WO2010064588A1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
WO2010064588A1
WO2010064588A1 PCT/JP2009/070070 JP2009070070W WO2010064588A1 WO 2010064588 A1 WO2010064588 A1 WO 2010064588A1 JP 2009070070 W JP2009070070 W JP 2009070070W WO 2010064588 A1 WO2010064588 A1 WO 2010064588A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
motor
vacuum pump
rotors
heat
Prior art date
Application number
PCT/JP2009/070070
Other languages
French (fr)
Japanese (ja)
Inventor
大須賀透
中澤敏治
大山敦
飯島直樹
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Publication of WO2010064588A1 publication Critical patent/WO2010064588A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0064Magnetic couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/047Cooling of electronic devices installed inside the pump housing, e.g. inverters

Definitions

  • FIG. 5 is a block diagram showing another power supply unit of the vacuum pump according to the embodiment of the present invention.
  • FIG. 6 is a block diagram showing still another power supply unit of the vacuum pump according to the embodiment of the present invention.
  • FIG. 7 is a graph showing the relationship of (air cooling member volume) / (cooling heat amount) / (water cooling structure volume) / (cooling heat amount) to the motor capacity in the vacuum pump.
  • 8A is a plan sectional view showing a vacuum pump main body of the vacuum pump according to the embodiment of the present invention
  • FIG. 8B is a sectional view taken along line AA in FIG. 8A
  • FIG. 8C is a sectional view taken along line BB in FIG.
  • FIG. 8D shows the pump casing of FIG. 8B.
  • FIG. 1A is a plan view showing an outline of a vacuum pump according to an embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A
  • FIG. 1C is a left side view of FIG.
  • the present vacuum pump includes a heat sink 12 for heat dissipation, and a flow path plate 13 is attached to the lower surface of the heat sink 12, and between the fins 12a and 12a of the heat sink 12 and the flow path plate.
  • An air flow path 14 through which cooling air passes is formed between the both side bent portions 13 and the fins 12a.
  • the power source component 15, the driver component 16, and the DC motor of the vacuum pump body 10 are arranged on the upper surface of the heat sink 12 in order from the rear end. M and pump P are mounted.
  • An air outflow hole 18 is formed between the driver component 16 of the heat sink 12 and the DC motor M.
  • the power source component 15, the driver component 16, the DC motor M, and the pump P are mounted on the upper surface of the heat sink 12 to constitute the pump package 20, and the fins 12 a and fins of the heat sink 12 of the pump package 20 are configured.
  • FIG. 5 is a block diagram illustrating a configuration of a power supply unit of the vacuum pump illustrated in FIGS. 1A to 1C or 2A to 2C.
  • a power factor correction circuit (PFC) 25 is provided on the output side of the rectifier 4 in the power supply unit of the vacuum pump.
  • the power supply component 15 is a component constituting the power factor correction circuit (PFC) 25, and the driver component 16 is a component constituting the driver 7. They are arranged in consideration of the current flow.
  • the vacuum pump main body 10 includes a pump P and a DC motor M.
  • the pump casing 33 of the pump P includes an intake port 31 and an exhaust port 32, and a rotor housing space 39 in which a pair of two-shaft pump rotors 35 are rotatably housed is formed inside the pump casing 33.
  • the cross section of the rotor accommodating space 39 has a shape in which both sides are arc-shaped and convex portions 40 are formed at portions located between the pump rotors 35.
  • Each pump rotor 35 disposed in the rotor accommodating space 39 is rotatably supported by bearings 37 and 38 at both ends thereof.
  • the present invention is applicable to a volume transfer type vacuum pump having a pair of pump rotors in a pump casing driven by a DC motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

The vacuum pump is compact with a direct-current motor capacity of 2 KW or lower and is capable of attaining a vacuum easily at any location. The vacuum pump is equipped with a positive displacement pump (P) having a pair of pump rotors (35) inside a pump casing (33); a direct-current motor (M) for turning the pair of pump rotors (35); a driver (7) and a control unit for driving the direct-current motor (M); and cooling sections (12, 14) for air-cooling of the heat of compression which is generated by the pumping action when the pump (P) is driven and the heat generated by the direct-current motor (M), the driver (7) and the control unit.

Description

真空ポンプVacuum pump
 本発明は、直流モータで駆動する一対のポンプロータをポンプケーシング内に備えた容積移送式の真空ポンプに関する。 The present invention relates to a positive displacement vacuum pump provided with a pair of pump rotors driven by a DC motor in a pump casing.
 近年、大気圧から動作が可能で、クリーンな真空環境が容易に得られるドライ真空ポンプが、幅広い分野で使用されている。通常このような真空ポンプは、吸気側が締め切りに近い状態にて運転が行われるため、吸気口側と排気口側の差圧を維持する為に、動力を消費している。つまり、排気口側からポンプ内部に逆流する気体を排気し続けることにより、吸気口側の真空度を維持している。このため真空ポンプの運転に使用される消費動力のほとんどは排気口側にて熱に変換される。真空ポンプの容量にもよるが、上記発熱に対して、従来はケーシングに水冷ジャケット等を設け、該水冷ジャケット内を通る水に熱を放熱する対策が採られていた(特開平8−319967号公報参照)。
 例えば、真空ポンプとして、図11に示すように、遮断機2、ノイズフィルタ3、整流器4、平滑コンデンサ5、及びDC/DCコンバータ6を具備する電源部1と、ドライバ7と、直流モータMとポンプPを備えた真空ポンプ本体を備えたものが知られている。この真空ポンプでは、遮断機2を投入(閉じる)することにより、交流電源(AC100V/200V)8の交流電力をノイズフィルタ3を通してノイズを除去し、整流器4で交流を直流(DC141V/248V)に変換し、更にDC/DCコンバータ6で定電圧としドライバ7に電力を供給している。ドライバ7は制御部(図示せず)の制御により所定の周波数のパルスを真空ポンプ本体10の直流モータMに供給して直流モータMを起動し、これによってポンプPを駆動する。
 上記ノイズフィルタ3、整流器4、平滑コンデンサ5、DC/DCコンバータ6、ドライバ7及び制御部には発熱部があり、これらの発熱部からの熱も含め、真空ポンプ運転による発生する熱は主に水冷により放熱される。
In recent years, dry vacuum pumps that can operate from atmospheric pressure and can easily obtain a clean vacuum environment have been used in a wide range of fields. Normally, such a vacuum pump is operated in a state where the intake side is close to the deadline, and therefore consumes power to maintain the differential pressure between the intake port side and the exhaust port side. In other words, the degree of vacuum on the intake port side is maintained by continuing to exhaust the gas that flows back into the pump from the exhaust port side. For this reason, most of the power consumption used for the operation of the vacuum pump is converted into heat at the exhaust port side. Although depending on the capacity of the vacuum pump, conventionally, a countermeasure has been taken against the above heat generation in which a water cooling jacket or the like is provided in the casing and heat is radiated to the water passing through the water cooling jacket (Japanese Patent Laid-Open No. 8-319967). See the official gazette).
For example, as a vacuum pump, as shown in FIG. 11, a power supply unit 1 including a circuit breaker 2, a noise filter 3, a rectifier 4, a smoothing capacitor 5, and a DC / DC converter 6, a driver 7, and a DC motor M The thing provided with the vacuum pump main body provided with the pump P is known. In this vacuum pump, when the breaker 2 is turned on (closed), the AC power of the AC power supply (AC 100 V / 200 V) 8 is removed through the noise filter 3, and the AC is converted to DC (DC 141 V / 248 V) by the rectifier 4. Further, the voltage is converted to a constant voltage by the DC / DC converter 6 and power is supplied to the driver 7. The driver 7 supplies a pulse having a predetermined frequency to the DC motor M of the vacuum pump body 10 under the control of a control unit (not shown) to start the DC motor M, thereby driving the pump P.
The noise filter 3, the rectifier 4, the smoothing capacitor 5, the DC / DC converter 6, the driver 7, and the control unit have heating units, and the heat generated by the vacuum pump operation, including the heat from these heating units, is mainly Heat is dissipated by water cooling.
 真空ポンプを水冷で冷却するには、冷却水を得るための冷却水設備が必要になり、使用者の負担が大きくなるばかりではなく、真空ポンプを使用する場所も制限され、任意の場所で容易に真空を得られないという問題がある。
 本発明は上述の点に鑑みてなされたもので、冷却水設備が必要でなく、排気速度2000L/min以下、直流モータの容量が2KW以下の小型で任意の場所で容易に真空を得ることができる真空ポンプを提供することを目的とする。
 上記課題を解決するため本発明の真空ポンプは、ポンプケーシング内に一対のポンプロータを備えた容積移送式のポンプと、前記一対のポンプロータを回転駆動する直流モータと、前記直流モータを駆動するドライバ及び制御部と、前記ポンプの運転によるポンプ作用により発生する圧縮熱、及び前記直流モータ、ドライバ及び制御部から発生する熱を空冷により冷却する冷却部を備えている。
 本発明の好ましい一態様において、前記直流モータは、互いに同期して反転する一対のマグネットロータを備えたマグネットカップリング型DCブラシレスモータであり、前記ポンプの一対のポンプロータは互いに噛み合って回転する一対の雄ロータ及び雌ロータを備えており、前記マグネットカップリング型DCブラシレスモータの一対のマグネットロータは前記ポンプの一対のポンプロータにそれぞれに連結され、該一対のポンプロータがタイミングギアを使用せずに同期して反転するようになっている。
 本発明の好ましい一態様において、前記直流モータの容量は2KW以下であり、該直流モータに供給する電源部からの出力電圧を電源部のサイズが大きくならない範囲で高電圧としている。
 本発明の好ましい一態様において、前記直流モータに電力を供給する電源部には力率改善する力率改善部を具備されている。
 本発明の好ましい一態様において、前記ポンプ、直流モータ、ドライバ、及び制御部の発熱部から発する熱の少なくとも一部を放熱する放熱用ヒートシンクが備えられている。
 本発明の好ましい一態様において、前記放熱用ヒートシンクに前記ポンプ、直流モータ、ドライバ、及び制御部を搭載すると共に、前記放熱用ヒートシンクに流路板を設けて、冷却空気が通る空気流路を形成したポンプパッケージが構成され、ポンプパッケージの空気流路には冷却空気を導くファンが設けられている。
 本発明の好ましい一態様において、前記空気流路の上流側に発熱量が小さいものが位置し、下流側に発熱量が大きいものが位置するように、前記ポンプ、直流モータ、ドライバ、及び制御部が前記放熱用ヒートシンクに搭載されている。
 本発明の好ましい一態様において、前記ポンプパッケージは、前記空気流路に導く冷却空気の流入口及び流出口をポンプパッケージの後面及び前面に設けた構成であり、前記ポンプパッケージを複数台備え、該複数台のポンプパッケージはその側面を互いに隣接させて配置されている。
 本発明によれば、ポンプ作用により発生する圧縮熱、及び直流モータ、ドライバ、制御部から発生する熱を冷却部で冷却することで、ポンプ駆動用電源があれば、冷却水設備のない任意の場所で容易に真空を得ることができる真空ポンプを提供できる。
 直流モータとして、互いに同期して反転する一対のマグネットロータを備えたマグネットカップリング型DCブラシレスモータを用い、一対のポンプロータとして、互いに噛み合って回転する一対の雄ロータ及び雌ロータを備えたポンプを用い、一対のポンプロータがタイミングギアを使用せずに同期して反転するようにすることで、機械的損失を低減させ、空冷手段で冷却するのに適した構成となる。
 直流モータに供給する電源部からの出力電圧を電源部のサイズが大きくならない範囲で高電圧とすることで、その分電流が小さくなり、発熱が低減し、空冷手段で冷却するのに更に適した構成となる。
 直流モータに電力を供給する電源部に力率改善する力率改善部を具備することで、力率が改善された分、ピーク電流が抑制できるため、ピーク電流による発熱が低減し、空冷手段で冷却するのに更に適した構成となる。
 放熱用ヒートシンクを備え、発熱部から発する熱を放熱用ヒートシンクにより放熱することで、効率よく放熱をすることができる。
 放熱用ヒートシンクにポンプ、直流モータ、ドライバ、及び制御部を搭載してポンプパッケージを構成し、ポンプパッケージの空気流路に冷却空気を導くファンを設けることで、更に効率よく放熱をすることができる。
 ポンプパッケージの空気流路の上流側に発熱量が小さいものが位置し、下流側に発熱量が大きいものが位置するように、ポンプ、直流モータ、ドライバ、及び制御部を前記放熱用ヒートシンクに搭載することで、冷却空気は温度の低い領域から高い領域に流れることになり、更に効率よく放熱をすることができる。
 ポンプパッケージの空気流路に導く冷却空気の流入口及び流出口をポンプパッケージの後面及び前面に設けた構成とすることで、ポンプパッケージの側面は冷却に殆ど寄与しない面となり、複数台のポンプパッケージをその側面を互いに隣接させて配置しても、冷却効率を低下することがないから、小さい設置面積に多くのポンプパッケージを設置することが可能となる。
Cooling the vacuum pump with water cooling requires cooling water equipment to obtain cooling water, which not only increases the burden on the user, but also limits the place where the vacuum pump can be used, making it easy in any location There is a problem that a vacuum cannot be obtained.
The present invention has been made in view of the above points, and does not require a cooling water facility, and can easily obtain a vacuum at an arbitrary place with a small pumping speed of 2000 L / min or less and a DC motor capacity of 2 KW or less. An object of the present invention is to provide a vacuum pump.
In order to solve the above-described problems, a vacuum pump according to the present invention includes a positive displacement pump having a pair of pump rotors in a pump casing, a direct current motor that rotationally drives the pair of pump rotors, and the direct current motor. A driver and a control unit, and a cooling unit that cools the compression heat generated by the pump action by the operation of the pump and the heat generated from the DC motor, driver, and control unit by air cooling.
In a preferred aspect of the present invention, the direct current motor is a magnet coupling type DC brushless motor including a pair of magnet rotors that are reversed in synchronization with each other, and the pair of pump rotors of the pump are engaged with each other and rotated. The pair of magnet rotors of the magnet coupling type DC brushless motor are connected to the pair of pump rotors of the pump, respectively, and the pair of pump rotors does not use a timing gear. Inverted in sync with.
In a preferred aspect of the present invention, the capacity of the DC motor is 2 KW or less, and the output voltage from the power supply unit supplied to the DC motor is set to a high voltage within a range where the size of the power supply unit does not increase.
In a preferred aspect of the present invention, the power source for supplying power to the DC motor is provided with a power factor improving unit for improving the power factor.
In a preferred aspect of the present invention, a heat sink for dissipating heat is provided to dissipate at least a part of heat generated from the heat generating part of the pump, the DC motor, the driver, and the control part.
In a preferred aspect of the present invention, the heat sink for heat dissipation is mounted with the pump, a DC motor, a driver, and a controller, and a flow path plate is provided for the heat sink for heat dissipation to form an air flow path through which cooling air passes. The pump package is configured, and a fan for guiding cooling air is provided in the air flow path of the pump package.
In a preferred aspect of the present invention, the pump, the DC motor, the driver, and the control unit are arranged such that a small amount of heat generation is positioned upstream of the air flow path and a large amount of heat generation is positioned downstream. Is mounted on the heat sink for heat dissipation.
In a preferred aspect of the present invention, the pump package has a configuration in which an inlet and an outlet for cooling air leading to the air flow path are provided on a rear surface and a front surface of the pump package, and the pump package includes a plurality of the pump packages, The plurality of pump packages are arranged with their side surfaces adjacent to each other.
According to the present invention, the heat generated by the pump action and the heat generated from the DC motor, the driver, and the control unit are cooled by the cooling unit. A vacuum pump capable of easily obtaining a vacuum at a place can be provided.
As a direct current motor, a magnet coupling type DC brushless motor having a pair of magnet rotors that are reversed in synchronization with each other is used, and as a pair of pump rotors, a pump having a pair of male rotors and female rotors that rotate in mesh with each other. By using the pair of pump rotors so as to be reversed synchronously without using the timing gear, the mechanical loss is reduced and the air cooling means is suitable for cooling.
By setting the output voltage from the power supply unit supplied to the DC motor to a high voltage within the range where the size of the power supply unit does not increase, current is reduced by that amount, heat generation is reduced, and it is more suitable for cooling with air cooling means It becomes composition.
By providing a power factor improvement unit that improves the power factor in the power supply unit that supplies power to the DC motor, the peak current can be suppressed as much as the power factor is improved, so heat generation due to the peak current is reduced, and air cooling means The configuration is more suitable for cooling.
A heat sink for heat dissipation is provided, and heat generated from the heat generating portion is dissipated by the heat sink for heat dissipation, so that heat can be efficiently radiated.
A heat sink for heat dissipation is equipped with a pump, DC motor, driver, and control unit to form a pump package, and a fan that guides cooling air to the air flow path of the pump package can provide more efficient heat dissipation. .
The pump, DC motor, driver, and controller are mounted on the heat sink for heat dissipation so that the one with a small amount of heat generation is located upstream of the air flow path of the pump package and the one with a large amount of heat generation is located downstream. By doing so, the cooling air flows from a low temperature region to a high region, and heat can be radiated more efficiently.
By adopting a configuration in which the inlet and outlet of the cooling air leading to the air flow path of the pump package are provided on the rear and front surfaces of the pump package, the side surface of the pump package becomes a surface that hardly contributes to cooling, and a plurality of pump packages Even if the side surfaces are arranged adjacent to each other, the cooling efficiency is not lowered, so that a large number of pump packages can be installed in a small installation area.
 図1Aは、本発明の実施形態に係る真空ポンプの概要を示す平面図、図1Bは、図1AのA−A断面図で、図1Cは、図1Aの左側面図である。
 図2Aは、本発明の他の実施形態に係る真空ポンプの概要を示す平面図、図2Bは、図2AのA−A断面図で、図2Cは、図2Aの左側面図である。
 図3は、本発明の更に他の実施形態の係る真空ポンプの概要を示す側断面図(図1B相当図)である。
 図4は、本発明の実施形態に係る真空ポンプの電源部を示すブロック図である。
 図5は、本発明の実施形態に係る真空ポンプの他の電源部を示すブロック図である。
 図6は、本発明の実施形態に係る真空ポンプの更に他の電源部を示すブロック図である。
 図7は、真空ポンプにおけるモータ容量に対する(空冷部材体積)/(冷却熱量),(水冷構造部体積)/(冷却熱量)の関係を示すグラフである。
 図8Aは、本発明の実施形態に係る真空ポンプの真空ポンプ本体を示す平断面図、図8Bは、図8AのA−A断面図、図8Cは、図8AのB−B断面図で、図8Dは、図8Bのポンプケーシングを示す図である。
 図9は、本発明の実施形態に係る真空ポンプの直流モータを示す断面図である。
 図10Aは、本発明の実施形態に係る複数の真空ポンプを配置した状態を示す平面図で、図10Bは、正面図である。
 図11は、従来の真空ポンプの電源部を示すブロック図である。
1A is a plan view showing an outline of a vacuum pump according to an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A, and FIG. 1C is a left side view of FIG.
2A is a plan view showing an outline of a vacuum pump according to another embodiment of the present invention, FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A, and FIG. 2C is a left side view of FIG. 2A.
FIG. 3 is a sectional side view (corresponding to FIG. 1B) showing an outline of a vacuum pump according to still another embodiment of the present invention.
FIG. 4 is a block diagram showing a power supply unit of the vacuum pump according to the embodiment of the present invention.
FIG. 5 is a block diagram showing another power supply unit of the vacuum pump according to the embodiment of the present invention.
FIG. 6 is a block diagram showing still another power supply unit of the vacuum pump according to the embodiment of the present invention.
FIG. 7 is a graph showing the relationship of (air cooling member volume) / (cooling heat amount) / (water cooling structure volume) / (cooling heat amount) to the motor capacity in the vacuum pump.
8A is a plan sectional view showing a vacuum pump main body of the vacuum pump according to the embodiment of the present invention, FIG. 8B is a sectional view taken along line AA in FIG. 8A, and FIG. 8C is a sectional view taken along line BB in FIG. FIG. 8D shows the pump casing of FIG. 8B.
FIG. 9 is a sectional view showing a DC motor of the vacuum pump according to the embodiment of the present invention.
FIG. 10A is a plan view showing a state in which a plurality of vacuum pumps according to an embodiment of the present invention are arranged, and FIG. 10B is a front view.
FIG. 11 is a block diagram showing a power supply unit of a conventional vacuum pump.
 以下、本発明の実施形態を図面に基づいて説明する。なお、同一または相当する部材には同一符号を付して重複した説明を省略する。
 図1Aは、本発明の実施形態に係る真空ポンプの概要を示す平面図、図1Bは図1AのA−A断面図で、図1Cは図1Aの左側面図である。図1A乃至図1Cに示するように、本真空ポンプは、放熱用ヒートシンク12を備え、該ヒートシンク12の下面に流路板13を取り付け、ヒートシンク12のフィン12aとフィン12aの間及び流路板13の両側屈曲部とフィン12aの間に冷却空気が通る空気流路14を形成している。図1Aにおいて、ヒートシンク12の左側端を後端とし右側端を前端としたとき、ヒートシンク12の上面には後端から順に電源部構成部品15、ドライバ構成部品16、及び真空ポンプ本体10の直流モータM及びポンプPが搭載されている。ヒートシンク12のドライバ構成部品16と直流モータMが位置する間には空気流出用孔18が形成されている。
 上記のようにヒートシンク12の上面に電源部構成部品15、ドライバ構成部品16、直流モータM、及びポンプPを搭載してポンプパッケージ20が構成され、該ポンプパッケージ20のヒートシンク12のフィン12aとフィン12aの間及び流路板13両側屈曲部とフィン12aの間に空気流路14が形成されている。この空気流路14に後端から矢印Bに示すように、冷却空気を流すと、該冷却空気は空気流路14を通って流れると共に、ドライバ構成部品16と直流モータMの間に設けた空気流出用孔18を通って上方へと流れる。電源部構成部品15及びドライバ構成部品16の発熱部で発生し、ヒートシンク12の本体及びフィン12aとフィン12aに伝達された熱は、空気流路14を通る冷却空気に効率良く放熱される。この例では、空気流路14に冷却空気を強制的に導入する例を説明したが、自然対流によって冷却空気が空気流路14内を流れるようにしてもよい。
 図2Aは、本発明の他の実施形態に係る真空ポンプの概要を示す平面図、図2Bは図2AのA−A断面図で、図2Cは図2Aの左側面図である。本真空ポンプが図1に示す真空ポンプと異なる点は、ヒートシンク12の前端に空気流路14に冷却空気を導く手段としてファン22を設けた点である。ファン22を運転することにより、空気流路14には矢印Bに示すように冷却空気が流れると共に、ヒートシンク12のドライバ構成部品16と直流モータMの間に設けた空気流出用孔18を通って上方へと流れ、更に直流モータM及びポンプPの周囲を通って、ファン22が設けられる空気排出口23から流出する。この例では、空気流路14の前端を前面パネル24で閉鎖している。
 図5は、図1A乃至図1Cまたは図2A乃至図2Cに示す真空ポンプの電源部の構成を示すブロック図である。図5に示すように、真空ポンプの電源部には、整流器4の出力側に位置して力率改善回路(PFC)25が設けられている。電源部構成部品15は力率改善回路(PFC)25を構成する部品であり、ドライバ構成部品16はドライバ7を構成する部品である。それらは電流の流れを考慮した配置としている。ポンプの負荷条件によって異なる場合もあるが、この例において、電源部構成部品15の発熱部の発熱量H15は、ドライバ構成部品16の発熱部の発熱量H16より小さく、ドライバ構成部品16の発熱部の発熱量H16は直流モータMの発熱部の発熱量Hより小さく、更に直流モータMの発熱部の発熱量HはポンプPの発熱部の発熱量Hより小さくなっている(H15<H16<H<H)。即ち、空気流路14及び冷却空気流の上流側に発熱量の小さいものを、下流側に発熱量の大きいものを配置している。これにより、冷却空気は真空ポンプの温度の低い領域から高い領域に流れることになり、より効率良く放熱できる。
 交流電源(AC100V/200V)8の入力部の力率を改善することによりピーク電流を抑制できるため、ピーク電流による発熱を低減することができる。力率改善する方法としては、図5に示すように、整流器4の出力側に力率改善回路(PFC)25を設け、力率を改善する方法、又は図6に示すように、整流器4の出力側に直流リアクトル(DCL)26を設けて、力率を改善する方法がある。
 図4に示す真空ポンプの電源部では昇圧チョッパ又は倍電圧整流器21を設けて、整流器4で整流された直流電圧を昇圧(ここではDC360V)している。これにより、ドライバ7に供給するDC電圧を高くし、その分電流を小さくしてドライバ7及び直流モータMの発熱部での発熱量を抑えることができる。
 図3は、本発明の更に他の実施形態の係る真空ポンプの概要を示す側断面図(図1B相当図)である。本真空ポンプが図2A乃至図2Cに示す真空ポンプと相異する点は、空気流路14の前端を開放している点である。これにより、ファン22を運転すると、矢印Cに示すように空気流路14の前端開口から冷却空気が流入し、より冷却効率が向上する。
 図7は直流モータで駆動するポンプケーシング内に一対のポンプロータを備えた容積移送式のポンプを具備する真空ポンプのモータ容量に対する(空冷部材体積)/(冷却熱量),(水冷構造部体積)/(冷却熱量)の関係を示すグラフである。図7において、実線Aは(空冷部材体積)/(冷却熱量)を、点線Bは(水冷構造部体積)/(冷却熱量)をそれぞれ示す。図7から明らかなように、モータ容量が約2000(W)以下では冷却熱量に対する体積は空冷部材体積の方が水冷構造部体積より優れていることが分かる。よって容量が約2000(W)以下のモータと一対のポンプロータを具備する容積移送式のポンプを備えた真空ポンプの冷却方式に空冷方式を採用し、その空冷部に上記の構成を採用することにより、優れた冷却効果を発揮できる。
 図8Aは、真空ポンプ本体10を示す平断面図、図8Bは図8AのA−A断面図、図8Cは図8AのB−B断面図で、図8Dは図8Bのポンプケーシングを示す図である。図8A乃至図8Cに示するように、真空ポンプ本体10は、ポンプPと直流モータMから構成されている。ポンプPのポンプケーシング33は、吸気口31と排気口32を備え、ポンプケーシング33の内部には2軸1組の一対のポンプロータ35が回転自在に収容されるロータ収容空間39が形成されている。該ロータ収容空間39の横断面は両側が円弧状でポンプロータ35の間に位置する部分に凸部40が形成された形状である。ロータ収容空間39に配置された各ポンプロータ35は、その両端部を軸受37及び軸受38で回転自在に支承されている。
 直流モータMはポンプケーシング33の端部に取り付けたモータケーシング41を備え、該ポンプケーシング41内にモータステータ42が配置されている。該モータステータ42内には2本のモータロータ43が回転自在に配置されるロータ収納空間44が形成されている。各ポンプロータ35の軸端には直流モータMのモータロータ43の端部が連結されている。直流モータMは、後に詳述するように、2軸が同期して反転する2軸同期反転駆動モータである。該2軸同期反転駆動モータを起動することにより、ポンプPの2軸1組のポンプロータ35が同期して反転駆動される。
 上記のようにポンプPの2軸1組のポンプロータ35を同期して反転させることによって、ポンプロータ35とポンプケーシング33で囲まれた空間の気体が圧縮される。ポンプケーシング33には、上記のように吸気口31と排気口32が設けられており、排気口32が大気圧下にて吸気口を10−3~10Torrに排気することができる。
 図9はポンプPの2軸1組のポンプロータ35を同期して反転させる2軸同期反転駆動モータ、即ち直流モータMを示す。図9に示するように、2軸同期反転駆動モータは、同一の構成を有する一対のマグネットロータ(モータロータ)43,43を具備し、ブラシレスDCモータとして2軸1組のポンプロータ35,35を反転駆動すると共に、マグネットカップリングによりポンプロータ35,35の同期反転を確保している。図9に示するように、各マグネットロータ43は、磁性材のヨーク43bの外周にリング形状のマグネット43aを周設している。この例では、マグネットロータ43の外周上には着磁したマグネット43aが周設され、互いのマグネットロータ43,43の異磁極が引き合うように対向して、且つクリアランスFを保って配置されている。なお、マグネットロータ43の極数は4、6、8・・・などの偶数であり、ここでは6としている。
 ポンプロータ35,35は、マグネットロータ43,43のマグネットカップリング作用により、同期して反対方向に回転する。これにより、タイミングギアが無くても安定した2軸同期反転が可能なスクリューポンプが構成される。また、タイミングギアが無いことは、潤滑油が不要であると共に、2軸の安全な同期機構を含めた非接触回転が可能であり、スクリューポンプの高速運転が可能なことを意味している。即ち、タイミングギアを用いた接触式の同期機構では、6000~7000min−1の回転速度であるが6極のマグネットロータ43,43のマグネットカップリングを用いる10000~30000min−1の同期反転高速回転が安定してできるようになり、これにより真空ポンプを小型にしても、高い到達真空度等の排気性能の向上が達成できる。
 各マグネットロータ43の外周面の一部に近接して、鉄心42aと巻線42bから成る三相(U,V,W)のモータステータ42が配置されている。三相のモータステータ42はマグネットロータ43どうしがマグネットカップリングする側とは回転軸に関して反対側に配置されている。これにより、マグネットロータ43どうしが互いに吸引するマグネットカップリング力をマグネットロータ43とモータステータの鉄心42aに作用する吸引力でキャンセルすることができる。また、三相のモータステータ磁極は、マグネットロータ43の磁極数6極に対応し、図9の矢印G、Hに示すようにマグネットロータ43の4極に磁界をかけるようにしている。三相の巻線42bに所要の矩形パルス状波形の直流電流を供給することで、任意の回転数で2軸1組のポンプロータ35を同期反転駆動することができる。
 上記構成のマグネットカップリング型DCブラシレスモータである直流モータMと、2軸1組の一対のポンプロータ35を備えた容積移送式のポンプPを備えた真空ポンプ本体10を、図1A乃至図1C、図2A乃至図2Cまたは図3に示すように、ヒートシンク12の上面の前端側(冷却空気流の下流側)に搭載し、更に電源部構成部品15及びドライバ構成部品16を後端側(冷却空気流の下流側)に搭載することにより、直流モータMの発熱部からの発熱量が少ないから空冷でも十分冷却が可能となる。また、図4に示すように電源部1に昇圧チョッパ又は倍電圧整流器21を設けドライバ7に供給する電圧を昇圧することによりその分電流が小さく、ドライバ7及び直流モータMの発熱部からの発熱量が小さくなる。更に、図5に示すように力率改善回路(PFC)25を設けるか、または図6に示すように直流リアクトル(DCL)26を設けて、力率を改善することにより、ピーク電流を抑制しピーク電流により発熱部からの発熱量を小さくすることができる。
 図10Aは、例えば図1A乃至図1Cに示すように構成された本発明の実施形態に係る真空ポンプVPを複数台(図では4台)配列した場合を示す平面図で、図10Bは正面図である。各真空ポンプVPにおける冷却空気の流入及び排出は、真空ポンプVPの後端面(裏面)に設けた流入口及び前端面(正面)に設けた排出口を通して行われるので、真空ポンプVPの両側面は冷却に殆ど寄与しない面となる。従って、各真空ポンプVPの両側面は互いに接触するほど接近させて配置(サイドバイサイドの配置)することが可能となり、複数台の真空ポンプVPの設置の省力スペース化が可能となる。また、各真空ポンプVPは人力で搬送できる程、軽量且つ小型化ができるので、上面の所定位置に取っ手50を取り付けることにより、容易に搬送し、配置することができる。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお、直接明細書及び図面に記載がない何れの形状や構造であっても、本願発明の作用効果を奏する以上、本願発明の技術範囲である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the member which is the same or it corresponds, and the overlapping description is abbreviate | omitted.
1A is a plan view showing an outline of a vacuum pump according to an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and FIG. 1C is a left side view of FIG. As shown in FIGS. 1A to 1C, the present vacuum pump includes a heat sink 12 for heat dissipation, and a flow path plate 13 is attached to the lower surface of the heat sink 12, and between the fins 12a and 12a of the heat sink 12 and the flow path plate. An air flow path 14 through which cooling air passes is formed between the both side bent portions 13 and the fins 12a. In FIG. 1A, when the left end of the heat sink 12 is the rear end and the right end is the front end, the power source component 15, the driver component 16, and the DC motor of the vacuum pump body 10 are arranged on the upper surface of the heat sink 12 in order from the rear end. M and pump P are mounted. An air outflow hole 18 is formed between the driver component 16 of the heat sink 12 and the DC motor M.
As described above, the power source component 15, the driver component 16, the DC motor M, and the pump P are mounted on the upper surface of the heat sink 12 to constitute the pump package 20, and the fins 12 a and fins of the heat sink 12 of the pump package 20 are configured. Air flow paths 14 are formed between 12a and between the bent portions on both sides of the flow path plate 13 and the fins 12a. When cooling air flows through the air flow path 14 from the rear end as indicated by an arrow B, the cooling air flows through the air flow path 14 and air provided between the driver component 16 and the DC motor M. It flows upward through the outflow hole 18. The heat generated in the heat generating parts of the power supply component 15 and the driver component 16 and transmitted to the main body of the heat sink 12 and the fins 12a and 12a is efficiently radiated to the cooling air passing through the air flow path 14. In this example, the example in which the cooling air is forcibly introduced into the air flow path 14 has been described. However, the cooling air may flow through the air flow path 14 by natural convection.
2A is a plan view showing an outline of a vacuum pump according to another embodiment of the present invention, FIG. 2B is a cross-sectional view taken along line AA of FIG. 2A, and FIG. 2C is a left side view of FIG. This vacuum pump is different from the vacuum pump shown in FIG. 1 in that a fan 22 is provided at the front end of the heat sink 12 as means for introducing cooling air to the air flow path 14. By operating the fan 22, cooling air flows through the air flow path 14 as indicated by an arrow B, and passes through the air outlet hole 18 provided between the driver component 16 of the heat sink 12 and the DC motor M. It flows upward, passes through the periphery of the DC motor M and the pump P, and flows out from the air outlet 23 provided with the fan 22. In this example, the front end of the air flow path 14 is closed by the front panel 24.
FIG. 5 is a block diagram illustrating a configuration of a power supply unit of the vacuum pump illustrated in FIGS. 1A to 1C or 2A to 2C. As shown in FIG. 5, a power factor correction circuit (PFC) 25 is provided on the output side of the rectifier 4 in the power supply unit of the vacuum pump. The power supply component 15 is a component constituting the power factor correction circuit (PFC) 25, and the driver component 16 is a component constituting the driver 7. They are arranged in consideration of the current flow. In this example, the heat generation amount H 15 of the heat generating portion of the power supply unit component 15 is smaller than the heat generation amount H 16 of the heat generating portion of the driver component 16, and may vary depending on the load condition of the pump. calorific value H 16 of the heating unit is smaller than the calorific value H M of the heat generating portion of the DC motor M, further heating value H M of the heat generating portion of the DC motor M is smaller than the heating value H P of the heat generating portion of the pump P (H 15 <H 16 <H M <H P ). That is, the air flow path 14 and the cooling air flow upstream are arranged with a small amount of heat generation and the downstream side with a large heat generation amount. As a result, the cooling air flows from the low temperature region to the high temperature region of the vacuum pump, and heat can be radiated more efficiently.
Since the peak current can be suppressed by improving the power factor of the input portion of the AC power supply (AC100V / 200V) 8, heat generation due to the peak current can be reduced. As a method for improving the power factor, as shown in FIG. 5, a power factor improving circuit (PFC) 25 is provided on the output side of the rectifier 4 to improve the power factor, or as shown in FIG. There is a method of improving the power factor by providing a direct current reactor (DCL) 26 on the output side.
In the power supply unit of the vacuum pump shown in FIG. 4, a boost chopper or voltage doubler rectifier 21 is provided to boost the DC voltage rectified by the rectifier 4 (DC 360 V in this case). As a result, the DC voltage supplied to the driver 7 can be increased and the current can be reduced accordingly, so that the amount of heat generated in the heat generating portion of the driver 7 and the DC motor M can be suppressed.
FIG. 3 is a sectional side view (corresponding to FIG. 1B) showing an outline of a vacuum pump according to still another embodiment of the present invention. This vacuum pump is different from the vacuum pump shown in FIGS. 2A to 2C in that the front end of the air flow path 14 is opened. Thus, when the fan 22 is operated, cooling air flows from the front end opening of the air flow path 14 as indicated by an arrow C, and the cooling efficiency is further improved.
FIG. 7 shows (air cooling member volume) / (cooling heat amount), (water cooling structure volume) with respect to the motor capacity of a vacuum pump having a volume transfer type pump having a pair of pump rotors in a pump casing driven by a DC motor. It is a graph which shows the relationship of / (cooling calorie | heat amount). In FIG. 7, a solid line A indicates (air cooling member volume) / (cooling heat amount), and a dotted line B indicates (water cooling structure volume) / (cooling heat amount). As is apparent from FIG. 7, when the motor capacity is about 2000 (W) or less, the volume with respect to the cooling heat quantity is superior to the air-cooled structure volume with respect to the air-cooled member volume. Therefore, an air cooling method is adopted as a cooling method of a vacuum pump having a capacity transfer type pump having a motor having a capacity of about 2000 (W) or less and a pair of pump rotors, and the above structure is adopted in the air cooling part. Thus, an excellent cooling effect can be exhibited.
8A is a plan sectional view showing the vacuum pump body 10, FIG. 8B is a sectional view taken along the line AA in FIG. 8A, FIG. 8C is a sectional view taken along the line BB in FIG. 8A, and FIG. It is. As shown in FIGS. 8A to 8C, the vacuum pump main body 10 includes a pump P and a DC motor M. The pump casing 33 of the pump P includes an intake port 31 and an exhaust port 32, and a rotor housing space 39 in which a pair of two-shaft pump rotors 35 are rotatably housed is formed inside the pump casing 33. Yes. The cross section of the rotor accommodating space 39 has a shape in which both sides are arc-shaped and convex portions 40 are formed at portions located between the pump rotors 35. Each pump rotor 35 disposed in the rotor accommodating space 39 is rotatably supported by bearings 37 and 38 at both ends thereof.
The DC motor M includes a motor casing 41 attached to the end of the pump casing 33, and a motor stator 42 is disposed in the pump casing 41. A rotor storage space 44 in which the two motor rotors 43 are rotatably arranged is formed in the motor stator 42. The end of the motor rotor 43 of the DC motor M is connected to the shaft end of each pump rotor 35. As will be described in detail later, the DC motor M is a two-axis synchronous inversion drive motor in which two axes are synchronously reversed. By starting the two-axis synchronous inversion drive motor, a pair of pump rotors 35 of the pump P are driven in reverse in synchronization.
As described above, the gas in the space surrounded by the pump rotor 35 and the pump casing 33 is compressed by reversing the pair of pump rotors 35 of the pump P in synchronization with each other. The pump casing 33 is provided with the intake port 31 and the exhaust port 32 as described above, and the exhaust port 32 can exhaust the intake port to 10 −3 to 10 Torr under atmospheric pressure.
FIG. 9 shows a two-axis synchronous inversion drive motor, that is, a DC motor M, that inverts a pair of pump rotors 35 of the pump P synchronously. As shown in FIG. 9, the two-axis synchronous inversion drive motor includes a pair of magnet rotors (motor rotors) 43, 43 having the same configuration, and a pair of pump rotors 35, 35 as a brushless DC motor. The reversal drive is performed, and synchronous reversal of the pump rotors 35 and 35 is secured by magnet coupling. As shown in FIG. 9, each magnet rotor 43 is provided with a ring-shaped magnet 43a around the outer periphery of a magnetic material yoke 43b. In this example, a magnetized magnet 43a is provided on the outer periphery of the magnet rotor 43, and is opposed to each other so that the different magnetic poles of the magnet rotors 43 and 43 are attracted to each other and with a clearance F maintained. . The number of poles of the magnet rotor 43 is an even number such as 4, 6, 8,...
The pump rotors 35 and 35 rotate in the opposite direction synchronously by the magnet coupling action of the magnet rotors 43 and 43. Thus, a screw pump capable of stable two-axis synchronous reversal without a timing gear is configured. Further, the absence of the timing gear means that no lubricating oil is required, non-contact rotation including a safe biaxial synchronization mechanism is possible, and high speed operation of the screw pump is possible. That is, in the contact-type synchronization mechanism using the timing gear, the rotation speed is 6000 to 7000 min −1 , but the synchronous inversion high speed rotation of 10,000 to 30000 min −1 using the magnet coupling of the 6- pole magnet rotors 43 and 43 is performed. Thus, even if the vacuum pump is made small, it is possible to achieve an improvement in exhaust performance such as a high ultimate vacuum.
Close to a part of the outer peripheral surface of each magnet rotor 43, a three-phase (U, V, W) motor stator 42 including an iron core 42a and a winding 42b is disposed. The three-phase motor stator 42 is disposed on the side opposite to the side where the magnet rotors 43 are coupled to each other with respect to the rotation axis. Thereby, the magnet coupling force that the magnet rotors 43 attract each other can be canceled by the attraction force that acts on the magnet rotor 43 and the iron core 42a of the motor stator. Further, the three-phase motor stator magnetic pole corresponds to the number of magnetic poles of the magnet rotor 43, and a magnetic field is applied to the four poles of the magnet rotor 43 as indicated by arrows G and H in FIG. By supplying a direct current having a required rectangular pulse waveform to the three-phase winding 42b, the pair of pump rotors 35 of two shafts can be synchronously inverted and driven at an arbitrary rotational speed.
A vacuum pump body 10 including a DC motor M, which is a magnet coupling type DC brushless motor having the above-described configuration, and a volume transfer type pump P including a pair of two-axis pump rotors 35 is illustrated in FIGS. 1A to 1C. 2A to 2C or 3, the heat sink 12 is mounted on the front end side (downstream side of the cooling air flow), and the power supply component 15 and the driver component 16 are mounted on the rear end side (cooling). By mounting on the downstream side of the air flow, the amount of heat generated from the heat generating portion of the DC motor M is small, so that sufficient cooling is possible even with air cooling. Further, as shown in FIG. 4, the power supply unit 1 is provided with a step-up chopper or voltage doubler rectifier 21 to boost the voltage supplied to the driver 7. The amount becomes smaller. Further, by providing a power factor correction circuit (PFC) 25 as shown in FIG. 5 or providing a direct current reactor (DCL) 26 as shown in FIG. 6 to improve the power factor, the peak current is suppressed. The amount of heat generated from the heat generating portion can be reduced by the peak current.
10A is a plan view showing a case where a plurality (four in the figure) of vacuum pumps VP according to the embodiment of the present invention configured as shown in FIGS. 1A to 1C are arranged, for example, FIG. 10B is a front view. It is. The inflow and discharge of the cooling air in each vacuum pump VP is performed through the inlet provided on the rear end surface (back surface) of the vacuum pump VP and the exhaust port provided on the front end surface (front surface). The surface hardly contributes to cooling. Therefore, both side surfaces of each vacuum pump VP can be arranged close to each other so as to come into contact with each other (side-by-side arrangement), and a space-saving space for installing a plurality of vacuum pumps VP can be achieved. Moreover, since each vacuum pump VP can be lightened and miniaturized so that it can be conveyed by human power, it can be easily conveyed and arranged by attaching the handle 50 to a predetermined position on the upper surface.
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape or structure not directly described in the specification and drawings is within the technical scope of the present invention as long as the effects of the present invention are achieved.
 本発明は、直流モータで駆動するポンプケーシング内に一対のポンプロータを備えた容積移送式の真空ポンプに利用可能である。 The present invention is applicable to a volume transfer type vacuum pump having a pair of pump rotors in a pump casing driven by a DC motor.

Claims (8)

  1.  ポンプケーシング内に一対のポンプロータを備えた容積移送式のポンプと、
     前記一対のポンプロータを回転駆動する直流モータと、
     前記直流モータを駆動するドライバ及び制御部と、
     前記ポンプの運転によるポンプ作用により発生する圧縮熱、及び前記直流モータ、ドライバ及び制御部から発生する熱を空冷により冷却する冷却部を備えたことを特徴とする真空ポンプ。
    A positive displacement pump with a pair of pump rotors in the pump casing;
    A DC motor that rotationally drives the pair of pump rotors;
    A driver and a controller for driving the DC motor;
    A vacuum pump, comprising: a cooling unit that cools, by air cooling, compression heat generated by a pumping action due to operation of the pump and heat generated from the DC motor, driver, and control unit.
  2.  請求項1に記載の真空ポンプにおいて、
     前記直流モータは、互いに同期して反転する一対のマグネットロータを備えたマグネットカップリング型DCブラシレスモータであり、
     前記ポンプの一対のポンプロータは互いに噛み合って回転する一対の雄ロータ及び雌ロータを備えており、
     前記マグネットカップリング型DCブラシレスモータの一対のマグネットロータは前記ポンプの一対のポンプロータにそれぞれに連結され、該一対のポンプロータがタイミングギアを使用せずに同期して反転するようになっていることを特徴とする真空ポンプ。
    The vacuum pump according to claim 1, wherein
    The DC motor is a magnet coupling type DC brushless motor having a pair of magnet rotors that are reversed in synchronization with each other.
    The pair of pump rotors of the pump includes a pair of male and female rotors that mesh with each other and rotate,
    A pair of magnet rotors of the magnet coupling type DC brushless motor are connected to the pair of pump rotors of the pump, respectively, and the pair of pump rotors are reversed in synchronization without using a timing gear. A vacuum pump characterized by that.
  3.  請求項1又は2に記載の真空ポンプにおいて、
     前記直流モータの容量は2KW以下で、該直流モータに供給する電源部からの出力電圧を電源部のサイズが大きくならない範囲で高電圧としたことを特徴とする真空ポンプ。
    The vacuum pump according to claim 1 or 2,
    The capacity of the DC motor is 2 KW or less, and the output voltage from the power supply unit supplied to the DC motor is a high voltage within a range where the size of the power supply unit does not increase.
  4.  請求項1乃至3のいずれか1項に記載の真空ポンプにおいて、
     前記直流モータに電力を供給する電源部に力率改善する力率改善部を具備したことを特徴とする真空ポンプ。
    The vacuum pump according to any one of claims 1 to 3,
    A vacuum pump comprising a power factor improving unit for improving a power factor in a power supply unit for supplying electric power to the DC motor.
  5.  請求項1乃至4のいずれか1項に記載の真空ポンプにおいて、
     前記ポンプ、直流モータ、ドライバ、及び制御部の発熱部から発する熱の少なくとも一部を放熱する放熱用ヒートシンクを備えたことを特徴とする真空ポンプ。
    The vacuum pump according to any one of claims 1 to 4,
    A vacuum pump comprising: a heat sink for radiating heat that radiates at least part of heat generated from the heat generating part of the pump, the DC motor, the driver, and the control part.
  6.  請求項5に記載の真空ポンプにおいて、
     前記放熱用ヒートシンクに前記ポンプ、直流モータ、ドライバ、及び制御部を搭載すると共に、前記放熱用ヒートシンクに流路板を設けて、冷却空気が通る空気流路を形成したポンプパッケージを構成し、
     前記ポンプケーシングの空気流路に冷却空気を導くファンを設けたことを特徴とする真空ポンプ。
    The vacuum pump according to claim 5,
    The pump, the DC motor, the driver, and the control unit are mounted on the heat sink for heat dissipation, and a flow path plate is provided on the heat sink for heat dissipation to form a pump package that forms an air flow path through which cooling air passes.
    A vacuum pump comprising a fan for introducing cooling air into an air flow path of the pump casing.
  7.  請求項6に記載の真空ポンプにおいて、
     前記ポンプパッケージの空気流路の上流側に発熱量が小さいものが位置し、下流側に発熱量が大きいものが位置するように、前記ポンプ、直流モータ、ドライバ、及び制御部を前記放熱用ヒートシンクに搭載したことを特徴とする真空ポンプ。
    The vacuum pump according to claim 6,
    The pump, the DC motor, the driver, and the control unit are connected to the heat sink for heat dissipation so that the small heat generation amount is located on the upstream side of the air flow path of the pump package and the large heat generation amount is located on the downstream side. A vacuum pump characterized by being mounted on
  8.  請求項6又は7に記載の真空ポンプにおいて、
     前記ポンプパッケージは、前記空気流路に導く冷却空気の流入口及び流出口をポンプパッケージの後面及び前面に設けた構成であり、
     前記ポンプパッケージを複数台備え、該複数台のポンプパッケージをその側面を互いに隣接させて配置したことを特徴とする真空ポンプ。
    The vacuum pump according to claim 6 or 7,
    The pump package has a configuration in which an inlet and an outlet of cooling air led to the air flow path are provided on the rear surface and the front surface of the pump package,
    A vacuum pump comprising a plurality of the pump packages, wherein the plurality of pump packages are arranged with their side surfaces adjacent to each other.
PCT/JP2009/070070 2008-12-02 2009-11-20 Vacuum pump WO2010064588A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008308041A JP5305870B2 (en) 2008-12-02 2008-12-02 Vacuum pump
JP2008-308041 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010064588A1 true WO2010064588A1 (en) 2010-06-10

Family

ID=42233239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070070 WO2010064588A1 (en) 2008-12-02 2009-11-20 Vacuum pump

Country Status (2)

Country Link
JP (1) JP5305870B2 (en)
WO (1) WO2010064588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084825A (en) * 2012-10-25 2014-05-12 Ebara Corp Vacuum pump
FR3141219A1 (en) * 2022-10-24 2024-04-26 Pfeiffer Vacuum Pumping group

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5791370B2 (en) 2010-06-10 2015-10-07 キヤノン株式会社 Piezoelectric material, piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
JP6078805B2 (en) * 2013-10-11 2017-02-15 オリオン機械株式会社 Cooling structure for package type rotary pump unit
WO2019176563A1 (en) * 2018-03-16 2019-09-19 株式会社日立産機システム Fluid machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231935A (en) * 2006-01-31 2007-09-13 Ebara Densan Ltd Vacuum pump unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231935A (en) * 2006-01-31 2007-09-13 Ebara Densan Ltd Vacuum pump unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084825A (en) * 2012-10-25 2014-05-12 Ebara Corp Vacuum pump
FR3141219A1 (en) * 2022-10-24 2024-04-26 Pfeiffer Vacuum Pumping group
WO2024088630A1 (en) * 2022-10-24 2024-05-02 Pfeiffer Vacuum Pumping unit

Also Published As

Publication number Publication date
JP5305870B2 (en) 2013-10-02
JP2010133290A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
EP2973957B1 (en) Air-cooled electric machine and method of assembling the same
JP5865327B2 (en) Motor drive control device, air conditioner, ventilation fan and heat pump type water heater
WO2010064588A1 (en) Vacuum pump
JP2004003472A (en) Pump and engine cooling system
JP5328322B2 (en) Air-cooled dry vacuum pump
EP2378122B1 (en) Dry vacuum pump apparatus and method of cooling the same
JP2012090412A (en) Rotary electric machine
JP2010127119A (en) Dry vacuum pump unit
JP2006125302A (en) Oil-free screw compressor
KR20140027638A (en) Electric motor-driven compressor for vehicle
JP2005188441A (en) Electric compressor
JP6890651B1 (en) Rotating machine
US7317296B2 (en) Electric motor
WO2010061937A1 (en) Dry vacuum pump unit and method for starting the same, and air-cooled dry vacuum pump
WO2020253173A1 (en) All-terrain vehicle
JP5142960B2 (en) Vacuum pump unit and starting method thereof
JP2005054731A (en) Feed water device of cabinet type
JP5139244B2 (en) Dry vacuum pump unit
CN218771564U (en) Asynchronous machine with high heat dissipation performance
AU2018377857A1 (en) DC voltage air conditioning compressor drive unit
JP2004236488A (en) Directly-connected-to-an-ac-power-source brushless dc motor and electric apparatus incorporating it
JP2011226364A (en) Cooling structure for dry vacuum pump device, and cooling method
JP2005054730A (en) Feed water device of cabinet type
JPH10141226A (en) Hermetic compressor
US20220399781A1 (en) Motor module and electric powered tool using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830355

Country of ref document: EP

Kind code of ref document: A1