic image display apparatus 100.
  • FIG. FIG. 4 is a partially enlarged view of FIG. 3 for explaining an image generation unit 160. It is a figure explaining the vertical direction resolution of the image for right eyes. It is a figure explaining the vertical direction resolution of the image for left eyes. It is a figure which shows the state which displayed the image in the stereoscopic image display apparatus 99.
  • FIG. It is a figure explaining the vertical direction resolution of the image for right eyes. It is a figure explaining the vertical direction resolution of the image for left eyes.
  • FIG. 10 is an exploded perspective view of another stereoscopic image display apparatus 101.
  • 10 stereoscopic image display system 99, 100, 101 stereoscopic image display device, 120 light source, 150 incident-side polarizing plate, 160 image generating unit, 162 right-eye image generating region, 164 left-eye image generating region, 170 outgoing-side polarizing plate, 180, 185, polarization axis control plate, 181, 186, right eye polarization region, 182, 187, left eye polarization region, 200 polarizing glasses, 232, right eye image transmission unit, 234, left eye image transmission unit, 500 observer, 512, right eye, 514, left eye, 660 pixels, 662 red region (R), 664 green region (G), 666 blue region (B), 672, 674, 676 upper region, 673, 675, 677 lower region, 678 right eye sub pixel, 679 left eye sub Pixels, 680 planar image display driving unit, 690 stereoscopic image display driving unit, 92 image display drive unit for the right eye, the image display drive unit for 694 left, 900
  • FIG. 1 is an exploded perspective view of the stereoscopic image display device 100.
  • the stereoscopic image display apparatus 100 includes a light source 120, an incident side polarizing plate 150, an image generation unit 160, an output side polarizing plate 170, and a polarization axis control plate 180 in this order.
  • a polarization axis control plate 180 When an observer observes a stereoscopic image displayed on the stereoscopic image display device 100, the observer observes from the right side of the polarization axis control plate 180 in the drawing.
  • the light source 120 is disposed on the farthest side of the stereoscopic image display device 100 as viewed from the observer.
  • white non-polarized light is applied from the light source 120 to the entire surface of the incident-side polarizing plate 150. Exit toward.
  • a surface light source is used as the light source 120.
  • a combination of a point light source and a condenser lens may be used.
  • An example of the point light source is a light emitting diode (LED) or the like, and an example of the condenser lens is a Fresnel lens sheet.
  • the incident-side polarizing plate 150 is disposed on the light source 120 side with respect to the image generation unit 160.
  • the incident-side polarizing plate 150 has a transmission axis and an absorption axis orthogonal to the transmission axis.
  • the incident-side polarizing plate 150 transmits light having a polarization axis parallel to the direction of the transmission axis. The light of the polarization axis parallel to the direction of is blocked.
  • the direction of the polarization axis refers to the direction of vibration of the electric field in the light.
  • the direction of the transmission axis in the illustrated incident-side polarizing plate 150 is a direction of 45 degrees on the upper right with respect to the horizontal direction when the observer looks at the stereoscopic image display device 100 as indicated by an arrow in the drawing.
  • the image generation unit 160 includes a right-eye image generation area 162 and a left-eye image generation area 164.
  • the right-eye image generation area 162 and the left-eye image generation area 164 are areas obtained by dividing the image generation section 160 in the horizontal direction, as shown in the figure, and a plurality of right-eye image generation areas 162 and left-eye image generation areas 164 are provided. They are staggered in the vertical direction.
  • a right-eye image and a left-eye image are generated in the right-eye image generation region 162 and the left-eye image generation region 164 of the image generation unit 160, respectively.
  • the polarized light transmitted through the incident-side polarizing plate 150 enters the right-eye image generation region 162 and the left-eye image generation region 164 of the image generation unit 160, the polarized light transmitted through the right-eye image generation region 162 is image light of the right-eye image. (Hereinafter referred to as “right eye image light”).
  • the polarized light transmitted through the left-eye image generation region 164 becomes image light of the left-eye image (hereinafter referred to as “left-eye image light”).
  • the right-eye image light that has passed through the right-eye image generation region 162 and the left-eye image light that has passed through the left-eye image generation region 164 are linearly polarized light having a polarization axis in a specific direction.
  • the polarization axis in the specific direction may be the same direction for the right-eye image light and the left-eye image light.
  • the polarization axis is the same direction as the transmission axis of the output side polarizing plate 170 described later.
  • the image generation unit 160 may be a liquid crystal display panel having a liquid crystal cell in which liquid crystal is sealed between two transparent substrates.
  • the transparent electrode that is formed on the surface of the transparent substrate and drives the liquid crystal further divides each of the red region, the green region, and the blue region that form each pixel into upper and lower parts, thereby subdividing the right eye subpixel and the left eye subpixel.
  • the right-eye image generation region 162 and the left-eye image generation region 164 obtained by dividing the image generation unit 160 in the horizontal direction are alternately arranged so as to correspond to the right-eye subpixel and the left-eye subpixel, respectively.
  • the pixel means a unit for handling an image and has a color tone and a gradation.
  • the pixels are two-dimensionally arranged in the horizontal direction and the vertical direction, and each of the pixels includes a red region, a green region, and a blue region. Various colors can be expressed while increasing or decreasing the luminance of these areas.
  • the exit side polarizing plate 170 is arranged on the viewer side with respect to the image generation unit 160. Right-eye image light that has passed through the right-eye image generation region 162 and left-eye image light that has passed through the left-eye image generation region 164 are incident on the output-side polarizing plate 170.
  • the direction of the transmission axis in the exit side polarizing plate 170 is 45 degrees from the horizontal direction when the observer views the stereoscopic image display device 100 as indicated by an arrow in the figure.
  • Outgoing-side polarizing plate 170 transmits light having a polarization axis parallel to the transmission axis and blocking light having a polarization axis parallel to the absorption axis among the incident right-eye image light and left-eye image light.
  • the polarization axis control plate 180 has a right eye polarization region 181 and a left eye polarization region 182.
  • the positions and sizes of the right-eye polarizing region 181 and the left-eye polarizing region 182 on the polarization axis control plate 180 are for the right eye when the stereoscopic image display device 100 arranged at the front center position with a predetermined observation distance is observed.
  • the right eye image light transmitted through the image generation region 162 is observed through the right eye polarization region 181, and the left eye image light transmitted through the left eye image generation region 164 is observed through the left eye polarization region 182.
  • the right-eye polarization region 181 transmits the incident right-eye image light as it is without rotating the polarization axis.
  • the left-eye polarization region 182 rotates the polarization axis of the incident left-eye image light in a direction orthogonal to the polarization axis of the right-eye image light incident on the right-eye polarization region 181.
  • the polarization axis of the right-eye image light transmitted through the right-eye polarization region 181 and the polarization axis of the left-eye image light transmitted through the left-eye polarization region 182 are orthogonal to each other as indicated by arrows in the drawing.
  • the arrow on the polarization axis control plate 180 shown in the figure indicates the direction of the polarization axis of the polarized light that has passed through the polarization axis control plate 180.
  • the right-eye polarizing region 181 for example, transparent glass or resin is used.
  • the left-eye polarization region 182 for example, a half-wave plate having an optical axis at an angle of 45 degrees with respect to the direction of the polarization axis of the incident left-eye image light is used.
  • the direction of the optical axis of the left-eye polarizing region 182 is the horizontal direction or the vertical direction.
  • the optical axis refers to one of a fast axis and a slow axis when light passes through the left-eye polarizing region 182.
  • the stereoscopic image display apparatus 100 transmits the right-eye polarization region 181 and the left-eye polarization region 182 of the polarization axis control plate 180 closer to the observer side than the polarization axis control plate 180 (right side of the polarization axis control plate 180 in the illustrated example).
  • the diffusing plate for example, a lenticular lens sheet in which a plurality of cylindrical convex lenses (cylindrical lenses) extending in the horizontal direction or the vertical direction are arranged, or a lens array sheet in which a plurality of convex lenses are arranged on a plane can be used.
  • FIG. 2 is a schematic top view showing the usage state of the stereoscopic image display system 10.
  • the observer 500 observes the right-eye image light and the left-eye image light projected from the stereoscopic image display device 100 with the polarizing glasses 200.
  • the polarized glasses 200 have a right-eye image transmission unit 232 arranged at a position corresponding to the right eye 512 of the observer 500 when the observer 500 puts on the polarized glasses 200, and a left-eye image transmission arranged at a position corresponding to the left eye 514. Part 234.
  • the right-eye image transmission unit 232 includes a polarizing plate that has the same transmission axis direction as the right-eye polarization region 181 that transmits the right-eye image light and has an absorption axis direction orthogonal to the transmission axis.
  • the left-eye image transmission unit 234 includes a polarizing plate having the same transmission axis direction as that of the left-eye polarizing region 182 that transmits the left-eye image light and having an absorption axis direction orthogonal to the transmission axis direction.
  • a polarizing lens to which a polarizing film obtained by uniaxially stretching a film impregnated with a dichroic dye can be used as the right-eye image transmission part 232 and the left-eye image transmission part 234.
  • the observer 500 When the observer 500 observes a stereoscopic image by the stereoscopic image display system 10, the range in which the right-eye image light and the left-eye image light transmitted through the right-eye polarization region 181 and the left-eye polarization region 182 of the polarization axis control plate 180 are emitted.
  • the stereoscopic image display apparatus 100 is observed with the polarizing glasses 200 as described above. Accordingly, the right eye 512 observes the right eye image light, and the left eye 514 selectively observes the left eye image light. Therefore, the observer 500 can recognize the right eye image light and the left eye image light together as a stereoscopic image.
  • FIG. 3 is a partially enlarged view of the image generation unit 160 and shows a detailed structure of the pixel 660.
  • the image generation unit 160 includes a plurality of pixels 660 arranged two-dimensionally in the horizontal direction and the vertical direction.
  • the image generating unit 160 When generating a two-dimensionally displayed flat image, the image generating unit 160 is driven for each pixel 660 by the flat image display driving unit 680. Thereby, each of the pixels 660 becomes a unit for displaying a planar image.
  • Each of the plurality of pixels 660 includes a red region (R) 662, a green region (G) 664, and a blue region (B) 666. Further, each of the red region (R) 662, the green region (G) 664, and the blue region (B) 666 is divided vertically. That is, each of the red region (R) 662, the green region (G) 664, and the blue region (B) 666 is divided into an upper region 672, 674, 676 and a lower region 673, 675, 677.
  • the upper areas 672, 674, and 676 are right-eye subpixels 678 that form the right-eye image generation area 162 corresponding to the right-eye image generation area 162.
  • the lower regions 673, 675, and 677 are left-eye subpixels 679 that form the left-eye image generation region 164 corresponding to the left-eye image generation region 164.
  • the image generation unit 160 is driven by the stereoscopic image display driving unit 690.
  • the right-eye image display driving unit 692 of the stereoscopic image display driving unit 690 drives the upper regions 672, 674, and 676 serving as the right-eye sub-pixel 678 as a display unit.
  • the left-eye image display driving unit 694 of the stereoscopic image display driving unit 690 drives the lower regions 673, 675, and 677 serving as the left-eye sub-pixel 679 as display units.
  • FIG. 4 is a diagram showing a planar image displayed two-dimensionally on the stereoscopic image display device 100.
  • the stereoscopic image display apparatus 100 is shown by the image generation unit 160 without the light source 120, the incident side polarizing plate 150, the output side polarizing plate 170, and the polarization axis control plate 180.
  • the stereoscopic image display apparatus 100 has the structure shown in FIG.
  • the same reference numerals are assigned to elements common to those in FIGS. 1 and 2, and redundant description is omitted.
  • the image generation unit 160 is formed by a plurality of pixels 660 (in the figure, one of the pixels 660 is highlighted by a thick line).
  • a planar image of a tree-like shape 900 representing a tree is displayed by 11 pixels 660 arranged in the vertical direction and 11 in the horizontal direction.
  • FIG. 5 is a diagram showing a dendritic shape 900 that the observer 500 observes with the right eye 512 wearing the polarizing glasses 200 when a stereoscopic image is displayed on the stereoscopic image display system 10.
  • the same elements as those in FIGS. 3 and 4 are denoted by the same reference numerals, and redundant description is omitted.
  • the vertical resolution in the display image is determined based on the arrangement of the right-eye sub-pixels 678 in the image generation unit 160.
  • the tree shape 900 is displayed by the right-eye sub-pixels 678 arranged in the vertical direction and 11 in the horizontal direction and 11 in the horizontal direction, respectively.
  • the vertical resolution per unit height of the right-eye image displays the planar image shown in FIG.
  • the resolution is the same as when Thereby, the dendritic shape 900 observed with the right eye 512 retains the outline of the dendritic shape, and the details of the dendritic shape 900 can be recognized even with one eye.
  • FIG. 6 shows a tree-like shape 900 that the observer 500 observes with the left eye 514 wearing the polarizing glasses 200 in the stereoscopic image display system 10.
  • the same elements as those in FIGS. 3 and 4 are denoted by the same reference numerals, and redundant description is omitted.
  • the vertical resolution in the display image is determined based on the arrangement of the left eye sub-pixels 679 of the image generation unit 160.
  • the tree shape 900 is displayed by the left-eye sub-pixels 679 arranged in 11 pieces in the vertical direction and 11 pieces in the horizontal direction.
  • the left-eye image generation area 164 in the image generation unit 160 corresponds to the left-eye sub-pixel 679 so that the vertical resolution per unit height of the left-eye image displays the planar image shown in FIG.
  • the resolution is the same as when Thereby, the dendritic shape 900 observed with the left eye 514 retains the outline of the dendritic shape, and the details of the dendritic shape 900 can be recognized even with one eye.
  • FIG. 7 is a diagram showing a state in which a planar image is displayed in another stereoscopic image display device 99 shown for comparison with the above embodiment.
  • the light source 120, the incident side polarizing plate 150, the output side polarizing plate 170, and the polarization axis control plate 180 are not shown.
  • the stereoscopic image display device 99 displays a tree shape 900 as in FIG.
  • the image generation unit 160 in the stereoscopic image display device 99 causes the right-eye image generation region 162 and the left-eye image generation region 164 to correspond to each other for each pixel 660 partitioned in the horizontal direction. In other respects, it has the same structure as the stereoscopic image display apparatus 100 shown in FIGS.
  • FIG. 8 shows a tree shape 900 that the observer 500 observes with the right eye 512 wearing the polarizing glasses 200 in the stereoscopic image display system 10 using the stereoscopic image display device 99.
  • the right-eye image generation area 162 every other pixel 660 in the vertical direction corresponds as a display unit. Therefore, in the illustrated example, the right-eye image generation region 162 is formed by 6 pixels in the vertical direction and 11 pixels in the horizontal direction. Accordingly, the vertical resolution of the right-eye image is nearly half that of the planar image shown in FIG.
  • the stereoscopic image display device 100 shown in FIGS. 1 to 3 suppresses a decrease in resolution in the vertical direction even when displaying a stereoscopic image. Is done.
  • FIG. 9 shows a tree shape 900 that the observer 500 observes with the left eye 514 wearing the polarizing glasses 200 in the stereoscopic image display system 10 using the stereoscopic image display device 99.
  • every other pixel 660 in the vertical direction corresponds as a display unit. Therefore, in the example shown in the drawing, five pixels in the vertical direction and 11 pixels in the horizontal direction form the left-side image generation region 164. Therefore, the vertical resolution of the left-eye image is less than half that of the planar image shown in FIG.
  • the stereoscopic image display device 100 shown in FIG. 1 to FIG. 3 has a lower resolution in the vertical direction than the stereoscopic image display device 99 having the pixel 660 as a display unit, even when displaying a stereoscopic image. Is suppressed.
  • FIG. 10 is an exploded perspective view of another stereoscopic image display apparatus 101.
  • the same reference numerals are given to the same elements as those in the stereoscopic image display apparatus 100 shown in FIGS. 1 to 3, and redundant description is omitted.
  • the stereoscopic image display device 101 includes a polarization axis control plate 185 having another structure instead of the polarization axis control plate 180 in the stereoscopic image display device 100.
  • the polarization axis control plate 185 has a right eye polarization region 186 and a left eye polarization region 187.
  • the right-eye polarizing region 186 and the left-eye polarizing region 187 are both quarter-wave plates, but their optical axes are orthogonal to each other. That is, for example, a quarter-wave plate whose optical axis is in the horizontal direction is used for the right-eye polarizing region 186, and a quarter-wave plate whose optical axis is in the vertical direction is used for the left-eye polarizing region 187, for example.
  • the white arrow on the polarization axis control plate 180 indicates the rotation direction of the polarized light that has passed through the polarization axis control plate 185.
  • the right-eye polarization region 186 and the left-eye polarization region 187 of the polarization axis control plate 185 emit incident light as circularly polarized light whose polarization axes rotate in opposite directions. That is, for example, the right-eye polarizing region 186 emits incident light as clockwise circularly polarized light, and the left-eye polarizing region 187 emits incident light as counterclockwise circularly polarized light.
  • the right-eye polarization region 186 in the polarization axis control plate 185 is similar to the right-eye polarization region 181 in the polarization axis control plate 180 shown in FIG. 1, and the right-eye subpixel 678 that forms the right-eye image generation region 162 in the image generation unit 160.
  • Corresponding to The left-eye polarization region 187 also corresponds to the left-eye sub-pixel 679 that forms the left-eye image generation region 164 in the image generation unit 160, similarly to the right-eye polarization region 181 in the polarization axis control plate 180 illustrated in FIG. Accordingly, in each of the pixels 660, the upper regions 672, 674, and 676 correspond to the right-eye image generation region 162, and the lower regions 673, 675, and 677 correspond to the left-eye image generation region 164.
  • quarter-wave plates whose optical axes are orthogonal to each other are arranged in the right-eye image transmission unit 232 and the left-eye image transmission unit 234. Is done. That is, for example, a quarter-wave plate with a horizontal optical axis as the right-eye image transmission unit 232, and a quarter-wave plate with a vertical optical axis as the left-eye image transmission unit 234, respectively, are retardation plates. Arranged.
  • the direction of the transmission axis is 45 degrees to the right when viewed from the observer 500, and the absorption axis direction is perpendicular to the transmission axis direction, closer to the observer side than the retardation plate. It has a polarizing plate.
  • the quarter wave plate is made of polycarbonate, for example.
  • the right-eye image generation region 162 in the image generation unit 160 corresponds to the right-eye subpixel 678
  • the left-eye image generation region 164 in the image generation unit 160 corresponds to the left-eye subpixel 679.
  • the right-eye image generation area 162 in the image generation unit 160 is the right-eye subpixel 678
  • the left-eye image generation area 164 is the left-eye subpixel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Disclosed is a three-dimensional image display device which can minimize a drop in the resolution of a three-dimensional image to be displayed.  The image display device comprises an image generation section which has two-dimensionally-arranged pixels each including a plurality of subpixels which emit image light individually and generates a two-dimensional image or a three-dimensional image by switching, and a polarization control section which differentiates, in each pixel, the polarization state of image light emitted by one of the plurality of subpixels from the polarization state of image light emitted by another subpixel, wherein the image generation section generates either a two-dimensional image using the whole pixels as a unit or a three-dimensional image which includes an image for the right eye using one subpixel as a unit and an image for the left eye using another subpixel as a unit.

Description

画像表示装置Image display device
 本発明は、画像表示装置に関する。 The present invention relates to an image display device.
 液晶ディスプレイと位相差板とを組み合わせた立体画像表示装置が知られている(例えば特許文献1参照)。この立体画像表示装置では、液晶ディスプレイのピクセルを水平方向に対して一ライン毎に右目用ピクセル領域および左目用ピクセル領域を交互に配し、位相差板もそれに対応するように右目領域および左目領域を交互に設けている。 A stereoscopic image display device in which a liquid crystal display and a phase difference plate are combined is known (for example, see Patent Document 1). In this stereoscopic image display device, the pixels of the liquid crystal display are alternately arranged with the right-eye pixel region and the left-eye pixel region for each line in the horizontal direction, and the right-eye region and the left-eye region so that the phase difference plate also corresponds thereto. Are provided alternately.
特開平10-253824号公報JP-A-10-253824
 上記立体画像表示装置の場合、液晶ディスプレイのピクセルを水平方向に対して一ライン毎に右目用ピクセル領域および左目用ピクセル領域を交互に配しているので、観察者の右目および左目に入るそれぞれの画像情報量は、同じ液晶ディスプレイを平面(二次元)の画像表示に使用した場合に比べ、半分の画像情報量となる。このため、特定の方向、例えば鉛直方向における解像度が低下するという問題点を有していた。 In the case of the stereoscopic image display device, the pixels of the liquid crystal display are alternately arranged with the right-eye pixel region and the left-eye pixel region for each line in the horizontal direction. The amount of image information is half that of the case where the same liquid crystal display is used for planar (two-dimensional) image display. For this reason, there has been a problem that the resolution in a specific direction, for example, the vertical direction is lowered.
 上記課題を解決すべく、本発明の第一態様として、個別に画像光を出射する複数のサブピクセルをそれぞれが含むピクセルを二次元的に配列されて、二次元画像および三次元画像を切り替えて生成する画像生成部と、ピクセルの各々において、複数のサブピクセルのうちの一のサブピクセルが出射する画像光の偏光状態と他のサブピクセルが出射する画像光の偏光状態とを互いに相違させる偏光制御部とを備え、画像生成部は、ピクセルの全体を単位とする二次元画像と、一のサブピクセルを単位とする右目用画像および他のサブピクセルを単位する左目用画像を含む三次元画像とのいずれかを生成する画像表示装置が提供される。 In order to solve the above problems, as a first aspect of the present invention, pixels each including a plurality of sub-pixels that individually emit image light are two-dimensionally arranged to switch between a two-dimensional image and a three-dimensional image. Polarization that causes the image generation unit to generate and the polarization state of the image light emitted from one of the plurality of subpixels to be different from the polarization state of the image light emitted from the other subpixel in each of the pixels A control unit, and the image generation unit includes a two-dimensional image having the whole pixel as a unit, a right-eye image having one subpixel as a unit, and a left-eye image having another subpixel as a unit An image display device that generates any of the above is provided.
 上記発明の概要は、本発明の必要な特徴のすべてを列挙したものではない。また、これらの特徴群のサブコンビネーションも発明となり得る。 The above summary of the invention does not enumerate all the necessary features of the present invention. Further, a sub-combination of these feature groups can be an invention.
本実施形態の立体画像表示装置100の分解斜視図である。It is a disassembled perspective view of the three-dimensional image display apparatus 100 of this embodiment. 立体画像表示システム10の使用状態を示す概略上面図である。3 is a schematic top view showing a usage state of the stereoscopic image display system 10. FIG. 立体画像表示装置100において画像を表示した状態を示す図である。6 is a diagram illustrating a state in which an image is displayed on the stereoscopic image display apparatus 100. FIG. 画像生成部160を説明する図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3 for explaining an image generation unit 160. 右目用画像の鉛直方向解像度を説明する図である。It is a figure explaining the vertical direction resolution of the image for right eyes. 左目用画像の鉛直方向解像度を説明する図である。It is a figure explaining the vertical direction resolution of the image for left eyes. 立体画像表示装置99において画像を表示した状態を示す図である。It is a figure which shows the state which displayed the image in the stereoscopic image display apparatus 99. FIG. 右目用画像の鉛直方向解像度を説明する図である。It is a figure explaining the vertical direction resolution of the image for right eyes. 左目用画像の鉛直方向解像度を説明する図である。It is a figure explaining the vertical direction resolution of the image for left eyes. 他の立体画像表示装置101の分解斜視図である。FIG. 10 is an exploded perspective view of another stereoscopic image display apparatus 101.
10 立体画像表示システム、99、100、101 立体画像表示装置、120 光源、150 入射側偏光板、160 画像生成部、162 右目用画像生成領域、164 左目用画像生成領域、170 出射側偏光板、180、185 偏光軸制御板、181、186 右目偏光領域、182、187 左目偏光領域、200 偏光眼鏡、232 右目用画像透過部、234 左目用画像透過部、500 観察者、512 右目、514 左目、660 ピクセル、662 赤領域(R)、664 緑領域(G)、666 青領域(B)、672、674、676 上領域、673、675、677 下領域、678 右目用サブピクセル、679 左目用サブピクセル、680 平面画像表示駆動部、690 立体画像表示駆動部、692 右目用画像表示駆動部、694 左目用画像表示駆動部、900 樹状形状 10 stereoscopic image display system, 99, 100, 101 stereoscopic image display device, 120 light source, 150 incident-side polarizing plate, 160 image generating unit, 162 right-eye image generating region, 164 left-eye image generating region, 170 outgoing-side polarizing plate, 180, 185, polarization axis control plate, 181, 186, right eye polarization region, 182, 187, left eye polarization region, 200 polarizing glasses, 232, right eye image transmission unit, 234, left eye image transmission unit, 500 observer, 512, right eye, 514, left eye, 660 pixels, 662 red region (R), 664 green region (G), 666 blue region (B), 672, 674, 676 upper region, 673, 675, 677 lower region, 678 right eye sub pixel, 679 left eye sub Pixels, 680 planar image display driving unit, 690 stereoscopic image display driving unit, 92 image display drive unit for the right eye, the image display drive unit for 694 left, 900 dendritic shape
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. Moreover, not all the combinations of features described in the embodiments are essential for the solution means of the invention.
 図1は、立体画像表示装置100の分解斜視図である。立体画像表示装置100は、光源120、入射側偏光板150、画像生成部160、出射側偏光板170および偏光軸制御板180をこの順で備える。立体画像表示装置100に表示される立体画像を観察者が観察する場合は、図中における偏光軸制御板180よりも右側から観察する。 FIG. 1 is an exploded perspective view of the stereoscopic image display device 100. The stereoscopic image display apparatus 100 includes a light source 120, an incident side polarizing plate 150, an image generation unit 160, an output side polarizing plate 170, and a polarization axis control plate 180 in this order. When an observer observes a stereoscopic image displayed on the stereoscopic image display device 100, the observer observes from the right side of the polarization axis control plate 180 in the drawing.
 光源120は、観察者から見て立体画像表示装置100の最も奥側に配される。立体画像表示装置100に立体画像を表示させている状態(以下、「立体画像表示装置100の使用状態」と記載する)においては、光源120から白色の無偏光を入射側偏光板150の全面に向けて出射する。 The light source 120 is disposed on the farthest side of the stereoscopic image display device 100 as viewed from the observer. In a state where a stereoscopic image is displayed on the stereoscopic image display device 100 (hereinafter referred to as “use state of the stereoscopic image display device 100”), white non-polarized light is applied from the light source 120 to the entire surface of the incident-side polarizing plate 150. Exit toward.
 なお、本実施形態では、光源120に面光源を用いている。しかしながら、面光源に替えて、例えば点光源と集光レンズとの組み合わせたものを用いてもよい。点光源の一例は発光ダイオード(LED)等であり、集光レンズの一例はフレネルレンズシートである。 In this embodiment, a surface light source is used as the light source 120. However, instead of the surface light source, for example, a combination of a point light source and a condenser lens may be used. An example of the point light source is a light emitting diode (LED) or the like, and an example of the condenser lens is a Fresnel lens sheet.
 入射側偏光板150は、画像生成部160に対して光源120側に配される。入射側偏光板150は、透過軸および当該透過軸に直交する吸収軸を有し、光源120から出射された無偏光が入射すると透過軸の方向と平行な偏光軸の光を透過し、吸収軸の方向と平行な偏光軸の光を遮断する。 The incident-side polarizing plate 150 is disposed on the light source 120 side with respect to the image generation unit 160. The incident-side polarizing plate 150 has a transmission axis and an absorption axis orthogonal to the transmission axis. When non-polarized light emitted from the light source 120 is incident, the incident-side polarizing plate 150 transmits light having a polarization axis parallel to the direction of the transmission axis. The light of the polarization axis parallel to the direction of is blocked.
 なお、偏光軸の方向とは、光における電界の振動方向のことをいう。図示の入射側偏光板150における透過軸の方向は、図中に矢印で示すように、観察者が立体画像表示装置100を見たときの水平方向に対し右上45度の方向である。 The direction of the polarization axis refers to the direction of vibration of the electric field in the light. The direction of the transmission axis in the illustrated incident-side polarizing plate 150 is a direction of 45 degrees on the upper right with respect to the horizontal direction when the observer looks at the stereoscopic image display device 100 as indicated by an arrow in the drawing.
 画像生成部160は、右目用画像生成領域162および左目用画像生成領域164を有する。右目用画像生成領域162および左目用画像生成領域164は、図示のように、画像生成部160を水平方向に区切った領域であり、複数の右目用画像生成領域162および左目用画像生成領域164が鉛直方向に互い違いに配されている。立体画像表示装置100の使用状態において、画像生成部160の右目用画像生成領域162および左目用画像生成領域164には、それぞれ右目用画像および左目用画像が生成される。 The image generation unit 160 includes a right-eye image generation area 162 and a left-eye image generation area 164. The right-eye image generation area 162 and the left-eye image generation area 164 are areas obtained by dividing the image generation section 160 in the horizontal direction, as shown in the figure, and a plurality of right-eye image generation areas 162 and left-eye image generation areas 164 are provided. They are staggered in the vertical direction. In the usage state of the stereoscopic image display device 100, a right-eye image and a left-eye image are generated in the right-eye image generation region 162 and the left-eye image generation region 164 of the image generation unit 160, respectively.
 入射側偏光板150を透過した偏光が、画像生成部160の右目用画像生成領域162および左目用画像生成領域164に入射すると、右目用画像生成領域162を透過した偏光は右目用画像の画像光(以下、「右目用画像光」と記載する)となる。また、左目用画像生成領域164を透過した偏光は左目用画像の画像光(以下、「左目用画像光」と記載する)となる。 When the polarized light transmitted through the incident-side polarizing plate 150 enters the right-eye image generation region 162 and the left-eye image generation region 164 of the image generation unit 160, the polarized light transmitted through the right-eye image generation region 162 is image light of the right-eye image. (Hereinafter referred to as “right eye image light”). The polarized light transmitted through the left-eye image generation region 164 becomes image light of the left-eye image (hereinafter referred to as “left-eye image light”).
 なお、右目用画像生成領域162を透過した右目用画像光と、左目用画像生成領域164を透過した左目用画像光とは、それぞれ特定方向の偏光軸を有する直線偏光になる。特定方向の偏光軸とは、右目用画像光と左目用画像光とで互いに同じ方向であってもよい。図示の例においては、共に偏光軸が後述する出射側偏光板170の透過軸の方向と同じ方向である。 The right-eye image light that has passed through the right-eye image generation region 162 and the left-eye image light that has passed through the left-eye image generation region 164 are linearly polarized light having a polarization axis in a specific direction. The polarization axis in the specific direction may be the same direction for the right-eye image light and the left-eye image light. In the illustrated example, the polarization axis is the same direction as the transmission axis of the output side polarizing plate 170 described later.
 画像生成部160には、二枚の透明基板間に液晶を封止した液晶セルを有する液晶ディスプレイパネルを用いることができる。透明基板の表面に形成されて液晶を駆動する透明電極は、ピクセルの各々を形成する赤領域、緑領域および青領域のそれぞれをさらに上下に分割して、右目用サブピクセルおよび左目用サブピクセルを形成する。画像生成部160を水平方向に区切った右目用画像生成領域162および左目用画像生成領域164は、この右目用サブピクセルおよび左目用サブピクセルにそれぞれ対応するように交互に配される。 The image generation unit 160 may be a liquid crystal display panel having a liquid crystal cell in which liquid crystal is sealed between two transparent substrates. The transparent electrode that is formed on the surface of the transparent substrate and drives the liquid crystal further divides each of the red region, the green region, and the blue region that form each pixel into upper and lower parts, thereby subdividing the right eye subpixel and the left eye subpixel. Form. The right-eye image generation region 162 and the left-eye image generation region 164 obtained by dividing the image generation unit 160 in the horizontal direction are alternately arranged so as to correspond to the right-eye subpixel and the left-eye subpixel, respectively.
 ここで、ピクセルとは、画像を扱うときの単位をいい、色調および階調を有する。画像生成部160において、ピクセルは水平方向および鉛直方向に二次元的に配されており、ピクセルの各々は、赤領域、緑領域および青領域を含む。これらの領域の輝度を強めたり弱めたりしながら様々な色を表現することができる。 Here, the pixel means a unit for handling an image and has a color tone and a gradation. In the image generation unit 160, the pixels are two-dimensionally arranged in the horizontal direction and the vertical direction, and each of the pixels includes a red region, a green region, and a blue region. Various colors can be expressed while increasing or decreasing the luminance of these areas.
 出射側偏光板170は、画像生成部160に対して観察者側に配される。出射側偏光板170には、右目用画像生成領域162を透過した右目用画像光、および、左目用画像生成領域164を透過した左目用画像光が入射する。 The exit side polarizing plate 170 is arranged on the viewer side with respect to the image generation unit 160. Right-eye image light that has passed through the right-eye image generation region 162 and left-eye image light that has passed through the left-eye image generation region 164 are incident on the output-side polarizing plate 170.
 出射側偏光板170における透過軸の方向は、図中に矢印で示すように、観察者が立体画像表示装置100を見たときの水平方向から左上45度の方向である。出射側偏光板170は、入射した右目用画像光および左目用画像光のうち、偏光軸が透過軸と平行な光を透過し、偏光軸が吸収軸と平行な光を遮断する。 The direction of the transmission axis in the exit side polarizing plate 170 is 45 degrees from the horizontal direction when the observer views the stereoscopic image display device 100 as indicated by an arrow in the figure. Outgoing-side polarizing plate 170 transmits light having a polarization axis parallel to the transmission axis and blocking light having a polarization axis parallel to the absorption axis among the incident right-eye image light and left-eye image light.
 偏光軸制御板180は、右目偏光領域181および左目偏光領域182を有する。偏光軸制御板180における右目偏光領域181および左目偏光領域182の位置および大きさは、所定の観察距離をおいて正面の中央位置に配された立体画像表示装置100を観察した場合に、右目用画像生成領域162を透過した右目用画像光が右目偏光領域181を通じて観察され、左目用画像生成領域164を透過した左目用画像光が左目偏光領域182を通じて観察されるように配される。 The polarization axis control plate 180 has a right eye polarization region 181 and a left eye polarization region 182. The positions and sizes of the right-eye polarizing region 181 and the left-eye polarizing region 182 on the polarization axis control plate 180 are for the right eye when the stereoscopic image display device 100 arranged at the front center position with a predetermined observation distance is observed. The right eye image light transmitted through the image generation region 162 is observed through the right eye polarization region 181, and the left eye image light transmitted through the left eye image generation region 164 is observed through the left eye polarization region 182.
 右目偏光領域181は、入射した右目用画像光の偏光軸を回転させずにそのまま透過する。左目偏光領域182は、入射した左目用画像光の偏光軸を右目偏光領域181に入射した右目用画像光の偏光軸に対して直交する方向に回転させる。これにより、右目偏光領域181を透過した右目用画像光の偏光軸と、左目偏光領域182を透過した左目用画像光の偏光軸とは、図中に矢印で示すように、互いに直交する。 The right-eye polarization region 181 transmits the incident right-eye image light as it is without rotating the polarization axis. The left-eye polarization region 182 rotates the polarization axis of the incident left-eye image light in a direction orthogonal to the polarization axis of the right-eye image light incident on the right-eye polarization region 181. As a result, the polarization axis of the right-eye image light transmitted through the right-eye polarization region 181 and the polarization axis of the left-eye image light transmitted through the left-eye polarization region 182 are orthogonal to each other as indicated by arrows in the drawing.
 なお、図中に示す偏光軸制御板180における矢印は、偏光軸制御板180を通過した偏光の偏光軸の方向を示す。右目偏光領域181には、例えば透明なガラスまたは樹脂などが用いられる。 Note that the arrow on the polarization axis control plate 180 shown in the figure indicates the direction of the polarization axis of the polarized light that has passed through the polarization axis control plate 180. For the right-eye polarizing region 181, for example, transparent glass or resin is used.
 左目偏光領域182には、例えば入射される左目用画像光の偏光軸の方向に対して45度の角度の光学軸を有する1/2波長板が用いられる。図示の例において、左目偏光領域182の光学軸の方向は、水平方向または鉛直方向である。ここで、光学軸とは、光が左目偏光領域182を通過するときの進相軸または遅相軸の一方を指す。 For the left-eye polarization region 182, for example, a half-wave plate having an optical axis at an angle of 45 degrees with respect to the direction of the polarization axis of the incident left-eye image light is used. In the illustrated example, the direction of the optical axis of the left-eye polarizing region 182 is the horizontal direction or the vertical direction. Here, the optical axis refers to one of a fast axis and a slow axis when light passes through the left-eye polarizing region 182.
 立体画像表示装置100は、偏光軸制御板180よりも観察者側(図示の例では、偏光軸制御板180の右側)に、偏光軸制御板180の右目偏光領域181および左目偏光領域182を透過した右目用画像光および左目用画像光を水平方向または鉛直方向の少なくとも一方向の方向に拡散する拡散板を有していてもよい。拡散板としては、例えば水平方向または鉛直方向に延伸するかまぼこ状の凸レンズ(シリンドリカルレンズ)が複数配されたレンチキュラーレンズシート、または凸レンズが平面上に複数配されたレンズアレイシートを用い得る。 The stereoscopic image display apparatus 100 transmits the right-eye polarization region 181 and the left-eye polarization region 182 of the polarization axis control plate 180 closer to the observer side than the polarization axis control plate 180 (right side of the polarization axis control plate 180 in the illustrated example). There may be provided a diffusion plate for diffusing the right-eye image light and the left-eye image light in at least one direction of the horizontal direction or the vertical direction. As the diffusing plate, for example, a lenticular lens sheet in which a plurality of cylindrical convex lenses (cylindrical lenses) extending in the horizontal direction or the vertical direction are arranged, or a lens array sheet in which a plurality of convex lenses are arranged on a plane can be used.
 図2は、立体画像表示システム10の使用状態を示す概略上面図である。図示のように、立体画像表示システム10において立体画像を観察する場合、立体画像表示装置100から投影される右目用画像光および左目用画像光を、観察者500は偏光眼鏡200をかけて観察する。偏光眼鏡200は、観察者500がこの偏光眼鏡200をかけたときに観察者500の右目512にあたる位置に配された右目用画像透過部232と、左目514にあたる位置に配された左目用画像透過部234とを有する。 FIG. 2 is a schematic top view showing the usage state of the stereoscopic image display system 10. As shown in the figure, when a stereoscopic image is observed in the stereoscopic image display system 10, the observer 500 observes the right-eye image light and the left-eye image light projected from the stereoscopic image display device 100 with the polarizing glasses 200. . The polarized glasses 200 have a right-eye image transmission unit 232 arranged at a position corresponding to the right eye 512 of the observer 500 when the observer 500 puts on the polarized glasses 200, and a left-eye image transmission arranged at a position corresponding to the left eye 514. Part 234.
 右目用画像透過部232は、右目用画像光を透過した右目偏光領域181と同じ方向の透過軸方向を有し、且つ、当該透過軸と直交する吸収軸方向を有する偏光板を含む。左目用画像透過部234は、左目用画像光を透過した左目偏光領域182と同じ方向の透過軸方向を有し、且つ、当該透過軸方向と直交する吸収軸方向を有する偏光板を含む。右目用画像透過部232および左目用画像透過部234としては、例えば、二色性染料を含浸させたフィルムを一軸延伸して得られる偏光膜を貼り付けた偏光レンズを用い得る。 The right-eye image transmission unit 232 includes a polarizing plate that has the same transmission axis direction as the right-eye polarization region 181 that transmits the right-eye image light and has an absorption axis direction orthogonal to the transmission axis. The left-eye image transmission unit 234 includes a polarizing plate having the same transmission axis direction as that of the left-eye polarizing region 182 that transmits the left-eye image light and having an absorption axis direction orthogonal to the transmission axis direction. As the right-eye image transmission part 232 and the left-eye image transmission part 234, for example, a polarizing lens to which a polarizing film obtained by uniaxially stretching a film impregnated with a dichroic dye can be used.
 観察者500は、立体画像表示システム10により立体画像を観察する場合に、偏光軸制御板180の右目偏光領域181および左目偏光領域182を透過した右目用画像光および左目用画像光の出射する範囲内において、上記のように偏光眼鏡200をかけて立体画像表示装置100を観察する。これにより、右目512では右目用画像光を観察し、左目514では左目用画像光を、選択的に観察する。従って、観察者500は、これら右目用画像光および左目用画像光を合わせて立体画像として認識できる。 When the observer 500 observes a stereoscopic image by the stereoscopic image display system 10, the range in which the right-eye image light and the left-eye image light transmitted through the right-eye polarization region 181 and the left-eye polarization region 182 of the polarization axis control plate 180 are emitted. Inside, the stereoscopic image display apparatus 100 is observed with the polarizing glasses 200 as described above. Accordingly, the right eye 512 observes the right eye image light, and the left eye 514 selectively observes the left eye image light. Therefore, the observer 500 can recognize the right eye image light and the left eye image light together as a stereoscopic image.
 図3は、画像生成部160の部分拡大図であり、ピクセル660の詳細な構造を示す。図示のように、画像生成部160は、水平方向および鉛直方向に二次元的に配列された複数のピクセル660を有する。 FIG. 3 is a partially enlarged view of the image generation unit 160 and shows a detailed structure of the pixel 660. As illustrated, the image generation unit 160 includes a plurality of pixels 660 arranged two-dimensionally in the horizontal direction and the vertical direction.
 2次元的に表示される平面画像を生成する場合、画像生成部160は、平面画像表示駆動部680によりピクセル660毎に駆動される。これにより、ピクセル660の各々は、平面画像を表示する場合の単位となる。 When generating a two-dimensionally displayed flat image, the image generating unit 160 is driven for each pixel 660 by the flat image display driving unit 680. Thereby, each of the pixels 660 becomes a unit for displaying a planar image.
 また、複数のピクセル660の各々は、赤領域(R)662、緑領域(G)664および青領域(B)666を含む。更に、赤領域(R)662、緑領域(G)664および青領域(B)666の各々は、それぞれ上下に分割されている。即ち、赤領域(R)662、緑領域(G)664および青領域(B)666のそれぞれは、上領域672、674、676および下領域673、675、677に分割される。 Each of the plurality of pixels 660 includes a red region (R) 662, a green region (G) 664, and a blue region (B) 666. Further, each of the red region (R) 662, the green region (G) 664, and the blue region (B) 666 is divided vertically. That is, each of the red region (R) 662, the green region (G) 664, and the blue region (B) 666 is divided into an upper region 672, 674, 676 and a lower region 673, 675, 677.
 上領域672、674、676は、右目用画像生成領域162に対応して右目用画像生成領域162を形成する右目用サブピクセル678となる。また、下領域673、675、677は、左目用画像生成領域164に対応して左目用画像生成領域164を形成する左目用サブピクセル679となる。 The upper areas 672, 674, and 676 are right-eye subpixels 678 that form the right-eye image generation area 162 corresponding to the right-eye image generation area 162. The lower regions 673, 675, and 677 are left-eye subpixels 679 that form the left-eye image generation region 164 corresponding to the left-eye image generation region 164.
 右目用画像と左目用画像とを含んで表示される立体画像を生成する場合、画像生成部160は、立体画像表示駆動部690により駆動される。立体画像表示駆動部690の右目用画像表示駆動部692は、右目用サブピクセル678となる上領域672、674、676を表示の単位として駆動する。また、立体画像表示駆動部690の左目用画像表示駆動部694は、左目用サブピクセル679となる下領域673、675、677を表示の単位として駆動する。 When generating a stereoscopic image that includes a right-eye image and a left-eye image, the image generation unit 160 is driven by the stereoscopic image display driving unit 690. The right-eye image display driving unit 692 of the stereoscopic image display driving unit 690 drives the upper regions 672, 674, and 676 serving as the right-eye sub-pixel 678 as a display unit. In addition, the left-eye image display driving unit 694 of the stereoscopic image display driving unit 690 drives the lower regions 673, 675, and 677 serving as the left-eye sub-pixel 679 as display units.
 図4は、立体画像表示装置100に二次元的に表示された平面画像を示す図である。立体画像表示装置100は、光源120、入射側偏光板150、出射側偏光板170および偏光軸制御板180の図示を省き、画像生成部160により示した。しかしながら、立体画像表示装置100は図1に示した構造を有する。また、図1および図2と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 4 is a diagram showing a planar image displayed two-dimensionally on the stereoscopic image display device 100. The stereoscopic image display apparatus 100 is shown by the image generation unit 160 without the light source 120, the incident side polarizing plate 150, the output side polarizing plate 170, and the polarization axis control plate 180. However, the stereoscopic image display apparatus 100 has the structure shown in FIG. In addition, the same reference numerals are assigned to elements common to those in FIGS. 1 and 2, and redundant description is omitted.
 図示のように、画像生成部160は複数のピクセル660により形成される(図中ではピクセル660のひとつを太線により強調する)。図示の例では、鉛直方向に11個、水平方向に11個、それぞれ配列されたピクセル660により、樹木を表す樹状形状900の平面画像を表示している。 As shown in the figure, the image generation unit 160 is formed by a plurality of pixels 660 (in the figure, one of the pixels 660 is highlighted by a thick line). In the example shown in the drawing, a planar image of a tree-like shape 900 representing a tree is displayed by 11 pixels 660 arranged in the vertical direction and 11 in the horizontal direction.
 図5は、立体画像表示システム10に立体画像が表示された場合に、観察者500が偏光眼鏡200をかけて右目512で観察する樹状形状900を示す図である。図中で図3および図4と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 5 is a diagram showing a dendritic shape 900 that the observer 500 observes with the right eye 512 wearing the polarizing glasses 200 when a stereoscopic image is displayed on the stereoscopic image display system 10. In the figure, the same elements as those in FIGS. 3 and 4 are denoted by the same reference numerals, and redundant description is omitted.
 表示画像における鉛直方向解像度は、画像生成部160の右目用サブピクセル678の配置に基づいて決定される。図示の例では、鉛直方向に11個、水平方向に11個、それぞれ配列された右目用サブピクセル678により樹状形状900を表示している。 The vertical resolution in the display image is determined based on the arrangement of the right-eye sub-pixels 678 in the image generation unit 160. In the example shown in the figure, the tree shape 900 is displayed by the right-eye sub-pixels 678 arranged in the vertical direction and 11 in the horizontal direction and 11 in the horizontal direction, respectively.
 このように、画像生成部160における右目用画像生成領域162を右目用サブピクセル678に対応させることにより、右目用画像の単位高さ当たりの鉛直方向解像度は、図4に示した平面画像を表示する場合の解像度と変わらない。これにより、右目512で観察される樹状形状900は、樹状形状の輪郭を保持して、片目でも樹状形状900の細部を認識できる。 In this way, by causing the right-eye image generation area 162 in the image generation unit 160 to correspond to the right-eye subpixel 678, the vertical resolution per unit height of the right-eye image displays the planar image shown in FIG. The resolution is the same as when Thereby, the dendritic shape 900 observed with the right eye 512 retains the outline of the dendritic shape, and the details of the dendritic shape 900 can be recognized even with one eye.
 図6は、立体画像表示システム10において、観察者500が偏光眼鏡200をかけて左目514で観察する樹状形状900である。図中で図3および図4と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 6 shows a tree-like shape 900 that the observer 500 observes with the left eye 514 wearing the polarizing glasses 200 in the stereoscopic image display system 10. In the figure, the same elements as those in FIGS. 3 and 4 are denoted by the same reference numerals, and redundant description is omitted.
 右目512の場合と同様に、表示画像における鉛直方向解像度は、画像生成部160の左目用サブピクセル679の配置に基づいて決定される。図示の例では、鉛直方向に11個、水平方向に11個、それぞれ配列された左目用サブピクセル679により樹状形状900を表示している。 As in the case of the right eye 512, the vertical resolution in the display image is determined based on the arrangement of the left eye sub-pixels 679 of the image generation unit 160. In the illustrated example, the tree shape 900 is displayed by the left-eye sub-pixels 679 arranged in 11 pieces in the vertical direction and 11 pieces in the horizontal direction.
 このように、画像生成部160における左目用画像生成領域164を左目用サブピクセル679に対応させることにより、左目用画像の単位高さ当たりの鉛直方向解像度は、図4に示した平面画像を表示する場合の解像度と変わらない。これにより、左目514で観察される樹状形状900は、樹状形状の輪郭を保持して、片目でも樹状形状900の細部を認識できる。 As described above, the left-eye image generation area 164 in the image generation unit 160 corresponds to the left-eye sub-pixel 679 so that the vertical resolution per unit height of the left-eye image displays the planar image shown in FIG. The resolution is the same as when Thereby, the dendritic shape 900 observed with the left eye 514 retains the outline of the dendritic shape, and the details of the dendritic shape 900 can be recognized even with one eye.
 従って、偏光眼鏡200をかけた観察者500が、図5に示した左目用画像と、図6に示した右目用画像とを併せて立体画像表示システム10を見た場合、図4に示した平面画像と同じ解像度を有する立体画像を観察できる。 Therefore, when the observer 500 wearing the polarizing glasses 200 views the stereoscopic image display system 10 together with the left-eye image shown in FIG. 5 and the right-eye image shown in FIG. A stereoscopic image having the same resolution as the planar image can be observed.
 図7は、上記形態と比較のために示す他の立体画像表示装置99において、平面画像を表示した状態を示す図である。図4と同様に、光源120、入射側偏光板150、出射側偏光板170および偏光軸制御板180は図示を省略する。立体画像表示装置99には、図4と同様に樹状形状900が表示される。 FIG. 7 is a diagram showing a state in which a planar image is displayed in another stereoscopic image display device 99 shown for comparison with the above embodiment. As in FIG. 4, the light source 120, the incident side polarizing plate 150, the output side polarizing plate 170, and the polarization axis control plate 180 are not shown. The stereoscopic image display device 99 displays a tree shape 900 as in FIG.
 立体画像表示装置99における画像生成部160は、水平方向に区切ったピクセル660毎に、右目用画像生成領域162および左目用画像生成領域164を交互に対応させる。その他の点では、図1から図3までに示した立体画像表示装置100と同じ構造を有する。 The image generation unit 160 in the stereoscopic image display device 99 causes the right-eye image generation region 162 and the left-eye image generation region 164 to correspond to each other for each pixel 660 partitioned in the horizontal direction. In other respects, it has the same structure as the stereoscopic image display apparatus 100 shown in FIGS.
 図8は、立体画像表示装置99を用いた立体画像表示システム10において、観察者500が偏光眼鏡200をかけて右目512で観察する樹状形状900を示す。右目用画像生成領域162には、鉛直方向についてひとつおきのピクセル660が表示の単位として対応する。よって、図示の例では、鉛直方向に6個、水平方向に11個のピクセルが右目用画像生成領域162を形成する。従って、右目用画像の鉛直方向解像度は、図7に示した平面画像の半分近くになる。 FIG. 8 shows a tree shape 900 that the observer 500 observes with the right eye 512 wearing the polarizing glasses 200 in the stereoscopic image display system 10 using the stereoscopic image display device 99. In the right-eye image generation area 162, every other pixel 660 in the vertical direction corresponds as a display unit. Therefore, in the illustrated example, the right-eye image generation region 162 is formed by 6 pixels in the vertical direction and 11 pixels in the horizontal direction. Accordingly, the vertical resolution of the right-eye image is nearly half that of the planar image shown in FIG.
 このため、図5に示した右目用画像に比較すると鉛直方向解像度が低下して、視認される樹状形状900の輪郭が粗くなり、右目で認識できる樹状形状900は不明瞭になる。換言すれば、ピクセル660を単位とする立体画像表示装置99に比較すると、図1から図3までに示した立体画像表示装置100は、立体画像を表示する場合も、鉛直方向の解像度低下が抑制される。 Therefore, as compared with the image for the right eye shown in FIG. 5, the resolution in the vertical direction is lowered, the contour of the visually recognized dendritic shape 900 becomes rough, and the dendritic shape 900 that can be recognized by the right eye becomes unclear. In other words, as compared with the stereoscopic image display device 99 with the pixel 660 as a unit, the stereoscopic image display device 100 shown in FIGS. 1 to 3 suppresses a decrease in resolution in the vertical direction even when displaying a stereoscopic image. Is done.
 図9は、立体画像表示装置99を用いた立体画像表示システム10において、観察者500が偏光眼鏡200をかけて左目514で観察する樹状形状900を示す。左目用画像生成領域164には、鉛直方向についてひとつおきのピクセル660が表示の単位として対応する。よって、図示の例では、鉛直方向に5個、水平方向に11個のピクセルが左面用画像生成領域164を形成する。従って、左目用画像の鉛直方向解像度は、図7に示した平面画像の半分以下になる。 FIG. 9 shows a tree shape 900 that the observer 500 observes with the left eye 514 wearing the polarizing glasses 200 in the stereoscopic image display system 10 using the stereoscopic image display device 99. In the left-eye image generation region 164, every other pixel 660 in the vertical direction corresponds as a display unit. Therefore, in the example shown in the drawing, five pixels in the vertical direction and 11 pixels in the horizontal direction form the left-side image generation region 164. Therefore, the vertical resolution of the left-eye image is less than half that of the planar image shown in FIG.
 このため、図6に示した左目用画像に比較すると鉛直方向解像度が低下して、視認される樹状形状900の輪郭が粗くなる。このため、左目で認識できる樹状形状900は不明瞭になる。換言すれば、ピクセル660を表示の単位とする立体画像表示装置99に比較すると、図1から図3までに示した立体画像表示装置100は、立体画像を表示する場合も、鉛直方向の解像度低下が抑制される。 Therefore, compared with the image for the left eye shown in FIG. 6, the vertical resolution is lowered, and the contour of the dendritic shape 900 that is visually recognized becomes rough. For this reason, the dendritic shape 900 that can be recognized by the left eye becomes unclear. In other words, the stereoscopic image display device 100 shown in FIG. 1 to FIG. 3 has a lower resolution in the vertical direction than the stereoscopic image display device 99 having the pixel 660 as a display unit, even when displaying a stereoscopic image. Is suppressed.
 図10は、他の立体画像表示装置101の分解斜視図である。立体画像表示装置101において、図1から図3までに示した立体画像表示装置100と共通の要素には同じ参照番号を付して重複する説明を省く。 FIG. 10 is an exploded perspective view of another stereoscopic image display apparatus 101. In the stereoscopic image display apparatus 101, the same reference numerals are given to the same elements as those in the stereoscopic image display apparatus 100 shown in FIGS. 1 to 3, and redundant description is omitted.
 立体画像表示装置101は、立体画像表示装置100における偏光軸制御板180に替えて、他の構造を有する偏光軸制御板185を備える。偏光軸制御板185は、右目偏光領域186および左目偏光領域187を有する。 The stereoscopic image display device 101 includes a polarization axis control plate 185 having another structure instead of the polarization axis control plate 180 in the stereoscopic image display device 100. The polarization axis control plate 185 has a right eye polarization region 186 and a left eye polarization region 187.
 右目偏光領域186および左目偏光領域187は、いずれもが1/4波長板ではあるが、光学軸は互いに直交する。即ち、右目偏光領域186には、例えば光学軸が水平方向である1/4波長板が用いられ、左目偏光領域187には、例えば光学軸が鉛直方向である1/4波長板が用いられる。図中において偏光軸制御板180の上に示す白抜きの矢印は、偏光軸制御板185を通過した偏光の回転方向を示す。 The right-eye polarizing region 186 and the left-eye polarizing region 187 are both quarter-wave plates, but their optical axes are orthogonal to each other. That is, for example, a quarter-wave plate whose optical axis is in the horizontal direction is used for the right-eye polarizing region 186, and a quarter-wave plate whose optical axis is in the vertical direction is used for the left-eye polarizing region 187, for example. In the drawing, the white arrow on the polarization axis control plate 180 indicates the rotation direction of the polarized light that has passed through the polarization axis control plate 185.
 これにより、偏光軸制御板185の右目偏光領域186および左目偏光領域187は、入射した光を、偏光軸が互いに逆方向に回転する円偏光として出射する。即ち、例えば、右目偏光領域186は入射した光を右回りの円偏光として出射し、左目偏光領域187は入射した光を左回りの円偏光として出射する。 Thereby, the right-eye polarization region 186 and the left-eye polarization region 187 of the polarization axis control plate 185 emit incident light as circularly polarized light whose polarization axes rotate in opposite directions. That is, for example, the right-eye polarizing region 186 emits incident light as clockwise circularly polarized light, and the left-eye polarizing region 187 emits incident light as counterclockwise circularly polarized light.
 偏光軸制御板185における右目偏光領域186は、図1に示した偏光軸制御板180における右目偏光領域181と同様に、画像生成部160における右目用画像生成領域162を形成する右目用サブピクセル678に対応する。左目偏光領域187も、図1に示した偏光軸制御板180における右目偏光領域181と同様に、画像生成部160における左目用画像生成領域164を形成する左目用サブピクセル679に対応する。従って、ピクセル660の各々において、上領域672、674、676が右目用画像生成領域162に対応し、下領域673、675、677が左目用画像生成領域164に対応する。 The right-eye polarization region 186 in the polarization axis control plate 185 is similar to the right-eye polarization region 181 in the polarization axis control plate 180 shown in FIG. 1, and the right-eye subpixel 678 that forms the right-eye image generation region 162 in the image generation unit 160. Corresponding to The left-eye polarization region 187 also corresponds to the left-eye sub-pixel 679 that forms the left-eye image generation region 164 in the image generation unit 160, similarly to the right-eye polarization region 181 in the polarization axis control plate 180 illustrated in FIG. Accordingly, in each of the pixels 660, the upper regions 672, 674, and 676 correspond to the right-eye image generation region 162, and the lower regions 673, 675, and 677 correspond to the left-eye image generation region 164.
 立体画像表示装置101を観察する場合に観察者500が装着する偏光眼鏡200においては、光学軸が互いに直交する1/4波長板が、右目用画像透過部232および左目用画像透過部234に配される。即ち、例えば、右目用画像透過部232として光学軸が水平方向な1/4波長板が、左目用画像透過部234として光学軸が鉛直方向である1/4波長板が、それぞれ位相差板として配される。さらに、上記偏光眼鏡200は、位相差板よりも観察者側に、ともに透過軸の方向が観察者500から見て右斜め45度であり、吸収軸方向が上記透過軸方向と直交する方向を有する偏光板を有する。 In the polarizing glasses 200 worn by the observer 500 when observing the stereoscopic image display apparatus 101, quarter-wave plates whose optical axes are orthogonal to each other are arranged in the right-eye image transmission unit 232 and the left-eye image transmission unit 234. Is done. That is, for example, a quarter-wave plate with a horizontal optical axis as the right-eye image transmission unit 232, and a quarter-wave plate with a vertical optical axis as the left-eye image transmission unit 234, respectively, are retardation plates. Arranged. Further, in the polarizing glasses 200, the direction of the transmission axis is 45 degrees to the right when viewed from the observer 500, and the absorption axis direction is perpendicular to the transmission axis direction, closer to the observer side than the retardation plate. It has a polarizing plate.
 1/4波長板は、例えばポリカーボネートにより形成される。観察者500は、偏光眼鏡200をかけて立体画像表示装置101を観察することにより、右目512では右目用画像光を、左目514では左目用画像光を、それぞれ個別に観察できる。従って、立体画像表示装置101の使用状態において、右目偏光領域186には、上記右目用画像生成領域162を透過した右目用画像光が入射し、左目偏光領域187には、上記左目用画像生成領域164を透過した左目用画像光が入射する。 The quarter wave plate is made of polycarbonate, for example. By observing the stereoscopic image display apparatus 101 with the polarizing glasses 200, the observer 500 can individually observe the right eye image light with the right eye 512 and the left eye image light with the left eye 514. Therefore, in the usage state of the stereoscopic image display apparatus 101, the right-eye image light transmitted through the right-eye image generation area 162 is incident on the right-eye polarization area 186, and the left-eye image generation area is input to the left-eye polarization area 187. The image light for the left eye that has passed through 164 enters.
 このように、立体画像表示装置101においても、画像生成部160における右目用画像生成領域162を右目用サブピクセル678に、画像生成部160における左目用画像生成領域164を左目用サブピクセル679に対応させることにより、鉛直方向における解像度の低下を抑制できる。 As described above, also in the stereoscopic image display apparatus 101, the right-eye image generation region 162 in the image generation unit 160 corresponds to the right-eye subpixel 678, and the left-eye image generation region 164 in the image generation unit 160 corresponds to the left-eye subpixel 679. By doing so, a decrease in resolution in the vertical direction can be suppressed.
 上記の実施形態からも明らかなように、立体画像表示装置100、101において、画像生成部160における右目用画像生成領域162を右目用サブピクセル678に、左目用画像生成領域164を左目用サブピクセル679に、それぞれ対応させることにより、鉛直方向における解像度の低下を抑制できる。これにより、鉛直方向における解像度の低下が抑制された立体画像表示装置100、101が提供される。 As is clear from the above embodiment, in the stereoscopic image display devices 100 and 101, the right-eye image generation area 162 in the image generation unit 160 is the right-eye subpixel 678, and the left-eye image generation area 164 is the left-eye subpixel. By corresponding to 679 respectively, a decrease in resolution in the vertical direction can be suppressed. Thereby, the three-dimensional image display apparatuses 100 and 101 in which a decrease in resolution in the vertical direction is suppressed are provided.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加え得ることが当業者に明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

Claims (3)

  1.  個別に画像光を出射する複数のサブピクセルをそれぞれが含むピクセルを二次元的に配列されて、二次元画像および三次元画像を切り替えて生成する画像生成部と、
     前記ピクセルの各々において、前記複数のサブピクセルのうちの一のサブピクセルが出射する画像光の偏光状態と他のサブピクセルが出射する画像光の偏光状態とを互いに相違させる偏光制御部と
     を備え、
     前記画像生成部は、
     前記ピクセルの全体を単位とする二次元画像と、
     前記一のサブピクセルを単位とする右目用画像および前記他のサブピクセルを単位とする左目用画像を含む三次元画像と
     のいずれかを生成する画像表示装置。
    An image generation unit that two-dimensionally arranges pixels each including a plurality of sub-pixels that individually emit image light, and generates a switching between a two-dimensional image and a three-dimensional image;
    In each of the pixels, there is provided a polarization controller that makes a polarization state of image light emitted from one subpixel of the plurality of subpixels different from a polarization state of image light emitted from another subpixel. ,
    The image generation unit
    A two-dimensional image having the whole pixel as a unit;
    An image display device that generates either a right-eye image using the one subpixel as a unit or a three-dimensional image including a left-eye image using the other subpixel as a unit.
  2.  前記右目用画像の表示領域および前記左目用画像の表示領域の配列方向は、前記ピクセルにおける前記一のサブピクセルおよび前記他のサブピクセルの配列方向と直交しない請求項1に記載の画像表示装置。 The image display device according to claim 1, wherein the arrangement direction of the display area of the right-eye image and the display area of the left-eye image is not orthogonal to the arrangement direction of the one subpixel and the other subpixel in the pixel.
  3.  前記右目用画像および前記左目用画像は、それぞれ水平方向に連続して延在し、鉛直方向に交互に配される請求項1または請求項2に記載の画像表示装置。 The image display device according to claim 1 or 2, wherein the right-eye image and the left-eye image each extend continuously in the horizontal direction and are alternately arranged in the vertical direction.
PCT/JP2009/005767 2008-12-08 2009-10-29 Image display device WO2010067506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312057A JP2012058265A (en) 2008-12-08 2008-12-08 Stereoscopic image display device
JP2008-312057 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067506A1 true WO2010067506A1 (en) 2010-06-17

Family

ID=42242504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005767 WO2010067506A1 (en) 2008-12-08 2009-10-29 Image display device

Country Status (2)

Country Link
JP (1) JP2012058265A (en)
WO (1) WO2010067506A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094961A1 (en) * 2011-01-14 2012-07-19 Li Chao Polarizing stereo electronic large screen display system and manufacturing method thereof
US9407907B2 (en) 2011-05-13 2016-08-02 Écrans Polaires Inc./Polar Screens Inc. Method and display for concurrently displaying a first image and a second image
US10298919B2 (en) 2011-01-14 2019-05-21 Central China Display Laboratories, Ltd. Large-scale polarizing 3D electronic display system having two individual electronic pixels in each physical pixel and method for manufacturing the same
US11415728B2 (en) 2020-05-27 2022-08-16 Looking Glass Factory, Inc. System and method for holographic displays

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724539B (en) * 2012-06-11 2016-08-10 京东方科技集团股份有限公司 A kind of 3D display packing and display device
CN105719609B (en) * 2016-02-05 2018-02-02 擎中科技(上海)有限公司 A kind of 3D display equipment and its display methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263596A (en) * 1990-09-28 1992-09-18 Honeywell Inc Color three-dimensional plane panel display device
JPH10239641A (en) * 1997-02-27 1998-09-11 Sharp Corp Polarizing spectacles and image display system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263596A (en) * 1990-09-28 1992-09-18 Honeywell Inc Color three-dimensional plane panel display device
JPH10239641A (en) * 1997-02-27 1998-09-11 Sharp Corp Polarizing spectacles and image display system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012094961A1 (en) * 2011-01-14 2012-07-19 Li Chao Polarizing stereo electronic large screen display system and manufacturing method thereof
US10298919B2 (en) 2011-01-14 2019-05-21 Central China Display Laboratories, Ltd. Large-scale polarizing 3D electronic display system having two individual electronic pixels in each physical pixel and method for manufacturing the same
US9407907B2 (en) 2011-05-13 2016-08-02 Écrans Polaires Inc./Polar Screens Inc. Method and display for concurrently displaying a first image and a second image
US11415728B2 (en) 2020-05-27 2022-08-16 Looking Glass Factory, Inc. System and method for holographic displays

Also Published As

Publication number Publication date
JP2012058265A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US9052537B1 (en) 2D/3D image switching type liquid crystal display
JP5528846B2 (en) Liquid crystal lens and display device
US8917441B2 (en) Observe tracking autostereoscopic display
KR100955688B1 (en) Method for manufacturing stereoscopic displaying apparatus, method for manufacturing phase shift plate, and phase shift plate
JP5649526B2 (en) Display device
KR100955614B1 (en) Stereoscopic displaying apparatus
JP2008304909A (en) Stereoscopic image display device
US20130194521A1 (en) Display apparatus having autostereoscopic 3d or 2d/3d switchable pixel arrangement
WO2011096322A1 (en) Three-dimensional-image display device and three-dimensional-image display method
JP2006284873A (en) Image display device
JP2012234142A (en) Display device
JP2008170557A (en) Polarizing spectacles and stereoscopic image display system
WO2010067506A1 (en) Image display device
JP2009237112A (en) Stereoscopic image display apparatus
CN105185266A (en) LED display
US10021375B2 (en) Display device and method of driving the same
TWI497469B (en) Display device
KR101298874B1 (en) Polarizing Glasses
JP2009139593A (en) Stereoscopic image display, and phase difference plate
WO2012111496A1 (en) Display device and display method
JP4936191B2 (en) 3D display device
CN108370439B (en) Display apparatus and display control method
US20140160378A1 (en) Display apparatus
JP2008145866A (en) Method and apparatus of manufacture image display apparatus
JP2010266686A (en) Exhibition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP