WO2010066113A1 - 拆分荧光蛋白的融合蛋白组合、其表达载体,稳定表达哺乳动物细胞系及筛选方法 - Google Patents

拆分荧光蛋白的融合蛋白组合、其表达载体,稳定表达哺乳动物细胞系及筛选方法 Download PDF

Info

Publication number
WO2010066113A1
WO2010066113A1 PCT/CN2009/001425 CN2009001425W WO2010066113A1 WO 2010066113 A1 WO2010066113 A1 WO 2010066113A1 CN 2009001425 W CN2009001425 W CN 2009001425W WO 2010066113 A1 WO2010066113 A1 WO 2010066113A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
split
fusion
receptor
fluorescent protein
Prior art date
Application number
PCT/CN2009/001425
Other languages
English (en)
French (fr)
Inventor
松田善卫
近藤直幸
岩本爱吉
王健琪
Original Assignee
国立大学法人东京大学
中国科学院生物物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810186033A external-priority patent/CN101747438A/zh
Priority claimed from CN200810186034A external-priority patent/CN101747439A/zh
Application filed by 国立大学法人东京大学, 中国科学院生物物理研究所 filed Critical 国立大学法人东京大学
Publication of WO2010066113A1 publication Critical patent/WO2010066113A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • Fusion protein fusion protein fusion protein fusion protein, expression vector thereof, stable expression mammalian cell line and screening method
  • the present invention encompasses a combination of a split fluorescent protein that has been resolved with a fluorescent protein, or a discovery vector comprising a gene that expresses its resolved fluorescent protein, or, with respect to a cell line that is transfected with an expression vector, and, in turn, This cell line combines cell fusion to screen for receptor directionality of viral envelope proteins.
  • Membrane fusion of cells is a very common phenomenon in biological systems. Membrane fusion is involved in muscle formation, fertilization, and transport of vesicles. The process by which an enveloped virus infects a host cell also depends on membrane fusion. Summary of the invention
  • Membrane fusion is a process in which two cells are combined to form one. Using this process, techniques for detecting film fusion or not can be developed. At this time, there are many systems for evaluating the degree of film fusion.
  • One approach is to use a reconstituted protein that is restored by self-combination. This split protein can perform its original performance by self-combination.
  • reporter protein systems have been established in such methods.
  • the use of the split protein is self-recombination (or recombination, and the term “recombination” includes "self-recombination” in the specification unless otherwise specified.
  • beta-galactosidase (-Gal) with self-assembly ability after splitting, and beta-lactamase (beta-lac1:am aS e, ⁇ -Lac) after resolution, and after splitting Self-assembly ability to split green fluorescent protein (GFP) and the like.
  • --galactosidase, beta-lactamase (beta-Lac), and green fluorescent protein are commonly used to monitor membrane fusion.
  • it is possible to quantitatively monitor the membrane-fused ⁇ -galactosidase and beta-lactamase ⁇ -lacc which can be achieved by destroying the cell membrane depending on the matrix.
  • the present invention solves the aforementioned prior problems and provides a system that can monitor membrane fusion both quantitatively and visually.
  • the present invention also provides a method for screening a receptor orientation, or a method for screening an inhibitor. The present invention has successfully obtained a combination of split fluorescent fusion proteins through extensive research and experiments.
  • the fusion protein of the split fluorescent protein of the present invention comprises a fusion protein of a first split fluorescent protein and a fusion protein of a second split fluorescent protein, wherein the fusion protein of the first split fluorescent protein has been split a portion of the split fluorescent protein of the second and a first binding protein that binds to a portion of the fluorescent protein that has been resolved, the fusion protein of the second split fluorescent protein, and the remaining portion of the fluorescent protein And a composition of the second binding protein that binds to the remaining portion of the fluorescent protein, and is characterized in that it is present in the fusion protein of the first first fluorescent protein and the fusion protein of the second fluorescent protein.
  • the aforementioned split-split fluorescent protein can be self-reassembled to restore the fluorescence function that is split into two before, thereby emitting fluorescence.
  • the present invention also provides a current vector comprising a first discovery vector for expressing a gene of a fusion protein of a first split fluorescent protein, and a second discovery vector comprising a gene for expressing a fusion protein of a second split fluorescent protein,
  • the present invention also provides a mammalian stable expression cell line transfected via the aforementioned first discovery vector or second discovery vector (in the present specification, unless otherwise specified, the term "stable expression cell line" includes "mammalian stability". Express cell line "meaning" or a combination of these cell lines.
  • the present invention provides a method for screening a corresponding receptor of a viral envelope protein.
  • the method comprises: mixing or co-culture a cell comprising a mammalian stable expression cell line of a viral envelope protein and a mammalian stable expression cell line comprising a receptor corresponding to the viral envelope protein.
  • the fluorescence is at least the pre-resolution fluorescence recovered after self-recombination of the aforementioned fluorescent protein.
  • the present invention is capable of quantitatively and visually monitoring membrane fusion with a fusion protein centered on a split fluorescent protein which is split into two by self-recombination recovery function, and a stable expression cell line containing the fusion protein.
  • the present invention utilizes the aforementioned fusion protein and the aforementioned stable expression cell line to quantitatively and rapidly quantitatively and visually monitor the corresponding receptor which binds to the viral envelope protein. Further, the present invention utilizes the aforementioned fusion protein and the aforementioned stable expression cell line to quantitatively and rapidly and quantitatively and visually monitor the presence or absence of a substance which inhibits membrane fusion.
  • the invention is described in detail below by providing specific embodiments of the invention.
  • the present embodiment is a specific column for providing a method for monitoring a recombinant fluorescent protein combination of the present invention, a vector for the discovery thereof, a stable expression cell line of the mammal, and a corresponding receptor for the viral envelope protein using the same.
  • the split fluorescent protein combination according to the first embodiment of the present invention comprises a fusion protein of a first split fluorescent protein and a fusion protein of a second split fluorescent protein, and the fusion protein of the first split fluorescent protein has been removed.
  • the above-mentioned split fluorescent protein which is split into two in the fusion protein of the first split fluorescent protein and the second split fluorescent protein can be self-reassembled and recovered and is divided into The fluorescence function of the two front, which emits fluorescence.
  • the so-called "resolution fluorescent protein” in the present invention means a fluorescent protein which can restore self-recombination function.
  • green fluorescent protein (GFP) is preferably used in the present invention.
  • the "recovering self-recombination function" mentioned here means that the function is lost by dividing or splitting, but the function of fluorescing can be restored by recombination. Namely, the fluorescent light-emitting function which is completely lost due to the resolution can restore the same fluorescent light-emitting function as before the split by recombination.
  • the first binding protein and the second binding protein of the present invention which are respectively combined with the split fluorescent protein which is split into two may be the same protein or different proteins. Further, it is preferred that the protein is capable of recombining the split fluorescent protein which is split into two in combination with the first binding protein and the second binding protein, and is capable of restoring the same fluorescent function protein as before being resolved. .
  • the aforementioned first binding protein and second binding protein may have other functions as long as they do not inhibit the recombination of the aforementioned split fluorescent protein and restore the same fluorescing function before being resolved.
  • first binding protein and the second binding protein are the same protein and are different proteins.
  • Preferred examples of the case where the first binding protein and the second binding protein of the present invention are the same protein are as follows. With A phosphatidylinositol-bound protein is exemplified.
  • the first split fluorescent protein is an N-terminal end of the green fluorescent protein split between the 214th and the 215th amino acid sequences (hereinafter
  • GFP1-10 a fusion protein of a protein that binds to phosphatidylinositol, and the second split fluorescent protein is the C-terminus of the green fluorescent protein which is split into two (hereinafter referred to as
  • GFP11 a fusion protein of a protein that binds to phosphatidylinositol.
  • the number in the lower right here is the number of beta-stalk in GFP.
  • the protein which binds to the phosphatidylinositol is preferably from the same domain as the pleckstrin homology domain of human phospholipase C-Delta-1 (hereinafter, "PH"). Therefore, the preferred first split fluorescent fusion protein of the present invention is “PH-GFP1-10", and the second split fluorescent fusion protein is preferably "PH-GFP11 J.
  • the preferred first split fluorescent fusion protein of the present invention "PH The amino acid sequence of GFP1- 10" (SEQ ID No : 1) is as follows.
  • the preferred second split fluorescent fusion protein of the present invention is as follows.
  • first binding protein and the second binding protein of the present invention are different proteins. Take, for example, a luminescent enzyme that can be self-recombined into two. Due to the enzyme, it is matrix specific. Membrane fusion can be quantitatively monitored by specific binding of the enzyme to the substrate.
  • Renilla lucifera Se Renilla lucifera Se
  • Luciferase is a general term for enzymes that emit biochemical light such as luminescent bacteria and fluorite, and which have a chemical reaction that illuminates the luminescent material. Also become a luminescent enzyme.
  • a matrix that binds to luciferase is oxidized by luminescent enzymes to become various substances that emit light, and is generally called luminescent.
  • Membrane fusion can be quantitatively monitored using a specific matrix that binds to luciferase, and thus, all of the substrates to which luciferase is bound can be applied to the present embodiment based on the state of the art at the time of the present application.
  • This embodiment can be applied to all luminescent enzymes of the matrix. Therefore, in the present embodiment, light of different wavelengths can be emitted using different luminescent enzymes.
  • Membrane fusion can be quantitatively monitored using luminescent enzymes and administered to a given matrix. In the present invention, by using a membrane-permeable substrate, it is possible to immediately monitor the membrane fusion seen by the cells without having to fix the cells and perform membrane permeation treatment.
  • a membrane-permeable matrix of Renilla luciferase is preferred.
  • a living cell substrate enduren
  • luciferase is a protein that can self-recombine.
  • its function is weak and needs to be carried out separately, and it is not suitable for the monitoring of membrane fusion. Therefore, in the present embodiment, in order to compensate for the function of weak self-recombination, other recombination proteins having self-recombination function are added, so that membrane fusion can be monitored to become the first binding protein and the second binding protein of the present invention.
  • first binding protein and the second binding protein of the present invention in the case of different resolutions of the fusion fusion protein are as follows.
  • nRL the N-terminus of the Renilla luciferase
  • nRL the C-terminal
  • cRL it is used as the first binding protein and the second binding protein, respectively.
  • the N-terminus of the green fluorescent protein (hereinafter referred to as "GFP1- 7") and the C-terminal (hereinafter referred to as "GFP1- 7") which are split between the 157th of the amino acid sequence and the 158th of the amino acid sequence from the N-terminus
  • GFP8-11 it is combined with the aforementioned first binding protein and second binding protein, respectively, as a first split fluorescent fusion protein and a second split fluorescent fusion protein.
  • the fusion protein of the first split fluorescent protein of the present invention can be derived from “nRL” - "GFP1-10", “cRL” - “GFP1-10", “nRL” - “GFP1- 7” and “cRL” - Choose from 4 types of "GFP1- 7".
  • the second split fluorescent fusion protein of the present invention can be derived from "nRL” - "GFP11”, “cRL” - “GFP11”, “nRL” - “GFP8-11” and "cRL” - "GFP8-11” Choose from 4 types.
  • nRL - "GFP1-10”
  • DSP11 the first split fluorescent fusion protein
  • DSP11 the second split fluorescent fusion protein
  • DSP8-11 the split fluorescent fusion protein combination
  • DSP8-11 the split fluorescent fusion protein combination
  • DSP8-11 the split fluorescent fusion protein combination
  • the luciferase used in the embodiment of the present invention is a luciferase having a sequence similar to the second pse luciferase in the protein database (Protein Data Bank: PDB).
  • the mode diagram (yellow) of its three-dimensional structure diagram is shown in Figure 1.
  • the green fluorescent protein used in the embodiment of the present invention is a green fluorescent protease having an order similar to the green fluorescent protein of the 2b3p in the Protein Data Bank (PDB).
  • the pattern diagram (green) of the three-dimensional structure diagram is shown in Figure 1.
  • the amino acid sequence (SEQ ID No: 3) of the preferred first split fluorescent fusion protein (DSP1-7) of the present invention is as follows.
  • the amino acid sequence (SEQ ID No: 4) of the preferred second split fluorescent fusion protein (DSP8-11) of the present invention is as follows.
  • the expression vector combination according to the second embodiment of the present invention characterized in that the first expression vector comprising the gene for expressing the fusion protein of the first split fluorescent protein and the gene comprising the fusion protein expressing the second split fluorescent protein are A second expression vector.
  • the first expression vector of the present embodiment is not particularly limited as long as it can include a gene expressing the fusion protein of the first split fluorescent protein and express the fusion protein of the first split fluorescent protein in the cell.
  • the first expression vector may further include all constituent components necessary for the first expression vector in the cell, such as a promoter, etc., within the cell according to the state of the art at the time of filing of the application.
  • the second expression vector of the present embodiment is not particularly limited as long as it can include a gene expressing a fusion protein of the second split fluorescent protein and expresses a fusion protein of the second split fluorescent protein in the cell.
  • the second expression vector may further include all constituent components necessary for the second expression vector in the cell, such as a promoter, etc., in the cell according to the state of the art at the time of filing of the application.
  • the first expression vector or the second expression vector of the present invention can be transfected into each of the other cells fused by the membrane.
  • it is necessary to include, for example, a viral envelope protein and a receptor which specifically binds to the viral envelope protein in each cell. Proteins and the like that can cause membrane fusion.
  • the viral envelope protein is an HIV-1 envelope protein
  • the receptor is a CD4 parareceptor which is CCR5
  • the receptor is a CD4 parareceptor which is CXCR4.
  • a mammalian stable stable cell line according to a third embodiment of the present invention is characterized by comprising a first expression vector comprising a gene expressing a fusion protein of said first split fluorescent protein or expressing said second split A second expression of the gene encoding the fusion protein of the fluorescent protein. It will be understood from the following that the mammalian stable expression cell line of the present invention can be established using the skill level of those skilled in the art based on the present application. Therefore, no limitation is made here.
  • the stable expression cell line in the present specification means that a specific protein can be stably expressed, and the gene of the specific protein is transferred to the genetics of the cell line. Therefore, a specific protein can be stably produced in a cell without a specific treatment, and can be passed down from generation to generation by cell division.
  • the present invention provides a fusion comprising a first split fluorescent protein A mammalian stable expression cell line of a protein or a mammalian stable expression cell line comprising a fusion protein of a second split fluorescent protein.
  • it is a cell line obtained by transferring (genetically transforming) a gene containing a fusion protein gene expressing the first split fluorescent protein or a vector containing a fusion protein gene expressing the second split fluorescent protein.
  • gene transfer refers to a means for transferring a gene into a host cell into a host cell by a known technique such as a plastid or a genetic agent directly added to a host cell.
  • An expression vector for viral envelope protein is stably expressed in any one of the stable expression cell lines containing the fusion protein of the first split fluorescent protein or the fusion protein of the second split fluorescent protein, respectively. Cell lines of viral envelope proteins are preferred in the present invention.
  • the expression vector of the receptor corresponding to the viral envelope protein is transferred to the expression vector of the fusion protein of the fusion protein of the first split fluorescent protein or the fusion protein of the second split fluorescent protein as a stable expression of the aforementioned
  • the cell line of the body is preferred in the present invention.
  • the virus envelope protein of the present invention is a HIV-1 viral envelope protein or a HI V-2 viral envelope protein.
  • Those skilled in the art can arbitrarily select a viral envelope protein according to the technical common sense at the time of the present application.
  • the invention is not limited. Most preferred of the invention is an HIV-1 viral envelope protein.
  • the corresponding receptor of the viral envelope protein in the present invention is a combination of CD4 and a co-receptor CCR5 or a combination of CD4 and a co-receptor CXCR4 or a chemokine or the like.
  • the corresponding receptor of the viral envelope protein is arbitrarily selected according to the technical common sense at the time of the present application.
  • the invention is not limited. Most preferably, the invention is a combination of CD4 and a co-receptor CCR5 or a combination of CD4 and a co-receptor CXCR4.
  • the following four specific stable expression cell lines of the present invention can be established in advance.
  • a stable expression cell line comprising a fusion protein of a first split fluorescent protein and a viral envelope protein
  • a stable expression cell line comprising a fusion protein of a second split fluorescent protein and a viral envelope protein
  • a stable expression cell line comprising a fusion protein of the first split fluorescent protein and a receptor corresponding to the viral envelope protein
  • Stable expression cell line including the fusion protein of the second split fluorescent protein and the receptor corresponding to the viral envelope protein
  • the more specific expression cell line of the present invention has the following 18 preferred ones (refer to Fig. 7).
  • a stable expression cell line that is a combination of CD4 and a co-receptor CCR5, or a stable expression cell line comprising a combination of PH-GFPi-uJ and CD4 and a co-receptor CXCR4,
  • a stable expression cell line comprising a combination of "PH-GFP” and a combination of CD4 and a co-receptor CCR5, or a stable expression cell line comprising a combination of "PH-GFP U " and CD4 and a co-receptor CXCR4,
  • DSP W. and a stable expression cell line of the HIV-1 viral envelope protein
  • a stable expression cell line comprising ("DSPwcJ and a combination of CD4 and a co-receptor CCR5, or a stable expression cell line comprising "DSP W " and a combination of CD4 and a co-receptor CXCR4,
  • Stable expression cell lines including "DSP U” and HIV-1 viral envelope proteins,
  • a stable expression cell line comprising a combination of DSP u _ ⁇ fl CD4 and a co-receptor CCR5, or a stable expression cell line comprising a combination of "DSP U " and CD4 and a co-receptor CXCR4,
  • Stable expression cell line including "DSP M1" and HIV-1 viral envelope protein,
  • the stable expression cell line of the viral envelope protein can be operated as follows according to its use. For example, in the case of screening for an inhibitor, preferably in the present invention, in any one of the stable expression cell lines of the fusion protein of the first split fluorescent protein or the fusion protein of the second split fluorescent protein, the virus package is previously established.
  • a stable expression cell line of membrane proteins is previously established.
  • the present invention preferably is one of a stable expression cell line of the fusion protein of the first split fluorescent protein or the fusion protein of the second split fluorescent protein. Establish a one-time stable expression cell line containing the viral envelope protein.
  • the mammalian stable expression cell line referred to herein is preferably a human stable expression cell line.
  • a fourth embodiment of the present invention provides a method for screening receptor orientation of a viral envelope protein, comprising: mixing or co-culture cells of the aforementioned mammalian stable expression cell line including a viral envelope protein; a step of stably expressing a cell of a mammalian stable expression cell line corresponding to a receptor corresponding to a viral envelope protein, and examining the fluorescence of the binding of the viral envelope protein and the aforementioned receptor, the fluorescence being at least the foregoing The self-recombination of fluorescent proteins restores the fluorescence before resolution.
  • the receptor orientation of the viral envelope protein which determines the formation of the membrane fusion can be screened.
  • the viral envelope protein is an HIV-1 envelope protein
  • the receptor specifically binding to the viral envelope protein is a combination of CD4 and a co-receptor CCR5 or a CD4- and a co-receptor CXCR4. combination.
  • the receptor orientation screening of the aforementioned HIV-1 envelope protein is preferred for receptor orientation screening of the viral envelope protein of the present invention.
  • a mammalian stable expression cell line comprising "DSP1- 10" and an HIV-1 envelope protein, comprising "DSP11” and a cell of a mammalian stable expression cell line of CD4 and a co-receptor CCR5, or comprising
  • Examples of cells and membrane fusion of "DSP11” and CD4 and co-receptor CXCR4 in mammalian stable expression cell lines, and cells of mammalian stable expression cell line containing "DSP11" and HIV-1 envelope protein, including "DSP1- 10" and CD4 and co-receptor CCR5 are mammalian stable expression cell lines, or contain
  • the separated viral envelope protein self-recombines and restores the function of the enzyme, so that the membrane fusion of the cells can be quantitatively determined. Therefore, the aforementioned HIV-1 envelope protein bound to the receptor can be quantitatively determined.
  • the group of "DSP1- 10" and “DSP11” of the Renilla luciferase self-recombines to restore the function of the enzyme. It is slightly lower, but it can be confirmed whether Renilla Luciferase restores activity.
  • a combination of "PHGFP 1- 10" and "?13 ⁇ 4 ⁇ ?11” and “DSP1-10” and “DSP11” in the above combination can also be used.
  • the specific receptor of the HIV-1 envelope protein can be screened simply and rapidly. Accordingly, membrane fusion on HIV replication can be used on inhibitors that must be therapeutically effective.
  • the determination of the auxiliary directionality of the viral envelope protein is determined, and since the virus is not used, it can be safe and rapid. And proceed easily.
  • This method is not limited to HIV-1, and is also applicable to the membrane fusion of influenza virus, type B and hepatitis C virus, SARS virus, Ebola virus and other viral coat proteins belonging to the viral envelope protein. system.
  • a further aspect of this embodiment is a method for screening for inhibitors of membrane fusion (binding of a viral envelope protein to its co-receptor), comprising: mixing or co-culture the aforementioned viral envelope protein.
  • Soluble CD4 (s CD4) of the present invention and membrane fusion inhibitor C34 and the like are preferred for the inhibitors which can be screened in the present invention.
  • FIG. 1 is a map of the plasmid used in the present invention.
  • A Map of the p ⁇ cRedEluc plasmid expressing the HIV-1 envelope protein, pCMV: human cytomegalovirus promoter, NLS: nuclear localization signal, HcRed: red fluorescent protein, f-Luc: firefly luciferase, MSD: transmembrane region., ArapR: ampicillin resistance gene.
  • WT wild type
  • VSV-G vesicular stomatitis virus G protein
  • GpA blood group glycoprotein A.
  • the predicted MSD area is represented by capital letters.
  • FIG. 1 An expression vector for cleavage of GFP protein.
  • the plasmid backbone pdEGFP (top of the image) was obtained by deleting the EGFP gene sequence between the EGFP-N2 plasmid Smal and BsrGI.
  • MCS multiple cloning site
  • spGFP GFP insertion site
  • pSV40 promoter region derived from SV40
  • SV40 ori SV40 replication initiation site
  • Kan/NeoR kanamycin/neomycin Resistance gene.
  • PH domain Pleckstrin homology domain. The subscript number of GFP indicates the site of folding of the GFP protein introduced into the splitting point.
  • FIG. 1 shows the expression of the split GFP protein in transfected cells.
  • A Western blot analysis of 293CD4 cells transfected with GFP1 - 10 and PH-GFP1-10, using an anti-GFP antibody. The expressed protein is indicated in the figure.
  • EGFP Cells were transfected with enhanced GFP protein.
  • B Protein expression of 293FT cells transfected with GFP11-FLAG or PH-GFP11-FLAG expression vector, using anti-FLAG monoclonal antibody. MOCK is a control without a gene.
  • C GFP signal for single resolution of GFP protein in transfected cells. BF stands for bright field, GFP: green fluorescent signal.
  • Figure 3 shows the intracellular localization of the split GFP protein.
  • A Immunofluorescence assay of GFP1- 10 or PH-GFP1- 10 cells transfected with anti-GFP antibody.
  • B Cellular immunofluorescence assays of GFP11-FLAG, PH-GFP11-FLAG and PH-GFP11 expression plasmids were transfected with anti-FLAG antibody.
  • C Co-transformation of PH-GFP1-10 or GFP1-10 with PH-GFP11, GFP11.
  • Figure 4 shows the generation of a green fluorescent signal by membrane fusion. Cell fusion between the envelope-expressing cells transfected with the corresponding GFP-protein expression vector and the receptor-expressing cells was monitored using a laser confocal microscope.
  • FIG. 5 is a graph showing changes in cells over time using an intracellular assay (IN Cell Analyzer). The arrows indicate that the GFP signal grows over time. The upper left corner is the time of co-cultivation.
  • B Results of the T7 RNApol transfer assay method. Fusion efficiency was expressed using Renilla Luciferase activity activated by transferred T7 RNApol. The activity of Renilla luciferase is normalized by the transfection efficiency by dividing by firefly luciferase activity. NC indicates a negative control, PC: positive control.
  • Figure 6 is a diagram showing the construction of a fusion protein of a split protein or a resolved protein and the detection results of complementation efficiency.
  • (A) is a fusion protein used in the present invention.
  • Intact GFP and RL the full length of green fluorescent protein and Renilla luciferase, respectively.
  • nRL and cRL are the N-terminal and C-terminal portions of Renilla luciferase
  • baseVel and acidVel are leucine zippers with basic or acidic heterodimerization
  • DSP is for splitting GFP and nRL Or a fusion protein with cRL.
  • the numbers below are shown as the beta-sheetd positions of GFP in the fusion protein.
  • FIG. 7 is a conceptual diagram of the use of cells to express membrane fusion by DSP.
  • Cells containing the receptor and a DSP (Fig. DSP8-11) and another DSP containing the viral envelope protein (DSP1-7-1 in this figure) were co-cultured to cause membrane fusion. If membrane fusion occurs, the activity of GFP and Renilla luciferase reverts to fluoresce, respectively.
  • Figure 8 shows the activity of membrane fusion confirmed by DSP.
  • Fig. 9 is an example of membrane fusion in a membrane fusion inhibitor test
  • Membrane fusion was tested in the presence of a capacitive CD4 (sCD4) and membrane fusion inhibitor C34. After the co-culture, the inhibitor was added for a certain period of time, and the culture was continued until 20 minutes, and the activity of Renilla Luciferase was tested. The table was made based on the data compared with the case without the inhibitor.
  • Figure 10 is a supplement to Figure 6. It was shown that the resolved Renilla luciferase (RL) and individual DSPs were not reactive.
  • Figure 11 confirms the expression of the DSP protein.
  • (a) Expression of the expressed protein (b) Evaluation of the expression of the protein by the FL antibody by Western Blotting. The expression of the protein was confirmed in the expected position.
  • the DSP-1 gene or DSP8-11 gene was inserted into the pLenti6/V5 DEST vector using the ViraPower brand lentiviral detection tool (Invtrogen #K4960-00). Resolution of the GFP gene by the CMV promoter in the cell The blasticidin expressed in the selection and used for selection is simultaneously expressed in the cell by the EM7 promoter. Infection of 293 FT cells with VSV pseudotype virus was carried out for ten days in a medium supplemented with blasticidin.
  • the cells were diluted to 0.8 cells (one cell at a time) / acupoints, 4 cells/well, and the other GFP-transferred expression vector was introduced into the post-reproductive cells, and passed through FACS. The recovery of the activity of GFP was examined, and the cells of the fluorescent sputum were selected therefrom.
  • CD4/CCR5 or CD4/CXCR4 can be stably expressed in the human glioma (Glioma) cell line NP2.
  • CD4 and CCR5/CXCR4 were selected by neomycin and puromycin, respectively. Like 293 FT cells, they are transferred to the gene by infection with a virus, and then propagated asexually.
  • the invention is illustrated below in the context of an implementation. However, this list is not intended to limit the scope of the invention.
  • This example uses the PH domain of human phospholipase C, which is assembled from 10 79-base length oligonucleotides. These oligodeoxynucleotides were assembled by PCR (94 degrees 30 seconds, 50 degrees 30 seconds, 72 degrees 40 seconds, 30 cycles). Similarly, the optimized GFP gene was assembled from 30 stretches of 40 nt oligonucleotides with 18 base overlaps, named GFPoptl-11. The two amplified sequences were then cloned into CR4Blunt-TOP0 and sequenced.
  • GFPoptl-11 was split into GFP1- 10 (l-642 bp) and GFP11 (643-696 bp) by PCR and cloned into pCR4Blunt-TOPO.
  • the PH-GFP1-10 and PH-GFP11 genes were obtained by binding the PH domain gene and the resolved GFP gene, and then cloned into pdEGFP to construct the corresponding expression vectors pdPH-GFPl-10 and pdPH-GFP11 (Fig. 1B). ).
  • the FLAG tag was introduced into the C-terminus of the split GFP by PCR by introducing a FLAG tag sequence into the 3' primer.
  • pElucErw (Miyauchi, 2005) obtained from previous work, the inventors obtained a derivative form of this vector by replacing the EGFP portion of the original vector with the red fluorescent protein HcRed containing the nuclear localization signal (NLS).
  • the HIV-1 Env expression vector was named pNHcRedEluc (Fig. 1A). The efficiency of cell transfection can be monitored by the number of red nuclei or firefly luciferase activity.
  • 293FT cells Invitrogen
  • 293CD4 cells (Miyauchi, 2005) were cultured in Dulbecco-modified Eagle medium (DMEM, Sigma) containing 10% fetal bovine serum (Hyclone). Geneticin (Gibco) at a final concentration of 500 g/ml was added to the 293FT medium according to the instructions. Fugene HD reagent (Roche) was used in the transient experiment. A stable cell line expressing PH-GFP1-10 was established by transferring pdPH-GFPl-10 into 293CD4 cells using the method of electroporation (Biorad GenePulsar). The transfected cells were screened by 700 g/ml geneticin.
  • the transfected cells were fixed with acetone:methanol solution (1:1, by volume) at room temperature for 15 minutes, and incubated with anti-FLAG antibody (3 g/ml) for 30 minutes at 30 degrees.
  • the secondary antibody used in the experiment was labeled with Alexa Fluor 555, and the fluorescence signal was observed using a laser confocal microscope (Olympus FLU0VIEW FV1000).
  • DNA fragments of the GFPoptl-11 and ra domains were generated using the methods described in the Materials and Methods section.
  • the expression vectors indicated by A and B in Fig. 1 were transferred into cells for expression, and protein expression was examined by immunoblotting.
  • GFP1- 10 and PH-GFP1- 10 correspond to a 25kDa and 40kDa band, respectively (Fig. 2A), and the detected molecular weight of PH-GFP1-10 is PH-GFP1-10 ( 23kDa) and!
  • the sum of the 3 ⁇ 4 domains (18kDa) is the same as predicted.
  • Anti-GFP antibodies were not able to detect any bands when detecting the expression of GFP11 (data not shown). This may be due to the fact that GFP11 has only 17 amino acids, the molecular weight is too small, or the antigenic epitope lacking anti-GFP antibody on the fragment.
  • the inventors used FLAG-tagged GFP11 with or without the 13 ⁇ 4 domain for immunoblot detection.
  • a 22 kDa-sized PH-GFP11 protein was detected, but no GFP11-FLAG protein was detected (Fig. 2B.
  • This result indicates that the GFP11 fragment lacking the PH domain is unstable. Consistent with the expected, separate GFP protein and Resolution of the PH-GFP protein did not produce a fluorescent signal (Fig. 2C).
  • the PH domain localizes the split GFP protein to the vicinity of the plasma membrane.
  • the results of the experiment indicated that the split GFP1-10 was distributed throughout the cell when the PH domain was not contained, and the split PH-GFP1-10 was localized in the periphery of the transfected cells (Fig. 3A).
  • the expression of FLAG-tagged GFP11 could not be detected (Fig. 3B, top), which is consistent with the results of immunoblotting (Fig. 2B).
  • PH-GFP11 containing FLAG tag Fig. 3B, middle
  • PH-GFP11 without FLAG labeling could not be detected with anti-FLAG antibody (Fig. 3B, bottom).
  • the wild type EnvpNHcRedEluc plasmid (pNHcRedElucWT) and pdPH-GFP11 were transiently transferred into 293FT cells, followed by co-culture with 293CD4 stably expressing PH-GFP1-10.
  • pNHcRedElucWT The wild type EnvpNHcRedEluc plasmid
  • pdPH-GFP11 The wild type EnvpNHcRedEluc plasmid (pNHcRedElucWT) and pdPH-GFP11 were transiently transferred into 293FT cells, followed by co-culture with 293CD4 stably expressing PH-GFP1-10.
  • Fig. 4A Due to the transfer of the nuclear localized HcRed protein, the nucleus expressing the envelope protein turns red.
  • the spontaneous fusion phenomenon may be excluded by the lack of red nuclei in the syncytium.
  • This result indicates that we can use both pNHcRedEluc and split GFP protein to more objectively monitor membrane fusion without the addition of any other dyes or substrates.
  • the inventors next examined the evolution of the GFP signal over time in this method. The process of fusion can be monitored in real time using the IN Cell Analyzer. The green fluorescent signal generated by spGFP recombination was detected after 30 minutes, and the number and intensity detected were gradually increased (Fig. 5A). The inventors compared the results with the traditional T7 RNApol transfer assay method (Fig. 5B).
  • split GFP method used herein is that it can detect fusion events for a single membrane rather than the average activity detected using the T7 method.
  • this method allows continuous real-time monitoring of the same co-cultured living cells.
  • nRL the N-terminal fragment of RL
  • cRL the C-terminal fragment of RL
  • BaseVel a genetically engineered polypeptide derivative derived from a polypeptide having a heterodimeric leucine zipper structure (Velcro polypeptide) , which contains a basic amino acid residue of the Velcro polypeptide, another part of the AcidVel: leucine zipper polypeptide, which contains some acidic amino acid residues
  • PH domain pleckstrin homology domain
  • Dual GFP fragment and RL fragment are fused to each other The resulting fusion protein (the subscript number indicates the position of the GFP protein beta fold introduced into the splitting point).
  • FIG. 6 The experimental results of the fusion protein fusion protein in 293FT cells are shown in Figure 6 (B).
  • the activity of RL or GFP was detected 36 hours after transfection.
  • the upper part of the figure is the RL activity measured according to the methods of the Materials and Methods section.
  • R. L. U. indicates the relative luminescence value.
  • the lower part is the GFP signal detected using the IN Cell Analyzer.
  • the picture of the GFP signal and the picture of the bright field (BF) are shown. All cells that were only transfected with DNA did not exhibit RL activity and GFP signaling.
  • pEGFP indicates that an expression-enhancing GFP expression plasmid was used, and natural RL indicates that a plasmid containing the full length of RL was used.
  • the present inventors examined the complementarity of the spRL constructed using this protein having a stronger self-knot and ability to GFP1- 7/GFP8-11.
  • SpRL based on GFP1-7/GFP8-11 fusion protein (Dual Split fusion Protein (DSP): DSP1-7/DSP8-11) (Fig. 6(B), DSPl-7/DSP8-11
  • the complementary efficiency is 2 orders of magnitude higher than using GFP1- 10/GFP11 (Fig. 6(b), DSPl-10/DSP11) or heterodimeric coiled coils named "Velcro" (Fig.
  • the cell extracts of the proteins were mixed with each other, and then the RL activity at the selected time point was determined.
  • the complementary reactions of DSP1-7 and DSP8-11 started very quickly and completed the reaction within 8 minutes (Fig. 6D); Fusion proteins that separate fluorescent proteins can be used to study early steps in membrane fusion.
  • the inventors used the backbone sequence of the phRL_CMV plasmid (Promega) to express the fusion protein. The choice of RL split points is based on previous genetic studies (Paulmurugan, 2003).
  • the N-terminal or C-terminal fragment of spRL is correspondingly named nRL or cRL.
  • the inventors fused some of the binding proteins to spRL in the experiment. This includes the use of a leucine zipper fragment called Velcro polypeptide containing acidic or basic residues that form a parallel coiled coil (0' Shea, 1993).
  • Velcro A fragment with an acidic residue (AcidVel) was cloned into the C-terminus of nRL.
  • a fragment of Velcro containing a basic residue (BaseVel) was cloned into the N-terminus of the cRL.
  • the Nhel and Sbfl cleavage sites were obtained by PCR amplification using KOT (+) polymerase (Toyobo) or Pfu turbo (Stratagene) using OPT GFP1- 11 (Cabantous, 2006). Fragments of spGFPs (GFP Bu 10, GFP 1- 7 and GFP 8-11). This amplified fragment was subsequently cloned into PCR-4TOP0blurrt and sequenced. The GFP1-10 and GFP1- 7 fragments were then cloned between nRL and the Nhel and Sbfl restriction sites upstream of phRL. The GFP8-11 fragment was cloned between the Sail and Xbal restriction sites of the spRL/phRL-CMV vector.
  • Nhel and Sbfl cleavage sites were included at the 5' and 3' ends.
  • the GFP11 fragment was obtained by annealing a pair of synthetic oligodeoxynucleotide fragments and was cloned. These constructed spRL genes were fused to GFP1-10, GFP1-7, GFP8-11 and GFP11, and the corresponding names were duall-10, dual 1-7, dual 8-11, and dualll.
  • all double-replicated protein gene sequences were amplified by PCR reaction, and EcoRI and Kpnl cleavage sites were added at the 5' and 3' ends. Point and cloned into the aforementioned spGFP/pdDEGFP vector containing the 13 ⁇ 4 domain sequence (WJQ, etc.).
  • 293FT cells and 293CD4 cells each having a density of 4 X 104 were plated on a 6 cm culture dish (BD falcon). Two days after planting, 293FT cells and 293CD4 cells were transfected with the corresponding signals of DSP1-7 and DSP8-11. After washing the cells twice with PBS, the transfected cells were removed using a cell scraper (BD falcon) and collected using a centrifuge (20,000 g, 4 ° C, 10 min), followed by instructions (Renilla Luciferase Assay Kit) , Promega) The cells were lysed using 500 1 sample lysis buffer to obtain cell lysates. Each lysate was mixed 20 1 and the activity value was measured at room temperature using a Glomax instrument (Promega) according to the selected time course. Each independent experiment was repeated at least 3 times.
  • the medium of the 293FT cells was replaced with a medium that did not contain enduren.
  • 293CD4 cells cultured in a temperature-dependent culture dish were incubated at room temperature for 5 minutes, and then gently shaken using a pipette to make the concentration of 293CD4 cells uniform.
  • These suspended 293CD4 cells were subsequently seeded with 293FT cells in each well.
  • the RL activity of each well was measured in chronological order using the Glomax (Promega) enduren analysis program.
  • the green fluorescent signal of GFP was also detected using chronological order using In Cell analyzer 1000 (GE healthcare).
  • Transfected cells expressing the HIV-1 envelope protein or its receptor and the corresponding dual complement protein were co-cultured and measurements were taken at selected time points.
  • the Erw gene used was wild type ⁇ from HXB2 (open squares), and the transmembrane region of the mutant was glycoprotein A (GpA, open diamond) and vesicular stomatitis virus (VSV-G, open triangle). Replacement of the transmembrane zone.
  • a plasmid no Er, open circle using the same backbone sequence but no erw gene was used as a negative control.
  • Soluble CD4 is an inhibitor of Erw and its receptor binding.
  • T-20 is an inhibitor of g p41 forming an intermediate product during membrane fusion.
  • the difference between this combination of fusion proteins using a split fluorescent protein and the method of dye transfer may be due to the need to form a sufficiently large pore between the two components in an experiment using a combination of fusion proteins that split the fluorescent protein.
  • the fusion protein of the fluorescent protein can pass, and for the dye of the small molecule, it can be transferred much faster than the protein. Or it may be that the delay time required for the recovery activity of the fusion protein of the split fluorescent protein causes this difference.
  • the inventors also used this system to examine the effects of fusion inhibitors. Tl/2 was approximately 51 minutes after the addition of soluble CD4; tl/2 was approximately 78 minutes after the addition of the six-shelix bundle formation inhibitor (Fig. 8C). These values are consistent with the predicted order of action of these inhibitors during membrane fusion.
  • the inventors applied a combination of fusion proteins that cleave fluorescent proteins to monitor membrane fusion. Due to the dual function of the combination of fusion proteins that cleave fluorescent proteins, membrane fusion can be quantitatively evaluated using the following two parameters in the same living cells. One is how the balanced membrane fusion step tends to fuse pore formation, which can be estimated by quantifying the absolute value of RL activity or the number of GFP signal positive cells. The other is to assess how fast membrane fusion occurs based on the time course of RL activity. The information obtained using this method will be helpful in elucidating the mechanism of membrane fusion. Further quantitative membrane fusion testing will be helpful for new drug development. In addition, a combination of fusion proteins that cleave fluorescent proteins can also be used to test interactions between two compartments in a cell, such as vesicle trafficking.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

拆分荧光蛋白的融合蛋白组合、 其表达载体, 稳定表达哺乳动物细胞系及筛选方法 技术领域
本发明包括已拆分荧光蛋白的拆分荧光蛋白组合,或者,包含表达其拆分荧光蛋 白的基因的发现载体, 或者, 关于由表达载体转染的细胞系 (Cell line) 组合, 进 而, 通过该细胞系组合的细胞融合, 筛选病毒包膜蛋白的受体方向性的方法。 背景技术
细胞的膜融合现象是生物系统中非常普遍的现象。肌肉形成, 受精作用, 以及囊 泡的运输过程中都涉及到膜融合。具有包膜的病毒侵染宿主细胞的过程也同样依赖于 膜融合。 发明内容
膜融合是 2个细胞合并形成一个的过程。利用这个过程,可以开发检测膜融合与 否的技术。此时, 有很多种评价膜融合程度的系统。一种方法是使用通过自我组合恢 复性的拆分蛋白。 这种拆分蛋白可以通过自我组合发挥原有的性能。 在这类方法中已经建立了很多种报告蛋白系统。使用膜融合的检测系统时,使用 拆分蛋白是可以自我重新结合 (或者是重新组合, 本说明书中如无特别说明, "重新 组合"的用语包括 "自我重新结合"的意思) 的蛋白。例如, 具有拆分后自我组合能 力的拆分 β -半乳糖苷酶(- Gal ), 和拆分后 β内酰胺酶(beta-lac1:amaSe、 β -Lac), 以及具有拆分后自我组合能力的拆分绿色荧光蛋白 (GFP) 等。 β -半乳糖苷酶、 β内酰胺酶 (bete - lactaraase、 β -Lac) 以及绿色荧光蛋白, 常用于监测膜融合。 但是, 可以实现定量地监测膜融合的 β _半乳糖苷酶及 β内酰胺 酶(beta- lactamase β— Lac),根据基质不同,需要破坏细胞膜才能实现。另一方面, 绿色荧光蛋白虽然无需破坏细胞膜, 通过绿色荧光即可以视觉地监测膜融合, 但是, 与上述酶相比, 定量地监测膜融合很困难。 本发明解决前述的现有问题,提供一种既可以定量又可以视觉地监测膜融合的系 统。 另外, 本发明还提供一种受体方向性筛选方法, 或一种抑制剂的筛选方法。 本发明经过大量研究和实验,成功地得到了拆分荧光融合蛋白组合。本发明的拆 分荧光蛋白的融合蛋白的组合,包括第一拆分荧光蛋白的融合蛋白和第二拆分荧光蛋 白的融合蛋白,前述第一拆分荧光蛋白的融合蛋白, 由已被拆分为二的拆分荧光蛋白 的一部分和于前述已被拆分荧光蛋白的一部分相互结合的第一结合蛋白而组成,前述 第二拆分荧光蛋白的融合蛋白,由前述拆分荧光蛋白的剩余部分和于前述拆分荧光蛋 白的剩余部分相互结合的第二结合蛋白的而组成,其特征在于,存在于前述的第一拆 分荧光蛋白的融合蛋白与前述第二拆分荧光蛋白的融合蛋白里的前述被拆分为二的 拆分荧光蛋白可以自我重新组合恢复被拆分为二前的荧光功能, 从而发出荧光。 另外,本发明还提供一种现载体,包括表达第一拆分荧光蛋白的融合蛋白的基因 的第一发现载体, 和包括表达第二拆分荧光蛋白的融合蛋白的基因的第二发现载体, 另外,本发明还提供经由前述第一发现载体或第二发现载体转染的哺乳动物类稳 定表达细胞系 (本说明书中如无特别说明, "稳定表达细胞系"的用语包括"哺乳动物 类稳定表达细胞系"的意思) 或者这些细胞系的组合。
进而,本发明还提供一种病毒包膜蛋白的所对应的受体的筛选方法。包括: 混合 或共培养(co-culture)包括了病毒包膜蛋白的哺乳动物类稳定表达细胞系的细胞和 包括了病毒包膜蛋白所对应的受体的哺乳动物类稳定表达细胞系的细胞的步骤,检验 通过前述病毒包膜蛋白和前述受体的结合后的荧光的步骤,该萤光至少为前述荧光蛋 白的自我重新结合后恢复的拆分前的萤光。 本发明是以通过自我重新结合恢复功能的被拆分为二的拆分荧光蛋白为中心的 融合蛋白,以及提供包含融合蛋白的稳定表达细胞系,可以定量且视觉地监测膜融合。 另外,本发明利用前述融合蛋白及前述稳定表达细胞系,简便且快速地定量地且视觉 地监测与病毒包膜蛋白结合的所对应受体。进而,本发明利用前述融合蛋白及前述稳 定表达细胞系, 简便且快速地定量地且视觉地监测有无抑制膜融合的物质。 下面通过提供本发明的具体实施形态详细说明本发明。本实施形态是提供本发明 的拆分荧光蛋白组合、其发现载体、其哺乳动物类稳定表达细胞系以及使用了这些的 病毒包膜蛋白的所对应的受体的监测方法的具体列。但是这里说明的具体实施形态只 是本发明的一个实施例而已, 不是用来限定本发明的范围以及其等同范围的。 作为本发明第一实施形态的拆分荧光蛋白组合,包括第一拆分荧光蛋白的融合蛋 白和第二拆分荧光蛋白的融合蛋白,前述第一拆分荧光蛋白的融合蛋白, 由已被拆分 为二的拆分荧光蛋白的一部分和于前述已被拆分荧光蛋白的一部分相互结合的第一 结合蛋白而组成,前述第二拆分荧光蛋白的融合蛋白, 由前述拆分荧光蛋白的剩余部 分和于前述拆分荧光蛋白的剩余部分相互结合的第二结合蛋白的而组成,
其特征在于,存在于前述的第一拆分荧光蛋白的融合蛋白与前述第二拆分荧光蛋 白的融合蛋白里的前述被拆分为二的拆分荧光蛋白可以自我重新组合恢复被拆分为 二前的荧光功能, 从而发出荧光。 另外本发明中的所谓的「拆分荧光蛋白」是指,可以恢复自我重新结合功能的荧 光蛋白。 本发明中虽然没有限定, 但在本发明中优先采用的是绿色荧光蛋白 (green fluorescent protein: GFP)。
另外, 这里所说的「恢复自我重新结合功能」是, 分割或拆分使功能丧失, 但通 过重新结合可以恢复发出荧光的功能。即, 由于拆分完全丧失的荧光发光功能通过重 新结合可以恢复与拆分前相同的荧光发光功能。 与拆分为二的拆分荧光蛋白分别结合的本发明的第一结合蛋白及第二结合蛋白, 可以是相同蛋白也可以是不同蛋白。另外, 优选蛋白为, 能够使于前述第一结合蛋白 及第二结合蛋白相结合的被拆分为二的拆分荧光蛋白重新结合,并能够恢复与其被拆 分前相同的发出荧光功能的蛋白。前述第一结合蛋白及第二结合蛋白只要不阻碍前述 拆分荧光蛋白的重新结合并恢复被拆分前相同的发出荧光功能, 也可以具有其他功 能。
以下前述第一结合蛋白及第二结合蛋白为相同蛋白及为不同蛋白的情况下的优 选实施例。 本发明的第一结合蛋白及第二结合蛋白为相同蛋白的情况下的优选例如下。以与 磷脂酰肌醇(phosphatidylinositol)结合的蛋白为例。具体为, 前述第一拆分荧光 蛋白为在氨基酸序列的第 214和第 215之间拆分为二的绿色荧光蛋白的 N端(以下为
「GFP1- 10」 的情况下) 与磷脂酰肌醇 (phosphatidylinositol ) 结合的蛋白的融合 蛋白, 前述第二拆分荧光蛋白为, 前述被拆分为二的绿色荧光蛋白的 C端 (以下为
「GFP11」 的情况下) 与磷脂酰肌醇(phosphatidylinositol) 结合的蛋白的融合蛋 白。 这里的右下方的数字为 GFP中 β经纬 (beta- strand)的编号。 本发明中, 与前述磷脂酰肌醇(phosphatidylinositol)结合的蛋白, 优选来自 于人类的磷脂酶 C- Delta- 1的 PH结构域相同域(pleckstrin homology domain, 以 下为「PH」的情况下)。因此,本发明的优选第一拆分荧光融合蛋白为「PH-GFP1-10」, 优选第二拆分荧光融合蛋白为 「PH- GFP11 J。 本发明的优选第一拆分荧光融合蛋白 「PH- GFP1- 10」 的氨基酸序列 (SEQ ID No: 1 ) 如下。
(PH: 1-170, linker : 171-172, splitGFPl— 10 : 173-386)
MDSGRDFLTLHGLQDDEDLQALLKGSQLLKVKSSSWRRERFYKLQEDCKTIWQESRKVMRTPESQLFSIEDIQ EVRMGHRTEGLE FARDVPEDRCFSIVFKDQRNTLDLIAPSPADAQHWVLGLHKIIHHSGSMDQRQKLQHWIH SCLRKADKNKDNKMSFKELQNFLKEFMVSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKF
VNRIELKGTDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVEDGSVQLADHYQQNTPIGDGP VLLPDNHYLSTQTVLSKDPNE 本发明的优选第二拆分荧光融合蛋白 「PH-GFP11」 的氨基酸序列(SEQ ID No: 2) 如下。
(PH: 1-170, linker : 171—172, splitGFPll : 173-189)
MDSGRDFLTLHGLQDDEDLQALLKGSQLLKVKSSSWRRERFYKLQEDCKTIWQESRKVMRTPESQLFSIEDIQ EVRMGHRTEGLEKFARDVPEDRCFSIVFKDQRNTLDLIAPSPADAQHWVLGLHKIIHHSGSMDQRQKLQHWIH SCLRKAD NKDNKMSFKELQNFLKEFKRDHMVLHEYVNAAGIT 本发明的第一结合蛋白及第二结合蛋白为不同蛋白的情况下的优选实施例如下。 以被拆分为二的可以自我重新结合的发光酶为例。 由于是酶, 所以带有基质特异性。 通过该酶与基质的特异结合,.可以定量地监测膜融合。
本发明中, 优选使用被拆分为二的海肾发光素酶 (海肾发光素酶(renilla luciferaSe) )。发光素酶为发光细菌和萤石等生物发光,带有催化发光物质放光的化 学反应的酶的总称。 也成为发光酶。 与发光素酶素结合的基质,被发光酶素氧化,成为发光的的各种物质, 总称为发 光素。使用与发光酶素结合的特异基质, 可以定量地监测膜融合, 由此, 本领域技术 人员基于本发明申请时的技术水平,可以将与发光酶素结合的所有基质适用于本实施 形态。本实施形态, 可以适用为基质的所有发光酶素。 因此, 本实施形态, 使用不同 的发光酶素, 可以发出不同波长的光。使用发光酶, 并投与既定的基质, 可以定量地 监测膜融合。 本发明中, 通过使用带有膜透过性的基质, 不必即固定细胞又进行膜透过处理, 可以即时地监测细胞见的膜融合。 因此, 本实施形态中,优选海肾发光素酶的膜透过 性基质。 其中特别优选活细胞底物(enduren)。 另外,发光素酶为可以自我重新结合的蛋白。但是其功能弱且需单独进行,不适 用于膜融合的监测。 因此, 本实施形态, 为了弥补其功能弱自我重新结合的功能, 添 加了其他具有自我重新结合功能的拆分蛋白,使其可以监测膜融合,成为本发明的第 一结合蛋白及第二结合蛋白。 本发明的第一结合蛋白及第二结合蛋白为不同拆分发光融合蛋白组合的情况下 的具体实施例如下。 首先, 从 N端把在氨基酸序列的第 229和氨基酸序列的第 230 之间被拆分为二的海肾发光素酶的 N端 (以下称为 「nRL」 的情况下) 与 C端 (以下 称为 「cRL」 的情况下) 分别作为第一结合蛋白和第二结合蛋白。 其次, 从 N端把在 氨基酸序列的第 157和氨基酸序列的第 158之间被拆分为二的绿色荧光蛋白的 N端 (以下称为 「GFP1- 7」 的情况下) 与 C端 (以下称为 「GFP8- 11」 的情况下) 分别与 前述第一结合蛋白和第二结合蛋白结合,作为第一拆分荧光融合蛋白和第二拆分荧光 融合蛋白。 因此,本发明的第一拆分荧光蛋白的融合蛋白,可以从「nRL」-「GFP1-10」、「cRL」 - 「GFP1-10」、 「nRL」 ― 「GFP1- 7」 及「cRL」 - 「GFP1- 7」 的 4种中选择。 另外, 本发 明的第二拆分荧光融合蛋白可以从 「nRL」 - 「GFP11」、 「cRL」 - 「GFP11」、 「nRL」 - 「GFP8- 11」 及 「cRL」 一 「GFP8- 11」 的 4种中选择。
本发明优选, 由 「nRL」 - 「GFP1-10」 (以下称为 「DSP1-10」 的情况下)作为第 一拆分荧光融合蛋白与 「GFP11」 - 「cRL」 (以下称为 「DSP11」 的情况下)作为第二 拆分荧光融合蛋白构成的拆分荧光融合蛋白组合, 以及由 「nRL」 - 「GFP1- 7」 (以下 称为 「DSP1- 7」 的情况下)作为第一拆分荧光融合蛋白与 「GFP8-11」 - 「cRL」(以下 称为 「DSP8-11」 的情况下)作为第二拆分荧光融合蛋白构成的拆分荧光融合蛋白组 合。 本发明实施形态中使用的荧光素酶为与蛋白质数据库(Protein Data Bank: PDB) 标号中的第 2pse的荧光素酶近似的带有一次序列的荧光素酶。 其立体构造图的模式 图 (黄色)请见图 1。 另外, 本发明实施形态中使用的绿色荧光蛋白为与蛋白质数据 库 (Protein Data Bank: PDB)标号中的第 2b3p的绿色荧光蛋白近似的带有一次序 列的绿色荧光蛋白酶。 其立体构造图的模式图 (绿色)请见图 1。 本发明的优选第一拆分荧光融合蛋白 (DSP1-7) 的氨基酸序列 (SEQ ID No: 3) 如下。
(nRL: 1-229, linker : 230-233, splitGFPl-7 : 234-390)
MASKVYDPEQRKRMITGPQWWARCKQMNVLDSFINYYDSEKHAENAVIFLHGNAASSYLWRHVVPHIEPVARC
VDVIESWDEWPDIEEDIALIKSEEGEKMVLENNFFVETMLPSKIMRKLEPEEFAAYLEPFKEKGEVRRPTLSW
TLVTTLTYGVQCFSRYDPHMKQHDFFKSAMPEGYVQERTISFKDDGKYKTRAVVKFEGDTLVNRIELKGTDFK EDGNILGHKLEYNFNSHNVYITADK 本发明的优选第二拆分荧光融合蛋白 (DSP8- 11 ) 的氨基酸序列 (SEQ ID No: 4) 如下。
(splitGFP8- 11 : 2-75, linker : 76-77, cRL : 78-159)
MQKNGIKANFTVRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQTVLSKDPNEKRDHMVLHEYVNAAG ITVDKPDVVQIVRNYNAYLRASDDLPKMFIESDPGFFSNAIVEGAKKFPNTEFVKVKGLHFSQEDAPDEMGKY IKSFVERVLKNEQ 本发明第二实施形态的表达载体组合,其特征为,包含表达第一拆分荧光蛋白的 融合蛋白的基因的第一表达载体和包含表达第二拆分荧光蛋白的融合蛋白的基因的 第二表达载体。 本实施形态的第一表达载体,如果可以包含表达第一拆分荧光蛋白的融合蛋白的 基因, 并在细胞里表达其第一拆分荧光蛋白的融合蛋白的话, 没有其他特别限定。另 外,第一表达载体还可以包括, 本领域技术人员根据该申请提交时的技术水平, 在细 胞内的发现第一表达载体所必需的所有构成成分, 例如, 启动子等。 本实施形态的第二表达载体,如果可以包含表达第二拆分荧光蛋白的融合蛋白的 基因, 并在细胞里表达其第二拆分荧光蛋白的融合蛋白的话, 没有其他特别限定。另 外,第二表达载体还可以包括, 本领域技术人员根据该申请提交时的技术水平, 在细 胞内的发现第二表达载体所必需的所有构成成分, 例如, 启动子等。 本发明的第一表达载体或者第二表达载体, 可以转染到膜融合的各个其他细胞。 为了让在第一表达载体转染的细胞与在第二表达载体转染的细胞膜融合,在各个的细 胞里必需包括,例如,病毒包膜蛋白和于该病毒包膜蛋白相互特异结合的受体的蛋白 等可以引起膜融合的蛋白。 本发明进一步优选,前述病毒包膜蛋白为 HIV-1包膜蛋白,受体为 CD4副受体为 CCR5, 或者受体为 CD4副受体为 CXCR4。 本发明的第三实施形态的哺乳动物类稳定表达细胞系(expression stable cell line)的特征在于, 包括表达前述第一拆分荧光蛋白的融合蛋白的基因的第一表达载 体或表达前述第二拆分荧光蛋白的融合蛋白的基因的第二表达载。通过后述可以理解 到、利用在本领域技术人员基于本发明申请时的技术水平就可以建立、本发明的哺乳 动物类稳定表达细胞系。 因此在此不做任何限定。
本说明书中的稳定表达细胞系是指、可以稳定地表达特定的蛋白、并且该特定蛋 白的基因被转入到该细胞系的遗传子上。所以、特定的蛋白就不需要特定的处理就可 以在细胞中稳定的产生、 并且可以通过细胞分裂代代相传。 为了用第一拆分荧光蛋白的融合蛋白或第二拆分荧光蛋白的融合蛋白以及其双 方作为报告分子来定量并且可视地检测膜融合、本发明提供了包含第一拆分荧光蛋白 的融合蛋白的哺乳动物类稳定表达细胞系或是包含第二拆分荧光蛋白的融合蛋白的 哺乳动物类稳定表达细胞系。
具体为通过含有表达第一拆分荧光蛋白的融合蛋白基因的载体、或是、含有表达 第二拆分荧光蛋白的融合蛋白基因的载体的基因转入 (遗传转化) 而得到的细胞系。
这里所说的「基因转入」为通过质体、或直接加入宿主细胞内的遗传子里等公知 的技术手段向宿主细胞的转入外界的基因的手段。 为了细胞的膜融合、分别含有前述第一拆分荧光蛋白的融合蛋白或第二拆分荧光 蛋白的融合蛋白的稳定表达细胞系的任意一方里再转入病毒包膜蛋白的表达载体作 为稳定表达病毒包膜蛋白的细胞系为本发明优选。同样为了细胞的膜融合、分别含有 前述第一拆分荧光蛋白的融合蛋白或第二一拆分荧光蛋白的融合蛋白的稳定表达细 胞系的任意一方里再转入病毒包膜蛋白所对应的受体的表达载体作为稳定表达前述 受体的细胞系为本发明优选。
本发明中的病毒包膜蛋白为 HIV-1病毒包膜蛋白或是 HI V-2病毒包膜蛋白等本领 域技术人员可以按照本申请时的技术常识来任意地选定病毒包膜蛋白。本发明不做限 定。 本发明的最优选为 HIV- 1病毒包膜蛋白。
本发明中的病毒包膜蛋白的所对应受体为 CD4与辅助受体 CCR5的组合体或 CD4 与辅助受体 CXCR4的组合体或是趋化因子趋化因子 (chemokine ) 等本领域技术人员可 以按照本申请时的技术常识来任意地选定病毒包膜蛋白的所对应受体。本发明不做限 定。 本发明的最优选为 CD4与辅助受体 CCR5的组合体或 CD4与辅助受体 CXCR4的组 合体的任何一个。 本发明的具体的稳定表达细胞系的有一下 4种、 可以事先建立。
(1)包括第一拆分荧光蛋白的融合蛋白和病毒包膜蛋白的稳定表达细胞系
(2)包括第二拆分荧光蛋白的融合蛋白和病毒包膜蛋白的稳定表达细胞系
(3)包括第一拆分荧光蛋白的融合蛋白和病毒包膜蛋白所对应的受体的稳定表达细胞 系
(4)包括第二拆分荧光蛋白的融合蛋白和病毒包膜蛋白所对应的受体的稳定表达细胞 系 本发明更具体的表达细胞系有以下 1 8种优选 (参照图 7 )。
包括 [PH-GFP^j 和 HIV-1病毒包膜蛋白的稳定表达细胞系、
包括
Figure imgf000008_0001
和 CD4和辅助受体 CCR5的组合体的稳定表达细胞系、 或者、 包 括 「PH- GFPi-uJ 和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、
包括 [PH-GFPJ 和 HIV- 1病毒包膜蛋白的稳定表达细胞系、
包括「PH-GFP„」和 CD4和辅助受体 CCR5的组合体的稳定表达细胞系、或者、包括 「PH-GFPU」 和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、
包括 「DSPW。」 和 HIV- 1病毒包膜蛋白的稳定表达细胞系、
包括 ("DSPwcJ 和 CD4和辅助受体 CCR5的组合体的稳定表达细胞系、 或者、 包括 「DSPW。」 和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、
包括 「DSPU」 和 HIV-1病毒包膜蛋白的稳定表达细胞系、
包括「DSPu_^fl CD4和辅助受体 CCR5的组合体的稳定表达细胞系、或者、包括「DSPU」 和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、
包括 ("DSP d 和 HIV- 1病毒包膜蛋白的稳定表达细胞系、
包括
Figure imgf000008_0002
和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、
包括 「DSPM1」 和 HIV- 1病毒包膜蛋白的稳定表达细胞系、
包括 「DSPM1」 和 CD4和辅助受体 CCR5的组合体的稳定表达细胞系、 或者、 包括 「DSP8—„」 和 CD4与辅助受体 CXCR4的组合体的稳定表达细胞系、 本发明的含有病毒包膜蛋白的稳定表达细胞系可以按照其用途、 进行如下操作。 比如用在筛选抑制剂时、本发明的优选为、在前述第一拆分荧光蛋白的融合蛋白或第 二拆分荧光蛋白的融合蛋白的稳定表达细胞系的任意一方里、事先建立包含病毒包膜 蛋白的稳定表达细胞系。
但是、在筛选病毒包膜蛋白的所对应受体时、本发明的优选为、在前述第一拆分 荧光蛋白的融合蛋白或第二拆分荧光蛋白的融合蛋白的稳定表达细胞系的任意一方 里、 建立一次性的包含病毒包膜蛋白的稳定表达细胞系。
因为在筛选受体时、使用的病毒包膜蛋白种类过多、事先难以特定。在这种情况 下、 缺乏花时间去事先建立多种被测试的病毒包膜蛋白稳定表达细胞的需要性。 另外、 这里所说的哺乳动物类稳定表达细胞系的优选为人类的稳定表达细胞系。 本发明的第四实施形态为病毒包膜蛋白的受体方向性的筛选方法,包括:混合或 共培养(co-culture)前述包括了病毒包膜蛋白的哺乳动物类稳定表达细胞系的细胞 和前述包括了病毒包膜蛋白所对应的受体的哺乳动物类稳定表达细胞系的细胞的步 骤,检验通过前述病毒包膜蛋白和前述受体的结合后的荧光的步骤,该萤光至少为前 述荧光蛋白的自我重新结合后恢复的拆分前的萤光。 通过测定本发明的被拆分为二的拆分荧光蛋白通过自我重新结合恢复功能时发 出的的荧光,可以筛选决定膜融合形成与否的病毒包膜蛋白的受体方向性。在本发明 中,优选为, 前述病毒包膜蛋白为 HIV- 1包膜蛋白, 前述病毒包膜蛋白里特异结合的 受体为 CD4与辅助受体 CCR5的组合或者 CD4-与辅助受体 CXCR4的组合。 前述 HIV- 1包膜蛋白的受体方向性筛选,为本发明的病毒包膜蛋白的受体方向性 筛选的优选。
具体为, 包含 「DSP1- 10」 和 HIV-1包膜蛋白的哺乳类稳定表达细胞系的细胞, 包含 「DSP11」 和 CD4和辅助受体 CCR5的哺乳类稳定表达细胞系的细胞, 或者包含
「DSP11」 和 CD4和辅助受体 CXCR4的哺乳类稳定表达细胞系的细胞、 相互膜融合的 实施例, 以及包含 「DSP11」 和 HIV-1包膜蛋白的哺乳类稳定表达细胞系的细胞, 包 含 「DSP1- 10」 和 CD4和辅助受体 CCR5的哺乳类稳定表达细胞系的细胞, 或者包含
「DSP1-10」 和 CD4和辅助受体 CXCR4的哺乳类稳定表达细胞系的细胞, 相互膜融合 的实施例。 进一步为, 包含 「DSP1- 7」 和 HIV- 1包膜蛋白的哺乳类稳定表达细胞系的细胞, 包含「DSP8-11」和 CD4和辅助受体 CCR5的哺乳类稳定表达细胞系的细胞, 或者包含
「DSP8- 11」 和 CD4和辅助受体 CXCR4的哺乳类稳定表达细胞系的细胞, 相互膜融合 的实施例。 以及包含「DSP8 11」和 HIV-1包膜蛋白的哺乳类稳定表达细胞系的细胞, 包含 「DSPl-7」 和 CD4和辅助受体 CCR5的哺乳类稳定表达细胞系的细胞, 或者包含
「DSP1- 7」和 CD4和辅助受体 CXCR4的哺乳类稳定表达细胞系的细胞,相互膜融合的 实施例。 如果前述细胞的膜融合形成,即「DSP1- 10」与「0≤?11」或者、「DSP1- 7」与「03?8-11」 结合,就可以通过绿色荧光蛋白的自我重新结合使荧光发光功能恢复从而检验出荧光
(绿色), 可以视觉地监测膜融合。 另外, 当第一拆分荧光蛋白的融合蛋白与第二拆 分荧光蛋白的融合蛋白的组合分别为 「DSP1- 7」 「DSP8-11 J 或者为 「DSP8-11」 与
「DSPl-7」 时, 无论哪种情况, 被拆分的病毒包膜蛋白都会自我重新结合, 恢复酶的 功能, 因此可以定量地测定细胞的膜融合。 因此, 可以定量地测定前述与受体结合的 HIV-1包膜蛋白。另外,与「DSP1- 7」与「DSP8- 11」的一组相比,「DSP1- 10」与「DSP11」 的一组的海肾发光素酶的通过自我重新结合从而恢复酶的功能的程度略低,但是无论 哪个都可以确认海肾发光素酶是否恢复活性。
另外,本发明,还可以使用前述组合中的「PHGFP1- 10」与「?1¾^?11」和「DSP1- 10」 与 「DSP11」 的组合。 如前所述,如有事先预备的受体的哺乳动物稳定表达细胞系,则可以简便且快速 地筛选 HIV- 1包膜蛋白的特特异受体。据此,在 HIV复制上膜融合可以用于必须治疗 效果高的抑制剂上。 另外, 为了判断与使用病毒的现有方法相比近年开发的 CCR5辅 助受体抑制剂的适应性,确定病毒包膜蛋白的辅助受体方向性的决定, 由于不使用病 毒, 因此可以安全、 快速、 简便地进行。 这个方法不限定于 HIV-1, 还适用于属于病 毒包膜蛋白的流感病毒、 B型和 C型肝炎病毒、 SARS病毒、 埃博拉(Ebola)病毒等其 他病毒外被蛋白的膜融合的测定系。 本实施形态的进一步的形态为膜融合(病毒包膜蛋白与其辅助受体的结合)的抑 制剂的筛选方法, 包括: 混合或共被养 (co-culture)前述的包括了病毒包膜蛋白的 哺乳动物类稳定表达细胞系的细胞和前述的包括了病毒包膜蛋白所对应的受体的哺 乳动物类稳定表达细胞系的细胞的步骤,添加一种抑制前述病毒包膜蛋白和前述受体 的结合的抑制剂的步骤,检验通过前述病毒包膜蛋白和前述受体的结合后的荧光的步 骤, 该萤光至少为权利要求 1的荧光蛋白的自我重新结合后恢复的拆分前的萤光。 可溶性本发明 CD4 ( s CD4)及膜融合抑制剂 C34等, 为本发明中可以筛选的抑制 剂的优选。 附图说明 图 1 为本发明中所使用质粒的图谱。 (A) 图片上部, 表达 HIV-1 包膜蛋白的 p匪 cRedEluc质粒图谱, pCMV: 人巨细胞病毒启动子, NLS: 核定位信号, HcRed: 红 色荧光蛋白, f-Luc: 萤火虫荧光素酶, MSD: 跨膜区., ArapR: 氨苄青霉素抗性基因。 图片下部,所用 MSD的一级结构。 WT:野生型, VSV-G: 水泡性口炎病毒 G蛋白, GpA: 血型糖蛋白 A. 预测的 MSD区域使用大写字母表示。 (B)拆分 GFP蛋白的表达载体。 其中质粒骨架 pdEGFP(图片上部)是通过删除 EGFP- N2质粒 Smal和 BsrGI之间的 EGFP 基因序列获得。 MCS:多克隆位点, spGFP:拆分 GFP的插入位点, pSV40:来源于 SV40 的启动子区域, SV40 ori : SV40的复制起始位点, Kan/NeoR: 卡那霉素 /新霉素抗性 基因。 (图片下部)不同的 spGFP蛋白。 PH domain: Pleckstrin 同源结构域。 GFP 的下标数字表示引入拆分点的 GFP蛋白 折叠的位点。图中标示了所用限制性酶切位 点。 图 2为拆分 GFP蛋白在转染细胞中的表达。 (A) 免疫印迹分析转染了 GFP1 - 10 和 PH- GFP1-10的 293CD4细胞, 使用抗 GFP抗体。 图中标示了所表达的蛋白。 EGFP: 细胞转染了增强型 GFP蛋白。 (B)转染了 GFP11-FLAG或者 PH-GFP11- FLAG表达载体 的 293FT细胞的蛋白表达,使用抗 FLAG单克隆抗体。 MOCK为不含基因的对照物。(C) 转染细胞中单个拆分 GFP蛋白的 GFP信号。 BF表示明场, GFP: 绿色荧光信号。 图 3为拆分 GFP蛋白的胞内定位。 (A) 转染了 GFP1- 10或者 PH- GFP1- 10细胞的 免疫荧光检测, 使用抗 GFP抗体。 (B) 转染了 GFP11- FLAG, PH- GFP11-FLAG 以及 PH-GFP11表达质粒的细胞免疫荧光检测, 使用抗 FLAG抗体。 (C) PH-GFP1-10或者 GFP1-10与 PH- GFP11, GFP11的共转。 图 4为通过膜融合产生绿色荧光信号。使用激光共聚焦显微镜监测转染了相应拆 分 GFP蛋白表达载体的包膜表达细胞和受体表达细胞间发生的细胞融合。 图 5 (A) 为用细胞内的分析方法(IN Cell Analyzer)分析生细胞随时间的变 化。箭头标示 GFP信号的随着时间变化而增长。左上角为共培养的时间。(B)T7RNApol 转移分析方法的结果。 融合效率使用转移的 T7RNApol 所激活的海肾发光素酶 (Renilla Luciferase)活性表示。海肾发光素酶的活性通过除以萤火虫荧光素酶活 性以标准化转染效率。 NC表示负对照, PC: 正对照。 图 6为拆分蛋白或拆分蛋白的融合蛋白的构建以及互补效率的检测结果。 (A)为 本发明用的融合蛋白。 intact GFP和 RL:分别为绿色萤光蛋白和海肾发光素酶的全长。 nRL和 cRL为海肾发光素酶的 N端和 C端的部分、 baseVel和 acidVel为具有碱性或 酸性的异源二聚化作用的亮氨酸拉链(leucine zipper), DSP为拆分 GFP和 nRL或 是和 cRL的融合蛋白。 下面的数字显示为融合蛋白中的 GFP的 β折叠的位子。
(Β)功能相补的结果。 共转入 3 6小时后、 通过 R. L. U.: relative light unit 测试到的海肾发光素酶活性和绿色萤光。
(C)被拆分的海肾发光素酶的立体构造。 蛋白的尾端的数字为其序列号。
(D) 用含有 DSP细胞的破碎液进行动态分析 (kinetics analysis) 图 7为使用细胞来表达通过 DSP的膜融合的概念图。共培养含有受体和一种 DSP (本图为 DSP8-11 ) 的细胞和包含病毒包膜蛋白的另一种 DSP (本图为 DSP1- 7)、 使 它们产生膜融合。 如果膜融合发生、 GFP和海肾发光素酶的活性分别回复发出萤光。 图 8为通过 DSP确认膜融合的活性
(A)通过时间变化观察 GFP的萤光信号。
包含病毒包膜蛋白的细胞(B) : 通过时间变化观察海肾发光素酶 (Renilla Luciferase)回复后的活性。 (FT为野生型病毒包、 GpA以及 VSV- G:贯通膜的变异部 分、 Delta:不包含病毒包膜的对照。 图 9为在膜融合抑制剂测试膜融合的实施例
可容性的 CD4 (sCD4)和膜融合抑制剂 C34的存在下测试了膜融合。在共培养后 一定时间分别加入抑制剂、 继续培养到 2 0 0分后测试海肾发光素酶 (Renilla Luciferase) 的活性。 按照和没有抑制剂的情况下相比后的数据做成了表。 图 10为图 6的补充。显示被拆分后的海肾发光素酶(Renilla luciferase, RL) 和个别单独的 DSP没有反应活性。 图 11 确认 DSP 蛋白的表达。 (a)表达蛋白的构成、 (b)以评价免疫印迹试验 (Western Blotting) , 通过 FL抗体确认蛋白的表达。 在预想的位子确认了蛋白的表 达。 (c)通过 DSP的表达确认了海肾发光素酶功能的回复情况。 (d) 通过 DSP的表达 确认了 DSP功能的回复情况。 以红色为确认 FL的标志、 以律色为确认回复 GFP萤光 的标志。 具体实施方式
(建立细胞系)
建立由人类婴儿来的 293 FT細胞(Invtrogen #R700-07)
使用 ViraPower牌的慢病毒检测工具(Invtrogen #K4960-00)、把 DSP1- 7基因或 DSP8-11基因插入到 pLenti6/V5 DEST载体里。 拆分 GFP基因通过 CMV启动子在细胞 中表达、 用来选择用的杀稻瘟菌素 (blasticidin)由 EM7启动子同时在细胞中表达。 用 VSV 假型病毒 (pseudotype virus ) 感染 293 FT 細胞在添加杀稻瘟菌素 (blasticidin)的培养基里培养了十天。
为了进行无性繁殖、 细胞分别稀释到 0. 8个细胞(一个细胞一下) /穴、 4个细 胞 /穴、 转入另一方的拆分 GFP的表达载体传入到繁殖后的细胞里、 通过 FACS检测 GFP的活性的回复、 从中选出萤光髙的细胞。 建立 NP2/CD4/CCR5细胞或 NP2/CD4/CXCR4细胞
在来自人类神经胶质瘤 (Glioma) 细胞系 NP2里 CD4/CCR5或 CD4/CXCR4可以稳 定表达。分别通过新霉素(neomycin)和嘌呤霉素(puromycin)选出 CD4和 CCR5/CXCR4。 和 293 FT細胞一样通过用病毒感染后转入基因、 然后进行无性繁殖。 以下以实施列来说明本发明。 但是本实施列不是限制本发明的范围。
(实施例一)
一. 实验准备
( 1 )拆分荧光蛋白和 PH结构域以及表达载体的构建:
本实施例使用的是人磷脂酶 C 的 PH结构域, 由 10个 79碱基长度的寡居核苷 酸组装合成。 通过 PCR将这些寡居核苷酸结合组装起来 (94度 30秒, 50度 30秒, 72度 40秒 30个循环)。 类似的, 优化的 GFP基因是由 30段 40nt每段具有 18个碱 基重叠的寡居核苷酸组装合成的, 命名为 GFPoptl- 11。 这两段扩增得序列随后被克 隆到 CR4Blunt- T0P0中并测序。 GFPoptl- 11通过 PCR拆分为 GFP1- 10 (l-642bp)和 GFP11 (643-696bp), 并克隆到 pCR4Blunt- T0P0中。 PH-GFP1- 10和 PH- GFP11基因是 通过结合 PH结构域基因和拆分的 GFP基因获得, 随后被克隆到 pdEGFP中,构建成相 应的表达载体 pdPH-GFPl-10和 pdPH- GFP11 (图 1B)。 通过在 3' 引物中引入 FLAG标 记序列, 使用 PCR的方法将 FLAG标记引入到拆分 GFP的 C末端。 根据前人工作获得 的 pElucErw (Miyauchi, 2005), 通过使用前面含有核定位信号 (NLS) 的红色荧光 蛋白 HcRed替换原载体中的 EGFP部分, 发明人得到了这种载体的衍生形式, 一种新 的 HIV-1 Env表达载体, 命名为 pNHcRedEluc (图 1A)。 细胞转染的效率可以通过红 色细胞核的数目或者萤火虫荧光素酶活性来监测。
( 2 ) 细胞培养及转染:
293FT细胞(Invitrogen) 以及 293CD4细胞(Miyauchi, 2005)培养在含有 10% 胎牛血清(Hyclone) 的 Dulbecco修饰的 Eagle培养基中 (DMEM, Sigma)。 293FT培 养基中按照说明书加入了终浓度为 500g/ml的遗传霉素(Gibco)。瞬转实验中使用的 是 Fugene HD试剂 (Roche)。 表达 PH-GFP1- 10的稳转细胞系是使用电转化 (Biorad GenePulsar) 的方法将 pdPH-GFPl- 10转入到 293CD4细胞中建立。 所转染细胞通过 700g/ml遗传霉素进行筛选。
( 3 ) 融合检测:
拆分 GFP 介导的融合检测使用如下步骤进行。 将表达载体 pNHcRedEluc 和 pdPH-GFPll转入 293FT细胞中。 同时将 pdPH- GFP1- 10转入 293CD4细胞中。 转染 42 小时后, 将转染后的 293FT细胞与转染后的 293CD4细胞贴面培养, 并使用 IN Cell Analyzer 1000 (GE healthcare)观察活体细胞的融合情况, 或者将细胞固定 (4% 多聚甲醛) 使用激光共聚焦显微镜 (Olympus FLU0VIEW FV1000) 检测选定时间点的 细胞融合情况。除了实验中所使用的载体是 pNHcRedEluc, T7RNApol转移方法的融合 检测均按照前人所述方法进行 (Miyauchi, 2005)。
( 4 ) 蛋白分析:
样品的准备和免疫印迹实验均按照前人所述方法完成 (Miyauchi, 2005)。 其中 抗 FLAG抗体来自 Sigma公司。 抗 GFP抗体来自 Santa Cruz Biotechnology公司。 化 学发光信号使用 LAS3000 lite (Fuji )检测。
( 5 ) 免疫荧光检测:
将转染细胞用丙酮: 甲醇溶液(1 : 1, 体积比)于室温处理 15分钟固定, 并使用 抗 FLAG抗体(3 g/ml )于 30度温育 40分钟。实验所使用二抗使用 Alexa Fluor 555 标记, 荧光信号是使用激光共聚焦显微镜 (Olympus FLU0VIEW FV1000)观测。
二. 实验结果
( 1 ) 蛋白表达:
GFPoptl-11和 ra结构域的 DNA片段使用材料与方法部分所述方法生成。 将图 1 中 A和 B所示表达载体转入细胞中表达,并使用免疫印迹法检测蛋白表达情况。当使 用抗 GFP抗体检测的时候, GFP1- 10和 PH-GFP1- 10分别对应为 25kDa和 40kDa的条 带 (图 2A), 检测到的 PH-GFP1-10的分子量大小与 PH- GFP1-10 (23kDa)和!¾结构 域(18kDa) 之和所预测的大小一致。 在检测 GFP11的表达时, 抗 GFP抗体没有能够 检测到任何条带(数据未显示)。这可能是由于 GFP11只有 17个氨基酸, 分子量太小 的缘故, 或者是该片段上缺乏抗 GFP抗体的抗原表位的缘故。
因此发明人又使用了含有或者不含有 1¾结构域的 FLAG标记 GFP11用于免疫印迹 检测。检测到了 22kDa大小的 PH-GFP11蛋白, 但是没有检测到 GFP11-FLAG蛋白 (图 2B 这个结果表明不含 PH结构域的 GFP11片段是不稳定的。与所预期的一致, 单独 的拆分 GFP蛋白和拆分 PH-GFP蛋白是不产生荧光信号的 (图 2C)。
( 2 )使用免疫荧光分析检测了 PH结构域的结合效果:
理论上来讲, PH结构域能将拆分 GFP蛋白定位到细胞质膜附近。实验结果表明, 在不含有 PH结构域的时候,拆分的 GFP1- 10在整个细胞中分布,而拆分的 PH- GFP1-10 则定位在转染细胞的外周 ·(图 3A)。 无法检测到 FLAG标记的 GFP11的表达(图 3B, 上), 这与免疫印迹的结果相一致(图 2B)。 另一方面, 可以在细胞外周检测到含有 FLAG标记的 PH- GFP11 (图 3B, 中)。 不含 FLAG标记的 PH- GFP11无法用 anti- FLAG 抗体检测到 (图 3B, 下)。
(实施例二)
( 1 ) 哺乳动物细胞中拆分 GFP蛋白和 PH融合的拆分 GFP蛋白的互补实验。 发明人将一对拆分 GFP蛋白的表达质粒共转至 293FT细胞中。 当两个拆分 GFP 蛋白片段被共转染后, 可以观察到绿色荧光信号(图 3C)。 与图 2和图 3中所示数据 一致的是, 如果转入 PH- GFP11 可以产生绿色荧光信号, 而转入 GFP11 则不能。 当 PH-GFP11与 GFP1-10共转的时候, 可以在共转染的细胞中观测到均匀的绿色荧光信 号。 这个数据结果表明这两个片段的结合在它们被定位到质膜上之前就发生了。 而 PH-GFP1-10和 PH-GFP11共转的时候, 观测到主要的绿色荧光信号位于共转细胞的边 缘, 同时在胞质中也观测到了一些绿色荧光信号。后者可能反映了蛋白的结合发生在 定位之前。
( 2 )使用瞬时转染检测细胞之间的膜融合
将含有野生型的 EnvpNHcRedEluc质粒(pNHcRedElucWT)和 pdPH- GFP11瞬转入 293FT细胞, 随后与稳定表达 PH-GFP1- 10的 293CD4共培养。 我们首先使用激光共聚 焦显微镜对共培养的细胞进行了详细的图像分析(图 4A)。由于转入了核定位的 HcRed 蛋白, 表达包膜蛋白的细胞核会变成红色。我们观察到一些红色的细胞核, 其细胞周 围具有来自于含 1¾结构域的互补 spGFP产生的线状绿色荧光信号。 这些绿色荧光信 号具有特异的定位,很容易将其与细胞中非特异的自发荧光区分开来。同时可以通过 合胞体中缺乏红色的细胞核来排除那些可能存在的自发融合现象。这个结果表明,不 加入任何其它的染料或者底物,我们可以同时利用 pNHcRedEluc和拆分 GFP蛋白更加 客观地监测膜融合现象。 发明人接下来检测了在这个方法中, GFP信号随着时间进程的发展情况。使用 IN Cell Analyzer实时地监测融合的过程可。 30分钟后即可检测到 spGFP重新结合所产 生的绿色荧光信号, 并且检测到的数目和强度逐渐地增加 (图 5A)。 发明人将结果同 传统的 T7RNApol转移分析方法做了比较 (图 5B)。 这两组数据相互吻合, 在这两个 方法中都记录到了不断增加的膜融合事件。 本文所使用的拆分 GFP方法的一个优点 是, 它可以检测到单个膜的融合事件, 而不是使用 T7方法检测到的平均活性。此外, 与 T7方法不同, 该方法可以对同样的共培养活体细胞进行连续地实时监测。
(实施例三)
(1)拆分点位于氨基酸序列的第 157和第 158之间的绿色荧光蛋白的活性: 本发明人对图 6 (A)所示的不同拆分点的绿色荧光蛋白进行了测试, 包括 GFP1- 10和 GFP11以及 GFP1- 7和 GFP8- 11。 所用到的缩略词如下: nRL: RL的 N末端 片断, cRL: RL的 C末端片断, BaseVel : 来源于具有异源二聚亮氨酸拉链结构的多 肽 (Velcro多肽) 的基因工程多肽衍生物, 其含有 Velcro多肽碱性的氨基酸残基, AcidVel : 亮氨酸拉链多肽的另一部分, 其含有一些酸性的氨基酸残基, PH domain: pleckstrin同源结构域, Dual : GFP片断和 RL片断相互融合形成的融合蛋白 (下标 的数字表示引入拆分点的 GFP蛋白 β折叠的位置)。
拆分荧光蛋白的融合蛋白在 293FT细胞中的实验结果显示在图 6 (B)。RL或者 GFP 的活性在转染 36小时后检测。 图中上部分是根据材料和方法部分的方法测量出的 RL 活性。 R. L. U.表示相对发光值。 下部分是使用 IN Cell Analyzer检测的 GFP信号。 图中给出了 GFP信号的图片以及明场(BF)的图片。所有仅转染了个 DNA的细胞都没 有表现出 RL活性以及 GFP信号。 pEGFP表示使用了表达增强型 GFP表达质粒, 天然 的 RL表示使用了含有 RL全长的质粒。
本发明人检测了利用这个具有较强自我结和能力的蛋白对 GFP1- 7/GFP8-11构建 的 spRL的互补效率。 基于 GFP1-7/GFP8- 11的拆分荧光蛋白的融合蛋白(Dual Split fusion Protein (DSP) : DSP1-7/DSP8-11 ) 中的 spRL (图 6 (B), DSPl- 7/DSP8-11 ) 互补效率比使用 GFP1- 10/GFP11 (图 6 (b), DSPl- 10/DSP11 )或者比命名为 "Velcro" 的异源二聚卷曲螺旋要髙 2个数量级 (图 6 (b), nRL-baVel/acVel-cRD o 事实上, 在所有测试的 DSPs 中, DSPl- 7/DSP8-11 恢复的 GFP信号是最强的 (图 6 (B), DSPl- 7/DSP8_ll)。 本发明人也尝试了在 DSPs上融合 pleckstrin 同源结构域 (PH domain) (图 6 (A) ), 因为在此前的研究中, 它有助于 GFP片断的表达。 但在本实验 中附加上的 PH结构域却降低了活性 2个数量级,因此 ra结构域使用在 DSP上起到的 是一个减弱活性的效果(图 6 (B), PH-GFP1-10/PH-GFP11和 PH- GFP1- 7/PH- GFP8- 11 )。 与预期一致, 单个 DSP片断并不产生 GFP信号, 或者具有 RL活性。 这两种拆分荧光 蛋白的融合蛋白在表达细胞中都是均匀分布的,没有观察到特异的定位模式。本发明 人接下来在非细胞体系中研究了 DSPl- 7/DSP8- 11互补反应的酶动力学。 通过将含有 单个拆分荧光蛋白的融合蛋白的细胞抽提物相互混合, 然后测定选定时间点的 RL活 性。 DSP1- 7和 DSP8- 11的互补反应起始非常迅速,并在 8分钟内完成了反应(图 6 D); 表明拆分荧光蛋白的融合蛋白可以用于研究膜融合的早期步骤。
(实施例四)
( 1 )拆分蛋白和融合蛋白的组合质粒的构建
本发明人使用了 phRL_CMV质粒 (Promega) 的骨架序列来表达融合蛋白。 RL拆 分点的选择是基于此前的遗传学研究 (Paulmurugan, 2003)。 spRL的 N末端或者 C 末端片断相应地命名为 nRL或者 cRL。 本发明人在实验中将一些结合蛋白融合到了 spRL上。 这包括使用了一个称作 Velcro多肽的亮氨酸拉链片断, 其含有形成平行卷 曲螺旋 (parallel coiled coil ) 的酸性或者碱性残基 (0' Shea, 1993)。 Velcro含 有酸性残基的片段(AcidVel )被克隆到了 nRL的 C末端。 Velcro含有碱性残基的片 段 (BaseVel )被克隆到了 cRL的 N末端。
为了将 spGFP与 spRL相互融合, 通过使用 OPT GFP1- 11 (Cabantous, 2006) 为模板使用 KOD (+) 聚合酶 (Toyobo)或者 Pfu turbo (Stratagene) PCR扩增得到 两端含有 Nhel和 Sbfl酶切位点的 spGFPs的片段(GFP卜 10, GFP1- 7和 GFP8-11 )。 该扩增片段随后被克隆到 PCR-4T0P0blurrt中,并测序。然后 GFP1-10和 GFP1- 7片段 被克隆到 nRL或者 phRL上游的 Nhel和 Sbfl酶切位点之间。 GFP8- 11片段被克隆到 spRL/phRL-CMV载体的 Sail和 Xbal酶切位点之间。
在 5'末端和 3'末端含有 Nhel和 Sbfl酶切位点 GFP11片段是通过退火一对合成 的寡居核苷酸片段获得,并克隆得到。这些构建的 spRL基因融合到 GFP1-10, GFP1-7, GFP8- 11和 GFP11上后, 相应的命名为 duall-10, dual 1-7, dual 8-11 , 和 dualll。 为了将 PH结构域附着到双重拆分蛋白的基因序列上, 所有的双重拆分蛋白的基因序 列都通过 PCR反应扩增, 在 5'和 3' 末端相应地添加上了 EcoRI和 Kpnl酶切位点, 并克隆到了前述的含有 1¾结构域序列的 spGFP/pdDEGFP载体中 (WJQ等)。
( 2 )在哺乳动物细胞中共转拆分蛋白和双重拆分蛋白的互补分析
所有的细胞培养都是在 37° C, 5% C02浓度的条件下培养的。 2 X 105细胞密度的 293FT细胞使用 Fugene HD转染了 lOOngDNA (Fugene HD/ 20ng/ 1DNA所用试剂比 例是 1/17; 本实验中所有的转染都是使用这个比例完成的)。 转染完成后 2天, 使用 IN Cell Analyzer 1000 (GE healthcare)对 293FT细胞拍照 (使用 10 X物镜, 每 孔选择 5 个不同的区域取样拍照)。 在此分析之后, 同样的培养物使用 Renilla Luciferase Assay试剂盒 (Promega)跟据产品说明书测量 RL活性。
( 3 ) 非细胞体系中拆分荧光蛋白的融合蛋白的组合的互补分析
在 6cm的培养皿 (BD falcon)上铺种每毫升密度为 4 X 104的 293FT细胞和 293CD4 细胞。在铺种 2天之后,使用 DSP1- 7和 DSP8- 11基因相应的转染 293FT细胞和 293CD4 细胞。 在使用 PBS洗涤细胞 2次以后, 转染的细胞使用细胞刮刀 (BD falcon)移除 细胞, 并使用离心机 (20,000g, 4°C, 10 分钟) 收集, 然后按照说明书 (Renilla Luciferase Assay Kit, Promega)使用 500 1的样品裂解缓冲液裂解细胞, 获得细 胞裂解液。每份裂解液取 20 1混合, 在室温使用 Glomax仪器(Promega)根据选定 时间进程测量活性值。 每个独立的实验都至少重复 3次。
( 4 M吏用拆分荧光蛋白的融合蛋白的组合基因以及 enduren底物监测活体细胞 的膜融合
当细胞大约 50%铺满的时候, 向 293FT细胞中转入 DSP1- 7以及表达 HIV-1包膜 蛋白 Env或其突变型的表达载体 PNHcRedEluc [WJQ等],以在 96孔板中产生 HIV- 1 Env 表达细胞。 另一方面, 将转入 DSP8- 11的 293CD4细胞培养在温度依赖型的 6cm培养 皿中, 当温度从 37° C降到 25° C的时候,细胞可以很容易的从这种培养皿壁上脱离下 来。转染 36到 48小时后, 293CD4细胞的培养基使用含有 60 M RL膜通透底物 enduren (Promega) 的 50 1培养基替换, 然后在 37° C培养 2个小时。 与此同时, 293FT细 胞的培养基使用不含 enduren的培养基替换。在培养 2小时结束后,将培养于温度依 赖的培养皿中的 293CD4细胞置于室温温育 5分钟, 然后使用吸移管轻轻的摇动使得 293CD4细胞的浓度均一。这些悬浮起的 293CD4细胞随后与每孔中的 293FT细胞共同 铺种。 在共培养这些细胞的期间, 按照时间顺序使用 Glomax (Promega) 的 enduren 分析程序测量每个孔的 RL活性。 也按照时间顺序使用 In Cell analyzer 1000 (GE healthcare)检测 GFP的绿色荧光信号。
使用可溶性的 CD4和 T-20 (NIH AIDS研究和参考试剂计划)检测了抑制剂的效果。 除了抑制剂的添加,共培养细胞进行的所有实验都使用上述方法进行。每种抑制剂在 共培养之后的 0, 20, 40, 60, 100, 150分钟时添加。 RL的活性在共培养后 200分 钟测量。
本实验的结果表示在图 8。 在非细胞体系中分析 RL活性恢复的酶动力学以及使 用双重拆分蛋白系统监测膜融合(图 6 D)在非细胞体系中互补反应酶动力学的测量。 将转染了 DSP1-7和 DSP8-11基因的 293FT细胞和 293CD4细胞的细胞裂解液混合后, 监测恢复的 RL活性。 本实验重复了 3次以上, 具有代表性的数据呈列在此。 (图 8B) 实时检测 HIV-1包膜蛋白介导的膜融合, (图 8B)使用 RL的膜通透底物 enduren的 RL活性。
通过共培养表达 HIV-1包膜蛋白或其受体以及相应的双重互补蛋白的转染细胞, 并在选定的时间点做出测量。 所使用的 Erw基因是来自于 HXB2 (空心方块) 的野生 型 Εην, 其突变体的跨膜区被血型糖蛋白 A (GpA, 空心菱形) 以及水泡性口炎病毒 (VSV-G, 空心三角) 的跨膜区所替代。 使用相同的骨架序列但是不含 erw基因的质 粒(no Er , 空心圆)作为负对照。 (d) 在膜融合过程中抑制剂的效果。 可溶性 CD4 是 Erw及其受体结合的抑制剂。 T-20是膜融合过程中 gp41形成中间产物的抑制剂。
从通过以上的恢复的 GFP信号,就能够很容易的掌握膜融合的分布范围。融合的 数目随着时间的增加而增加, 这与此前的结果一致(图 8 )。 同时也使用膜通透底物 enduren测量了 RL的活性, 与此前得到使用的定量 T7 RNA聚合酶转移实验结果相一 致。即使是在共培养 8小时之后,也能够检测到突变体较低的 RL活性。野生型的 Env 表现出与此前报道相似的 S-型酶动力学曲线(图 8B), 共培养之后完成 50%最多融合 的时间 tl/2, 为 100分钟 (图 8B)。
而在突变体中, GpA突变体表现出了较慢的酶动力学,其 tl/2=165分钟,而 VSV - G 突变体表现出了更慢的酶动力学, tl/2=264分钟。 即使是 GpA和 VSV-G突变体自身 的酶动力学也存在差异。 这个差异在本发明人以前使用 T7 RNA聚合酶转移分析法或 者染料转移分析法的时候都没有检测到。连续地实时监测同一个培养物是拆分荧光蛋 白的融合蛋白的组合系统的一个很大的优势。本发明人注意到本实验的检测和以前的 检测中得到的 U/2的不同是由于染料的转移原因, 本实验的检测结果表现出更长的 tl/2。
这种使用拆分荧光蛋白的融合蛋白的组合和染料转移的方法间产生的差异可能 是由于在使用拆分荧光蛋白的融合蛋白的组合的实验中需要两个成分间形成足够大 的孔洞使拆分荧光蛋白的融合蛋白能够通过,而对于小分子的染料来说,可以转移得 比蛋白要快得多。或者也有可能是拆分荧光蛋白的融合蛋白的恢复活性所需要的延迟 时间导致了这个差异。本发明人也利用这个系统检测了融合抑制剂的效果。在加入可 溶性 CD4之后 tl/2大约为 51分钟; 在加入六螺旋管束形成抑制剂之后 tl/2大约为 78分钟 (图 8 C)。 这些值都与所预测的这些抑制剂在膜融合过程中的作用点顺序相 一致。
在本发明中,本发明人应用了拆分荧光蛋白的融合蛋白的组合来监测膜融合。由 于拆分荧光蛋白的融合蛋白的组合的双重功能,膜融合可以在相同的活体细胞中使用 下述的 2个参数来定量的评估。一个是平衡的膜融合步骤是如何倾向于融合孔洞形成 的, 这个可以通过定量的 RL活性的绝对数值或者 GFP信号阳性细胞的数目来估计。 另一个是根据 RL活性的时间进程来评估膜融合发生有多快。 使用本方法获得的信息 对于阐明膜融合的机制将会很有帮助。进一步的定量膜融合检测将会对于新药开发很 有帮助。另外,拆分荧光蛋白的融合蛋白的组合也可以用于测试细胞中的两个区室间 的相互作用, 例如囊泡运输。

Claims

权利要求书
1 .一种拆分荧光蛋白的融合蛋白的组合,包括第一拆分荧光蛋白的融合蛋白和第二 拆分荧光蛋白的融合蛋白,前述第一拆分荧光蛋白的融合蛋白, 由已被拆分为二的拆 分荧光蛋白的一部分和于前述已被拆分荧光蛋白的一部分相互结合的第一结合蛋白 而组成,前述第二拆分荧光蛋白的融合蛋白, 由前述拆分荧光蛋白的剩余部分和于前 述拆分荧光蛋白的剩余部分相互结合的第二结合蛋白的而组成,
其特征在于,存在于前述的第一拆分荧光蛋白的融合蛋白与前述第二拆分荧光蛋白的 融合蛋白里的前述被拆分为二的拆分荧光蛋白可以自我重新组合恢复被拆分为二前 的荧光功能, 从而发出荧光。
2 . 根据权利要求 1所述的一种拆分荧光蛋白的融合蛋白的组合, 其中, 前述拆分荧 光蛋白为绿色荧光蛋白,其拆分点在氨基酸序列的第 214和第 215之间,其中前述第 一结合蛋白和第二结合蛋白均为一种和磷脂酰肌醇(phosphatidylinositol )结合的 蛋白。
3 .根据权利要求 1或 2所述的一种拆分荧光蛋白的融合蛋白的组合,其中前述一种 和磷脂酰肌醇 ( phosphatidylinositol ) 结合的蛋白是 PH 结构域 ( pleckstrin homology domain)。
4 . 根据权利要求 1所述的一种拆分荧光蛋白的融合蛋白的组合, 其中, 前述拆分荧 光蛋白为绿色荧光蛋白,其拆分点在氨基酸序列的第 157和第 158之间,其中前述第 一结合蛋白为在第 229和第 230之间被拆分的海肾发光素酶 (Renilla luciferase, RD 的一部分, 前述第二结合蛋白为该被拆分的海肾荧光素的另一部分。
5 . 一种表达载体的组合, 包括第一表达载体和第二表达载体, 其特征在于, 第一表 达载体包括表达前述权利要求 1至权利要求 4任一的第一拆分荧光蛋白的融合蛋白 的基因, 第二表达载体包括表达前述第二拆分荧光蛋白的融合蛋白的基因。
6 . 一种哺乳动物类稳定表达细胞系(expression stable cell line) , 其特征在于, 包括表达前述第一拆分荧光蛋白的融合蛋白的基因的第一表达载体或表达前述第二 拆分荧光蛋白的融合蛋白的基因的第二表达载体。
7 . 根据权利要求 6所述的一种哺乳动物类稳定表达细胞系, 其特征在于, 其中的任 意的哺乳动物类稳定表达细胞同时又包括了病毒包膜蛋白。
8 . 根据权利要求 6所述的一种哺乳动物类稳定表达细胞系, 其特征在于, 其中的任 意的哺乳动物类稳定表达细胞同时又包括了病毒包膜蛋白所对应的受体。
9 . 根据权利要求 7所述的一种哺乳动物类稳定表达细胞系,其特征在于, 其病毒包 膜蛋白为 HIV- 1包膜蛋白。
1 0 . 根据权利要求 8所述的一种哺乳动物类稳定表达细胞系, 其特征在于,其病毒 包膜蛋白所对应的受体为 CD4与辅助受体 CCR5的组合体或是 CD4与辅助受体 CXCR4 的组合体。
1 1 . 一种病毒包膜蛋白的受体方向性的筛选方法, 包括- 混合或共培养(co-culture)权利要求 7的包括了病毒包膜蛋白的哺乳动物类稳定表 达细胞系的细胞和权利要求 8的包括了病毒包膜蛋白所对应的受体的哺乳动物类稳 定表达细胞系的细胞的步骤,
检验通过前述病毒包膜蛋白和前述受体的结合后的荧光的步骤,该萤光至少为权利要 求 1的荧光蛋白的自我重新结合后恢复的拆分前的萤光。
1 2 . 一种膜融合的抑制剂的筛选方法, 包括:
混合或共被养(co-culture)权利要求 7的包括了病毒包膜蛋白的哺乳动物类稳定表 达细胞系的细胞和权利要求 8的包括了病毒包膜蛋白所对应的受体的哺乳动物类稳 定表达细胞系的细胞的步骤,
添加一种抑制前述病毒包膜蛋白和前述受体的结合的抑制剂的步骤,
检验通过前述病毒包膜蛋白和前述受体的结合后的荧光的步骤,该萤光至少为权利要 求 1的荧光蛋白的自我重新结合后恢复的拆分前的萤光。
1 3 . 根据权利要求 1 1所述的一种病毒包膜蛋白的所对应受体的筛选方法,其特征 在于, 前述病毒包膜蛋白为 HIV-1包膜蛋白, 前述病毒包膜蛋白所对应的受体为 CD4 与辅助受体 CCR5的组合体或是 CD4与辅助受体 CXCR4的组合体。
1 4 . 根据权利要求 1 2所述的一种病毒包膜蛋白与受体结合的抑制剂筛选方法, 其 特征在于, 前述病毒包膜蛋白为 HIV-1包膜蛋白, 前述受体为 CD4和辅助受体 CCR5 的组合体或是 CD4与辅助受体 CXCR4的组合体。
PCT/CN2009/001425 2008-12-11 2009-12-11 拆分荧光蛋白的融合蛋白组合、其表达载体,稳定表达哺乳动物细胞系及筛选方法 WO2010066113A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810186033.4 2008-12-11
CN200810186033A CN101747438A (zh) 2008-12-11 2008-12-11 拆分荧光蛋白的融合蛋白的组合及其表达载体和应用
CN200810186034.9 2008-12-11
CN200810186034A CN101747439A (zh) 2008-12-11 2008-12-11 拆分荧光蛋白的融合蛋白的组合、其表达载体及用途

Publications (1)

Publication Number Publication Date
WO2010066113A1 true WO2010066113A1 (zh) 2010-06-17

Family

ID=42242320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001425 WO2010066113A1 (zh) 2008-12-11 2009-12-11 拆分荧光蛋白的融合蛋白组合、其表达载体,稳定表达哺乳动物细胞系及筛选方法

Country Status (1)

Country Link
WO (1) WO2010066113A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156484A4 (en) * 2014-06-10 2017-12-27 Medical & Biological Laboratories Co., Ltd. Method for judging protein interaction
CN108752484A (zh) * 2018-06-21 2018-11-06 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针
CN113227152A (zh) * 2018-08-01 2021-08-06 科罗拉多大学评议会法人团体 用于大分子递送和基因组修饰的可编程设计因子治疗性促融合分泌性g型核外颗粒体囊泡
WO2021212096A1 (en) 2020-04-17 2021-10-21 Regeneron Pharmaceuticals, Inc. Detection assays for coronavirus neutralizing antibodies
WO2023039243A3 (en) * 2021-09-13 2023-09-28 Achelois Biopharma, Inc. Hepatitis b virus antivirus (hbv-antivirus) compositions and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886420A (zh) * 2003-10-24 2006-12-27 加利福尼亚大学 自我组装脱落荧光蛋白系统
WO2007051002A2 (en) * 2005-10-27 2007-05-03 The Trustees Of Boston University Activated split-polypeptides and methods for their production and use
US20070136825A1 (en) * 2001-09-18 2007-06-14 Wolf-Bernd Frommer Fusion proteins useful for detecting analytes
US20080248463A1 (en) * 2004-03-15 2008-10-09 The Regents Of The University Of California Split Enzyme Linked Immunosorbent and Nucleic Acid Assays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070136825A1 (en) * 2001-09-18 2007-06-14 Wolf-Bernd Frommer Fusion proteins useful for detecting analytes
CN1886420A (zh) * 2003-10-24 2006-12-27 加利福尼亚大学 自我组装脱落荧光蛋白系统
US20080248463A1 (en) * 2004-03-15 2008-10-09 The Regents Of The University Of California Split Enzyme Linked Immunosorbent and Nucleic Acid Assays
WO2007051002A2 (en) * 2005-10-27 2007-05-03 The Trustees Of Boston University Activated split-polypeptides and methods for their production and use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3156484A4 (en) * 2014-06-10 2017-12-27 Medical & Biological Laboratories Co., Ltd. Method for judging protein interaction
US10761085B2 (en) 2014-06-10 2020-09-01 Medical & Biological Laboratories Co., Ltd. Method for determining a protein-protein interaction
CN108752484A (zh) * 2018-06-21 2018-11-06 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针
CN108752484B (zh) * 2018-06-21 2021-06-15 中国科学院生物物理研究所 一种用于检测丙二酰辅酶a的分子探针
CN113227152A (zh) * 2018-08-01 2021-08-06 科罗拉多大学评议会法人团体 用于大分子递送和基因组修饰的可编程设计因子治疗性促融合分泌性g型核外颗粒体囊泡
EP3823995A4 (en) * 2018-08-01 2022-05-04 The Regents of the University of Colorado, a body corporate PROGRAMMABLE THERAPEUTIC FUSOGENE SECRETED GECTOSOME DESIGNER VESICLES FOR MACROMOLECULE RELEASE AND GENOME MODIFICATION
WO2021212096A1 (en) 2020-04-17 2021-10-21 Regeneron Pharmaceuticals, Inc. Detection assays for coronavirus neutralizing antibodies
WO2023039243A3 (en) * 2021-09-13 2023-09-28 Achelois Biopharma, Inc. Hepatitis b virus antivirus (hbv-antivirus) compositions and methods of use

Similar Documents

Publication Publication Date Title
AU781478B2 (en) Methods and compositions for the construction and use of fusion libraries
US6107477A (en) Non-optimal Kozaks sequences
EP1187928A2 (en) Virus like particles, preparation and use in screening and functional genomics
WO2010066113A1 (zh) 拆分荧光蛋白的融合蛋白组合、其表达载体,稳定表达哺乳动物细胞系及筛选方法
US6114111A (en) Mammalian protein interaction cloning system
US6316223B1 (en) Mammalian protein interaction cloning system
US20050277116A1 (en) Compositions and methods for the identification of protein interactions in vertebrate cells
Li et al. Homomeric interactions between transmembrane proteins of Moloney murine leukemia virus
WO2018053006A1 (en) Methods and compositions for the positive selection of protein destabilizers
Takagi et al. FRET analysis of HIV‐1 Gag and GagPol interactions
US20020052040A1 (en) Virus like particles, their preparation and their use preferably in pharmaceutical screening and functional genomics
JP4287633B2 (ja) オルガネラ局在タンパク質の解析方法と解析材料
JP2003513670A (ja) ジフテリア毒素構築体を用いるスクリーニングのための方法および組成物
US9683254B2 (en) Compositions and methods for identifying enzyme and transport protein inhibitors
EP1219705A1 (en) Virus like particles, their preparation and their use preferably in pharmaceutical screening and functional genomics
CN101747438A (zh) 拆分荧光蛋白的融合蛋白的组合及其表达载体和应用
JP2019513397A (ja) 単一の選択可能マーカを使用した複数の送達ベクターの逐次ローディング
CN112867791A (zh) 用于转导蛋白质-蛋白质相互作用的新方法
Wang et al. Monitoring of HIV-1 envelope-mediated membrane fusion using modified split green fluorescent proteins
LaFontaine et al. Ribosomal protein RACK1 facilitates efficient translation of poliovirus and other viral IRESs
US20080161199A1 (en) Fusion Proteins and Methods for Determining Protein-Protein-Interactions in Living Cells and Cell Lysates, Nucleic Acids Encoding these Fusion Proteins, as well as Vectors and Kits Containing These
WO2002034929A9 (en) Expression vectors and uses thereof
Hansen et al. BiZyme: a novel fusion protein-mediating selection of vaccinia virus recombinants by fluorescence and antibiotic resistance
US10793864B2 (en) Methods and compositions for assessing viral nuclear localization
CN101747439A (zh) 拆分荧光蛋白的融合蛋白的组合、其表达载体及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831390

Country of ref document: EP

Kind code of ref document: A1