WO2010067418A1 - Magnetic recording head, and storage device - Google Patents

Magnetic recording head, and storage device Download PDF

Info

Publication number
WO2010067418A1
WO2010067418A1 PCT/JP2008/072315 JP2008072315W WO2010067418A1 WO 2010067418 A1 WO2010067418 A1 WO 2010067418A1 JP 2008072315 W JP2008072315 W JP 2008072315W WO 2010067418 A1 WO2010067418 A1 WO 2010067418A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetization
tip
magnetic field
layer
Prior art date
Application number
PCT/JP2008/072315
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 長坂
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/072315 priority Critical patent/WO2010067418A1/en
Publication of WO2010067418A1 publication Critical patent/WO2010067418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details

Definitions

  • the present invention relates to a magnetic recording head used for writing magnetic information in a storage device such as a hard disk drive (HDD).
  • a storage device such as a hard disk drive (HDD).
  • the main pole defines a truncated pyramid-shaped tip piece.
  • the tip surface of the tip piece faces the medium facing surface.
  • the tip piece is sandwiched between a pair of side shields extending along the medium facing surface.
  • the side shield absorbs an extra leakage magnetic field leaking from the tip piece.
  • the recording magnetic field leaks intensively from the tip of the tip piece.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic recording head and a storage device that can increase the intensity of a recording magnetic field while absorbing a leakage magnetic field.
  • a magnetic recording head is divided into tip pieces that taper toward a tip facing a medium facing surface facing a storage medium and establish magnetization along a central axis perpendicular to the medium facing surface.
  • a shield that extends along the medium facing surface and faces the tip piece, the shield having a first magnetization amount extending along the medium facing surface, and the central axis
  • a first magnetic layer that establishes magnetization in a first direction orthogonal to the first magnetic layer, a nonmagnetic layer that is stacked on the surface of the first magnetic layer, and a layer that is stacked on the surface of the nonmagnetic layer and is greater than the first magnetization amount
  • a second magnetic layer having a second magnetization amount and establishing magnetization in a second direction antiparallel to the first direction.
  • magnetization is established in the main pole, for example, in the vertical direction along the central axis.
  • a recording magnetic field is formed between the medium facing surface and the storage medium.
  • magnetization is established in a first direction orthogonal to the central axis.
  • magnetization is established in a second direction antiparallel to the first direction. Since the second magnetic layer has a larger magnetization amount than the first magnetic layer, the magnetization is fixed in the second direction in the second magnetic layer.
  • a magnetic field is generated from the inner end of the second magnetic layer toward the tip piece.
  • the recording magnetic field concentrates directly below the tip surface of the tip piece.
  • the magnetic field leaking from the inner end of the second magnetic layer toward the tip piece is superimposed on the recording magnetic field.
  • the leakage magnetic field leaking from the side surface of the tip piece or the second magnetic layer toward the medium facing surface is absorbed by the first magnetic layer.
  • the strength of the recording magnetic field increases.
  • the generation of a leakage magnetic field that is, an erase magnetic field from the medium facing surface toward the storage medium is avoided. For example, side erasure is avoided.
  • a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece.
  • the resolution of magnetic recording is increased. Such a magnetic recording head can greatly contribute to the improvement of the recording density.
  • a magnetic field is generated from the tip piece toward the inner end of the second magnetic layer. Such a magnetic field is superimposed on the recording magnetic field.
  • magnetization is established inward toward the tip piece in the horizontal direction perpendicular to the central axis.
  • the recording magnetic field concentrates directly below the tip surface of the tip piece.
  • generation of a leakage magnetic field that is, an erase magnetic field from the medium facing surface toward the recording medium is avoided.
  • side erasure is avoided.
  • a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece.
  • Such a magnetic recording head can greatly contribute to the improvement of the recording density.
  • FIG. 1 is a plan view schematically showing an internal structure of a specific example of a storage device according to the present invention, that is, a hard disk drive (HDD).
  • FIG. 6 is an enlarged perspective view schematically showing a flying head slider according to a specific example. It is a front view of the electromagnetic conversion element which shows roughly the electromagnetic conversion element observed from a medium opposing surface.
  • FIG. 4 is a cross-sectional view taken along line 4-4 of FIG.
  • FIG. 5 is a cross-sectional view taken along line 5-5 of FIG.
  • It is a front view of the reading element schematically showing the reading element observed from the medium facing surface.
  • It is a front view of the writing element which shows roughly the writing element observed from the medium facing surface.
  • FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. It is sectional drawing which shows a mode that magnetization is established with a main pole and a shield. It is sectional drawing which shows a mode that magnetization is established with a main pole and a shield. It is a graph of the magnetic field strength measured along a medium facing surface. It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate.
  • top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate.
  • top view and sectional view which show roughly the process of forming a main pole on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. It is the top view and sectional drawing which show schematically the process of forming a shield and a main pole on a wafer substrate. It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. It is the top view and sectional view which show the process of forming a thin film coil pattern roughly.
  • FIG. 1 schematically shows an internal structure of a hard disk drive (HDD) 11 as a specific example of a storage device according to the present invention.
  • the HDD 11 includes a housing, that is, a housing 12.
  • the housing 12 includes a box-shaped base 13 and a cover (not shown).
  • the base 13 defines, for example, a flat rectangular parallelepiped internal space, that is, an accommodation space.
  • the base 13 may be formed from a metal material such as Al (aluminum) based on casting.
  • the cover is coupled to the opening of the base 13.
  • the accommodation space is sealed between the cover and the base 13.
  • the cover may be formed from a single plate material based on press working, for example.
  • one or more magnetic disks 14 as storage media are accommodated.
  • the magnetic disk 14 is mounted on the drive shaft of the spindle motor 15.
  • the spindle motor 15 can rotate the magnetic disk 14 at a high speed such as 3600 rpm, 4200 rpm, 5400 rpm, 7200 rpm, 10000 rpm, and 15000 rpm.
  • the magnetic disk 14 is configured as a perpendicular magnetic recording disk, for example. That is, in the recording magnetic film on the magnetic disk 14, the easy axis of magnetization is set in the vertical direction perpendicular to the surface of the magnetic disk 14.
  • the carriage 16 is further accommodated in the accommodation space.
  • the carriage 16 includes a carriage block 17.
  • the carriage block 17 is rotatably connected to a support shaft 18 extending in the vertical direction.
  • a plurality of carriage arms 19 extending in the horizontal direction from the support shaft 18 are defined in the carriage block 17.
  • the carriage block 17 may be molded from Al (aluminum) based on extrusion molding, for example.
  • a head suspension 21 is attached to the tip of each carriage arm 19.
  • the head suspension 21 extends forward from the tip of the carriage arm 19.
  • a flexure is attached to the head suspension 21.
  • a gimbal is defined in the flexure at the tip of the head suspension 21.
  • a magnetic head slider that is, a flying head slider 22 is mounted on the gimbal. The posture of the flying head slider 22 can be changed with respect to the head suspension 21 by the action of the gimbal.
  • a magnetic head that is, an electromagnetic transducer is mounted on the flying head slider 22.
  • a power source such as a voice coil motor (VCM) 23 is connected to the carriage block 17.
  • the carriage block 17 can rotate around the support shaft 18 by the action of the VCM 23.
  • the swing of the carriage arm 19 and the head suspension 21 is realized.
  • the flying head slider 22 can move along the radial line of the magnetic disk 14.
  • the electromagnetic transducer on the flying head slider 22 can cross the data zone between the innermost recording track and the outermost recording track.
  • the electromagnetic transducer on the flying head slider 22 is positioned on the target recording track.
  • FIG. 2 shows a flying head slider 22 according to a specific example.
  • the flying head slider 22 includes a base material, that is, a slider body 25 formed in a flat rectangular parallelepiped, for example.
  • a substrate 26 and an insulating nonmagnetic film, that is, an element built-in film 27 are integrated with the end face on the air outflow side of the slider body 25.
  • the element built-in film 27 is bonded to the substrate 26.
  • the substrate 26 is disposed behind the element built-in film 27.
  • An electromagnetic conversion element 28 is incorporated in the element built-in film 27. Details of the electromagnetic transducer 28 will be described later.
  • the slider body 25 and the substrate 26 are made of a hard nonmagnetic material such as Al 2 O 3 —TiC (Altic).
  • the element built-in film 27 is made of a relatively soft insulating nonmagnetic material such as Al 2 O 3 (alumina).
  • the slider body 25 faces the magnetic disk 14 at the medium facing surface 29.
  • a flat base surface 31, that is, a reference surface is defined on the medium facing surface 29.
  • the medium facing surface 29 is formed with a single front rail 33 that rises from the base surface 31 on the upstream side of the airflow 32, that is, on the air inflow side.
  • the front rail 33 extends in the slider width direction along the air inflow end of the base surface 31.
  • a rear center rail 34 that rises from the base surface 31 on the downstream side of the air flow 32, that is, on the air outflow side, is formed on the medium facing surface 29.
  • the rear center rail 34 is disposed at the center position in the slider width direction.
  • the rear center rail 34 reaches the element built-in film 27.
  • a pair of left and right rear side rails 35, 35 are further formed on the medium facing surface 29.
  • the rear side rail 35 rises from the base surface 31 along the side end of the slider body 25 on the air outflow side.
  • the rear center rail 34 is disposed between the rear side rails 35, 35.
  • a so-called air bearing surface (ABS) 36, 37, 38, 38 is defined on the top surfaces of the front rail 33, the rear center rail 34, and the rear side rails 35, 35.
  • the air inflow ends of the air bearing surfaces 36, 37 and 38 are connected to the top surfaces of the front rail 33, the rear center rail 34 and the rear side rail 35 by steps.
  • a relatively large positive pressure that is, buoyancy
  • a large negative pressure is generated behind the front rail 33, that is, behind the front rail 33.
  • the flying posture of the flying head slider 22 is established based on the balance between these buoyancy and negative pressure.
  • the electromagnetic conversion element 28 is embedded in the rear center rail 34 on the air outflow side of the air bearing surface 37.
  • the electromagnetic transducer 28 includes, for example, a reading element and a magnetic recording head, that is, a writing element.
  • a tunnel junction magnetoresistive effect (TuMR) element is used as the read element.
  • TuMR tunnel junction magnetoresistive effect
  • the resistance change of the tunnel junction film is caused according to the direction of the magnetic field acting from the magnetic disk 14. Information is read from the magnetic disk 14 based on such resistance change.
  • a so-called single pole head is used for the writing element.
  • the single pole head generates a recording magnetic field by the action of a thin film coil pattern.
  • Magnetic information that is, binary information is written to the magnetic disk 14 by the action of the recording magnetic field.
  • the electromagnetic conversion element 28 exposes the reading gap of the reading element and the writing gap of the writing element on the surface of the element built-in film 27.
  • a giant magnetoresistive (GMR) element may be used as the read
  • a hard protective film may be formed on the surface of the element built-in film 27 on the air outflow side of the air bearing surface 37.
  • Such a hard protective film covers the read gap and the write gap exposed on the surface of the element built-in film 27.
  • a DLC (diamond-like carbon) film may be used as the protective film.
  • the form of the flying head slider 22 is not limited to this form.
  • FIG. 3 schematically shows the structure of the electromagnetic transducer 28.
  • the read element 41 is configured as a planar type.
  • the read element 41 includes a tunnel junction magnetoresistive film 42 exposed on the surface of the rear center rail 34, that is, the medium facing surface 29.
  • the tunnel junction magnetoresistive film 42 is surrounded by a shield 43 that defines a rectangular outline, for example.
  • the shield 43 surrounds the tunnel junction magnetoresistive film 42 without interruption.
  • the shield 43 is made of a high magnetic permeability material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron).
  • CoFe cobalt iron
  • FeN iron nitride
  • NiFe nickel iron
  • the writing element 44 that is, the single-pole head is similarly configured as a planar type.
  • the writing element 44 includes a main magnetic pole 45 whose tip is exposed at the medium facing surface 29.
  • the front end surface of the main magnetic pole 45 defines a rectangular outline at the medium facing surface 29.
  • the main magnetic pole 45 is surrounded by a shield 46 that extends along the medium facing surface 29.
  • the outline of the shield 46 is defined as a rectangle, for example.
  • the shield 46 surrounds the main magnetic pole 45 without interruption.
  • the main magnetic pole 45 is made of a magnetic material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron). Details of the writing element 44 will be described later.
  • the rear end of the main pole 45 is connected to the return yoke 47.
  • a pair of magnetic coils that is, thin film coil patterns 48 and 49 are formed around the main magnetic pole 45.
  • the main magnetic pole 45 and the return yoke 47 form a magnetic core that penetrates the center position of the thin film coil patterns 48 and 49.
  • the recording magnetic field leaking from the tip of the main magnetic pole 45 returns to the return yoke 47.
  • the return yoke 47 is made of a magnetic material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron).
  • the thin film coil patterns 48 and 49 are made of a conductive material such as Cu (copper).
  • the tunnel junction magnetoresistive film 42 includes a free layer 51 exposed at the medium facing surface 29, and a pair of tunnel barrier layers 52 stacked on the free layer 51. And a pair of pinned layers 53 respectively stacked on the tunnel barrier layer 52.
  • the free layer 51 is formed from a ferromagnetic layer.
  • the free layer 51 allows a change in the magnetization direction according to the action of an external magnetic field acting from the magnetic disk 14.
  • the tunnel barrier layer 52 is formed from an insulating material.
  • the pinned layer 53 is formed from a ferromagnetic layer. In the pinned layer 53, the magnetization is fixed in a predetermined direction.
  • an electrode layer 54 is laminated. Referring also to FIG. 6, the free layer 51, the tunnel barrier layer 52, the pinned layer 53, and the electrode layer 54 define, for example, a rectangular outline.
  • the return yoke 47 is larger than the shield 46, for example.
  • the return yoke 47 defines a rectangular outline, for example.
  • the main magnetic pole 45 defines the tip piece 45 a and the main magnetic pole body 45 b along the central axis CX of the main magnetic pole 45 orthogonal to the medium facing surface 29.
  • the tip piece 45a is formed in, for example, a truncated pyramid shape that tapers toward the tip facing the medium facing surface 29.
  • a tip surface is defined at the tip of the tip piece 45a.
  • the outline of the tip surface is defined as a square, for example.
  • the main magnetic pole body 45b is connected to the rear end of the tip piece 45a.
  • the main magnetic pole body 45b is formed in a prismatic shape, for example.
  • a nonmagnetic gap layer 55 is sandwiched between the tip piece 45 a and the shield 46.
  • the thin film coil patterns 48 and 49 are formed around the main magnetic pole body 45 b behind the shield 46.
  • the tip piece 45 a may be formed in a truncated cone shape that tapers toward the tip facing the medium facing surface 29.
  • the shield 46 includes a tip film 46 a extending along the medium facing surface 29.
  • the tip film 46a is opposed to the tip piece 45a at the inner end.
  • the shield 46 includes a connecting piece 46b that is connected to the outer end of the tip film 46a.
  • the connecting piece 46b connects the tip film 46a and the main magnetic pole body 45b to each other.
  • the tip film 46 a is formed from a stacked body of a first magnetic layer 56, a nonmagnetic layer 57, and a second magnetic layer 58 that are sequentially stacked in a direction orthogonal to the medium facing surface 29.
  • the first and second magnetic layers 56 and 58 are made of a soft magnetic material such as NiFe, for example.
  • the nonmagnetic layer 57 is made of a nonmagnetic material such as Ru (ruthenium), Cr (chromium), Ir (iridium), or Rh (rhodium).
  • Magnetization is established between the first magnetic layer 56 and the second magnetic layer 58 antiparallel to each other based on exchange coupling. Magnetization is defined in a direction parallel to the medium facing surface 29.
  • the first magnetic layer 56 defines a first magnetization amount.
  • a second magnetization amount larger than the first magnetization amount is defined. Since the cross-sectional areas of the first and second magnetic layers 56 and 58 defined along the virtual plane orthogonal to the central axis CX are set to be approximately equal, the magnetization amount is, for example, the saturation magnetization amount (Ms) and the film thickness ( t).
  • the saturation magnetization amounts (Ms) of the first and second magnetic layers 56 and 58 are set equal. Therefore, in setting the amount of magnetization, the second magnetic layer 58 may be set to have a larger film thickness than the first magnetic layer 56.
  • the product of the saturation magnetization amount (Ms) and the film thickness (t) of the material is the second magnetic layer 58 and the first magnetic layer 56. It may be set larger.
  • the length of one side of the tip surface of the tip piece 45a is set to 100 nm, for example.
  • the film thickness of the tip piece 45a defined along the central axis CX from the medium facing surface 29 is set to about 200 nm, for example.
  • the length of one side of the cross section of the main magnetic pole body 45b orthogonal to the central axis CX is set to 600 nm, for example.
  • the film thickness of the gap layer 55 is set to 5 nm, for example.
  • the film thickness is defined in the vertical direction perpendicular to the side surface of the tip piece 45a.
  • the film thickness of the first magnetic layer 56 is set to about 20 nm, for example.
  • the film thickness of the second magnetic layer 58 is set to about 70 nm, for example.
  • the film thickness of the nonmagnetic layer 57 is set to about 5 nm, for example.
  • the length from the inner end to the outer end of the tip film 46a defined along the medium facing surface 29 is set to about
  • a current is supplied to the thin film coil patterns 48 and 49 when binary information is written.
  • the thin film coil patterns 48 and 49 excite the main magnetic pole 45.
  • the main magnetic pole 45 for example, magnetization is established downward in the vertical direction along the central axis CX.
  • a downward recording magnetic field is formed from the front end surface of the front end piece 45 a, that is, the medium facing surface 29 toward the magnetic disk 14. Since the connecting piece 46 b of the shield 46 is connected to the main magnetic pole 45, the shield 46 is excited simultaneously with the main magnetic pole 45. As a result, magnetization is established from the main magnetic pole body 45b toward the connecting piece 46b and the tip film 46a.
  • the tip film 46a faces inward toward the tip piece 45a in the horizontal direction perpendicular to the central axis CX in the second magnetic layer 58. Magnetization is fixed. As a result, a magnetic field is generated from the inner end of the second magnetic layer 58 toward the tip piece 45a. The spread of the leakage magnetic field leaking from the side surface of the tip piece 45a is prevented. The recording magnetic field concentrates directly below the tip surface of the tip piece 45a. At the same time, the magnetic field leaking from the inner end of the second magnetic layer 58 toward the tip piece 45a is superimposed on the recording magnetic field.
  • the first magnetic layer 56 magnetization is established outwardly away from the tip piece 45a in the horizontal direction orthogonal to the central axis CX based on the exchange coupling.
  • the leakage magnetic field leaking from the side surface of the tip piece 45 a and the second magnetic layer 58 toward the medium facing surface 29 is absorbed by the first magnetic layer 56.
  • generation of a leakage magnetic field that is, an erase magnetic field from the medium facing surface 29 toward the magnetic disk 14 is avoided.
  • side erasure is avoided.
  • a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece 45a.
  • the resolution of magnetic recording is increased.
  • Such a writing element 44 can greatly contribute to the improvement of the recording density.
  • the thin film coil patterns 48 and 49 excite the main magnetic pole 45.
  • the main magnetic pole 45 for example, magnetization is established upward in the vertical direction along the central axis CX.
  • an upward recording magnetic field is generated from the magnetic disk 14 toward the distal end surface of the distal end piece 45a, that is, the medium facing surface 29.
  • the shield 46 is excited simultaneously with the main pole 45.
  • magnetization is established from the connecting piece 46b and the tip film 46a toward the main magnetic pole body 45b.
  • the tip film 46a is magnetized outwardly away from the tip piece 45a in the horizontal direction perpendicular to the central axis CX in the second magnetic layer 58. Is fixed. As a result, a magnetic field is generated from the tip piece 45 a toward the inner end of the second magnetic layer 58. Such a magnetic field is superimposed on the recording magnetic field.
  • the first magnetic layer 56 magnetization is established inward toward the tip piece 45a in the horizontal direction orthogonal to the central axis CX based on the exchange coupling. As a result, the spread of the leakage magnetic field leaking from the side surface of the tip piece 45a is prevented.
  • the recording magnetic field concentrates directly below the tip surface of the tip piece 45a. As a result, the strength of the recording magnetic field increases. At the same time, generation of a leakage magnetic field, that is, an erase magnetic field from the medium facing surface 29 toward the magnetic disk 14 is avoided. For example, side erasure is avoided. In addition, a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece 45a. The resolution of magnetic recording is increased. Such a writing element 44 can greatly contribute to the improvement of the recording density.
  • the inventor verified the strength of the recording magnetic field. A simulation was conducted for verification.
  • Write elements according to specific examples, comparative example 1 and comparative example 2 were prepared. In the specific example, the writing element 44 described above was used. In the write element according to Comparative Example 1, only the main magnetic pole 45 described above was incorporated. In the write element according to Comparative Example 2, a pair of shields were disposed along the medium facing surface 29 on both sides of the main magnetic pole 45 described above. The thickness of the shield defined in the direction orthogonal to the medium facing surface 29 was set to 50 nm. At this time, in the specific example, Comparative Example 1 and Comparative Example 2, magnetization of 1 [T] was established in the main magnetic pole 45 downward.
  • a soft magnetic backing layer of the magnetic disk was assumed at a position 50 nm from the medium facing surface 29.
  • the film thickness of the backing layer was set to 25 nm.
  • a magnetization of 1 [T] was established in the backing layer.
  • the magnetic field strength was calculated in a direction away from the reference point parallel to the medium facing surface 29 from the reference point immediately below the tip surface of the tip piece 46 at a distance of 10 nm from the medium facing surface 29.
  • the magnetic field strength was calculated using an x component parallel to the medium facing surface 29 and a y component orthogonal to the medium facing surface 29.
  • the magnetic field intensity of the x component changed in the same manner as in Comparative Examples 1 and 2. From the above, it was confirmed that in the specific example according to the present invention, the magnetic field strength of the y component was increased as compared with the comparative examples 1 and 2, and the magnetic field strength of the x component was decreased as compared with the comparative example 2.
  • the element built-in film 27 is formed.
  • the read element 41 is formed.
  • a material film 62 of the free layer 51 and a material film 63 of the tunnel barrier layer 52 are formed on the surface of the wafer substrate 61.
  • the material films 62 and 63 are formed from a solid film.
  • the film thickness of the material film 62 is set larger than the film thickness of the free layer 51.
  • a Si (silicon) substrate is used as the wafer substrate 61.
  • sputtering is performed in a vacuum.
  • a photoresist 64 is formed in a predetermined pattern on the surface of the material film 63.
  • the contour of the photoresist 64 on the surface of the material film 63 is similar to the contour of the free layer 51.
  • a photolithography technique is used for the formation.
  • the material films 62 and 63 are etched using the photoresist 64 as a mask. Etching includes, for example, physical etching and reactive ion etching (RIE). As a result, as shown in FIG. 13, the material films 62 and 63 are cut out to a predetermined contour. A free layer 51 is formed based on the material film 62. The surface of the wafer substrate 61 is exposed outside the material films 62 and 63. Thereafter, as shown in FIG. 14, an insulating film 65 is formed on the surface of the wafer substrate 61. For the formation, for example, sputtering is performed in a vacuum. The surface of the insulating film 65 is aligned with the surface of the material film 63. As shown in FIG. 15, the photoresist 64 is removed based on the lift-off method.
  • RIE reactive ion etching
  • a photoresist 66 is formed in a predetermined pattern on the surface of the insulating film 65.
  • the air gap formed by the photoresist 66 represents the outline of the shield 43.
  • the insulating film 65 is etched using the photoresist 66 as a mask.
  • a material film 67 of the shield 43 is formed on the surface of the wafer substrate 61.
  • an insulating film 68 is formed on the surface of the wafer substrate 61.
  • the surface of the insulating film 68 is aligned with the surface of the insulating film 65.
  • the photoresist 66 is removed based on the lift-off method.
  • the shield 43 is formed based on the material film 67.
  • a material film 69 of the pinned layer 53 is formed.
  • the material film 69 is formed from a solid film.
  • sputtering is performed in a vacuum.
  • a photoresist 71 is formed on the surface of the material film 69 in a predetermined pattern.
  • the contour of the photoresist 71 represents the contour of the pinned layer 53.
  • the material film 69 is etched using the photoresist 71 as a mask.
  • the material film 69 is cut out to a predetermined contour on the insulating film 65.
  • a pinned layer 53 is formed based on the material film 69.
  • the material film 63 is cut out to a predetermined contour on the free layer 51.
  • a tunnel barrier layer 52 is formed based on the material film 63.
  • an insulating film 72 is formed on the insulating film 65.
  • the surface of the insulating film 72 is aligned with the surface of the pinned layer 53.
  • the photoresist 71 is removed based on the lift-off method.
  • a photoresist 73 is formed on the wafer substrate 61 in a predetermined pattern.
  • a void that represents the contour of the electrode layer 54 is defined.
  • a conductive film 74 is formed on the wafer substrate 61.
  • the photoresist 73 is removed based on the lift-off method.
  • a pair of electrode layers 54 is formed.
  • the reading element 41 is formed on the wafer substrate 61.
  • an insulating film 75 is formed on the wafer substrate 61.
  • the insulating film 75 covers the reading element 41 on the wafer substrate 61.
  • the reading element 41 is covered with a photoresist (not shown). Such a photoresist avoids damage to the read element 41 when a write element 44 described later is formed.
  • the writing element 44 is formed.
  • a laminated body 81 of shields 46 is formed on the wafer substrate 61 described above.
  • the stacked body 81 is formed adjacent to the reading element 41.
  • the first magnetic layer, the nonmagnetic layer, and the second magnetic layer are laminated.
  • sputtering is performed for stacking.
  • the first and second magnetic layers and the nonmagnetic layer are set to predetermined thicknesses.
  • a photoresist 82 is formed in a predetermined pattern on the surface of the stacked body 81.
  • the air gap formed by the photoresist 82 represents the contour of the main magnetic pole 45.
  • the stacked body 81 is etched using the photoresist 82 as a mask. At this time, the incident direction of the beam is adjusted.
  • a truncated pyramid-shaped gap is formed in the stacked body 81.
  • the gap is tapered toward the wafer substrate 61.
  • the tip film 46 a of the shield 46 is formed based on the laminated body 81.
  • a nonmagnetic film 83 and a magnetic film 84 are formed on the wafer substrate 61 with a predetermined film thickness. Sputtering is performed for the formation.
  • the aforementioned gap layer 55 is formed based on the nonmagnetic film 83.
  • the tip piece 45a of the main magnetic pole 45 is formed.
  • the photoresist 82 is removed from the surface of the wafer substrate 61 based on the lift-off method.
  • a photoresist 85 is formed on the wafer substrate 61 in a predetermined pattern.
  • the photoresist 85 is disposed along the outer periphery of the tip film 46a.
  • An insulating film 86 is formed on the wafer substrate 61 using the photoresist 85 as a mask.
  • the photoresist 85 is removed based on the lift-off method.
  • a photoresist 87 is formed on the insulating film 86 in a predetermined pattern.
  • the photoresist 87 forms a gap that represents the outline of the connecting piece 46b.
  • a magnetic film 88 is formed on the wafer substrate 61. Based on the magnetic film 88, the connecting piece 46b is formed on the tip film 46a. After the formation, the photoresist 87 is removed.
  • a photoresist 89 is formed on the magnetic film 88.
  • An insulating film 91 is formed on the substrate 61 using the photoresist 89 as a mask. After the formation, the photoresist 89 is removed from the magnetic film 88 based on the lift-off method.
  • a photoresist 92 is formed on the wafer substrate 61 in a predetermined pattern. The photoresist 92 is formed with a space that represents the outline of the thin-film coil pattern 48.
  • a conductive film 93 is formed on the wafer substrate 61. As shown in FIG. 38, the photoresist 92 is removed from the insulating film 93. Thus, a thin film coil pattern 48 is formed.
  • a photoresist 94 is formed on the magnetic film 88 and a predetermined region of the thin film coil pattern 48.
  • An insulating film 95 is formed on the wafer substrate 61.
  • the photoresist 94 is removed based on the lift-off method.
  • a photoresist 96 is formed on the insulating film 95 with a predetermined pattern.
  • a gap that represents the outline of the thin film coil pattern 49 is formed.
  • a magnetic conductive film 97 is formed on the wafer substrate 61.
  • a thin film coil pattern 49 is formed based on the conductive film 97.
  • the photoresist 96 is removed from the wafer substrate 61.
  • an insulating film 99 is formed in a predetermined pattern on the insulating film 95 using a photoresist 98 formed on the magnetic film 88 as a mask. Photoresist 98 is removed. As shown in FIG. 44, a return yoke 47 is formed based on a photoresist (not shown) formed on the insulating film 99. At the same time, lead wires (not shown) connected to the thin film coil pattern 49 are formed. Thus, the writing element 44 is formed. An insulating film 101 is formed on the insulating film 99 so as to cover the return yoke 47. Thereafter, the photoresist on the reading element 41 is removed. After the removal, the insulating film 75 on the reading element 41 and the insulating film 101 on the writing element 44 are polished. In the polishing process, a chemical mechanical polishing (CMP) method is performed.
  • CMP chemical mechanical polishing
  • the substrate 26 is bonded to the surface of the insulating film 75 and the surface of the insulating film 101.
  • the substrate 26 is made of, for example, Al 2 O 3 —TiC.
  • the wafer substrate 61 is removed.
  • chemical etching is performed.
  • a unit of the substrate 26 and the element built-in film 27 is formed.
  • the surface of the element built-in film 27 is etched or polished.
  • the surface of the element built-in film 27 is shaved.
  • the size of the free layer 51 is adjusted to a predetermined value.
  • the nonmagnetic film 83 is removed.
  • the tip piece 45 a of the main magnetic pole 45 is exposed in the writing element 44.
  • the dimension of the tip piece 45a is adjusted to a predetermined value.
  • the unit of the substrate 26 and the element built-in film 27 is joined to a bar (not shown) that defines the plurality of slider bodies 25.
  • a bar (not shown) that defines the plurality of slider bodies 25.
  • electrolytic welding is performed.
  • a medium facing surface 29 is formed for each head slider.
  • the individual flying head sliders 22 are cut out from the bars. Thus, the flying head slider 22 is manufactured.
  • FIG. 47 schematically shows the structure of a write element 44a according to another specific example.
  • the tip film 46a of the shield 46 is divided into four.
  • the tip film 46a is opposed to each side of the tip face of the tip piece 45a at the inner end.
  • the shield 46 surrounds the main magnetic pole 45.
  • the connecting piece 46b is divided into four.
  • Each connecting piece 46b is connected to each tip film 46a.
  • each tip film 46a is individually connected to the main magnetic pole body 45b of the main magnetic pole 45 by the connecting piece 46b.
  • Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized.
  • a thin film coil pattern 105 may be individually formed around each connecting piece 46b.
  • the aforementioned thin film coil pattern 48 is formed around the main magnetic pole body 45 b of the main magnetic pole 45.
  • the thin film coil pattern 48 and the thin film coil pattern 105 are individually supplied with current.
  • the main magnetic pole 45 and the shield 46 are individually excited.
  • the main magnetic pole 45 and the shield 46 may be excited simultaneously or separately.
  • Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized.
  • the tip film 46 a of the shield 46 may define a rectangular outline in the same manner as the writing element 44 described above.
  • each connecting piece 46b is connected along each side of the contour of the tip film 46a.
  • the connecting piece 46b may be interrupted.
  • the main magnetic pole 45 and the shield 46 are not connected to each other.
  • the thin film coil pattern 105 is individually formed around each connecting piece 46b.
  • the aforementioned thin film coil pattern 48 is formed around the main magnetic pole body 45b.
  • the main magnetic pole 45 and the shield 46 are individually excited.
  • the main magnetic pole 45 and the shield 46 may be excited simultaneously or separately.
  • Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized.
  • the tip film 46 a of the shield 46 may define a rectangular outline in the same manner as the writing element 44 described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

At a main pole (45), a magnetization is established vertically or downward along a center axis (CX). If a magnetic field is generated from the inner end of a second magnetic layer (58) toward a tip (45a), for example, the divergence of a leaking magnetic field to leak from the side face of the tip (45a) is blocked. The recording magnetic field is concentrated directly downward from the leading face of the tip (45a). At the same time, the magnetic field to leak from the inner end of the second magnetic layer (58) toward the tip (45a) is superposed on a recording magnetic field. On the other hand, the leaking magnetic field to leak from the side face of the tip (45a) and from the second magnetic layer (58) toward a medium-confronting face (29) is absorbed by a first magnetic layer (56). As a result, the intensity of the recording magnetic field increases. At the same time, the generation of the leaking magnetic field, namely, an erase magnetic field from the medium-confronting face (29) toward a storage medium (14) is avoided. Moreover, a steep gradient is established in the recording magnetic field to leak from the leading end of the tip (45a).

Description

磁気記録ヘッドおよび記憶装置Magnetic recording head and storage device
 本発明は、例えばハードディスク駆動装置(HDD)といった記憶装置で磁気情報の書き込みに用いられる磁気記録ヘッドに関する。 The present invention relates to a magnetic recording head used for writing magnetic information in a storage device such as a hard disk drive (HDD).
 例えばプレナー型の単磁極ヘッドでは、主磁極は角錐台形状の先端片を区画する。先端片の先端面は媒体対向面に臨む。先端片は、媒体対向面に沿って延びる1対のサイドシールドに挟み込まれる。サイドシールドは、先端片から漏れ出る余計な漏洩磁界を吸収する。その結果、記録磁界は先端片の先端から集中的に漏れ出る。
日本国特開2006-31774号公報 日本国特開2008-21398号公報
For example, in a planar single pole head, the main pole defines a truncated pyramid-shaped tip piece. The tip surface of the tip piece faces the medium facing surface. The tip piece is sandwiched between a pair of side shields extending along the medium facing surface. The side shield absorbs an extra leakage magnetic field leaking from the tip piece. As a result, the recording magnetic field leaks intensively from the tip of the tip piece.
Japanese Unexamined Patent Publication No. 2006-31774 Japanese Unexamined Patent Publication No. 2008-21398
 こうした単磁極ヘッドでは、前述のように、サイドシールドの働きで余計な漏洩磁界が吸収される。その結果、媒体対向面および磁気ディスクの間で単磁極ヘッドのコア幅方向に記録磁界の分散は回避される。しかしながら、漏洩磁界の吸収に基づき記録磁界の強度は減少してしまう。 In such a single-pole head, as described above, an extra leakage magnetic field is absorbed by the side shield. As a result, dispersion of the recording magnetic field in the core width direction of the single pole head is avoided between the medium facing surface and the magnetic disk. However, the intensity of the recording magnetic field decreases due to the absorption of the leakage magnetic field.
 本発明は、上記実状に鑑みてなされたもので、漏洩磁界を吸収しつつ記録磁界の強度を増大させることができる磁気記録ヘッドおよび記憶装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic recording head and a storage device that can increase the intensity of a recording magnetic field while absorbing a leakage magnetic field.
 上記目的を達成するために、磁気記録ヘッドは、記憶媒体に向き合わせられる媒体対向面に臨む先端に向かうにつれて先細り、前記媒体対向面に直交する中心軸に沿って磁化を確立する先端片を区画する主磁極と、前記媒体対向面に沿って延びつつ前記先端片に向き合わせられるシールドとを備え、前記シールドは、前記媒体対向面に沿って広がりつつ第1磁化量を有し、前記中心軸に直交する第1方向に磁化を確立する第1磁性層と、前記第1磁性層の表面に積層される非磁性層と、前記非磁性層の表面に積層されて前記第1磁化量より大きい第2磁化量を有し、前記第1方向に反平行な第2方向に磁化を確立する第2磁性層とを備えることを特徴とする。 In order to achieve the above object, a magnetic recording head is divided into tip pieces that taper toward a tip facing a medium facing surface facing a storage medium and establish magnetization along a central axis perpendicular to the medium facing surface. And a shield that extends along the medium facing surface and faces the tip piece, the shield having a first magnetization amount extending along the medium facing surface, and the central axis A first magnetic layer that establishes magnetization in a first direction orthogonal to the first magnetic layer, a nonmagnetic layer that is stacked on the surface of the first magnetic layer, and a layer that is stacked on the surface of the nonmagnetic layer and is greater than the first magnetization amount And a second magnetic layer having a second magnetization amount and establishing magnetization in a second direction antiparallel to the first direction.
 こうした磁気記録ヘッドでは、主磁極では例えば中心軸に沿って垂直方向に磁化が確立される。その結果、媒体対向面および記憶媒体の間で記録磁界が形成される。シールドの第1磁性層では中心軸に直交する第1方向に磁化が確立される。その一方で、第2磁性層では第1方向に反平行な第2方向に磁化が確立される。第2磁性層では第1磁性層より大きな磁化量が設定されることから、第2磁性層では第2方向に磁化が固定される。 In such a magnetic recording head, magnetization is established in the main pole, for example, in the vertical direction along the central axis. As a result, a recording magnetic field is formed between the medium facing surface and the storage medium. In the first magnetic layer of the shield, magnetization is established in a first direction orthogonal to the central axis. On the other hand, in the second magnetic layer, magnetization is established in a second direction antiparallel to the first direction. Since the second magnetic layer has a larger magnetization amount than the first magnetic layer, the magnetization is fixed in the second direction in the second magnetic layer.
 例えば第2磁性層の内端から先端片に向かって磁界が生成される。その結果、先端片の側面から漏れ出る漏洩磁界の広がりは阻止される。先端片の先端面から直下に記録磁界は集中する。同時に、第2磁性層の内端から先端片に向かって漏れ出る磁界は記録磁界に重畳される。その一方で、先端片の側面や第2磁性層から媒体対向面に向かって漏れ出る漏洩磁界は第1磁性層で吸収される。以上の結果、記録磁界の強度は増大する。同時に、媒体対向面から記憶媒体に向かって漏洩磁界すなわちイレーズ磁界の生成は回避される。例えばサイドイレーズ等は回避される。しかも、先端片の先端から漏れ出る記録磁界では急峻な勾配が確立される。磁気記録の分解能は高められる。こうした磁気記録ヘッドは記録密度の向上に大いに貢献することができる。 For example, a magnetic field is generated from the inner end of the second magnetic layer toward the tip piece. As a result, the spread of the leakage magnetic field leaking from the side surface of the tip piece is prevented. The recording magnetic field concentrates directly below the tip surface of the tip piece. At the same time, the magnetic field leaking from the inner end of the second magnetic layer toward the tip piece is superimposed on the recording magnetic field. On the other hand, the leakage magnetic field leaking from the side surface of the tip piece or the second magnetic layer toward the medium facing surface is absorbed by the first magnetic layer. As a result, the strength of the recording magnetic field increases. At the same time, the generation of a leakage magnetic field, that is, an erase magnetic field from the medium facing surface toward the storage medium is avoided. For example, side erasure is avoided. In addition, a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece. The resolution of magnetic recording is increased. Such a magnetic recording head can greatly contribute to the improvement of the recording density.
 反対に、例えば先端片から第2磁性層の内端に向かって磁界が生成される。こうした磁界は記録磁界に重畳される。その一方で、第1磁性層では中心軸に直交する水平方向に先端片に向かって内向きに磁化が確立される。その結果、先端片の側面から漏れ出る漏洩磁界の広がりは阻止される。先端片の先端面から直下に記録磁界は集中する。以上の結果、記録磁界の強度は増大する。同時に、媒体対向面から記録媒体に向かって漏洩磁界すなわちイレーズ磁界の生成は回避される。例えばサイドイレーズ等は回避される。しかも、先端片の先端から漏れ出る記録磁界では急峻な勾配が確立される。磁気記録の分解能は高められる。こうした磁気記録ヘッドは記録密度の向上に大いに貢献することができる。 On the other hand, for example, a magnetic field is generated from the tip piece toward the inner end of the second magnetic layer. Such a magnetic field is superimposed on the recording magnetic field. On the other hand, in the first magnetic layer, magnetization is established inward toward the tip piece in the horizontal direction perpendicular to the central axis. As a result, the spread of the leakage magnetic field leaking from the side surface of the tip piece is prevented. The recording magnetic field concentrates directly below the tip surface of the tip piece. As a result, the strength of the recording magnetic field increases. At the same time, generation of a leakage magnetic field, that is, an erase magnetic field from the medium facing surface toward the recording medium is avoided. For example, side erasure is avoided. In addition, a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece. The resolution of magnetic recording is increased. Such a magnetic recording head can greatly contribute to the improvement of the recording density.
本発明に係る記憶装置の一具体例すなわちハードディスク駆動装置(HDD)の内部構造を概略的に示す平面図である。1 is a plan view schematically showing an internal structure of a specific example of a storage device according to the present invention, that is, a hard disk drive (HDD). 一具体例に係る浮上ヘッドスライダを概略的に示す拡大斜視図であるFIG. 6 is an enlarged perspective view schematically showing a flying head slider according to a specific example. 媒体対向面から観察される電磁変換素子を概略的に示す電磁変換素子の正面図である。It is a front view of the electromagnetic conversion element which shows roughly the electromagnetic conversion element observed from a medium opposing surface. 図3の4-4線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 図3の5-5線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 媒体対向面から観察される読み出し素子を概略的に示す読み出し素子の正面図である。It is a front view of the reading element schematically showing the reading element observed from the medium facing surface. 媒体対向面から観察される書き込み素子を概略的に示す書き込み素子の正面図である。It is a front view of the writing element which shows roughly the writing element observed from the medium facing surface. 図7の8-8線に沿った断面図である。FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 主磁極およびシールドで磁化が確立される様子を概略的に示す断面図である。It is sectional drawing which shows a mode that magnetization is established with a main pole and a shield. 主磁極およびシールドで磁化が確立される様子を概略的に示す断面図である。It is sectional drawing which shows a mode that magnetization is established with a main pole and a shield. 媒体対向面に沿って計測される磁界強度のグラフである。It is a graph of the magnetic field strength measured along a medium facing surface. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. ウエハ基板上にトンネル接合磁気抵抗効果膜を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a tunnel junction magnetoresistive film on a wafer substrate. トンネル接合磁気抵抗効果膜上に電極層を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming an electrode layer on a tunnel junction magnetoresistive film. トンネル接合磁気抵抗効果膜上に電極層を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming an electrode layer on a tunnel junction magnetoresistive film. トンネル接合磁気抵抗効果膜上に電極層を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming an electrode layer on a tunnel junction magnetoresistive film. トンネル接合磁気抵抗効果膜上に電極層を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming an electrode layer on a tunnel junction magnetoresistive film. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上に主磁極を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show roughly the process of forming a main pole on a wafer substrate. ウエハ基板上に主磁極を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show roughly the process of forming a main pole on a wafer substrate. ウエハ基板上に主磁極を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show roughly the process of forming a main pole on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にシールドを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield on a wafer substrate. ウエハ基板上にシールドおよび主磁極を形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a shield and a main pole on a wafer substrate. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. 薄膜コイルパターンを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional view which show the process of forming a thin film coil pattern roughly. リターンヨークを形成する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of forming a return yoke. 素子内蔵膜に基板を接合する工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show schematically the process of joining a board | substrate to an element incorporation film. 素子内蔵膜の表面に研磨処理を施す工程を概略的に示す平面図および断面図である。It is the top view and sectional drawing which show roughly the process of performing the grinding | polishing process on the surface of an element incorporation film. 媒体対向面から観察される他の電磁変換素子を概略的に示す電磁変換素子の正面図である。It is a front view of the electromagnetic conversion element which shows roughly the other electromagnetic conversion element observed from a medium opposing surface. 媒体対向面から観察されるさらに他の電磁変換素子を概略的に示す電磁変換素子の正面図である。It is a front view of the electromagnetic conversion element which shows roughly the other electromagnetic conversion element observed from a medium opposing surface. 媒体対向面から観察されるさらに他の電磁変換素子を概略的に示す電磁変換素子の正面図である。It is a front view of the electromagnetic conversion element which shows roughly the other electromagnetic conversion element observed from a medium opposing surface.
 以下、添付図面を参照しつつ本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は本発明に係る記憶装置の一具体例すなわちハードディスク駆動装置(HDD)11の内部構造を概略的に示す。このHDD11は筐体すなわちハウジング12を備える。ハウジング12は箱形のベース13およびカバー(図示されず)から構成される。ベース13は例えば平たい直方体の内部空間すなわち収容空間を区画する。ベース13は例えばAl(アルミニウム)といった金属材料から鋳造に基づき成形されればよい。カバーはベース13の開口に結合される。カバーとベース13との間で収容空間は密閉される。カバーは例えばプレス加工に基づき1枚の板材から成形されればよい。 FIG. 1 schematically shows an internal structure of a hard disk drive (HDD) 11 as a specific example of a storage device according to the present invention. The HDD 11 includes a housing, that is, a housing 12. The housing 12 includes a box-shaped base 13 and a cover (not shown). The base 13 defines, for example, a flat rectangular parallelepiped internal space, that is, an accommodation space. The base 13 may be formed from a metal material such as Al (aluminum) based on casting. The cover is coupled to the opening of the base 13. The accommodation space is sealed between the cover and the base 13. The cover may be formed from a single plate material based on press working, for example.
 収容空間には、記憶媒体としての1枚以上の磁気ディスク14が収容される。磁気ディスク14はスピンドルモータ15の駆動軸に装着される。スピンドルモータ15は例えば3600rpmや4200rpm、5400rpm、7200rpm、10000rpm、15000rpmといった高速度で磁気ディスク14を回転させることができる。ここでは、磁気ディスク14は例えば垂直磁気記録ディスクに構成される。すなわち、磁気ディスク14上の記録磁性膜では磁化容易軸は磁気ディスク14の表面に直交する垂直方向に設定される。 In the accommodation space, one or more magnetic disks 14 as storage media are accommodated. The magnetic disk 14 is mounted on the drive shaft of the spindle motor 15. The spindle motor 15 can rotate the magnetic disk 14 at a high speed such as 3600 rpm, 4200 rpm, 5400 rpm, 7200 rpm, 10000 rpm, and 15000 rpm. Here, the magnetic disk 14 is configured as a perpendicular magnetic recording disk, for example. That is, in the recording magnetic film on the magnetic disk 14, the easy axis of magnetization is set in the vertical direction perpendicular to the surface of the magnetic disk 14.
 収容空間にはキャリッジ16がさらに収容される。キャリッジ16はキャリッジブロック17を備える。キャリッジブロック17は、垂直方向に延びる支軸18に回転自在に連結される。キャリッジブロック17には支軸18から水平方向に延びる複数のキャリッジアーム19が区画される。キャリッジブロック17は例えば押し出し成型に基づきAl(アルミニウム)から成型されればよい。 The carriage 16 is further accommodated in the accommodation space. The carriage 16 includes a carriage block 17. The carriage block 17 is rotatably connected to a support shaft 18 extending in the vertical direction. A plurality of carriage arms 19 extending in the horizontal direction from the support shaft 18 are defined in the carriage block 17. The carriage block 17 may be molded from Al (aluminum) based on extrusion molding, for example.
 個々のキャリッジアーム19の先端にはヘッドサスペンション21が取り付けられる。ヘッドサスペンション21はキャリッジアーム19の先端から前方に延びる。ヘッドサスペンション21にはフレキシャが貼り付けられる。ヘッドサスペンション21の先端でフレキシャにはジンバルが区画される。ジンバルに磁気ヘッドスライダすなわち浮上ヘッドスライダ22が搭載される。ジンバルの働きで浮上ヘッドスライダ22はヘッドサスペンション21に対して姿勢を変化させることができる。浮上ヘッドスライダ22には磁気ヘッドすなわち電磁変換素子が搭載される。 A head suspension 21 is attached to the tip of each carriage arm 19. The head suspension 21 extends forward from the tip of the carriage arm 19. A flexure is attached to the head suspension 21. A gimbal is defined in the flexure at the tip of the head suspension 21. A magnetic head slider, that is, a flying head slider 22 is mounted on the gimbal. The posture of the flying head slider 22 can be changed with respect to the head suspension 21 by the action of the gimbal. A magnetic head, that is, an electromagnetic transducer is mounted on the flying head slider 22.
 磁気ディスク14の回転に基づき磁気ディスク14の表面で気流が生成されると、気流の働きで浮上ヘッドスライダ22には正圧すなわち浮力および負圧が作用する。浮力および負圧とヘッドサスペンション21の押し付け力とが釣り合うことで磁気ディスク14の回転中に比較的に高い剛性で浮上ヘッドスライダ22は浮上し続けることができる。 When an air flow is generated on the surface of the magnetic disk 14 based on the rotation of the magnetic disk 14, positive pressure, that is, buoyancy and negative pressure act on the flying head slider 22 by the action of the air flow. Since the buoyancy and negative pressure balance with the pressing force of the head suspension 21, the flying head slider 22 can continue to fly with relatively high rigidity during the rotation of the magnetic disk.
 キャリッジブロック17には例えばボイスコイルモータ(VCM)23といった動力源が接続される。このVCM23の働きでキャリッジブロック17は支軸18回りで回転することができる。こうしたキャリッジブロック17の回転に基づきキャリッジアーム19およびヘッドサスペンション21の揺動は実現される。浮上ヘッドスライダ22の浮上中にキャリッジアーム19が支軸18回りで揺動すると、浮上ヘッドスライダ22は磁気ディスク14の半径線に沿って移動することができる。その結果、浮上ヘッドスライダ22上の電磁変換素子は最内周記録トラックと最外周記録トラックとの間でデータゾーンを横切ることができる。こうして浮上ヘッドスライダ22上の電磁変換素子は目標の記録トラック上に位置決めされる。 A power source such as a voice coil motor (VCM) 23 is connected to the carriage block 17. The carriage block 17 can rotate around the support shaft 18 by the action of the VCM 23. Based on the rotation of the carriage block 17, the swing of the carriage arm 19 and the head suspension 21 is realized. When the carriage arm 19 swings around the spindle 18 while the flying head slider 22 is flying, the flying head slider 22 can move along the radial line of the magnetic disk 14. As a result, the electromagnetic transducer on the flying head slider 22 can cross the data zone between the innermost recording track and the outermost recording track. Thus, the electromagnetic transducer on the flying head slider 22 is positioned on the target recording track.
 図2は一具体例に係る浮上ヘッドスライダ22を示す。この浮上ヘッドスライダ22は、例えば平たい直方体に形成される基材すなわちスライダ本体25を備える。スライダ本体25の空気流出側端面には基板26および絶縁性の非磁性膜すなわち素子内蔵膜27が一体化される。素子内蔵膜27は基板26に接合される。基板26は素子内蔵膜27の背後に配置される。この素子内蔵膜27に電磁変換素子28が組み込まれる。電磁変換素子28の詳細は後述される。 FIG. 2 shows a flying head slider 22 according to a specific example. The flying head slider 22 includes a base material, that is, a slider body 25 formed in a flat rectangular parallelepiped, for example. A substrate 26 and an insulating nonmagnetic film, that is, an element built-in film 27 are integrated with the end face on the air outflow side of the slider body 25. The element built-in film 27 is bonded to the substrate 26. The substrate 26 is disposed behind the element built-in film 27. An electromagnetic conversion element 28 is incorporated in the element built-in film 27. Details of the electromagnetic transducer 28 will be described later.
 スライダ本体25および基板26は例えばAl-TiC(アルチック)といった硬質の非磁性材料から形成される。素子内蔵膜27は例えばAl(アルミナ)といった比較的に軟質の絶縁非磁性材料から形成される。スライダ本体25は媒体対向面29で磁気ディスク14に向き合う。媒体対向面29には平坦なベース面31すなわち基準面が規定される。磁気ディスク14が回転すると、スライダ本体25の前端から後端に向かって媒体対向面29には気流32が作用する。 The slider body 25 and the substrate 26 are made of a hard nonmagnetic material such as Al 2 O 3 —TiC (Altic). The element built-in film 27 is made of a relatively soft insulating nonmagnetic material such as Al 2 O 3 (alumina). The slider body 25 faces the magnetic disk 14 at the medium facing surface 29. A flat base surface 31, that is, a reference surface is defined on the medium facing surface 29. When the magnetic disk 14 rotates, an air flow 32 acts on the medium facing surface 29 from the front end to the rear end of the slider body 25.
 媒体対向面29には、前述の気流32の上流側すなわち空気流入側でベース面31から立ち上がる1筋のフロントレール33が形成される。フロントレール33はベース面31の空気流入端に沿ってスライダ幅方向に延びる。同様に、媒体対向面29には、気流32の下流側すなわち空気流出側でベース面31から立ち上がるリアセンターレール34が形成される。リアセンターレール34はスライダ幅方向の中央位置に配置される。リアセンターレール34は素子内蔵膜27に至る。媒体対向面29には左右1対のリアサイドレール35、35がさらに形成される。リアサイドレール35は空気流出側でスライダ本体25の側端に沿ってベース面31から立ち上がる。リアサイドレール35、35同士の間にリアセンターレール34は配置される。 The medium facing surface 29 is formed with a single front rail 33 that rises from the base surface 31 on the upstream side of the airflow 32, that is, on the air inflow side. The front rail 33 extends in the slider width direction along the air inflow end of the base surface 31. Similarly, a rear center rail 34 that rises from the base surface 31 on the downstream side of the air flow 32, that is, on the air outflow side, is formed on the medium facing surface 29. The rear center rail 34 is disposed at the center position in the slider width direction. The rear center rail 34 reaches the element built-in film 27. A pair of left and right rear side rails 35, 35 are further formed on the medium facing surface 29. The rear side rail 35 rises from the base surface 31 along the side end of the slider body 25 on the air outflow side. The rear center rail 34 is disposed between the rear side rails 35, 35.
 フロントレール33、リアセンターレール34およびリアサイドレール35、35の頂上面にはいわゆる空気軸受け面(ABS)36、37、38、38が規定される。空気軸受け面36、37、38の空気流入端は段差でフロントレール33、リアセンターレール34およびリアサイドレール35の頂上面にそれぞれ接続される。気流32が媒体対向面29に受け止められると、段差の働きで空気軸受け面36、37、38には比較的に大きな正圧すなわち浮力が生成される。しかも、フロントレール33の後方すなわち背後には大きな負圧が生成される。これら浮力および負圧のバランスに基づき浮上ヘッドスライダ22の浮上姿勢は確立される。 A so-called air bearing surface (ABS) 36, 37, 38, 38 is defined on the top surfaces of the front rail 33, the rear center rail 34, and the rear side rails 35, 35. The air inflow ends of the air bearing surfaces 36, 37 and 38 are connected to the top surfaces of the front rail 33, the rear center rail 34 and the rear side rail 35 by steps. When the air flow 32 is received by the medium facing surface 29, a relatively large positive pressure, that is, buoyancy, is generated on the air bearing surfaces 36, 37, and 38 by the action of the step. In addition, a large negative pressure is generated behind the front rail 33, that is, behind the front rail 33. The flying posture of the flying head slider 22 is established based on the balance between these buoyancy and negative pressure.
 空気軸受け面37の空気流出側でリアセンターレール34には電磁変換素子28が埋め込まれる。電磁変換素子28は例えば読み出し素子と磁気記録ヘッドすなわち書き込み素子とを備える。読み出し素子にはトンネル接合磁気抵抗効果(TuMR)素子が用いられる。TuMR素子では磁気ディスク14から作用する磁界の向きに応じてトンネル接合膜の抵抗変化が引き起こされる。こういった抵抗変化に基づき磁気ディスク14から情報は読み出される。書き込み素子にはいわゆる単磁極ヘッドが用いられる。単磁極ヘッドは薄膜コイルパターンの働きで記録磁界を生成する。この記録磁界の働きで磁気ディスク14に磁気情報すなわち2値情報は書き込まれる。電磁変換素子28は素子内蔵膜27の表面に読み出し素子の読み出しギャップや書き込み素子の書き込みギャップを臨ませる。なお、読み出し素子には巨大磁気抵抗効果(GMR)素子が用いられてもよい。 The electromagnetic conversion element 28 is embedded in the rear center rail 34 on the air outflow side of the air bearing surface 37. The electromagnetic transducer 28 includes, for example, a reading element and a magnetic recording head, that is, a writing element. A tunnel junction magnetoresistive effect (TuMR) element is used as the read element. In the TuMR element, the resistance change of the tunnel junction film is caused according to the direction of the magnetic field acting from the magnetic disk 14. Information is read from the magnetic disk 14 based on such resistance change. A so-called single pole head is used for the writing element. The single pole head generates a recording magnetic field by the action of a thin film coil pattern. Magnetic information, that is, binary information is written to the magnetic disk 14 by the action of the recording magnetic field. The electromagnetic conversion element 28 exposes the reading gap of the reading element and the writing gap of the writing element on the surface of the element built-in film 27. Note that a giant magnetoresistive (GMR) element may be used as the read element.
 その他、空気軸受け面37の空気流出側で素子内蔵膜27の表面には硬質の保護膜が形成されてもよい。こういった硬質の保護膜は素子内蔵膜27の表面で露出する読み出しギャップや書き込みギャップを覆う。保護膜には例えばDLC(ダイヤモンドライクカーボン)膜が用いられればよい。なお、浮上ヘッドスライダ22の形態はこういった形態に限られるものではない。 In addition, a hard protective film may be formed on the surface of the element built-in film 27 on the air outflow side of the air bearing surface 37. Such a hard protective film covers the read gap and the write gap exposed on the surface of the element built-in film 27. For example, a DLC (diamond-like carbon) film may be used as the protective film. The form of the flying head slider 22 is not limited to this form.
 図3は電磁変換素子28の構造を概略的に示す。読み出し素子41はプレナー型に構成される。読み出し素子41は、リアセンターレール34の表面すなわち媒体対向面29で露出するトンネル接合磁気抵抗効果膜42を備える。トンネル接合磁気抵抗効果膜42は、例えば矩形の輪郭を規定するシールド43に囲まれる。シールド43はトンネル接合磁気抵抗効果膜42を途切れなく囲む。シールド43は例えばCoFe(コバルト鉄)やFeN(窒化鉄)、NiFe(ニッケル鉄)といった高透磁率材料から形成される。浮上ヘッドスライダ22の前後方向に規定されるシールド43同士の間隔は磁気ディスク14上で記録トラックのダウントラック方向に磁気記録の分解能を決定する。 FIG. 3 schematically shows the structure of the electromagnetic transducer 28. The read element 41 is configured as a planar type. The read element 41 includes a tunnel junction magnetoresistive film 42 exposed on the surface of the rear center rail 34, that is, the medium facing surface 29. The tunnel junction magnetoresistive film 42 is surrounded by a shield 43 that defines a rectangular outline, for example. The shield 43 surrounds the tunnel junction magnetoresistive film 42 without interruption. The shield 43 is made of a high magnetic permeability material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron). The spacing between the shields 43 defined in the front-rear direction of the flying head slider 22 determines the resolution of magnetic recording on the magnetic disk 14 in the down-track direction of the recording track.
 書き込み素子44すなわち単磁極ヘッドは同様にプレナー型に構成される。書き込み素子44は、媒体対向面29で先端を露出する主磁極45を備える。ここでは、主磁極45の先端面は媒体対向面29で矩形の輪郭を規定する。主磁極45は、媒体対向面29に沿って延びるシールド46に囲まれる。シールド46の輪郭は例えば矩形に規定される。シールド46は主磁極45を途切れなく囲む。主磁極45は例えばCoFe(コバルト鉄)やFeN(窒化鉄)、NiFe(ニッケル鉄)といった磁性材料から形成される。書き込み素子44の詳細は後述される。 The writing element 44, that is, the single-pole head is similarly configured as a planar type. The writing element 44 includes a main magnetic pole 45 whose tip is exposed at the medium facing surface 29. Here, the front end surface of the main magnetic pole 45 defines a rectangular outline at the medium facing surface 29. The main magnetic pole 45 is surrounded by a shield 46 that extends along the medium facing surface 29. The outline of the shield 46 is defined as a rectangle, for example. The shield 46 surrounds the main magnetic pole 45 without interruption. The main magnetic pole 45 is made of a magnetic material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron). Details of the writing element 44 will be described later.
 図4を併せて参照し、主磁極45の後端はリターンヨーク47に接続される。ここでは、主磁極45周りで1対の磁気コイルすなわち薄膜コイルパターン48、49が形成される。こうして主磁極45およびリターンヨーク47は薄膜コイルパターン48、49の中心位置を貫通する磁性コアを形成する。主磁極45の先端から漏れ出る記録磁界はリターンヨーク47に戻る。リターンヨーク47は例えばCoFe(コバルト鉄)やFeN(窒化鉄)、NiFe(ニッケル鉄)といった磁性材料から形成される。薄膜コイルパターン48、49は例えばCu(銅)といった導電材料から形成される。 Referring also to FIG. 4, the rear end of the main pole 45 is connected to the return yoke 47. Here, a pair of magnetic coils, that is, thin film coil patterns 48 and 49 are formed around the main magnetic pole 45. Thus, the main magnetic pole 45 and the return yoke 47 form a magnetic core that penetrates the center position of the thin film coil patterns 48 and 49. The recording magnetic field leaking from the tip of the main magnetic pole 45 returns to the return yoke 47. The return yoke 47 is made of a magnetic material such as CoFe (cobalt iron), FeN (iron nitride), or NiFe (nickel iron). The thin film coil patterns 48 and 49 are made of a conductive material such as Cu (copper).
 図5に示されるように、読み出し素子41では、トンネル接合磁気抵抗効果膜42は、媒体対向面29で露出するフリー層51と、フリー層51上に積層される1対のトンネルバリア層52と、トンネルバリア層52上にそれぞれ積層される1対のピンド層53とを備える。フリー層51は強磁性層から形成される。フリー層51は、磁気ディスク14から作用する外部磁界の作用に応じて磁化方向の変化を許容する。トンネルバリア層52は絶縁材料から形成される。ピンド層53は強磁性層から形成される。ピンド層53では所定の方向に磁化は固定される。ピンド層53上にはそれぞれ電極層54が積層される。図6を併せて参照し、フリー層51やトンネルバリア層52、ピンド層53、電極層54は例えば矩形の輪郭を規定する。 As shown in FIG. 5, in the read element 41, the tunnel junction magnetoresistive film 42 includes a free layer 51 exposed at the medium facing surface 29, and a pair of tunnel barrier layers 52 stacked on the free layer 51. And a pair of pinned layers 53 respectively stacked on the tunnel barrier layer 52. The free layer 51 is formed from a ferromagnetic layer. The free layer 51 allows a change in the magnetization direction according to the action of an external magnetic field acting from the magnetic disk 14. The tunnel barrier layer 52 is formed from an insulating material. The pinned layer 53 is formed from a ferromagnetic layer. In the pinned layer 53, the magnetization is fixed in a predetermined direction. On the pinned layer 53, an electrode layer 54 is laminated. Referring also to FIG. 6, the free layer 51, the tunnel barrier layer 52, the pinned layer 53, and the electrode layer 54 define, for example, a rectangular outline.
 図7に示されるように、リターンヨーク47は例えばシールド46よりも大きく広がる。リターンヨーク47は例えば矩形の輪郭を規定する。図8に示されるように、主磁極45は、媒体対向面29に直交する主磁極45の中心軸CXに沿って先端片45aおよび主磁極本体45bを区画する。先端片45aは、媒体対向面29に臨む先端に向かうにつれて先細る例えば角錐台形状に形成される。先端片45aの先端には先端面が規定される。先端面の輪郭は例えば正方形に規定される。先端片45aの後端に主磁極本体45bが接続される。主磁極本体45bは例えば角柱形状に形成される。先端片45aおよびシールド46の間には非磁性のギャップ層55が挟み込まれる。薄膜コイルパターン48、49はシールド46より後方で主磁極本体45b周りに形成される。なお、先端片45aは、媒体対向面29に臨む先端に向かうにつれて先細る円錐台形状に形成されてもよい。 As shown in FIG. 7, the return yoke 47 is larger than the shield 46, for example. The return yoke 47 defines a rectangular outline, for example. As shown in FIG. 8, the main magnetic pole 45 defines the tip piece 45 a and the main magnetic pole body 45 b along the central axis CX of the main magnetic pole 45 orthogonal to the medium facing surface 29. The tip piece 45a is formed in, for example, a truncated pyramid shape that tapers toward the tip facing the medium facing surface 29. A tip surface is defined at the tip of the tip piece 45a. The outline of the tip surface is defined as a square, for example. The main magnetic pole body 45b is connected to the rear end of the tip piece 45a. The main magnetic pole body 45b is formed in a prismatic shape, for example. A nonmagnetic gap layer 55 is sandwiched between the tip piece 45 a and the shield 46. The thin film coil patterns 48 and 49 are formed around the main magnetic pole body 45 b behind the shield 46. The tip piece 45 a may be formed in a truncated cone shape that tapers toward the tip facing the medium facing surface 29.
 その一方で、シールド46は、媒体対向面29に沿って広がる先端膜46aを備える。先端膜46aは内端で先端片45aに向き合わせられる。シールド46は、先端膜46aの外端に連結される連結片46bを備える。連結片46bは先端膜46aおよび主磁極本体45bを相互に連結する。先端膜46aは、媒体対向面29に直交する方向に順番に積層される第1磁性層56、非磁性層57および第2磁性層58の積層体から形成される。第1および第2磁性層56、58は例えばNiFeといった軟磁性材料から形成される。ここでは、第1および第2磁性層56、58は同一の材料から形成される。非磁性層57は例えばRu(ルテニウム)や、Cr(クロム)、Ir(イリジウム)、Rh(ロジウム)といった非磁性材料から形成される。 On the other hand, the shield 46 includes a tip film 46 a extending along the medium facing surface 29. The tip film 46a is opposed to the tip piece 45a at the inner end. The shield 46 includes a connecting piece 46b that is connected to the outer end of the tip film 46a. The connecting piece 46b connects the tip film 46a and the main magnetic pole body 45b to each other. The tip film 46 a is formed from a stacked body of a first magnetic layer 56, a nonmagnetic layer 57, and a second magnetic layer 58 that are sequentially stacked in a direction orthogonal to the medium facing surface 29. The first and second magnetic layers 56 and 58 are made of a soft magnetic material such as NiFe, for example. Here, the first and second magnetic layers 56 and 58 are formed of the same material. The nonmagnetic layer 57 is made of a nonmagnetic material such as Ru (ruthenium), Cr (chromium), Ir (iridium), or Rh (rhodium).
 第1磁性層56および第2磁性層58の間では交換結合に基づき相互に反平行に磁化が確立される。磁化は媒体対向面29に平行な向きに規定される。第1磁性層56では第1磁化量が規定される。第2磁性層58では第1磁化量より大きい第2磁化量が規定される。中心軸CXに直交する仮想平面に沿って規定される第1および第2磁性層56、58の断面積はほぼ等しく設定されることから、磁化量は例えば飽和磁化量(Ms)および膜厚(t)の積で表される。第1および第2磁性層56、58は同一の材料から形成される場合、第1および第2磁性層56、58の飽和磁化量(Ms)は等しく設定される。したがって、磁化量の設定にあたって第2磁性層58で第1磁性層56よりも大きな膜厚が設定されればよい。なお、第1および第2磁性層56、58が異なる材料から形成される場合、当該材料の飽和磁化量(Ms)および膜厚(t)の積は第2磁性層58で第1磁性層56より大きく設定されればよい。 Magnetization is established between the first magnetic layer 56 and the second magnetic layer 58 antiparallel to each other based on exchange coupling. Magnetization is defined in a direction parallel to the medium facing surface 29. The first magnetic layer 56 defines a first magnetization amount. In the second magnetic layer 58, a second magnetization amount larger than the first magnetization amount is defined. Since the cross-sectional areas of the first and second magnetic layers 56 and 58 defined along the virtual plane orthogonal to the central axis CX are set to be approximately equal, the magnetization amount is, for example, the saturation magnetization amount (Ms) and the film thickness ( t). When the first and second magnetic layers 56 and 58 are formed of the same material, the saturation magnetization amounts (Ms) of the first and second magnetic layers 56 and 58 are set equal. Therefore, in setting the amount of magnetization, the second magnetic layer 58 may be set to have a larger film thickness than the first magnetic layer 56. When the first and second magnetic layers 56 and 58 are formed of different materials, the product of the saturation magnetization amount (Ms) and the film thickness (t) of the material is the second magnetic layer 58 and the first magnetic layer 56. It may be set larger.
 ここでは、先端片45aの先端面の一辺の長さは例えば100nmに設定される。媒体対向面29から中心軸CXに沿って規定される先端片45aの膜厚は例えば200nm程度に設定される。中心軸CXに直交する主磁極本体45bの断面の一辺の長さは例えば600nmに設定される。ギャップ層55の膜厚は例えば5nmに設定される。膜厚は、先端片45aの側面に直交する垂直方向に規定される。第1磁性層56の膜厚は例えば20nm程度に設定される。第2磁性層58の膜厚は例えば70nm程度に設定される。非磁性層57の膜厚は例えば5nm程度に設定される。媒体対向面29に沿って規定される先端膜46aの内端から外端までの長さは例えば1000nm程度に設定される。 Here, the length of one side of the tip surface of the tip piece 45a is set to 100 nm, for example. The film thickness of the tip piece 45a defined along the central axis CX from the medium facing surface 29 is set to about 200 nm, for example. The length of one side of the cross section of the main magnetic pole body 45b orthogonal to the central axis CX is set to 600 nm, for example. The film thickness of the gap layer 55 is set to 5 nm, for example. The film thickness is defined in the vertical direction perpendicular to the side surface of the tip piece 45a. The film thickness of the first magnetic layer 56 is set to about 20 nm, for example. The film thickness of the second magnetic layer 58 is set to about 70 nm, for example. The film thickness of the nonmagnetic layer 57 is set to about 5 nm, for example. The length from the inner end to the outer end of the tip film 46a defined along the medium facing surface 29 is set to about 1000 nm, for example.
 以上のようなHDD11では、2値情報の書き込みにあたって薄膜コイルパターン48、49に電流が供給される。薄膜コイルパターン48、49は主磁極45を励磁する。図9に示されるように、主磁極45では例えば中心軸CXに沿って垂直方向に下向きに磁化が確立される。その結果、先端片45aの先端面すなわち媒体対向面29から磁気ディスク14に向かって下向きの記録磁界が形成される。主磁極45にはシールド46の連結片46bが接続されることから、シールド46は主磁極45と同時に励磁される。その結果、主磁極本体45bから連結片46bおよび先端膜46aに向かって磁化が確立される。第2磁性層58では第1磁性層56より大きな磁化量が設定されることから、先端膜46aでは第2磁性層58で中心軸CXに直交する水平方向に先端片45aに向かって内向きに磁化が固定される。その結果、第2磁性層58の内端から先端片45aに向かって磁界が生成される。先端片45aの側面から漏れ出る漏洩磁界の広がりは阻止される。先端片45aの先端面から直下に記録磁界は集中する。同時に、第2磁性層58の内端から先端片45aに向かって漏れ出る磁界は記録磁界に重畳される。その一方で、交換結合に基づき第1磁性層56では中心軸CXに直交する水平方向に先端片45aから遠ざかる外向きに磁化が確立される。先端片45aの側面や第2磁性層58から媒体対向面29に向かって漏れ出る漏洩磁界は第1磁性層56で吸収される。以上の結果、記録磁界の強度は増大する。同時に、媒体対向面29から磁気ディスク14に向かって漏洩磁界すなわちイレーズ磁界の生成は回避される。例えばサイドイレーズ等は回避される。しかも、先端片45aの先端から漏れ出る記録磁界では急峻な勾配が確立される。磁気記録の分解能は高められる。こうした書き込み素子44は記録密度の向上に大いに貢献することができる。 In the HDD 11 as described above, a current is supplied to the thin film coil patterns 48 and 49 when binary information is written. The thin film coil patterns 48 and 49 excite the main magnetic pole 45. As shown in FIG. 9, in the main magnetic pole 45, for example, magnetization is established downward in the vertical direction along the central axis CX. As a result, a downward recording magnetic field is formed from the front end surface of the front end piece 45 a, that is, the medium facing surface 29 toward the magnetic disk 14. Since the connecting piece 46 b of the shield 46 is connected to the main magnetic pole 45, the shield 46 is excited simultaneously with the main magnetic pole 45. As a result, magnetization is established from the main magnetic pole body 45b toward the connecting piece 46b and the tip film 46a. Since the second magnetic layer 58 has a larger amount of magnetization than the first magnetic layer 56, the tip film 46a faces inward toward the tip piece 45a in the horizontal direction perpendicular to the central axis CX in the second magnetic layer 58. Magnetization is fixed. As a result, a magnetic field is generated from the inner end of the second magnetic layer 58 toward the tip piece 45a. The spread of the leakage magnetic field leaking from the side surface of the tip piece 45a is prevented. The recording magnetic field concentrates directly below the tip surface of the tip piece 45a. At the same time, the magnetic field leaking from the inner end of the second magnetic layer 58 toward the tip piece 45a is superimposed on the recording magnetic field. On the other hand, in the first magnetic layer 56, magnetization is established outwardly away from the tip piece 45a in the horizontal direction orthogonal to the central axis CX based on the exchange coupling. The leakage magnetic field leaking from the side surface of the tip piece 45 a and the second magnetic layer 58 toward the medium facing surface 29 is absorbed by the first magnetic layer 56. As a result, the strength of the recording magnetic field increases. At the same time, generation of a leakage magnetic field, that is, an erase magnetic field from the medium facing surface 29 toward the magnetic disk 14 is avoided. For example, side erasure is avoided. In addition, a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece 45a. The resolution of magnetic recording is increased. Such a writing element 44 can greatly contribute to the improvement of the recording density.
 反対に、薄膜コイルパターン48、49に前述とは逆の向きに電流が供給されると、薄膜コイルパターン48、49は主磁極45を励磁する。このとき、図10に示されるように、主磁極45では例えば中心軸CXに沿って垂直方向に上向きに磁化が確立される。その結果、先端片45aの先端面すなわち媒体対向面29に向かって磁気ディスク14から上向きの記録磁界が生成される。前述と同様に、シールド46は主磁極45と同時に励磁される。その結果、連結片46bおよび先端膜46aから主磁極本体45bに向かって磁化が確立される。第2磁性層58では第1磁性層56より大きな磁化量が設定されることから、先端膜46aでは第2磁性層58で中心軸CXに直交する水平方向に先端片45aから遠ざかる外向きに磁化が固定される。その結果、先端片45aから第2磁性層58の内端に向かって磁界が生成される。こうした磁界は記録磁界に重畳される。その一方で、交換結合に基づき第1磁性層56では中心軸CXに直交する水平方向に先端片45aに向かって内向きに磁化が確立される。その結果、先端片45aの側面から漏れ出る漏洩磁界の広がりは阻止される。先端片45aの先端面から直下に記録磁界は集中する。以上の結果、記録磁界の強度は増大する。同時に、媒体対向面29から磁気ディスク14に向かって漏洩磁界すなわちイレーズ磁界の生成は回避される。例えばサイドイレーズ等は回避される。しかも、先端片45aの先端から漏れ出る記録磁界では急峻な勾配が確立される。磁気記録の分解能は高められる。こうした書き込み素子44は記録密度の向上に大いに貢献することができる。 On the other hand, when a current is supplied to the thin film coil patterns 48 and 49 in the opposite direction, the thin film coil patterns 48 and 49 excite the main magnetic pole 45. At this time, as shown in FIG. 10, in the main magnetic pole 45, for example, magnetization is established upward in the vertical direction along the central axis CX. As a result, an upward recording magnetic field is generated from the magnetic disk 14 toward the distal end surface of the distal end piece 45a, that is, the medium facing surface 29. As before, the shield 46 is excited simultaneously with the main pole 45. As a result, magnetization is established from the connecting piece 46b and the tip film 46a toward the main magnetic pole body 45b. Since the second magnetic layer 58 has a larger amount of magnetization than the first magnetic layer 56, the tip film 46a is magnetized outwardly away from the tip piece 45a in the horizontal direction perpendicular to the central axis CX in the second magnetic layer 58. Is fixed. As a result, a magnetic field is generated from the tip piece 45 a toward the inner end of the second magnetic layer 58. Such a magnetic field is superimposed on the recording magnetic field. On the other hand, in the first magnetic layer 56, magnetization is established inward toward the tip piece 45a in the horizontal direction orthogonal to the central axis CX based on the exchange coupling. As a result, the spread of the leakage magnetic field leaking from the side surface of the tip piece 45a is prevented. The recording magnetic field concentrates directly below the tip surface of the tip piece 45a. As a result, the strength of the recording magnetic field increases. At the same time, generation of a leakage magnetic field, that is, an erase magnetic field from the medium facing surface 29 toward the magnetic disk 14 is avoided. For example, side erasure is avoided. In addition, a steep gradient is established in the recording magnetic field leaking from the tip of the tip piece 45a. The resolution of magnetic recording is increased. Such a writing element 44 can greatly contribute to the improvement of the recording density.
 発明者は記録磁界の強度を検証した。検証にあたってシミュレーションが実施された。具体例、比較例1および比較例2に係る書き込み素子が用意された。具体例には前述の書き込み素子44が用いられた。比較例1に係る書き込み素子では前述の主磁極45のみが組み込まれた。比較例2に係る書き込み素子では前述の主磁極45の両側に媒体対向面29に沿って1対のシールドが配置された。媒体対向面29から直交する方向に規定されるシールドの膜厚は50nmに設定された。このとき、具体例、比較例1および比較例2では主磁極45で下向きに1[T]の磁化が確立された。媒体対向面29から50nmの位置に磁気ディスクの軟磁性の裏打ち層が想定された。裏打ち層の膜厚は25nmに設定された。裏打ち層では1[T]の磁化が確立された。このとき、媒体対向面29から10nmの距離で先端片46の先端面の直下の基準点から媒体対向面29に平行に基準点から外側に遠ざかる方向に磁界強度が算出された。磁界強度は、媒体対向面29に平行なx成分、媒体対向面29に直交するy成分で算出された。 The inventor verified the strength of the recording magnetic field. A simulation was conducted for verification. Write elements according to specific examples, comparative example 1 and comparative example 2 were prepared. In the specific example, the writing element 44 described above was used. In the write element according to Comparative Example 1, only the main magnetic pole 45 described above was incorporated. In the write element according to Comparative Example 2, a pair of shields were disposed along the medium facing surface 29 on both sides of the main magnetic pole 45 described above. The thickness of the shield defined in the direction orthogonal to the medium facing surface 29 was set to 50 nm. At this time, in the specific example, Comparative Example 1 and Comparative Example 2, magnetization of 1 [T] was established in the main magnetic pole 45 downward. A soft magnetic backing layer of the magnetic disk was assumed at a position 50 nm from the medium facing surface 29. The film thickness of the backing layer was set to 25 nm. A magnetization of 1 [T] was established in the backing layer. At this time, the magnetic field strength was calculated in a direction away from the reference point parallel to the medium facing surface 29 from the reference point immediately below the tip surface of the tip piece 46 at a distance of 10 nm from the medium facing surface 29. The magnetic field strength was calculated using an x component parallel to the medium facing surface 29 and a y component orthogonal to the medium facing surface 29.
 その結果、図11に示されるように、比較例1では基準点から外側に遠ざかるにつれてy成分の磁界強度は弱まった。x成分の磁界強度は、基準点から遠ざかるにつれて増大しつつ50nmの位置から外側で減少した。比較例2では基準点から外側に遠ざかるにつれてy成分の磁界強度は弱まった。磁界強度は比較例1に比べて減少した。その一方で、x成分の磁界強度は比較例1より増大した。その一方で、具体例ではy成分の磁界強度は比較例2と同様に推移するものの、磁界強度は比較例1および2より大きく増大した。70nmより外側の位置で磁界強度はほぼゼロになった。同様に、x成分の磁界強度は比較例1および2と同様に推移した。以上のことから、本発明に係る具体例では比較例1および2に比べてy成分の磁界強度が増大しつつx成分の磁界強度は比較例2よりも減少することが確認された。 As a result, as shown in FIG. 11, in Comparative Example 1, the magnetic field strength of the y component was weakened as the distance from the reference point was increased. The magnetic field intensity of the x component decreased outward from the 50 nm position while increasing with increasing distance from the reference point. In Comparative Example 2, the magnetic field strength of the y component was weakened with increasing distance from the reference point. The magnetic field intensity decreased compared to Comparative Example 1. On the other hand, the magnetic field strength of the x component increased from that of Comparative Example 1. On the other hand, in the specific example, the magnetic field strength of the y component transitioned in the same manner as in Comparative Example 2, but the magnetic field strength increased more than Comparative Examples 1 and 2. The magnetic field intensity became almost zero at a position outside of 70 nm. Similarly, the magnetic field intensity of the x component changed in the same manner as in Comparative Examples 1 and 2. From the above, it was confirmed that in the specific example according to the present invention, the magnetic field strength of the y component was increased as compared with the comparative examples 1 and 2, and the magnetic field strength of the x component was decreased as compared with the comparative example 2.
 次に浮上ヘッドスライダ22の製造方法を説明する。まず、素子内蔵膜27が形成される。最初に読み出し素子41が形成される。図12に示されるように、ウエハ基板61の表面にフリー層51の素材膜62およびトンネルバリア層52の素材膜63が形成される。素材膜62、63はべた膜から形成される。素材膜62の膜厚はフリー層51の膜厚より大きく設定される。ウエハ基板61には例えばSi(珪素)基板が用いられる。素材膜62、63の形成にあたって例えば真空中でスパッタリングが実施される。素材膜63の表面には所定のパターンでフォトレジスト64が形成される。素材膜63の表面でフォトレジスト64の輪郭はフリー層51の輪郭を象る。形成にあたって例えばフォトリソグラフィー技術が用いられる。 Next, a method for manufacturing the flying head slider 22 will be described. First, the element built-in film 27 is formed. First, the read element 41 is formed. As shown in FIG. 12, a material film 62 of the free layer 51 and a material film 63 of the tunnel barrier layer 52 are formed on the surface of the wafer substrate 61. The material films 62 and 63 are formed from a solid film. The film thickness of the material film 62 is set larger than the film thickness of the free layer 51. For example, a Si (silicon) substrate is used as the wafer substrate 61. For forming the material films 62 and 63, for example, sputtering is performed in a vacuum. A photoresist 64 is formed in a predetermined pattern on the surface of the material film 63. The contour of the photoresist 64 on the surface of the material film 63 is similar to the contour of the free layer 51. For the formation, for example, a photolithography technique is used.
 その後、フォトレジスト64をマスクに素材膜62、63にエッチングが実施される。エッチングには例えば物理的エッチングや反応性イオンエッチング(RIE)が含まれる。その結果、図13に示されるように、素材膜62、63は所定の輪郭に削り出される。素材膜62に基づきフリー層51が形成される。素材膜62、63の外側でウエハ基板61の表面が露出する。その後、図14に示されるように、ウエハ基板61の表面には絶縁膜65が形成される。形成にあたって例えば真空中でスパッタリングが実施される。絶縁膜65の表面は素材膜63の表面に揃えられる。図15に示されるように、リフトオフ法に基づきフォトレジスト64が除去される。 Thereafter, the material films 62 and 63 are etched using the photoresist 64 as a mask. Etching includes, for example, physical etching and reactive ion etching (RIE). As a result, as shown in FIG. 13, the material films 62 and 63 are cut out to a predetermined contour. A free layer 51 is formed based on the material film 62. The surface of the wafer substrate 61 is exposed outside the material films 62 and 63. Thereafter, as shown in FIG. 14, an insulating film 65 is formed on the surface of the wafer substrate 61. For the formation, for example, sputtering is performed in a vacuum. The surface of the insulating film 65 is aligned with the surface of the material film 63. As shown in FIG. 15, the photoresist 64 is removed based on the lift-off method.
 その後、図16に示されるように、絶縁膜65の表面には所定のパターンでフォトレジスト66が形成される。フォトレジスト66で形成される空隙はシールド43の輪郭を象る。フォトレジスト66をマスクに絶縁膜65にはエッチングが実施される。その結果、図17に示されるように、空隙内でウエハ基板61の表面が露出する。その後、図18に示されるように、ウエハ基板61の表面にはシールド43の素材膜67が形成される。続いて、図19に示されるように、ウエハ基板61の表面には絶縁膜68が形成される。絶縁膜68の表面は絶縁膜65の表面に揃えられる。その後、リフトオフ法に基づきフォトレジスト66が除去される。素材膜67に基づきシールド43が形成される。 Thereafter, as shown in FIG. 16, a photoresist 66 is formed in a predetermined pattern on the surface of the insulating film 65. The air gap formed by the photoresist 66 represents the outline of the shield 43. The insulating film 65 is etched using the photoresist 66 as a mask. As a result, as shown in FIG. 17, the surface of the wafer substrate 61 is exposed in the gap. Thereafter, as shown in FIG. 18, a material film 67 of the shield 43 is formed on the surface of the wafer substrate 61. Subsequently, as shown in FIG. 19, an insulating film 68 is formed on the surface of the wafer substrate 61. The surface of the insulating film 68 is aligned with the surface of the insulating film 65. Thereafter, the photoresist 66 is removed based on the lift-off method. The shield 43 is formed based on the material film 67.
 その後、図20に示されるように、ピンド層53の素材膜69が形成される。素材膜69はべた膜から形成される。形成にあたって例えば真空中でスパッタリングが実施される。図21に示されるように、素材膜69の表面には所定のパターンでフォトレジスト71が形成される。素材膜69の表面でフォトレジスト71の輪郭はピンド層53の輪郭を象る。フォトレジスト71をマスクに素材膜69にはエッチングが実施される。その結果、図22に示されるように、絶縁膜65上で素材膜69は所定の輪郭に削り出される。素材膜69に基づきピンド層53が形成される。同時に、フリー層51上で素材膜63は所定の輪郭に削り出される。素材膜63に基づきトンネルバリア層52が形成される。 Thereafter, as shown in FIG. 20, a material film 69 of the pinned layer 53 is formed. The material film 69 is formed from a solid film. For the formation, for example, sputtering is performed in a vacuum. As shown in FIG. 21, a photoresist 71 is formed on the surface of the material film 69 in a predetermined pattern. On the surface of the material film 69, the contour of the photoresist 71 represents the contour of the pinned layer 53. The material film 69 is etched using the photoresist 71 as a mask. As a result, as shown in FIG. 22, the material film 69 is cut out to a predetermined contour on the insulating film 65. A pinned layer 53 is formed based on the material film 69. At the same time, the material film 63 is cut out to a predetermined contour on the free layer 51. A tunnel barrier layer 52 is formed based on the material film 63.
 その後、図23に示されるように、絶縁膜65上に絶縁膜72が形成される。絶縁膜72の表面はピンド層53の表面に揃えられる。図24に示されるように、リフトオフ法に基づきフォトレジスト71が除去される。その後、図25に示されるように、ウエハ基板61上に所定のパターンでフォトレジスト73が形成される。フォトレジスト73には電極層54の輪郭を象る空隙が規定される。図26に示されるように、ウエハ基板61上に導電膜74が形成される。その後、図27に示されるように、リフトオフ法に基づきフォトレジスト73が除去される。こうして1対の電極層54が形成される。 Thereafter, as shown in FIG. 23, an insulating film 72 is formed on the insulating film 65. The surface of the insulating film 72 is aligned with the surface of the pinned layer 53. As shown in FIG. 24, the photoresist 71 is removed based on the lift-off method. Thereafter, as shown in FIG. 25, a photoresist 73 is formed on the wafer substrate 61 in a predetermined pattern. In the photoresist 73, a void that represents the contour of the electrode layer 54 is defined. As shown in FIG. 26, a conductive film 74 is formed on the wafer substrate 61. Thereafter, as shown in FIG. 27, the photoresist 73 is removed based on the lift-off method. Thus, a pair of electrode layers 54 is formed.
 その後、絶縁膜72の表面には引き出し配線(図示されず)が形成される。引き出し配線は、浮上ヘッドスライダ22の空気流出側端面に形成される導電端子と電極層54とを接続する。こうしてウエハ基板61上に読み出し素子41が形成される。その後、図28に示されるように、ウエハ基板61上には絶縁膜75が形成される。絶縁膜75はウエハ基板61上で読み出し素子41に覆い被さる。その後、読み出し素子41はフォトレジスト(図示されず)で覆われる。こうしたフォトレジストは後述の書き込み素子44の形成時に読み出し素子41の損傷を回避する。 Thereafter, lead wires (not shown) are formed on the surface of the insulating film 72. The lead wiring connects the conductive terminal formed on the air outflow side end surface of the flying head slider 22 and the electrode layer 54. Thus, the reading element 41 is formed on the wafer substrate 61. Thereafter, as shown in FIG. 28, an insulating film 75 is formed on the wafer substrate 61. The insulating film 75 covers the reading element 41 on the wafer substrate 61. Thereafter, the reading element 41 is covered with a photoresist (not shown). Such a photoresist avoids damage to the read element 41 when a write element 44 described later is formed.
 次に書き込み素子44が形成される。図29に示されるように、前述のウエハ基板61上でシールド46の積層体81が形成される。積層体81は読み出し素子41に隣接して形成される。形成にあたって第1磁性層、非磁性層および第2磁性層が積層される。積層にあたって例えばスパッタリングが実施される。スパッタリングの条件に基づき第1および第2磁性層並びに非磁性層は所定の膜厚に設定される。積層体81の表面には所定のパターンでフォトレジスト82が形成される。フォトレジスト82で形成される空隙は主磁極45の輪郭を象る。その後、フォトレジスト82をマスクに積層体81にエッチングが実施される。このとき、ビームの入射方向が調整される。 Next, the writing element 44 is formed. As shown in FIG. 29, a laminated body 81 of shields 46 is formed on the wafer substrate 61 described above. The stacked body 81 is formed adjacent to the reading element 41. In the formation, the first magnetic layer, the nonmagnetic layer, and the second magnetic layer are laminated. For example, sputtering is performed for stacking. Based on the sputtering conditions, the first and second magnetic layers and the nonmagnetic layer are set to predetermined thicknesses. A photoresist 82 is formed in a predetermined pattern on the surface of the stacked body 81. The air gap formed by the photoresist 82 represents the contour of the main magnetic pole 45. Thereafter, the stacked body 81 is etched using the photoresist 82 as a mask. At this time, the incident direction of the beam is adjusted.
 その結果、図30に示されるように、積層体81には角錐台形状の空隙が形成される。空隙はウエハ基板61に向かって先細る。こうして積層体81に基づきシールド46の先端膜46aが形成される。その後、図31に示されるように、ウエハ基板61上には所定の膜厚で非磁性膜83および磁性膜84が形成される。形成にあたってスパッタリングが実施される。非磁性膜83に基づき前述のギャップ層55が形成される。磁性膜84に基づき主磁極45の先端片45aが形成される。その後、図32に示されるように、リフトオフ法に基づきウエハ基板61の表面からフォトレジスト82が除去される。 As a result, as shown in FIG. 30, a truncated pyramid-shaped gap is formed in the stacked body 81. The gap is tapered toward the wafer substrate 61. Thus, the tip film 46 a of the shield 46 is formed based on the laminated body 81. Thereafter, as shown in FIG. 31, a nonmagnetic film 83 and a magnetic film 84 are formed on the wafer substrate 61 with a predetermined film thickness. Sputtering is performed for the formation. The aforementioned gap layer 55 is formed based on the nonmagnetic film 83. Based on the magnetic film 84, the tip piece 45a of the main magnetic pole 45 is formed. Thereafter, as shown in FIG. 32, the photoresist 82 is removed from the surface of the wafer substrate 61 based on the lift-off method.
 図33に示されるように、ウエハ基板61上には所定のパターンでフォトレジスト85が形成される。フォトレジスト85は先端膜46aの外周に沿って配置される。フォトレジスト85をマスクにウエハ基板61上に絶縁膜86が形成される。その後、図34に示されるように、リフトオフ法に基づきフォトレジスト85が除去される。図35に示されるように、絶縁膜86上には所定のパターンでフォトレジスト87が形成される。フォトレジスト87は、連結片46bの輪郭を象る空隙を形成する。続いて、ウエハ基板61上には磁性膜88が形成される。磁性膜88に基づき先端膜46a上に連結片46bが形成される。形成後、フォトレジスト87が除去される。 33, a photoresist 85 is formed on the wafer substrate 61 in a predetermined pattern. The photoresist 85 is disposed along the outer periphery of the tip film 46a. An insulating film 86 is formed on the wafer substrate 61 using the photoresist 85 as a mask. Thereafter, as shown in FIG. 34, the photoresist 85 is removed based on the lift-off method. As shown in FIG. 35, a photoresist 87 is formed on the insulating film 86 in a predetermined pattern. The photoresist 87 forms a gap that represents the outline of the connecting piece 46b. Subsequently, a magnetic film 88 is formed on the wafer substrate 61. Based on the magnetic film 88, the connecting piece 46b is formed on the tip film 46a. After the formation, the photoresist 87 is removed.
 図36に示されるように、磁性膜88上にフォトレジスト89が形成される。フォトレジスト89をマスクに基板61上に絶縁膜91が形成される。形成後、リフトオフ法に基づき磁性膜88上からフォトレジスト89が除去される。その後、図37に示されるように、ウエハ基板61上には所定のパターンでフォトレジスト92が形成される。フォトレジスト92は、薄膜コイルパターン48の輪郭を象る空隙を形成される。続いて、ウエハ基板61上には導電膜93が形成される。図38に示されるように、絶縁膜93上からフォトレジスト92が除去される。こうして薄膜コイルパターン48が形成される。 36, a photoresist 89 is formed on the magnetic film 88. As shown in FIG. An insulating film 91 is formed on the substrate 61 using the photoresist 89 as a mask. After the formation, the photoresist 89 is removed from the magnetic film 88 based on the lift-off method. Thereafter, as shown in FIG. 37, a photoresist 92 is formed on the wafer substrate 61 in a predetermined pattern. The photoresist 92 is formed with a space that represents the outline of the thin-film coil pattern 48. Subsequently, a conductive film 93 is formed on the wafer substrate 61. As shown in FIG. 38, the photoresist 92 is removed from the insulating film 93. Thus, a thin film coil pattern 48 is formed.
 図39に示されるように、磁性膜88上および薄膜コイルパターン48の所定の領域上にフォトレジスト94が形成される。ウエハ基板61上には絶縁膜95が形成される。図40に示されるように、リフトオフ法に基づきフォトレジスト94は除去される。図41に示されるように、絶縁膜95上には所定のパターンでフォトレジスト96が形成される。フォトレジスト96は、薄膜コイルパターン49の輪郭を象る空隙が形成される。ウエハ基板61上には磁性の導電膜97が形成される。導電膜97に基づき薄膜コイルパターン49が形成される。図42に示されるように、ウエハ基板61上からフォトレジスト96が除去される。 39, a photoresist 94 is formed on the magnetic film 88 and a predetermined region of the thin film coil pattern 48. An insulating film 95 is formed on the wafer substrate 61. As shown in FIG. 40, the photoresist 94 is removed based on the lift-off method. As shown in FIG. 41, a photoresist 96 is formed on the insulating film 95 with a predetermined pattern. In the photoresist 96, a gap that represents the outline of the thin film coil pattern 49 is formed. A magnetic conductive film 97 is formed on the wafer substrate 61. A thin film coil pattern 49 is formed based on the conductive film 97. As shown in FIG. 42, the photoresist 96 is removed from the wafer substrate 61.
 図43に示されるように、磁性膜88上に形成されるフォトレジスト98をマスクに絶縁膜95上には所定のパターンで絶縁膜99が形成される。フォトレジスト98は除去される。図44に示されるように、絶縁膜99上に形成されるフォトレジスト(図示されず)に基づきリターンヨーク47が形成される。同時に、薄膜コイルパターン49に接続される引き出し配線(図示されず)が形成される。こうして書き込み素子44が形成される。絶縁膜99上にはリターンヨーク47に覆い被さる絶縁膜101が形成される。その後、読み出し素子41上のフォトレジストが除去される。除去後、読み出し素子41上の絶縁膜75および書き込み素子44上の絶縁膜101に研磨処理が施される。研磨処理にあたって化学機械研磨(CMP)法が実施される。 As shown in FIG. 43, an insulating film 99 is formed in a predetermined pattern on the insulating film 95 using a photoresist 98 formed on the magnetic film 88 as a mask. Photoresist 98 is removed. As shown in FIG. 44, a return yoke 47 is formed based on a photoresist (not shown) formed on the insulating film 99. At the same time, lead wires (not shown) connected to the thin film coil pattern 49 are formed. Thus, the writing element 44 is formed. An insulating film 101 is formed on the insulating film 99 so as to cover the return yoke 47. Thereafter, the photoresist on the reading element 41 is removed. After the removal, the insulating film 75 on the reading element 41 and the insulating film 101 on the writing element 44 are polished. In the polishing process, a chemical mechanical polishing (CMP) method is performed.
 その後、図45に示されるように、絶縁膜75の表面および絶縁膜101の表面には前述の基板26が接合される。接合にあたって例えば電解溶接が実施される。基板26は例えばAl-TiCから形成される。続いて、ウエハ基板61が除去される。除去にあたって例えば化学的エッチングが実施される。こうして基板26および素子内蔵膜27のユニットが形成される。その後、素子内蔵膜27の表面にはエッチングや研磨が実施される。素子内蔵膜27の表面は削られる。その結果、読み出し素子41ではフリー層51の寸法は既定値に合わせ込まれる。同時に、図46に示されるように、非磁性膜83が削られる。その結果、書き込み素子44では主磁極45の先端片45aが露出する。先端片45aの寸法は既定値に合わせ込まれる。 Thereafter, as shown in FIG. 45, the substrate 26 is bonded to the surface of the insulating film 75 and the surface of the insulating film 101. For joining, for example, electrolytic welding is performed. The substrate 26 is made of, for example, Al 2 O 3 —TiC. Subsequently, the wafer substrate 61 is removed. For the removal, for example, chemical etching is performed. Thus, a unit of the substrate 26 and the element built-in film 27 is formed. Thereafter, the surface of the element built-in film 27 is etched or polished. The surface of the element built-in film 27 is shaved. As a result, in the read element 41, the size of the free layer 51 is adjusted to a predetermined value. At the same time, as shown in FIG. 46, the nonmagnetic film 83 is removed. As a result, the tip piece 45 a of the main magnetic pole 45 is exposed in the writing element 44. The dimension of the tip piece 45a is adjusted to a predetermined value.
 その後、基板26および素子内臓膜27のユニットは、複数のスライダ本体25を規定するバー(図示されず)に接合される。接合にあたって例えば電解溶接が実施される。バーでは各ヘッドスライダごとに媒体対向面29が形成される。その後、バーから個々の浮上ヘッドスライダ22が切り出される。こうして浮上ヘッドスライダ22が製造される。 Thereafter, the unit of the substrate 26 and the element built-in film 27 is joined to a bar (not shown) that defines the plurality of slider bodies 25. For joining, for example, electrolytic welding is performed. In the bar, a medium facing surface 29 is formed for each head slider. Thereafter, the individual flying head sliders 22 are cut out from the bars. Thus, the flying head slider 22 is manufactured.
 図47は他の具体例に係る書き込み素子44aの構造を概略的に示す。この書き込み素子44aでは、シールド46の先端膜46aは4つに分割される。媒体対向面29で先端膜46aは内端で先端片45aの先端面の各辺に向き合わせられる。こうしてシールド46は主磁極45の周囲を取り囲む。同時に、前述の連結片46bは4つに分割される。各連結片46bは各先端膜46aに接続される。こうして各先端膜46aは連結片46bで主磁極45の主磁極本体45bに個別に接続される。その他、前述と均等な構成や構造には同一の参照符号が付される。こうした書き込み素子44aによれば前述と同様の作用効果が実現される。 FIG. 47 schematically shows the structure of a write element 44a according to another specific example. In the writing element 44a, the tip film 46a of the shield 46 is divided into four. In the medium facing surface 29, the tip film 46a is opposed to each side of the tip face of the tip piece 45a at the inner end. Thus, the shield 46 surrounds the main magnetic pole 45. At the same time, the connecting piece 46b is divided into four. Each connecting piece 46b is connected to each tip film 46a. Thus, each tip film 46a is individually connected to the main magnetic pole body 45b of the main magnetic pole 45 by the connecting piece 46b. Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized.
 その他、図48に示されるように、書き込み素子44aでは各連結片46b周りに個別に薄膜コイルパターン105が形成されてもよい。主磁極45の主磁極本体45b周りには前述の薄膜コイルパターン48が形成される。薄膜コイルパターン48および薄膜コイルパターン105には個別に電流が供給される。その結果、書き込み素子44aでは、主磁極45およびシールド46は個別に励磁される。なお、主磁極45およびシールド46は同時に励磁されてもよく、別々に励磁されてもよい。その他、前述と均等な構成や構造には同一の参照符号が付される。こうした書き込み素子44aによれば前述と同様の作用効果が実現される。なお、シールド46の先端膜46aは前述の書き込み素子44と同様に矩形の輪郭を規定してもよい。このとき、先端膜46aの輪郭の各辺に沿って各連結片46bが接続される。 In addition, as shown in FIG. 48, in the writing element 44a, a thin film coil pattern 105 may be individually formed around each connecting piece 46b. The aforementioned thin film coil pattern 48 is formed around the main magnetic pole body 45 b of the main magnetic pole 45. The thin film coil pattern 48 and the thin film coil pattern 105 are individually supplied with current. As a result, in the write element 44a, the main magnetic pole 45 and the shield 46 are individually excited. The main magnetic pole 45 and the shield 46 may be excited simultaneously or separately. Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized. Note that the tip film 46 a of the shield 46 may define a rectangular outline in the same manner as the writing element 44 described above. At this time, each connecting piece 46b is connected along each side of the contour of the tip film 46a.
 その他、図49に示されるように、書き込み素子44aでは連結片46bは途中で途切れてもよい。こうして主磁極45およびシールド46は相互に連結されない。前述と同様に、各連結片46b周りに個別に薄膜コイルパターン105が形成される。主磁極本体45b周りには前述の薄膜コイルパターン48が形成される。こうして主磁極45およびシールド46は個別に励磁される。なお、主磁極45およびシールド46は同時に励磁されてもよく、別々に励磁されてもよい。その他、前述と均等な構成や構造には同一の参照符号が付される。こうした書き込み素子44aによれば前述と同様の作用効果が実現される。なお、シールド46の先端膜46aは前述の書き込み素子44と同様に矩形の輪郭を規定してもよい。 In addition, as shown in FIG. 49, in the writing element 44a, the connecting piece 46b may be interrupted. Thus, the main magnetic pole 45 and the shield 46 are not connected to each other. Similarly to the above, the thin film coil pattern 105 is individually formed around each connecting piece 46b. The aforementioned thin film coil pattern 48 is formed around the main magnetic pole body 45b. Thus, the main magnetic pole 45 and the shield 46 are individually excited. The main magnetic pole 45 and the shield 46 may be excited simultaneously or separately. Like reference numerals are attached to the structure or components equivalent to those described above. According to such a writing element 44a, the same effect as described above is realized. Note that the tip film 46 a of the shield 46 may define a rectangular outline in the same manner as the writing element 44 described above.

Claims (6)

  1.  記憶媒体に向き合わせられる媒体対向面に臨む先端に向かうにつれて先細り、前記媒体対向面に直交する中心軸に沿って磁化を確立する先端片を区画する主磁極と、
     前記媒体対向面に沿って延びつつ前記先端片に向き合わせられるシールドとを備え、
     前記シールドは、
     前記媒体対向面に沿って広がりつつ第1磁化量を有し、前記中心軸に直交する第1方向に磁化を確立する第1磁性層と、
     前記第1磁性層の表面に積層される非磁性層と、
     前記非磁性層の表面に積層されて前記第1磁化量より大きい第2磁化量を有し、前記第1方向に反平行な第2方向に磁化を確立する第2磁性層とを備えることを特徴とする磁気記録ヘッド。
    A main pole that defines a tip piece that tapers toward a tip facing a medium facing surface facing a storage medium and establishes magnetization along a central axis perpendicular to the medium facing surface;
    A shield that extends along the medium facing surface and faces the tip piece,
    The shield is
    A first magnetic layer having a first magnetization amount extending along the medium facing surface and establishing magnetization in a first direction orthogonal to the central axis;
    A nonmagnetic layer laminated on the surface of the first magnetic layer;
    A second magnetic layer that is stacked on a surface of the nonmagnetic layer and has a second magnetization amount larger than the first magnetization amount and establishes magnetization in a second direction antiparallel to the first direction. Characteristic magnetic recording head.
  2.  請求項1に記載の磁気記録ヘッドにおいて、前記第1磁性層の磁化および前記第2磁性層の磁化は交換結合に基づき相互に反平行に規定されることを特徴とする磁気記録ヘッド。 2. The magnetic recording head according to claim 1, wherein the magnetization of the first magnetic layer and the magnetization of the second magnetic layer are defined antiparallel to each other based on exchange coupling.
  3.  請求項1または2に記載の磁気記録ヘッドにおいて、前記主磁極周りに形成されて、前記主磁極、および、前記主磁極に連結される前記シールドを同時に励磁する磁気コイルを備えることを特徴とする磁気記録ヘッド。 3. The magnetic recording head according to claim 1, further comprising a magnetic coil that is formed around the main magnetic pole and simultaneously excites the main magnetic pole and the shield connected to the main magnetic pole. Magnetic recording head.
  4.  請求項3に記載の磁気記録ヘッドにおいて、前記磁気コイルは、前記主磁極で前記中心軸に沿って前記媒体対向面に向かう下向きの磁化を確立するとともに、前記第2磁性層で前記主磁極に向かう方向に磁化を確立することを特徴とする磁気記録ヘッド。 4. The magnetic recording head according to claim 3, wherein the magnetic coil establishes downward magnetization toward the medium facing surface along the central axis at the main magnetic pole, and at the main magnetic pole at the second magnetic layer. A magnetic recording head characterized in that magnetization is established in a heading direction.
  5.  請求項3または4に記載の磁気記録ヘッドにおいて、前記磁気コイルは、前記主磁極で前記中心軸に沿って前記媒体対向面から後方に向かう上向きの磁化を確立するとともに、前記第2磁性層で前記主磁極から離れる方向に磁化を確立することを特徴とする磁気記録ヘッド。 5. The magnetic recording head according to claim 3, wherein the magnetic coil establishes upward magnetization toward the rear from the medium facing surface along the central axis at the main magnetic pole, and at the second magnetic layer. A magnetic recording head characterized in that magnetization is established in a direction away from the main magnetic pole.
  6.  記憶媒体に向き合わせられる媒体対向面に臨む先端に向かうにつれて先細り、前記媒体対向面に直交する中心軸に沿って磁化を確立する先端片を区画する主磁極と、
     前記媒体対向面に沿って延びつつ前記先端片に向き合わせられるシールドとを備え、
     前記シールドは、
     前記媒体対向面に沿って広がりつつ第1磁化量を有し、前記中心軸に直交する第1方向に磁化を確立する第1磁性層と、
     前記第1磁性層の表面に積層される非磁性層と、
     前記非磁性層の表面に積層されて前記第1磁化量より大きい第2磁化量を有し、前記第1方向に反平行な第2方向に磁化を確立する第2磁性層とを備える磁気記録ヘッドが組み込まれたことを特徴とする記憶装置。
    A main pole that defines a tip piece that tapers toward a tip facing a medium facing surface facing a storage medium and establishes magnetization along a central axis perpendicular to the medium facing surface;
    A shield that extends along the medium facing surface and faces the tip piece,
    The shield is
    A first magnetic layer having a first magnetization amount extending along the medium facing surface and establishing magnetization in a first direction orthogonal to the central axis;
    A nonmagnetic layer laminated on the surface of the first magnetic layer;
    A magnetic recording comprising: a second magnetic layer stacked on a surface of the nonmagnetic layer and having a second magnetization amount larger than the first magnetization amount and establishing magnetization in a second direction antiparallel to the first direction. A storage device having a built-in head.
PCT/JP2008/072315 2008-12-09 2008-12-09 Magnetic recording head, and storage device WO2010067418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072315 WO2010067418A1 (en) 2008-12-09 2008-12-09 Magnetic recording head, and storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072315 WO2010067418A1 (en) 2008-12-09 2008-12-09 Magnetic recording head, and storage device

Publications (1)

Publication Number Publication Date
WO2010067418A1 true WO2010067418A1 (en) 2010-06-17

Family

ID=42242429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072315 WO2010067418A1 (en) 2008-12-09 2008-12-09 Magnetic recording head, and storage device

Country Status (1)

Country Link
WO (1) WO2010067418A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298314A (en) * 2001-04-02 2002-10-11 Alps Electric Co Ltd Thin film magnetic head
JP2005190518A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Magnetic head, its manufacturing method, and magnetic recording/reproducing device
JP2006172632A (en) * 2004-12-16 2006-06-29 Japan Science & Technology Agency Thin film magnetic head and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298314A (en) * 2001-04-02 2002-10-11 Alps Electric Co Ltd Thin film magnetic head
JP2005190518A (en) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv Magnetic head, its manufacturing method, and magnetic recording/reproducing device
JP2006172632A (en) * 2004-12-16 2006-06-29 Japan Science & Technology Agency Thin film magnetic head and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US8203803B2 (en) Magnetic recording head for perpendicular recording with wrap around shield, the fabrication process and magnetic disk storage apparatus mounting the magnetic head
JP4028476B2 (en) Manufacturing method of thin film magnetic head
JP4116626B2 (en) Magnetic head for perpendicular magnetic recording and manufacturing method thereof
US20050195536A1 (en) Thin-film magnetic head comprising bias layers having a large length in track width direction
US7764464B2 (en) Thin film magnetic head having solenoidal coil and method of manufacturing the same
US8705204B2 (en) Recording head with high-frequency oscillator and bi-layer main pole height/width arrangement
JP2006120224A (en) Perpendicular magnetic recording head, method for manufacturing same, and magnetic recording device
JP4316508B2 (en) CPP structure magnetoresistive effect element and head slider
JP2005182897A (en) Thin-film magnetic head and its manufacturing method
US7626785B2 (en) Thin film magnetic head, method of manufacturing the same, and magnetic recording apparatus
JP2007213749A (en) Thin film magnetic head
JP2008305448A (en) Vertical magnetic recording head and manufacturing method thereof
JP2010079970A (en) Magnetic recording head
JP4230702B2 (en) CPP structure magnetoresistive element manufacturing method
JP4000114B2 (en) CPP structure magnetoresistive effect element
WO2010067418A1 (en) Magnetic recording head, and storage device
JP2008102976A (en) Head slider and storage medium driving device
JP2006041120A (en) Magnetoresistive effect device, its manufacturing method, thin film magnetic head, head jimbal assembly, head arm assembly and magnetic disk device
US20180005648A1 (en) Method of manufacturing perpendicular magnetic recording head
JP2005166176A (en) Magnetic head for magnetic disk
US20060209458A1 (en) Soft magnetic film and thin film magnetic head
WO2001003129A1 (en) Method of manufacturing thin-film magnetic head
JP2003228807A (en) Thin-film magnetic head and its manufacturing method, and slider of thin-film magnetic head and its manufacturing method
JPWO2002056304A1 (en) Thin film magnetic head and method of manufacturing the same
KR100893112B1 (en) Head slider reducing probability of collision against recording medium and method of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP