WO2010064554A1 - Optical network band control apparatus and optical network band control method - Google Patents

Optical network band control apparatus and optical network band control method Download PDF

Info

Publication number
WO2010064554A1
WO2010064554A1 PCT/JP2009/069771 JP2009069771W WO2010064554A1 WO 2010064554 A1 WO2010064554 A1 WO 2010064554A1 JP 2009069771 W JP2009069771 W JP 2009069771W WO 2010064554 A1 WO2010064554 A1 WO 2010064554A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
time
light
node
relationship
Prior art date
Application number
PCT/JP2009/069771
Other languages
French (fr)
Japanese (ja)
Inventor
成五 高橋
章雄 田島
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2010064554A1 publication Critical patent/WO2010064554A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to an optical network, and more particularly to an optical network bandwidth control device and an optical network bandwidth control method.
  • An optical network using Passive optical network is known.
  • PON Passive optical network
  • ONUs remote node transmission / reception devices
  • OLT center node transmission / reception device
  • the S / N ratio of signal light used for communication deteriorates due to loss depending on the fiber transmission path length, splitter branching loss, and the like. Therefore, the number of ONUs that can be accommodated in one PON is limited.
  • the upper limit of the number of ONUs that can be accommodated in one PON is 32 in GEPON (IEEE802.3ah) and 62 in GPON (FSAN / ITU-T).
  • TDM / WDM hybrid PON system that combines wavelength division multiplexing (WDM) technology and time division (TDM) technology (for example, Non-Patent Document 1, Non-patent document 2).
  • WDM wavelength division multiplexing
  • TDM time division
  • FIG. 1 is a schematic diagram showing an example of an optical network employing a TDM / WDM hybrid PON system.
  • This optical network includes an OLT 101, a wavelength division multiplexing filter 102, a plurality of branch splitters (103-1 to 103-i), and a plurality of ONUs 104.
  • the downstream signal light generated from the OLT 101 is separated by the wavelength demultiplexing filter 102 into light of multiple wavelengths ( ⁇ 1 to ⁇ n).
  • Each downstream signal light after separation is further time-divided into a plurality of downstream signal lights by the branching splitter 103.
  • Each time-divided downstream signal light is supplied to each ONU 104.
  • each ONU 104 generates upstream signal light having the same wavelength as that of each received downstream signal light, and transmits it to the OLT side.
  • the wavelength demultiplexing filter 102 can demultiplex an optical signal with a significantly lower loss than the branching loss of the branching splitter 103. Therefore, if the TDM / WDM hybrid PON system is adopted, in principle, the number of ONUs that can be accommodated can be expanded in proportion to the number of multiplexed wavelengths.
  • each ONU 104 when the wavelength division multiplexing filter 102 is used, each ONU 104 must be provided with a light source capable of emitting light having a wavelength assigned to the ONU 104. In effect, each ONU 104 must be equipped with a light source that can selectively emit each of a plurality of wavelengths. Providing such a light source in the ONU 104 is disadvantageous in terms of cost required for the light source. Further, in order to selectively emit light of a specific wavelength, complicated control must be performed in each ONU 104.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-219680
  • different wavelengths are assigned to each slave station, the slave station and the center station are connected by a wavelength division division multiple access system, and a modulation element is provided in the slave station.
  • Patent Document 1 describes that the use of a modulation element in a slave station eliminates the need for precise wavelength control on the slave station side, thereby realizing a low-cost system.
  • Patent Document 2 Japanese Patent Laid-Open No. 8-65252
  • Patent Document 3 Japanese Patent Laid-Open No. 8-51412
  • Patent Document 4 Japanese Patent Laid-Open No. 9-214440
  • Patent Document 5 Patent No. 3431515
  • Non-Patent Document 3 Han Wu Hu and Hanan Anis, Degradation of Bi-Directional Single Fiber Transmission in WDM-PON DUE to HO LUE, TWO LOVE. 15, 2008
  • Non-Patent Document 4 Teanaka et al., Development of high-speed quantum cryptography communication system (2)-QKD in burst mode, 200 Year of Electronics, Information and Communication Engineers General Conference, B-10-60
  • the upstream signal light from the ONU 104 to the OLT 101 can be generated by reflecting the downstream signal light transmitted from the OLT 101. Therefore, it is not necessary to provide a light source on the ONU 104 side.
  • the downstream signal light and the upstream signal light have the same wavelength. Therefore, the coherency between the downstream signal light and the upstream signal is increased.
  • a part of the downstream signal light transmitted from the OLT 101 may be reflected on the transmission path between the OLT 101 and the ONU 104 and may enter the OLT 101 as reflected return light.
  • the main origin of the reflected return light is, for example, a local reflection point such as Rayleigh scattering or a splice point in the entire transmission line. This return light is likely to interfere with the upstream signal light. As a result, coherent beat noise occurs in the upstream signal light received by the OLT 101, and the reception sensitivity of the upstream signal light deteriorates.
  • an object of the present invention is to provide an optical network bandwidth control apparatus and an optical network bandwidth control method that do not deteriorate the reception sensitivity of upstream signal light.
  • the bandwidth control apparatus for an optical network causes a light source provided at a first node to emit light during a predetermined period until time t0, and a second optical signal generated by the light source is transmitted through a transmission line to a second time.
  • a parameter based on the state of the return light is used as an influence level.
  • An influence measuring unit for measuring, a first relationship calculating unit for obtaining a relationship between an elapsed time from the time t0 and the degree of influence as a first relationship, and based on the first relationship, the first node and the first And a control unit for determining a time slot used for communication with the two nodes.
  • the center device of the optical network transmits an optical signal to the second node based on the bandwidth control device of the optical network and the time slot determined by the bandwidth control device of the optical network.
  • An optical network system includes the optical network center apparatus and a user apparatus connected to the optical network center apparatus as the second node.
  • a light source provided at a first node is caused to emit light during a predetermined period until time t0, and a first optical signal generated by the light source is transmitted via a transmission line.
  • the optical network bandwidth control program according to the present invention is a program for realizing the above-described optical network bandwidth control method by a computer.
  • an optical network bandwidth control device and an optical network bandwidth control method that do not deteriorate the reception sensitivity of uplink signals.
  • FIG. 1 is a configuration diagram showing an optical network.
  • FIG. 2 is a configuration diagram illustrating the optical network system according to the first embodiment.
  • FIG. 3A is a timing diagram showing time until the downstream optical signal reaches the OLT as the upstream optical signal.
  • FIG. 3B is a graph showing the relationship between the output and the bit error rate.
  • FIG. 3C is a graph showing the relationship between the output and the bit error rate.
  • FIG. 4 is a configuration diagram illustrating the OLT according to the first embodiment.
  • FIG. 5 is a flowchart illustrating the bandwidth control method according to the first embodiment.
  • FIG. 6A is an explanatory diagram showing an initial time slot.
  • FIG. 6B is an explanatory diagram showing the maximum time slot length.
  • FIG. 7 is a timing chart showing time slots and light emission periods in the first embodiment.
  • FIG. 8 is a functional block diagram showing the bandwidth control device.
  • FIG. 9 is a timing chart showing the relationship between the light emission period and the time slot.
  • FIG. 10 is a configuration diagram illustrating an OLT according to the second embodiment.
  • FIG. 11 is a flowchart illustrating the bandwidth control method according to the second embodiment.
  • FIG. 12 is a timing chart showing the relationship between time slots and light emission periods in the second embodiment.
  • FIG. 2 is a schematic configuration diagram showing the optical network system 40 according to the present embodiment.
  • the optical network system 40 includes a center device (OLT) 2 (first node), a transmission path (ODN) 3, and a plurality of ONUs 4 (second nodes). Each of the OLT 2 and the plurality of ONUs 4 is connected via the transmission path 3.
  • OLT center device
  • ODN transmission path
  • ONUs 4 second nodes
  • the transmission path 3 includes a wavelength multiplexing / demultiplexing filter 20 and a plurality of branch splitters 30, and these are connected by an optical fiber.
  • the wavelength multiplexing / demultiplexing filter 20 is connected to the OLT 2.
  • the plurality of branching splitters 30 are connected to the wavelength multiplexing / demultiplexing filter 20.
  • a plurality of ONUs 4 are connected to one branching splitter 30.
  • the OLT 2 is configured to generate downstream signal light and to receive upstream signal light from each ONU 4.
  • the OLT 2 can selectively emit each of a plurality of wavelengths.
  • Each ONU 4 is provided with a reflection modulator 17 and a signal source 18.
  • the modulation signal source 18 generates a modulation signal s 42 including data to be transmitted to the OLT 2 side, and supplies the modulation signal s 42 to the reflection modulator 17.
  • the reflection modulator 17 modulates the downstream signal light based on the modulation signal s42 and reflects it as upstream signal light.
  • the OLT 2 generates downstream signal light during service operation.
  • the generated downstream signal light is guided by the wavelength multiplexing / demultiplexing filter 20 to a specific branching splitter 30 according to the wavelength.
  • the downstream signal light is further time-divided into a plurality of signal lights by the branching splitter 30 and supplied to each ONU 4.
  • the reflection modulator 17 modulates the downstream signal light based on the modulation signal s42 and reflects it as upstream signal light.
  • the upstream signal light is guided to the OLT 2 through a path opposite to that of the downstream signal light.
  • the OLT 2 when upstream signal lights from a plurality of ONUs 4 are sent to the OLT 2 at the same time, the OLT 2 cannot identify the upstream signal lights of the individual ONUs 4. Therefore, the OLT 2 performs a training process. Through the training processing, the light emission period (light emission period) of the downstream signal light and the reception period of the upstream signal light are determined as time slots for each of the plurality of wavelengths. In the following description, the light emission period of the downstream signal light may be described as a time slot during transmission, and the reception period of the upstream signal light may be described as a time slot during reception. During service operation, the OLT 2 communicates with each ONU 4 based on the set time slot.
  • part of the upstream signal light generated by the OLT 2 is reflected on the transmission path 3 and may return to the OLT 2 as return light.
  • the wavelength of the return light is the same as the wavelength of the upstream signal light transmitted from the ONU 4. Therefore, the upstream signal light received by the OLT 2 is affected (reception sensitivity deterioration due to interference or the like).
  • the influence of the return light on the upstream signal light depends on the elapsed time from the light emission end time in the OLT 2. This point will be described in detail with reference to FIG.
  • FIG. 3A (a) is a timing chart showing the timing from when the downstream signal light is generated by the OLT 2 to when the OLT 2 receives the upstream signal light.
  • the horizontal axis indicates time
  • the vertical axis indicates the distance of ODN 3 connecting the OLT and the ONU.
  • the OLT 2 emits light for a predetermined period until time t0 and the downstream signal light is transmitted. Further, it is assumed that the OLT 2 receives the upstream signal light after the time t0.
  • the downstream signal light generated by the OLT 2 transmits the ODN 3 and reaches the ONU 4 while being attenuated by the loss at the ODN 3.
  • Downstream signal light reaching the ONU 4 is modulated and reflected toward the OLT 2 as upstream signal light.
  • the upstream signal light passes through the reverse path to the downstream signal light and reaches the OLT 2.
  • the time from when the downstream signal light is generated until it reaches the OLT 2 as upstream signal light is defined as the round trip time (RTT).
  • RTT round trip time
  • Downstream signal light generated at the end of the light emission period (time t0) reaches OLT2 at time t2 after the passage of RTT from time t0. Since the upstream signal light is reflected light of the downstream signal light, it can be seen that the OLT 2 can receive the upstream signal light only in the time zone before time t2.
  • return light in the upstream direction (OLT 2) is generated due to Rayleigh scattering of the entire ODN 3 or reflection at the splice point of the optical fiber.
  • the return light also attenuates when passing through the ODN 3. The amount of return light attenuation depends on the distance from the OLT 2 to the reflection point.
  • the return light X also enters the OLT 2.
  • the return light X is the return light reflected in the range from the position Lx to the ONU 4 in the ODN 3.
  • the return light reflected on the OLT 2 side from the position Lx enters the OLT 2 before the time tx and does not enter at the time tx. If the time tx is immediately after the time t0, the position Lx is close to the OLT2. That is, the light reflected at a position where the distance from the OLT 2 is short is included in the return light X. Therefore, the return light that does not attenuate so much enters the OLT 2, and the upstream signal light X is strongly influenced by the return light X.
  • the upstream signal light may be received in a time zone having a long elapsed time from time t0 in order to reduce the influence of the return light.
  • FIG. 3A (b) is a graph showing the relationship between the elapsed time from time t0 and the reception sensitivity degradation (PP) of the upstream signal light. As shown in this graph, the reception sensitivity is greatly deteriorated immediately after time t0. However, the elapsed time from time t0 becomes longer and the reception sensitivity deterioration is reduced.
  • FIG. 3B shows the relationship between the output (Power) and the bit error rate (BER) immediately after time t0 (time tx).
  • FIG. 3C shows the relationship between the output and the bit error rate at time t2. Comparing FIG. 3B and FIG. 3C, the bit error rate (FIG. 3C) at time t2 is smaller.
  • bit error rate decreases as the elapsed time from time t0 increases.
  • the decrease in reception sensitivity degradation and bit error rate with time indicates that the influence of return light on upstream signal light decreases with the elapsed time from time t0.
  • FIG. 3A (b) shows a graph when only an optical fiber is used as ODN3. If the ODN 3 is provided with a wavelength multiplexing / demultiplexing filter, a branching splitter, or the like, it is expected that the reception sensitivity deterioration is gradually reduced due to a loss due to a branch or a loss at a splice point.
  • an acceptable level of reception sensitivity degradation is set to ⁇ .
  • the time when the reception sensitivity deterioration becomes ⁇ is t1.
  • the OLT 2 can receive the upstream signal light at an acceptable level of reception sensitivity degradation.
  • the light emission period of the OLT 2 is set to a time zone (“t1 ⁇ RTT” to t0) that is RTT before the time zone (t1 to t2).
  • the OLT 2 determines the time slot in consideration of the points described with reference to FIGS. 3A to 3C. That is, the OLT 2 measures a parameter based on the state of the return light as an influence degree, obtains a relationship between the parameter and an elapsed time from the end of light emission, and determines a time slot based on the obtained relationship.
  • OLT2 is explained in full detail.
  • FIG. 4 is a block diagram showing the configuration of the OLT 2. In FIG. 4, for convenience of explanation, only one of the plurality of ONUs 4 is illustrated.
  • the OLT 2 includes a band control device 1, a light source 7, a directional branching filter 8, and a receiver 9.
  • the light source 7 is provided to generate downstream signal light.
  • a light source capable of emitting light at a plurality of wavelengths is used.
  • the configuration and type of such a light source 7 are not particularly limited.
  • a variable wavelength laser diode can be used as the light source 7.
  • a plurality of laser diodes and a mechanism for combining light output from the plurality of laser diodes may be used.
  • a light source element that emits light including a plurality of wavelengths and a mechanism that selectively extracts wavelengths from light emitted from the light source element may be used.
  • the directional multiplexer / demultiplexer 8 guides the downstream signal light generated by the light source 7 to the ODN 3 side.
  • the directional multiplexer / demultiplexer 8 guides the upstream signal light transmitted from the ODN 3 side to the receiver 9.
  • an optical circulator, a directional coupler (optical coupler), or the like can be used as the directional multiplexer / demultiplexer 8.
  • the receiver 9 generates a reception signal s51 based on the upstream signal light received through the directional multiplexer / demultiplexer 8.
  • the bandwidth control device 1 is a device that determines a time slot for communication with each ONU 4. Specifically, the bandwidth control device 1 determines a period during which the light source 7 emits light as a time slot at the time of transmission. Further, the period during which the receiver 9 receives the upstream signal light is determined as a time slot at the time of reception.
  • the band control device 1 includes a light emission control unit 6, a timer unit 10, an RTT (round trip time) measurement unit 11, an influence degree measurement unit 12, a first relationship calculation unit 13, a comparison unit 14, and a threshold storage.
  • a unit 15 and a control unit 16 are provided.
  • the light emission control unit 6, the timer unit 10, the RTT measurement unit 11, the influence degree measurement unit 12, the first relationship calculation unit 13, and the comparison unit 14 are stored in a storage device such as a ROM (Read only memory), for example. It can be realized by the bandwidth control program. In this case, the bandwidth control program can be installed in a ROM or the like from a storage medium such as a CD-ROM.
  • the threshold storage unit 15 can be realized by a storage device such as a hard disk or a RAM (Random access memory).
  • FIG. 5 is a flowchart showing the operation of the bandwidth control device 1.
  • the bandwidth control device 1 determines a time slot according to the procedure shown in FIG.
  • Step S10 Generation of RTT Measurement Downstream Signal Light
  • the light emission control unit 6 first supplies the light emission signal s1 to the light source 7 to generate the RTT measurement downstream signal light.
  • the light emission control unit 6 generates the RTT measurement downlink signal light and simultaneously notifies the timer unit 10 to that effect.
  • the timer unit 10 counts an elapsed time after the RTT measurement downlink signal light is generated.
  • the downstream signal light for RTT measurement generated by the light source 7 is supplied to the ONU 4 via the ODN 3.
  • the ONU 4 reflects the downstream signal light for RTT measurement to the OLT 2 as the upstream signal light for RTT measurement by the reflection modulation unit 17.
  • the upstream signal light for RTT measurement that has reached the OLT 2 is received by the receiver 9.
  • the receiver 9 notifies the RTT measurement unit 11 of the RTT measurement upstream signal light as the reception signal s51.
  • Step S20 Measurement of RTT
  • the RTT measurement unit 11 refers to the timer unit 10 to generate a time from when the RTT measurement downlink signal light is generated until the receiver 9 receives the RTT measurement uplink signal light. Is calculated as the round trip time (RTT).
  • the RTT can be measured, for example, from the time difference between the leading edge of the downstream signal light for RTT measurement and the leading edge of the upstream signal light for RTT measurement.
  • the RTT can be measured simply by measuring the reception time of the RTT measurement uplink signal light.
  • Step S30; Determination of Initial Time Slot the control unit 16 determines an initial time slot.
  • FIG. 6A is an explanatory diagram for explaining an initial time slot. As shown in FIG. 6A, the control unit 16 sets the length of the time slot at the time of transmission (the length of the initial light emission period) to RTT. Further, the control unit 16 sets a period from the light emission end time t0 to the time after the RTT has elapsed (time t2) as a time slot at the time of reception.
  • Step S40 Generation of First Signal Light
  • the light emission control unit 6 supplies the light emission signal s1 to the light source 7 according to the set initial time slot.
  • the light source 7 generates the first signal light.
  • the light emission control unit 6 notifies the timer unit 10 that the light emission has ended when the light emission ends.
  • the timer unit 10 counts the elapsed time from the light emission end time (t0).
  • the first signal light generated by the light source 7 is supplied to the ONU 4 via the ODN 3.
  • the signal source 18 of the ONU 4 is configured to generate a signal including a code pattern for reception error rate measurement as the modulation signal s42 during training.
  • the reflection modulation unit 17 modulates the first signal light based on the modulation signal s42 and reflects it as the second signal light.
  • the second signal light is supplied to the OLT 2 via the ODN 3.
  • Step S50 Measurement of reception error rate
  • the receiver 9 performs reception according to the initial time slot, and acquires the second optical signal.
  • the receiver 9 supplies the acquired second optical signal to the error rate measuring unit 12 as a received signal s51.
  • the error rate measuring unit 12 measures the reception error rate of the second optical signal.
  • This reception error rate is a parameter based on the state of the return light as in the case of the bit error rate and reception sensitivity degradation described in FIGS. If the influence of the return light is large, the reception error rate of the second optical signal is also large.
  • the error rate measurement unit 12 notifies the calculation result to the first relationship calculation unit 13.
  • Step S60 Calculation of First Relationship Subsequently, the first relationship calculation unit 13 refers to the timer unit 10 to obtain the relationship between the elapsed time from the time t0 and the reception error rate as the first relationship.
  • Step S70 Comparison Subsequently, the comparison unit 14 compares the first relationship with a reception error rate threshold value stored in advance in the threshold value storage unit 15. Since the reception error rate indicates the influence of the return light, it should decrease with the elapsed time from time t0. Therefore, the comparison unit 14 obtains the elapsed time such that the reception error rate becomes the reception error rate threshold. The comparison unit 14 notifies the control unit 6 of the obtained elapsed time as the first elapsed time t1.
  • Step S80 Determination of Maximum Time Slot Length Thereafter, as shown in FIG. 6B, the control unit 6 determines the difference between the first elapsed time t1 and the RTT as the maximum time slot length.
  • This maximum time slot length indicates the maximum length of a time slot for receiving an upstream optical signal of one wavelength.
  • Step S90 Time Slot Assignment
  • the control unit 6 determines the length of the time zone T (ONU) used for communication with each ONU 4 so as not to exceed the maximum time slot length for each of the plurality of wavelengths. This determines the final time slot length for one wavelength.
  • the length of the time zone T (ONU) is, for example, MPCP (multi-point control protocol) defined in IEEE 802.3ah-2004-64 Multi-point MAC Control-64.3, and ITU-TG. It can be determined using a band allocation method such as PLOAM defined in 983.1-8.3.8 MESSAGES in the PLOAM channel.
  • the final time slot length of one wavelength may be shorter than the maximum time slot length.
  • the final time slot length may be different among a plurality of wavelengths.
  • the control unit 6 further assigns a time slot at the time of reception for each wavelength with the determined final time slot length. At this time, the time slot at the time of reception is assigned so as not to overlap between a plurality of wavelengths. Further, the control unit 6 assigns a time slot (light emission period) at the time of transmission based on the assigned time slot at the time of reception. The time slot for transmission is assigned by subtracting RTT from the time slot for reception. If the time slot allocated in this way is used, the OLT 2 can receive an upstream optical signal with a reception error rate equal to or less than a reception error rate threshold.
  • FIG. 7 is a timing diagram showing a state in which a time slot is assigned.
  • the control unit 6 assigns the time slots (T1 to Tn) at the time of reception so as not to overlap each other for the plurality of wavelengths ( ⁇ 1 to ⁇ n). Further, the control unit 6 assigns time slots (A1 to An) at the time of transmission for each of a plurality of wavelengths ( ⁇ 1 to ⁇ n).
  • communication time zones (Tn ⁇ 1 to Tn ⁇ m) for individual ONUs 4 are allocated in the time slots at the time of transmission of the respective wavelengths.
  • the time slot (A1 to An) at the time of transmission is a time zone that is RTT before the time slot (T1 to Tn) at the time of reception. If the RTT is constant among a plurality of wavelengths, the time slots (A1 to An) at the time of transmission are assigned without overlapping.
  • time slots are assigned and the training process is terminated.
  • downlink signal light is generated and uplink signal light is received according to the assigned time slot.
  • the upstream signal light is received in a time zone in which the reception error rate is equal to or less than the reception error rate threshold. Accordingly, it is possible to suppress deterioration in reception sensitivity of upstream signal light.
  • the OLT 2 can continuously emit light while switching the wavelength, the number of ONUs 2 can be expanded.
  • step S70 described above there is a case where it is already smaller than the reception error rate threshold at the stage of time t0. In this case, the elapsed time when the actual reception error rate becomes the reception error rate threshold cannot be defined. In such a case, a length equal to RTT is set as the maximum time slot length.
  • step S70 in order to improve the accuracy of the first elapsed time t1 obtained in step S70 described above, it is possible to use the average value of the reception error rate. That is, by repeating the process up to step S60 many times, the relationship between the average value of the reception error rate and the elapsed time can be used as the first relationship.
  • step S90 described above the control unit 6 assigns the time slot of wavelength ⁇ 1 again after assigning the time slot of wavelength ⁇ n.
  • time slots are allocated independently of the operation prior to the actual operation.
  • the time slot can be determined in parallel with the service operation.
  • FIG. 8 is a functional block diagram showing the configuration of the band control device 1 when the intensity of the return light is adopted instead of the reception error rate.
  • an OTDR Optical Time Domain Reflectometer
  • One end of the OTDR is connected between the light source 7 and the directional multiplexer / demultiplexer 8, and the other end is connected between the directional multiplexer / demultiplexer 8 and the receiver 9.
  • the OTDR detects that light is generated by the light source 7 at one end, and measures the intensity of the return light at the other end.
  • the OTDR itself has a timer function, and measures the relationship between the elapsed time after the light is generated by the light source 7 and the intensity of the return light. That is, the first relationship can be measured.
  • reception sensitivity deterioration may be adopted as a parameter based on the state of the return light.
  • reception sensitivity deterioration PP value
  • each ONU 4 is configured to generate a signal including a code pattern for reception error rate measurement as the modulation signal s42.
  • a code pattern known on the OLT 2 side is used as a code pattern for reception error rate measurement. If the code pattern for reception error rate measurement is known on the OLT 2 side, it is not necessary to use a frame structure including a delimiter as the code pattern, and the reception error rate can be easily measured in step S50.
  • the RTT is the same among a plurality of wavelengths.
  • the RTT may be different between a plurality of wavelengths.
  • the transmission line loss may be different between a plurality of wavelengths.
  • the influence of error rate degradation due to beat noise may also differ for each wavelength. That is, the degree of influence of the return light on the upstream signal may differ between a plurality of wavelengths.
  • time slots are assigned on the assumption that the RTT is the same, the timing at which the upstream optical signal is actually incident on the OLT 2 may overlap among a plurality of wavelengths.
  • FIG. 9 is a timing diagram showing an example in which upstream optical signals overlap between a plurality of wavelengths.
  • the ONU 4 ( ⁇ 2) to which the wavelength ⁇ 2 is assigned is longer than the ONU 4 ( ⁇ 1, ⁇ 3) to which the wavelengths ⁇ 1 and ⁇ 3 are assigned.
  • the RTT it is assumed that the time for light to reciprocate between the OLT 2 and the ONU 4 ( ⁇ 1, ⁇ 3) is used.
  • time slots are allocated according to the first embodiment. In this case, paying attention to the time slot of wavelength ⁇ 2, the assigned time slot T2 deviates from the time zone T2 * where the upstream signal light of wavelength ⁇ 2 is actually incident on OLT2.
  • the time zone T2 * overlaps with the time slot T3 with the wavelength ⁇ 3, and the upstream optical signals with the wavelengths ⁇ 2 and ⁇ 3 enter the OLT 2 at the same time.
  • the receiver 9 does not have a wavelength separation function, it is impossible to separate and receive upstream signal lights having different wavelengths incident on the OLT at the same time.
  • the time slot interval between different wavelengths becomes unnecessarily long, leading to a decrease in the reception band.
  • the device is devised so that the time slot is appropriately set.
  • FIG. 10 is a configuration diagram showing the configuration of the OLT 2 according to the present embodiment.
  • the light source 7 includes a plurality of light source elements (7-1 to 7-n) so that each of the plurality of wavelengths ( ⁇ 1 to ⁇ n) can emit light independently. Further, the light source 7 is provided with a wavelength multiplexing filter 19 (WDM) so that light generated by the plurality of light source elements (7-1 to 7-n) is superimposed and guided to the directional demultiplexer. Yes.
  • the light emission control unit 6 (6-1 to 6-n) is configured to control each of the plurality of light source elements (7-1 to 7-n) independently. Further, the RTT measurement unit 62 is configured to measure the RTT for each of a plurality of wavelengths.
  • the first relationship calculation unit 13 is also configured to measure the first relationship for each of a plurality of wavelengths.
  • the threshold storage unit 15 is set with a reception error rate threshold for each of a plurality of wavelengths. Since other configurations can be the same as those of the first embodiment, detailed description thereof is omitted.
  • FIG. 11 is a flowchart showing the operation of the bandwidth control device 1 according to the present embodiment.
  • the processing from step S10 to step S80 in the first embodiment is executed for each of a plurality of wavelengths ( ⁇ 1 to ⁇ n). Accordingly, the RTT and the maximum time slot length are obtained for each of the plurality of wavelengths ( ⁇ 1 to ⁇ n).
  • step S90 the control unit 6 assigns the time slots at the time of reception so as not to overlap for each of the plurality of wavelengths ( ⁇ 1 to ⁇ n). Then, based on the assigned reception time slot, the transmission time slot is assigned.
  • FIG. 12 is a timing chart showing how time slots are assigned in the present embodiment.
  • the time slot T1 at the time of receiving the wavelength ⁇ 1 is assigned to the period from time t1s to time t1e.
  • a time slot T2 at the time of receiving the wavelength ⁇ 2 is assigned to a period from time t2s to time t2e.
  • a time slot T3 at the time of receiving the wavelength ⁇ 3 is assigned to a period from time t3s to time t3e.
  • a time slot Tn at the time of reception of the wavelength ⁇ n is assigned to a period from time tns to time tne.
  • the time slots T1 to Tn at the time of reception are assigned so as not to overlap in time.
  • each RTT of a plurality of wavelengths ( ⁇ 1 to ⁇ n) is obtained separately as RTT1 to RTTn.
  • the time slot A ( ⁇ 1) at the time of transmission of the wavelength ⁇ 1 is assigned to a period from “t1s-RTT1 to t1e-RTT1”.
  • the time slot A ( ⁇ 2) at the time of transmission of the wavelength ⁇ 2 is assigned to a period from “t2s-RTT2 to t2e-RTT2”.
  • the time slot A ( ⁇ 3) at the time of transmission of the wavelength ⁇ 3 is assigned to a period from “t3s-RTT3 to t3e-RTT3”.
  • the time slot A ( ⁇ n) at the time of transmission of the wavelength ⁇ n is assigned to a period from “tns-RTTn to tne-RTTn”.
  • tns-RTTn the time slot length of each wavelength
  • information on the required bandwidth of the wavelength group in which the bandwidth required by each ONU is bundled is required. This process is given as requested bandwidth information.
  • the means for collecting requested bandwidth information and the bandwidth distribution method are not related to the gist of the present embodiment, and thus description thereof is omitted.
  • the time slot at the time of transmission may overlap at different wavelengths.
  • the light source 7 emits light of a plurality of wavelengths independently, there is no problem.
  • the time slot at the time of reception coincides with the time zone in which the upstream optical signal actually reaches the OLT 2. Therefore, even if the RTT is different among a plurality of wavelengths, uplink signals having different wavelengths do not reach the OLT 2 at the same time. Further, since the light emission periods may overlap between a plurality of wavelengths, time slots can be assigned so that the bandwidth can be utilized to the maximum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Provided are an optical network band control apparatus and an optical network band control method wherein the sensitivity of receiving an upstream signal light will not be degraded.  A band control apparatus comprises: a light emission control unit that causes a light source located at a first node to perform a light emission for a predetermined time period until a time t0 and provides a first optical signal generated by the light source through a transmission path to a second node; an influence factor determining unit that, when a part of the first optical signal is reflected, as a return light, on the transmission path toward the first node, determines, as an influence factor, a parameter based on the status of the return light; a first relationship calculating unit that calculates, as a first relationship, the relationship between a time having elapsed since the time t0 and the influence factor; and a control unit that decides, based on the first relationship, a time slot to be used for communication between the first and second nodes.  The first node is so configured as to receive, during the decided time slot, an upstream signal light generated by the fact that a downstream signal light generated by the light source is reflected and modulated at the second node.

Description

光ネットワークの帯域制御装置、及び光ネットワークの帯域制御方法Optical network bandwidth control apparatus and optical network bandwidth control method
 本発明は、光ネットワークに関し、特に、光ネットワークの帯域制御装置、及び光ネットワークの帯域制御方法に関する。 The present invention relates to an optical network, and more particularly to an optical network bandwidth control device and an optical network bandwidth control method.
 Passive optical network(PON)を利用した光ネットワークが知られている。PONでは、スプリッタを用いることにより、一つのセンタノード送受信装置(OLT)に対して複数のリモートノード送受信装置(ONU)が収容可能である。しかし、通信に用いられる信号光のS/N比は、ファイバ伝送路長に依存した損失、及び、スプリッタの分岐損失等により、劣化する。そのため、一のPONに収容可能なONUの数は、制限される。一例として、GEPON(IEEE802.3ah)では32個が、GPON(FSAN/ITU-T)では62個が、それぞれ、一つのPONに収容可能なONUの数の上限とされている。 An optical network using Passive optical network (PON) is known. In the PON, by using a splitter, a plurality of remote node transmission / reception devices (ONUs) can be accommodated in one center node transmission / reception device (OLT). However, the S / N ratio of signal light used for communication deteriorates due to loss depending on the fiber transmission path length, splitter branching loss, and the like. Therefore, the number of ONUs that can be accommodated in one PON is limited. As an example, the upper limit of the number of ONUs that can be accommodated in one PON is 32 in GEPON (IEEE802.3ah) and 62 in GPON (FSAN / ITU-T).
 収容可能なONU数を増やすために、波長多重(WDM)技術と、時分割(TDM)技術とを組み合わせた、TDM/WDMハイブリッドPON方式を採用することが考えられる(たとえば、非特許文献1、非特許文献2参照)。 In order to increase the number of ONUs that can be accommodated, it is conceivable to adopt a TDM / WDM hybrid PON system that combines wavelength division multiplexing (WDM) technology and time division (TDM) technology (for example, Non-Patent Document 1, Non-patent document 2).
 図1は、TDM/WDMハイブリッドPON方式を採用した光ネットワークの一例を示す概略図である。この光ネットワークは、OLT101と、波長多重分離フィルタ102と、複数の分岐スプリッタ(103-1~103-i)と、複数のONU104とを備えている。この光ネットワークでは、OLT101から生成された下り信号光が、波長多重分離フィルタ102によって、複数の波長の光(λ1~λn)に分離される。分離後の各下り信号光は、分岐スプリッタ103によって更に複数の下り信号光に時分割される。時分割された各下り信号光は、各ONU104に供給される。一方、各ONU104は、受信した各下り信号光の波長と同じ波長の上り信号光を生成し、OLT側へ送信する。 FIG. 1 is a schematic diagram showing an example of an optical network employing a TDM / WDM hybrid PON system. This optical network includes an OLT 101, a wavelength division multiplexing filter 102, a plurality of branch splitters (103-1 to 103-i), and a plurality of ONUs 104. In this optical network, the downstream signal light generated from the OLT 101 is separated by the wavelength demultiplexing filter 102 into light of multiple wavelengths (λ1 to λn). Each downstream signal light after separation is further time-divided into a plurality of downstream signal lights by the branching splitter 103. Each time-divided downstream signal light is supplied to each ONU 104. On the other hand, each ONU 104 generates upstream signal light having the same wavelength as that of each received downstream signal light, and transmits it to the OLT side.
 波長多重分離フィルタ102は、分岐スプリッタ103の分岐損と比較して、格段に低損失で光信号を多重分離することが可能である。従って、TDM/WDMハイブリッドPON方式を採用すれば、原理的には、波長多重数に比例して、収容可能なONU数を拡張する事が可能となる。しかし、波長多重フィルタ102が用いられる場合、各ONU104には、自身に割り当てられた波長の光を発光することのできる光源が設けられていなければならない。実質的には、各ONU104は、複数の波長の各々を選択的に発光することのできる光源を備えていなければならない。ONU104にそのような光源を設けることは、光源に要するコスト面から、不利となる。また、選択的に特定の波長の光を発光するために、各ONU104において複雑な制御を行わなければならない。 The wavelength demultiplexing filter 102 can demultiplex an optical signal with a significantly lower loss than the branching loss of the branching splitter 103. Therefore, if the TDM / WDM hybrid PON system is adopted, in principle, the number of ONUs that can be accommodated can be expanded in proportion to the number of multiplexed wavelengths. However, when the wavelength division multiplexing filter 102 is used, each ONU 104 must be provided with a light source capable of emitting light having a wavelength assigned to the ONU 104. In effect, each ONU 104 must be equipped with a light source that can selectively emit each of a plurality of wavelengths. Providing such a light source in the ONU 104 is disadvantageous in terms of cost required for the light source. Further, in order to selectively emit light of a specific wavelength, complicated control must be performed in each ONU 104.
 一方、特許文献1(特開平9-219680)には、子局にそれぞれ異なる波長を割り当て、波長多重分割マルチアクセス方式により子局とセンタ局とを接続するとともに子局に変調素子を設けることが記載されている。特許文献1には、子局に変調素子を用いることにより、子局側での波長な精密な制御が必要なくなり、低コストなシステムが実現できると記載されている。 On the other hand, in Patent Document 1 (Japanese Patent Laid-Open No. 9-219680), different wavelengths are assigned to each slave station, the slave station and the center station are connected by a wavelength division division multiple access system, and a modulation element is provided in the slave station. Are listed. Patent Document 1 describes that the use of a modulation element in a slave station eliminates the need for precise wavelength control on the slave station side, thereby realizing a low-cost system.
 その他、本発明者らが知りえた関連技術としては、特許文献2(特開平8-65252)、特許文献3(特開平8-51412)、特許文献4(特開平9-214440)、特許文献5(特許第3431515号)、非特許文献3(Han Wu Hu and Hanan Anis, Degradation of Bi-Directional Single Fiber Transmission in WDM-PON Due to Beat Noise, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 8, APRIL 15, 2008)、及び非特許文献4(田中 他、高速量子暗号通信システムの開発(2)-バーストモードによるQKD-、2005年電子情報通信学会総合大会、B-10-60)がある。 In addition, as related techniques that the present inventors have known, Patent Document 2 (Japanese Patent Laid-Open No. 8-65252), Patent Document 3 (Japanese Patent Laid-Open No. 8-51412), Patent Document 4 (Japanese Patent Laid-Open No. 9-214440), Patent Document 5 (Patent No. 3431515), Non-Patent Document 3 (Han Wu Hu and Hanan Anis, Degradation of Bi-Directional Single Fiber Transmission in WDM-PON DUE to HO LUE, TWO LOVE. 15, 2008) and Non-Patent Document 4 (Tanaka et al., Development of high-speed quantum cryptography communication system (2)-QKD in burst mode, 200 Year of Electronics, Information and Communication Engineers General Conference, B-10-60) there is.
特開平9-219680JP-A-9-219680 特開平8-65252JP-A-8-65252 特開平8-51412JP-A-8-51412 特開平9-214440JP-A-9-214440 特許第3431515号Japanese Patent No. 3431515
 特許文献1に記載されるように、ONU104に変調素子を設ければ、OLT101から送信される下り信号光を反射することによって、ONU104からOLT101への上り信号光を生成することができる。そのため、ONU104側に光源を設ける必要がない。しかしながら、下り信号光と上り信号光とは、同一の波長となる。そのため、下り信号光と上り信号とのコヒーレンシが高くなる。OLT101から送信された下り信号光は、OLT101-ONU104間の伝送路においてその一部が反射され、反射戻り光としてOLT101に入射することがある。その反射戻り光の主な起源は、例えば、伝送路全体におけるレイリー散乱や、スプライス点などの局所的な反射点である。この戻り光は、上り信号光と干渉し易い。その結果、OLT101にて受信される上り信号光にコヒーレントなビートノイズが発生し、上り信号光の受信感度が劣化してしまう。 As described in Patent Document 1, if a modulation element is provided in the ONU 104, the upstream signal light from the ONU 104 to the OLT 101 can be generated by reflecting the downstream signal light transmitted from the OLT 101. Therefore, it is not necessary to provide a light source on the ONU 104 side. However, the downstream signal light and the upstream signal light have the same wavelength. Therefore, the coherency between the downstream signal light and the upstream signal is increased. A part of the downstream signal light transmitted from the OLT 101 may be reflected on the transmission path between the OLT 101 and the ONU 104 and may enter the OLT 101 as reflected return light. The main origin of the reflected return light is, for example, a local reflection point such as Rayleigh scattering or a splice point in the entire transmission line. This return light is likely to interfere with the upstream signal light. As a result, coherent beat noise occurs in the upstream signal light received by the OLT 101, and the reception sensitivity of the upstream signal light deteriorates.
 従って、本発明の目的は、上り信号光の受信感度を劣化させない光ネットワークの帯域制御装置、及び光ネットワークの帯域制御方法を提供することにある。 Accordingly, an object of the present invention is to provide an optical network bandwidth control apparatus and an optical network bandwidth control method that do not deteriorate the reception sensitivity of upstream signal light.
 本発明に係る光ネットワークの帯域制御装置は、第1ノードに設けられた光源を、時刻t0までの所定の期間において発光させ、前記光源で発生した第1光信号を伝送路を介して第2ノードへ供給する、発光制御部と、前記第1光信号の一部が前記伝送路において前記第1ノード側へ戻り光として反射されたときに、前記戻り光の状態に基づくパラメータを影響度として測定する影響度測定部と、前記時刻t0からの経過時間と前記影響度との関係を第1関係として求める第1関係算出部と、前記第1関係に基づいて、前記第1ノードと前記第2ノードとの通信に用いられるタイムスロットを決定する制御部とを具備する。 The bandwidth control apparatus for an optical network according to the present invention causes a light source provided at a first node to emit light during a predetermined period until time t0, and a second optical signal generated by the light source is transmitted through a transmission line to a second time. When a part of the first optical signal supplied to the node is reflected as a return light to the first node side in the transmission path, a parameter based on the state of the return light is used as an influence level. An influence measuring unit for measuring, a first relationship calculating unit for obtaining a relationship between an elapsed time from the time t0 and the degree of influence as a first relationship, and based on the first relationship, the first node and the first And a control unit for determining a time slot used for communication with the two nodes.
 本発明に係る光ネットワークのセンタ装置は、上記の光ネットワークの帯域制御装置と、前記光ネットワークの帯域制御装置によって決定されたタイムスロットに基づいて、前記第2ノードに向けて光信号を送信する光源と、前記光ネットワークの帯域制御装置によって決定されたタイムスロットで、前記第2ノードから返信された光信号を受信する受信器とを具備する。 The center device of the optical network according to the present invention transmits an optical signal to the second node based on the bandwidth control device of the optical network and the time slot determined by the bandwidth control device of the optical network. A light source and a receiver for receiving an optical signal returned from the second node in a time slot determined by a bandwidth control device of the optical network.
 本発明に係る光ネットワークシステムは、上記の光ネットワークのセンタ装置と、前記光ネットワークのセンタ装置に、前記第2ノードとして接続されたユーザ装置とを具備する。 An optical network system according to the present invention includes the optical network center apparatus and a user apparatus connected to the optical network center apparatus as the second node.
 本発明に係る光ネットワークの帯域制御方法は、第1ノードに設けられた光源を、時刻t0までの所定の期間において発光させ、前記光源で発生された第1光信号を伝送路を介して第2ノードへ供給するステップと、前記第1光信号が前記第2ノードにより反射及び変調され、第2光信号として前記第1ノードに受信されたときに、前記第2光信号に含まれる信号の誤り率を測定するステップと、前記時刻t0からの経過時間と前記誤り率との関係を第1関係として求めるステップと、前記第1関係を予め定められた誤り率閾値と比較することにより、前記誤り率が前記誤り率閾値以下となるような前記経過時間を第1経過時間t1として算出するステップと、前記第1経過時間t1に基づいて、前記第1ノードと前記第2ノードとの通信に使用されるタイムスロットを決定するステップとを具備する。 In the bandwidth control method for an optical network according to the present invention, a light source provided at a first node is caused to emit light during a predetermined period until time t0, and a first optical signal generated by the light source is transmitted via a transmission line. Supplying to two nodes, and when the first optical signal is reflected and modulated by the second node and received by the first node as a second optical signal, a signal included in the second optical signal Measuring an error rate; obtaining a relationship between an elapsed time from the time t0 and the error rate as a first relationship; and comparing the first relationship with a predetermined error rate threshold. Calculating the elapsed time such that the error rate is equal to or less than the error rate threshold as the first elapsed time t1, and communication between the first node and the second node based on the first elapsed time t1 And a step of determining the time slots used.
 本発明に係る光ネットワークの帯域制御プログラムは、上述の光ネットワークの帯域制御方法を、コンピュータにより実現する為のプログラムである。 The optical network bandwidth control program according to the present invention is a program for realizing the above-described optical network bandwidth control method by a computer.
 本発明によれば、上り信号の受信感度を劣化させない光ネットワークの帯域制御装置、及び光ネットワークの帯域制御方法が提供される。 According to the present invention, there are provided an optical network bandwidth control device and an optical network bandwidth control method that do not deteriorate the reception sensitivity of uplink signals.
図1は、光ネットワークを示す構成図である。FIG. 1 is a configuration diagram showing an optical network. 図2は、第1の実施形態に係る光ネットワークシステムを示す構成図である。FIG. 2 is a configuration diagram illustrating the optical network system according to the first embodiment. 図3Aは、下り光信号が上り光信号としてOLTに到達するまでの時間を示すタイミング図である。FIG. 3A is a timing diagram showing time until the downstream optical signal reaches the OLT as the upstream optical signal. 図3Bは、出力とビットエラーレートとの関係を示すグラフである。FIG. 3B is a graph showing the relationship between the output and the bit error rate. 図3Cは、出力とビットエラーレートとの関係を示すグラフである。FIG. 3C is a graph showing the relationship between the output and the bit error rate. 図4は、第1の実施形態にかかるOLTを示す構成図である。FIG. 4 is a configuration diagram illustrating the OLT according to the first embodiment. 図5は、第1の実施形態における帯域制御方法を示すフローチャートである。FIG. 5 is a flowchart illustrating the bandwidth control method according to the first embodiment. 図6Aは、初期タイムスロットを示す説明図である。FIG. 6A is an explanatory diagram showing an initial time slot. 図6Bは、最大タイムスロット長を示す説明図である。FIG. 6B is an explanatory diagram showing the maximum time slot length. 図7は、第1の実施形態におけるタイムスロットと発光期間を示すタイミング図である。FIG. 7 is a timing chart showing time slots and light emission periods in the first embodiment. 図8は、帯域制御装置を示す機能ブロック図である。FIG. 8 is a functional block diagram showing the bandwidth control device. 図9は、発光期間とタイムスロットとの関係を示すタイミング図である。FIG. 9 is a timing chart showing the relationship between the light emission period and the time slot. 図10は、第2の実施形態におけるOLTを示す構成図である。FIG. 10 is a configuration diagram illustrating an OLT according to the second embodiment. 図11は、第2の実施形態における帯域制御方法を示すフローチャートである。FIG. 11 is a flowchart illustrating the bandwidth control method according to the second embodiment. 図12は、第2の実施形態におけるタイムスロットと発光期間との関係を示すタイミング図である。FIG. 12 is a timing chart showing the relationship between time slots and light emission periods in the second embodiment.
(第1の実施形態)
 以下に、図面を参照しつつ、本発明の第1の実施形態について説明する。図2は、本実施形態に係る光ネットワークシステム40を示す概略構成図である。光ネットワークシステム40は、センタ装置(OLT)2(第1ノード)と、伝送路(ODN)3と、複数のONU4(第2ノード)とを備えている。OLT2と複数のONU4の各々は、伝送路3を介して接続されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic configuration diagram showing the optical network system 40 according to the present embodiment. The optical network system 40 includes a center device (OLT) 2 (first node), a transmission path (ODN) 3, and a plurality of ONUs 4 (second nodes). Each of the OLT 2 and the plurality of ONUs 4 is connected via the transmission path 3.
 伝送路3は、波長合分波フィルタ20と、複数の分岐スプリッタ30とを備えており、これらの間は光ファイバにより接続されている。波長合分波フィルタ20は、OLT2に接続されている。複数の分岐スプリッタ30は、波長合分波フィルタ20に接続されている。一つの分岐スプリッタ30に対しては、複数のONU4が接続されている。 The transmission path 3 includes a wavelength multiplexing / demultiplexing filter 20 and a plurality of branch splitters 30, and these are connected by an optical fiber. The wavelength multiplexing / demultiplexing filter 20 is connected to the OLT 2. The plurality of branching splitters 30 are connected to the wavelength multiplexing / demultiplexing filter 20. A plurality of ONUs 4 are connected to one branching splitter 30.
 OLT2は、下り信号光を生成すると共に、各ONU4からの上り信号光を受信するように構成されている。OLT2は、複数の波長のそれぞれを選択的に発光可能である。 The OLT 2 is configured to generate downstream signal light and to receive upstream signal light from each ONU 4. The OLT 2 can selectively emit each of a plurality of wavelengths.
 各ONU4には、反射変調部17と、信号源18とが設けられている。変調信号源18は、OLT2側へ送信するべきデータを含む変調信号s42を生成し、反射変調器17に供給する。反射変調器17は、下り信号光を変調信号s42に基づいて変調させ、上り信号光として反射する。 Each ONU 4 is provided with a reflection modulator 17 and a signal source 18. The modulation signal source 18 generates a modulation signal s 42 including data to be transmitted to the OLT 2 side, and supplies the modulation signal s 42 to the reflection modulator 17. The reflection modulator 17 modulates the downstream signal light based on the modulation signal s42 and reflects it as upstream signal light.
 この光ネットワークシステム40では、サービス運用時には、OLT2が下り信号光を生成する。生成された下り信号光は、波長合分波フィルタ20により、波長に応じて、特定の分岐スプリッタ30へ導かれる。下り信号光は、分岐スプリッタ30にて更に複数の信号光に時分割され、各ONU4に供給される。各ONU4では、反射変調部17が下り信号光を、変調信号s42に基づいて変調し、上り信号光として反射する。上り信号光は、下り信号光とは逆の経路を通り、OLT2へ導かれる。 In this optical network system 40, the OLT 2 generates downstream signal light during service operation. The generated downstream signal light is guided by the wavelength multiplexing / demultiplexing filter 20 to a specific branching splitter 30 according to the wavelength. The downstream signal light is further time-divided into a plurality of signal lights by the branching splitter 30 and supplied to each ONU 4. In each ONU 4, the reflection modulator 17 modulates the downstream signal light based on the modulation signal s42 and reflects it as upstream signal light. The upstream signal light is guided to the OLT 2 through a path opposite to that of the downstream signal light.
 ここで、複数のONU4からの上り信号光が同時にOLT2に送られてきた場合には、OLT2は、個々のONU4の上り信号光を識別できない。そこで、OLT2は、トレーニング処理を行う。そのトレーニング処理によって、複数の波長のそれぞれについて、下り信号光の発光期間(発光期間)と、上り信号光の受信期間とが、タイムスロットとして決定される。尚、以下の説明では、下り信号光の発光期間が送信時のタイムスロットと記載され、上り信号光の受信期間が受信時のタイムスロットと記載されることがある。サービス運用時には、OLT2は、設定されたタイムスロットに基づいて、各ONU4との通信を行う。 Here, when upstream signal lights from a plurality of ONUs 4 are sent to the OLT 2 at the same time, the OLT 2 cannot identify the upstream signal lights of the individual ONUs 4. Therefore, the OLT 2 performs a training process. Through the training processing, the light emission period (light emission period) of the downstream signal light and the reception period of the upstream signal light are determined as time slots for each of the plurality of wavelengths. In the following description, the light emission period of the downstream signal light may be described as a time slot during transmission, and the reception period of the upstream signal light may be described as a time slot during reception. During service operation, the OLT 2 communicates with each ONU 4 based on the set time slot.
 ところで、OLT2で生成された上り信号光は、伝送路3においてその一部が反射され、戻り光としてOLT2に戻ってくることがある。この戻り光の波長は、ONU4から送られてくる上り信号光の波長と同じある。そのため、OLT2で受信される上り信号光に対して影響(干渉などによる受信感度劣化)を与える。戻り光が上り信号光に対して与える影響は、OLT2における発光終了時刻からの経過時間に依存する。この点について、図3を参照して、詳述する。 Incidentally, part of the upstream signal light generated by the OLT 2 is reflected on the transmission path 3 and may return to the OLT 2 as return light. The wavelength of the return light is the same as the wavelength of the upstream signal light transmitted from the ONU 4. Therefore, the upstream signal light received by the OLT 2 is affected (reception sensitivity deterioration due to interference or the like). The influence of the return light on the upstream signal light depends on the elapsed time from the light emission end time in the OLT 2. This point will be described in detail with reference to FIG.
 図3A(a)は、OLT2で下り信号光が生成されてから、OLT2が上り信号光を受信するまでのタイミングを示すタイミング図である。図3A(a)において、横軸は時間を示し、縦軸はOLTとONUを結ぶODN3の距離を示している。図3A(a)に示されるように、OLT2が、時刻t0までの所定の期間、発光を行い、下り信号光が送信されたとする。また、OLT2は、時刻t0以降に、上り信号光を受信するものとする。OLT2で生成された下り信号光は、ODN3を伝送し、ODN3での損失により減衰しながら、ONU4に到達する。ONU4に到達した下り信号光は、変調され、上り信号光としてOLT2へ向けて反射される。上り信号光は、下り信号光と逆の経路を通り、OLT2に到達する。ここで、下り信号光が生成されてから、上り信号光としてOLT2に到達するまでの時間が、ラウンドトリップタイム(RTT)と定義される。発光期間の終了時(時刻t0)で生成された下り信号光は、時刻t0からRTTの経過後である時刻t2に、OLT2に到達する。上り信号光は下り信号光の反射光であるので、OLT2は、時刻t2以前の時間帯でしか、上り信号光を受信できないことがわかる。 FIG. 3A (a) is a timing chart showing the timing from when the downstream signal light is generated by the OLT 2 to when the OLT 2 receives the upstream signal light. In FIG. 3A (a), the horizontal axis indicates time, and the vertical axis indicates the distance of ODN 3 connecting the OLT and the ONU. As shown in FIG. 3A (a), it is assumed that the OLT 2 emits light for a predetermined period until time t0 and the downstream signal light is transmitted. Further, it is assumed that the OLT 2 receives the upstream signal light after the time t0. The downstream signal light generated by the OLT 2 transmits the ODN 3 and reaches the ONU 4 while being attenuated by the loss at the ODN 3. Downstream signal light reaching the ONU 4 is modulated and reflected toward the OLT 2 as upstream signal light. The upstream signal light passes through the reverse path to the downstream signal light and reaches the OLT 2. Here, the time from when the downstream signal light is generated until it reaches the OLT 2 as upstream signal light is defined as the round trip time (RTT). Downstream signal light generated at the end of the light emission period (time t0) reaches OLT2 at time t2 after the passage of RTT from time t0. Since the upstream signal light is reflected light of the downstream signal light, it can be seen that the OLT 2 can receive the upstream signal light only in the time zone before time t2.
 下り信号光がODN3を伝送する際には、ODN3全体のレイリー散乱や、光ファイバのスプライス点などでの反射により、上り方向(OLT2)への戻り光が発生する。戻り光も、ODN3を通過する際に、減衰する。戻り光の減衰量は、OLT2から反射点までの距離に依存する。 When the downstream signal light is transmitted through the ODN 3, return light in the upstream direction (OLT 2) is generated due to Rayleigh scattering of the entire ODN 3 or reflection at the splice point of the optical fiber. The return light also attenuates when passing through the ODN 3. The amount of return light attenuation depends on the distance from the OLT 2 to the reflection point.
 時刻t0の直後(時刻tx)にOLT2に入射する上り信号光Xに着目する。時刻txでは、上り信号光Xに加え、戻り光XもOLT2に入射する。戻り光Xは、ODN3において、位置LxからONU4までの範囲で反射された戻り光である。位置LxよりもOLT2側で反射された戻り光は、時刻txよりも前にOLT2に入射し、時刻txでは入射しない。時刻txが時刻t0の直後であれば、位置Lxは、OLT2から近い位置になる。すなわち、OLT2からの距離が短い位置で反射した光が、戻り光Xに含まれてしまう。従って、さほど減衰しない戻り光がOLT2に入射することになり、上り信号光Xは、戻り光Xの影響を強く受けてしまう。 Pay attention to the upstream signal light X incident on the OLT 2 immediately after time t0 (time tx). At time tx, in addition to the upstream signal light X, the return light X also enters the OLT 2. The return light X is the return light reflected in the range from the position Lx to the ONU 4 in the ODN 3. The return light reflected on the OLT 2 side from the position Lx enters the OLT 2 before the time tx and does not enter at the time tx. If the time tx is immediately after the time t0, the position Lx is close to the OLT2. That is, the light reflected at a position where the distance from the OLT 2 is short is included in the return light X. Therefore, the return light that does not attenuate so much enters the OLT 2, and the upstream signal light X is strongly influenced by the return light X.
 上述の点を考慮すると、戻り光の影響を少なくするためには、上り信号光を、時刻t0からの経過時間が長い時間帯で受信すればよいことがわかる。 In consideration of the above points, it can be seen that the upstream signal light may be received in a time zone having a long elapsed time from time t0 in order to reduce the influence of the return light.
 図3A(b)は、時刻t0からの経過時間と、上り信号光の受信感度劣化(PP)との関係を示すグラフである。このグラフに示されるように、時刻t0の直後では、受信感度劣化が大きい。しかし、時刻t0からの経過時間が長くなると共に、受信感度劣化が、少なくなる。図3Bは、時刻t0の直後(時刻tx)における、出力(Power)とビットエラーレート(BER)との関係を示している。また、図3Cは、時刻t2における出力とビットエラーレートとの関係を示している。図3B及び図3Cを比較すれば、時刻t2におけるビットエラーレート(図3C)のほうが小さい。すなわち、時刻t0からの経過時間が長いほど、ビットエラーレートが小さくなっていることがわかる。受信感度劣化やビットエラーレートが時間経過と共に少なくなることは、戻り光が上り信号光に与える影響が、時刻t0からの経過時間に伴い、少なくなっていることを示している。 FIG. 3A (b) is a graph showing the relationship between the elapsed time from time t0 and the reception sensitivity degradation (PP) of the upstream signal light. As shown in this graph, the reception sensitivity is greatly deteriorated immediately after time t0. However, the elapsed time from time t0 becomes longer and the reception sensitivity deterioration is reduced. FIG. 3B shows the relationship between the output (Power) and the bit error rate (BER) immediately after time t0 (time tx). FIG. 3C shows the relationship between the output and the bit error rate at time t2. Comparing FIG. 3B and FIG. 3C, the bit error rate (FIG. 3C) at time t2 is smaller. That is, it can be seen that the bit error rate decreases as the elapsed time from time t0 increases. The decrease in reception sensitivity degradation and bit error rate with time indicates that the influence of return light on upstream signal light decreases with the elapsed time from time t0.
 尚、図3A(b)には、ODN3として光ファイバだけを用いた場合のグラフを示した。ODN3に波長合分波フィルタや分岐スプリッタなどが設けられている場合であれば、受信感度劣化は、分岐による損失やスプライス点における損失により、段階的に少なくなることが予想される。 FIG. 3A (b) shows a graph when only an optical fiber is used as ODN3. If the ODN 3 is provided with a wavelength multiplexing / demultiplexing filter, a branching splitter, or the like, it is expected that the reception sensitivity deterioration is gradually reduced due to a loss due to a branch or a loss at a splice point.
 図3A(b)に示されるように、許容可能な受信感度劣化のレベルをρと設定したとする。受信感度劣化がρとなる時刻をt1とする。この場合、時刻t1~時刻t2までの期間であれば、OLT2は、許容可能の受信感度劣化のレベルで、上り信号光を受信することができる。また、そのような期間に上り信号光を受信するためには、OLT2の発光期間が、時間帯(t1~t2)よりもRTTだけ前の時間帯(「t1-RTT」~t0)に設定されればよいことがわかる。 As shown in FIG. 3A (b), it is assumed that an acceptable level of reception sensitivity degradation is set to ρ. The time when the reception sensitivity deterioration becomes ρ is t1. In this case, during the period from time t1 to time t2, the OLT 2 can receive the upstream signal light at an acceptable level of reception sensitivity degradation. Further, in order to receive the upstream signal light during such a period, the light emission period of the OLT 2 is set to a time zone (“t1−RTT” to t0) that is RTT before the time zone (t1 to t2). You can see that
 そこで、本実施形態では、上述の図3A乃至図3Cを用いて説明した点を考慮し、OLT2がタイムスロットを決定する。すなわち、OLT2は、戻り光の状態に基づくパラメータを影響度として測定し、そのパラメータと発光終了時からの経過時間との間の関係をもとめ、求めた関係に基づいてタイムスロットを決定する。以下に、OLT2について詳述する。 Therefore, in this embodiment, the OLT 2 determines the time slot in consideration of the points described with reference to FIGS. 3A to 3C. That is, the OLT 2 measures a parameter based on the state of the return light as an influence degree, obtains a relationship between the parameter and an elapsed time from the end of light emission, and determines a time slot based on the obtained relationship. Below, OLT2 is explained in full detail.
 図4は、OLT2の構成を示すブロック図である。図4では、説明の便宜上、複数のONU4のうちの一つだけが描かれている。 FIG. 4 is a block diagram showing the configuration of the OLT 2. In FIG. 4, for convenience of explanation, only one of the plurality of ONUs 4 is illustrated.
 OLT2は、帯域制御装置1と、光源7と、方向性分波器8と、受信器9とを備えている。 The OLT 2 includes a band control device 1, a light source 7, a directional branching filter 8, and a receiver 9.
 光源7は、下り信号光を発生する為に設けられている。光源7としては、複数の波長で光を発光可能な光源が用いられる。このような光源7との構成や種類は、特に限定されない。例えば、光源7として、可変波長レーザーダイオードを用いることができる。また、光源7として、複数のレーザーダイオードと、その複数のレーザーダイオードから出力された光を合波する機構とを用いてもよい。また、光源7として、複数の波長を含む光を発光する光源要素と、この光源要素で発光された光から波長を選択的に取り出す機構とを用いてもよい。 The light source 7 is provided to generate downstream signal light. As the light source 7, a light source capable of emitting light at a plurality of wavelengths is used. The configuration and type of such a light source 7 are not particularly limited. For example, a variable wavelength laser diode can be used as the light source 7. Further, as the light source 7, a plurality of laser diodes and a mechanism for combining light output from the plurality of laser diodes may be used. Further, as the light source 7, a light source element that emits light including a plurality of wavelengths and a mechanism that selectively extracts wavelengths from light emitted from the light source element may be used.
 方向性合分波器8は、光源7で生成された下り信号光をODN3側へ導く。また、方向性合分波器8は、ODN3側から送られてきた上り信号光を受信器9に導く。方向性合分波器8としては、例えば、光サーキュレータや、方向性結合器(光カップラ)などを用いることができる。 The directional multiplexer / demultiplexer 8 guides the downstream signal light generated by the light source 7 to the ODN 3 side. The directional multiplexer / demultiplexer 8 guides the upstream signal light transmitted from the ODN 3 side to the receiver 9. As the directional multiplexer / demultiplexer 8, for example, an optical circulator, a directional coupler (optical coupler), or the like can be used.
 受信器9は、方向性合分波器8を介して受光した上り信号光に基づいて、受信信号s51を生成する。 The receiver 9 generates a reception signal s51 based on the upstream signal light received through the directional multiplexer / demultiplexer 8.
 帯域制御装置1は、各ONU4との通信を行うタイムスロットを決定する装置である。具体的には、帯域制御装置1は、送信時のタイムスロットとして、光源7を発光させる期間を決定する。また、受信器9が上り信号光を受信する期間を、受信時のタイムスロットとして決定する。 The bandwidth control device 1 is a device that determines a time slot for communication with each ONU 4. Specifically, the bandwidth control device 1 determines a period during which the light source 7 emits light as a time slot at the time of transmission. Further, the period during which the receiver 9 receives the upstream signal light is determined as a time slot at the time of reception.
 帯域制御装置1は、発光制御部6と、タイマ部10と、RTT(ラウンドトリップタイム)測定部11と、影響度測定部12と、第1関係算出部13と、比較部14と、閾値記憶部15と、制御部16とを備えている。このうち、発光制御部6、タイマ部10、RTT測定部11、影響度測定部12、第1関係算出部13、及び比較部14は、例えば、ROM(Read only memory)などの記憶装置に格納された帯域制御プログラムにより実現することができる。また、この場合、その帯域制御プログラムは、CD-ROMなどの記憶メディアからROMなどにインストールすることが可能である。一方、閾値記憶部15は、ハードディスクやRAM(Random access memory)などの記憶装置により実現可能である。 The band control device 1 includes a light emission control unit 6, a timer unit 10, an RTT (round trip time) measurement unit 11, an influence degree measurement unit 12, a first relationship calculation unit 13, a comparison unit 14, and a threshold storage. A unit 15 and a control unit 16 are provided. Among these, the light emission control unit 6, the timer unit 10, the RTT measurement unit 11, the influence degree measurement unit 12, the first relationship calculation unit 13, and the comparison unit 14 are stored in a storage device such as a ROM (Read only memory), for example. It can be realized by the bandwidth control program. In this case, the bandwidth control program can be installed in a ROM or the like from a storage medium such as a CD-ROM. On the other hand, the threshold storage unit 15 can be realized by a storage device such as a hard disk or a RAM (Random access memory).
 図5は、帯域制御装置1の動作を示すフローチャートである。帯域制御装置1は、図5に示される手順に従って、タイムスロットの決定を行う。 FIG. 5 is a flowchart showing the operation of the bandwidth control device 1. The bandwidth control device 1 determines a time slot according to the procedure shown in FIG.
ステップS10;RTT測定用下り信号光の生成
 帯域制御処理(トレーニング)が開始されると、まず、発光制御部6が光源7に発光信号s1を供給し、RTT測定用下り信号光を発生させる。また、発光制御部6は、RTT測定用下り信号光を発生させると同時に、その旨をタイマ部10に通知する。タイマ部10では、RTT測定用下り信号光が発生してからの経過時間をカウントする。光源7で発生したRTT測定用下り信号光は、ODN3を介して、ONU4に供給される。ONU4は、反射変調部17により、RTT測定用下り信号光を、RTT測定用上り信号光としてOLT2へ反射する。OLT2に到達したRTT測定用上り信号光は、受信器9で受信される。受信器9は、RTT測定用上り信号光を、受信信号s51として、RTT測定部11に通知する。
Step S10: Generation of RTT Measurement Downstream Signal Light When the band control process (training) is started, the light emission control unit 6 first supplies the light emission signal s1 to the light source 7 to generate the RTT measurement downstream signal light. In addition, the light emission control unit 6 generates the RTT measurement downlink signal light and simultaneously notifies the timer unit 10 to that effect. The timer unit 10 counts an elapsed time after the RTT measurement downlink signal light is generated. The downstream signal light for RTT measurement generated by the light source 7 is supplied to the ONU 4 via the ODN 3. The ONU 4 reflects the downstream signal light for RTT measurement to the OLT 2 as the upstream signal light for RTT measurement by the reflection modulation unit 17. The upstream signal light for RTT measurement that has reached the OLT 2 is received by the receiver 9. The receiver 9 notifies the RTT measurement unit 11 of the RTT measurement upstream signal light as the reception signal s51.
ステップS20;RTTの測定
 RTT測定部11は、タイマ部10を参照することにより、RTT測定用下り信号光が生成されてから、RTT測定用上り信号光が受信器9で受信されるまでの時間を、ラウンドトリップタイム(RTT)として算出する。RTTは、例えば、RTT測定用下り信号光の先頭エッジと、RTT測定用上り信号光の先頭エッジとの時間差から、測定できる。また、ステップS10で十分に短い期間だけRTT測定用下り信号光を発生させた場合には、単にRTT測定用上り信号光の受信時刻を測定するだけで、RTTを測定できる。
Step S20: Measurement of RTT The RTT measurement unit 11 refers to the timer unit 10 to generate a time from when the RTT measurement downlink signal light is generated until the receiver 9 receives the RTT measurement uplink signal light. Is calculated as the round trip time (RTT). The RTT can be measured, for example, from the time difference between the leading edge of the downstream signal light for RTT measurement and the leading edge of the upstream signal light for RTT measurement. In addition, when the RTT measurement downlink signal light is generated for a sufficiently short period in step S10, the RTT can be measured simply by measuring the reception time of the RTT measurement uplink signal light.
ステップS30;初期タイムスロットの決定
 続いて、制御部16が、初期タイムスロットを決定する。図6Aは、初期タイムスロットを説明する為の説明図である。図6Aに示されるように、制御部16は、送信時のタイムスロットの長さ(初期発光期間の長さ)を、RTTに設定する。また、制御部16は、受信時のタイムスロットとして、発光終了時刻t0からRTT経過後(時刻t2)までの期間を設定する。
Step S30; Determination of Initial Time Slot Subsequently, the control unit 16 determines an initial time slot. FIG. 6A is an explanatory diagram for explaining an initial time slot. As shown in FIG. 6A, the control unit 16 sets the length of the time slot at the time of transmission (the length of the initial light emission period) to RTT. Further, the control unit 16 sets a period from the light emission end time t0 to the time after the RTT has elapsed (time t2) as a time slot at the time of reception.
ステップS40;第1信号光の発生
 続いて、発光制御部6が、設定された初期タイムスロットに従って、発光信号s1を光源7に供給する。光源7は、第1信号光を発生する。また、発光制御部6は、発光終了時に、発光が終了した旨をタイマ部10に通知する。タイマ部10は、発光終了時刻(t0)からの経過時間をカウントする。光源7により発生した第1信号光は、ODN3を介してONU4に供給される。ONU4の信号源18は、トレーニング時に、変調信号s42として、受信誤り率測定用の符号パタンを含む信号を生成するように構成されている。その符号パタンとしては、例えば、8B/10B符号のパタン、64B/66B符号のアイドルパタン、及びデリミタパタンなどを用いることができる。反射変調部17は、第1信号光を、変調信号s42に基づいて変調し、第2信号光として反射する。第2信号光は、ODN3を介して、OLT2に供給される。
Step S40: Generation of First Signal Light Subsequently, the light emission control unit 6 supplies the light emission signal s1 to the light source 7 according to the set initial time slot. The light source 7 generates the first signal light. Further, the light emission control unit 6 notifies the timer unit 10 that the light emission has ended when the light emission ends. The timer unit 10 counts the elapsed time from the light emission end time (t0). The first signal light generated by the light source 7 is supplied to the ONU 4 via the ODN 3. The signal source 18 of the ONU 4 is configured to generate a signal including a code pattern for reception error rate measurement as the modulation signal s42 during training. As the code pattern, for example, an 8B / 10B code pattern, a 64B / 66B code idle pattern, and a delimiter pattern can be used. The reflection modulation unit 17 modulates the first signal light based on the modulation signal s42 and reflects it as the second signal light. The second signal light is supplied to the OLT 2 via the ODN 3.
ステップS50;受信誤り率の測定
 OLT2では、受信器9が、初期タイムスロットに従って受信を行い、第2光信号を取得する。受信器9は、取得した第2光信号を、受信信号s51として、誤り率測定部12に供給する。誤り率測定部12は、第2光信号の受信誤り率を測定する。この受信誤り率は、図3A乃至図3Cで説明したビットエラーレートや受信感度劣化と同様に、戻り光の状態に基づくパラメータであり、戻り光の上り光信号に対する影響度として捉えることができる。戻り光の影響度が大きければ、第2光信号の受信誤り率も大きくなる。誤り率測定部12は、算出結果を、第1関係算出部13に通知する。
Step S50: Measurement of reception error rate In the OLT 2, the receiver 9 performs reception according to the initial time slot, and acquires the second optical signal. The receiver 9 supplies the acquired second optical signal to the error rate measuring unit 12 as a received signal s51. The error rate measuring unit 12 measures the reception error rate of the second optical signal. This reception error rate is a parameter based on the state of the return light as in the case of the bit error rate and reception sensitivity degradation described in FIGS. If the influence of the return light is large, the reception error rate of the second optical signal is also large. The error rate measurement unit 12 notifies the calculation result to the first relationship calculation unit 13.
ステップS60;第1関係の算出
 続いて、第1関係算出部13が、タイマ部10を参照し、時刻t0からの経過時間と受信誤り率との関係を、第1関係として求める。
Step S60: Calculation of First Relationship Subsequently, the first relationship calculation unit 13 refers to the timer unit 10 to obtain the relationship between the elapsed time from the time t0 and the reception error rate as the first relationship.
ステップS70;比較
 続いて、比較部14が、第1関係を、閾値記憶部15に予め格納された受信誤り率閾値と比較する。受信誤り率は、戻り光の影響度を示しているので、時刻t0からの経過時間と共に減少するはずである。従って、比較部14は、受信誤り率が受信誤り率閾値になるような、経過時間を求める。比較部14は、求めた経過時間を、第1経過時間t1として、制御部6に通知する。
Step S70: Comparison Subsequently, the comparison unit 14 compares the first relationship with a reception error rate threshold value stored in advance in the threshold value storage unit 15. Since the reception error rate indicates the influence of the return light, it should decrease with the elapsed time from time t0. Therefore, the comparison unit 14 obtains the elapsed time such that the reception error rate becomes the reception error rate threshold. The comparison unit 14 notifies the control unit 6 of the obtained elapsed time as the first elapsed time t1.
ステップS80;最大タイムスロット長の決定
 その後、制御部6は、図6Bに示されるように、第1経過時間t1とRTTとの差を、最大タイムスロット長として決定する。この最大タイムスロット長は、一波長の上り光信号を受信する時間帯の最大長さを示す。
Step S80; Determination of Maximum Time Slot Length Thereafter, as shown in FIG. 6B, the control unit 6 determines the difference between the first elapsed time t1 and the RTT as the maximum time slot length. This maximum time slot length indicates the maximum length of a time slot for receiving an upstream optical signal of one wavelength.
ステップS90;タイムスロットのアサイン
 図2で示したように、一波長の下り信号光は、時分割されて複数のONU4に供給される。そこで、制御部6は、複数の波長のそれぞれについて、最大タイムスロット長を超えないように、個々のONU4との通信に使用される時間帯T(ONU)の長さを決定する。これにより、一波長についての最終的なタイムスロットの長さが決定される。時間帯T(ONU)の長さは、例えば、IEEE802.3ah-2004-64Multi-point MAC Control-64.3に規定されるMPCP(multi-point control protocol)、及びITU-TG.983.1-8.3.8 MESSAGES in the PLOAM channelで規定さPLOAM等の帯域割り当て手法を用いて、決定することができる。個々のONU4に対する時間帯T(ONU)が割り当てられた結果、一波長の最終的なタイムスロットの長さは、最大タイムスロット長よりも短くなることもある。また、複数の波長間で、最終的なタイムスロットの長さが異なることもある。
Step S90: Time Slot Assignment As shown in FIG. 2, downlink signal light of one wavelength is time-divided and supplied to a plurality of ONUs 4. Therefore, the control unit 6 determines the length of the time zone T (ONU) used for communication with each ONU 4 so as not to exceed the maximum time slot length for each of the plurality of wavelengths. This determines the final time slot length for one wavelength. The length of the time zone T (ONU) is, for example, MPCP (multi-point control protocol) defined in IEEE 802.3ah-2004-64 Multi-point MAC Control-64.3, and ITU-TG. It can be determined using a band allocation method such as PLOAM defined in 983.1-8.3.8 MESSAGES in the PLOAM channel. As a result of the time zone T (ONU) assigned to each ONU 4, the final time slot length of one wavelength may be shorter than the maximum time slot length. In addition, the final time slot length may be different among a plurality of wavelengths.
 制御部6は、更に、各波長について、受信時のタイムスロットを、決定された最終的なタイムスロットの長さでアサインする。このとき、受信時のタイムスロットは、複数の波長間で重ならないように、アサインされる。また、制御部6は、アサインされた受信時のタイムスロットに基づいて、送信時のタイムスロット(発光期間)を割り当てる。送信時のタイムスロットは、受信時のタイムスロットからRTTを差し引くことによって、割り当てられる。このように割り当てられたタイムスロットを用いれば、OLT2は、受信誤り率閾値以下の受信誤り率で、上り光信号を受信できる。 The control unit 6 further assigns a time slot at the time of reception for each wavelength with the determined final time slot length. At this time, the time slot at the time of reception is assigned so as not to overlap between a plurality of wavelengths. Further, the control unit 6 assigns a time slot (light emission period) at the time of transmission based on the assigned time slot at the time of reception. The time slot for transmission is assigned by subtracting RTT from the time slot for reception. If the time slot allocated in this way is used, the OLT 2 can receive an upstream optical signal with a reception error rate equal to or less than a reception error rate threshold.
 図7は、タイムスロットがアサインされた状態を示すタイミング図である。図7に示されるように、制御部6により、複数の波長(λ1~λn)のそれぞれについて、受信時のタイムスロット(T1~Tn)が、重ならないように割り当てられている。また、制御部6により、複数の波長(λ1~λn)のそれぞれについて、送信時のタイムスロット(A1~An)が割り当てられている。また、各波長の送信時のタイムスロット内には、個々のONU4についての通信時間帯(Tn-1~Tn-m)が割り当てられている。送信時のタイムスロット(A1~An)は、受信時のタイムスロット(T1~Tn)よりもRTTだけ前の時間帯である。複数の波長間でRTTが一定であれば、送信時のタイムスロット(A1~An)も重ならずに割り当てられることになる。 FIG. 7 is a timing diagram showing a state in which a time slot is assigned. As shown in FIG. 7, the control unit 6 assigns the time slots (T1 to Tn) at the time of reception so as not to overlap each other for the plurality of wavelengths (λ1 to λn). Further, the control unit 6 assigns time slots (A1 to An) at the time of transmission for each of a plurality of wavelengths (λ1 to λn). In addition, communication time zones (Tn−1 to Tn−m) for individual ONUs 4 are allocated in the time slots at the time of transmission of the respective wavelengths. The time slot (A1 to An) at the time of transmission is a time zone that is RTT before the time slot (T1 to Tn) at the time of reception. If the RTT is constant among a plurality of wavelengths, the time slots (A1 to An) at the time of transmission are assigned without overlapping.
 以上のステップS10~90までの処理によって、タイムスロットが割り当てられ、トレーニング処理が終了される。サービス運用時には、割り当てられたタイムスロットに従って、下り信号光の発生、及び上り信号光の受信が行われる。各波長において、上り信号光は、受信誤り率が受信誤り率閾値以下となるような時間帯に、受信されることになる。従って、上り信号光の受信感度劣化を抑制することができる。また、OLT2では、波長を切替ながら連続して発光を続けることができるので、ONU2の収容数を拡張できる。 Through the above steps S10 to S90, time slots are assigned and the training process is terminated. During service operation, downlink signal light is generated and uplink signal light is received according to the assigned time slot. At each wavelength, the upstream signal light is received in a time zone in which the reception error rate is equal to or less than the reception error rate threshold. Accordingly, it is possible to suppress deterioration in reception sensitivity of upstream signal light. In addition, since the OLT 2 can continuously emit light while switching the wavelength, the number of ONUs 2 can be expanded.
 尚、上述のステップS70においては、時刻t0の段階で既に受信誤り率閾値よりも小さい場合がある。この場合には、実際の受信誤り率が受信誤り率閾値になる経過時間を定義できない。このような場合には、最大タイムスロット長として、RTTと等しい長さを設定する。 In step S70 described above, there is a case where it is already smaller than the reception error rate threshold at the stage of time t0. In this case, the elapsed time when the actual reception error rate becomes the reception error rate threshold cannot be defined. In such a case, a length equal to RTT is set as the maximum time slot length.
 また、上述のステップS70において、求められる第1経過時間t1の精度を高めるために、受信誤り率の平均値を用いることも可能である。すなわち、ステップS60までの処理を多数回繰り返すことにより、第1関係として、受信誤り率の平均値と経過時間との関係を用いることも可能である。 In addition, in order to improve the accuracy of the first elapsed time t1 obtained in step S70 described above, it is possible to use the average value of the reception error rate. That is, by repeating the process up to step S60 many times, the relationship between the average value of the reception error rate and the elapsed time can be used as the first relationship.
 また、上述のステップS90において、制御部6は、波長λnのタイムスロットを割り当てた後に、再び波長λ1のタイムスロットを割り当てる。この際、同一波長のタイムスロットの間隔(図7の「T1~T1」参照)としては、2×RTT以上の長さが設定されることが好ましい。これにより、繰り返しの下り信号光からの戻り光によって、受信感度が劣化することが防止される。 In step S90 described above, the control unit 6 assigns the time slot of wavelength λ1 again after assigning the time slot of wavelength λn. At this time, it is preferable to set a length of 2 × RTT or more as the interval between time slots of the same wavelength (see “T1 to T1” in FIG. 7). Thereby, it is possible to prevent the reception sensitivity from being deteriorated due to the return light from the repeated downstream signal light.
 また、本実施形態では、実際の運用時に先立って、運用時とは独立してタイムスロットを割り当てる場合について説明した。しかし、十分に受信誤り率が小さい場合には、サービス運用と平行してタイムスロットの決定を行うことも可能である。 Further, in the present embodiment, a case has been described in which time slots are allocated independently of the operation prior to the actual operation. However, when the reception error rate is sufficiently small, the time slot can be determined in parallel with the service operation.
 また、本実施形態では、戻り光の状態に基づくパラメータとして、受信誤り率が採用されている。しかし、戻り光の状態に基づくパラメータとして、受信誤り率以外のパラメータを採用することも可能である。例えば、受信誤り率に代えて、戻り光の強度が採用されてもよい。図8は、受信誤り率に代えて戻り光の強度が採用された場合の帯域制御装置1の構成を示す機能ブロック図である。図8に示される例では、第1関係測定部13として、OTDR(Optical Time Domain Reflectometer)が設けられている。OTDRは、一端が光源7と方向性合分波器8との間に接続され、他端が方向性合分波器8と受信器9との間に接続されている。OTDRは、その一端で光源7で光が発生したことを検出し、その他端で戻り光の強度を測定する。OTDRは、それ自身がタイマ機能を有しており、光源7で光が発生してからの経過時間と、戻り光の強度との関係を測定する。すなわち、第1関係を測定することができる。 In this embodiment, a reception error rate is adopted as a parameter based on the state of the return light. However, it is also possible to employ parameters other than the reception error rate as parameters based on the return light state. For example, instead of the reception error rate, the intensity of the return light may be employed. FIG. 8 is a functional block diagram showing the configuration of the band control device 1 when the intensity of the return light is adopted instead of the reception error rate. In the example shown in FIG. 8, an OTDR (Optical Time Domain Reflectometer) is provided as the first relationship measuring unit 13. One end of the OTDR is connected between the light source 7 and the directional multiplexer / demultiplexer 8, and the other end is connected between the directional multiplexer / demultiplexer 8 and the receiver 9. The OTDR detects that light is generated by the light source 7 at one end, and measures the intensity of the return light at the other end. The OTDR itself has a timer function, and measures the relationship between the elapsed time after the light is generated by the light source 7 and the intensity of the return light. That is, the first relationship can be measured.
 また、戻り光の状態に基づくパラメータとして、図3A乃至図3Cで説明したように、受信感度劣化(PP値)が採用されてもよい。但し、受信感度劣化(PP値)を採用した場合には、PP値を測定するための基準として、ビートノイズが発生しないODN3を用意する必要があり、現実的には難しい。 Further, as described in FIGS. 3A to 3C, reception sensitivity deterioration (PP value) may be adopted as a parameter based on the state of the return light. However, when reception sensitivity deterioration (PP value) is adopted, it is necessary to prepare ODN3 that does not generate beat noise as a reference for measuring the PP value, which is difficult in practice.
 また、本実施形態では、各ONU4が、受信誤り率測定用の符号パタンを含む信号を、変調信号s42として生成するように構成されている。ここで、受信誤り率測定用の符号パタンとして、OLT2側で既知である符号パタンが用いられることが好ましい。OLT2側で受信誤り率測定用の符号パタンが既知であれば、その符号パタンとしてデリミタなどを含むフレーム構造を用いる必要がなくなり、ステップS50において簡単に受信誤り率を測定することが可能となる。 Further, in this embodiment, each ONU 4 is configured to generate a signal including a code pattern for reception error rate measurement as the modulation signal s42. Here, it is preferable that a code pattern known on the OLT 2 side is used as a code pattern for reception error rate measurement. If the code pattern for reception error rate measurement is known on the OLT 2 side, it is not necessary to use a frame structure including a delimiter as the code pattern, and the reception error rate can be easily measured in step S50.
(第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。第1の実施形態では、複数の波長間で、RTTが同一であることを前提としている。しかしながら、複数の波長間で、RTTが異なる場合もある。例えば、波長多重分離フィルタ31から各ONU4までの距離が異なれば、RTTが異なる場合もある。また、複数の波長間において、伝送路損失が異なることもある。その結果、ビートノイズによる誤り率劣化の影響も、波長毎に異なる場合がある。すなわち、戻り光の上り信号に対する影響度が、複数の波長間で異なる場合もある。そのような場合、RTTが同一であるという前提でタイムスロットを割り当てると、実際に上り光信号がOLT2に入射するタイミングが、複数の波長間で重なってしまうことがある。
(Second Embodiment)
Subsequently, a second embodiment of the present invention will be described. In the first embodiment, it is assumed that the RTT is the same among a plurality of wavelengths. However, the RTT may be different between a plurality of wavelengths. For example, if the distance from the wavelength demultiplexing filter 31 to each ONU 4 is different, the RTT may be different. Further, the transmission line loss may be different between a plurality of wavelengths. As a result, the influence of error rate degradation due to beat noise may also differ for each wavelength. That is, the degree of influence of the return light on the upstream signal may differ between a plurality of wavelengths. In such a case, if time slots are assigned on the assumption that the RTT is the same, the timing at which the upstream optical signal is actually incident on the OLT 2 may overlap among a plurality of wavelengths.
 図9は、複数の波長間で上り光信号が重なった場合の例を示すタイミング図である。この図に示されるように、波長λ1及び波長λ3が割り当てられたONU4(λ1、λ3)よりも、波長λ2が割り当てられたONU4(λ2)の方が、ODN3の長さが長いものとする。また、RTTとして、OLT2とONU4(λ1、λ3)との間を光が往復する時間を用いたとする。そして、第1の実施形態に従ってタイムスロットを割り当てたとする。この場合、波長λ2のタイムスロットに着目すると、割り当てられたタイムスロットT2は、実際に波長λ2の上り信号光がOLT2に入射する時間帯T2からずれてしまう。またその結果、時間帯T2は、波長λ3のタイムスロットT3と重なってしまい、波長λ2と波長λ3との上り光信号が同時にOLT2に入射してしまう。もし、受信器9が波長分離機能を持たなければ、同時にOLTに入射した異なる波長の上り信号光を分離して受信することは不可能である。このような上り光信号の衝突を避けるために、最もODN3の距離が長いONU4(λ2)を基準としてRTTを求めることが考えられる。しかしこの場合には、異なる波長間におけるタイムスロット間隔が不必要に長くなりすぎ、受信帯域の減少につながってしまう。 FIG. 9 is a timing diagram showing an example in which upstream optical signals overlap between a plurality of wavelengths. As shown in this figure, it is assumed that the ONU 4 (λ2) to which the wavelength λ2 is assigned is longer than the ONU 4 (λ1, λ3) to which the wavelengths λ1 and λ3 are assigned. Further, as the RTT, it is assumed that the time for light to reciprocate between the OLT 2 and the ONU 4 (λ1, λ3) is used. Then, it is assumed that time slots are allocated according to the first embodiment. In this case, paying attention to the time slot of wavelength λ2, the assigned time slot T2 deviates from the time zone T2 * where the upstream signal light of wavelength λ2 is actually incident on OLT2. As a result, the time zone T2 * overlaps with the time slot T3 with the wavelength λ3, and the upstream optical signals with the wavelengths λ2 and λ3 enter the OLT 2 at the same time. If the receiver 9 does not have a wavelength separation function, it is impossible to separate and receive upstream signal lights having different wavelengths incident on the OLT at the same time. In order to avoid such collision of upstream optical signals, it is conceivable to obtain RTT with reference to ONU 4 (λ2) having the longest ODN 3 distance. However, in this case, the time slot interval between different wavelengths becomes unnecessarily long, leading to a decrease in the reception band.
 そこで本実施形態では、複数の波長間でRTTが異なっていたとしても、適切にタイムスロットが設定されるように、工夫が施されている。 Therefore, in the present embodiment, even if the RTT is different among a plurality of wavelengths, the device is devised so that the time slot is appropriately set.
 図10は、本実施形態に係るOLT2の構成を示す構成図である。本実施形態では、光源7が、複数の波長(λ1~λn)のそれぞれを独立に発光できるように、複数の光源要素(7-1~7-n)を備えている。また、光源7には、複数の光源要素(7-1~7-n)で発生した光が重ねられて方向性分波器に導かれるように、波長多重フィルタ19(WDM)が設けられている。また、発光制御部6(6-1~6-n)は、複数の光源要素(7-1~7-n)のそれぞれを独立に制御するように構成されている。また、RTT測定部62は、複数の波長のそれぞれについて、RTTを測定するように構成されている。また、第1関係算出部13も、複数の波長のそれぞれについて、第1関係を測定するように構成されている。また、閾値記憶部15には、複数の波長のそれぞれについて、受信誤り率閾値が設定されている。その他の構成については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。 FIG. 10 is a configuration diagram showing the configuration of the OLT 2 according to the present embodiment. In the present embodiment, the light source 7 includes a plurality of light source elements (7-1 to 7-n) so that each of the plurality of wavelengths (λ1 to λn) can emit light independently. Further, the light source 7 is provided with a wavelength multiplexing filter 19 (WDM) so that light generated by the plurality of light source elements (7-1 to 7-n) is superimposed and guided to the directional demultiplexer. Yes. The light emission control unit 6 (6-1 to 6-n) is configured to control each of the plurality of light source elements (7-1 to 7-n) independently. Further, the RTT measurement unit 62 is configured to measure the RTT for each of a plurality of wavelengths. The first relationship calculation unit 13 is also configured to measure the first relationship for each of a plurality of wavelengths. The threshold storage unit 15 is set with a reception error rate threshold for each of a plurality of wavelengths. Since other configurations can be the same as those of the first embodiment, detailed description thereof is omitted.
 図11は、本実施形態に係る帯域制御装置1の動作を示すフローチャートである。図11に示されるように、本実施形態では、第1の実施形態におけるステップS10~ステップS80までの処理が、複数の波長(λ1~λn)のそれぞれについて、実行される。これによって、RTT及び最大タイムスロット長は、複数の波長(λ1~λn)のそれぞれについて、求められる。 FIG. 11 is a flowchart showing the operation of the bandwidth control device 1 according to the present embodiment. As shown in FIG. 11, in the present embodiment, the processing from step S10 to step S80 in the first embodiment is executed for each of a plurality of wavelengths (λ1 to λn). Accordingly, the RTT and the maximum time slot length are obtained for each of the plurality of wavelengths (λ1 to λn).
 ステップS90において、制御部6は、複数の波長(λ1~λn)のそれぞれについて、受信時のタイムスロットを、重ならないようにアサインする。そして、アサインされた受信時のタイムスロットに基づいて、送信時のタイムスロットをアサインする。 In step S90, the control unit 6 assigns the time slots at the time of reception so as not to overlap for each of the plurality of wavelengths (λ1 to λn). Then, based on the assigned reception time slot, the transmission time slot is assigned.
 図12は、本実施形態において、タイムスロットが割り当てられた様子を示すタイミング図である。図11に示されるように、波長λ1の受信時のタイムスロットT1が、時刻t1s~時刻t1eまでの期間に割り当てられている。波長λ2の受信時のタイムスロットT2が、時刻t2s~時刻t2eまでの期間に割り当てられている。波長λ3の受信時のタイムスロットT3が、時刻t3s~時刻t3eまでの期間に割り当てられている。波長λnの受信時のタイムスロットTnが、時刻tns~時刻tneまでの期間に割り当てられている。受信時のタイムスロットT1~Tnは、時間的に重ならないように、割り当てられている。一方、複数の波長(λ1~λn)のそれぞれのRTTは、RTT1~RTTnとして、別々に求められる。そして、波長λ1の送信時のタイムスロットA(λ1)は、「t1s-RTT1~t1e-RTT1」までの期間に割りあてられる。波長λ2の送信時のタイムスロットA(λ2)は、「t2s-RTT2~t2e-RTT2」までの期間に割りあてられる。波長λ3の送信時のタイムスロットA(λ3)は、「t3s-RTT3~t3e-RTT3」までの期間に割りあてられる。波長λnの送信時のタイムスロットA(λn)は、「tns-RTTn~tne-RTTn」までの期間に割りあてられる。尚、各波長のタイムスロット長を設定するには、各ONUが要求する帯域を束ねた波長グループの要求帯域の情報が必要となる。この処理は、要求帯域情報として与えられる。但し、要求帯域情報の収集手段と帯域の分配方式は、本実施形態の趣旨とは関係ないため、説明を省略する。 FIG. 12 is a timing chart showing how time slots are assigned in the present embodiment. As shown in FIG. 11, the time slot T1 at the time of receiving the wavelength λ1 is assigned to the period from time t1s to time t1e. A time slot T2 at the time of receiving the wavelength λ2 is assigned to a period from time t2s to time t2e. A time slot T3 at the time of receiving the wavelength λ3 is assigned to a period from time t3s to time t3e. A time slot Tn at the time of reception of the wavelength λn is assigned to a period from time tns to time tne. The time slots T1 to Tn at the time of reception are assigned so as not to overlap in time. On the other hand, each RTT of a plurality of wavelengths (λ1 to λn) is obtained separately as RTT1 to RTTn. The time slot A (λ1) at the time of transmission of the wavelength λ1 is assigned to a period from “t1s-RTT1 to t1e-RTT1”. The time slot A (λ2) at the time of transmission of the wavelength λ2 is assigned to a period from “t2s-RTT2 to t2e-RTT2”. The time slot A (λ3) at the time of transmission of the wavelength λ3 is assigned to a period from “t3s-RTT3 to t3e-RTT3”. The time slot A (λn) at the time of transmission of the wavelength λn is assigned to a period from “tns-RTTn to tne-RTTn”. In order to set the time slot length of each wavelength, information on the required bandwidth of the wavelength group in which the bandwidth required by each ONU is bundled is required. This process is given as requested bandwidth information. However, the means for collecting requested bandwidth information and the bandwidth distribution method are not related to the gist of the present embodiment, and thus description thereof is omitted.
 送信時のタイムスロットは、異なる波長同士で重なる場合がある。しかし、本実施形態では、光源7にて、複数の波長の光が独立に発光されるため、問題は無い。また、受信時のタイムスロットは、実際に上り光信号がOLT2に到達する時間帯と一致している。従って、複数の波長間でRTTが異なっていたとしても、異なる波長の上り信号が同時にOLT2に到達することは無い。また、発光期間は複数の波長間で重なっていても構わないので、帯域が最大限に利用できるように、タイムスロットをアサインすることができる。 The time slot at the time of transmission may overlap at different wavelengths. However, in this embodiment, since the light source 7 emits light of a plurality of wavelengths independently, there is no problem. In addition, the time slot at the time of reception coincides with the time zone in which the upstream optical signal actually reaches the OLT 2. Therefore, even if the RTT is different among a plurality of wavelengths, uplink signals having different wavelengths do not reach the OLT 2 at the same time. Further, since the light emission periods may overlap between a plurality of wavelengths, time slots can be assigned so that the bandwidth can be utilized to the maximum.
 この出願は、2008年12月2日に出願された特許出願番号2008-308014号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-308014 filed on Dec. 2, 2008, claiming the benefit of priority from that application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (16)

  1.  第1ノードに設けられた光源を、時刻t0までの所定の期間において発光させ、前記光源で発生した第1光信号を伝送路を介して第2ノードへ供給する、発光制御部と、
     前記第1光信号の一部が前記伝送路において前記第1ノード側へ戻り光として反射されたときに、前記戻り光の状態に基づくパラメータを影響度として測定する影響度測定部と、
     前記時刻t0からの経過時間と前記影響度との関係を第1関係として求める第1関係算出部と、
     前記第1関係に基づいて、前記第1ノードと前記第2ノードとの通信に用いられるタイムスロットを決定する制御部と、
    を具備する
    光ネットワークの帯域制御装置。
    A light emission control unit for causing a light source provided in the first node to emit light in a predetermined period until time t0 and supplying a first optical signal generated by the light source to the second node via a transmission line;
    An influence measuring unit that measures, as an influence, a parameter based on a state of the return light when a part of the first optical signal is reflected as return light to the first node side in the transmission path;
    A first relationship calculation unit for obtaining a relationship between an elapsed time from the time t0 and the influence level as a first relationship;
    A control unit for determining a time slot used for communication between the first node and the second node based on the first relationship;
    An optical network bandwidth control apparatus comprising:
  2.  請求の範囲1に記載された光ネットワークの帯域制御装置であって、
     前記影響度測定部は、前記第1光信号が前記第2ノードにより反射及び変調され、第2光信号として前記第1ノードで受信されたときに、前記影響度として、前記第2光信号の受信誤り率を測定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 1,
    The influence measuring unit reflects and modulates the first optical signal by the second node, and receives the second optical signal as the second optical signal as the influence by the second optical signal. An optical network bandwidth controller that measures the reception error rate.
  3.  請求の範囲2に記載された光ネットワークの帯域制御装置であって、
     前記影響度測定部は、8B/10B符号、64B/66B符号のコードバイオレーション頻度、及び誤り訂正符号の訂正頻度のいずれかを用いて、前記受信誤り率を測定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 2, comprising:
    The influence level measuring unit measures the reception error rate by using any one of 8B / 10B code, 64B / 66B code code violation frequency, and error correction code correction frequency.
  4.  請求の範囲1に記載された光ネットワークの帯域制御装置であって、
     前記影響度測定部は、前記影響度として、前記戻り光の強度を測定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 1,
    The influence degree measurement unit is a bandwidth control device for an optical network that measures the intensity of the return light as the influence degree.
  5.  請求の範囲1乃至4のいずれかに記載された光ネットワークの帯域制御装置であって、
    更に、
     前記光源で光が発生してから、前記光が前記第2ノードにより反射されて前記第1ノードで受信されるまでの時間を、ラウンドトリップタイムとして測定する、RTT測定部と、
     前記第1関係を予め定められた影響度閾値と比較することにより、前記誤り率が前記影響度閾値となる前記経過時間を、第1経過時間t1として算出する比較部と、
    を具備し、
     前記制御部は、前記ラウンドトリップタイムと前記第1経過時間t1との差に基づいて、前記タイムスロットを決定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to any one of claims 1 to 4,
    Furthermore,
    An RTT measurement unit that measures a time from when light is generated by the light source to when the light is reflected by the second node and received by the first node as a round trip time;
    A comparison unit that calculates the elapsed time at which the error rate becomes the influence threshold by comparing the first relationship with a predetermined influence threshold, as a first elapsed time t1;
    Comprising
    The control unit is an optical network bandwidth control apparatus that determines the time slot based on a difference between the round trip time and the first elapsed time t1.
  6.  請求の範囲5に記載された光ネットワークの帯域制御装置であって、
     前記光源は、複数の波長の光を発光可能であり、
     前記伝送路は、前記第1ノードで生成された光を受光し、複数の波長のそれぞれを異なる方向に出力する、波長合分波フィルタを備え、
     前記第2ノードは、前記波長合分波フィルタに対して、異なる波長の光が供給されるように、複数接続されている
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 5, comprising:
    The light source can emit light of a plurality of wavelengths,
    The transmission path includes a wavelength multiplexing / demultiplexing filter that receives light generated at the first node and outputs each of a plurality of wavelengths in different directions,
    The second node is a band control device for an optical network in which a plurality of the second nodes are connected so that light of different wavelengths is supplied to the wavelength multiplexing / demultiplexing filter.
  7.  請求の範囲6に記載された光ネットワークの帯域制御装置であって、
     前記伝送路は、更に、波長合分波フィルタと前記各第2ノードとの間に設けられた光分岐素子を備えており、
     前記光分岐素子には、複数の前記第2ノードが接続されている
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 6, comprising:
    The transmission line further includes an optical branching element provided between a wavelength multiplexing / demultiplexing filter and each of the second nodes,
    An optical network bandwidth control device in which a plurality of the second nodes are connected to the optical branching element.
  8.  請求の範囲7に記載された光ネットワークの帯域制御装置であって、
     前記制御部は、MPCP(multi-point control protocol)、及びPLOAM(physical layer operations administration and maintenance)のいずれかにより、個々の前記第2ノードとの通信に利用される時間帯を決定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 7, comprising:
    The control unit is an optical network that determines a time zone used for communication with each of the second nodes by one of MPCP (multi-point control protocol) and PLOAM (physical layer operations administration and maintenance). Bandwidth control device.
  9.  請求の範囲6乃至8のいずれかに記載された光ネットワークの帯域制御装置であって、
     前記第1関係算出部は、前記複数の波長のそれぞれについて、前記第1関係を算出し、
     前記制御部は、前記複数の波長のそれぞれについての前記第1関係に基づいて、前記複数の波長のそれぞれについて、別々に前記タイムスロットを決定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to any one of claims 6 to 8,
    The first relationship calculation unit calculates the first relationship for each of the plurality of wavelengths,
    The said control part is a zone | band control apparatus of the optical network which determines the said time slot separately about each of these wavelengths based on the said 1st relationship about each of these wavelengths.
  10.  請求の範囲9に記載された光ネットワークの帯域制御装置であって、
     前記制御部は、前記各波長における前記タイムスロットの間隔を、前記ラウンドトリップタイムの二倍以上に設定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 9,
    The said control part is the zone | band control apparatus of the optical network which sets the space | interval of the said time slot in each said wavelength more than twice the said round trip time.
  11.  請求の範囲9又は10に記載された光ネットワークの帯域制御装置であって、
     前記RTT測定部は、前記複数の波長のそれぞれについて、前記ラウンドトリップタイムを測定し、
     前記制御部は、前記複数の波長のラウンドトリップタイムのそれぞれに基づいて、前記複数の波長間で受信の時間帯が重ならないように、前記タイムスロットを決定する
    光ネットワークの帯域制御装置。
    A bandwidth control device for an optical network according to claim 9 or 10, comprising:
    The RTT measurement unit measures the round trip time for each of the plurality of wavelengths,
    The said control part is a zone | band control apparatus of the optical network which determines the said time slot so that the reception time zone may not overlap between these wavelengths based on each of the round trip time of these wavelengths.
  12.  請求の範囲11に記載された光ネットワークの帯域制御装置であって、
     前記光源は、互いに異なる波長の光を発する複数のレーザーダイオードを備えており、
     前記制御部は、前記複数の波長間で前記光源における発光期間が時間的に重なるか重ならないかに関係なく、前記タイムスロットを決定する
    光ネットワークの帯域制御装置。
    An optical network bandwidth control device according to claim 11, comprising:
    The light source includes a plurality of laser diodes that emit light having different wavelengths,
    The said control part is a zone | band control apparatus of the optical network which determines the said time slot irrespective of whether the light emission period in the said light source overlaps temporally between these wavelengths.
  13.  請求の範囲1乃至12のいずれかに記載された光ネットワークの帯域制御装置と、
     前記タイムスロットに基づいて、前記第2ノードに向けて光信号を送信する光源と、
     前記タイムスロットに基づいて、前記第2ノードから返信された光信号を受信する受信器と、
    を具備する
    光ネットワークのセンタ装置。
    A bandwidth control device for an optical network according to any one of claims 1 to 12,
    A light source that transmits an optical signal toward the second node based on the time slot;
    A receiver for receiving an optical signal returned from the second node based on the time slot;
    An optical network center device.
  14.  請求の範囲13に記載された光ネットワークのセンタ装置と、
     前記光ネットワークのセンタ装置に、前記第2ノードとして接続されたユーザ装置と、
    を具備する
    光ネットワークシステム。
    An optical network center device according to claim 13,
    A user device connected as a second node to a center device of the optical network;
    An optical network system comprising:
  15.  第1ノードに設けられた光源を、時刻t0までの所定の期間において発光させ、前記光源で発生された第1光信号を伝送路を介して第2ノードへ供給するステップと、
     前記第1光信号の一部が前記伝送路において前記第1ノード側へ戻り光として反射されたときに、前記戻り光の状態に基づくパラメータを影響度として測定するステップと、
     前記時刻t0からの経過時間と前記影響度との関係を第1関係として求めるステップと、
     前記第1関係に基づいて、前記第1ノードと前記第2ノードとの通信に用いられるタイムスロットを決定するステップと、
    を具備する
    光ネットワークの帯域制御方法。
    Causing the light source provided at the first node to emit light during a predetermined period until time t0, and supplying the first optical signal generated by the light source to the second node via a transmission line;
    Measuring a parameter based on a state of the return light as an influence when a part of the first optical signal is reflected as return light to the first node side in the transmission path;
    Obtaining a relationship between an elapsed time from the time t0 and the degree of influence as a first relationship;
    Determining a time slot to be used for communication between the first node and the second node based on the first relationship;
    An optical network bandwidth control method comprising:
  16.  請求の範囲15に記載された光ネットワークの帯域制御方法を、コンピュータにより実現する為の、光ネットワークの帯域制御プログラム。 An optical network bandwidth control program for realizing the optical network bandwidth control method described in claim 15 by a computer.
PCT/JP2009/069771 2008-12-02 2009-11-24 Optical network band control apparatus and optical network band control method WO2010064554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-308014 2008-12-02
JP2008308014 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010064554A1 true WO2010064554A1 (en) 2010-06-10

Family

ID=42233205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069771 WO2010064554A1 (en) 2008-12-02 2009-11-24 Optical network band control apparatus and optical network band control method

Country Status (1)

Country Link
WO (1) WO2010064554A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075244A (en) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 Method for diagnosing constant optical network units in Ethernet passive optical network
JP5364857B1 (en) * 2013-03-04 2013-12-11 日本電信電話株式会社 Ranging method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856201A (en) * 1994-08-12 1996-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical ping-pong transmitter
JPH1079708A (en) * 1996-09-04 1998-03-24 Nec Corp Maritime comunication system
JPH10233734A (en) * 1997-02-21 1998-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JP2007158943A (en) * 2005-12-07 2007-06-21 Sumitomo Electric Ind Ltd Optical subscriber line terminal equipment and fault detecting method of optical subscriber line (sl) terminating device
JP2009213039A (en) * 2008-03-06 2009-09-17 Kddi Corp Optical access system, method of determining phase modulation frequency in the optical access system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856201A (en) * 1994-08-12 1996-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical ping-pong transmitter
JPH1079708A (en) * 1996-09-04 1998-03-24 Nec Corp Maritime comunication system
JPH10233734A (en) * 1997-02-21 1998-09-02 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JP2007158943A (en) * 2005-12-07 2007-06-21 Sumitomo Electric Ind Ltd Optical subscriber line terminal equipment and fault detecting method of optical subscriber line (sl) terminating device
JP2009213039A (en) * 2008-03-06 2009-09-17 Kddi Corp Optical access system, method of determining phase modulation frequency in the optical access system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJIWARA, M. ET AL.: "Impact of Backreflection on Upstream Transmission in WDM Single-Fiber Loopback Access Networks", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 24, no. 2, February 2006 (2006-02-01), pages 740 - 746 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075244A (en) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 Method for diagnosing constant optical network units in Ethernet passive optical network
CN102075244B (en) * 2010-12-30 2014-05-07 北京格林伟迪科技有限公司 Method for diagnosing constant optical network units in Ethernet passive optical network
JP5364857B1 (en) * 2013-03-04 2013-12-11 日本電信電話株式会社 Ranging method

Similar Documents

Publication Publication Date Title
CN102577178B (en) Tunable coherent optical time division reflectometry
US8649681B2 (en) Methods and devices for wavelength alignment in WDM-PON
US9100121B2 (en) Link setup method for wavelength division multiplexing wavelength passive optical network(WDM PON) system
JP5774726B2 (en) WDMPON with non-tunable conventional ONU
WO2015154267A1 (en) Optical time domain reflectometer implementation apparatus and system
JP2004274752A (en) Wavelength division multiplexed passive optical network system
EP2656520B1 (en) Method and arrangement for receiving an optical input signal and transmittning an optical output signal
JP6152225B2 (en) WDM / TDM-PON system and its transmission start time correction method
Maier WDM passive optical networks and beyond: the road ahead
US9166691B2 (en) Method for coupling an emitting device to a frequency splitter in an optical passive network
WO2010064554A1 (en) Optical network band control apparatus and optical network band control method
WO2013082771A1 (en) Optical fiber link detection method, optical line terminal, and passive optical network system
JP6189800B2 (en) WDM / TDM-PON system and dynamic wavelength band allocation method thereof
JP2007059965A (en) Station-side communication device of passive optical network system, and method of controlling incoming burst light signal transmission timing
JP5563689B1 (en) Dynamic wavelength band allocation method and dynamic wavelength band allocation apparatus
JP5367596B2 (en) Station side device, subscriber side device, optical communication system, and optical communication method
Jayasinghe et al. Scalability of RSOA-based multiwavelength Ethernet PON architecture with dual feeder fiber
TWI472171B (en) Detection Method and Device for Lightning Mode Modulus FP Laser Spurious Wave Multiplication Passive Optical Network Loop Break
Horvath et al. Transmission convergence layer of NG-PON2 in VPIphotonics tool
CN117674986A (en) Method, device and system for determining topology of optical access network
TWI497928B (en) Passive optical network system
Li et al. A simple wavelength-shared WDM-PON system and its quick collision test method for upstream channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP