WO2010066927A1 - Method for measuring aberrations of the eye by means of invisible infrared light and ophthalmic instruments that use said method - Google Patents

Method for measuring aberrations of the eye by means of invisible infrared light and ophthalmic instruments that use said method Download PDF

Info

Publication number
WO2010066927A1
WO2010066927A1 PCT/ES2009/070500 ES2009070500W WO2010066927A1 WO 2010066927 A1 WO2010066927 A1 WO 2010066927A1 ES 2009070500 W ES2009070500 W ES 2009070500W WO 2010066927 A1 WO2010066927 A1 WO 2010066927A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
aberrations
sensor
retina
measuring aberrations
Prior art date
Application number
PCT/ES2009/070500
Other languages
Spanish (es)
French (fr)
Inventor
Enrique Joshua FERNÁNDEZ MARTÍNEZ
Pablo Artal Soriano
Original Assignee
Universidad De Murcia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Murcia filed Critical Universidad De Murcia
Publication of WO2010066927A1 publication Critical patent/WO2010066927A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1015Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to a method for measuring the aberrations of the eye using infrared light invisible to the human eye, as well as to an ophthalmic instrument that employs such a method of measurement.
  • the eye optics determines and limits the quality of the images that are projected on the retina. From this point of view, understanding and measuring the optical characteristics of the eye provides valuable information about the quality of vision.
  • numerous methods are known in the state of the art for objectively determining aberrations, that is, imperfections of the eye, which cause the image to be defective. These aberrations are precisely those that determine the optical quality of the eye.
  • One of the main methods currently used to measure the aberrations of the eye is the one used by the Hartmann-Shack wavefront sensor.
  • Other known objective methods for measuring aberrations are, for example, the curvature sensor, the Focault test and the pyramid sensor.
  • the aberration measurement systems known at present involve the introduction of visible light into the eye. Said light, after being reflected or diffused by the retina, crosses the entire eye back, and is finally analyzed at its exit.
  • the drawback posed by such methods is that, since they employ radiation in the visible strip or in the near infrared strip in the measure of aberrations, the subject perceives the measurement beam. This is of particular importance when the subject is performing some task.
  • visual such as contrast sensitivity test, visual acuity measurements, etc., during the measurement of its aberrations.
  • the use of visible light to measure the aberrations simultaneous to the accomplishment of visual tasks makes the subject perceive both stimuli at the same time, that of the measurement light and that which comes from the visual stimulus or test.
  • the present invention is oriented to the solution of the above-mentioned drawbacks.
  • the present invention relates to a method for measuring the aberrations of the eye, as well as for the characterization of the optical quality thereof, by using infrared illumination outside the visible spectrum.
  • the said method thus uses infrared radiation outside the spectrum visible to the human eye, in particular of a wavelength greater than 900 nm. In this way it is achieved that the subject does not perceive the measurement beam in the irradiance ranges necessary to obtain the aberrations. This occurs due to the limited spectral range of response of the photoreceptors in the retina, these covering only the visible spectrum.
  • infrared light is of great practical interest in terms of comfort for the subject, allowing him to perform visual tasks while his aberrations are being measured without any interference.
  • infrared light is also of great interest for reasons of safety, because it allows more radiant flow to be introduced into the eye, without risk of damage to the retina, compared to the wavelengths of the visible spectrum.
  • the invention also refers to a variety of ophthalmic instruments for the objective measurement of the aberrations of the eye using the previous method.
  • Figure 1 shows in schematic the components for the implementation of the embodiment the method of measuring ocular aberrations according to the present invention.
  • Figure 2 shows a graph of the variation of the PP R in the human eye, or pedestal / peak ratio of the Hartmann-Shack image, as a function of the wavelength of the lighting used, for the measurement of aberrations by use of the method of the present invention.
  • Figure 3 shows the Hartmann-Shack images in different wavelengths and for different subjects, showing the effect of the wavelength on the quality of the images in the measure of aberrations by using the method of the present invention.
  • Figure 4 shows a graph of the aberration maps obtained by using the method of the present invention in real eyes.
  • Figure 5 shows a graph of the quadratic mean (RMS) of the wavefront for different subjects tested, in the comparative measure of aberrations by using the method of the present invention.
  • Figure 6 shows a graph of the variation of the chromatic blur or longitudinal chromatic aberration from the visible to the infrared spectrum used for the measurement of aberrations by using the method of the present invention.
  • Figure 7 shows in schematic the procedure for obtaining
  • the aberrations of the eye 2 obtained with the method of the invention employ a Hartmann-Shack wavefront sensor 1 in the infrared strip, outside the visible spectrum, of a wavelength greater than 900 nm, preferably up to 1070 nm.
  • the use of invisible infrared lighting has enormous potential in the better understanding of the impact and influence of aberrations on vision, particularly when used in combination with adaptive optics.
  • the method of the invention thus allows measuring, and eventually controlling, the aberrations while the subject is, for example, undergoing a vision test, without said subject having interference from the measuring light source.
  • the response of the retina is very weak in the near infrared zone, so it would be necessary to apply large irradiations for the subject to perceive the stimulus; on the other hand, the portion of the radiation incident on the retina that is diffused back outside by it increases as the wavelength of the radiation used increases. This allows to use the near infrared zone obtaining a high signal in the sensor.
  • the knowledge of the longitudinal chromatic aberration, or chromatic blur allows to estimate with great precision the optical quality of the eye in the visible spectrum from the measurements made in the infrared range near.
  • the spectrum range for the study of ocular optics has been performed in wavelengths of more than 900 nm.
  • the use of infrared wavelengths makes the light source 3 used in practice invisible to the human eye, due to the levels of irradiance necessary to carry out the measurements, the method of the invention also presenting added advantages , as is the ability to control aberrations through the use of adaptive optics, so that the subjects do not notice the source of measurement light.
  • the method of the invention also allows the study of vision at low levels of illumination, under scotopic and mesopic conditions.
  • the method of the invention employs infrared radiation of up to 1070 nm.
  • the experimental apparatus ( Figure 1) for performing the measurement of aberrations of the eye 1 comprises a Hartmann-Shack wavefront sensor 1, an infrared light source 3 in the non-visible spectrum, and optical systems 4 to adapt the output of the eye 2 to the sensor 1.
  • the wavefront sensor 1 is arranged in the focal length of a micro lens arrangement 5, 6.
  • the said apparatus also comprises a telescope 7 that optically combines the output of the pupil of the eye 2 with the plane of the microlenses 5, 6 of the sensor.
  • the aforementioned microlenses 5, 6 will preferably be coated with an anti-reflective coating that reduces losses in the infrared radiation spectrum.
  • Hartmann-Shack images are compared for different subjects in which the aberration has been measured with the method of the invention and using infrared radiation in lengths of 633 and 1050 nm wave, by way of comparison. From an analysis of the images, the conclusion is reached that, qualitatively, an increase in ocular dispersion occurs as infrared radiation of greater wavelength is used. In addition, for most of the cases measured, at 1050 nm the diffused light completely fills the space between the points of the images of Hartmann-Shack, as shown in Figure 3. The systematization of the aberration measurement method is described below.
  • each Hartmann-Shack image 8 the peak value and the average value of the base or pedestal (see Figure 7). It is defined as an estimator of the relative dispersion or diffusion 9 of the retina , depending on the wavelength of the infrared light 3 used, the ratio PP R , as a ratio between the pedestal and the peak.
  • the PP R ratio provides a simplified method to numerically compare the level of scattering of Hartmann-Shack images. This method is applied to several subjects and in several wavelengths, resulting in the one shown in Figures 2 and 3. The error bars in Figure 2 represent the standard deviation of all subjects.
  • Figure 5 thus shows, for the measurement of monochromatic aberrations with the method of the invention, the change of these aberrations with the wavelength of the infrared radiation used, with the calculation of the quadratic mean (RMS) of the wavefront, in different subjects. It follows from this Figure 5 the absence of any tendency or behavior in the variation of the RMS with the wavelength.
  • Figure 6 shows the measurement of chromatic aberrations with the method of the invention. There is a change in the color blur 10 connected with the variation in the index of refraction of the different intraocular means. The theoretical modeled curve would be the one marked by the Cauchy equation, 11, also marking the points 12 of experimental results, in Figure 6. In said Figure it is observed that the points corresponding to 1030, 1050 and
  • the aberrations of the eye measured with the method of the invention can be measured monocularly or binocularly; eye aberrations are measured objectively; the wavefront sensor 1 used can be of the Hartmann-Shack type, of the pyramidal type or of the type based on the measurement of the curvature, or second derivative, of the wavefront from the radiative transport equation; the aberrations of the eye are measured by means of double-pass retinal images, or by interferometry;
  • the source 3 for the illumination of the retina in the method of the invention is made by a laser emitting source or by a thermal source of illumination.

Abstract

Method for measuring aberrations of the eye (2) by means of invisible infrared light and ophthalmic instruments that use said method, said method involving the illumination of the retina of the eye (2) by means of infrared radiation outside the visible spectrum, such that the portion of illumination that is incident on the retina of the eye (2) dispersed by return to the exterior by said retina is conveyed to a sensor (1) which, by means of comparison, carries out the objective measurement of the aberrations of the said eye (2), the wavelength of the infrared illumination that is incident on the retina of the eye (2) being more than 900 nm and less than 1070 nm and the sensor (1) being a Hartmann-Shack wavefront sensor, a pyramid wavefront sensor, a wavefront sensor of the type based on measurement of curvature, or a sensor of the type that uses interferometry.

Description

MÉTODO PARA LA MEDIDA DE ABERRACIONES DEL OJO MEDIANTE LUZ INFRARROJA INVISIBLE E INSTRUMENTOS OFTÁLMICOS QUE EMPLEAN DICHO MÉTODO METHOD FOR THE MEASUREMENT OF EYE ABERRATIONS THROUGH INVISIBLE INFRARED LIGHT AND OPHTHALMIC INSTRUMENTS USING THE SUCH METHOD
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a un método para Ia medida de las aberraciones del ojo utilizando luz infrarroja invisible para el ojo humano, así como a un instrumento oftálmico que emplea un método de medida tal.The present invention relates to a method for measuring the aberrations of the eye using infrared light invisible to the human eye, as well as to an ophthalmic instrument that employs such a method of measurement.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
En Ia primera etapa de Ia visión, Ia óptica del ojo determina y limita Ia calidad de las imágenes que se proyectan en Ia retina. Desde este punto de vista, entender y medir las características ópticas del ojo proporciona valiosa información sobre Ia calidad de Ia visión. Así, se conocen en el estado de Ia técnica numerosos métodos para determinar de una manera objetiva las aberraciones, es decir, las imperfecciones del ojo, que producen que Ia imagen sea defectuosa. Estas aberraciones son precisamente las que determinan Ia calidad óptica del ojo. Uno de los principales métodos empleados en Ia actualidad para medir las aberraciones del ojo es el que utiliza el sensor de frente de onda de Hartmann-Shack. Otros métodos objetivos conocidos para Ia medida de aberraciones son, por ejemplo el sensor de curvatura, el test de Focault y el sensor de pirámide.In the first stage of the vision, the eye optics determines and limits the quality of the images that are projected on the retina. From this point of view, understanding and measuring the optical characteristics of the eye provides valuable information about the quality of vision. Thus, numerous methods are known in the state of the art for objectively determining aberrations, that is, imperfections of the eye, which cause the image to be defective. These aberrations are precisely those that determine the optical quality of the eye. One of the main methods currently used to measure the aberrations of the eye is the one used by the Hartmann-Shack wavefront sensor. Other known objective methods for measuring aberrations are, for example, the curvature sensor, the Focault test and the pyramid sensor.
Los sistemas de medida de aberraciones conocidos en Ia actualidad implican Ia introducción de luz visible en el ojo. Dicha luz, tras ser reflejada o difundida por Ia retina, atraviesa de vuelta el ojo completo, y es finalmente analizada a su salida. El inconveniente que plantean métodos tales es que, dado que emplean radiación en Ia franja visible o en Ia franja de infrarrojos cercana en Ia medida de las aberraciones, el sujeto percibe el haz de medida. Esto es de particular importancia cuando el sujeto está realizando alguna tarea visual, como test de sensibilidad al contraste, medidas de agudeza visual, etc, durante Ia medida de sus aberraciones. Así, el uso de luz visible para medir las aberraciones simultáneo a Ia realización de tareas visuales hace que el sujeto perciba ambos estímulos a Ia vez, el de Ia luz de medida y el que procede del test o estímulo visual. Esto tiene como consecuencia que algunos sujetos no sean capaces de fijar su atención completamente en el test o estímulo, por Io que, o bien no se puede llevar a cabo Ia medida, o bien los resultados no son fiables. Por otro lado, cuando se quiere presentar por ejemplo un test con baja irradiancia (i.e., en condiciones pobres de iluminación) para estudiar o medir Ia capacidad del sistema visual en dichas condiciones, Ia luz introducida en el ojo para medir las aberraciones es percibida más intensamente que el propio test visual. Esto hace imposible llevar a cabo estas medidas en Ia actualidad con el estado de Ia técnica disponible.The aberration measurement systems known at present involve the introduction of visible light into the eye. Said light, after being reflected or diffused by the retina, crosses the entire eye back, and is finally analyzed at its exit. The drawback posed by such methods is that, since they employ radiation in the visible strip or in the near infrared strip in the measure of aberrations, the subject perceives the measurement beam. This is of particular importance when the subject is performing some task. visual, such as contrast sensitivity test, visual acuity measurements, etc., during the measurement of its aberrations. Thus, the use of visible light to measure the aberrations simultaneous to the accomplishment of visual tasks makes the subject perceive both stimuli at the same time, that of the measurement light and that which comes from the visual stimulus or test. This has the consequence that some subjects are not able to fix their attention completely on the test or stimulus, so that either the measurement cannot be carried out, or the results are not reliable. On the other hand, when you want to present, for example, a test with low irradiance (ie, in poor lighting conditions) to study or measure the ability of the visual system in these conditions, the light introduced into the eye to measure aberrations is perceived more intensely than the visual test itself. This makes it impossible to carry out these measurements at present with the state of the available technique.
La presente invención está orientada a Ia solución de los inconvenientes planteados anteriormente.The present invention is oriented to the solution of the above-mentioned drawbacks.
SUMARIO DE LA INVENCIÓNSUMMARY OF THE INVENTION
Así, Ia presente invención se refiere a un método para Ia medida de las aberraciones del ojo, así como para Ia caracterización de Ia calidad óptica del mismo, mediante el uso de iluminación infrarroja fuera del espectro visible. El citado método emplea así radiación infrarroja fuera del espectro visible para el ojo humano, en particular de una longitud de onda mayor de 900 nm. De esta manera se consigue que el sujeto no perciba el haz de medida en los rangos de irradiancia necesarios para Ia obtención de las aberraciones. Esto ocurre debido al limitado rango espectral de respuesta de los fotorreceptores en Ia retina, abarcando estos únicamente el espectro visible.Thus, the present invention relates to a method for measuring the aberrations of the eye, as well as for the characterization of the optical quality thereof, by using infrared illumination outside the visible spectrum. The said method thus uses infrared radiation outside the spectrum visible to the human eye, in particular of a wavelength greater than 900 nm. In this way it is achieved that the subject does not perceive the measurement beam in the irradiance ranges necessary to obtain the aberrations. This occurs due to the limited spectral range of response of the photoreceptors in the retina, these covering only the visible spectrum.
El uso de luz infrarroja es de gran interés práctico en términos de comodidad para el sujeto, permitiéndole realizar tareas visuales mientras que sus aberraciones están siendo medidas sin ningún tipo de interferencia. Por otro lado, el uso de luz infrarroja es también de gran interés por motivos de seguridad, pues permite introducir más flujo radiante en el ojo, sin riesgo de daño en Ia retina, en comparación con las longitudes de onda del espectro visible.The use of infrared light is of great practical interest in terms of comfort for the subject, allowing him to perform visual tasks while his aberrations are being measured without any interference. On the other hand, the use of infrared light is also of great interest for reasons of safety, because it allows more radiant flow to be introduced into the eye, without risk of damage to the retina, compared to the wavelengths of the visible spectrum.
El empleo de luz infrarroja fuera del espectro visible no se ha demostrado hasta el momento en Ia medida de aberraciones oculares.The use of infrared light outside the visible spectrum has not been demonstrated so far in the measure of ocular aberrations.
Por otro lado, Ia invención se refiere también a una variedad de instrumentos oftálmicos para Ia medida objetiva de las aberraciones del ojo que emplean el método anterior.On the other hand, the invention also refers to a variety of ophthalmic instruments for the objective measurement of the aberrations of the eye using the previous method.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan.Other features and advantages of the present invention will be apparent from the detailed description that follows of an illustrative embodiment of its object in relation to the accompanying figures.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
La Figura 1 muestra en esquema los componentes para Ia puesta en práctica de Ia realización el método de medida de aberraciones oculares según Ia presente invención.Figure 1 shows in schematic the components for the implementation of the embodiment the method of measuring ocular aberrations according to the present invention.
La Figura 2 muestra una gráfica de Ia variación de Ia PPR en el ojo humano, o razón pedestal / pico de Ia imagen de Hartmann-Shack, en función de Ia longitud de onda de Ia iluminación empleada, para Ia medida de aberraciones mediante el uso del método de Ia presente invención.Figure 2 shows a graph of the variation of the PP R in the human eye, or pedestal / peak ratio of the Hartmann-Shack image, as a function of the wavelength of the lighting used, for the measurement of aberrations by use of the method of the present invention.
La Figura 3 muestra las imágenes de Hartmann-Shack en diferentes longitudes de onda y para diferentes sujetos, mostrándose el efecto de Ia longitud de onda sobre Ia calidad de las imágenes en Ia medida de aberraciones mediante el uso del método de Ia presente invención.Figure 3 shows the Hartmann-Shack images in different wavelengths and for different subjects, showing the effect of the wavelength on the quality of the images in the measure of aberrations by using the method of the present invention.
La Figura 4 muestra una gráfica de los mapas de aberración obtenidos mediante el uso del método de Ia presente invención en ojos reales.Figure 4 shows a graph of the aberration maps obtained by using the method of the present invention in real eyes.
La Figura 5 muestra una gráfica de Ia media cuadrática (RMS) del frente de onda para diferentes sujetos testados, en Ia medida comparada de aberraciones mediante el uso del método de Ia presente invención. La Figura 6 muestra una gráfica de Ia variación del desenfoque cromático o aberración cromática longitudinal desde el espectro visible hasta el infrarrojo empleado para Ia medida de aberraciones mediante el uso del método de Ia presente invención. La Figura 7 muestra en esquema el procedimiento para Ia obtención deFigure 5 shows a graph of the quadratic mean (RMS) of the wavefront for different subjects tested, in the comparative measure of aberrations by using the method of the present invention. Figure 6 shows a graph of the variation of the chromatic blur or longitudinal chromatic aberration from the visible to the infrared spectrum used for the measurement of aberrations by using the method of the present invention. Figure 7 shows in schematic the procedure for obtaining
Ia PPR, O razón pedestal / pico a partir Ia imagen de Hartmann-Shack mediante el uso del método de Ia presente invención.The PP R , O pedestal / peak ratio from the Hartmann-Shack image by using the method of the present invention.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
Las aberraciones del ojo 2 obtenidas con el método de Ia invención emplean un sensor 1 de frente de onda de Hartmann-Shack en Ia franja infrarroja, fuera del espectro visible, de una longitud de onda mayor de 900 nm, preferiblemente hasta 1070 nm. El empleo de iluminación infrarroja invisible presenta un enorme potencial en el mejor entendimiento del impacto e influencia de las aberraciones en Ia visión, en particular cuando se usa combinado con óptica adaptativa. El método de Ia invención permite así medir, y eventualmente controlar, las aberraciones mientras que el sujeto está, por ejemplo, sometiéndose a un test de visión, sin que dicho sujeta tenga interferencias de Ia fuente de luz de medida.The aberrations of the eye 2 obtained with the method of the invention employ a Hartmann-Shack wavefront sensor 1 in the infrared strip, outside the visible spectrum, of a wavelength greater than 900 nm, preferably up to 1070 nm. The use of invisible infrared lighting has enormous potential in the better understanding of the impact and influence of aberrations on vision, particularly when used in combination with adaptive optics. The method of the invention thus allows measuring, and eventually controlling, the aberrations while the subject is, for example, undergoing a vision test, without said subject having interference from the measuring light source.
Hay una serie de factores que hacen muy ventajoso el empleo de este rango de espectro en Ia medida de aberraciones del ojo humano: en primer lugar, Ia respuesta de Ia retina es muy débil en Ia zona de infrarrojos cercanos, por Io que sería necesario aplicar grandes irradiancias para que el sujeto percibiera el estímulo; por otro lado, Ia porción de Ia radiación incidente sobre Ia retina que es difundida de vuelta al exterior por ésta aumenta conforme se aumenta Ia longitud de onda de Ia radiación empleada. Esto permite utilizar Ia zona de infrarrojos cercanos obteniéndose una alta señal en el sensor. Por otro lado, el conocimiento de Ia aberración cromática longitudinal, o desenfoque cromático, permite estimar con gran precisión Ia calidad óptica del ojo en el espectro visible a partir de las medidas realizadas en el rango del infrarrojo cercano. Así, según el método de Ia invención, el rango del espectro para el estudio de Ia óptica ocular se ha realizado en longitudes de onda de más de 900 nm. El uso de longitudes de onda en el infrarrojo hace que Ia fuente de luz 3 empleada sea en Ia práctica invisible para el ojo humano, debido a los niveles de irradiancia necesarios para llevar a cabo las medidas, presentando además el método de Ia invención ventajas añadidas, como es el poder realizar el control de las aberraciones mediante el uso de óptica adaptativa, de tal forma que los sujetos no noten Ia fuente de luz de medida. El método de Ia invención permite también el estudio de Ia visión en niveles bajos de iluminación, bajo condiciones escotópicas y mesópicas. El método de Ia invención emplea radiación infrarroja de hasta 1070nm.There are a number of factors that make the use of this spectrum range very advantageous in the measure of aberrations of the human eye: first, the response of the retina is very weak in the near infrared zone, so it would be necessary to apply large irradiations for the subject to perceive the stimulus; on the other hand, the portion of the radiation incident on the retina that is diffused back outside by it increases as the wavelength of the radiation used increases. This allows to use the near infrared zone obtaining a high signal in the sensor. On the other hand, the knowledge of the longitudinal chromatic aberration, or chromatic blur, allows to estimate with great precision the optical quality of the eye in the visible spectrum from the measurements made in the infrared range near. Thus, according to the method of the invention, the spectrum range for the study of ocular optics has been performed in wavelengths of more than 900 nm. The use of infrared wavelengths makes the light source 3 used in practice invisible to the human eye, due to the levels of irradiance necessary to carry out the measurements, the method of the invention also presenting added advantages , as is the ability to control aberrations through the use of adaptive optics, so that the subjects do not notice the source of measurement light. The method of the invention also allows the study of vision at low levels of illumination, under scotopic and mesopic conditions. The method of the invention employs infrared radiation of up to 1070 nm.
El aparato experimental (Figura 1 ) para realizar Ia medida de aberraciones del ojo 1 comprende un sensor 1 de frente de onda de Hartmann- Shack, una fuente de luz 3 infrarroja en el espectro no visible, y sistemas ópticos 4 para adaptar Ia salida del ojo 2 al sensor 1. Según se muestra en Ia Figura 1 , el sensor 1 de frente de onda está dispuesto en Ia longitud focal de una disposición de micro lentes 5, 6. El citado aparato comprende también un telescopio 7 que conjuga ópticamente Ia salida de Ia pupila del ojo 2 con el plano de las microlentes 5, 6 del sensor. Las citadas microlentes 5, 6 estarán preferiblemente recubiertas de un revestimiento antirreflectante que reduzca las pérdidas en el espectro de radiación de infrarrojos.The experimental apparatus (Figure 1) for performing the measurement of aberrations of the eye 1 comprises a Hartmann-Shack wavefront sensor 1, an infrared light source 3 in the non-visible spectrum, and optical systems 4 to adapt the output of the eye 2 to the sensor 1. As shown in Figure 1, the wavefront sensor 1 is arranged in the focal length of a micro lens arrangement 5, 6. The said apparatus also comprises a telescope 7 that optically combines the output of the pupil of the eye 2 with the plane of the microlenses 5, 6 of the sensor. The aforementioned microlenses 5, 6 will preferably be coated with an anti-reflective coating that reduces losses in the infrared radiation spectrum.
Según medidas experimentales del método de Ia invención, tal y como se representa en Ia Figura 3, se comparan imágenes de Hartmann-Shack para diferentes sujetos en los cuales se ha medido Ia aberración con el método de Ia invención y empleando radiación infrarroja en longitudes de onda de 633 y 1050 nm, a modo de comparación. A partir de un análisis de las imágenes se llega a Ia conclusión de que, de modo cualitativo, ocurre un aumento en Ia dispersión ocular a medida que se emplean radiaciones infrarrojas de mayor longitud de onda. Además, para Ia mayoría de los casos medidos, a 1050 nm Ia luz difusa rellena por completo el espacio existente entre los puntos de las imágenes de Hartmann-Shack, como aparece reflejado en La Figura 3. La sistematización del método de medida de aberraciones se describe a continuación.According to experimental measurements of the method of the invention, as shown in Figure 3, Hartmann-Shack images are compared for different subjects in which the aberration has been measured with the method of the invention and using infrared radiation in lengths of 633 and 1050 nm wave, by way of comparison. From an analysis of the images, the conclusion is reached that, qualitatively, an increase in ocular dispersion occurs as infrared radiation of greater wavelength is used. In addition, for most of the cases measured, at 1050 nm the diffused light completely fills the space between the points of the images of Hartmann-Shack, as shown in Figure 3. The systematization of the aberration measurement method is described below.
Así, se realizan medidas para obtener dos valores por cada imagen 8 de Hartmann-Shack: el valor pico y el valor medio de Ia base o pedestal (ver Figura 7) Se define, como estimador de Ia dispersión o difusión relativa 9 de Ia retina, en función de Ia longitud de onda de Ia luz infrarroja 3 empleada, Ia ratio PPR, como cociente entre el pedestal y el pico. La ratio PPR proporciona un método simplificado para comparar de forma numérica el nivel de dispersión de las imágenes de Hartmann-Shack. Este método se aplica a varios sujetos y en varias longitudes de onda, dando como resultado el que se muestra en las Figuras 2 y 3. Las barras de error en Ia Figura 2 representan Ia desviación estándar de todos los sujetos. Así, se muestra en Ia Figura 2 que Ia dispersión relativa 9 para valores de radiación en longitudes de onda de 1030, 1050 y 1070 nm es muy similar entre sí (y muy similar a Ia obtenida para 780 nm). Estos resultados son de gran importancia para modelar Ia reflexión y Ia difusión de Ia retina. Según Ia citada Figura 2, por encima de 780 nm de longitud de onda de iluminación sobre Ia retina, no se produce un aumento significativo de Ia difusión 9.Thus, measurements are made to obtain two values for each Hartmann-Shack image 8: the peak value and the average value of the base or pedestal (see Figure 7). It is defined as an estimator of the relative dispersion or diffusion 9 of the retina , depending on the wavelength of the infrared light 3 used, the ratio PP R , as a ratio between the pedestal and the peak. The PP R ratio provides a simplified method to numerically compare the level of scattering of Hartmann-Shack images. This method is applied to several subjects and in several wavelengths, resulting in the one shown in Figures 2 and 3. The error bars in Figure 2 represent the standard deviation of all subjects. Thus, it is shown in Figure 2 that the relative dispersion 9 for radiation values at wavelengths of 1030, 1050 and 1070 nm is very similar to each other (and very similar to that obtained for 780 nm). These results are of great importance to model the reflection and diffusion of the retina. According to the aforementioned Figure 2, above 780 nm of illumination wavelength on the retina, there is no significant increase in diffusion 9.
La Figura 5 muestra así, para Ia medida de aberraciones monocromáticas con el método de Ia invención, el cambio de estas aberraciones con Ia longitud de onda de Ia radiación infrarroja empleada, con el cálculo de Ia media cuadrática (RMS) del frente de onda, en distintos sujetos. Se desprende de esta Figura 5 Ia ausencia de tendencia o comportamiento alguno en Ia variación del RMS con Ia longitud de onda. La Figura 6 muestra Ia medida de aberraciones cromáticas con el método de Ia invención. Existe un cambio en el desenfoque cromático 10 conectado con Ia variación del índice de refracción de los diferentes medios intraoculares. La curva modelada teórica sería Ia marcada por Ia ecuación de Cauchy, 11 , marcándose también los puntos 12 de resultados experimentales, en Ia Figura 6. En dicha Figura se observa que los puntos correspondientes a 1030, 1050 yFigure 5 thus shows, for the measurement of monochromatic aberrations with the method of the invention, the change of these aberrations with the wavelength of the infrared radiation used, with the calculation of the quadratic mean (RMS) of the wavefront, in different subjects. It follows from this Figure 5 the absence of any tendency or behavior in the variation of the RMS with the wavelength. Figure 6 shows the measurement of chromatic aberrations with the method of the invention. There is a change in the color blur 10 connected with the variation in the index of refraction of the different intraocular means. The theoretical modeled curve would be the one marked by the Cauchy equation, 11, also marking the points 12 of experimental results, in Figure 6. In said Figure it is observed that the points corresponding to 1030, 1050 and
1070 nm están situados fuera de Ia citada curva teórica 11. Al ser el desenfoque cromático 10 conocido y medido, puede obtenerse su valor en el rango visible a partir de las medidas realizadas en el rango de infrarrojos. Otras realizaciones o características de Ia invención son: las aberraciones del ojo medidas con el método de Ia invención pueden medirse monocular o binocularmente; las aberraciones del ojo se miden de forma objetiva; el sensor 1 de frente de onda empleado puede ser del tipo Hartmann-Shack, de tipo piramidal o del tipo basado en Ia medida de Ia curvatura, o segunda derivada, del frente de onda a partir de Ia ecuación de transporte radiativo; las aberraciones del ojo se miden por medio de imágenes retinianas de doble paso, o por interferometría; Ia fuente 3 para Ia iluminación de Ia retina en el método de Ia invención se realiza mediante una fuente emisora de láser o mediante una fuente térmica de iluminación.1070 nm are located outside the mentioned theoretical curve 11. Being the Chromatic blur 10 known and measured, its value in the visible range can be obtained from the measurements made in the infrared range. Other embodiments or characteristics of the invention are: the aberrations of the eye measured with the method of the invention can be measured monocularly or binocularly; eye aberrations are measured objectively; the wavefront sensor 1 used can be of the Hartmann-Shack type, of the pyramidal type or of the type based on the measurement of the curvature, or second derivative, of the wavefront from the radiative transport equation; the aberrations of the eye are measured by means of double-pass retinal images, or by interferometry; The source 3 for the illumination of the retina in the method of the invention is made by a laser emitting source or by a thermal source of illumination.
En las realizaciones que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones. In the embodiments just described, those modifications within the scope defined by the following claims can be introduced.

Claims

REIVINDICACIONES
1. Método para Ia medida de aberraciones del ojo (2) caracterizado porque Ia iluminación de Ia retina del ojo (2) se lleva a cabo mediante radiación infrarroja fuera del espectro visible, de tal forma que Ia porción de iluminación incidente sobre Ia retina del ojo (2) difundida de vuelta al exterior por dicha retina es llevada a un sensor (1 ) en el cual se realiza, mediante comparación, Ia medida objetiva de las aberraciones del citado ojo (2). 1. Method for measuring aberrations of the eye (2) characterized in that the illumination of the retina of the eye (2) is carried out by infrared radiation outside the visible spectrum, such that the portion of illumination incident on the retina of the eye eye (2) diffused back to the outside by said retina is taken to a sensor (1) in which the objective measurement of the aberrations of said eye (2) is made by comparison.
2. Método para Ia medida de aberraciones del ojo (2) según Ia reivindicación 1 caracterizado porque Ia iluminación infrarroja es emitida por una fuente de luz (3) infrarroja en el espectro no visible.2. Method for measuring aberrations of the eye (2) according to claim 1 characterized in that the infrared illumination is emitted by an infrared light source (3) in the non-visible spectrum.
3. Método para Ia medida de aberraciones del ojo (2) según Ia reivindicación 2 caracterizado porque Ia fuente de luz (3) es una fuente emisora de láser.3. Method for measuring aberrations of the eye (2) according to claim 2, characterized in that the light source (3) is a laser emitting source.
4. Método para Ia medida de aberraciones del ojo (2) según Ia reivindicación 2 caracterizado porque Ia fuente de luz (3) es una fuente térmica de iluminación.4. Method for measuring aberrations of the eye (2) according to claim 2, characterized in that the light source (3) is a thermal source of illumination.
5. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones anteriores caracterizado porque Ia longitud de onda de Ia iluminación infrarroja incidente sobre Ia retina del ojo (2) es de más de 900 nm.5. Method for measuring aberrations of the eye (2) according to any of the preceding claims characterized in that the wavelength of the infrared illumination incident on the retina of the eye (2) is more than 900 nm.
6. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones anteriores caracterizado porque Ia longitud de onda de Ia iluminación infrarroja incidente sobre Ia retina del ojo (2) es de menos de 1070 nm.6. Method for measuring aberrations of the eye (2) according to any of the preceding claims characterized in that the wavelength of the infrared illumination incident on the retina of the eye (2) is less than 1070 nm.
7. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones anteriores caracterizado porque el sensor (1 ) es un sensor de frente de onda de tipo Hartmann-Shack.7. Method for measuring aberrations of the eye (2) according to any of the preceding claims, characterized in that the sensor (1) is a Hartmann-Shack wavefront sensor.
8. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones 1 -6 caracterizado porque el sensor (1 ) es un sensor de frente de onda de tipo piramidal.8. Method for measuring aberrations of the eye (2) according to any one of claims 1-6, characterized in that the sensor (1) is a pyramidal wavefront sensor.
9. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones 1 -6 caracterizado porque el sensor (1 ) es un sensor de frente de onda del tipo basado en Ia medida de Ia curvatura.9. Method for measuring aberrations of the eye (2) according to any of claims 1-6, characterized in that the sensor (1) is a wavefront sensor of the type based on the measurement of the curvature.
10. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones 1 -6 caracterizado porque el sensor (1 ) es del tipo que emplea interferometría. 10. Method for measuring aberrations of the eye (2) according to any of claims 1-6, characterized in that the sensor (1) is of the type that employs interferometry.
11. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones anteriores caracterizado porque el sensor (1 ) realiza Ia medida de las aberraciones del ojo (2) mediante un sensor (1 ) monocular.11. Method for measuring aberrations of the eye (2) according to any of the preceding claims characterized in that the sensor (1) performs the measurement of aberrations of the eye (2) by means of a monocular sensor (1).
12. Método para Ia medida de aberraciones del ojo (2) según cualquiera de las reivindicaciones 1 -10 anteriores caracterizado porque el sensor (1 ) realiza Ia medida de las aberraciones del ojo (2) mediante un sensor (1 ) binocular.12. Method for measuring aberrations of the eye (2) according to any of the preceding claims 1 -10 characterized in that the sensor (1) performs the measurement of aberrations of the eye (2) by means of a binocular sensor (1).
13. Instrumento oftálmico que emplea un método para Ia medida de aberraciones del ojo según cualquiera de las reivindicaciones anteriores. 13. Ophthalmic instrument that employs a method for measuring aberrations of the eye according to any of the preceding claims.
PCT/ES2009/070500 2008-12-10 2009-11-12 Method for measuring aberrations of the eye by means of invisible infrared light and ophthalmic instruments that use said method WO2010066927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803498A ES2340980B1 (en) 2008-12-10 2008-12-10 METHOD FOR THE MEASUREMENT OF EYE ABERRATIONS THROUGH INFRARED INFRARED LIGHT AND OPHTHALMIC INSTRUMENTS THAT USE THIS METHOD.
ESP200803498 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010066927A1 true WO2010066927A1 (en) 2010-06-17

Family

ID=42199948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070500 WO2010066927A1 (en) 2008-12-10 2009-11-12 Method for measuring aberrations of the eye by means of invisible infrared light and ophthalmic instruments that use said method

Country Status (2)

Country Link
ES (1) ES2340980B1 (en)
WO (1) WO2010066927A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027334A1 (en) * 1997-11-21 1999-06-03 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20020097376A1 (en) * 2000-03-27 2002-07-25 Applegate Raymond A. Methods and systems for measuring local scattering and aberration properties of optical media
EP1295559A2 (en) * 2001-09-21 2003-03-26 Carl Zeiss Ophthalmic Systems, Inc. Method and apparatus for measuring optical aberrations of an eye
US20050030474A1 (en) * 2003-08-04 2005-02-10 Nidek Co., Ltd. Ophthalmic apparatus
US20070216867A1 (en) * 2006-03-14 2007-09-20 Visx, Incorporated Shack-Hartmann based integrated autorefraction and wavefront measurements of the eye
US20080174734A1 (en) * 2006-11-02 2008-07-24 Nidek Co., Ltd. Ophthalmic measurement apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027334A1 (en) * 1997-11-21 1999-06-03 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20020097376A1 (en) * 2000-03-27 2002-07-25 Applegate Raymond A. Methods and systems for measuring local scattering and aberration properties of optical media
EP1295559A2 (en) * 2001-09-21 2003-03-26 Carl Zeiss Ophthalmic Systems, Inc. Method and apparatus for measuring optical aberrations of an eye
US20050030474A1 (en) * 2003-08-04 2005-02-10 Nidek Co., Ltd. Ophthalmic apparatus
US20070216867A1 (en) * 2006-03-14 2007-09-20 Visx, Incorporated Shack-Hartmann based integrated autorefraction and wavefront measurements of the eye
US20080174734A1 (en) * 2006-11-02 2008-07-24 Nidek Co., Ltd. Ophthalmic measurement apparatus

Also Published As

Publication number Publication date
ES2340980A1 (en) 2010-06-11
ES2340980B1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US7270413B2 (en) Ophthalmic data measuring apparatus, ophthalmic data measurement program and eye characteristic measuring apparatus
ES2928476T3 (en) Performing a procedure based on monitored properties of biological tissues
US6659613B2 (en) Methods and systems for measuring local scattering and aberration properties of optical media
JP4308669B2 (en) Apparatus and method for detecting subjective responses by objectively characterizing vision with wavefront sensing
CN108135466B (en) Coherent gated wavefront-free sensor adaptive optics multiphoton microscopy and related systems and methods
JP4464726B2 (en) Ophthalmic equipment
ES2563733T3 (en) Procedure and apparatus for detecting deterioration in dark adaptation
US20050174535A1 (en) Apparatus and method for determining subjective responses using objective characterization of vision based on wavefront sensing
JP6779910B2 (en) Accuracy-improving object phoropter
US10123697B2 (en) Apparatus and method for automatic alignment in an optical system and applications
ES2712496T3 (en) Ophthalmic instrument for binocular and simultaneous measurement and control of aberrations of the two eyes with simultaneous presentation of visual stimuli
US20180103841A1 (en) Systems for visual field testing
JP7410038B2 (en) A wearable binocular optoelectronic device that measures a user's light sensitivity threshold
CN102429634A (en) Human eye hartmann contrast sensitivity measuring instrument
KR100413885B1 (en) An instrument and a method for measuring the aberration of human eyes
CN113616152A (en) Ophthalmological instrument for measuring the optical quality of an eye
ES2340980B1 (en) METHOD FOR THE MEASUREMENT OF EYE ABERRATIONS THROUGH INFRARED INFRARED LIGHT AND OPHTHALMIC INSTRUMENTS THAT USE THIS METHOD.
ES2330260T3 (en) APPARATUS TO DETERMINE THE VISUAL ACUTE OF AN EYE.
Marzejon et al. Effects of laser pulse duration in two-photon vision threshold measurements
CN104257346A (en) Visual-sign-free eye wavefront aberration detector
US10165943B2 (en) Ophthalmic method and apparatus for noninvasive diagnosis and quantitative assessment of cataract development
WO2019234670A1 (en) Virtual reality instrument for the automatic measurement of refraction and aberrations of the eye
Kaczkoś et al. Methods of determining the contrast sensitivity function for two-photon vision
Marzejon et al. Solid state vs fiber picosecond infrared lasers applied to two-photon vision tests
ES2634365B1 (en) ENVIRONMENT SIMULATOR DEVICE AND METHOD FOR THE EVALUATION OF VISUAL FUNCTION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831501

Country of ref document: EP

Kind code of ref document: A1