WO2010064422A1 - Method for killing tumor by photosensitization treatment under conditions where histone is highly acetylated - Google Patents

Method for killing tumor by photosensitization treatment under conditions where histone is highly acetylated Download PDF

Info

Publication number
WO2010064422A1
WO2010064422A1 PCT/JP2009/006539 JP2009006539W WO2010064422A1 WO 2010064422 A1 WO2010064422 A1 WO 2010064422A1 JP 2009006539 W JP2009006539 W JP 2009006539W WO 2010064422 A1 WO2010064422 A1 WO 2010064422A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
puva
cancer
histone deacetylase
treated
Prior art date
Application number
PCT/JP2009/006539
Other languages
French (fr)
Japanese (ja)
Inventor
豊岡達士
伊吹裕子
Original Assignee
静岡県公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 静岡県公立大学法人 filed Critical 静岡県公立大学法人
Priority to JP2010541232A priority Critical patent/JPWO2010064422A1/en
Publication of WO2010064422A1 publication Critical patent/WO2010064422A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to cancer photochemotherapy.
  • Photosensitization therapy is photochemotherapy using a combination of photosensitizer and ultraviolet light.
  • PUVA therapy which is a typical example, is a photochemotherapy that uses psoralen and long-wavelength ultraviolet (UVA) in combination, and has so far been highly effective against skin diseases such as common vitiligo, psoriasis, and atopic dermatitis. , Have been used a lot.
  • UVA long-wavelength ultraviolet
  • a photosensitizer is a substance that can be excited by absorbing light and transfer its energy to another substance to advance a photochemical reaction.
  • a typical example of a photosensitizer is psoralen. This is a component contained in citrus fruits and is a tricyclic aromatic compound having a phototherapeutic action. Since psoralen has a planar structure, it can be intercalated into DNA at sites where pyrimidine-purines are alternately present, particularly TA sites (Hearst JE, Isaacs ST, Kanne D, et al. Q Rev Biophys 1984; 17: 1-44).
  • the intercalated complex After UVA (320-400 nm) irradiation, the intercalated complex is activated and an adduct is formed on the pyrimidine base in the cellular DNA. If there is an available pyrimidine at the appropriate position on the opposite side of the chain, the second UVA photon then binds to the free psoralen side of the chain and undergoes inter-strand crosslink (ICL).
  • ICL inter-strand crosslink
  • PUVA-induced ICL in chromosomal DNA induces anti-proliferative effects useful for skin treatment
  • psoralen + UVA PUVA
  • PUVA psoralen + UVA
  • PUVA showed cell killing effect (apoptosis) in cultured cell lines (Yoo EK, Rook AH, Elenitsas R, et al. J Invest Dermatol 1996; 107: 235-42; Canton M, Caffieri S, Dall'Acqua F, et al. PEBS Lett 2002; 522: 168-72)
  • cell killing power is not so strong compared to anticancer drugs and radiation irradiation, so that PUVA therapy can be applied to cancer treatment so far Was not considered.
  • the object of the present invention is to provide a photosensitizing method for cancer by enhancing the efficacy of PUVA therapy.
  • the present inventors have found that a very strong tumor cell killing effect can be obtained by using a HDAC inhibitor in combination with PUVA therapy. That is, the present invention provides a cancer therapeutic agent for use in cancer photochemotherapy comprising a combination of a histone deacetylase inhibitor and a photosensitizer. Preferably the cancer photochemotherapy is PUVA therapy.
  • the histone deacetylase inhibitor is sodium butyrate, valproic acid, Phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, OSU-HDAC42, trichostatin A, suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA), LAQ-824, Panobinostat / LBH-589, CRA-24781 / PCI24781, Belinostat / PXD101, Tubacin, Oxamflatin, ITF2357, SB939, R306465 / JNJ-16241NST-275MS -0103, Pimeric diphenylamide, Romidepsin / FK 28 / Depepteptide, Apicidin, Trapoxin A, HC-Toxin, NCH-51, Alpha-mercaptoketone 19y / KD5150, 5- (Trifluoroacetoyl), 4-Citropide, 2-
  • the present invention provides a method of treating cancer by photochemotherapy, wherein the method comprises administering to a patient a histone deacetylase inhibitor and a photosensitizer and then treating the site. Irradiation with UVA.
  • the photosensitizer is psoralen.
  • the present invention provides a method of inhibiting repair of interstrand crosslinks caused by UVA irradiation in a patient undergoing cancer photochemotherapy, wherein the method comprises a histone deacetylase in the patient. Administration of an inhibitor.
  • the cancer photochemotherapy is PUVA therapy.
  • cancer cells can be killed very efficiently and in a short time, which is promising as a new cancer photosensitization treatment method.
  • cancer cells can be targeted, and there is no worry of damaging normal cells, so it can be expected to prevent secondary cancer caused by treatment.
  • FIG. 1 shows cell viability when melanoma cells were treated with PDAC after being treated with an HDAC inhibitor.
  • FIG. 2 shows the acetylation state of histone H3 when melanoma cells are treated with an HDAC inhibitor.
  • FIG. 3 shows cell viability when A549 and MCF-7 cells were treated with HDAC inhibitors and then treated with PUVA.
  • FIG. 4 shows cell viability when melanoma cells were treated with HDAC inhibitor and then treated with 5-MOP + UVA.
  • FIG. 5 shows the induction of apoptosis when melanoma cells are treated with a combination of an HDAC inhibitor and PUVA.
  • FIG. 6 shows cell viability when melanoma cells were treated with combinations of HDAC inhibitors and various anticancer agents.
  • FIG. 1 shows cell viability when melanoma cells were treated with PDAC after being treated with an HDAC inhibitor.
  • FIG. 2 shows the acetylation state of histone H3 when melanoma cells are
  • FIG. 7 shows the repair kinetics of CPD when melanoma cells are treated with HDAC inhibitors and then irradiated with UVC.
  • FIG. 8 shows cell viability when melanoma cells were treated with an HDAC inhibitor and then irradiated with UVC.
  • FIG. 9 shows the time course of cell viability and histone H3 acetylation level when melanoma cells were treated with a HDAC inhibitor and then cultured in a medium containing no HDAC inhibitor.
  • FIG. 10 shows cell viability when cutaneous T-cell lymphoma was treated with a combination of an HDAC inhibitor and various anticancer agents.
  • DNA is wound around a histone octamer composed of four types of core histones to form a chromatin structure.
  • the level of histone acetylation is regulated by histone acetylase (HAT) and histone deacetylase (HDAC).
  • HAT histone acetylase
  • HDAC histone deacetylase
  • Histone acetylated by HAT unwinds an aggregated chromatin structure and allows various molecules to access DNA, thereby activating gene transcription.
  • Histone deacetylase (HDAC) inhibitors are attracting attention as promising new types of anti-tumor agents for treating solid tumors and hematological malignancies (Marks PA, Miller T, Richon VM. Curr Opin Pharmacol 2003) ; 3: 344-51; Marks PA, Richon VM, Miller T, et al. Adv Cancer Res 2004; 91: 137-68; Mai A, Massa S, Rotili D, et al. Med Res Rev 2005; 25: 261 -309).
  • HDAC is an enzyme that controls the acetylation state of core nucleosome histones by removing the acetyl group from the amino terminal residue.
  • HDAC histone acetyltransferase
  • pro-apoptotic factors eg, Bak, Bax, and Bim
  • anti-apoptotic factors eg, Bcl-2, Bcl-XL, XIAP, and Mcl-1
  • It is regulated and is considered to play an important role in antitumor activity Zhang XD, Gillespie SK, Borrow JM, et al. Mol Cancer Ther 2004; 3: 425-35).
  • HDAC inhibitors in combination with radiation and anticancer drugs
  • various HDAC inhibitors sodium butyrate (SB), trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), valproic acid, etc.
  • SB sodium butyrate
  • TSA trichostatin A
  • SAHA suberoylanilide hydroxamic acid
  • valproic acid etc.
  • HDAC inhibitors sodium butyrate (SB) and trichostatin A (TSA) are skin malignant melanoma cell lines SK-MEL-28, G-361, squamous cell carcinoma of the skin It has been found that the effect of PUVA on killing apoptotic cells can be remarkably enhanced in cells HSC-1, breast cancer cell MCF-7, lung epithelial cancer cell A549, cutaneous T cell lymphoma HH, HUT-78. As shown in the examples below, treatment with PUVA or SB alone had little effect on the cell viability of SK-MEL-28, but the combination treatment of SB and PUVA was prominent within 24 hours. Apoptosis was induced.
  • SB sodium butyrate
  • TSA trichostatin A
  • the degree of enhancement of cell killing effect induced by SB was much higher in combination with PUVA than in combination with anticancer agents.
  • the degree of enhancement of the cell killing effect on cutaneous T cell lymphomas HH and HUT-78 was much higher in combination with PUVA than in combination with anticancer agents. These were the same when the HDAC inhibitor was TSA.
  • the number of double-strand breaks formed in the process of repairing PUVA-induced interstrand crosslinks (ICL) in chromosomal DNA is significantly reduced in cells pretreated with SB, which indicates the ability to repair ICL It was suggested that was reduced by SB.
  • nucleotide excision repair It is known that repair of psoralen interstrand crosslinks (ICL) generated by PUVA involves multiple repair pathways such as nucleotide excision repair (NER) and homologous recombination repair.
  • nucleotide excision repair has been reported to be involved in the early stages of ICL repair, such as recognition of ICL damage and excision of damaged sites.
  • PCNA proliferating cell nuclear antigen
  • the present inventors have currently shown that the mechanism of enhanced cell death obtained by the present invention is the ICL repair pathway, particularly by pretreatment with HDAC inhibitors. It is thought that apoptosis was effectively induced as a result of inhibition of nucleotide excision repair and failure to repair DNA damage (ICL).
  • any substance that inhibits histone deacetylase may be used.
  • the histone deacetylase inhibitor is sodium butyrate, trichostatin A (TSA), suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA), valproic acid, Belinostat / PXD101, ITF2357, CRA-24781 / PCI24781 Romidepsin / FK228 / Depepteptide, Phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, SB939, MS-275 / SNDX-275 / entinostat, MGCD-0103, JHJ-26481585. All of these materials are commercially available or their structures are known and can be easily produced by those skilled in the art.
  • Examples of the photosensitizer used as an active ingredient of the cancer therapeutic agent of the present invention include psoralen and its derivatives.
  • Psoralen and its derivatives have the following general formula: [In the formula, each R independently represents hydrogen or a C 1-6 alkyl group or alkoxy group] Can be expressed as Particularly preferred are 8-methoxypsoralen (mesoxalene), 5-methoxypsoralen and trimethylpsoralen (trioxalene). These photosensitizers are commercially available or can be easily produced by those skilled in the art.
  • the cancer therapeutic agent of the present invention can be formulated by methods known to those skilled in the art.
  • an HDAC inhibitor or a photosensitizer is added to a pharmaceutically acceptable carrier or medium, specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavor. It can be formulated by mixing in a unit dosage form generally required for pharmaceutical practice, in appropriate combination with agents, excipients, vehicles, preservatives, binders and the like.
  • the HDAC inhibitor and the photosensitizer may be provided as separate packages, or may be provided as a kit combining these.
  • the cancer therapeutic agent of the present invention may be administered systemically by oral or parenteral administration, or may be administered locally.
  • UVA can be irradiated to the site to be treated after the HDAC inhibitor and the photosensitizer are administered by oral or parenteral administration.
  • UVA may be irradiated after applying the HDAC inhibitor and the photosensitizer to the site to be treated or immersing the site to be treated in the aqueous solution of the HDAC inhibitor and the photosensitizer.
  • the HDAC inhibitor may be administered systemically and the photosensitizer may be administered locally, or conversely, the photosensitizer may be administered systemically and the HDAC inhibitor may be administered locally.
  • the HDAC inhibitor and photosensitizer are administered by oral or parenteral administration
  • blood is removed from the patient and irradiated with UVA, or HDAC inhibitor is administered by oral or parenteral administration, and blood is then removed from the patient. After removal and treatment with PUVA, the blood may be returned to the patient.
  • Cells and Cell Culture Conditions Cell lines SK-MEL-28 and G-361 derived from malignant pigmented melanoma were purchased from The Health Science Research Resources Bank (Japan). Squamous cell carcinoma cell HSC-1 was purchased from RIKEN Cell Bank. Human skin T-cell lymphomas HUT78 and HH were purchased from Riken Cell Bank and American Type Culture Collection (ATCC), respectively. Cells were maintained in medium appropriate for each cell (MEM, DMEM, RPMI) supplemented with 10% fetal bovine serum (FBS) and 100 units / ml penicillin / streptomycin at 37 ° C. under 5% CO 2 .
  • MEM fetal bovine serum
  • FBS fetal bovine serum
  • Apoptosis assay Apoptosis was determined by staining with the DNA-binding fluorophore Hoechst 33258 to detect morphological changes in chromatin and measuring the percentage of apoptotic nuclei (sub-G 1 fraction) by PI. .
  • Caspase-3 activity was measured using an enzyme fluorescent substrate (Ac-Asp-Glu-Val-Asp-MCA).
  • DSB DNA double-strand break
  • DRS DNA repair synthesis
  • FITC fluorescein isothiocyanate
  • Cells were fixed with 4% paraformaldehyde, treated with 0.5% Triton X-100 in PBS, and treated with 2N HCl. After blocking with 1% BSA, it was incubated with a primary antibody against CPD (1: 1500) (Medical & Biological Laboratories, Japan) and then with a secondary antibody conjugated to FITC. Nuclei were stained with PI (20 ⁇ g / ml). Images were acquired with a laser scanning confocal microscope.
  • Sodium butyrate (SB) enhances the cell killing effect of PUVA in SK-MEL-28 cells.
  • SB Sodium butyrate
  • the cells were treated with PUVA (8-MOP: 10 ⁇ 7 ⁇ 10 ⁇ 5 M, UVA: 1-5J).
  • PUVA 8-MOP: 10 ⁇ 7 ⁇ 10 ⁇ 5 M, UVA: 1-5J).
  • Cm 2 cell viability was measured by FDA assay.
  • FIG. 1A shows cell viability as measured by FDA assay 24 hours after PUVA treatment.
  • SK-MEL-28 cells were highly resistant to PUVA treatment.
  • SB-PUVA treatment induced dramatic cell death, the extent of which was dependent on SB dose, SB treatment time, 8-MOP dose and UVA dose.
  • TSA histone deacetylase inhibitor
  • the acetylation state of histone H3 when treated with SB was examined.
  • the cells were treated with SB (0.1-3 mM) for a predetermined time (4-24 hours), and 500 ⁇ l of ice-cold lysis buffer (10 mM Tris-HCl, 50 mM sodium bisulfite, 1% Triton X-100, 10 mM MgCl 2 , 8 .6% sucrose, pH 6.5). After homogenization, the nuclei were collected by centrifugation at 2,000 g for 5 minutes and washed twice with lysis buffer and once with TE (10 mM Tris-HCl, 13 mM EDTA, pH 7.4).
  • the pellet was suspended in 150 ⁇ l HCl (0.25N) and incubated on ice for at least 1 hour. After centrifugation at 12,000 g for 5 minutes, the supernatant was mixed with 1.2 ml of acetone. After incubation overnight at 4 ° C., the aggregated material was collected by centrifugation at 12,000 g for 5 minutes and air-dried. This acid-soluble histone fraction was dissolved in 30 ⁇ l of H 2 O and subjected to SDS-PAGE using about 20 ⁇ g of protein. The acetylation status of histone H3 was confirmed by Western blot using anti-acetyl-histone H3 (UPSTATE).
  • SK-MEL-28 cells were treated with SB (3 mM) for 24 hours, and 5-methoxypsoralen (5-MOP) (Sigma-Aldrieh) (10 ⁇ 7 ⁇ 10 ⁇ 5 M), a positional isomer of 8-MOP.
  • 5-MOP 5-methoxypsoralen
  • UVA 5 J / cm 2
  • Cell viability 24 hours after treatment was assessed by FDA assay.
  • the cell killing effect of 5-MOP + UVA was significantly enhanced by pretreatment with SB (FIG. 4). That is, pretreatment with SB significantly increased the cytotoxicity induced by 5-methoxypsoralen + UVA.
  • SB reduces the repair rate of cyclobutane pyrimidine dimer (CPD) formed by UVC irradiation.
  • CPD cyclobutane pyrimidine dimer
  • SK-MEL-28 cells were treated with SB (3 mM) for 24 hours, and further cultured in SB free medium for a predetermined time.
  • SB 3 mM
  • FIG. 10 shows cell viability when skin T cell lymphoma cells HH and HUT78 were treated with HDAC inhibitors and then treated with PUVA or anticancer agents (FIG. 10). Even in these cells, the combination of PUVA showed a higher anticancer effect than the combination of HDAC inhibitor and anticancer agent treatment.

Abstract

Disclosed is a therapeutic agent for cancer, which comprises a histone deacetylase inhibitor as an active ingredient and is intended to be used in combination with a PUVA therapy.  Also disclosed is a therapeutic agent for cancer, which comprises a combination of a histone deacetylase inhibitor and a photosensitizing agent and is intended to be used in combination with a PUVA therapy.  Preferred examples of the histone deacetylase inhibitor include sodium butyrate, trichostatin A (TSA), suberoylanilide hydroxamic acid (Zolinza/Volinostat/SAHA), valproic acid, Belinostat/PXD101, ITF2357, CRA-24781/PCI24781, Romidepsin/FK228/Depsipeptide, Phenylbutyrate/VP-101/EL-532, Pivanex/AN-9, SB939, MS-275/SNDX-275/entinostat, MGCD-0103 and JHJ-26481585.

Description

ヒストン高アセチル化状態における光増感処理による腫瘍殺傷法Tumor killing by photosensitization in histone hyperacetylated state
関連する出願
 本出願は,日本特許出願2008-307283(2008年12月2日出願)に基づく優先権を主張しており,この内容は本明細書に参照として取り込まれる。
Related Application This application claims priority based on Japanese Patent Application No. 2008-307283 (filed on Dec. 2, 2008), the contents of which are incorporated herein by reference.
技術分野
 本発明は,癌光化学療法に関する。
TECHNICAL FIELD The present invention relates to cancer photochemotherapy.
 光増感療法は,光増感剤と紫外線とを組み合わせて用いる光化学療法である。その代表的なものであるPUVA療法は,ソラレンと長波長紫外線(UVA)とを併用する光化学療法であり,これまで,尋常性白斑,乾癬,アトピー性皮膚炎などの皮膚病に高い効果を示し,多く使用されてきた。 Photosensitization therapy is photochemotherapy using a combination of photosensitizer and ultraviolet light. PUVA therapy, which is a typical example, is a photochemotherapy that uses psoralen and long-wavelength ultraviolet (UVA) in combination, and has so far been highly effective against skin diseases such as common vitiligo, psoriasis, and atopic dermatitis. , Have been used a lot.
 光増感剤とは,光を吸収して励起され,そのエネルギーを他の物質に移動させて光化学反応を進めることができる物質である。光増感剤の代表例はソラレンである。これは,柑橘類に含まれる成分であり,光治療作用を有する三環の芳香族化合物である。ソラレンは平面構造を有しているため,ピリミジン-プリンが交互に存在する部位,特にTA部位でDNA中にインターカレートすることができる(Hearst JE, Isaacs ST, Kanne D, et al. Q Rev Biophys 1984;17:1-44)。UVA(320-400nm)照射の後,インターカレートした複合体は活性化され,細胞DNA中でピリミジン塩基に付加体が形成される。反対側の鎖の適当な位置に利用可能なピリミジンが存在する場合には,次に2番目のUVA光子がその鎖の遊離ソラレン側に結合し,鎖間架橋(Inter-strand crosslink; ICL)する(Cimino GD, Gamper HB, Isaacs ST, et al. Annu Rev Biochem 1985;54:1151-93)。 A photosensitizer is a substance that can be excited by absorbing light and transfer its energy to another substance to advance a photochemical reaction. A typical example of a photosensitizer is psoralen. This is a component contained in citrus fruits and is a tricyclic aromatic compound having a phototherapeutic action. Since psoralen has a planar structure, it can be intercalated into DNA at sites where pyrimidine-purines are alternately present, particularly TA sites (Hearst JE, Isaacs ST, Kanne D, et al. Q Rev Biophys 1984; 17: 1-44). After UVA (320-400 nm) irradiation, the intercalated complex is activated and an adduct is formed on the pyrimidine base in the cellular DNA. If there is an available pyrimidine at the appropriate position on the opposite side of the chain, the second UVA photon then binds to the free psoralen side of the chain and undergoes inter-strand crosslink (ICL). (Cimino GD, Gamper HB, Isaacs ST, et al. Annu Rev Biochem 1985; 54: 1151-93).
 染色体DNAにおけるPUVA誘導性のICLは,皮膚の治療に有用な抗増殖効果を誘導するため,ソラレン+UVA(PUVA)は,いくつかの高増殖性皮膚疾患,例えば,乾癬,および皮膚T細胞リンパ腫の治療に用いられている(Stern RS. N Engi J Med 2007;357:682-90)。PUVAが培養細胞株において細胞殺傷効果(アポトーシス)を示したという報告もあるが(Yoo EK, Rook AH, Elenitsas R, et al. J Invest Dermatol 1996;107:235-42; Canton M, Caffieri S, Dall'Acqua F, et al. PEBS Lett 2002;522:168-72),抗癌剤や放射線照射と比較して細胞殺傷力があまり強くないため,これまでPUVA療法を癌治療に適用することができるとは考えられていなかった。 Since PUVA-induced ICL in chromosomal DNA induces anti-proliferative effects useful for skin treatment, psoralen + UVA (PUVA) is used in several hyperproliferative skin diseases such as psoriasis and cutaneous T-cell lymphoma Used for treatment (Stern RS. N Engi J Med 2007; 357: 682-90). There is also a report that PUVA showed cell killing effect (apoptosis) in cultured cell lines (Yoo EK, Rook AH, Elenitsas R, et al. J Invest Dermatol 1996; 107: 235-42; Canton M, Caffieri S, Dall'Acqua F, et al. PEBS Lett 2002; 522: 168-72), and cell killing power is not so strong compared to anticancer drugs and radiation irradiation, so that PUVA therapy can be applied to cancer treatment so far Was not considered.
 本明細書において引用される参考文献は以下のとおりである。これらの文献に記載される内容はすべて本明細書に参照として取り込まれる。 The references cited in this specification are as follows. All the contents described in these documents are incorporated herein by reference.
 本発明は,PUVA療法の効力を高めることにより,癌の光増感治療法を提供することを目的とする。 The object of the present invention is to provide a photosensitizing method for cancer by enhancing the efficacy of PUVA therapy.
 本発明者らは,HDAC阻害剤とPUVA療法とを併用することにより,非常に強い腫瘍細胞殺傷効果が得られることを見いだした。すなわち本発明は,ヒストン脱アセチル化酵素阻害剤と光増感剤との組み合わせを含む,癌光化学療法に用いるための癌治療剤を提供する。好ましくは癌光化学療法はPUVA療法である。好ましくは,ヒストン脱アセチル化酵素阻害剤は,酪酸ナトリウム,バルプロ酸,Phenylbutyrate/VP-101/EL-532,Pivanex/AN-9,OSU-HDAC42,トリコスタチンA,スベロイルアニリドヒドロキサム酸(Zolinza/Volinostat/SAHA),LAQ-824,Panobinostat/LBH-589,CRA-24781/PCI24781,Belinostat/PXD101,Tubacin,Oxamflatin,ITF2357,SB939,R306465/JNJ-16241199,MS-275/SNDX-275/entinostat,MGCD-0103,Pimelic diphenylamide,Romidepsin/FK228/Depsipeptide,Apicidin,Trapoxin A,HC-Toxin,NCH-51,Alpha-mercaptoketone 19y/KD5150,5-(trifluoroacetyl)thiophene-2-carboxamides,2-Trifluoroacetylthiophene oxadiazoles,CI-994,Chlamydocin,JHJ-26481585,親電子ケトンから選択される。別の態様においては,本発明は,ヒストン脱アセチル化酵素阻害剤を有効成分とする鎖間架橋修復の阻害剤を提供する。 The present inventors have found that a very strong tumor cell killing effect can be obtained by using a HDAC inhibitor in combination with PUVA therapy. That is, the present invention provides a cancer therapeutic agent for use in cancer photochemotherapy comprising a combination of a histone deacetylase inhibitor and a photosensitizer. Preferably the cancer photochemotherapy is PUVA therapy. Preferably, the histone deacetylase inhibitor is sodium butyrate, valproic acid, Phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, OSU-HDAC42, trichostatin A, suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA), LAQ-824, Panobinostat / LBH-589, CRA-24781 / PCI24781, Belinostat / PXD101, Tubacin, Oxamflatin, ITF2357, SB939, R306465 / JNJ-16241NST-275MS -0103, Pimeric diphenylamide, Romidepsin / FK 28 / Depepteptide, Apicidin, Trapoxin A, HC-Toxin, NCH-51, Alpha-mercaptoketone 19y / KD5150, 5- (Trifluoroacetoyl), 4-Citropide, 2-Ciboxide, 2-Ciboxide Selected from electrophilic ketones. In another aspect, the present invention provides an inhibitor of interstrand cross-link repair comprising a histone deacetylase inhibitor as an active ingredient.
 別の観点においては,本発明は,光化学療法により癌を治療する方法を提供し,この方法は,患者にヒストン脱アセチル化酵素阻害剤と光増感剤とを投与した後に,治療すべき部位にUVAを照射することを含む。好ましくは,光増感剤はソラレンである。さらに別の観点においては,本発明は,癌光化学療法を受けている患者において,UVA照射により生ずる鎖間架橋の修復を阻害する方法を提供し,この方法は,該患者にヒストン脱アセチル化酵素阻害剤を投与することを含む。好ましくは,癌光化学療法はPUVA療法である。 In another aspect, the present invention provides a method of treating cancer by photochemotherapy, wherein the method comprises administering to a patient a histone deacetylase inhibitor and a photosensitizer and then treating the site. Irradiation with UVA. Preferably, the photosensitizer is psoralen. In yet another aspect, the present invention provides a method of inhibiting repair of interstrand crosslinks caused by UVA irradiation in a patient undergoing cancer photochemotherapy, wherein the method comprises a histone deacetylase in the patient. Administration of an inhibitor. Preferably, the cancer photochemotherapy is PUVA therapy.
 本発明にしたがえば,非常に効率よくかつ短時間で癌細胞を殺傷することが可能であり,新たな癌光増感治療法として有望である。また光照射を行うという点に置いて,がん細胞のみをターゲットとすることができ,正常細胞を障害する心配がないため治療による二次発ガンを防ぐことが期待できる。 According to the present invention, cancer cells can be killed very efficiently and in a short time, which is promising as a new cancer photosensitization treatment method. In addition, in terms of performing light irradiation, only cancer cells can be targeted, and there is no worry of damaging normal cells, so it can be expected to prevent secondary cancer caused by treatment.
図1は,メラノーマ細胞をHDAC阻害剤で処理した後に,PUVAで処理したときの細胞生存率を示す。FIG. 1 shows cell viability when melanoma cells were treated with PDAC after being treated with an HDAC inhibitor. 図2は,メラノーマ細胞をHDAC阻害剤で処理したときの,ヒストンH3のアセチル化状態を示す。FIG. 2 shows the acetylation state of histone H3 when melanoma cells are treated with an HDAC inhibitor. 図3は,A549およびMCF-7細胞をHDAC阻害剤で処理した後に,PUVAで処理したときの細胞生存率を示す。FIG. 3 shows cell viability when A549 and MCF-7 cells were treated with HDAC inhibitors and then treated with PUVA. 図4はメラノーマ細胞をHDAC阻害剤で処理した後に,5-MOP+UVAで処理したときの細胞生存率を示す。FIG. 4 shows cell viability when melanoma cells were treated with HDAC inhibitor and then treated with 5-MOP + UVA. 図5は,メラノーマ細胞をHDAC阻害剤とPUVAとの組み合わせで処理したときのアポトーシスの誘導を示す。FIG. 5 shows the induction of apoptosis when melanoma cells are treated with a combination of an HDAC inhibitor and PUVA. 図6は,メラノーマ細胞をHDAC阻害剤と種々の抗癌剤との組み合わせで処理したときの細胞生存率を示す。FIG. 6 shows cell viability when melanoma cells were treated with combinations of HDAC inhibitors and various anticancer agents. 図7は,メラノーマ細胞をHDAC阻害剤で処理した後にUVCを照射したときのCPDの修復速度論を示す。FIG. 7 shows the repair kinetics of CPD when melanoma cells are treated with HDAC inhibitors and then irradiated with UVC. 図8は,メラノーマ細胞をHDAC阻害剤で処理した後にUVCを照射したときの細胞生存率を示す。FIG. 8 shows cell viability when melanoma cells were treated with an HDAC inhibitor and then irradiated with UVC. 図9は,メラノーマ細胞をHDAC阻害剤で処理した後にHDAC阻害剤を含まない培地で培養したときの細胞生存率およびヒストンH3のアセチル化レベルの経時変化を示す。FIG. 9 shows the time course of cell viability and histone H3 acetylation level when melanoma cells were treated with a HDAC inhibitor and then cultured in a medium containing no HDAC inhibitor. 図10は,皮膚T細胞リンパ腫をHDAC阻害剤と種々の抗癌剤との組み合わせで処理したときの細胞生存率を示す。FIG. 10 shows cell viability when cutaneous T-cell lymphoma was treated with a combination of an HDAC inhibitor and various anticancer agents.
 本発明者らは,HDAC阻害剤である酪酸ナトリウム(SB)で処理した細胞において,UVAと光増感剤である8-メトキシソラレン(8-MOP)の光増感作用(PUVA)が,高感度に誘導され,さらに抗癌剤に耐性を示すヒトメラノーマ細胞,皮膚扁平上皮癌細胞,乳がん細胞,肺上皮がん細胞,皮膚 T 細胞性リンパ腫において効果的に細胞死(アポトーシス)を誘導することを見いだし,そのメカニズムを明らかにした。 In the cells treated with sodium butyrate (SB), which is an HDAC inhibitor, the present inventors have shown that the photosensitizing action (PUVA) of UVA and 8-methoxypsoralen (8-MOP) is high. It has been found that it induces cell death (apoptosis) effectively in human melanoma cells, skin squamous cell carcinoma cells, breast cancer cells, lung epithelial cancer cells, and skin T cell lymphomas that are induced by sensitivity and resistant to anticancer agents. , Clarified the mechanism.
 DNAは4種類のコアヒストンからなるヒストン八量体に巻き付き,クロマチン構造を形成している。ヒストンのアセチル化は,そのレベルがヒストンアセチル化酵素(HAT)とヒストン脱アセチル化酵素(HDAC)とによって調節されている。HATによりアセチル化されたヒストンは,凝集したクロマチン構造をほどき,種々の分子がDNAに接近できるようになるため,遺伝子の転写が活性化される。 DNA is wound around a histone octamer composed of four types of core histones to form a chromatin structure. The level of histone acetylation is regulated by histone acetylase (HAT) and histone deacetylase (HDAC). Histone acetylated by HAT unwinds an aggregated chromatin structure and allows various molecules to access DNA, thereby activating gene transcription.
 ヒストン脱アセチル化酵素(HDAC)阻害剤は,固形癌および血液悪性腫瘍を治療するための有望な新しい種類の抗腫瘍剤として注目されている(Marks PA, Miller T, Richon VM. Curr Opin Pharmacol 2003;3:344-51; Marks PA, Richon VM, Miller T, et al. Adv Cancer Res 2004;91:137-68; Mai A, Massa S, Rotili D, et al. Med Res Rev 2005;25:261-309)。HDACは,アミノ末端残基からアセチル基を除去することにより,コアヌクレオソームヒストンのアセチル化状態を制御する酵素である。HDACを阻害すると,ヒストンアセチルトランスフェラーゼの作用によりアセチル化ヒストンが蓄積する。これは,ヒストン-DNA相互作用を弱め,その結果転写因子のDNAへのアクセス可能性が増加し,細胞サイクル,分化およびアポトーシスの制御に関与するいくつかの蛋白質群の発現の変化を引き起こす(Marks PA, Richon VM, Rifkind RA. J Nad Cancer Inst 2000,92:1210-6)。例えば,プロ-アポトーシス因子(例えば,Bak,Bax,およびBim)およびアンチ-アポトーシス因子(例えば,Bcl-2,Bcl-XL,XIAP,およびMcl-1)は,HDAC阻害剤によりそれぞれアップレギュレーションおよびダウンレギュレーションされ,抗腫瘍活性において重要な役割を果たしていると考えられている(Zhang XD, Gillespie SK, Borrow JM, et al. Mol Cancer Ther 2004;3:425-35)。 Histone deacetylase (HDAC) inhibitors are attracting attention as promising new types of anti-tumor agents for treating solid tumors and hematological malignancies (Marks PA, Miller T, Richon VM. Curr Opin Pharmacol 2003) ; 3: 344-51; Marks PA, Richon VM, Miller T, et al. Adv Cancer Res 2004; 91: 137-68; Mai A, Massa S, Rotili D, et al. Med Res Rev 2005; 25: 261 -309). HDAC is an enzyme that controls the acetylation state of core nucleosome histones by removing the acetyl group from the amino terminal residue. When HDAC is inhibited, acetylated histone accumulates due to the action of histone acetyltransferase. This weakens histone-DNA interactions and consequently increases the accessibility of transcription factors to DNA, causing changes in the expression of several proteins involved in the control of cell cycle, differentiation and apoptosis (Marks PA, Richon VM, Rifkind RA. J Nad Cancer Inst 2000, 92: 1210-6). For example, pro-apoptotic factors (eg, Bak, Bax, and Bim) and anti-apoptotic factors (eg, Bcl-2, Bcl-XL, XIAP, and Mcl-1) are up-regulated and down-regulated by HDAC inhibitors, respectively. It is regulated and is considered to play an important role in antitumor activity (Zhang XD, Gillespie SK, Borrow JM, et al. Mol Cancer Ther 2004; 3: 425-35).
 また,HDAC阻害剤を放射線や抗癌剤と組み合わせて用いて癌を治療することが注目されている(Karagiannis TC, El-Osta A. Cell Cycle 2006:5:288-95; Camphausen K, Tofilon PJ. J Clin Oncol 2007;25:4051-6)。種々のHDAC阻害剤(酪酸ナトリウム(SB),トリコスタチンA(TSA),スベロイルアニリドヒドロキサム酸(SAHA),バルプロ酸等)によって,放射線照射および抗癌剤の細胞殺傷効果が増強されることが報告されている。しかし,その分子メカニズムは完全には解明されていない。 It is also drawing attention to treat cancer using HDAC inhibitors in combination with radiation and anticancer drugs (Karagiannis TC, El-Osta A. Cell Cycle 2006: 5: 288-95; Camphausen K, Tofilon PJ. J Clin Oncol 2007; 25: 4051-6). It has been reported that various HDAC inhibitors (sodium butyrate (SB), trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), valproic acid, etc.) enhance the cell killing effect of radiation and anticancer agents. ing. However, the molecular mechanism has not been fully elucidated.
 本発明者らは,最も広く研究されているHDAC阻害剤である酪酸ナトリウム(SB)とトリコスタチンA(TSA)が,皮膚悪性メラノーマ細胞株SK-MEL-28,G-361,皮膚扁平上皮癌細胞HSC-1,乳がん細胞MCF-7,肺上皮がん細胞A549,皮膚T細胞リンパ腫HH,HUT-78において,PUVAのアポトーシス細胞殺傷効果を顕著に増強しうることを見いだした。下記の実施例に示されるように,PUVAまたはSB単独による処理は,SK-MEL-28の細胞生存率にほとんど影響を及ぼさなかったが,SBとPUVAとの組み合わせ処理は24時間以内に顕著にアポトーシスを誘導した。SBにより誘導された細胞殺傷効果の増強の程度は,抗癌剤との組み合わせより,PUVAとの組み合わせにおいてはるかに高かった。また,皮膚T細胞リンパ腫HH,HUT-78に対する細胞殺傷効果の増強の程度も,抗癌剤との組み合わせより,PUVAとの組み合わせにおいてはるかに高かった。これらはHDAC阻害剤がTSAでも同様であった。染色体DNAにおけるPUVA誘導性鎖間架橋(ICL)の修復過程で形成された二本鎖切断の数は,SBで前処理した細胞において有意に減少しており,このことから,ICLを修復する能力がSBにより低下したことが示唆される。 The present inventors have reported that the most widely studied HDAC inhibitors sodium butyrate (SB) and trichostatin A (TSA) are skin malignant melanoma cell lines SK-MEL-28, G-361, squamous cell carcinoma of the skin It has been found that the effect of PUVA on killing apoptotic cells can be remarkably enhanced in cells HSC-1, breast cancer cell MCF-7, lung epithelial cancer cell A549, cutaneous T cell lymphoma HH, HUT-78. As shown in the examples below, treatment with PUVA or SB alone had little effect on the cell viability of SK-MEL-28, but the combination treatment of SB and PUVA was prominent within 24 hours. Apoptosis was induced. The degree of enhancement of cell killing effect induced by SB was much higher in combination with PUVA than in combination with anticancer agents. In addition, the degree of enhancement of the cell killing effect on cutaneous T cell lymphomas HH and HUT-78 was much higher in combination with PUVA than in combination with anticancer agents. These were the same when the HDAC inhibitor was TSA. The number of double-strand breaks formed in the process of repairing PUVA-induced interstrand crosslinks (ICL) in chromosomal DNA is significantly reduced in cells pretreated with SB, which indicates the ability to repair ICL It was suggested that was reduced by SB.
 PUVAにより生成するソラレン鎖間架橋(ICL)の修復には,ヌクレオチド除去修復(NER)や相同組換修復等,複数の修復経路が関与していることが知られている。特にヌクレオチド除去修復は,ICL損傷の認識および損傷部位の切り出しなど,ICL修復の初期段階で関与することが報告されている。本発明においては,PUVA処理後のICLの除去におけるヌクレオチド除去修復(NER)に伴う,ブロモデオキシウリジンの取り込みおよび増殖細胞の核抗原(PCNA)の修復フォーカスの形成は,SBで前処理した細胞においては観察されなかった。これは,SBがDNA修復,特にヌクレオチド除去修復(NER)を低下させ,これがPUVAの増強された細胞殺傷効果に寄与することを示す。また,UV誘導性シクロブタンピリミジンダイマー(NERにより修復される光傷害としてよく知られる)の修復速度は,SBで前処理した細胞においては未処理細胞と比べてはるかに遅かった。この結果は,紫外線照射(UVC)によって誘導されたDNA損傷の修復がSBにより促進されるという先の報告(Smerdon et al., J. Biol. Chem., 1982;257(22), 13441-13447; Ramanathan and Smerdon, J. Biol. Chem., 1989;264(19), 10026-11034)とは逆の結果を示している。上記の論文が主張するように,紫外線(UVC)が誘導するDNA損傷の修復がSB作用により促進するのであれば,紫外線照射とSBを併作用した後の細胞生存率は回復するはずであるが,そのような事象は一切観察されなかった(図8)。したがって,本発明において見いだされた現象は,本発明者らによる驚くべき発見である。 It is known that repair of psoralen interstrand crosslinks (ICL) generated by PUVA involves multiple repair pathways such as nucleotide excision repair (NER) and homologous recombination repair. In particular, nucleotide excision repair has been reported to be involved in the early stages of ICL repair, such as recognition of ICL damage and excision of damaged sites. In the present invention, bromodeoxyuridine incorporation and the formation of proliferating cell nuclear antigen (PCNA) repair focus associated with nucleotide excision repair (NER) in ICL removal after PUVA treatment is observed in cells pretreated with SB. Was not observed. This indicates that SB reduces DNA repair, especially nucleotide excision repair (NER), which contributes to the enhanced cell killing effect of PUVA. Also, the repair rate of UV-induced cyclobutane pyrimidine dimer (well known as photo-damage repaired by NER) was much slower in cells pretreated with SB than in untreated cells. This result indicates that SB promotes repair of DNA damage induced by ultraviolet irradiation (UVC) (Smerdon et al., J. Biol. Chem., 1982; 257 (22), 13441-13447). ; Shows the opposite result from Ramanathan and Smerdon, J. Biol. Chem., 1989; 264 (19), 10026-11034). As the above paper argues, if the repair of DNA damage induced by ultraviolet light (UVC) is promoted by SB action, cell viability after combined UV irradiation and SB should recover. , No such event was observed (Figure 8). Therefore, the phenomenon found in the present invention is a surprising discovery by the present inventors.
 いかなる理論にも拘束されることを意図するものではないが,本発明者らは現在のところ,本発明によって得られる細胞死亢進のメカニズムは,HDAC阻害剤の前処理により,ICL修復経路,特にヌクレオチド除去修復が阻害され,DNA損傷(ICL)が修復できなかった結果,効果的にアポトーシスが誘導されたためと考えている。 While not intending to be bound by any theory, the present inventors have currently shown that the mechanism of enhanced cell death obtained by the present invention is the ICL repair pathway, particularly by pretreatment with HDAC inhibitors. It is thought that apoptosis was effectively induced as a result of inhibition of nucleotide excision repair and failure to repair DNA damage (ICL).
 本発明の癌治療剤の有効成分として用いられるHDAC阻害剤としては,ヒストン脱アセチル化酵素を阻害するものであればいずれの物質を用いてもよく,例えば,酪酸ナトリウム,バルプロ酸,Phenylbutyrate/VP-101/EL-532,Pivanex/AN-9,OSU-HDAC42,トリコスタチンA,スベロイルアニリドヒドロキサム酸(Zolinza/Volinostat/SAHA),LAQ-824,Panobinostat/LBH-589,CRA-24781/PCI24781,Belinostat/PXD101,Tubacin,Oxamflatin,ITF2357,SB939,R306465/JNJ-16241199,MS-275/SNDX-275/entinostat,MGCD-0103,Pimelic diphenylamide,Romidepsin/FK228/Depsipeptide,Apicidin,Trapoxin A,HC-Toxin,NCH-51,Alpha-mercaptoketone 19y/KD5150,5-(trifluoroacetyl)thiophene-2-carboxamides,2-Trifluoroacetylthiophene oxadiazoles,CI-994,Chlamydocin,JHJ-26481585,親電子ケトン等を用いることができる。好ましくは,ヒストン脱アセチル化酵素阻害剤は,酪酸ナトリウム,トリコスタチンA(TSA),スベロイルアニリドヒドロキサム酸(Zolinza/Volinostat/SAHA),バルプロ酸,Belinostat/PXD101,ITF2357,CRA-24781/PCI24781,Romidepsin/FK228/Depsipeptide,Phenylbutyrate/VP-101/EL-532,Pivanex/AN-9,SB939,MS-275/SNDX-275/entinostat,MGCD-0103,JHJ-26481585である。これらの物質はすべて,市販されているか,またはその構造が知られており,当業者であれば容易に製造することができる。 As the HDAC inhibitor used as an active ingredient of the cancer therapeutic agent of the present invention, any substance that inhibits histone deacetylase may be used. For example, sodium butyrate, valproic acid, phenylbutyrate / VP -101 / EL-532, Pivanex / AN-9, OSU-HDAC42, trichostatin A, suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA), LAQ-824, Panobinostat / LBH-589, CRA-24781 / PCI24781 Belinostat / PXD101, Tubacin, Oxamflatin, ITF2357, SB939, R306465 / JNJ-16241199, MS-275 / SNDX-275 / enti ostat, MGCD-0103, Pimelic diphenylamide, Romidepsin / FK228 / Depsipeptide, Apicidin, Trapoxin A, HC-Toxin, NCH-51, Alpha-mercaptoketone 19y / KD5150,5- (trifluoroacetyl) thiophene-2-carboxamides, 2-Trifluoroacetylthiophene oxadiazoles CI-994, Chlamydocin, JHJ-264815585, electrophilic ketone, and the like. Preferably, the histone deacetylase inhibitor is sodium butyrate, trichostatin A (TSA), suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA), valproic acid, Belinostat / PXD101, ITF2357, CRA-24781 / PCI24781 Romidepsin / FK228 / Depepteptide, Phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, SB939, MS-275 / SNDX-275 / entinostat, MGCD-0103, JHJ-26481585. All of these materials are commercially available or their structures are known and can be easily produced by those skilled in the art.
 本発明の癌治療剤の有効成分として用いられる光増感剤としては,例えば,ソラレンおよびその誘導体が挙げられる。ソラレンおよびその誘導体は,下記の一般式:
Figure JPOXMLDOC01-appb-C000001
[式中,各Rは独立して,水素またはC1-6のアルキル基もしくはアルコキシ基を表す]
で表すことができる。特に好ましいものは,8-メトキシソラレン(メソキサレン),5-メトキシソラレンおよびトリメチルソラレン(トリオキサレン)である。これらの光増感剤は,市販されているか,または当業者であれば容易に製造することができる。
Examples of the photosensitizer used as an active ingredient of the cancer therapeutic agent of the present invention include psoralen and its derivatives. Psoralen and its derivatives have the following general formula:
Figure JPOXMLDOC01-appb-C000001
[In the formula, each R independently represents hydrogen or a C 1-6 alkyl group or alkoxy group]
Can be expressed as Particularly preferred are 8-methoxypsoralen (mesoxalene), 5-methoxypsoralen and trimethylpsoralen (trioxalene). These photosensitizers are commercially available or can be easily produced by those skilled in the art.
 本発明の癌治療剤は,当業者に公知の方法で製剤化することができる。例えば,HDAC阻害剤または光増感剤を,薬学的に許容しうる担体もしくは媒体,具体的には,滅菌水や生理食塩水,植物油,乳化剤,懸濁剤,界面活性剤,安定剤,香味剤,賦形剤,ベヒクル,防腐剤,結合剤などと適宜組み合わせて,一般に認められた製薬実施に要求される単位用量形態で混和することによって製剤化することができる。HDAC阻害剤と光増感剤とは別々のパッケージとして提供してもよく,あるいはこれらを組み合わせたキットとして提供してもよい。 The cancer therapeutic agent of the present invention can be formulated by methods known to those skilled in the art. For example, an HDAC inhibitor or a photosensitizer is added to a pharmaceutically acceptable carrier or medium, specifically, sterile water or physiological saline, vegetable oil, emulsifier, suspension, surfactant, stabilizer, flavor. It can be formulated by mixing in a unit dosage form generally required for pharmaceutical practice, in appropriate combination with agents, excipients, vehicles, preservatives, binders and the like. The HDAC inhibitor and the photosensitizer may be provided as separate packages, or may be provided as a kit combining these.
 本発明の癌治療剤は,経口または非経口投与により全身に投与してもよく,局所的に投与してもよい。本発明の癌治療剤をPUVA療法において用いる場合,HDAC阻害剤および光増感剤を経口または非経口投与により投与した後に,治療すべき部位にUVAを照射することができる。また,治療すべき部位にHDAC阻害剤および光増感剤を塗布するか,HDAC阻害剤および光増感剤の水溶液に治療すべき部位を浸漬した後,UVAを照射してもよい。あるいは,UVAを照射する前に,HDAC阻害剤を全身投与し光増感剤を局所投与してもよく,逆に光増感剤を全身投与しHDAC阻害剤を局所投与してもよい。あるいはまた,HDAC阻害剤および光増感剤を経口または非経口投与により投与した後に,患者から血液を取り出してUVAを照射,またはHDAC阻害剤を経口または非経口投与により投与した後に,患者から血液を取り出してPUVA処理した後に,その血液を患者に戻してもよい。 The cancer therapeutic agent of the present invention may be administered systemically by oral or parenteral administration, or may be administered locally. When the cancer therapeutic agent of the present invention is used in PUVA therapy, UVA can be irradiated to the site to be treated after the HDAC inhibitor and the photosensitizer are administered by oral or parenteral administration. Alternatively, UVA may be irradiated after applying the HDAC inhibitor and the photosensitizer to the site to be treated or immersing the site to be treated in the aqueous solution of the HDAC inhibitor and the photosensitizer. Alternatively, before irradiation with UVA, the HDAC inhibitor may be administered systemically and the photosensitizer may be administered locally, or conversely, the photosensitizer may be administered systemically and the HDAC inhibitor may be administered locally. Alternatively, after HDAC inhibitor and photosensitizer are administered by oral or parenteral administration, blood is removed from the patient and irradiated with UVA, or HDAC inhibitor is administered by oral or parenteral administration, and blood is then removed from the patient. After removal and treatment with PUVA, the blood may be returned to the patient.
 本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書に参照として取り込まれる。 The contents of all patents and references explicitly cited herein are hereby incorporated by reference.
 以下に実施例により本発明をより詳細に説明するが,本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
材料および方法
(1)細胞および細胞培養条件
 悪性の色素性メラノーマに由来する細胞株SK-MEL-28及びG-361はThe Health Science Research Resources Bank(Japan)から購入した。扁平上皮癌細胞HSC-1は理研Cell Bankより購入した。ヒト皮膚T細胞リンパ腫であるHUT78及びHHはそれぞれ理研Cell Bank,American Type Culture Collection (ATCC)より購入した。細胞は,10%ウシ胎児血清(FBS)および100ユニット/mlのペニシリン/ストレプトマイシンを補充した各細胞に適切な培地(MEM, DMEM, RPMI)で,37℃で5%CO下で維持した。
Materials and Methods (1) Cells and Cell Culture Conditions Cell lines SK-MEL-28 and G-361 derived from malignant pigmented melanoma were purchased from The Health Science Research Resources Bank (Japan). Squamous cell carcinoma cell HSC-1 was purchased from RIKEN Cell Bank. Human skin T-cell lymphomas HUT78 and HH were purchased from Riken Cell Bank and American Type Culture Collection (ATCC), respectively. Cells were maintained in medium appropriate for each cell (MEM, DMEM, RPMI) supplemented with 10% fetal bovine serum (FBS) and 100 units / ml penicillin / streptomycin at 37 ° C. under 5% CO 2 .
(2)SBとPUVAの組み合わせによるメラノーマの処理
 SK-MEL-28細胞をSB(0.1-3mM)を含む培地中で8-メトキシソラレン(8-MOP:10-7-10-5M)とともに所定の時間培養し,培地をSBフリーMEMに交換した直後にUVA(1-5J/cm)を照射した。サンプルレベルでの紫外線照射強度は約1.5mW/cmであり,5J/cmのUVA照射には約1時間を要した。
(2) Treatment of melanoma by a combination of SB and PUVA SK-MEL-28 cells were treated with 8-methoxypsoralen (8-MOP: 10 −7 −10 −5 M) in a medium containing SB (0.1-3 mM). Then, the cells were cultured for a predetermined time, and UVA (1-5 J / cm 2 ) was irradiated immediately after the medium was replaced with SB-free MEM. The UV irradiation intensity at the sample level was about 1.5 mW / cm 2 , and the UVA irradiation of 5 J / cm 2 required about 1 hour.
(3)生存率アッセイ
 細胞生存率は,フルオレセインジアセテート(FDA)(Wako,Japan)の代謝により評価した。FDA(0.1mg/ml)を含むPBSに細胞を懸濁し,37℃で15分間インキュベーションした。ヨウ化プロピジウム(PI)(10μg/ml)を加えた後,フローサイトメータ(FCM)(Epics XL;Coulter)を用いて蛍光強度を測定した。FDAおよびPIによる二重染色により,細胞を3つの集団に分けた:(i)生存細胞(FDA+,PI-),(ii)死細胞(FDA-,PI+),および(iii)アポトーシスを生じている細胞(FDA-,PI-)。FDAとPIとの二重染色によるアポトーシスの評価は,アネキシンV染色(高度に特異的なアポトーシスの指標)を用いる評価と同等である。
(3) Viability assay Cell viability was assessed by metabolism of fluorescein diacetate (FDA) (Wako, Japan). Cells were suspended in PBS containing FDA (0.1 mg / ml) and incubated at 37 ° C. for 15 minutes. After addition of propidium iodide (PI) (10 μg / ml), the fluorescence intensity was measured using a flow cytometer (FCM) (Epics XL; Coulter). Cells were divided into three populations by double staining with FDA and PI: (i) producing viable cells (FDA +, PI−), (ii) dead cells (FDA−, PI +), and (iii) causing apoptosis. Cells (FDA-, PI-). Evaluation of apoptosis by double staining with FDA and PI is equivalent to evaluation using annexin V staining (a highly specific index of apoptosis).
(4)アポトーシスアッセイ
 アポトーシスは,DNA結合蛍光団であるHoechst33258で染色してクロマチンの形態学的変化を検出し,PIによりアポトーシス核(sub-G画分)のパーセンテージを測定することにより判定した。カスパーゼ-3活性は酵素の蛍光基質(Ac-Asp-Glu-Val-Asp-MCA)を用いて測定した。
(4) Apoptosis assay Apoptosis was determined by staining with the DNA-binding fluorophore Hoechst 33258 to detect morphological changes in chromatin and measuring the percentage of apoptotic nuclei (sub-G 1 fraction) by PI. . Caspase-3 activity was measured using an enzyme fluorescent substrate (Ac-Asp-Glu-Val-Asp-MCA).
(5)DNA二本鎖切断(DSB)の検出
 DSBは,バイアス正弦電場ゲル電気泳動(BSFGE)システム(ATTO,Japan)を用いて検出した。細胞を処理直後に1%低融点アガロースに懸濁し,固化させた。アガロースのプラグを0.5mg/mlのプロテアーゼKおよび1mg/mlのリボヌクレアーゼAで処理し,0.8%アガロースゲルで電気泳動した。臭化エチジウムでゲルを染色し,撮影した。
(5) Detection of DNA double-strand break (DSB) DSB was detected using a biased sinusoidal gel electrophoresis (BSFGE) system (ATTO, Japan). The cells were suspended and solidified in 1% low melting point agarose immediately after treatment. The agarose plug was treated with 0.5 mg / ml protease K and 1 mg / ml ribonuclease A and electrophoresed on a 0.8% agarose gel. The gel was stained with ethidium bromide and photographed.
(6)DNA修復合成(DRS)アッセイ
 細胞を60mmディッシュまたは35mmガラスディッシュでコンフルエントまで成長させ,血清枯渇MEM中でさらに24時間培養した。これを0.5%FBSを含むMEM中でSB(3mM)で24時間処理した。次に,PUVA処理を行い,細胞をブロモデオキシウリジン(BrdU)(10μM)とともに所定時間(PUVA処理後0-30,30-60,60-90,90-120分間)インキュベーションした。
(6) DNA repair synthesis (DRS) assay Cells were grown to confluence in 60 mm dishes or 35 mm glass dishes and cultured for an additional 24 hours in serum-depleted MEM. This was treated with SB (3 mM) in MEM containing 0.5% FBS for 24 hours. Next, PUVA treatment was performed, and the cells were incubated with bromodeoxyuridine (BrdU) (10 μM) for a predetermined time (0-30, 30-60, 60-90, 90-120 minutes after PUVA treatment).
 フローサイトメトリ分析のためには,エタノール(70%)で固定した細胞を2N HClで室温で15分間処理した。1%ウシ血清アルブミン(BSA)でブロッキングした後,BrdUに対する一次抗体(Santa Cruz Biotechnology)(1:200)とともに,次にフルオレセインイソチオシアネート(FITC)とコンジュゲートした二次抗体(Jackson Immuno Research)(1:200)とともに,インキュベートした。各修復期間の間のBrdUの取り込みに基づくFITCの強度の増加をフローサイトメーターを用いて分析した。 For flow cytometry analysis, cells fixed with ethanol (70%) were treated with 2N HCl for 15 minutes at room temperature. After blocking with 1% bovine serum albumin (BSA), secondary antibody (Jackson ImmunoResearch) conjugated with fluorescein isothiocyanate (FITC) together with primary antibody against BrdU (Santa Cruz Biotechnology) (1: 200) ( 1: 200). The increase in FITC intensity based on BrdU incorporation during each repair period was analyzed using a flow cytometer.
 免疫蛍光顕微鏡観察のためには,4%パラホルムアルデヒド(PFA)で固定した細胞を0.5%TritonX-100を含有するPBSに4℃で3分間浸漬し,2N HClで処理した。なお,このDNA変性の工程はBrdU取り込みの実験の場合にのみ行い,増殖細胞核抗原(PCNA)の修復フォーカスの検出では行わなかった。1%BSAでブロッキングした後,BrdU(1:200)またはPCNAに対する一次抗体(Santa Cruz Biotechnology)(1:200)とともに,次にFITCとコンジュゲートした二次抗体(1:200)とともに,インキュベートした。核はPI(20μg/ml)で染色した。画像はレーザースキャン共焦点顕微鏡(LSM510,Carl Zeiss,Germany)で取得した。 For immunofluorescence microscopy, cells fixed with 4% paraformaldehyde (PFA) were immersed in PBS containing 0.5% Triton X-100 at 4 ° C. for 3 minutes and treated with 2N HCl. This DNA denaturation step was performed only in the case of the BrdU incorporation experiment, and was not performed in the detection of the repair focus of the proliferating cell nuclear antigen (PCNA). After blocking with 1% BSA, incubated with primary antibody against BrdU (1: 200) or PCNA (Santa Cruz Biotechnology) (1: 200) and then with a secondary antibody conjugated with FITC (1: 200) . Nuclei were stained with PI (20 μg / ml). Images were acquired with a laser scan confocal microscope (LSM510, Carl Zeiss, Germany).
(7)シクロブタンピリミジンダイマー(CPD)の修復速度論の測定
 CPDのインサイチュー検出のためには,35mmガラス底ディッシュで培養した細胞をSB(3mM)で24時間処理し,ポリカーボネートISOPOREメンブレンフィルター(孔サイズ:3μm)(Millipore)を通してUVC(0.02J/cm)を照射した(主放出波長254nm)(ATTO,Japan)。照射後,SBフリーMEMで所定の時間(0-24時間)インキュベートして,光傷害を修復させた。細胞を4%パラホルムアルデヒドで固定し,PBS中0.5%TritonX-100で処理し,2N HClで処理した。1%BSAでブロッキングした後,CPDに対する一次抗体(1:1500)(Medical&Biological Laboratories,Japan)とともに,次にFITCとコンジュゲートした二次抗体とともに,インキュベートした。核はPIで染色した(20μg/ml)。画像はレーザースキャン共焦点顕微鏡で取得した。
(7) Measurement of repair kinetics of cyclobutane pyrimidine dimer (CPD) For in-situ detection of CPD, cells cultured in a 35 mm glass bottom dish were treated with SB (3 mM) for 24 hours, and a polycarbonate ISOPORE membrane filter (pore) (Size: 3 μm) UVC (0.02 J / cm 2 ) was irradiated through (Millipore) (main emission wavelength 254 nm) (ATTO, Japan). After irradiation, photoinjury was repaired by incubating with SB-free MEM for a predetermined time (0-24 hours). Cells were fixed with 4% paraformaldehyde, treated with 0.5% Triton X-100 in PBS, and treated with 2N HCl. After blocking with 1% BSA, it was incubated with a primary antibody against CPD (1: 1500) (Medical & Biological Laboratories, Japan) and then with a secondary antibody conjugated to FITC. Nuclei were stained with PI (20 μg / ml). Images were acquired with a laser scanning confocal microscope.
 酵素免疫測定法(ELISA)によるCPDの検出のためには,細胞をSB(3mM)で24時間処理し,UVC(0.002J/cm)を照射した。SBフリーMEMで24時間インキュベーションした後,ゲノムDNAを抽出し,15分間煮沸することにより変性させた。硫酸プロタミン(0.003%)を予めコーティングしたポリ塩化ビニル96ウエルプレートにDNA(lμg/ウエル)を加えた。 For detection of CPD by enzyme immunoassay (ELISA), cells were treated with SB (3 mM) for 24 hours and irradiated with UVC (0.002 J / cm 2 ). After incubation with SB-free MEM for 24 hours, genomic DNA was extracted and denatured by boiling for 15 minutes. DNA (l μg / well) was added to a polyvinyl chloride 96 well plate pre-coated with protamine sulfate (0.003%).
 PBS中2%FBSでブロッキングした後,サンプルを,抗CPDに対する一次抗体(1:2000)とともに,次に抗マウスIgGのビオチン-F(ab’)フラグメント(Zymed)(1:2000)とともに,インキュベートした。次に,0.02%Hの存在下でo-フェニレンジアミン(0.4mg/ml)を用いてペルオキシダーゼ反応を行った。HSO(2M)を加えることにより反応を停止し,分光光度計で492nmの吸光度を測定した。 After blocking with 2% FBS in PBS, the samples were combined with a primary antibody against anti-CPD (1: 2000) and then with a biotin-F (ab ′) 2 fragment of anti-mouse IgG (Zymed) (1: 2000), Incubated. Next, peroxidase reaction was performed using o-phenylenediamine (0.4 mg / ml) in the presence of 0.02% H 2 O 2 . The reaction was stopped by adding H 2 SO 4 (2M), and the absorbance at 492 nm was measured with a spectrophotometer.
(8)統計学
 値は平均±SD(n=3-4)で表す。データは一元配置ANOVAにより分析し,群間の比較はダネットt検定により行った。*p<0.05,**p<0.01,および***p<0.001である場合に,統計学的に有意であるとみなした。
(8) Statistics Values are expressed as mean ± SD (n = 3-4). Data were analyzed by one-way ANOVA, and comparisons between groups were performed by Dunnett's t test. * P <0.05, ** p <0.01, and *** p <0.001 were considered statistically significant.
結果
(1)酪酸ナトリウム(SB)はSK-MEL-28細胞において,PUVAの細胞殺傷効果を増強する。
 SK-MEL-28細胞をSB(0.1-3mM)で所定時間(4-24時間)処理した後,細胞をPUVA(8-MOP:10-7-10-5M,UVA:1-5J/cm)で処理し,FDAアッセイにより細胞生存率を測定した。図1Aは,PUVA処理の24時間後にFDAアッセイにより測定した細胞生存率を示す。SK-MEL-28細胞はPUVA処理に対して高い耐性を示した。SB-PUVA処理は劇的な細胞死を誘導し,その程度は,SBの用量,SB処理時間,8-MOPの用量およびUVAの用量に依存していた。SB(3mM)-PUVA(8-MOP:10-5M,UVA:5J/cm)処理の後の細胞生存率の経時変化を調べたところ,生存率は8から24時間で急速に低下した(図1B)。なお,細胞を逆の順番で(最初にPUVAで,次にSBで)処理した場合には相乗効果は認められなかった。
Results (1) Sodium butyrate (SB) enhances the cell killing effect of PUVA in SK-MEL-28 cells.
After SK-MEL-28 cells were treated with SB (0.1-3 mM) for a predetermined time (4-24 hours), the cells were treated with PUVA (8-MOP: 10 −7 −10 −5 M, UVA: 1-5J). / Cm 2 ) and cell viability was measured by FDA assay. FIG. 1A shows cell viability as measured by FDA assay 24 hours after PUVA treatment. SK-MEL-28 cells were highly resistant to PUVA treatment. SB-PUVA treatment induced dramatic cell death, the extent of which was dependent on SB dose, SB treatment time, 8-MOP dose and UVA dose. When the time course of cell viability after treatment with SB (3 mM) -PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ) was examined, the viability decreased rapidly in 8 to 24 hours. (FIG. 1B). No synergistic effect was observed when cells were treated in the reverse order (first with PUVA and then with SB).
 次に,別のヒストン脱アセチル化酵素阻害剤であるTSA(0.1-10μM)で24時間前処理した細胞をPUVA処理し(8-MOP:10-5M,UVA:5J/cm),24時間後に細胞生存率を測定した。TSAもSBと同様にPUVAの細胞殺傷効果を増強した(図1C)。また,SK-MEL-28細胞以外のメラノーマ細胞G-361,扁平上皮癌細胞HSC-1でも同様の効果が認められた。(図1D)。 Next, cells pretreated with another histone deacetylase inhibitor TSA (0.1-10 μM) for 24 hours were treated with PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ). , Cell viability was measured after 24 hours. TSA also enhanced the cell killing effect of PUVA as in SB (FIG. 1C). Similar effects were also observed in melanoma cells G-361 other than SK-MEL-28 cells and squamous cell carcinoma cells HSC-1. (FIG. 1D).
 SB処理したときの,ヒストンH3のアセチル化状態を調べた。細胞をSB(0.1-3mM)で所定時間(4-24時間)処理し,500μlの氷冷溶解バッファー(10mM Tris-HCl,50mM 亜硫酸水素ナトリウム,1%TritonX-100,10mM MgCl,8.6%ショ糖,pH6.5)に懸濁した。ホモジナイズした後,2,000gで5分間遠心分離して核を集め,溶解バッファーで2回,TE(10mMTris-HCl,13mM EDTA,pH7.4)で1回洗浄した。ペレットを150μlのHCl(0.25N)に懸濁し,氷上で少なくとも1時間インキュベートした。12,000gで5分間遠心分離した後,上清を1.2mlのアセトンと混合した。4℃で一晩インキュベートした後,12,000gで5分間遠心分離して凝集した物質を回収し,風乾した。この酸可溶性ヒストン画分を30μlのHOに溶解し,約20μgの蛋白質を用いてSDS-PAGEを行った。ヒストンH3のアセチル化状態は抗アセチル-ヒストンH3(UPSTATE)を用いるウエスタンブロットにより確認した。 The acetylation state of histone H3 when treated with SB was examined. The cells were treated with SB (0.1-3 mM) for a predetermined time (4-24 hours), and 500 μl of ice-cold lysis buffer (10 mM Tris-HCl, 50 mM sodium bisulfite, 1% Triton X-100, 10 mM MgCl 2 , 8 .6% sucrose, pH 6.5). After homogenization, the nuclei were collected by centrifugation at 2,000 g for 5 minutes and washed twice with lysis buffer and once with TE (10 mM Tris-HCl, 13 mM EDTA, pH 7.4). The pellet was suspended in 150 μl HCl (0.25N) and incubated on ice for at least 1 hour. After centrifugation at 12,000 g for 5 minutes, the supernatant was mixed with 1.2 ml of acetone. After incubation overnight at 4 ° C., the aggregated material was collected by centrifugation at 12,000 g for 5 minutes and air-dried. This acid-soluble histone fraction was dissolved in 30 μl of H 2 O and subjected to SDS-PAGE using about 20 μg of protein. The acetylation status of histone H3 was confirmed by Western blot using anti-acetyl-histone H3 (UPSTATE).
 結果を図2に示す。SB処理によってアセチル化ヒストンH3のレベルは増加し,その程度は,(A)SB用量,および(B)処理時間に依存していた。なお,SBの代わりにTSAで処理した場合も,ヒストンH3のアセチル化状態のパターンはほぼ同じであった。 The results are shown in FIG. SB treatment increased the level of acetylated histone H3, the extent of which was dependent on (A) SB dose and (B) treatment time. In addition, even when it processed with TSA instead of SB, the pattern of the acetylation state of histone H3 was substantially the same.
 ヒト乳腺癌細胞(MCF-7),およびヒト肺腺癌上皮細胞(A549)に,図1Aと同様にしてSB-PUVA処理を行った。簡単には,細胞をSB(3mM)で24時間処理し,次にPUVA処理(8-MOP:10-7-10-5M,UVA:5J/cm)を行った。処理の24時間後の細胞生存率をFDAアッセイにより評価した。PUVA処理のみの後の細胞死はわずかであったが,SBで前処理するとPUVAの細胞殺傷効果が有意に増強され,SK-MEL-28細胞について得られた結果(図1A)と一致していた(図3)。すなわち,SB-PUVA処理は,ヒト乳腺癌細胞MCP-7およびヒト肺腺癌上皮細胞A549も有効に殺傷することができた。 Human breast adenocarcinoma cells (MCF-7) and human lung adenocarcinoma epithelial cells (A549) were treated with SB-PUVA in the same manner as in FIG. 1A. Briefly, cells were treated with SB (3 mM) for 24 hours, followed by PUVA treatment (8-MOP: 10 −7 −10 −5 M, UVA: 5 J / cm 2 ). Cell viability 24 hours after treatment was assessed by FDA assay. Cell death after only PUVA treatment was slight, but pretreatment with SB significantly enhanced the cell killing effect of PUVA, consistent with the results obtained for SK-MEL-28 cells (FIG. 1A). (FIG. 3). That is, SB-PUVA treatment was able to effectively kill human breast adenocarcinoma cell MCP-7 and human lung adenocarcinoma epithelial cell A549.
 SK-MEL-28細胞をSB(3mM)で24時間処理し,8-MOPの位置異性体である5-メトキシソラレン(5-MOP)(Sigma-Aldrieh)(10-7-10-5M)を用いて,上述と同様にしてUVA(5J/cm)による処理を行った。処理の24時間後の細胞生存率をFDAアッセイにより評価した。5-MOP+UVAの細胞殺傷効果は,SBで前処理を行うことにより有意に増強された(図4)。すなわち,SBによる前処理は,5-メトキシソラレン+UVAにより誘導される細胞毒性を顕著に増加させた。これらの結果は,ヒストン脱アセチル化酵素阻害剤による前処理はPUVAによる細胞死を有効に誘導することを示す。 SK-MEL-28 cells were treated with SB (3 mM) for 24 hours, and 5-methoxypsoralen (5-MOP) (Sigma-Aldrieh) (10 −7 −10 −5 M), a positional isomer of 8-MOP. Was used and treated with UVA (5 J / cm 2 ) in the same manner as described above. Cell viability 24 hours after treatment was assessed by FDA assay. The cell killing effect of 5-MOP + UVA was significantly enhanced by pretreatment with SB (FIG. 4). That is, pretreatment with SB significantly increased the cytotoxicity induced by 5-methoxypsoralen + UVA. These results indicate that pretreatment with a histone deacetylase inhibitor effectively induces cell death by PUVA.
(2)SBとPUVAとの組み合わせ処理はSK-MEL-28細胞においてアポトーシスを誘導する
 SBとPUVAとの組み合わせ処理によるSK-MEL-28細胞におけるアポトーシスの誘導を調べた。SB(3mM)で24時間前処理した細胞をPUVA(8-MOP:10-5M,UVA:5J/cm)処理し,さらに所定時間(4-24時間)インキュベートした。各時間におけるアポトーシスの誘導を,FDAとPIとの二重染色によるフローサイトメトリ分析(図5A),sub-G画分の検出(図5B),Hoechst33258を用いるアポトーシス細胞の形態学的評価(図5C),および蛍光基質を用いるカスパーゼ-3活性の測定(図5D)に基づいて評価した(**p<0.01,***p<0.001)。
(2) The combination treatment of SB and PUVA induces apoptosis in SK-MEL-28 cells The induction of apoptosis in SK-MEL-28 cells by the combination treatment of SB and PUVA was examined. Cells pretreated with SB (3 mM) for 24 hours were treated with PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ), and further incubated for a predetermined time (4-24 hours). Induction of apoptosis at each time, flow cytometry analysis by double staining with FDA and PI (FIG. 5A), detection of sub-G 1 fraction (FIG. 5B), morphological evaluation of apoptotic cells using Hoechst 33258 ( FIG. 5C) was evaluated based on the measurement of caspase-3 activity using a fluorescent substrate (FIG. 5D) (** p <0.01, *** p <0.001).
 図5に示されるように,SB-PUVAで処理した後,FDA(+)PI(-)区画の細胞集団は,時間依存的にFDA(-)PI(-)を経てFDA(-)PI(+)に移動した。sub-G画分の時間依存的増加も認められた。クロマチン凝縮細胞は,SB-PUVA処理の後,時間依存的にその数が増加したが,UVA単独による処理またはSB-UVA処理の後には増加しなかった。カスパーゼ-3の活性化は処理後8から16時間の間に観察された。さらに,総カスパーゼ阻害剤であるz-vad-fmkは,SB-PUVA処理により誘導される細胞死を明らかに軽減した。これらの結果は,SK-MEL-28細胞においてSB-PUVA処理が典型的なカスパーゼ依存性アポトーシスを有効に誘導したことを示す。 As shown in FIG. 5, after treatment with SB-PUVA, the FDA (+) PI (−) compartment cell population undergoes FDA (−) PI (−) via FDA (−) PI (−) in a time-dependent manner. Moved to +). A time-dependent increase in the sub-G 1 fraction was also observed. The number of chromatin-condensed cells increased in a time-dependent manner after SB-PUVA treatment, but did not increase after treatment with UVA alone or SB-UVA treatment. Caspase-3 activation was observed between 8 and 16 hours after treatment. Furthermore, z-vad-fmk, a total caspase inhibitor, clearly reduced cell death induced by SB-PUVA treatment. These results indicate that SB-PUVA treatment effectively induced typical caspase-dependent apoptosis in SK-MEL-28 cells.
(3)SBとPUVAとの組み合わせ処理による細胞殺傷効果の増強は,SBと抗癌剤との組み合わせより劇的である。
 SB(3mM)とともに24時間前培養した細胞を,種々の抗癌剤(ブレオマイシン,エトポシド,アドリアマイシン,5-フルオロウラシル,パクリタキセル,およびビンクリスチン)で24時間処理した。ここで用いた抗癌剤の用量範囲は文献の記載に基づく(Kim MS, Blake M, Baek JH, et al. Cancer Res 2003;63:7291-300; Dowdy SC, Jiang S, Zhou XC, et al. Mol Cancer Ther 2006,5:2767-76; Sonnemann J, Kumar KS, Heesch S, et al. Int J Oncol 2006;28:755-66; Dong YB, Yang HL, Elliott MJ, et al. Cancer Res 2002;62:1776-83)。細胞生存率はFDAアッセイにより測定した。
(3) The enhancement of cell killing effect by the combination treatment of SB and PUVA is more dramatic than the combination of SB and anticancer agent.
Cells pre-cultured with SB (3 mM) for 24 hours were treated with various anticancer agents (bleomycin, etoposide, adriamycin, 5-fluorouracil, paclitaxel, and vincristine) for 24 hours. The dose ranges of anticancer drugs used here are based on literature descriptions (Kim MS, Blake M, Baek JH, et al. Cancer Res 2003; 63: 7291-300; Dowdy SC, Jiang S, Zhou XC, et al. Mol. Cancer Ther 2006,5: 2767-76; Sonnemann J, Kumar KS, Heesch S, et al. Int J Oncol 2006; 28: 755-66; Dong YB, Yang HL, Elliott MJ, et al. Cancer Res 2002; 62 : 1776-83). Cell viability was measured by FDA assay.
 結果を図6に示す。いずれの場合も,SBと抗癌剤との組み合わせ処理により,抗癌剤単独による処理と比較して細胞毒性が増加したが,SBとPUVAによる処理の細胞殺傷効果は,SBと抗癌剤との組み合わせ処理よりはるかに高かった。これらの結果は,SBとPUVAの組み合わせによる細胞殺傷効果の増強は,アポトーシスの誘導の促進だけでは説明できないことを示す。 The results are shown in FIG. In any case, the combined treatment of SB and the anticancer agent resulted in an increase in cytotoxicity compared to the treatment with the anticancer agent alone, but the cell killing effect of the treatment with SB and PUVA was much greater than the combined treatment of SB and the anticancer agent. it was high. These results indicate that the enhancement of cell killing effect by the combination of SB and PUVA cannot be explained only by promoting the induction of apoptosis.
(4)SBはPUVA処理により形成されるDNA2本鎖切断(DSB)の数を減少させる。
 PUVA処理により誘導されるDNA損傷は主としてソラレン鎖間架橋(ICL)によるものであり,これがPUVAにより誘導される細胞殺傷効果の主な原因であると思われる。すなわち,SBがソラレンICLの修復効率を低下させ,これが有意な細胞死につながったと考えられる。DNAの2本鎖切断(DSB)はソラレンICLの細胞修復において中間体として生ずることが報告されている(Dronkert ML, Kanaar R. Mutat Res 2001;486:217-47)。PUVAまたはSB-PUVAによる処理後のDSBの形成の程度を,ICLの修復の効率の指標としてBSFGEを用いて調べた。
(4) SB reduces the number of DNA double strand breaks (DSB) formed by the PUVA treatment.
DNA damage induced by PUVA treatment is mainly due to psoralen interstrand crosslinks (ICL), which appears to be the main cause of cell killing effect induced by PUVA. That is, it is considered that SB reduced the repair efficiency of psoralen ICL, which led to significant cell death. DNA double-strand breaks (DSB) have been reported to occur as intermediates in psoralen ICL cell repair (Dronkert ML, Kanaar R. Mutat Res 2001; 486: 217-47). The extent of DSB formation after treatment with PUVA or SB-PUVA was examined using BSFGE as an indicator of the efficiency of ICL repair.
 SB(0.5-3mM)で2-24時間前処理した細胞を,PUVA処理し(8-MOP:10-5M,UVA:5J/cm),PUVA処理した直後に,BSFGEによりDSBを検出したところ,明確なDSBが観察された。SBによる前処理は,生成するDSBの数を減少させ,その程度はSB前処理の用量および時間に依存していた。また,TSA(0.1-30μM)で24時間前処理した細胞をPUVA処理した(8-MOP:10-5M,UVA:5J/cm)場合にも,PUVAによる処理の後のDSBの生成は用量依存的様式で低下した。一方,SB(3mM)で24時間前処理した細胞をさらに,SBフリー培地中で0-24時間培養し,次にPUVA処理(8-MOP:10-5M,UVA:5J/cm)を行った。その結果,SBフリー培地で培養した時間の長さにしたがって,SBにより低下したDSBの形成は,PUVAにより誘導された元のレベルまで回復した。これらの結果は,SBがPUVAにより誘導されるICLの修復を低下させることを示す。 Cells pretreated with SB (0.5-3 mM) for 2-24 hours were treated with PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ). Immediately after the PUVA treatment, DSB was obtained by BSFGE. When detected, clear DSB was observed. Pretreatment with SB reduced the number of DSBs produced, the extent of which was dependent on the dose and time of SB pretreatment. Also, when cells pretreated with TSA (0.1-30 μM) for 24 hours were treated with PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ), the DSB after treatment with PUVA Production decreased in a dose-dependent manner. On the other hand, cells pretreated with SB (3 mM) for 24 hours were further cultured in SB-free medium for 0-24 hours, and then subjected to PUVA treatment (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ). went. As a result, according to the length of time cultured in the SB-free medium, the formation of DSB decreased by SB was restored to the original level induced by PUVA. These results indicate that SB reduces ICL repair induced by PUVA.
(5)SBはPUVA処理後にDNA修復合成(DRS)を低下させる。
 ソラレンICLの除去にはヌクレオチド除去修復(NER)経路が関与していることが提唱されている(Dronkert ML, Kanaar R. 上掲)。PUVA処理後のSB処理細胞におけるNERの能力をDRSアッセイにより測定した。0.5%FBSを含有するMEM中でSB(3mM)で24時間処理した細胞をPUVA処理した(8-MOP:10-5M,UVA:5J/cmまたは8-MOP:10-4M,UVA:1J/cm)。次に,BrdU(10μM)とともに示される時間(PUVA処理後0-30,30-60,60-90,および90-120分間)インキュベートした。フローサイトメトリを用いて,取り込まれたBrdUによる蛍光強度を測定した。
(5) SB reduces DNA repair synthesis (DRS) after PUVA treatment.
It has been proposed that the removal of psoralen ICL involves the nucleotide excision repair (NER) pathway (Dronkert ML, Kanaar R. supra). The ability of NER in SB-treated cells after PUVA treatment was measured by DRS assay. Cells treated with SB (3 mM) for 24 hours in MEM containing 0.5% FBS were treated with PUVA (8-MOP: 10-5 M, UVA: 5 J / cm 2 or 8-MOP: 10 −4 M, UVA: 1 J / cm 2 ). They were then incubated with BrdU (10 μM) for the indicated times (0-30, 30-60, 60-90, and 90-120 minutes after PUVA treatment). Using flow cytometry, the fluorescence intensity due to incorporated BrdU was measured.
 その結果,取り込まれたBrdUからの蛍光の強度は,調べたすべての時間(0-2h)について,PUVA処理細胞において未処理細胞より有意に高かった。なお,蛍光強度の増加の程度はBrdU標識時間によって大きく相違しなかった。一方,細胞をSBで前処理した場合には,PUVA処理後の蛍光の増加は認められなかった。さらに,免疫蛍光顕微鏡でPCNAの修復フォーカスを調べた。0.5%FBSを含むMEM中でSB(3mM)で24時間前処理した細胞をPUVA処理した(8-MOP:10-5M,UVA:5J/cm)。1時間培養した後,細胞を固定した。核中で,PUVA処理後のDRSに起因するBrdUの明確なフォーカスを検出することができた。しかし,このようなフォーカスは,SBで前処理した細胞をPUVA処理した場合にはほとんど検出することができなかった。これらの結果は,SBによりNERによりソラレンICLが除去される能力が低下したことを示す。 As a result, the intensity of fluorescence from incorporated BrdU was significantly higher in PUVA-treated cells than in untreated cells for all times examined (0-2h). The degree of increase in fluorescence intensity did not differ greatly depending on the BrdU labeling time. On the other hand, when cells were pretreated with SB, no increase in fluorescence was observed after PUVA treatment. Furthermore, the repair focus of PCNA was examined with an immunofluorescence microscope. Cells pretreated with SB (3 mM) in MEM containing 0.5% FBS for 24 hours were treated with PUVA (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ). After culturing for 1 hour, the cells were fixed. In the nucleus, it was possible to detect a clear focus of BrdU due to DRS after the PUVA treatment. However, such a focus could hardly be detected when cells pretreated with SB were treated with PUVA. These results show that the ability of SB to remove psoralen ICL is reduced by SB.
(6)SBはUVC照射により形成されたシクロブタンピリミジンダイマー(CPD)の修復速度を低下させる。
 SBがNERを低下させたことをさらに確認するために,局所UVC暴露により形成されたCPDの修復の速度論を調べた。SB(3mM)で24時間処理した細胞をポリカーボネートISOPOREメンブレンフィルターを通してUVC(0.02J/cm)で部分的に照射した。示される時間(0-24時間)インキュベートした後,細胞を固定した。その結果,SB前処理細胞および未処理細胞のいずれにおいても,照射の直後(0h)に高い蛍光強度を有する明確なCPDフォーカスが検出された(図7A)。SBによる前処理を行わない場合には,蛍光は弱まり,処理の24時間後にはCPDフォーカスの輪郭は曖昧になった。一方,SB前処理細胞では明白なCPDフォーカスがなお検出された。
(6) SB reduces the repair rate of cyclobutane pyrimidine dimer (CPD) formed by UVC irradiation.
To further confirm that SB reduced NER, the kinetics of repair of CPD formed by local UVC exposure was examined. Cells treated with SB (3 mM) for 24 hours were partially irradiated with UVC (0.02 J / cm 2 ) through a polycarbonate ISOPORE membrane filter. After incubation for the indicated time (0-24 hours), the cells were fixed. As a result, a clear CPD focus having a high fluorescence intensity was detected immediately after irradiation (0 h) in both SB pretreated cells and untreated cells (FIG. 7A). Without pretreatment with SB, the fluorescence weakened and the outline of the CPD focus became ambiguous after 24 hours of treatment. On the other hand, clear CPD focus was still detected in SB pretreated cells.
 明確な外形および高い蛍光強度の両方を有するCPDフォーカスを有する細胞はCPD陽性とみなした(図7B,図中,*p<0.05,**p<0.01,***p<0.001)。CPD陽性細胞は,修復時間とともに,SB未処理細胞ではSB前処理細胞より急速に減少した。UV照射の24時間後,未処理細胞の約15%およびSB前処理細胞の60%がCPD陽性であった。次に,SB(3mM)で24時間処理した細胞にUVC(0.002J/cm,メンブレンフィルターなし)を照射した。24時間培養した後,ゲノムDNA中のCPDの量をELISAにより調べた。CPDレベルは,SB前処理細胞について未処理細胞より有意に高かった(図7C)。つまり,SB前処理細胞では,UVC照射により誘導されるCPD(NERにより修復される光傷害としてよく知られる)の修復がより遅かった。これらの結果は,SBがNERの能力を低下させるという仮説をさらに裏付けるものである。 Cells with CPD focus with both clear contour and high fluorescence intensity were considered CPD positive (FIG. 7B, * p <0.05, ** p <0.01, *** p <0 .001). CPD-positive cells decreased more rapidly in SB-untreated cells than in SB-pretreated cells with repair time. Twenty-four hours after UV irradiation, approximately 15% of untreated cells and 60% of SB pretreated cells were CPD positive. Next, the cells treated with SB (3 mM) for 24 hours were irradiated with UVC (0.002 J / cm 2 , no membrane filter). After culturing for 24 hours, the amount of CPD in the genomic DNA was examined by ELISA. CPD levels were significantly higher for SB pretreated cells than untreated cells (FIG. 7C). That is, in the SB pretreated cells, the repair of CPD induced by UVC irradiation (well known as light injury repaired by NER) was slower. These results further support the hypothesis that SB reduces the ability of NER.
 次に,SB前処理とUVCの組み合わせの効果を調べた。SK-MEL-28細胞をSB(3mM)で24時間処理した。次に,UVC(0.005-0.025J/cm,メンブレンフィルターなし)を照射した。処理の24時間後の細胞生存率をFDA取り込みアッセイにより評価した。結果を図8に示す。UVC照射は用量依存的様式で細胞生存率を低下させた。すなわち,SBによる前処理は,UVCにより誘導される細胞死を顕著に増強した。さらに,SB前処理により増強されたUVC誘導性細胞死およびPUVA誘導性細胞死は,XPA(NERに必須の蛋白質)を発現する細胞株においてXPAを欠失した同系株におけるより顕著であった。これらの結果は,SBがDNA修復,特にNER経路を低下させるという我々の仮説をさらに裏付ける。 Next, the effect of the combination of SB pretreatment and UVC was examined. SK-MEL-28 cells were treated with SB (3 mM) for 24 hours. Next, UVC (0.005-0.025 J / cm 2 , no membrane filter) was irradiated. Cell viability 24 hours after treatment was assessed by FDA uptake assay. The results are shown in FIG. UVC irradiation reduced cell viability in a dose dependent manner. That is, pretreatment with SB significantly enhanced cell death induced by UVC. Furthermore, the UVC-induced cell death and the PUVA-induced cell death enhanced by SB pretreatment were more pronounced in the syngeneic strain lacking XPA in the cell line expressing XPA (an essential protein for NER). These results further support our hypothesis that SB reduces DNA repair, particularly the NER pathway.
 上述したように,ICLの修復の間のDSBの生成はSBにより低下するが,SBで処理した後にSBフリー培地でインキュベートすると,時間とともに回復する。このことは,NERに対する能力が回復したことを示唆する。そこで,次にSB処理の効果が可逆的であるかどうかを調べた。SK-MEL-28細胞をSB(3mM)で24時間処理し,SBフリー培地で所定時間さらに培養した。次に,PUVA処理(8-MOP:10-5M,UVA:5J/cm)を行い,処理の24時間後の細胞生存率をFDAアッセイにより評価した。SB処理の24時間後に細胞をPUVA処理すると,劇的な細胞死が誘導された。しかし,PUVA処理の前にSBフリー培地で培養すると,細胞は徐々にPUVAに対して耐性となった(図9)。このことは,SBによるNERの能力の低下は可逆的であることを示す。 As described above, DSB production during ICL repair is reduced by SB, but it recovers over time when incubated with SB after SB treatment. This suggests that the ability to NER has been restored. Then, next, it was investigated whether the effect of SB processing was reversible. SK-MEL-28 cells were treated with SB (3 mM) for 24 hours and further cultured in SB-free medium for a predetermined time. Next, PUVA treatment (8-MOP: 10 −5 M, UVA: 5 J / cm 2 ) was performed, and cell viability 24 hours after the treatment was evaluated by FDA assay. When cells were treated with PUVA 24 hours after SB treatment, dramatic cell death was induced. However, when cultured in SB-free medium prior to PUVA treatment, the cells gradually became resistant to PUVA (FIG. 9). This indicates that the decrease in NER ability by SB is reversible.
 次に,SK-MEL-28細胞をSB(3mM)で24時間処理し,SBフリー培地で所定時間さらに培養した。ヒストンH3のアセチル化状態をウエスタンブロット分析により調べたところ,SBで24時間処理した直後の高度にアセチル化されたヒストンH3は,時間に依存して低下し,ヒストンH3のアセチル化レベルは生存率とよく相関していた。 Next, SK-MEL-28 cells were treated with SB (3 mM) for 24 hours, and further cultured in SB free medium for a predetermined time. When the acetylation state of histone H3 was examined by Western blot analysis, highly acetylated histone H3 immediately after treatment with SB for 24 hours decreased with time, and the acetylation level of histone H3 was determined by viability. Well correlated.
 皮膚T細胞リンパ腫細胞HHとHUT78をHDAC阻害剤で処理した後に,PUVAで処理または抗がん剤処理したときの細胞生存率を示す(図10)。これらの細胞でもHDAC阻害剤と抗がん剤処理の組み合わせにくらべPUVAとの組み合わせが高い抗癌効果を示した。
 
FIG. 10 shows cell viability when skin T cell lymphoma cells HH and HUT78 were treated with HDAC inhibitors and then treated with PUVA or anticancer agents (FIG. 10). Even in these cells, the combination of PUVA showed a higher anticancer effect than the combination of HDAC inhibitor and anticancer agent treatment.

Claims (9)

  1. ヒストン脱アセチル化酵素阻害剤と光増感剤との組み合わせを含む,癌光化学療法に用いるための癌治療剤。 A cancer therapeutic agent for use in cancer photochemotherapy comprising a combination of a histone deacetylase inhibitor and a photosensitizer.
  2. 癌光化学療法がPUVA療法である,請求項1記載の癌治療剤。 The cancer therapeutic agent according to claim 1, wherein the cancer photochemotherapy is a PUVA therapy.
  3. ヒストン脱アセチル化酵素阻害剤は,酪酸ナトリウム,バルプロ酸,Phenylbutyrate/VP-101/EL-532,Pivanex/AN-9,OSU-HDAC42,トリコスタチンA,スベロイルアニリドヒドロキサム酸(Zolinza/Volinostat/SAHA),LAQ-824,Panobinostat/LBH-589,CRA-24781/PCI24781,Belinostat/PXD101,Tubacin,Oxamflatin,ITF2357,SB939,R306465/JNJ-16241199,MS-275/SNDX-275/entinostat,MGCD-0103,Pimelic diphenylamide,Romidepsin/FK228/Depsipeptide,Apicidin,Trapoxin A,HC-Toxin,NCH-51,Alpha-mercaptoketone 19y/KD5150,5-(trifluoroacetyl)thiophene-2-carboxamides,2-Trifluoroacetylthiophene oxadiazoles,CI-994,Chlamydocin,JHJ-26481585,親電子ケトンから選択される,請求項1または2に記載の癌治療剤。 Histone deacetylase inhibitors include sodium butyrate, valproic acid, phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, OSU-HDAC42, trichostatin A, suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA) ), LAQ-824, Panobinostat / LBH-589, CRA-24781 / PCI24781, Belinostat / PXD101, Tubacin, Oxamflatin, ITF2357, SB939, R306465 / JNJ-16241199, MS-275 / SNDXst-275 / G Pimelic diphenylamide, Romidepsin / FK228 / De sieptide, Apicidin, Trapoxin A, HC-Toxin, NCH-51, Alpha-mercaptoketone 19y / KD5150, 5- (Trifluoroacetyl) thiophene-2-Citropide, 2-Triboxamide, 2-Triboxamide The cancer therapeutic agent according to claim 1 or 2, which is selected from ketones.
  4. ヒストン脱アセチル化酵素阻害剤を有効成分とする鎖間架橋修復またはヌクレオチド除去修復の阻害剤。 An inhibitor of interstrand cross-link repair or nucleotide excision repair comprising a histone deacetylase inhibitor as an active ingredient.
  5. 光化学療法により癌を治療する方法であって,患者にヒストン脱アセチル化酵素阻害剤と光増感剤とを投与した後に,治療すべき部位にUVAを照射することを含む方法。 A method of treating cancer by photochemotherapy, comprising administering a histone deacetylase inhibitor and a photosensitizer to a patient and then irradiating the site to be treated with UVA.
  6. 光増感剤がソラレンである,請求項5記載の方法。 6. The method of claim 5, wherein the photosensitizer is psoralen.
  7. 癌光化学療法を受けている患者において,UVA照射により生ずる鎖間架橋修復またはヌクレオチド除去修復を阻害する方法であって,該患者にヒストン脱アセチル化酵素阻害剤を投与することを含む方法。 A method of inhibiting interstrand cross-linking repair or nucleotide excision repair caused by UVA irradiation in a patient undergoing cancer photochemotherapy, comprising administering to the patient a histone deacetylase inhibitor.
  8. 癌光化学療法がPUVA療法である,請求項7記載の方法。 The method according to claim 7, wherein the cancer photochemotherapy is PUVA therapy.
  9. ヒストン脱アセチル化酵素阻害剤は,酪酸ナトリウム,バルプロ酸,Phenylbutyrate/VP-101/EL-532,Pivanex/AN-9,OSU-HDAC42,トリコスタチンA,スベロイルアニリドヒドロキサム酸(Zolinza/Volinostat/SAHA),LAQ-824,Panobinostat/LBH-589,CRA-24781/PCI24781,Belinostat/PXD101,Tubacin,Oxamflatin,ITF2357,SB939,R306465/JNJ-16241199,MS-275/SNDX-275/entinostat,MGCD-0103,Pimelic diphenylamide,Romidepsin/FK228/Depsipeptide,Apicidin,Trapoxin A,HC-Toxin,NCH-51,Alpha-mercaptoketone 19y/KD5150,5-(trifluoroacetyl)thiophene-2-carboxamides,2-Trifluoroacetylthiophene oxadiazoles,CI-994,Chlamydocin,JHJ-26481585,親電子ケトンから選択される,請求項5-8のいずれかに記載の方法。 Histone deacetylase inhibitors include sodium butyrate, valproic acid, phenylbutyrate / VP-101 / EL-532, Pivanex / AN-9, OSU-HDAC42, trichostatin A, suberoylanilide hydroxamic acid (Zolinza / Volinostat / SAHA) ), LAQ-824, Panobinostat / LBH-589, CRA-24781 / PCI24781, Belinostat / PXD101, Tubacin, Oxamflatin, ITF2357, SB939, R306465 / JNJ-16241199, MS-275 / SNDXst-275 / G Pimelic diphenylamide, Romidepsin / FK228 / De sieptide, Apicidin, Trapoxin A, HC-Toxin, NCH-51, Alpha-mercaptoketone 19y / KD5150, 5- (Trifluoroacetyl) thiophene-2-Citropide, 2-Triboxamide, 2-Triboxamide 9. A method according to any of claims 5-8, selected from ketones.
PCT/JP2009/006539 2008-12-02 2009-12-02 Method for killing tumor by photosensitization treatment under conditions where histone is highly acetylated WO2010064422A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541232A JPWO2010064422A1 (en) 2008-12-02 2009-12-02 Tumor killing by photosensitization in histone hyperacetylated state

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-307283 2008-12-02
JP2008307283 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010064422A1 true WO2010064422A1 (en) 2010-06-10

Family

ID=42233080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006539 WO2010064422A1 (en) 2008-12-02 2009-12-02 Method for killing tumor by photosensitization treatment under conditions where histone is highly acetylated

Country Status (2)

Country Link
JP (1) JPWO2010064422A1 (en)
WO (1) WO2010064422A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323503A (en) * 2003-04-07 2004-11-18 Masaaki Adachi Radiosensitivity-enhancing agent having histon-deacetylation enzyme inhibitory activity and method for identifying effective optimum dose of the same agent
JP2005512961A (en) * 2001-09-18 2005-05-12 ゲー・ツヴァイ・エム キャンサー ドラッグス アー・ゲー Valproic acid and its derivatives for combination therapy treatment of human cancer and treatment of tumor metastasis and minimal residual disease
JP2005281150A (en) * 2004-03-26 2005-10-13 Yurin Sho Method for increasing treating effect in radiotherapy and chemotherapy
WO2007024574A2 (en) * 2005-08-19 2007-03-01 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Topical formulations of histone deacetylase inhibitors and methods of using the same
WO2007056244A2 (en) * 2005-11-04 2007-05-18 Merck & Co., Inc. Methods of using saha and erlotinib for treating cancer
JP2008509948A (en) * 2004-08-14 2008-04-03 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Combined drugs for the treatment of diseases associated with cell proliferation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512961A (en) * 2001-09-18 2005-05-12 ゲー・ツヴァイ・エム キャンサー ドラッグス アー・ゲー Valproic acid and its derivatives for combination therapy treatment of human cancer and treatment of tumor metastasis and minimal residual disease
JP2004323503A (en) * 2003-04-07 2004-11-18 Masaaki Adachi Radiosensitivity-enhancing agent having histon-deacetylation enzyme inhibitory activity and method for identifying effective optimum dose of the same agent
JP2005281150A (en) * 2004-03-26 2005-10-13 Yurin Sho Method for increasing treating effect in radiotherapy and chemotherapy
JP2008509948A (en) * 2004-08-14 2008-04-03 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Combined drugs for the treatment of diseases associated with cell proliferation
WO2007024574A2 (en) * 2005-08-19 2007-03-01 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Topical formulations of histone deacetylase inhibitors and methods of using the same
WO2007056244A2 (en) * 2005-11-04 2007-05-18 Merck & Co., Inc. Methods of using saha and erlotinib for treating cancer

Also Published As

Publication number Publication date
JPWO2010064422A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
Peng et al. Synergistic tumor-killing effect of radiation and berberine combined treatment in lung cancer: the contribution of autophagic cell death
Haldar et al. Mechanisms of hemorrhagic cystitis
JP2022089873A (en) Methods, compositions and apparatuses for facilitating regeneration
Oh et al. Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy
Busch et al. Overcoming macrophage-mediated axonal dieback following CNS injury
Hakimiha et al. The susceptibility of Streptococcus mutans to antibacterial photodynamic therapy: a comparison of two different photosensitizers and light sources
Wu et al. Porcine intact and wounded skin responses to atmospheric nonthermal plasma
Montoya et al. Development of a novel formulation with hypericin to treat cutaneous leishmaniasis based on photodynamic therapy in in vitro and in vivo studies
Ding et al. Mechanisms of rapid sensory hair-cell death following co-administration of gentamicin and ethacrynic acid
JP2017524398A (en) Biophoto hydrogel
KR20130048768A (en) Resveratrol-containing compositions and methods of use
KR101735933B1 (en) Apparatus for controlling a growth and dying the cancer cells using a blue light
Baharara et al. Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation
Wang et al. The roles of oxidative stress and Beclin-1 in the autophagosome clearance impairment triggered by cardiac arrest
Massieu et al. Effect of Ginkgo biloba (EGb 761) on staurosporine-induced neuronal death and caspase activity in cortical cultured neurons
JP2007504273A (en) Pharmaceutical composition and method for inhibiting fibrous adhesion using various agents
Kessel Photodynamic therapy: Promotion of efficacy by a sequential protocol
Das et al. Antimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cells
Davids et al. Melanomas display increased cytoprotection to hypericin-mediated cytotoxicity through the induction of autophagy
Zhao et al. TPEN attenuates neural autophagy induced by synaptically-released zinc translocation and improves histological outcomes after traumatic brain injury in rats
Korbelik et al. N-dihydrogalactochitosan-supported tumor control by photothermal therapy and photothermal therapy-generated vaccine
Núñez-Álvarez et al. Near infra-red light attenuates corneal endothelial cell dysfunction in situ and in vitro
Wu et al. Epigallocatechin gallate enhances human lens epithelial cell survival after UVB irradiation via the mitochondrial signaling pathway
Huang et al. A low-level diode laser therapy reduces the lipopolysaccharide (LPS)-induced periodontal ligament cell inflammation
Akilov et al. Optimization of topical photodynamic therapy with 3, 7‐bis (di‐n‐butylamino) phenothiazin‐5‐ium bromide for cutaneous leishmaniasis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010541232

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830192

Country of ref document: EP

Kind code of ref document: A1