WO2010067429A1 - Hologram reproducing method and hologram device - Google Patents

Hologram reproducing method and hologram device Download PDF

Info

Publication number
WO2010067429A1
WO2010067429A1 PCT/JP2008/072428 JP2008072428W WO2010067429A1 WO 2010067429 A1 WO2010067429 A1 WO 2010067429A1 JP 2008072428 W JP2008072428 W JP 2008072428W WO 2010067429 A1 WO2010067429 A1 WO 2010067429A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
image
recording medium
template image
data
Prior art date
Application number
PCT/JP2008/072428
Other languages
French (fr)
Japanese (ja)
Inventor
道一 橋本
潔 立石
充 佐藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2008/072428 priority Critical patent/WO2010067429A1/en
Publication of WO2010067429A1 publication Critical patent/WO2010067429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • the present invention relates to a hologram apparatus system for recording data as a hologram or reproducing data from a hologram, and more particularly to a hologram reproducing method from a hologram recording medium (hereinafter also simply referred to as a recording medium).
  • a hologram memory system in which information is recorded or reproduced optically with respect to a photosensitive material such as a photopolymer or a lithium niobate single crystal.
  • the data When recording data on a recording medium, the data is displayed in a spatial light modulator in units of images called data pages, which are two-dimensional data, and the light is spatially modulated to generate signal light. To do. At the time of reproduction, only the reference light under the same condition as that at the time of recording is irradiated to the recording portion of the recording medium, so that the light receiving elements corresponding to the pixels of the spatial light modulator at the time of recording one-to-one or an integer multiple are two-dimensionally arranged.
  • the image sensor is used to receive the reproduction light, sample it, and reproduce the information of the original data page from the reproduction signal.
  • Recording and reproduction are performed using Fourier transform in the hologram device system.
  • FIG. 1 is a diagram showing an outline of an example of a conventional hologram recording / reproducing method as shown in FIG.
  • a coherent laser light emitted from a laser light source is divided into two, and one of the lights is converted into parallel light, and a spatial light modulator SLM (transmission / non-transmission 2) such as a transmissive TFT liquid crystal device (LCD) panel.
  • SLM transmission / non-transmission 2
  • the data page of the two-dimensional pattern is displayed), and the signal light 12a includes a two-dimensional pattern data signal component.
  • the signal light 12 a passes through the Fourier transform lens 16 separated by the focal length f, and the two-dimensional pattern data signal component is Fourier transformed and collected in the recording medium 10.
  • the other divided light is guided into the recording medium 10 as the recording reference light 12, and forms an optical interference pattern by intersecting the optical path of the signal light 12a with the inside of the recording medium 10, thereby producing optical interference.
  • the entire pattern is recorded as a change in refractive index.
  • the signal light 12a which is the diffracted light from the data page image
  • the distribution on the focal plane that is, the Fourier plane is converted to the distribution of the result of the Fourier transform with the coherent reference light 12.
  • the interference fringes are recorded on a recording medium near the focal point.
  • Angle multiplex recording is possible by changing the crossing angle of the reference light 12 with respect to the signal light 12a for each data page and performing sequential recording.
  • the data page image is reproduced by performing an inverse Fourier transform at the time of reproduction.
  • the optical path of the signal light 12a is blocked, and only the reference light 12 is irradiated onto the recording medium 10 at the recording crossing angle.
  • reproduction light ReSB On the opposite side of the recording medium 10 irradiated with the reference light 12, reproduction light ReSB that reproduces the recorded light interference pattern appears.
  • this reproduction light is guided to the inverse Fourier transform lens 21 and subjected to inverse Fourier transform, a dot pattern signal (data page image) can be reproduced.
  • the first-order diffracted light due to repetition of pixels of the data page of the spatial light modulator SLM becomes a high frequency component.
  • FIG. 2 is a schematic perspective view showing a relationship between an example of a display pattern of the spatial light modulator SLM and the Fourier plane FP.
  • the pixel pitch of the spatial light modulator SLM in which square pixels each having a length of a ( ⁇ m) are arranged in a matrix is a ( ⁇ m).
  • the optical axis of the signal light is the z direction and the row direction and the column direction of the pixels in the plane perpendicular to the signal light are the x direction and the y direction, respectively, the signal light and the reference light are caused to interfere with each other.
  • the spatial frequency spectrum distribution light intensity (0th-order diffracted light 0th at the center, 1 around it) at a position symmetrical to the optical axis center of the signal light on the Fourier plane of the xy plane.
  • Next diffraction light 1st, etc) is generated.
  • the pixel pitch of the spatial light modulator SLM is 42 ⁇ m
  • the wavelength is 532 nm
  • the focal length is 165 mm
  • the corresponding Fourier spectral interval (d 1 ) is 2.09 mm according to the above equation. Therefore, information to be recorded exists in a radius range of about 2.1 mm on the optical axis. That is, as shown in FIG. 2, two-dimensional data appearing in the spatial light modulator SLM in a square xy space (x, y ⁇ 2d 1 ) composed of the first-order diffracted light and zero-order light. Can be recorded in a narrow range.
  • an intensity peak (0th order diffracted light 0th, 1st order diffracted light 1st, etc.) corresponding to the Fourier component of the two-dimensional pattern is generated in the Fourier transform image.
  • a peak occurs in such a Fourier transform image, there is a concern that a defect in the recording medium tends to occur when the number of rewrites increases at the peak position. Even if this is not the case, the presence of defects in the recording medium, such as defects in the recording film, recording sensitivity and diffraction efficiency, is a problem.
  • FIG. 3 is a schematic plan view showing the state of the recording medium defect DFT on the Fourier plane.
  • the recording medium defect is dust or scratches on the recording medium. Due to the recording medium defect DFT, a specific frequency component of the reproduction signal is not reproduced, or a specific frequency component of the recording signal is not recorded.
  • FIG. 3 shows a case where the recording medium defect DFT is present on the recording medium on the optical axis in the signal light z direction and blocks the 0th-order light (direct current) component 0th of the Fourier image.
  • the recording medium defect DFT is represented by a rectangle for the sake of explanation, but there are actually various shapes.
  • the size of the defect DFT is defined as Ld, where Ld is the defect passing that blocks the 0th-order light (DC) component 0th, and Ls is the distance between the pair of first-order diffracted light components 1st that cross the 0th-order light (DC) component 0th. Expressed as a percentage of / Ls. For example, in the case of a recording medium defect having a defect size of 100% or more and blocking all components of the 0th order light and the 1st order diffracted light, it is difficult to reproduce the data page even by the error correction code technique.
  • the optical information recording apparatus performs two-dimensional pixel data at a predetermined position of the optical information recording medium using holography in order to efficiently perform appropriate recording / reproduction data processing. Is recorded as an interference pattern between the information light carrying it and the recording reference light, it is determined whether the page data has been recorded normally, and the page data is determined according to the determination result.
  • a technique for controlling an optical recording operation so that recording is performed again at a position different from a predetermined position when it is determined that the recording is not normally performed (see Patent Document 2). .
  • a reference light irradiating unit for irradiating the hologram recording medium with reference light and a medium so as not to cause trouble in recording / reproducing even when a defect occurs in an optical component related to recording / reproducing.
  • a spatial modulation unit that generates information light modulated using spatial information corresponding to page data to be written to the information, an information light irradiation unit that irradiates information light to the same region as the reference light irradiation region, and a reference light
  • a light detection unit that receives reproduction light generated by irradiating the medium, a known data storage unit that stores the known page data in advance, and the known page data is written on the medium using spatial information corresponding to the known page data.
  • Patent Document 3 After reading the known page data written on the medium, using the information of the detected defect position, the defect investigation unit that investigates the defect position, such as the light detection unit, Also apparatus and a reproduction control section for restoring reproducing data of defect position contained in the raw light, has been proposed (Patent Document 3, reference).
  • each of the pixels of the spatial light modulator is bit1 / It has also been proposed to determine whether or not each detection value obtained on the image sensor is bit1 / bit0 when bit 0 modulation is applied, and to determine the presence or absence of a defect based on the result. (See Patent Document 4). JP2003-178538 JP2004-134048 JP2006-236536 JP2007-200385
  • the data page includes symbols of a predetermined pattern called positioning markers, and the positions of the markers are displayed at fixed positions.
  • codes for alignment are included at one or more places in four corners of rectangular two-dimensional data.
  • FIG. 4 shows a front view of the spatial light modulator SLM displaying a certain data page.
  • the data page to be recorded on the recording medium is, for example, a two-dimensionally arranged black and white pattern image (light transmission and non-transmission pattern image).
  • Markers MK are placed at the four corners of the data page. This marker MK specifies the position of the central data area DR by detecting the position of this marker during reproduction.
  • a specific frequency component (marker reproduction signal) corresponding to the marker is obtained. Therefore, first, the center coordinates of each marker MK are determined from the marker reproduction signal, and each marker is further determined. Since the overall shape of is determined in advance, the center position of each pixel constituting each marker MK is also obtained by calculation. Then, the pixels other than the markers, that is, the pixel positions in the so-called data region DR, are obtained by calculating each pixel constituting the determined marker as a reference pixel based on the width and height of the pixel from the coordinate value of the reference pixel. be able to.
  • the data page of the two-dimensional data can be detected by reading the data area pixels from the positions.
  • the position deviation amount between the center of the aperture region of the light receiving objective lens and the data page is obtained based on the marker position in the data page (detected image) read from the hologram recording medium.
  • the position of the data page is corrected so that the center of the data page coincides with the center of the aperture area of the objective lens.
  • the data page of the data area DR is a set of two-dimensional modulation data pattern symbols such as 2: 4 modulation, for example, and is generally displayed at a high resolution so that white pixels and black pixels are not continuous, For positioning, a marker having a resolution lower than that of the data area DR is selected and displayed.
  • markers are important in data page image quality and positioning.
  • FIGS. 5A and 5B The reproduction marker images of the experimental results are shown in FIGS.
  • a clear marker image (similar to the normal marker image for recording) is obtained, but the recording medium defect DFT in FIG. 5B is 20% in size.
  • the low frequency component including the direct current component disappears, the cross-shaped marker image portion surrounded by continuous white is particularly greatly deteriorated.
  • the detection of the marker coordinates (for example, the intersection of the crosses) may be wrong and data cannot be reproduced.
  • even a single recording medium defect on the recording medium affects all data pages (also referred to as books) that are angle-multiplexed and recorded at the position where the recording medium is defective. Will also interfere.
  • the spatial light modulator and the image sensor and the light receiving pattern of the image sensor are merely detected to detect defects in the spatial light modulator, the image sensor, and the optical path. Sen And detecting a defective pixel due to optical components such as, it is only detected in the comparison of the received image of the modulation pattern and the image sensor of the spatial light modulator.
  • the problem to be solved by the present invention is, for example, to provide a hologram reproducing method and a hologram apparatus that reduce a marker reproduction error of a data page.
  • the hologram reproduction method of the present invention is reproduced from a recording medium in which a data page including a marker and a data area displayed on the spatial light modulator is recorded corresponding to the intensity distribution of at least the 0th order light and the 1st order light in the Fourier image.
  • a hologram reproducing method in a hologram apparatus for reconstructing a data page by forming a reflected light on an image sensor to obtain a reproduced image of the data page, Sampling a reproduced image of a data page with the image sensor to obtain a detected image; Performing a template matching process using the template image stored in advance and the detection image to detect the position of the marker at the time of recording,
  • the template image stored in advance includes a defect template image corresponding to a defect of the recording medium.
  • the hologram apparatus of the present invention records interference fringes between the signal light and the reference light, which are spatially modulated by the spatial light modulator, on the recording medium, or the marker and data displayed on the spatial light modulator by the reference light.
  • a hologram apparatus that reproduces a data page by forming a reproduced image of a data page by forming light reproduced from a recording medium on which a data page including a region is recorded on an image sensor,
  • a holding device for movably holding the recording medium;
  • a sampling unit that acquires a detection image by sampling a reproduction image of a data page by the image sensor;
  • a position detection unit that detects a position of a marker at the time of recording by performing a template matching process using the detection image and the template image,
  • the template image stored in advance includes a defect template image having a higher resolution than a normal template image similar to the marker and corresponding to a defect of the recording medium.
  • FIG. 6 shows a change in light amount when a defect amount (recording medium defect) of a defect detection pattern image reproduced from a recording medium by recording medium defect detection according to the present invention is plotted on the horizontal axis and the light amount is plotted on the vertical and peripheral portions. It is a graph. It is a top view which shows the defect detection pattern image reproduced
  • FIG. 6 shows an example of a hologram apparatus for recording and / or reproducing data pages.
  • a half mirror HM On the optical path of the coherent laser beam 12 emitted from the laser light source LD, a half mirror HM, a second shutter SH2, a beam expander BX, a transmissive spatial light modulator SLM, an objective lens 16, a recording medium 10, A second lens 21 and an image sensor 20 are disposed.
  • Half mirror HM divides laser beam 12 to generate reference light, and functions as a reference light optical system together with reflection mirrors RM1 and RM2.
  • the movable reflection mirror RM2 is controlled by the controller 32 and controls the incident angle of the reference light beam to the recording medium 10.
  • the controller 32 includes a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), an external memory, and the like for executing a predetermined program for controlling the controlled device.
  • a CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the hologram apparatus includes an encoder 25 and a decoder 26 controlled by a controller 32, and a spatial light modulator SLM and an image sensor 20 are connected to the encoder 25 and the decoder 26, respectively.
  • the controller 32 generates a data page including a data area having predetermined markers at the four corners according to the input information, and supplies the data page to the encoder 25.
  • the controller 32 outputs the information decoded by the decoder 26.
  • the controller 32 generates template images for predetermined markers at the four corners of the data page in advance and supplies them to the decoder 26.
  • the first shutter SH1 is controlled by the controller 32, and controls the irradiation time of the reference light beam to the recording medium 10.
  • the second shutter SH2 is controlled by the controller 32 to control the irradiation time of the signal light beam to the recording medium 10.
  • the controller 32 opens both the first and second shutters SH1 and SH2 during data recording to irradiate the recording medium with signal light and reference light, and closes only the second shutter SH2 during reproduction and irradiates only the reference light to the recording medium. To control.
  • the beam expander BX expands the diameter of the light that has passed through the second shutter SH2 to be a parallel light beam and irradiates the spatial light modulator SLM.
  • the spatial light modulator SLM is a liquid crystal display (LCD) panel having a matrix arrangement in which a plurality of modulation pixels are two-dimensionally arranged.
  • the spatial light modulator SLM has, for example, vertical 480 * horizontal 640 pixels, and displays a data page to be recorded supplied from the encoder 25.
  • the parallel light applied to the spatial light modulator SLM is optically modulated into a spatial ON signal and an OFF signal and guided to the objective lens 16 as signal light 12a.
  • the objective lens 16 When the second shutter SH2 is opened (during recording), the objective lens 16 performs Fourier transform on the signal light 12a and condenses it so as to focus on the rear side of the mounting position of the recording medium 10.
  • the recording medium 10 is mounted on a movable support unit 60.
  • a spindle motor that is rotated by a turntable (mountable support unit) that detachably holds the disc-shaped recording medium 10 is used.
  • the recording medium 10 is made of a translucent photosensitive material that can store an optical interference pattern, such as a photopolymer, a light anisotropic material, a photorefractive material, a hole burning material, or a photochromic material.
  • the movable reflection mirror RM2 of the reference light optical system is controlled by the controller 32 to irradiate the recording medium 10 with the reference light 12 at a predetermined incident angle.
  • the reference light 12 crosses the signal light 12a at a predetermined angle inside the recording medium 10 by the action of the reflection mirror RM2. That is, at the time of data recording, both the first shutter SH1 and the second shutter SH2 are opened so that the reference light and the signal light interfere with each other in the recording medium.
  • Interference fringes between intersecting signal light and reference light are stored in the recording medium 10 as a refractive index grating, whereby data pages are recorded.
  • angle multiplex recording of a plurality of data pages is possible by changing the crossing angle between the signal light and the reference light.
  • the image sensor 20 includes an array such as a charge coupled device (CCD) in which a plurality of light receiving elements are two-dimensionally arranged and a complementary metal oxide semiconductor device (MOS).
  • CCD charge coupled device
  • MOS complementary metal oxide semiconductor device
  • the light receiving elements of the image sensor 20 and the pixels of the spatial light modulator do not have to correspond one-to-one.
  • the image of the data page displayed on the spatial light modulator particularly the number and arrangement of the light receiving elements that can be distinguished from each pixel. As long as it has. If the image sensor 20 has a high resolution, an image corresponding to the pixel included in the data page imaged on the image sensor 20 is detected by a plurality of pixels of the image sensor 20 by oversampling processing, and the detected values are detected. Based on the averaged result, data corresponding to one pixel included in the data page can be reproduced with high accuracy.
  • the signal light is blocked by the second shutter SH2, the first shutter SH1 is opened, and only the reference light is incident at the same crossing angle as at the time of recording.
  • Reproduction light (diffracted light) corresponding to the recorded signal light appears on the side opposite to the incident side of the recording medium 10 irradiated with the reference light.
  • the reproduction light ReSB is guided to the image sensor 20 through the second lens 21.
  • the image sensor 20 receives a reconstructed image by the reconstructed light and reconverts it into an electrical reconstructed signal (detected image), then decodes it by the decoder 26 and sends the data DATA to the controller 32, which was originally recorded by the controller 32. Information is output.
  • the decoder 26 includes a detected image memory 41 that stores data from the image sensor 20, a resampling unit 42, a decoding unit 43, and a position detection unit 44 that performs template matching processing. That is, the decoder 26 performs template matching processing using the detected image of the data page acquired by the image sensor and the template image stored in advance to detect the position of the marker at the time of recording, performs re-sampling, and performs decoding.
  • the position detection unit 44 includes a template image memory that stores a template image for template matching processing, and includes a defect detection unit described later.
  • the position of the central data region DR is specified, the distortion of the detected image is corrected, and the like can be accurately decoded.
  • the black and white dot pattern on the data page is displayed when each cell is turned on or off, and becomes a transparent or non-transparent pattern.
  • the spatial light modulator SLM displays a set of two-dimensional modulation data pattern symbols such as 2: 4 modulation in the central data region DR, and displays markers MK at, for example, the four corners thereof.
  • the 2: 4 modulation is an example, and the present invention is not limited to this.
  • the data area DR may be displayed and recorded by another modulation method.
  • ⁇ Decoder signal processing> In the decoder signal processing for each data page, as shown in FIG. 8, in the detected image detected by the image sensor, first, the coordinates of the markers at the four corners of the data page are detected (marker coordinate detection: step S1), and the next. Next, the re-sampling process of the reproduced image is performed (resampling: step S2), and then the data is decoded (decoding: step S3).
  • Step S1> The generated template image is stored in advance in a template image memory in the decoder.
  • template matching processing is performed using the detected image (reproduced signal) and the template image to detect the coordinate positions of the four markers at the time of recording.
  • the marker coordinate detection method is a template matching process that searches for a position where the correlation value between the template image and the detected image is maximum.
  • Template matching is one of the pattern matching methods, and it is targeted by obtaining the similarity and difference between the inspection target pattern and a standard pattern prepared in advance (for example, a normal template image similar to a marker). This is known as a technique for identifying patterns.
  • the template matching process often uses a correlation coefficient, a difference in shading level, or the like as the degree of similarity or difference, but there is a corresponding point search method between two images by the area correlation method.
  • the correlation value Cxy between the reproduced marker image s (x, y) and the template image t (x, y) is expressed by the following equation (1).
  • (x, y) represents a coordinate position.
  • the detected coordinates are pixel-by-pixel coordinates (integer coordinates by sampling), a more detailed position can be obtained by a method taught in, for example, Japanese Patent Laid-Open No. 10-124666.
  • Step S2> the coordinate intervals of the four markers in the detected image are re-equalized so that the coordinate intervals of the four markers included in the data page are equal to the coordinate intervals of the markers in the detected image after resampling. Perform sampling processing.
  • the marker on the detected image is resampled at an interval of 405/400.
  • the distortion is corrected by resampling.
  • the detected image becomes almost the same as the data page. That is, the reproduction signal is almost in the same state as the recording signal.
  • Step S3> Next, the monochrome pattern of each pixel in the data area DR is detected, and the data is decoded.
  • the data region DR of the detected image is image-processed by dividing it into a predetermined two-dimensional modulation pattern size such as 2: 4 modulation, and the cross correlation between the obtained signal and the two-dimensional modulation pattern is calculated.
  • the decoding is performed by detecting the most similar modulation pattern.
  • the disk-shaped recording medium 10 is provided with a code track DM for detecting a rotation angle on the surface around the rotation center hole.
  • the support unit 60 is controlled by the controller 32 to control the position of the recording medium 10 with respect to the optical axis of the objective lens 16.
  • the hologram apparatus includes a medium rotation angle detection sensor (not shown), thereby detecting the code track DM for detecting the rotation angle of the recording medium 10.
  • the controller 32 includes a rotation position detection unit that is connected to the medium rotation angle detection sensor and generates a rotation position signal of the recording medium, and a spindle servo unit that is connected to a spindle motor and supplies a predetermined signal thereto.
  • the hologram apparatus controls the rotation of the recording medium so that a plurality of unit recording areas to be recorded can be sequentially recorded and reproduced at predetermined intervals in each recording and reproducing step, and at a predetermined angle in units of pages in each unit recording area. It is controlled so that angle multiplex recording can be performed at intervals.
  • a shift movement (track direction T or radial direction R) operation is performed before and after angle multiplex recording for each unit recording area. This will be described with reference to FIG. 10 (flow chart) and FIG. .
  • the recording medium 10 is mounted and fixed on the support portion 60 of the hologram apparatus. Thereafter, the target incident angle of the reference light is fixed by the movable reflecting mirror RM2 in accordance with the target address instruction by the data recording (or reproduction) command from the controller 32 (FIG. 10: Step S11), and the medium rotation angle detection The sensor is activated (FIG. 10: Step S12), and the recording medium 10 is rotated to the target angle position (according to the code track DM for detecting the rotation angle) of the target address information on the recording medium 10, and stopped there (FIG. 10). : Step S13). Next, the recording medium 10 is moved in the radial direction R to the target radial position (FIG. 10: Step S14) and stopped there (shift movement).
  • step S15 After the shift movement, a so-called book is formed by executing an angle-multiplexed recording or reproducing step in the unit recording area at the target position (FIG. 10: step S15). Then, the continuation or end of the angle multiplexing recording or reproduction step is determined (FIG. 10: step S16). If it is continued, the process returns to step S12, and another target address instruction is given.
  • a plurality of unit recording areas so-called books are recorded in alignment on a track (broken line) of the recording medium 10 at a predetermined interval. That is, angle-multiplexed recording or reproduction is performed for each book.
  • the inventor proposes a recording medium defect detection method for reducing a marker reproduction error of a data page in a hologram apparatus.
  • a defect detection pattern having a low frequency pattern lower than the resolution of the data area image of the data page is created, and in the hologram apparatus shown in FIG. 6, a data page including a data area in which the defect detection pattern is arranged on the data page,
  • the data is displayed on the spatial light modulator SLM, and the data page is recorded on the recording medium 10 and then reproduced.
  • the defect detecting unit in the position detecting unit 44 of the decoder 26 detects the presence or absence of the recording medium defect.
  • a recording medium defect is detected by detecting the light quantity or frequency distribution of the reproduced image of the pattern.
  • FIG. 11 and FIG. 12 (A) show examples of defect detection patterns of data pages.
  • the defect detection pattern shown in FIG. 11 is a direct current pattern with a high frequency pattern at the periphery and white only at the center.
  • this defect detection pattern when there is a recording medium defect at the time of data reproduction, the light amount in the central part is lower than that in the peripheral part of the reproduction pattern. By detecting, a recording medium defect can be detected.
  • Ld / Ls is defined as Ld / Ls, where Ld is the defect passing that blocks the 0th-order light (DC) component 0th, and Ls is the distance between the pair of first-order diffracted light components 1st that crosses the 0th-order light (DC) component 0th.
  • DC 0th-order light
  • Ls the distance between the pair of first-order diffracted light components 1st that crosses the 0th-order light (DC) component 0th.
  • FIG. 14 shows the change in light quantity when the defect amount (recording medium defect) of 0%, 10%, 20%, 40%, and 50% of the defect is plotted on the horizontal axis and the light quantity is plotted on the vertical axis. Show.
  • the presence or degree of the recording medium defect can be detected by providing the defect detection unit in the position detection unit 44 of the decoder 26 with a comparator that compares the light quantity in the peripheral part and the central part of the reproduced defect detection pattern. Can do.
  • the defect detection pattern shown in FIG. 12A is a black and white low frequency periodic pattern (low frequency pattern) as a whole.
  • this defect detection pattern when there is a recording medium defect at the time of data reproduction, only the white part edge remains, so that the second order (even order) harmonic component of the periodic pattern appears.
  • a recording medium defect can be detected by detecting this harmonic component during data reproduction.
  • FIG. 16 shows changes in frequency characteristics of defect detection pattern images when there is a defect amount (recording medium defect) of 0%, 10%, 20%, and 40% with the horizontal axis representing the frequency and the vertical axis representing the amplitude. Show. For example, it can be seen that the frequency at which the amplitude peak appears differs when the defect amount of the recording medium defect is 0% and the defect amount is 20%.
  • a memory that stores in advance the peak value of the frequency distribution of various detection patterns and a comparison that compares the stored peak value with the peak value of the actually detected detection pattern.
  • a plurality of template images corresponding to the presence / absence or degree of defects in the recording medium are prepared and stored, so that the result of the defect detection, that is, the defect in the recording medium is reproduced.
  • a suitable one is selected from the plurality of template images in accordance with the presence or absence or the degree.
  • FIG. 17 shows a flowchart when the angle multiplex recording is performed.
  • the recording medium is rotationally controlled so that the light beam hits the target position to be recorded, and when the target position is reached, the first ( It is determined whether the page is a specific place. If the angle should be the first page, a defect detection pattern (for example, the defect detection pattern shown in FIG. 11 or 12A) for the controller to detect a recording medium defect in step S112 is a data page (in this case, a dummy).
  • a defect detection pattern for example, the defect detection pattern shown in FIG. 11 or 12A
  • pages are recorded on the recording medium via the encoder and the spatial light modulator.
  • step S114 it is determined whether or not page recording is complete. If it is finished, the recording is finished.
  • step S115 it is determined in step S115 whether or not it is the last page of the book. If it is not the final page, the reference light incident angle is changed in step S116 and recording is continued.
  • step S117 the controller generates a normal data page and records the page on the recording medium in step S113. On the other hand, if it is the last page of the book in step S115, it shifts in step S118, returns to step S111, and repeats. Even if it is not the first page of the book in step S111, the process proceeds to step S117, a normal data page is generated, and page recording is performed on the recording medium in step S113 to continue multiple recording.
  • FIG. 18 shows a flowchart when the angle multiplex reproduction of data is performed.
  • the recording medium is rotationally controlled so that the light beam strikes the target position to be reproduced, and when the target position is reached, the first of the book is read in step S121. It is determined whether it is a page. If it is not the first page, the reference light incident angle is changed in step S122, and the search for the first page (step S121) is repeated. On the other hand, if the angle is to be the first page, in step S123, the defect detection unit in the position detection unit of the decoder detects the presence or absence of the recording medium defect and the distribution of the light quantity or frequency of the reproduced image of the detection pattern. Thus, it is determined whether or not there is a recording medium defect.
  • a normal template image (similar to a normal marker) is set for decoder signal processing in step S124.
  • a defect template image is set for decoder signal processing in step S125. The defect template image will be described later.
  • a plurality of template images corresponding to the presence or absence or degree of defects in the recording medium are prepared and stored in advance, so that the result of defect detection at the time of reproduction, that is, the presence or absence of defects in the recording medium or A suitable one is selected from the plurality of template images depending on the degree.
  • step S127 it is determined whether or not page reproduction is complete. If it is finished, the playback is finished. If not finished, it is determined in step S128 whether or not it is the last page of the book. If it is not the last page, the reference light incident angle is changed in step S129, and page reproduction is continued in step S126. On the other hand, if it is the last page of the book, it shifts in step S130, returns to step S121, and repeats.
  • the marker position can be correctly detected even when there is a recording medium defect.
  • ⁇ Generation of defect template image> 19A to 19C show a normal template image (similar to a normal marker), a defect template image, and a composite template image, respectively.
  • the defect template image in FIG. 19B calculates data obtained by processing the normal template image in FIG. 19A with a high-pass filter, and sets the average value as a threshold value. By binarizing the data obtained as a result of the above processing, an image having a resolution higher than that of the normal template image is obtained. Specifically, when the sampling frequency of the light reception pattern in the image sensor is fs, a normal template is passed through a high-pass filter having a cutoff frequency fc (where 0 ⁇ fc ⁇ fs / 2), and the filter Is binarized using the average value of the image data that has passed through The cut-off frequency fc is determined by the amount of detected defects. That is, the defect template image in FIG.
  • 19B is obtained by performing conversion to remove the low frequency component of the normal template image in FIG.
  • conversion can be performed by, for example, using a computer, subjecting a target template image to high-pass filtering, calculating an average value, and binarizing.
  • image matrix is a real two-dimensional array
  • linear algebra calculation can be executed while defining a matrix operation using, for example, MATLAB (registered trademark).
  • the composite template image in FIG. 19C is a second defect template image, and the normal template image in FIG. 19A and the defect template image in FIG. 11 to 16 as described in FIGS. 16 to 16, and can be created by combining and converting with a weighted average at a ratio corresponding to the defect size level.
  • a normal template is multiplied by a weight K (0 ⁇ K ⁇ 1)
  • a defect template image is multiplied by a weight 1-K
  • the result obtained by adding the two is a composite template. It can be an image.
  • K is a coefficient determined by the amount of detected defects.
  • Such a synthesized template image is also obtained as an image having a higher resolution than the normal template image, and further becomes a multi-valued image, for example, a ternary image.
  • FIG. 21 shows a flowchart when the data of the second example is angle-multiplexed recorded.
  • the rotation of the recording medium is controlled so that the light beam strikes the target position to be recorded, and when the target position is reached, the first ( It is determined whether the page is a specific place. If the angle should be the first page, a defect detection process for the recording medium is performed before data recording in step S132.
  • a defect detection process as shown in FIG. 6, the first shutter SH1 is closed, the second shutter SH2 is opened, only the signal light is passed through the recording medium 10, and a defect detection pattern (for example, FIG. Alternatively, the data page including the defect detection pattern shown in FIG. 12A is received by the image sensor 20, and the recording medium defect is detected by the reproduced defect detection pattern.
  • the defect detection result (the presence / absence of defect, degree, etc.) can be stored in the template image memory in the position detection unit 44 of the decoder 26. Further, the defect detection result can be stored in a nonvolatile memory or the like that manages recording medium defects in the controller. Further, in the controller, a database of defect detection results can be constructed by a program so that it can be referred to in defect detection at the next recording and reproduction.
  • step S134 the presence / absence of a defect is determined from the defect detection result. If there is a recording medium defect (step S135), the position detection marker shape of the data page to be recorded thereafter is set to a shape that is strong against the recording medium defect (for example, as shown in FIG. (High frequency pattern with many components). If there is no defect in the recording medium (step S136), a normal marker with high position detection performance against noise is set. Then, after completion of any marker setting, in step S137, the controller records the data page on the recording medium via the encoder and the spatial light modulator.
  • step S138 it is determined whether or not page recording is complete. If it is finished, the recording is finished. If not finished, it is determined whether or not it is the last page of the book in step S139. If it is not the last page, the reference light incident angle is changed in step S140, and the recording is continued.
  • step S137 the controller generates a data page and records the page on the recording medium. On the other hand, if it is the last page of the book in step S139, it shifts in step S141, returns to step S132, and repeats. Even if it is not the first page of the book in step S131, the process proceeds to step S137, where page recording is performed on the recording medium and multiplex recording is continued.
  • the angle multiplex reproduction operation of the hologram apparatus of the second example is performed as follows.
  • FIG. 22 shows a flowchart when the angle multiplex reproduction of data is performed.
  • step S152 it is determined whether or not there is a recording medium defect. If there is no defect, a normal template image (similar to a normal marker) is set for decoder signal processing in step S153. On the other hand, if there is a recording medium defect, a defect template image (a template image having the same shape as the marker of the recorded data page) is set for decoder signal processing in step S154. After setting the template image, the page is reproduced in step S155.
  • a normal template image similar to a normal marker
  • step S154 a defect template image having the same shape as the marker of the recorded data page
  • step S156 it is determined whether or not page reproduction is complete. If it is finished, the playback is finished. If not finished, it is determined in step S157 whether or not it is the last page of the book. If it is not the last page, the reference light incident angle is changed in step S158, and page reproduction is continued in step S155. On the other hand, if it is the last page of the book, it shifts and returns to step S151 to repeat.
  • the marker position can be correctly detected even when there is a recording medium defect.
  • the position detection unit 44 of the decoder has a configuration including a defect detection unit.
  • the defect detection unit is not provided, and FIG. ) Is stored in advance in a storage device such as a memory, so that recording and reproduction can be performed without detecting a defect in the recording medium. That is, the second defect template image shown in FIG. 19C is obtained by using the normal template image shown in FIG. 19A and the defect template image shown in FIG. This is because it is created by combining and converting with a weighted average at a ratio corresponding to the defect size level as described in FIG. As shown in the block diagram of FIG.
  • a normal template image obtained by multiplying a normal template by a weight K (0 ⁇ K ⁇ 1), multiplying a defect template image by a weight 1-K, and adding the two. Since the ternarized image with higher resolution is used as the composite template image, for example, the case shown in FIG. 19C (the amount of defects is 50%, that is, K 0.5) can be obtained. In this case, even if the zero-order light distribution defect exists in the medium, the position can be detected with a probability between the normal template image and the defect template image.

Abstract

A hologram reproducing method in a hologram device for reproducing data page including a marker and a data area displayed on a spatial light modulator by obtaining a reproduced image of the data page by focusing light reproduced from a recording medium on which the data page is recorded in association with the intensity distribution of at least zeroth-order light and first-order light in a Fourier image onto an image sensor, comprises the step of acquiring a detected image by sampling the reproduced image of the data page in the image sensor, and the step of detecting the position of the marker at the time of recording by performing template matching processing by using a previously stored template image and the detected image. The previously stored template image includes a defect template image corresponding to a defect in the recording medium.

Description

ホログラム再生方法およびホログラム装置Hologram reproduction method and hologram apparatus
 本発明は、データをホログラムとして記録し、或いはホログラムからデータを再生するホログラム装置システムに関し、特にホログラム記録媒体(以下、単に記録媒体ともいう)からのホログラム再生方法に関する。 The present invention relates to a hologram apparatus system for recording data as a hologram or reproducing data from a hologram, and more particularly to a hologram reproducing method from a hologram recording medium (hereinafter also simply referred to as a recording medium).
 記録媒体として、フォトポリマ、ニオブ酸リチウム単結晶など感光材料に対して光学的に情報記録または情報再生が行われるホログラムメモリシステムが知られている。 As a recording medium, there is known a hologram memory system in which information is recorded or reproduced optically with respect to a photosensitive material such as a photopolymer or a lithium niobate single crystal.
 記録媒体にデータを記録する場合、データを2次元データであるデータページと呼ばれる画像単位にして、データページ画像を空間光変調器に表示して、これにより光を空間変調して信号光を生成する。再生時には、記録媒体の記録部位に記録時と同一条件の参照光のみを照射するので、記録時の空間光変調器の画素に一対一または整数倍で対応する受光素子が2次元的に配置された像センサが用いられ、これで再生光を受光し、サンプリングして、その再生信号から元のデータページの情報を再生する。 When recording data on a recording medium, the data is displayed in a spatial light modulator in units of images called data pages, which are two-dimensional data, and the light is spatially modulated to generate signal light. To do. At the time of reproduction, only the reference light under the same condition as that at the time of recording is irradiated to the recording portion of the recording medium, so that the light receiving elements corresponding to the pixels of the spatial light modulator at the time of recording one-to-one or an integer multiple are two-dimensionally arranged. The image sensor is used to receive the reproduction light, sample it, and reproduce the information of the original data page from the reproduction signal.
 ホログラム装置システムにおいてフーリエ変換を用いて記録および再生を行う。 Recording and reproduction are performed using Fourier transform in the hologram device system.
 図1に示すように、従来のホログラム記録再生方法の一例の概略を示す図である。レーザ光源から発せられた可干渉性レーザ光を2分割して、一方の光は平行光として、透過型のTFT液晶装置(LCD)のパネルなどの空間光変調器SLM(透過/非透過の2次元格子パターンのデータページが表示されている)を経て変調され、信号光12aとして、二次元パターンデータ信号成分を含むことになる。信号光12aは、その焦点距離fだけ離しておいたフーリエ変換レンズ16を通過し、二次元パターンデータ信号成分はフーリエ変換されて、記録媒体10内に集光される。 FIG. 1 is a diagram showing an outline of an example of a conventional hologram recording / reproducing method as shown in FIG. A coherent laser light emitted from a laser light source is divided into two, and one of the lights is converted into parallel light, and a spatial light modulator SLM (transmission / non-transmission 2) such as a transmissive TFT liquid crystal device (LCD) panel. The data page of the two-dimensional pattern is displayed), and the signal light 12a includes a two-dimensional pattern data signal component. The signal light 12 a passes through the Fourier transform lens 16 separated by the focal length f, and the two-dimensional pattern data signal component is Fourier transformed and collected in the recording medium 10.
 一方、2分割された他方の光は記録参照光12としては、記録媒体10内に導かれて、信号光12aの光路と記録媒体10の内部で交差して光干渉パターンを形成し、光干渉パターン全体を屈折率の変化として記録する。 On the other hand, the other divided light is guided into the recording medium 10 as the recording reference light 12, and forms an optical interference pattern by intersecting the optical path of the signal light 12a with the inside of the recording medium 10, thereby producing optical interference. The entire pattern is recorded as a change in refractive index.
 このように、データページ画像からの回折光である信号光12aをフーリエ変換レンズで結像し、その焦点面すなわちフーリエ面上の分布に直してフーリエ変換の結果の分布をコヒーレントな参照光12と干渉させてその干渉縞を焦点近傍の記録媒体に記録する。信号光12aに対する参照光12の交差角度をデータページ毎に変化させ、逐次記録を行うことにより角度多重記録が可能である。 In this way, the signal light 12a, which is the diffracted light from the data page image, is imaged by the Fourier transform lens, and the distribution on the focal plane, that is, the Fourier plane is converted to the distribution of the result of the Fourier transform with the coherent reference light 12. The interference fringes are recorded on a recording medium near the focal point. Angle multiplex recording is possible by changing the crossing angle of the reference light 12 with respect to the signal light 12a for each data page and performing sequential recording.
 次に、再生時には逆フーリエ変換を行いデータページ像を再生する。データ再生においては信号光12aの光路を遮断して、参照光12のみを記録時交差角度で記録媒体10へ照射する。参照光12の照射された記録媒体10の反対側には、記録された光干渉パターンを再現した再生光ReSBが現れる。この再生光を逆フーリエ変換レンズ21に導いて、逆フーリエ変換するとドットパターン信号(データページ画像)を再現することができる。 Next, the data page image is reproduced by performing an inverse Fourier transform at the time of reproduction. In data reproduction, the optical path of the signal light 12a is blocked, and only the reference light 12 is irradiated onto the recording medium 10 at the recording crossing angle. On the opposite side of the recording medium 10 irradiated with the reference light 12, reproduction light ReSB that reproduces the recorded light interference pattern appears. When this reproduction light is guided to the inverse Fourier transform lens 21 and subjected to inverse Fourier transform, a dot pattern signal (data page image) can be reproduced.
 ここで、フーリエ変換ホログラム記録の空間光変調器SLMでフーリエ変換された信号光において、空間光変調器SLMのデータページの画素の繰り返しによる1次回折光などが高周波数成分となる。 Here, in the signal light Fourier-transformed by the spatial light modulator SLM of the Fourier transform hologram recording, the first-order diffracted light due to repetition of pixels of the data page of the spatial light modulator SLM becomes a high frequency component.
 図2は、空間光変調器SLMの表示パターンの一例とフーリエ面FPの関係を示す概略斜視図である。たとえば、一辺の長さがa(μm)の正方形の画素がマトリクス状に配されている空間光変調器SLMの画素ピッチはa(μm)である。 FIG. 2 is a schematic perspective view showing a relationship between an example of a display pattern of the spatial light modulator SLM and the Fourier plane FP. For example, the pixel pitch of the spatial light modulator SLM in which square pixels each having a length of a (μm) are arranged in a matrix is a (μm).
 図2に示すように、信号光の光軸をz方向とし、信号光に垂直な面内における画素の行方向および列方向をそれぞれx方向およびy方向とすると、信号光と参照光を干渉させ記録媒体(図示せず)内でホログラム記録をおこなう際、xy平面のフーリエ面に信号光の光軸中心に対称な位置に空間周波数スペクトル分布光強度(中心の0次回折光0th、その周りの1次回折光1st、etc)が生じる。 As shown in FIG. 2, when the optical axis of the signal light is the z direction and the row direction and the column direction of the pixels in the plane perpendicular to the signal light are the x direction and the y direction, respectively, the signal light and the reference light are caused to interfere with each other. When holographic recording is performed in a recording medium (not shown), the spatial frequency spectrum distribution light intensity (0th-order diffracted light 0th at the center, 1 around it) at a position symmetrical to the optical axis center of the signal light on the Fourier plane of the xy plane. Next diffraction light 1st, etc) is generated.
 フーリエ変換ホログラムを用いるホログラム記録では、かかる光強度分布により、空間的に限られたスペースにホログラムを納めることができることと、データページを分散して記録すること、記録データの冗長性を高めることができるという利点がある。記録面の空間周波数(fsp[lines/mm])、光の波長(λ)、フーリエ変換レンズの焦点距離(F1)を用いて、フーリエ面での0次と1次フーリエスペクトルの間隔(d1)は次式、d1=fsp*λ*F1のように対応づけることができる。 In hologram recording using a Fourier transform hologram, such a light intensity distribution makes it possible to fit the hologram in a spatially limited space, to record data pages in a distributed manner, and to increase the redundancy of recorded data. There is an advantage that you can. Using the spatial frequency (fsp [lines / mm]) of the recording surface, the wavelength of light (λ), and the focal length (F 1 ) of the Fourier transform lens, the interval (d 1 ) can be correlated as follows: d 1 = fsp * λ * F 1
 たとえば、空間光変調器SLMの画素ピッチが42μm、波長532nm、焦点距離165mmである場合、これに対応したフーリエスペクトル間隔(d1)は上式によると2.09mmとなる。したがって記録すべき情報は光軸上約2.1mmの半径範囲に存在することになる。すなわち、図2に示すように、この1次回折光と0次光とで構成される田の字型のxy空間内(x,y≦2d1)に空間光変調器SLMに現れた2次元データのデータページを狭い範囲内に分散させて記録できる。 For example, when the pixel pitch of the spatial light modulator SLM is 42 μm, the wavelength is 532 nm, and the focal length is 165 mm, the corresponding Fourier spectral interval (d 1 ) is 2.09 mm according to the above equation. Therefore, information to be recorded exists in a radius range of about 2.1 mm on the optical axis. That is, as shown in FIG. 2, two-dimensional data appearing in the spatial light modulator SLM in a square xy space (x, y ≦ 2d 1 ) composed of the first-order diffracted light and zero-order light. Can be recorded in a narrow range.
 従って、フーリエ変換像には、当該2次元パターンのフーリエ成分に応じた強度ピーク(0次回折光0th、1次回折光1st、etc)が生じることになる。このようなフーリエ変換像にピークが生じると、当該ピーク位置において、書き換え回数が増えたりすると、記録媒体の欠陥が生じやすくなる懸念があった。そうでなくとも、記録膜の欠陥、記録感度、回折効率の不均一な場合など記録媒体欠陥の存在は問題である。 Therefore, an intensity peak (0th order diffracted light 0th, 1st order diffracted light 1st, etc.) corresponding to the Fourier component of the two-dimensional pattern is generated in the Fourier transform image. When a peak occurs in such a Fourier transform image, there is a concern that a defect in the recording medium tends to occur when the number of rewrites increases at the peak position. Even if this is not the case, the presence of defects in the recording medium, such as defects in the recording film, recording sensitivity and diffraction efficiency, is a problem.
 図3は、フーリエ面上の記録媒体欠陥DFTの様子を示す概略平面図である。記録媒体欠陥は記録媒体上のゴミや傷などである。記録媒体欠陥DFTにより、再生信号の特定の周波数成分が再生されなくなる、あるいは、記録信号の特定の周波数成分が記録されなくなる。図3は、記録媒体欠陥DFTが信号光z方向の光軸上記録媒体に存在して、フーリエ像の0次光(直流)成分0thを遮る場合を示している。ここでは、記録媒体欠陥DFTを説明の上で、矩形で表しているが、実際は種々の形がある。また、欠陥DFTの大きさを、0次光(直流)成分0thを遮る欠陥の差し渡しをLdとして、0次光(直流)成分0thを横切る一対の1次回折光成分1stの間隔をLsとして、Ld/Lsの百分率割合であらわす。たとえば、欠陥大きさ100%以上の、0次光、1次回折光の成分すべてを遮るような記録媒体欠陥では、データページを誤り訂正符号技術によっても再生は困難となる。 FIG. 3 is a schematic plan view showing the state of the recording medium defect DFT on the Fourier plane. The recording medium defect is dust or scratches on the recording medium. Due to the recording medium defect DFT, a specific frequency component of the reproduction signal is not reproduced, or a specific frequency component of the recording signal is not recorded. FIG. 3 shows a case where the recording medium defect DFT is present on the recording medium on the optical axis in the signal light z direction and blocks the 0th-order light (direct current) component 0th of the Fourier image. Here, the recording medium defect DFT is represented by a rectangle for the sake of explanation, but there are actually various shapes. Further, the size of the defect DFT is defined as Ld, where Ld is the defect passing that blocks the 0th-order light (DC) component 0th, and Ls is the distance between the pair of first-order diffracted light components 1st that cross the 0th-order light (DC) component 0th. Expressed as a percentage of / Ls. For example, in the case of a recording medium defect having a defect size of 100% or more and blocking all components of the 0th order light and the 1st order diffracted light, it is difficult to reproduce the data page even by the error correction code technique.
 そこで、光記録媒体に誤り訂正符号でも修復できない欠陥記録ブロックがあっても、他の領域に速やかに交替処理して欠陥救済することを目的として、欠陥の無い正常な記録ブロックへアクセスがあった場合はそのままその記録ブロックで情報の記録または再生を行い、欠陥記録ブロックへアクセスがあった場合は欠陥記録ブロックで情報の記録または再生を行わず、欠陥記録ブロックと交替記録ブロックとの位置関係を記憶し管理する欠陥管理部に書き込まれている情報に従って、交替記録ブロックへの移動方向が示す次の記録ブロックである交替記録ブロックで情報の記録または再生を行うことが、提案されている(特許文献1、参照)。 Therefore, even if there is a defective recording block that cannot be repaired even with an error correction code on the optical recording medium, there was an access to a normal recording block without a defect for the purpose of promptly replacing it in another area and repairing the defect. In this case, information is recorded or reproduced in the recording block as it is, and when the defective recording block is accessed, information is not recorded or reproduced in the defective recording block, and the positional relationship between the defective recording block and the replacement recording block is determined. It has been proposed to record or reproduce information in a replacement recording block, which is the next recording block indicated by the moving direction to the replacement recording block, according to information written in the defect management unit that stores and manages (patent) Reference 1).
 また、ホログラム記録に際してエラーが起こった場合に、効率良く適切な記録再生データ処理をするために、光情報記録装置は、ホログラフィを利用した光情報記録媒体の所定の位置に、2次元のピクセルデータからなるページデータを、それを担持した情報光と記録用参照光との干渉パターンとして記録する際に、ページデータの記録が正常に行われたかを判定し、その判定結果に応じて、ページデータの記録が正常に行われなかったと判断された場合に、所定の位置とは別の位置に再度記録するように光学的記録動作を制御する技術も、提案されている(特許文献2、参照)。 In addition, when an error occurs during hologram recording, the optical information recording apparatus performs two-dimensional pixel data at a predetermined position of the optical information recording medium using holography in order to efficiently perform appropriate recording / reproduction data processing. Is recorded as an interference pattern between the information light carrying it and the recording reference light, it is determined whether the page data has been recorded normally, and the page data is determined according to the determination result. There is also proposed a technique for controlling an optical recording operation so that recording is performed again at a position different from a predetermined position when it is determined that the recording is not normally performed (see Patent Document 2). .
 さらに、ホログラム記録再生装置において、記録再生に関わる光学部品に欠陥が生じた場合でも記録再生に支障を起こさないようにするために、参照光をホログラム記録媒体に照射する参照光照射部と、媒体に書き込むべきページデータに対応した空間情報を用いて変調した情報光を生成する空間変調部と、参照光を照射する領域と同一の領域に情報光を照射する情報光照射部と、参照光を媒体に照射することによって生成された再生光を受光する光検出部と、既知ページデータを予め記憶した既知データ記憶部と、既知ページデータに対応した空間情報を用いて既知ページデータを媒体に書込んだ後、媒体に書込んだ既知ページデータを読み出して、光検出部等の欠陥位置を調査する欠陥調査部と、検出された欠陥位置の情報を用いて、再生光に含まれる欠陥位置のデータを復元再生する再生制御部とを備えた装置も、提案されている(特許文献3、参照)。 Further, in the hologram recording / reproducing apparatus, a reference light irradiating unit for irradiating the hologram recording medium with reference light and a medium so as not to cause trouble in recording / reproducing even when a defect occurs in an optical component related to recording / reproducing. A spatial modulation unit that generates information light modulated using spatial information corresponding to page data to be written to the information, an information light irradiation unit that irradiates information light to the same region as the reference light irradiation region, and a reference light A light detection unit that receives reproduction light generated by irradiating the medium, a known data storage unit that stores the known page data in advance, and the known page data is written on the medium using spatial information corresponding to the known page data. After reading the known page data written on the medium, using the information of the detected defect position, the defect investigation unit that investigates the defect position, such as the light detection unit, Also apparatus and a reproduction control section for restoring reproducing data of defect position contained in the raw light, has been proposed (Patent Document 3, reference).
 また、ホログラム記録媒体について記録再生を行う記録再生装置において、光路中に生じる欠陥の有無について判定を可能とするために、レーザ光源をオンとした状態で空間光変調器の全画素でそれぞれbit1/bit0の変調をかけたとき、イメージセンサ上で得られたそれぞれの検出値がbit1/bit0になっているか否かについて判別を行い、その結果に基づき欠陥の有無を判定することも、提案されている(特許文献4、参照)。
特開2003-178538 特開2004-134048 特開2006-236536 特開2007-200385
Further, in a recording / reproducing apparatus that performs recording / reproducing with respect to the hologram recording medium, in order to make it possible to determine the presence / absence of a defect occurring in the optical path, each of the pixels of the spatial light modulator is bit1 / It has also been proposed to determine whether or not each detection value obtained on the image sensor is bit1 / bit0 when bit 0 modulation is applied, and to determine the presence or absence of a defect based on the result. (See Patent Document 4).
JP2003-178538 JP2004-134048 JP2006-236536 JP2007-200385
 記録媒体の記録部位から記録データを復元する場合、検出されたデータページ画像の品質は重要である。そのために、データページには位置決め用のマーカと呼ぶ予め決められたパターンのシンボルが含まれ、マーカの位置は一定の箇所に表示されている。例えば、特許文献2に開示されているように、位置合せするためのコードとして矩形の2次元データ中の4隅などに1ヶ所以上に含まれている。 When recovering the recorded data from the recording part of the recording medium, the quality of the detected data page image is important. For this purpose, the data page includes symbols of a predetermined pattern called positioning markers, and the positions of the markers are displayed at fixed positions. For example, as disclosed in Patent Document 2, codes for alignment are included at one or more places in four corners of rectangular two-dimensional data.
 図4は、或るデータページを表示する空間光変調器SLMの正面図を示す。記録媒体へ記録するデータページは、例えば二次元配列された白黒パターン画像(光透過および非透過パターン画像)になっている。このデータページの四隅には、マーカMKが入れてある。このマーカMKは、再生時にこのマーカの位置を検出することにより、中央のデータ領域DRの位置を特定する。 FIG. 4 shows a front view of the spatial light modulator SLM displaying a certain data page. The data page to be recorded on the recording medium is, for example, a two-dimensionally arranged black and white pattern image (light transmission and non-transmission pattern image). Markers MK are placed at the four corners of the data page. This marker MK specifies the position of the central data area DR by detecting the position of this marker during reproduction.
 一般的に、検出画像を走査した場合にマーカに対応する特定の周波数成分(マーカ再生信号)が得られることから、まずマーカ再生信号からマーカMKの各々の中心座標を決定し、更に、各マーカの全体形状は予め定められているため、各マーカMKを構成する各画素の中心位置も計算で求められる。そして、マーカ以外の画素、いわゆるデータ領域DRの画素位置は、決定されたマーカを構成する各画素を基準画素として、その基準画素の座標値から、画素の幅や高さに基づき計算して得ることができる。このように、全てのデータ領域画素の位置が決定できるので、その位置からデータ領域画素を読み取ることにより、2次元データのデータページが検出できる。例えば、ホログラム装置内において、ホログラム記録媒体から読み取ったデータページ(検出画像)におけるマーカ位置を基にして、受光する対物レンズの開口領域の中心と該データページとの間の位置偏倚量を求めて、データページの中心が対物レンズの開口領域の中心に一致するようにそれらの位置を補正することが、行われている。 Generally, when a detected image is scanned, a specific frequency component (marker reproduction signal) corresponding to the marker is obtained. Therefore, first, the center coordinates of each marker MK are determined from the marker reproduction signal, and each marker is further determined. Since the overall shape of is determined in advance, the center position of each pixel constituting each marker MK is also obtained by calculation. Then, the pixels other than the markers, that is, the pixel positions in the so-called data region DR, are obtained by calculating each pixel constituting the determined marker as a reference pixel based on the width and height of the pixel from the coordinate value of the reference pixel. be able to. As described above, since the positions of all the data area pixels can be determined, the data page of the two-dimensional data can be detected by reading the data area pixels from the positions. For example, in the hologram apparatus, the position deviation amount between the center of the aperture region of the light receiving objective lens and the data page is obtained based on the marker position in the data page (detected image) read from the hologram recording medium. The position of the data page is corrected so that the center of the data page coincides with the center of the aperture area of the objective lens.
 データ領域DRのデータページは、たとえば2:4変調などの2次元変調データパターンシンンボルの集合とされ、一般的に高い解像度で、白画素および黒画素それぞれが連続しないように表示され、一方、マーカは位置決めのためデータ領域DRよりも低い解像度のパターンが選ばれ表示される。 The data page of the data area DR is a set of two-dimensional modulation data pattern symbols such as 2: 4 modulation, for example, and is generally displayed at a high resolution so that white pixels and black pixels are not continuous, For positioning, a marker having a resolution lower than that of the data area DR is selected and displayed.
 このように、マーカはデータページ画品質や位置決めにおいて重要である。 Thus, markers are important in data page image quality and positioning.
 発明者は、再生時において、フーリエ面上の記録媒体欠陥DFT(図3)がフーリエ像の0次光(直流)成分0thだけでも遮る場合に、再生マーカ画像の劣化が大きくなり、記録再生に大きい影響があること、を実験により知見した。 The inventor found that when the recording medium defect DFT (FIG. 3) on the Fourier plane blocks even the 0th-order light (DC) component 0th of the Fourier image at the time of reproduction, the reproduction marker image is greatly deteriorated. It was found through experiments that there was a great influence.
 実験結果の再生マーカ画像を、図5(A)(B)に示す。図5(A)の記録媒体欠陥が無い場合、鮮明にマーカ像(記録用の通常マーカ画像と相似)が得られるが、図5(B)の記録媒体欠陥DFTが20%の大きさであり直流成分を含む低域成分がなくなる場合、連続した白で囲まれた十字形のマーカ像部分が、特に大きく劣化する。その結果、マーカ座標(たとえばその十字形の交点)の検出を誤り、データの再生ができなくなる場合がある。また、記録媒体上の1個の記録媒体欠陥でも、記録媒体欠陥のある位置に角度多重記録した全てのデータページ(ブックとも呼ぶ)に影響を及ぼすので、比較的に小さな欠陥でもデータページ検出にも支障をきたすことになる。 The reproduction marker images of the experimental results are shown in FIGS. When there is no recording medium defect in FIG. 5A, a clear marker image (similar to the normal marker image for recording) is obtained, but the recording medium defect DFT in FIG. 5B is 20% in size. When the low frequency component including the direct current component disappears, the cross-shaped marker image portion surrounded by continuous white is particularly greatly deteriorated. As a result, the detection of the marker coordinates (for example, the intersection of the crosses) may be wrong and data cannot be reproduced. In addition, even a single recording medium defect on the recording medium affects all data pages (also referred to as books) that are angle-multiplexed and recorded at the position where the recording medium is defective. Will also interfere.
 しかしながら、上記の特許文献においては、専ら、システム全体、装置、光学部品に起因するエラーに対処する提案を教示するだけであり、マーカにかかわる記録媒体欠陥には考慮されておらず、マーカを含むデータページの記録再生の対象である記録媒体自体の小さな欠陥対策については、示唆さえされていない。 However, the above patent document only teaches proposals for dealing with errors due to the entire system, apparatus, and optical components, and does not take into account the recording medium defects related to the marker, and includes the marker. There is no suggestion about countermeasures against small defects in the recording medium itself that is the target of data page recording and reproduction.
 すなわち、特許文献1、2の技術では、記録媒体欠陥(ベリファイエラー)があった場合、記録媒体の別の場所にデータを記録しているだけであり、特許文献3の技術は、既知ページデータで空間光変調器、二次元センサ(像センサ)の欠陥位置を検出して特定し、その欠陥部位のデータをエラー訂正部で消失訂正して、そこにはダミーデータを入れ、かかる欠陥部位のデータを、ページデータ中の欠陥のない部位(予め確保した空き領域、あるいは直後の領域)に移動させて、ページデータを生成しているだけであり、特許文献4の技術は、空間光変調器の変調パターンと像センサでの受光パターンを比較して、空間光変調器、像センサおよび光路中の欠陥を検出するだけであり、特許文献3、4の先行技術では、空間光変調器や像センサなどの光学部品による画素欠陥を検出しており、空間光変調器の変調パターンと像センサの受光像の比較で検出しているだけである。 That is, in the techniques of Patent Documents 1 and 2, when there is a recording medium defect (verify error), the data is only recorded in another location on the recording medium. In the spatial light modulator, the defect position of the two-dimensional sensor (image sensor) is detected and specified, and the data of the defective part is erased and corrected by the error correction unit, and dummy data is put there, and the defect part The page data is only generated by moving the data to a portion having no defect in the page data (a space area reserved in advance or an area immediately after), and the technique of Patent Document 4 discloses a spatial light modulator. In the prior arts of Patent Documents 3 and 4, the spatial light modulator and the image sensor and the light receiving pattern of the image sensor are merely detected to detect defects in the spatial light modulator, the image sensor, and the optical path. Sen And detecting a defective pixel due to optical components such as, it is only detected in the comparison of the received image of the modulation pattern and the image sensor of the spatial light modulator.
 実際には、記録媒体にはデータページ(記録信号)のフーリエ像のホログラムが分散した強度分布で記録されるので、発明者は、比較的に小さな記録媒体欠陥の位置や大きさによっては、無視できないことに、着目した。 Actually, since the hologram of the Fourier image of the data page (recording signal) is recorded on the recording medium with a distributed intensity distribution, the inventor ignores depending on the position and size of a relatively small recording medium defect. I focused on what I couldn't do.
 そこで、本発明の解決しようとする課題には、データページのマーカ再生エラーを低減するホログラム再生方法およびホログラム装置を提供することが一例として挙げられる。 Therefore, the problem to be solved by the present invention is, for example, to provide a hologram reproducing method and a hologram apparatus that reduce a marker reproduction error of a data page.
 本発明のホログラム再生方法は、空間光変調器に表示されたマーカおよびデータ領域を含むデータページをフーリエ像における少なくとも0次光および1次光の強度分布に対応して記録した記録媒体から再生された光を、像センサに結像してデータページの再生像を得てデータページを再生するホログラム装置におけるホログラム再生方法であって、
 前記像センサでデータページの再生像をサンプリングして検出画像を取得するステップと、
 予め記憶されたテンプレート画像と前記検出画像を用いてテンプレートマッチング処理を行って記録時のマーカの位置を検出するステップと、を含み、
 前記予め記憶されたテンプレート画像は、前記記録媒体の欠陥に応じた欠陥用テンプレート画像を含むことを特徴とする。
The hologram reproduction method of the present invention is reproduced from a recording medium in which a data page including a marker and a data area displayed on the spatial light modulator is recorded corresponding to the intensity distribution of at least the 0th order light and the 1st order light in the Fourier image. A hologram reproducing method in a hologram apparatus for reconstructing a data page by forming a reflected light on an image sensor to obtain a reproduced image of the data page,
Sampling a reproduced image of a data page with the image sensor to obtain a detected image;
Performing a template matching process using the template image stored in advance and the detection image to detect the position of the marker at the time of recording,
The template image stored in advance includes a defect template image corresponding to a defect of the recording medium.
 本発明のホログラム装置は、空間光変調器により光空間変調された信号光と参照光との干渉縞を記録媒体に記録し、或いは、参照光により、空間光変調器に表示されたマーカおよびデータ領域を含むデータページを記録した記録媒体から再生された光を、像センサに結像してデータページの再生像を得てデータページを再生するホログラム装置であって、
 前記マーカを変換したテンプレート画像を予め記憶する装置と、
 前記記録媒体を移動自在に保持する保持装置と、
 前記像センサでデータページの再生像をサンプリングして検出画像を取得するサンプリング部と、
 前記検出画像と前記テンプレート画像を用いてテンプレートマッチング処理を行って記録時のマーカの位置を検出する位置検出部と、を含み、
 前記予め記憶されたテンプレート画像は、前記マーカに相似形の通常用テンプレート画像より解像度が高くかつ前記記録媒体の欠陥に応じた欠陥用テンプレート画像を含むことを特徴とする。
The hologram apparatus of the present invention records interference fringes between the signal light and the reference light, which are spatially modulated by the spatial light modulator, on the recording medium, or the marker and data displayed on the spatial light modulator by the reference light. A hologram apparatus that reproduces a data page by forming a reproduced image of a data page by forming light reproduced from a recording medium on which a data page including a region is recorded on an image sensor,
An apparatus for storing in advance a template image obtained by converting the marker;
A holding device for movably holding the recording medium;
A sampling unit that acquires a detection image by sampling a reproduction image of a data page by the image sensor;
A position detection unit that detects a position of a marker at the time of recording by performing a template matching process using the detection image and the template image,
The template image stored in advance includes a defect template image having a higher resolution than a normal template image similar to the marker and corresponding to a defect of the recording medium.
従来のホログラム記録再生方法の一例の概略を示す図である。It is a figure which shows the outline of an example of the conventional hologram recording / reproducing method. ホログラム記録再生方法の空間光変調器の表示パターンの一例とフーリエ面の関係を示す概略斜視図である。It is a schematic perspective view which shows an example of the display pattern of the spatial light modulator of a hologram recording / reproducing method, and the relationship of a Fourier surface. ホログラム記録再生方法のフーリエ面上の記録媒体欠陥の様子を示す概略平面図である。It is a schematic plan view which shows the mode of the recording medium defect on the Fourier surface of a hologram recording / reproducing method. ホログラム記録再生方法のデータページを表示する空間光変調器の正面図である。It is a front view of the spatial light modulator which displays the data page of a hologram recording / reproducing method. ホログラム記録再生方法におけるデータページ内の再生マーカ画像を説明する部分平面図である。It is a partial top view explaining the reproduction | regeneration marker image in the data page in a hologram recording / reproducing method. 本発明による実施形態のホログラム装置を示す概略構成図である。It is a schematic block diagram which shows the hologram apparatus of embodiment by this invention. 本発明による実施例のホログラム装置のデコーダを説明する構成図である。It is a block diagram explaining the decoder of the hologram apparatus of the Example by this invention. 本発明による実施形態のホログラム装置の再生動作における再生像を受光後のデータ復号までの信号処理の流れの概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the flow of the signal processing until the data decoding after receiving the reproduction | regeneration image in the reproduction | regeneration operation | movement of the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置におけるディスク状の記録媒体の平面図である。It is a top view of the disk-shaped recording medium in the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置におけるシフト移動と角度多重を説明するフローチャートである。It is a flowchart explaining the shift movement and angle multiplexing in the hologram apparatus of embodiment by this invention. 本発明による実施例のデータページの欠陥検出パターンを示す平面図である。It is a top view which shows the defect detection pattern of the data page of the Example by this invention. 本発明による他の実施例のデータページの欠陥検出パターンおよび耐欠陥マーカを示す平面図である。It is a top view which shows the defect detection pattern and defect-proof marker of the data page of the other Example by this invention. 本発明による実施例の記録媒体欠陥検出により記録媒体から再生した欠陥検出パターン画像を示す平面図である。It is a top view which shows the defect detection pattern image reproduced | regenerated from the recording medium by the recording medium defect detection of the Example by this invention. 本発明による記録媒体欠陥検出により記録媒体から再生した欠陥検出パターン画像のディフェクト量(記録媒体欠陥)を横軸にとり、光量を縦軸にして周辺部と中央部でプロットした場合の光量変化を示すグラフである。FIG. 6 shows a change in light amount when a defect amount (recording medium defect) of a defect detection pattern image reproduced from a recording medium by recording medium defect detection according to the present invention is plotted on the horizontal axis and the light amount is plotted on the vertical and peripheral portions. It is a graph. 本発明による他の実施例の記録媒体欠陥検出により記録媒体から再生した欠陥検出パターン画像を示す平面図である。It is a top view which shows the defect detection pattern image reproduced | regenerated from the recording medium by the recording medium defect detection of the other Example by this invention. 本発明による記録媒体欠陥検出により記録媒体から再生した欠陥検出パターン画像の周波数を横軸にとり、振幅を縦軸にし周波数特性の変化を示すグラフである。It is a graph which shows the change of a frequency characteristic by setting the frequency of the defect detection pattern image reproduced | regenerated from the recording medium by the recording medium defect detection by this invention on the horizontal axis, and making an amplitude the vertical axis | shaft. 本発明による実施形態のホログラム装置における角度多重記録を説明するフローチャートである。It is a flowchart explaining the angle multiplex recording in the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置における角度多重再生を説明するフローチャートである。It is a flowchart explaining angle multiplexing reproduction in the hologram apparatus of the embodiment according to the present invention. 本発明による実施形態のホログラム装置におけるテンプレート画像を示す平面図である。It is a top view which shows the template image in the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置における合成テンプレート画像の加重平均にて合成変換することを説明するブロック線図である。It is a block diagram explaining performing synthetic | combination conversion by the weighted average of the synthetic | combination template image in the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置における第2例のデータを角度多重記録する手順を示すフローチャートである。It is a flowchart which shows the procedure which angle-multiplex-records the data of the 2nd example in the hologram apparatus of embodiment by this invention. 本発明による実施形態のホログラム装置における第2例のデータを角度多重再生する手順を示すフローチャートである。It is a flowchart which shows the procedure which carries out angle multiplexing reproduction | regeneration of the data of the 2nd example in the hologram apparatus of embodiment by this invention.
符号の説明Explanation of symbols
 10 記録媒体
 20 像センサ
 21 第2レンズ
 25 エンコーダ
 26 デコーダ
 32 コントローラ
 16 対物レンズ
 HM ハーフミラー
 LD 光源
 SH1、SH2 シャッタ
 BX ビームエキスパンダ
 SLM 空間光変調器
 RM1、RM2 反射ミラー
DESCRIPTION OF SYMBOLS 10 Recording medium 20 Image sensor 21 2nd lens 25 Encoder 26 Decoder 32 Controller 16 Objective lens HM Half mirror LD Light source SH1, SH2 Shutter BX Beam expander SLM Spatial light modulator RM1, RM2 Reflection mirror
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下に本発明の実施の形態を図面を参照しつつ説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 <ホログラム装置>
 図6に、データページの記録および/または再生用のホログラム装置の一例を示す。
<Hologram device>
FIG. 6 shows an example of a hologram apparatus for recording and / or reproducing data pages.
 レーザ光源LDから発した可干渉性のレーザ光12の光路上には、ハーフミラーHM、第2シャッタSH2、ビームエキスパンダBX、透過型の空間光変調器SLM、対物レンズ16、記録媒体10、第2レンズ21、像センサ20が配置されている。 On the optical path of the coherent laser beam 12 emitted from the laser light source LD, a half mirror HM, a second shutter SH2, a beam expander BX, a transmissive spatial light modulator SLM, an objective lens 16, a recording medium 10, A second lens 21 and an image sensor 20 are disposed.
 ハーフミラーHMはレーザ光12を分割して参照光を生成し、反射ミラーRM1、RM2とともに参照光光学系として機能する。可動の反射ミラーRM2は、コントローラ32に制御され、記録媒体10への参照光ビームの入射角度を制御する。 Half mirror HM divides laser beam 12 to generate reference light, and functions as a reference light optical system together with reflection mirrors RM1 and RM2. The movable reflection mirror RM2 is controlled by the controller 32 and controls the incident angle of the reference light beam to the recording medium 10.
 コントローラ32は、被制御機器のコントロール用の所定プログラムを実行するためのCPU(central processing unit)、ROM(read only memory)、RAM(random access memory)、外部メモリ等から構成されている。 The controller 32 includes a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), an external memory, and the like for executing a predetermined program for controlling the controlled device.
 ホログラム装置は、コントローラ32に制御されるエンコーダ25およびデコーダ26を含み、エンコーダ25およびデコーダ26には空間光変調器SLMおよび像センサ20がそれぞれ接続されている。コントローラ32は、入力された情報に応じて四隅に所定マーカがあるデータ領域を含むデータページを生成してエンコーダ25に供給する。コントローラ32は、デコーダ26で復号された情報を出力する。コントローラ32は、データページ四隅の所定マーカのためのテンプレート画像を予め生成してこれをデコーダ26に供給する。 The hologram apparatus includes an encoder 25 and a decoder 26 controlled by a controller 32, and a spatial light modulator SLM and an image sensor 20 are connected to the encoder 25 and the decoder 26, respectively. The controller 32 generates a data page including a data area having predetermined markers at the four corners according to the input information, and supplies the data page to the encoder 25. The controller 32 outputs the information decoded by the decoder 26. The controller 32 generates template images for predetermined markers at the four corners of the data page in advance and supplies them to the decoder 26.
 第1シャッタSH1はコントローラ32に制御され、記録媒体10への参照光ビームの照射時間を制御する。 The first shutter SH1 is controlled by the controller 32, and controls the irradiation time of the reference light beam to the recording medium 10.
 第2シャッタSH2はコントローラ32に制御され、記録媒体10への信号光ビームの照射時間を制御する。 The second shutter SH2 is controlled by the controller 32 to control the irradiation time of the signal light beam to the recording medium 10.
 コントローラ32は、データ記録時に第1、第2シャッタSH1、SH2を共に開けて信号光と参照光を記録媒体へ照射し、再生時には第2シャッタSH2のみ閉じて参照光のみを記録媒体へ照射するように、制御する。 The controller 32 opens both the first and second shutters SH1 and SH2 during data recording to irradiate the recording medium with signal light and reference light, and closes only the second shutter SH2 during reproduction and irradiates only the reference light to the recording medium. To control.
 ビームエキスパンダBXは、第2シャッタSH2を通過した光の径を拡大して平行光線とし空間光変調器SLMを照射する。 The beam expander BX expands the diameter of the light that has passed through the second shutter SH2 to be a parallel light beam and irradiates the spatial light modulator SLM.
 空間光変調器SLMは複数の変調用画素が2次元的に配置されたマトリクス配置の透過型の液晶表示装置(Liquid Crystal Display:LCD)のパネルである。空間光変調器SLMはたとえば縦480*横640画素を有し、エンコーダ25から供給された記録すべきデータページを表示する。空間光変調器SLMに照射された平行光は空間的なON信号およびOFF信号に光変調され、信号光12aとして対物レンズ16へ導かれる。 The spatial light modulator SLM is a liquid crystal display (LCD) panel having a matrix arrangement in which a plurality of modulation pixels are two-dimensionally arranged. The spatial light modulator SLM has, for example, vertical 480 * horizontal 640 pixels, and displays a data page to be recorded supplied from the encoder 25. The parallel light applied to the spatial light modulator SLM is optically modulated into a spatial ON signal and an OFF signal and guided to the objective lens 16 as signal light 12a.
 対物レンズ16は、第2シャッタSH2が開いたとき(記録時)、信号光12aをフーリエ変換するとともに、記録媒体10の装着位置の後方に焦点を結ぶように、集光する。 When the second shutter SH2 is opened (during recording), the objective lens 16 performs Fourier transform on the signal light 12a and condenses it so as to focus on the rear side of the mounting position of the recording medium 10.
 記録媒体10は移動自在な支持部60上に装着される。支持部60には、例えば、ディスク状の記録媒体10を着脱自在に保持するターンテーブル(装着自在支持部)で回転させるスピンドルモータが用いられる。記録媒体10はフォトポリマや、光異方性材料や、フォトリフラクティブ材料や、ホールバーニング材料、フォトクロミック材料など光学干渉パターンを保存できる透光性の光感応材料が用いられる。 The recording medium 10 is mounted on a movable support unit 60. For the support unit 60, for example, a spindle motor that is rotated by a turntable (mountable support unit) that detachably holds the disc-shaped recording medium 10 is used. The recording medium 10 is made of a translucent photosensitive material that can store an optical interference pattern, such as a photopolymer, a light anisotropic material, a photorefractive material, a hole burning material, or a photochromic material.
 参照光光学系の可動の反射ミラーRM2は、コントローラ32に制御され参照光12を記録媒体10へ所定入射角度で照射する。反射ミラーRM2の作用により、記録媒体10内部にて参照光12を信号光12aに対して所定角度で交差させる。すなわち、データ記録時には第1シャッタSH1と第2シャッタSH2を共に開き、参照光と信号光を記録媒体内で干渉させる。 The movable reflection mirror RM2 of the reference light optical system is controlled by the controller 32 to irradiate the recording medium 10 with the reference light 12 at a predetermined incident angle. The reference light 12 crosses the signal light 12a at a predetermined angle inside the recording medium 10 by the action of the reflection mirror RM2. That is, at the time of data recording, both the first shutter SH1 and the second shutter SH2 are opened so that the reference light and the signal light interfere with each other in the recording medium.
 交差する信号光と参照光の干渉縞が記録媒体10内に屈折率格子として記憶されることにより、データページの記録が行われる。また、信号光に対しする参照光との交差角を変えることにより、複数のデータページの角度多重記録が可能となる。 Interference fringes between intersecting signal light and reference light are stored in the recording medium 10 as a refractive index grating, whereby data pages are recorded. In addition, angle multiplex recording of a plurality of data pages is possible by changing the crossing angle between the signal light and the reference light.
 像センサ20は、複数の受光素子が2次元的に配置された電荷結合素子(CCD)や相補型金属酸化膜半導体装置(MOS)などのアレイなどから構成される。像センサ20の受光素子と空間光変調器の画素とは一対一に対応する必要はなく、空間光変調器に表示されるデータページの像、特に各画素が区別できる個数、配置の受光素子配列を有していればよい。解像度の高い像センサ20であれば、オーバーサンプリング処理により、像センサ20上に結像されたデータページに含まれる画素相当の像を像センサ20の複数の画素で検出し、それらの検出値を平均化した結果に基づきデータページに含まれる1画素相当のデータを高精度で再生することができる。 The image sensor 20 includes an array such as a charge coupled device (CCD) in which a plurality of light receiving elements are two-dimensionally arranged and a complementary metal oxide semiconductor device (MOS). The light receiving elements of the image sensor 20 and the pixels of the spatial light modulator do not have to correspond one-to-one. The image of the data page displayed on the spatial light modulator, particularly the number and arrangement of the light receiving elements that can be distinguished from each pixel. As long as it has. If the image sensor 20 has a high resolution, an image corresponding to the pixel included in the data page imaged on the image sensor 20 is detected by a plurality of pixels of the image sensor 20 by oversampling processing, and the detected values are detected. Based on the averaged result, data corresponding to one pixel included in the data page can be reproduced with high accuracy.
 記録されたデータページを記録媒体10から再生する場合には、第2シャッタSH2で信号光を遮断し、第1シャッタSH1を開き、記録時と同じ交差角で参照光のみを入射させる。参照光が照射された記録媒体10の入射側の反対側に、記録された信号光に対応した再生光(回折光)が現れる。これにより、再生光ReSBが第2レンズ21を通して像センサ20へ導かれる。像センサ20が再生光による再生像を受光し電気的な再生信号(検出画像)に再変換した後、デコーダ26で復号して、データDATAをコントローラ32へ送り、コントローラ32により元の記録された情報が出力される。 When reproducing the recorded data page from the recording medium 10, the signal light is blocked by the second shutter SH2, the first shutter SH1 is opened, and only the reference light is incident at the same crossing angle as at the time of recording. Reproduction light (diffracted light) corresponding to the recorded signal light appears on the side opposite to the incident side of the recording medium 10 irradiated with the reference light. As a result, the reproduction light ReSB is guided to the image sensor 20 through the second lens 21. The image sensor 20 receives a reconstructed image by the reconstructed light and reconverts it into an electrical reconstructed signal (detected image), then decodes it by the decoder 26 and sends the data DATA to the controller 32, which was originally recorded by the controller 32. Information is output.
 デコーダ26は、図7に示すように、像センサ20からのデータを記憶する検出画像メモリ41、再サンプリング部42、復号部43、テンプレートマッチング処理する位置検出部44、を備えている。すなわち、デコーダ26は、像センサで取得したデータページの検出画像と予め記憶されているテンプレート画像を用いてテンプレートマッチング処理を行って記録時のマーカの位置検出し、再サンプリングを行って、復号を行う。位置検出部44は、テンプレートマッチング処理のためテンプレート画像を記憶するテンプレート画像メモリを有し、後述する欠陥検出部を有する。 As shown in FIG. 7, the decoder 26 includes a detected image memory 41 that stores data from the image sensor 20, a resampling unit 42, a decoding unit 43, and a position detection unit 44 that performs template matching processing. That is, the decoder 26 performs template matching processing using the detected image of the data page acquired by the image sensor and the template image stored in advance to detect the position of the marker at the time of recording, performs re-sampling, and performs decoding. Do. The position detection unit 44 includes a template image memory that stores a template image for template matching processing, and includes a defect detection unit described later.
 例えば再生時(または書き換え時)に、上記図4のように表示された二次元配列された白黒パターン画像(光透過および非透過パターン画像)のデータページの四隅のマーカMKの画像を取得し、そのマーカ位置に基づきデータページを再サンプリングを行うことにより、中央のデータ領域DRの位置の特定や検出画像の歪み補正等を行い、正確な復号ができる。 For example, at the time of reproduction (or rewriting), the images of the markers MK at the four corners of the data page of the two-dimensionally arranged black and white pattern image (light transmission and non-transmission pattern image) displayed as shown in FIG. By re-sampling the data page based on the marker position, the position of the central data region DR is specified, the distortion of the detected image is corrected, and the like can be accurately decoded.
 データページの白黒ドットパターンは各セルのONまたはOFFの電圧印加状態で表示され、透過または非透過のパターンとなる。空間光変調器SLMは中央のデータ領域DRにおいてたとえば2:4変調などの2次元変調データパターンシンンボルの集合を表示し、マーカMKを例えば、その4隅に表示する。2:4変調は、記録すべき入力データを2ビット単位で区切り、かかる2ビットごとを4ビット(2*2=4画素)の2次元変調パターンシンンボルへ変調する方式である。2:4変調は一例であり、これには限定されず、データ領域DRにおいて他の変調方式で表示し記録されてもよい。 The black and white dot pattern on the data page is displayed when each cell is turned on or off, and becomes a transparent or non-transparent pattern. The spatial light modulator SLM displays a set of two-dimensional modulation data pattern symbols such as 2: 4 modulation in the central data region DR, and displays markers MK at, for example, the four corners thereof. 2: 4 modulation is a method in which input data to be recorded is divided in units of 2 bits, and every 2 bits are modulated into 4 bits (2 * 2 = 4 pixels) two-dimensional modulation pattern symbol. The 2: 4 modulation is an example, and the present invention is not limited to this. The data area DR may be displayed and recorded by another modulation method.
 <デコーダ信号処理>
 かかるデータページ毎のデコーダ信号処理は、図8に示すように、像センサで検出された検出画像において、まずデータページの四隅のマーカの座標の検出を行い(マーカ座標検出:ステップS1)、次に、再生像の再サンプリング処理を行い(再サンプリング:ステップS2)、次に、データの復号する(復号:ステップS3)ことで行われる。
<Decoder signal processing>
In the decoder signal processing for each data page, as shown in FIG. 8, in the detected image detected by the image sensor, first, the coordinates of the markers at the four corners of the data page are detected (marker coordinate detection: step S1), and the next. Next, the re-sampling process of the reproduced image is performed (resampling: step S2), and then the data is decoded (decoding: step S3).
 <マーカ座標検出:ステップS1>
 あらかじめ、生成されたテンプレート画像がデコーダ内のテンプレート画像メモリに、記憶される。
<Marker coordinate detection: Step S1>
The generated template image is stored in advance in a template image memory in the decoder.
 像センサでデータページの再生像をサンプリングして検出画像を取得した後、検出画像(再生信号)とテンプレート画像を用いてテンプレートマッチング処理を行って記録時の4つのマーカの座標位置を検出する。 After sampling the reproduced image of the data page by the image sensor and obtaining the detected image, template matching processing is performed using the detected image (reproduced signal) and the template image to detect the coordinate positions of the four markers at the time of recording.
 マーカの座標の検出方法は、テンプレート画像と検出画像との相関値が最大となる位置を検索するテンプレートマッチング処理で行う。テンプレートマッチング処理は一般的にパターン照合手法の1つであって検査対象パターンと事前に用意した標準パターン(通常用テンプレート画像たとえばマーカと相似形のもの)との類似度や相違度を求めて対象パターンを識別する手法として知られている。テンプレートマッチング処理には、類似度や相違度としては相関係数や濃淡レベルの差などが使用されることが多いが、面積相関法による2つの画像間の対応点探索法などがある。 The marker coordinate detection method is a template matching process that searches for a position where the correlation value between the template image and the detected image is maximum. Template matching is one of the pattern matching methods, and it is targeted by obtaining the similarity and difference between the inspection target pattern and a standard pattern prepared in advance (for example, a normal template image similar to a marker). This is known as a technique for identifying patterns. The template matching process often uses a correlation coefficient, a difference in shading level, or the like as the degree of similarity or difference, but there is a corresponding point search method between two images by the area correlation method.
 ここで、再生されたマーカの画像s(x,y)とテンプレート画像t(x,y)の相関値Cxyは次式(1)で表される。ここで(x,y)は座標位置を表す。 Here, the correlation value Cxy between the reproduced marker image s (x, y) and the template image t (x, y) is expressed by the following equation (1). Here, (x, y) represents a coordinate position.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 検出される座標は画素単位の座標(サンプリングにより整数座標)であるので、さらに詳細な位置を、例えば、特開平10-124666に教示されるような方法で求めることもできる。 Since the detected coordinates are pixel-by-pixel coordinates (integer coordinates by sampling), a more detailed position can be obtained by a method taught in, for example, Japanese Patent Laid-Open No. 10-124666.
 <再サンプリング:ステップS2>
 次に、データページに含まれる4つのマーカの座標間隔と再サンプリング処理後の検出画像のマーカの座標間隔が等しくなるように、検出された検出画像の4つのマーカの座標間を等間隔に再サンプリング処理を行う。
<Resampling: Step S2>
Next, the coordinate intervals of the four markers in the detected image are re-equalized so that the coordinate intervals of the four markers included in the data page are equal to the coordinate intervals of the markers in the detected image after resampling. Perform sampling processing.
 例えば、データページのマーカの座標間隔が400画素で、検出画像のマーカの座標間隔が405画素であった場合、検出画像のマーカを405/400の間隔で再サンプリング処理を行う。 For example, when the coordinate interval of the marker on the data page is 400 pixels and the coordinate interval of the marker on the detected image is 405 pixels, the marker on the detected image is resampled at an interval of 405/400.
 再サンプリング処理により、歪み補正等がなされる。再サンプリング処理により、検出画像はデータページとほぼ同じ状態になる。つまり、再生信号は、記録信号とほぼ同じ状態になる。 The distortion is corrected by resampling. By the resampling process, the detected image becomes almost the same as the data page. That is, the reproduction signal is almost in the same state as the recording signal.
 <復号:ステップS3>
 次に、データ領域DRの各画素の白黒パターンを検出して、データを復号する。
<Decoding: Step S3>
Next, the monochrome pattern of each pixel in the data area DR is detected, and the data is decoded.
 例えば、検出画像のデータ領域DRを、2:4変調などの所定の2次元変調パターンのサイズに区切るなどして画像処理し、さらに、得られた信号と2次元変調パターンとの相互相関を計算し、最も似ている変調パターンを検出することにより復号する。 For example, the data region DR of the detected image is image-processed by dividing it into a predetermined two-dimensional modulation pattern size such as 2: 4 modulation, and the cross correlation between the obtained signal and the two-dimensional modulation pattern is calculated. The decoding is performed by detecting the most similar modulation pattern.
 <ディスク状記録媒体>
 ディスク状の記録媒体10には、例えば図9に示すように、その回転中心孔周りの表面に回転角検知用のコードトラックDMを付されている。支持部60はコントローラ32に制御され、対物レンズ16の光軸に関して記録媒体10の位置を制御する。ホログラム装置は、図示しないが媒体回転角検知センサを備え、これにより記録媒体10の回転角検知用のコードトラックDMを検出する。コントローラ32は、該媒体回転角検知センサに接続され記録媒体の回転位置信号を生成する回転位置検出部と、スピンドルモータに接続されこれに所定信号を供給するスピンドルサーボ部とを備えている。
<Disc recording medium>
For example, as shown in FIG. 9, the disk-shaped recording medium 10 is provided with a code track DM for detecting a rotation angle on the surface around the rotation center hole. The support unit 60 is controlled by the controller 32 to control the position of the recording medium 10 with respect to the optical axis of the objective lens 16. The hologram apparatus includes a medium rotation angle detection sensor (not shown), thereby detecting the code track DM for detecting the rotation angle of the recording medium 10. The controller 32 includes a rotation position detection unit that is connected to the medium rotation angle detection sensor and generates a rotation position signal of the recording medium, and a spindle servo unit that is connected to a spindle motor and supplies a predetermined signal thereto.
 <シフト移動&角度多重>
 ホログラム装置は、記録および再生ステップそれぞれにおいて、記録すべき単位記録領域の複数を所定間隔で逐次記録および再生できるように、記録媒体を回転制御するとともに、単位記録領域の各々においてページ単位で所定角度間隔で角度多重記録できるように、制御される。
<Shift movement & angle multiplexing>
The hologram apparatus controls the rotation of the recording medium so that a plurality of unit recording areas to be recorded can be sequentially recorded and reproduced at predetermined intervals in each recording and reproducing step, and at a predetermined angle in units of pages in each unit recording area. It is controlled so that angle multiplex recording can be performed at intervals.
 実施形態のホログラム装置において単位記録領域ごとの角度多重記録の前後に、シフト移動(トラック方向Tまたは半径方向R)動作が行われるので、これを図10(フローチャート)および図6に基づいて説明する。 In the hologram apparatus of the embodiment, a shift movement (track direction T or radial direction R) operation is performed before and after angle multiplex recording for each unit recording area. This will be described with reference to FIG. 10 (flow chart) and FIG. .
 まず、上記図6に示すように記録媒体10をホログラム装置の支持部60に装着固定する。その後、コントローラ32からのデータ記録(または再生)指令による目標アドレス指示に応じて、可動の反射ミラーRM2により参照光の目標入射角度を固定し(図10:ステップS11)、そして、媒体回転角検知センサを起動して(図10:ステップS12)、目標のアドレス情報の記録媒体10における目標角度位置(回転角検知用のコードトラックDMに従って)まで記録媒体10を回転し、そこで停止する(図10:ステップS13)。つぎに、目標半径位置まで記録媒体10を半径方向Rにて移動し(図10:ステップS14)、そこで停止する(シフト移動)。 First, as shown in FIG. 6, the recording medium 10 is mounted and fixed on the support portion 60 of the hologram apparatus. Thereafter, the target incident angle of the reference light is fixed by the movable reflecting mirror RM2 in accordance with the target address instruction by the data recording (or reproduction) command from the controller 32 (FIG. 10: Step S11), and the medium rotation angle detection The sensor is activated (FIG. 10: Step S12), and the recording medium 10 is rotated to the target angle position (according to the code track DM for detecting the rotation angle) of the target address information on the recording medium 10, and stopped there (FIG. 10). : Step S13). Next, the recording medium 10 is moved in the radial direction R to the target radial position (FIG. 10: Step S14) and stopped there (shift movement).
 シフト移動の後に、目標位置における単位記録領域にて角度多重の記録または再生のステップを実行していわゆるブックを形成する(図10:ステップS15)。そして、角度多重の記録または再生のステップの継続または終了を判別して(図10:ステップS16)、継続であればステップS12へ戻り、他の目標アドレス指示を行い、継続でなければ終了する。 After the shift movement, a so-called book is formed by executing an angle-multiplexed recording or reproducing step in the unit recording area at the target position (FIG. 10: step S15). Then, the continuation or end of the angle multiplexing recording or reproduction step is determined (FIG. 10: step S16). If it is continued, the process returns to step S12, and another target address instruction is given.
 これらシフト移動と角度多重のステップを順次行い、トラック方向に複数のブックを形成する。 These shift movement and angle multiplexing steps are sequentially performed to form a plurality of books in the track direction.
 例えば、図9に示すように、記録媒体10のトラック(破線)上に所定間隔で複数の単位記録領域いわゆるブック(○で示す部分)が整列して記録される。すなわちブックごとに角度多重の記録または再生がなされる。 For example, as shown in FIG. 9, a plurality of unit recording areas so-called books (portions indicated by ◯) are recorded in alignment on a track (broken line) of the recording medium 10 at a predetermined interval. That is, angle-multiplexed recording or reproduction is performed for each book.
 <記録媒体欠陥検出の第1例>
 発明者は、ホログラム装置においてデータページのマーカ再生エラーを低減する記録媒体欠陥検出方法を提案する。
<First Example of Recording Medium Defect Detection>
The inventor proposes a recording medium defect detection method for reducing a marker reproduction error of a data page in a hologram apparatus.
 まず、データページのデータ領域画像の解像度よりも低い低周波パターンの欠陥検出パターンを作成し、図6に示すホログラム装置において、当該欠陥検出パターンをデータページに配置したデータ領域を含むデータページを、空間光変調器SLMに表示させ、当該データページを記録媒体10に記録した後、再生して、デコーダ26の位置検出部44内の欠陥検出部が、記録媒体欠陥の有無あるいは程度を、当該検出パターンの再生像の光量または周波数の分布を検出することにより、記録媒体欠陥を検出する。 First, a defect detection pattern having a low frequency pattern lower than the resolution of the data area image of the data page is created, and in the hologram apparatus shown in FIG. 6, a data page including a data area in which the defect detection pattern is arranged on the data page, The data is displayed on the spatial light modulator SLM, and the data page is recorded on the recording medium 10 and then reproduced. The defect detecting unit in the position detecting unit 44 of the decoder 26 detects the presence or absence of the recording medium defect. A recording medium defect is detected by detecting the light quantity or frequency distribution of the reproduced image of the pattern.
 図11および図12(A)はデータページの欠陥検出パターンの例を示す。 FIG. 11 and FIG. 12 (A) show examples of defect detection patterns of data pages.
 図11に示す欠陥検出パターンは、周辺部は高周波パターンで中央部は白のみの直流パターンとなっている。この欠陥検出パターンの場合、データ再生時において、記録媒体欠陥がある場合には、再生パターンの周辺部に比べて中央部の光量が低下するので、再生パターンの周辺部と中央部の光量比を検出することにより、記録媒体欠陥を検出することができる。 The defect detection pattern shown in FIG. 11 is a direct current pattern with a high frequency pattern at the periphery and white only at the center. In the case of this defect detection pattern, when there is a recording medium defect at the time of data reproduction, the light amount in the central part is lower than that in the peripheral part of the reproduction pattern. By detecting, a recording medium defect can be detected.
 ここで、図3に示したように、記録媒体欠陥DFTが信号光z方向の光軸上記録媒体に存在して、フーリエ像の0次光(直流)成分0thを遮る場合、欠陥DFTの大きさ(ディフェクト量)を、0次光(直流)成分0thを遮る欠陥の差し渡しをLdとし、0次光(直流)成分0thを横切る一対の1次回折光成分1stの間隔をLsとして、Ld/Lsの百分率で定義することにする。 Here, as shown in FIG. 3, when the recording medium defect DFT exists on the recording medium on the optical axis in the signal light z direction and blocks the zero-order light (direct current) component 0th of the Fourier image, the size of the defect DFT is large. Ld / Ls is defined as Ld / Ls, where Ld is the defect passing that blocks the 0th-order light (DC) component 0th, and Ls is the distance between the pair of first-order diffracted light components 1st that crosses the 0th-order light (DC) component 0th. We will define it as a percentage.
 実験の結果、図13(A)~(F)に示す記録媒体に欠陥DFTの大きさが0%、10%、20%、40%、50%があったとき再生した欠陥検出パターン画像から明らかなように、欠陥0%場合以外、再生パターン周辺部に比べて中央部の光量が低下することが分かる。図14は欠陥0%、10%、20%、40%、50%のディフェクト量(記録媒体欠陥)を横軸にとり、光量を縦軸にして周辺部と中央部でプロットした場合の光量変化を示す。 As a result of the experiment, it is apparent from the defect detection pattern image reproduced when the size of the defect DFT is 0%, 10%, 20%, 40%, 50% on the recording medium shown in FIGS. As can be seen, except in the case of 0% defect, the light amount in the central portion is lower than that in the peripheral portion of the reproduction pattern. FIG. 14 shows the change in light quantity when the defect amount (recording medium defect) of 0%, 10%, 20%, 40%, and 50% of the defect is plotted on the horizontal axis and the light quantity is plotted on the vertical axis. Show.
 したがって、デコーダ26の位置検出部44内の欠陥検出部に、再生した欠陥検出パターンの周辺部と中央部の光量を比較する比較器を備えることにより、記録媒体欠陥の有無あるいは程度を検出することができる。 Therefore, the presence or degree of the recording medium defect can be detected by providing the defect detection unit in the position detection unit 44 of the decoder 26 with a comparator that compares the light quantity in the peripheral part and the central part of the reproduced defect detection pattern. Can do.
 図12(A)に示す欠陥検出パターンは、全体として白黒の低周波数の周期パターン(低周波パターン)となっている。この欠陥検出パターンの場合、データ再生時において、記録媒体欠陥がある場合には、白部分のエッジのみが残るため、周期パターンの2次(偶数次)高調波成分が出てくる。データ再生時に、この高調波成分を検出することにより記録媒体欠陥を検出することができる。 The defect detection pattern shown in FIG. 12A is a black and white low frequency periodic pattern (low frequency pattern) as a whole. In the case of this defect detection pattern, when there is a recording medium defect at the time of data reproduction, only the white part edge remains, so that the second order (even order) harmonic component of the periodic pattern appears. A recording medium defect can be detected by detecting this harmonic component during data reproduction.
 実験の結果、図15(A)(B)に示す記録媒体に欠陥がない場合と有る場合の欠陥検出パターン画像(図12(A)に示す欠陥検出パターン)から明らかなように、個々の白部分のエッジのみが明るく残る。図16は周波数を横軸にとり、振幅を縦軸にして欠陥0%、10%、20%、40%のディフェクト量(記録媒体欠陥)が有る場合の欠陥検出パターン画像それぞれの周波数特性の変化を示す。例えば、記録媒体欠陥のディフェクト量0%とディフェクト量20%の場合では、振幅ピークの現れる周波数が異なることが分かる。 As a result of the experiment, as apparent from the defect detection pattern images (the defect detection pattern shown in FIG. 12A) when the recording medium shown in FIGS. Only the edge of the part remains bright. FIG. 16 shows changes in frequency characteristics of defect detection pattern images when there is a defect amount (recording medium defect) of 0%, 10%, 20%, and 40% with the horizontal axis representing the frequency and the vertical axis representing the amplitude. Show. For example, it can be seen that the frequency at which the amplitude peak appears differs when the defect amount of the recording medium defect is 0% and the defect amount is 20%.
 したがって、デコーダ26の位置検出部44内の欠陥検出部に、各種検出パターンの周波数の分布のピーク値を予め記憶するメモリと、記憶ピーク値と実際に検出した検出パターンのピーク値を比較する比較器を備えることにより、記録媒体欠陥の有無あるいは程度を検出することができる。 Therefore, in the defect detection unit in the position detection unit 44 of the decoder 26, a memory that stores in advance the peak value of the frequency distribution of various detection patterns and a comparison that compares the stored peak value with the peak value of the actually detected detection pattern. By providing the device, it is possible to detect the presence or absence of the recording medium defect.
 よって、テンプレート画像を記憶するステップにおいて、記録媒体の欠陥の有無または程度に応じた複数のテンプレート画像を用意してこれらが記憶されることにより、再生時において、欠陥検出の結果すなわち記録媒体の欠陥の有無または程度に応じて、それら複数のテンプレート画像から好適なものが選択される。 Therefore, in the step of storing the template image, a plurality of template images corresponding to the presence / absence or degree of defects in the recording medium are prepared and stored, so that the result of the defect detection, that is, the defect in the recording medium is reproduced. A suitable one is selected from the plurality of template images in accordance with the presence or absence or the degree.
 <ホログラム装置の角度多重記録動作>
 図17はデータを角度多重記録する時のフローチャートを示す。
<Angle multiplex recording operation of hologram device>
FIG. 17 shows a flowchart when the angle multiplex recording is performed.
 まず、図10のシフト移動&角度多重動作と同様に、記録すべき目標位置に光ビームが当たるように記録媒体を回転制御し、目標位置に到達した時点で、ステップS111にてブックの最初(特定の場所)のページであるか否かを判別する。先頭ページとなるべき角度であれば、ステップS112にてコントローラが記録媒体欠陥を検出するための欠陥検出パターン(例えば図11または図12(A)に示す欠陥検出パターン)をデータページ(ここではダミーのデータ領域としてもよい)に入れて、エンコーダおよび空間光変調器を介して、ステップS113にて記録媒体にページ記録する。つぎに、ステップS114にてページ記録終了であるか否かを判別する。終了である場合、記録は終了する。終了しない場合はステップS115にてブックの最終ページであるか否かを判別する。最終ページでない場合、ステップS116にて参照光入射角度が変更され記録は続行され、ステップS117にてコントローラが通常のデータページを生成して、ステップS113にて記録媒体にページ記録する。一方、ステップS115にてブックの最終ページである場合、ステップS118にてシフト移動して、ステップS111に戻り、繰り返す。なお、ステップS111にてブックの最初のページでない場合もステップS117へ移り、通常のデータページを生成して、ステップS113にて記録媒体にページ記録して多重記録を継続する。 First, similarly to the shift movement & angle multiplexing operation of FIG. 10, the recording medium is rotationally controlled so that the light beam hits the target position to be recorded, and when the target position is reached, the first ( It is determined whether the page is a specific place. If the angle should be the first page, a defect detection pattern (for example, the defect detection pattern shown in FIG. 11 or 12A) for the controller to detect a recording medium defect in step S112 is a data page (in this case, a dummy). In step S113, pages are recorded on the recording medium via the encoder and the spatial light modulator. Next, in step S114, it is determined whether or not page recording is complete. If it is finished, the recording is finished. If not finished, it is determined in step S115 whether or not it is the last page of the book. If it is not the final page, the reference light incident angle is changed in step S116 and recording is continued. In step S117, the controller generates a normal data page and records the page on the recording medium in step S113. On the other hand, if it is the last page of the book in step S115, it shifts in step S118, returns to step S111, and repeats. Even if it is not the first page of the book in step S111, the process proceeds to step S117, a normal data page is generated, and page recording is performed on the recording medium in step S113 to continue multiple recording.
 <ホログラム装置の角度多重再生動作>
 データを角度多重再生する時のフローチャートを図18に示す。
<Angle multiplex reproduction operation of hologram device>
FIG. 18 shows a flowchart when the angle multiplex reproduction of data is performed.
 まず、図10のシフト移動&角度多重動作と同様に、再生すべき目標位置に光ビームが当たるように記録媒体を回転制御し、目標位置に到達した時点で、ステップS121にてブックの最初のページであるか否かを判別する。最初のページでない場合、ステップS122にて参照光入射角度が変更され先頭ページの検索(ステップS121)が繰り返される。一方、先頭ページとなるべき角度であれば、ステップS123にてデコーダの位置検出部内の欠陥検出部が、記録媒体欠陥の有無あるいは程度を、当該検出パターンの再生像の光量または周波数の分布を検出することにより、記録媒体欠陥があるか否かを判別する。欠陥がない場合、ステップS124にて通常用テンプレート画像(通常マーカと相似形のもの)をデコーダ信号処理用にセットする。一方、記録媒体欠陥を検出した場合には、ステップS125にて欠陥用テンプレート画像をデコーダ信号処理用にセットする。欠陥用テンプレート画像については後述する。 First, as in the shift movement & angle multiplexing operation of FIG. 10, the recording medium is rotationally controlled so that the light beam strikes the target position to be reproduced, and when the target position is reached, the first of the book is read in step S121. It is determined whether it is a page. If it is not the first page, the reference light incident angle is changed in step S122, and the search for the first page (step S121) is repeated. On the other hand, if the angle is to be the first page, in step S123, the defect detection unit in the position detection unit of the decoder detects the presence or absence of the recording medium defect and the distribution of the light quantity or frequency of the reproduced image of the detection pattern. Thus, it is determined whether or not there is a recording medium defect. If there is no defect, a normal template image (similar to a normal marker) is set for decoder signal processing in step S124. On the other hand, if a recording medium defect is detected, a defect template image is set for decoder signal processing in step S125. The defect template image will be described later.
 このように、予め、記録媒体の欠陥の有無または程度に応じた複数のテンプレート画像を用意してこれらが記憶されていることにより、再生時において、欠陥検出の結果すなわち記録媒体の欠陥の有無または程度に応じて、それら複数のテンプレート画像から好適なものが選択される。 As described above, a plurality of template images corresponding to the presence or absence or degree of defects in the recording medium are prepared and stored in advance, so that the result of defect detection at the time of reproduction, that is, the presence or absence of defects in the recording medium or A suitable one is selected from the plurality of template images depending on the degree.
 ステップS124およびステップS125の後は、ステップS126にてページ再生する。つぎに、ステップS127にてページ再生が終了であるか否かを判別する。終了である場合、再生は終了する。終了しない場合はステップS128にてブックの最終ページであるか否かを判別する。最終ページでない場合、ステップS129にて参照光入射角度が変更されステップS126にてページ再生は続行される。一方、ブックの最終ページである場合、ステップS130にてシフト移動して、ステップS121に戻り、繰り返す。 After step S124 and step S125, page reproduction is performed in step S126. Next, in step S127, it is determined whether or not page reproduction is complete. If it is finished, the playback is finished. If not finished, it is determined in step S128 whether or not it is the last page of the book. If it is not the last page, the reference light incident angle is changed in step S129, and page reproduction is continued in step S126. On the other hand, if it is the last page of the book, it shifts in step S130, returns to step S121, and repeats.
 以上のように、記録媒体欠陥を検出し、それに従ってマーカ位置検出のテンプレート画像を変更することで、記録媒体欠陥がある場合であっても正しくマーカ位置を検出できるようになる。 As described above, by detecting the recording medium defect and changing the marker position detection template image accordingly, the marker position can be correctly detected even when there is a recording medium defect.
 <欠陥用テンプレート画像の生成>
 図19(A)~(C)はそれぞれ通常用テンプレート画像(通常マーカと相似形のもの)、欠陥用テンプレート画像、合成テンプレート画像を示す。
<Generation of defect template image>
19A to 19C show a normal template image (similar to a normal marker), a defect template image, and a composite template image, respectively.
 図19(B)の欠陥用テンプレート画像は、図19(A)の通常用テンプレート画像を高域通過フィルタで処理した結果のデータを算出し、その平均値を閾値として設定し、高域通過フィルタで処理した結果のデータを二値化することにより、通常用テンプレート画像より解像度の高くなった画像として得られたものである。具体的には、像センサでの受光パターンのサンプリング周波数をfsとしたとき、カットオフ周波数fc(だだし、0<fc<fs/2)の高域通過フィルタに通常用テンプレートを通し、そのフィルタを通過した像データの平均値を閾値として二値化する。カットオフ周波数fcは検出した欠陥の量により決定する。すなわち、図19(B)の欠陥用テンプレート画像は、図19(A)の通常用テンプレート画像の低域周波数成分を取り除く変換を行ったものである。かかる変換は、例えばコンピュータを使用し、対象のテンプレート画像を高域通過フィルタリング処理し、平均値計算し、二値化処理することによって行うことができる。具体的には、画像行列は実数2次元配列なので、線形代数計算を例えばMATLAB(登録商標)により行列演算を定義しつつ実行させることができる。 The defect template image in FIG. 19B calculates data obtained by processing the normal template image in FIG. 19A with a high-pass filter, and sets the average value as a threshold value. By binarizing the data obtained as a result of the above processing, an image having a resolution higher than that of the normal template image is obtained. Specifically, when the sampling frequency of the light reception pattern in the image sensor is fs, a normal template is passed through a high-pass filter having a cutoff frequency fc (where 0 <fc <fs / 2), and the filter Is binarized using the average value of the image data that has passed through The cut-off frequency fc is determined by the amount of detected defects. That is, the defect template image in FIG. 19B is obtained by performing conversion to remove the low frequency component of the normal template image in FIG. Such conversion can be performed by, for example, using a computer, subjecting a target template image to high-pass filtering, calculating an average value, and binarizing. Specifically, since the image matrix is a real two-dimensional array, linear algebra calculation can be executed while defining a matrix operation using, for example, MATLAB (registered trademark).
 図19(C)の合成テンプレート画像は第2の欠陥用テンプレート画像であり、図19(A)の通常用テンプレート画像と図19(B)の欠陥用テンプレート画像を記録媒体欠陥の検出レベル(図11~図16にて説明したような欠陥の大きさレベル)に応じた割合で加重平均にて合成変換して作成できる。図20のブロック線図に示すように、通常用テンプレートに重みK(0<K<1)を掛け、欠陥用テンプレート画像に重み1-Kを掛けて、その2つを加算したものを合成テンプレート画像とすることができる。Kは検出した欠陥の量により決定する係数である。かかる合成テンプレート画像も通常用テンプレート画像より解像度の高くなった画像として得られ、さらに、多値化、例えば三値化された画像となる。 The composite template image in FIG. 19C is a second defect template image, and the normal template image in FIG. 19A and the defect template image in FIG. 11 to 16 as described in FIGS. 16 to 16, and can be created by combining and converting with a weighted average at a ratio corresponding to the defect size level. As shown in the block diagram of FIG. 20, a normal template is multiplied by a weight K (0 <K <1), a defect template image is multiplied by a weight 1-K, and the result obtained by adding the two is a composite template. It can be an image. K is a coefficient determined by the amount of detected defects. Such a synthesized template image is also obtained as an image having a higher resolution than the normal template image, and further becomes a multi-valued image, for example, a ternary image.
 <記録媒体欠陥検出方法の第2例>
 図21は第2例のデータを角度多重記録する時のフローチャートを示す。
<Second Example of Recording Medium Defect Detection Method>
FIG. 21 shows a flowchart when the data of the second example is angle-multiplexed recorded.
 まず、図10のシフト移動&角度多重動作と同様に、記録すべき目標位置に光ビームが当たるように記録媒体を回転制御し、目標位置に到達した時点で、ステップS131にてブックの最初(特定の場所)のページであるか否かを判別する。先頭ページとなるべき角度であれば、ステップS132にて、データ記録前に記録媒体の欠陥検出処理を行う。この欠陥検出処理では、図6に示すように、第1シャッタSH1を閉じ、第2シャッタSH2を開いて、信号光のみを記録媒体10に通して、その信号光による欠陥検出パターン(例えば図11または図12(A)に示す欠陥検出パターン)を含むデータページを像センサ20で受け、再生された欠陥検出パターンによって記録媒体欠陥を検出する。ステップS133にて、この欠陥検出結果(欠陥の有無、程度etc)をデコーダ26の位置検出部44内のテンプレート画像メモリに記憶させることもできる。また、この欠陥検出結果を、コントローラ内の記録媒体欠陥を管理する不揮発性メモリ等に記憶しておくこともできる。さらに、コントローラ内において、欠陥検出結果のデータベースをプログラムにより構築して、次回の記録、再生時の欠陥検出において、参照するようにすることもできる。 First, similarly to the shift movement and angle multiplexing operation of FIG. 10, the rotation of the recording medium is controlled so that the light beam strikes the target position to be recorded, and when the target position is reached, the first ( It is determined whether the page is a specific place. If the angle should be the first page, a defect detection process for the recording medium is performed before data recording in step S132. In this defect detection process, as shown in FIG. 6, the first shutter SH1 is closed, the second shutter SH2 is opened, only the signal light is passed through the recording medium 10, and a defect detection pattern (for example, FIG. Alternatively, the data page including the defect detection pattern shown in FIG. 12A is received by the image sensor 20, and the recording medium defect is detected by the reproduced defect detection pattern. In step S133, the defect detection result (the presence / absence of defect, degree, etc.) can be stored in the template image memory in the position detection unit 44 of the decoder 26. Further, the defect detection result can be stored in a nonvolatile memory or the like that manages recording medium defects in the controller. Further, in the controller, a database of defect detection results can be constructed by a program so that it can be referred to in defect detection at the next recording and reproduction.
 つぎに、ステップS134にて、欠陥検出結果から欠陥の有無を判別する。記録媒体欠陥があった場合(ステップS135)には、これ以降に記録するデータページの位置検出マーカ形状を、記録媒体欠陥に強い形状(例えば図12(B)に示すような、通常マーカより高周波成分が多い高周波パターン)の耐欠陥マーカに設定する。記録媒体欠陥がない場合(ステップS136)には、ノイズに対する位置検出性能が高い通常マーカに設定する。そして、いずれかのマーカ設定終了後、ステップS137にて、コントローラがデータページを、エンコーダおよび空間光変調器を介して、記録媒体にページ記録する。 Next, in step S134, the presence / absence of a defect is determined from the defect detection result. If there is a recording medium defect (step S135), the position detection marker shape of the data page to be recorded thereafter is set to a shape that is strong against the recording medium defect (for example, as shown in FIG. (High frequency pattern with many components). If there is no defect in the recording medium (step S136), a normal marker with high position detection performance against noise is set. Then, after completion of any marker setting, in step S137, the controller records the data page on the recording medium via the encoder and the spatial light modulator.
 つぎに、ステップS138にてページ記録終了であるか否かを判別する。終了である場合、記録は終了する。終了しない場合はステップS139にてブックの最終ページであるか否かを判別する。最終ページでない場合、ステップS140にて参照光入射角度が変更され記録は続行され、ステップS137にてコントローラがデータページを生成して、記録媒体にページ記録する。一方、ステップS139にてブックの最終ページである場合、ステップS141にてシフト移動して、ステップS132に戻り、繰り返す。なお、ステップS131にてブックの最初のページでない場合もステップS137へ移り、記録媒体にページ記録して多重記録を継続する。 Next, in step S138, it is determined whether or not page recording is complete. If it is finished, the recording is finished. If not finished, it is determined whether or not it is the last page of the book in step S139. If it is not the last page, the reference light incident angle is changed in step S140, and the recording is continued. In step S137, the controller generates a data page and records the page on the recording medium. On the other hand, if it is the last page of the book in step S139, it shifts in step S141, returns to step S132, and repeats. Even if it is not the first page of the book in step S131, the process proceeds to step S137, where page recording is performed on the recording medium and multiplex recording is continued.
 一方、第2例のホログラム装置の角度多重再生動作においては、以下のように行われる。 On the other hand, the angle multiplex reproduction operation of the hologram apparatus of the second example is performed as follows.
 データを角度多重再生する時のフローチャートを図22に示す。 FIG. 22 shows a flowchart when the angle multiplex reproduction of data is performed.
 まず、図10のシフト移動&角度多重動作と同様に、再生すべき目標位置に光ビームが当たるように記録媒体を回転制御し、目標位置に到達した時点で、ステップS151にて上記欠陥管理メモリを読み出し、次にステップS152にて記録媒体欠陥があるか否かを判別する。欠陥がない場合、ステップS153にて通常用テンプレート画像(通常マーカと相似形のもの)をデコーダ信号処理用にセットする。一方、記録媒体欠陥がある場合には、ステップS154にて欠陥用テンプレート画像(記録したデータページのマーカと同じ形状のテンプレート画像)をデコーダ信号処理用にセットする。テンプレート画像の設定後は、ステップS155にてページ再生する。つぎに、ステップS156にてページ再生が終了であるか否かを判別する。終了である場合、再生は終了する。終了しない場合はステップS157にてブックの最終ページであるか否かを判別する。最終ページでない場合、ステップS158にて参照光入射角度が変更されステップS155にてページ再生は続行される。一方、ブックの最終ページである場合シフト移動して、ステップS151に戻り、繰り返す。 First, similarly to the shift movement & angle multiplexing operation of FIG. 10, the rotation of the recording medium is controlled so that the light beam strikes the target position to be reproduced, and when the target position is reached, the defect management memory in step S151. Then, in step S152, it is determined whether or not there is a recording medium defect. If there is no defect, a normal template image (similar to a normal marker) is set for decoder signal processing in step S153. On the other hand, if there is a recording medium defect, a defect template image (a template image having the same shape as the marker of the recorded data page) is set for decoder signal processing in step S154. After setting the template image, the page is reproduced in step S155. Next, in step S156, it is determined whether or not page reproduction is complete. If it is finished, the playback is finished. If not finished, it is determined in step S157 whether or not it is the last page of the book. If it is not the last page, the reference light incident angle is changed in step S158, and page reproduction is continued in step S155. On the other hand, if it is the last page of the book, it shifts and returns to step S151 to repeat.
 以上のように、記録媒体欠陥を検出し、それに従ってマーカ位置検出のテンプレート画像を変更することで、記録媒体欠陥がある場合であっても正しくマーカ位置を検出できるようになる。 As described above, by detecting the recording medium defect and changing the marker position detection template image accordingly, the marker position can be correctly detected even when there is a recording medium defect.
 <記録媒体欠陥検出方法の第3例>
 上記実施例のホログラム装置においては、そのデコーダ(図7)の位置検出部44が欠陥検出部を備える構成を有しているが、第3例では欠陥検出部を備えることなく、図19(C)に示す合成テンプレート画像(第2の欠陥用テンプレート画像)をメモリなど記憶装置に予め格納しておくことにより、記録媒体の欠陥を検出することなく、記録再生が可能である。すなわち、図19(C)に示す第2の欠陥用テンプレート画像は図19(A)の通常用テンプレート画像と図19(B)の欠陥用テンプレート画像を記録媒体欠陥の検出レベル(図11~図16にて説明したような欠陥の大きさレベル)に応じた割合で加重平均にて合成変換して作成したものであるからである。図20のブロック線図に示すように、通常用テンプレートに重みK(0<K<1)を掛け、欠陥用テンプレート画像に重み1-Kを掛けて、その2つを加算した通常用テンプレート画像より解像度の高くなった三値化したものを合成テンプレート画像としているので、例えば、図19(C)に示す場合(欠陥の量50%、すなわちK=0.5)とすることができ、その場合、0次光分布の欠陥が媒体にあったとしても、通常用テンプレート画像と欠陥用テンプレート画像の間の確率で位置検出が可能となる。
<Third example of recording medium defect detection method>
In the hologram apparatus of the above-described embodiment, the position detection unit 44 of the decoder (FIG. 7) has a configuration including a defect detection unit. In the third example, the defect detection unit is not provided, and FIG. ) Is stored in advance in a storage device such as a memory, so that recording and reproduction can be performed without detecting a defect in the recording medium. That is, the second defect template image shown in FIG. 19C is obtained by using the normal template image shown in FIG. 19A and the defect template image shown in FIG. This is because it is created by combining and converting with a weighted average at a ratio corresponding to the defect size level as described in FIG. As shown in the block diagram of FIG. 20, a normal template image obtained by multiplying a normal template by a weight K (0 <K <1), multiplying a defect template image by a weight 1-K, and adding the two. Since the ternarized image with higher resolution is used as the composite template image, for example, the case shown in FIG. 19C (the amount of defects is 50%, that is, K = 0.5) can be obtained. In this case, even if the zero-order light distribution defect exists in the medium, the position can be detected with a probability between the normal template image and the defect template image.

Claims (11)

  1.  空間光変調器に表示されたマーカおよびデータ領域を含むデータページをフーリエ像における少なくとも0次光および1次光の強度分布に対応して記録した記録媒体から再生された光を、像センサに結像してデータページの再生像を得てデータページを再生するホログラム装置におけるホログラム再生方法であって、
     前記像センサでデータページの再生像をサンプリングして検出画像を取得するステップと、
     予め記憶されたテンプレート画像と前記検出画像を用いてテンプレートマッチング処理を行って記録時のマーカの位置を検出するステップと、を含み、
     前記予め記憶されたテンプレート画像は、前記記録媒体の欠陥に応じた欠陥用テンプレート画像を含むことを特徴とするホログラム再生方法。
    The light reproduced from the recording medium in which the data page including the marker and the data area displayed on the spatial light modulator is recorded corresponding to the intensity distribution of at least the zero-order light and the first-order light in the Fourier image is coupled to the image sensor. A hologram reproducing method in a hologram apparatus for reproducing a data page by obtaining a reproduced image of a data page,
    Sampling a reproduced image of a data page with the image sensor to obtain a detected image;
    Performing a template matching process using the template image stored in advance and the detection image to detect the position of the marker at the time of recording,
    The hologram reproduction method according to claim 1, wherein the template image stored in advance includes a defect template image corresponding to a defect of the recording medium.
  2.  前記記録媒体の記録位置に欠陥検出パターンを予め記録し、得られた前記欠陥検出パターンの再生像により前記記録媒体の欠陥の有無または程度を検出するステップと、を含むことを特徴とする請求項1記載のホログラム再生方法。 And a step of pre-recording a defect detection pattern at a recording position of the recording medium and detecting the presence or absence or degree of a defect of the recording medium from a reproduction image of the obtained defect detection pattern. 2. The hologram reproduction method according to 1.
  3.  前記データページの複数のうちの特定のページにおいて、前記記録媒体の欠陥の有無または程度を検出するステップを含むことを特徴とする請求項1または2記載のホログラム再生方法。 3. The hologram reproducing method according to claim 1, further comprising a step of detecting whether or not there is a defect in the recording medium in a specific page among a plurality of the data pages.
  4.  前記記録媒体の欠陥の有無または程度を検出するステップにおいて、前記記録媒体の欠陥の無しを検出した場合、前記マーカに相似形の通常用テンプレート画像を用い、一方、前記記録媒体の欠陥の有りを検出した場合、前記欠陥用テンプレート画像を用いるように、前記テンプレートマッチング処理を行うことを特徴とする請求項2または3記載のホログラム再生方法。 In the step of detecting the presence / absence or degree of the defect of the recording medium, when the absence of the defect of the recording medium is detected, a similar normal template image is used for the marker, while the presence of the defect of the recording medium is detected. 4. The hologram reproduction method according to claim 2, wherein the template matching process is performed so that the defect template image is used when detected.
  5.  前記欠陥用テンプレート画像は、前記通常用テンプレート画像を高域通過フィルタで処理した結果データを算出し、その平均値を閾値として設定し、前記結果データを二値化して得られた第1欠陥用テンプレート画像を含むことを特徴とする請求項4記載のホログラム再生方法。 The defect template image is obtained by calculating result data obtained by processing the normal template image with a high-pass filter, setting an average value thereof as a threshold value, and binarizing the result data. The hologram reproduction method according to claim 4, further comprising a template image.
  6.  前記欠陥用テンプレート画像は、前記第1欠陥用テンプレート画像と、
     前記通常用テンプレート画像と、を、所定の割合で加重平均して作成された第2欠陥用テンプレート画像を含むことを特徴とする請求項1~5のいずれか1に記載のホログラム再生方法。
    The defect template image includes the first defect template image,
    6. The hologram reproducing method according to claim 1, comprising a second defect template image created by weighted averaging the normal template image at a predetermined ratio.
  7.  空間光変調器により光空間変調された信号光と参照光との干渉縞を記録媒体に記録し、或いは、参照光により、空間光変調器に表示されたマーカおよびデータ領域を含むデータページを記録した記録媒体から再生された光を、像センサに結像してデータページの再生像を得てデータページを再生するホログラム装置であって、
     前記マーカを変換したテンプレート画像を予め記憶する装置と、
     前記像センサでデータページの再生像をサンプリングして検出画像を取得するサンプリング部と、
     前記検出画像と前記テンプレート画像を用いてテンプレートマッチング処理を行って記録時のマーカの位置を検出する位置検出部と、を含み、
     前記予め記憶されたテンプレート画像は、前記マーカに相似形の通常用テンプレート画像と、前記通常用テンプレート画像より解像度が高い欠陥用テンプレート画像を含むことを特徴とするホログラム装置。
    Record interference fringes between signal light and spatial light modulated by the spatial light modulator on the recording medium, or record the data page including the marker and data area displayed on the spatial light modulator by the reference light. A hologram apparatus that images the light reproduced from the recorded recording medium on an image sensor to obtain a reproduced image of the data page and reproduces the data page;
    An apparatus for storing in advance a template image obtained by converting the marker;
    A sampling unit that acquires a detection image by sampling a reproduction image of a data page by the image sensor;
    A position detection unit that detects a position of a marker at the time of recording by performing a template matching process using the detection image and the template image,
    2. The hologram apparatus according to claim 1, wherein the template image stored in advance includes a normal template image similar to the marker and a defect template image having a higher resolution than the normal template image.
  8.  前記前記記録媒体の所定の単位記録領域の一部において前記マーカを含むデータページから、前記マーカの再生像により前記記録媒体の欠陥の有無または程度を検出する欠陥検出部と、を有することを特徴とする請求項7記載のするホログラム装置。 A defect detection unit configured to detect the presence or absence of a defect of the recording medium from a data page including the marker in a part of a predetermined unit recording area of the recording medium based on a reproduction image of the marker. A hologram apparatus according to claim 7.
  9.  前記欠陥検出部において、前記記録媒体の欠陥の無しを検出した場合、前記マーカに相似形の通常用テンプレート画像を用い、一方、前記記録媒体の欠陥の有りを検出した場合、前記欠陥用テンプレート画像を用いるように、前記テンプレートマッチング処理を行うことを特徴とする請求項8記載のホログラム装置。 When the defect detection unit detects the absence of a defect in the recording medium, a normal template image similar to the marker is used. On the other hand, when the presence of a defect in the recording medium is detected, the defect template image The hologram apparatus according to claim 8, wherein the template matching process is performed such that the template matching process is used.
  10.  前記欠陥用テンプレート画像は、前記通常用テンプレート画像を高域通過フィルタで処理した結果データを算出し、その平均値を閾値として設定し、前記結果データを二値化して得られ第1欠陥用テンプレート画像を含むことを特徴とする請求項7~9のいずれか1に記載のホログラム装置。 The defect template image is obtained by calculating result data obtained by processing the normal template image with a high-pass filter, setting the average value as a threshold value, and binarizing the result data. First defect template 10. The hologram apparatus according to claim 7, further comprising an image.
  11.  前記欠陥用テンプレート画像は、
     前記通常用テンプレート画像を高域通過フィルタで処理した結果データを算出し、前記結果データの平均値を閾値として設定し、前記結果データを二値化して得られた第1欠陥用テンプレート画像と、
     前記通常用テンプレート画像と、を、所定の割合で加重平均して作成された第2欠陥用テンプレート画像を含むことを特徴とする請求項7~10のいずれか1に記載のホログラム装置。
    The template image for defects is
    A first defect template image obtained by calculating result data obtained by processing the normal template image with a high-pass filter, setting an average value of the result data as a threshold, and binarizing the result data;
    11. The hologram apparatus according to claim 7, further comprising a second defect template image created by weighted averaging the normal template image at a predetermined ratio.
PCT/JP2008/072428 2008-12-10 2008-12-10 Hologram reproducing method and hologram device WO2010067429A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072428 WO2010067429A1 (en) 2008-12-10 2008-12-10 Hologram reproducing method and hologram device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072428 WO2010067429A1 (en) 2008-12-10 2008-12-10 Hologram reproducing method and hologram device

Publications (1)

Publication Number Publication Date
WO2010067429A1 true WO2010067429A1 (en) 2010-06-17

Family

ID=42242440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072428 WO2010067429A1 (en) 2008-12-10 2008-12-10 Hologram reproducing method and hologram device

Country Status (1)

Country Link
WO (1) WO2010067429A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105069790A (en) * 2015-08-06 2015-11-18 潍坊学院 Rapid imaging detection method for gear appearance defect
WO2017094130A1 (en) * 2015-12-02 2017-06-08 株式会社日立製作所 Optical information recording/reproducing device and optical information recording/reproducing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155831A (en) * 2004-11-30 2006-06-15 Fujitsu Ltd Hologram recording medium and hologram recording and reproducing apparatus
WO2006093255A1 (en) * 2005-03-03 2006-09-08 Pioneer Corporation Marker selection method, marker selection device, marker, hologram recording device and method, hologram reproducing device and method, and computer program
JP2007179596A (en) * 2005-12-26 2007-07-12 Fuji Xerox Co Ltd Position detection marker and method
WO2007111139A1 (en) * 2006-03-28 2007-10-04 Pioneer Corporation Recording/reproducing method, recording medium and recording/reproducing device
JP2008234787A (en) * 2007-03-22 2008-10-02 Funai Electric Co Ltd Hologram recording and reproducing device, and hologram recording device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155831A (en) * 2004-11-30 2006-06-15 Fujitsu Ltd Hologram recording medium and hologram recording and reproducing apparatus
WO2006093255A1 (en) * 2005-03-03 2006-09-08 Pioneer Corporation Marker selection method, marker selection device, marker, hologram recording device and method, hologram reproducing device and method, and computer program
JP2007179596A (en) * 2005-12-26 2007-07-12 Fuji Xerox Co Ltd Position detection marker and method
WO2007111139A1 (en) * 2006-03-28 2007-10-04 Pioneer Corporation Recording/reproducing method, recording medium and recording/reproducing device
JP2008234787A (en) * 2007-03-22 2008-10-02 Funai Electric Co Ltd Hologram recording and reproducing device, and hologram recording device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105069790A (en) * 2015-08-06 2015-11-18 潍坊学院 Rapid imaging detection method for gear appearance defect
CN105069790B (en) * 2015-08-06 2018-09-14 潍坊学院 A kind of gear open defect fast image detection method
WO2017094130A1 (en) * 2015-12-02 2017-06-08 株式会社日立製作所 Optical information recording/reproducing device and optical information recording/reproducing method

Similar Documents

Publication Publication Date Title
US7755820B2 (en) Two-dimensional modulation method for hologram recording and hologram apparatus with encoder for driving SLM displaying boundary portion
JP4734530B2 (en) retrieval method
JP2007508651A (en) Method and apparatus for phase modulation homogenization Fourier transform holographic data recording and reproduction
EP2136366A2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP4127483B2 (en) Multiple recording type hologram recording apparatus and method, and hologram reproducing apparatus and method
JPH09197947A (en) Two-dimensional encoding method for hologram recording
WO2010067429A1 (en) Hologram reproducing method and hologram device
JP4007267B2 (en) Hologram recording method and hologram recording apparatus
JP2007087466A (en) Two dimensional encoding method
JP2006244638A (en) Hologram reproducing apparatus, hologram reproducing method
WO2010067428A1 (en) Hologram recording method and hologram device
JP3940874B2 (en) Optical search method, optical reproduction method, optical search reproduction device, and optical recording method
US7428206B2 (en) Holographic information recording apparatus
JP4050650B2 (en) Optical information reproducing apparatus and recording medium storing a computer-readable program that can be used to realize the optical information reproducing apparatus
TWI408522B (en) Holographic storage system using destructive interference for pixel detection
JP5091993B2 (en) Optical information recording apparatus and recording method
JP4197450B2 (en) Information recording apparatus, information reproducing apparatus, information recording method, information reproducing method, and information recording medium
JP4045390B2 (en) Optical recording method, optical recording apparatus, and optical reproducing method
JP2007114388A (en) Hologram recording and reproducing device, and hologram recording and reproducing method
JP5100729B2 (en) Method for measuring noise in hologram recording / reproducing system
JP2006084526A (en) Hologram reproduction device and hologram reproduction method
US20050213470A1 (en) Apparatus for and method of recording and reproducing holograms
WO2015011745A1 (en) Optical information recording medium, optical information recording method and optical information playback method
JP6934797B2 (en) Hologram recording signal processing device, hologram recording device equipped with this, and hologram recording signal processing method
JP2007058043A (en) Optical information recording method and medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP