WO2010063856A1 - Apparatus for measuring the optical properties of water samples - Google Patents

Apparatus for measuring the optical properties of water samples Download PDF

Info

Publication number
WO2010063856A1
WO2010063856A1 PCT/ES2009/000552 ES2009000552W WO2010063856A1 WO 2010063856 A1 WO2010063856 A1 WO 2010063856A1 ES 2009000552 W ES2009000552 W ES 2009000552W WO 2010063856 A1 WO2010063856 A1 WO 2010063856A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensors
measuring
optical properties
water samples
emitting elements
Prior art date
Application number
PCT/ES2009/000552
Other languages
Spanish (es)
French (fr)
Inventor
Eduardo GARCÍA BREIJO
Luis GIL SÁNCHEZ
Julio GONZÁLEZ DEL RÍO RAMS
Zuriñe HERMOSILLA GÓMEZ
Javier IBAÑEZ CIVERA
Nicolás LAGUARDA MIRÒ
Mª Remedios MARTÍNEZ GUIJARRO
María Aguas Vivas PACHÉS GINER
Inmaculada Romero Gil
Original Assignee
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Valencia filed Critical Universidad Politecnica De Valencia
Publication of WO2010063856A1 publication Critical patent/WO2010063856A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Hydrology & Water Resources (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention relates to an apparatus for measuring the optical properties of water samples in a pre-determined aquatic zone. The invention includes a submersible probe (11) comprising: sensors (21, 23, 25) for measuring optical properties, particularly absorbance, fluorescence and turbidity; sets of light-emitting elements (31, 33, 35) specifically provided for each of said sensors (21, 23, 25), which are arranged such that an optical path is formed between the emitters and sensors through the water samples; a pressure sensor; and a temperature sensor. The invention also includes a monitoring unit (13) located on the surface and connected by cable or radio to the probe (11), comprising means for receiving data from the probe relating to the measurements taken by the sensors (21, 23, 25) in the aquatic zone and means for displaying and storing said data.

Description

APARATO PARA MEDIR PROPIEDADES ÓPTICAS DE MUESTRAS DE AGUA APPARATUS FOR MEASURING OPTICAL PROPERTIES OF WATER SAMPLES
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a un aparato para medir propiedades ópticas de muestras de agua en zonas acuáticas a distintas profundidades y, particularmente, a un aparato para medir Ia absorbancia, Ia fluorescencia y Ia turbidez.The present invention relates to an apparatus for measuring optical properties of water samples in aquatic areas at different depths and, particularly, to an apparatus for measuring absorbance, fluorescence and turbidity.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
En Ia técnica anterior son conocidos distintos tipos de aparatos para medir propiedades relevantes para analizar Ia calidad de las aguas.In the prior art, different types of apparatus are known for measuring relevant properties to analyze the quality of the water.
El documento de patente WO 03/067021 describe un dispositivo multi- paramétrico, fácilmente reconfigurable, para determinar Ia calidad del agua, constituido por una sonda especialmente configurada para alojar e interconectar diferentes componentes que pueden ser sensores (pasivos: temperatura, activos: presión, conductividad, oxígeno disuelto, turbidez, o por detección química: selección por iones) y accesorios (dispositivos de limpieza...)- El dispositivo incluye un sistema electrónico con un procesador y una memoria con instrucciones almacenadas para facilitar su operación autónoma del conjunto. El dispositivo está configurado para interconectarse con otros sistemas remotos mediante una red de datos.WO 03/067021 describes a multi-parametric device, easily reconfigurable, to determine the quality of the water, consisting of a probe specially configured to accommodate and interconnect different components that can be sensors (passive: temperature, active: pressure, conductivity, dissolved oxygen, turbidity, or by chemical detection: ion selection) and accessories (cleaning devices ...) - The device includes an electronic system with a processor and a memory with stored instructions to facilitate its autonomous operation of the assembly. The device is configured to interconnect with other remote systems through a data network.
El documento de patente ES 2199087 describe un sistema de vigilancia y control del agua que comprende un centro de control conectado a través de una red de comunicaciones con una pluralidad de estaciones remotas fijas y/o móviles que realizan medidas de calidad según diferentes parámetros (temperatura, salinidad, pH, presión atmosférica, potencial Redox, contaminación orgánica, turbidez, oxígeno disuelto en el agua y conductividad). Los sensores de medida están duplicados, comprendiendo además medios de lavado y regeneración, alternándose cíclicamente los grupos de sensores para Ia obtención de datos. Las estaciones móviles incorporan un módulo localizador de posición.Patent document ES 2199087 describes a water monitoring and control system comprising a control center connected through a communications network with a plurality of fixed and / or mobile remote stations that perform quality measurements according to different parameters (temperature , salinity, pH, atmospheric pressure, redox potential, organic pollution, turbidity, dissolved oxygen in water and conductivity). The measurement sensors are duplicated, also comprising washing and regeneration means, the sensor groups alternating cyclically for Obtaining data. The mobile stations incorporate a position locator module.
El documento de patente US 5,905,570 describe un sistema mejoradoUS 5,905,570 describes an improved system
(REOS-3) de supervisión de Ia calidad del agua de consumo. Está diseñado para monitorizar de forma continua Ia proliferación dañina de algas para evitar que aparezcan problemas en el olor, gusto o apariencia. Proporciona valores sobre Ia concentración de Ia clorofila, turbidez equivalente, coeficientes de atenuación espectral de Ia luz y medidas de Ia reflectancia. El sistema, autónomo, incluye funciones de almacenamiento en bases de datos y comunicaciones de datos remotas.(REOS-3) for monitoring the quality of drinking water. It is designed to continuously monitor the harmful proliferation of algae to prevent problems in the smell, taste or appearance. It provides values on the chlorophyll concentration, equivalent turbidity, spectral attenuation coefficients of the light and reflectance measurements. The system, autonomous, includes storage functions in databases and remote data communications.
Ninguno de los aparatos conocidos aborda satisfactoriamente Ia problemática planteada por Ia medición de las propiedades ópticas de las muestras de agua. La presente invención está orientada a Ia solución de ese inconveniente.None of the known devices satisfactorily addresses the problem posed by the measurement of the optical properties of the water samples. The present invention is oriented to the solution of that inconvenience.
SUMARIO DE LA INVENCIÓNSUMMARY OF THE INVENTION
Un objeto de Ia presente invención es proporcionar un aparato para Ia medición de propiedades ópticas relevantes de muestras de agua en una determinada zona acuática para analizar Ia calidad del agua y, en particular, para Ia medición de Ia absorbancia, Ia fluorescencia y Ia turbidez, con objeto de discriminar entre diferentes clases de fitoplancton.An object of the present invention is to provide an apparatus for the measurement of relevant optical properties of water samples in a given aquatic area to analyze the quality of the water and, in particular, for the measurement of absorbance, fluorescence and turbidity, in order to discriminate between different kinds of phytoplankton.
Ese y otros objetos se consiguen mediante un aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática que comprende una sonda sumergible y un equipo de monitorización situado en Ia superficie, conectados por cable o radio, en el que:That and other objects are achieved by means of an apparatus for measuring optical properties of water samples in a certain aquatic area that comprises a submersible probe and monitoring equipment located on the surface, connected by cable or radio, in which:
- Dicha sonda comprende unos sensores de medición de dichas propiedades ópticas y unos grupos de elementos emisores de luz afectados a cada uno de dichos sensores, dispuestos de manera que entre emisores y sensores se establezca un camino óptico a través de las muestras de agua, y un controlador con medios para llevar a cabo una activación secuencial de cada uno de los elementos emisores de luz del grupo afectado a cada uno de dichos sensores.- Said probe comprises measuring sensors of said optical properties and groups of light emitting elements affected to each of said sensors, arranged so that between optical emitters and sensors an optical path is established through the water samples, and a controller with means to carry out a sequential activation of each one of the light emitting elements of the affected group to each of said sensors.
- Dicha sonda también comprende un sensor de presión.- Said probe also comprises a pressure sensor.
- Dicho equipo de monitorización comprende medios para recibir de dicha sonda datos de las mediciones efectuadas por los sensores en dicha zona acuática así como medios de visualización y almacenamiento de dichos datos. En una realización preferente de Ia presente invención, una de las propiedades ópticas medidas es Ia absorbancia de Ia muestra de agua de Ia luz emitida por los varios emisores de luz a diferentes longitudes de onda. Se consigue con ello obtener unos datos particularmente relevantes para el análisis de Ia calidad del agua.- Said monitoring equipment comprises means for receiving from said probe data of the measurements made by the sensors in said aquatic area as well as means for displaying and storing said data. In a preferred embodiment of the present invention, one of the optical properties measured is the absorbance of the water sample of the light emitted by the various light emitters at different wavelengths. With this, it is possible to obtain particularly relevant data for the analysis of water quality.
En otra realización preferente de Ia presente invención, una de las propiedades ópticas medidas es fluorescencia de Ia muestra de agua a una longitud de onda predeterminada para Ia luz emitida por varios emisores de luz a diferentes longitudes de onda Se consigue con ello obtener unos datos particularmente relevantes para el análisis de Ia calidad del agua.In another preferred embodiment of the present invention, one of the optical properties measured is fluorescence of the water sample at a predetermined wavelength for the light emitted by several light emitters at different wavelengths. relevant for the analysis of water quality.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que Ie acompañan.Other features and advantages of the present invention will be apparent from the detailed description that follows of an illustrative embodiment of its object in relation to the accompanying figures.
DESCRIPCIÓN DE LAS FIGURASDESCRIPTION OF THE FIGURES
La Figura 1 es una vista esquemática del aparato objeto de Ia presente invención. La Figuras 2 es una vista esquemática en perspectiva de un realización preferente de Ia sonda del aparato objeto de Ia presente invención.Figure 1 is a schematic view of the apparatus object of the present invention. Figure 2 is a schematic perspective view of a preferred embodiment of the probe of the apparatus object of the present invention.
La Figura 3 es una vista esquemática de Ia disposición de los elementos emisores de luz y los sensores en Ia sonda del aparato objeto de Ia presente invención. La Figura 4 ilustra Ia manera en Ia que se mide Ia fluorescencia en Ia sonda del aparato objeto de Ia presente invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓNFigure 3 is a schematic view of the arrangement of the light emitting elements and the sensors in the probe of the apparatus object of the present invention. Figure 4 illustrates the manner in which the fluorescence is measured in the probe of the apparatus object of the present invention. DETAILED DESCRIPTION OF THE INVENTION
En Ia realización preferente ilustrada en las Figuras el aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática según Ia presente invención consta de una sonda 11 y un equipo de monitorización 13 conectados por radio, aunque Ia invención también comprende Ia conexión por cable.In the preferred embodiment illustrated in the Figures, the apparatus for measuring optical properties of water samples in a certain aquatic area according to the present invention consists of a probe 11 and monitoring equipment 13 connected by radio, although the invention also comprises the wired connection.
La sonda 11 comprende un conjunto de componentes albergados en un contenedor 41 que está estructurado en tres cuerpos: un cuerpo superior 43 que alberga el sistema electrónico, un cuerpo central 45 y un cuerpo inferior 47.The probe 11 comprises a set of components housed in a container 41 that is structured in three bodies: an upper body 43 housing the electronic system, a central body 45 and a lower body 47.
El cuerpo central 45 incluye un bloque 51 donde se sitúan los elementos emisores de luz 31 , 33, 35 y dos bloques 53, 55 donde se sitúan los sensores de medición de Ia absorbancia 21 , Ia fluorescencia 23 y Ia turbidez 25. El bloque 53 contiene los sensores 23, 25 situados a 90° en relación a los elementos emisores y el bloque 55 los sensores 21 , 25 situados a 0o en relación a los elementos emisores. También incluye un armazón formado por dos discos de soporte 61 , 65 de los bloques 51 , 55 y un disco intermedio 63, que soporte el bloque 53 y unas barras periféricas 67 que delimitan y protegen el espacio ocupado por Ia muestra de agua en Ia que se efectúan las mediciones. El cuerpo inferior 47 permite Ia libre circulación (entrada-salida) del agua a analizar.The central body 45 includes a block 51 where the light emitting elements 31, 33, 35 and two blocks 53, 55 where the absorbance measuring sensors 21, the fluorescence 23 and the turbidity 25 are located. The block 53 it contains the sensors 23, 25 located at 90 ° in relation to the emitting elements and the block 55 the sensors 21, 25 located at 0 or in relation to the emitting elements. It also includes a frame formed by two support discs 61, 65 of the blocks 51, 55 and an intermediate disk 63, which supports the block 53 and peripheral bars 67 that delimit and protect the space occupied by the water sample in which Measurements are made. The lower body 47 allows the free circulation (inlet-outlet) of the water to be analyzed.
En Ia Figura 3 se muestran esquemáticamente los distintos elementos emisores 31 , 33, 35 situados en Ia cara frontal del bloque 51 , los sensores 21 , 25 de medición de Ia absorbancia y Ia turbidez en Ia cara frontal del bloque 55 quedando pues situados a 0o en relación con los elementos emisores 31 , 35 afectados a ellos y los sensores 23, 25 de medición de Ia fluorescencia y Ia turbidez en el bloque 53, quedando pues situados a 90° en relación con los elementos emisores 33, 35 afectados a ellos. La distancia D entre las caras enfrentadas de los bloques 51 y 55 es pues, Ia longitud del camino óptico entre los elementos emisores y receptores para Ia medición de Ia absorbancia que debe ser pues conocida y tenida en cuenta para los análisis de resultados posteriores. Se considera que en una realización preferente de Ia invención D está comprendida entre 5 y 20 cm. El bloque 53 se sitúa aproximadamente a Ia mitad de Ia distancia D entre los bloques 51 y 55. La sonda 11 comprende los siguientes componentes:Figure 3 shows schematically the different emitting elements 31, 33, 35 located on the front face of the block 51, the sensors 21, 25 measuring the absorbance and turbidity on the front face of the block 55 being therefore located at 0 or in relation to the emitting elements 31, 35 affected to them and the sensors 23, 25 for measuring the fluorescence and turbidity in the block 53, being therefore located at 90 ° in relation to the emitting elements 33, 35 affected to them . The distance D between the facing faces of the blocks 51 and 55 is, therefore, the length of the optical path between the emitting and receiving elements for the measurement of the absorbance that must therefore be known and held in account for the analysis of subsequent results. It is considered that in a preferred embodiment of the invention D is between 5 and 20 cm. The block 53 is located approximately halfway from the distance D between the blocks 51 and 55. The probe 11 comprises the following components:
- Un grupo de siete diodos LED's 31 como elementos emisores de luz en distintas bandas espectrales afectados a un sensor de absorbancia 21. En Ia realización que estamos describiendo se utilizan los siguientes diodos LED's: HUVL370-510 a 375 nm, FNL-U501 B06WCSL a 428 nm, E1 L31-AG0A-02 a 530 nm, HLMP-C515 a 568 nm, MV8716 a 620 nm, MARL-110069 a 660 nm y L-53HD a 700 nm, como elementos emisores de luz y el fotodiodo SFH203P como sensor de absorbancia 21.- A group of seven LEDs 31 as light emitting elements in different spectral bands affected to an absorbance sensor 21. In the embodiment we are describing, the following LEDs are used: HUVL370-510 at 375 nm, FNL-U501 B06WCSL a 428 nm, E1 L31-AG0A-02 at 530 nm, HLMP-C515 at 568 nm, MV8716 at 620 nm, MARL-110069 at 660 nm and L-53HD at 700 nm, as light emitting elements and the SFH203P photodiode as sensor of absorbance 21.
- Un grupo de cinco diodos LED's 33 como elementos emisores de luz en distintas bandas espectrales afectados a un sensor de fluorescencia 23. En Ia realización que estamos describiendo se utilizan los siguientes diodos LED's: HUVL370-510 a 375 nm, FNL-U501 B06WCSL a 428 nm, E1 L31-AG0A-02 a 530 nm, HLMP-C515 a 568 nm y MV8716 a 620 nm, como elementos emisores de luz y el fotodiodo EPD-660-5/0.5 a 90° como sensor de fluorescencia 23 captando Ia radiación a 660 nm emitida por partículas en suspensión en Ia muestra de agua.- A group of five LEDs 33 as light emitting elements in different spectral bands affected to a fluorescence sensor 23. In the embodiment we are describing, the following LEDs are used: HUVL370-510 at 375 nm, FNL-U501 B06WCSL a 428 nm, E1 L31-AG0A-02 at 530 nm, HLMP-C515 at 568 nm and MV8716 at 620 nm, as light emitting elements and the EPD-660-5 / 0.5 at 90 ° photodiode as fluorescence sensor 23 capturing Ia 660 nm radiation emitted by particles in suspension in the water sample.
- Un diodo LED 35 como elemento emisor de luz infrarroja afectado a dos sensores de turbidez 25 a 0o y 90° de los que el primero capta Ia radiación que atraviesa Ia muestra de agua y el segundo Ia radiación dispersada por las partículas en suspensión. En Ia realización que estamos describiendo se utiliza el diodo LED OPE5685 a 850 nm como elemento emisor de luz y los fotodiodos SFH203PFA (0o) y SFH203 PFA (90°) como sensores de turbidez 25.- A LED 35 as an infrared light emitting element affected to two turbidity sensors 25 to 0 or 90 ° of which the first captures the radiation that passes through the water sample and the second the radiation dispersed by the suspended particles. In the embodiment that we are describing, the LED diode OPE5685 at 850 nm is used as the light emitting element and the photodiodes SFH203PFA (0 o ) and SFH203 PFA (90 °) as turbidity sensors 25.
- Un sensor de temperatura. En Ia realización que estamos describiendo se utiliza el circuito integrado LM35 que proporciona una resolución de 10mV/°C y un rango de medida de 2 a 15O0C. Como encapsulado se ha elegido el tipo TO-45 que proporciona mayor rigidez y mejor conductividad térmica. El aislamiento con el medio se consigue mediante el sellado con una capa de silicona. - Un sensor de presión. En Ia realización que estamos describiendo se utiliza el sensor 19C030PA7K de Sensym ICT que proporciona un intervalo de medida entre 0 y 30 psi. El dato de presión se utiliza para identificar Ia profundidad a Ia que se encuentra Ia sonda 11. - Un sistema electrónico para Ia captura de las señales procedentes de los fotodiodos 21 , 23, 25 y los sensores de presión y temperatura y las transmisión de Ia información al equipo de monitorización 13. En Ia realización que estamos describiendo el sistema incluye conversores corriente-tensión para los fotodiodos 21 , 23, 25, circuitos de excitación de los diodos LED's 31 , 33, 35, circuitos de adaptación para los sensores de presión y temperatura y un microcontrolador PIC16F876 de microchip con un circuito para establecer Ia tensión de referencia de los convertidores internos a 2V (ajustable) y un convertidor serie-RS485 para Ia comunicación con Ia unidad de transmisión y un oscilador a cristal de 4MHz como señal de reloj. Las señales procedentes de los sensores de presión, temperatura y de los fotodiodos 21 , 23, 25 son capturadas por el microcontrolador, el cual controla el sistema de sensores, el encendido de los diferentes LED's y Ia transmisión de Ia información a Ia unidad de monitorización 13. Como circuito de comunicación por radio se utiliza el circuito integrado RF600T que proporciona Ia intercomunicación entre Ia salida serie del microcontrolador y el radioenlace. En el caso de comunicación por cable se utiliza Ia transmisión serie via RS485.- A temperature sensor. In the embodiment we are describing, the integrated circuit LM35 is used, which provides a resolution of 10mV / ° C and a measuring range of 2 to 15O 0 C. As an encapsulation, the type TO-45 has been chosen that provides greater rigidity and better conductivity thermal The insulation with the medium is achieved by sealing with a silicone layer. - A pressure sensor. In the embodiment we are describing, the Sensym ICT sensor 19C030PA7K is used, which provides a measurement range between 0 and 30 psi. The pressure data is used to identify the depth at which the probe 11 is located. - An electronic system for the capture of the signals from the photodiodes 21, 23, 25 and the pressure and temperature sensors and the transmission of the information to the monitoring equipment 13. In the embodiment that we are describing the system includes current-voltage converters for photodiodes 21, 23, 25, excitation circuits of LED diodes 31, 33, 35, adaptation circuits for pressure sensors and temperature and a microchip PIC16F876 microcontroller with a circuit to establish the reference voltage of the internal 2V converters (adjustable) and a RS485 series converter for communication with the transmission unit and a 4MHz crystal oscillator as a signal of watch. The signals from the pressure, temperature and photodiode sensors 21, 23, 25 are captured by the microcontroller, which controls the sensor system, the lighting of the different LEDs and the transmission of the information to the monitoring unit 13. The RF600T integrated circuit is used as the radio communication circuit that provides the intercommunication between the serial output of the microcontroller and the radio link. In the case of cable communication, the serial transmission via RS485 is used.
Utilizando el microcontrolador mencionado, las mediciones de las variables mencionadas se llevan a cabo como sigue:Using the aforementioned microcontroller, the measurements of the mentioned variables are carried out as follows:
En primer lugar se realiza el encendido secuencial de los LED's 31 para Ia medida de Ia absorbancia, esperando a Ia estabilización de Ia medida. Los valores obtenidos son almacenados en variables del sistema.In the first place, the sequential lighting of the LEDs 31 is carried out for the absorbance measurement, waiting for the stabilization of the measurement. The values obtained are stored in system variables.
El segundo paso consiste en Ia medida de fluorescencia. La secuencia de medida se muestra en La Figura 4. Para cada uno de los LED's 33 se realiza una medida inicial en t1 , se activa el LED y se realiza una medida de Ia fluorescencia cuando se estabiliza (t2). Una vez realizada esta medida, se espera a Ia recuperación en t3 antes de proceder al encendido del LED siguiente. Con esto se consigue eliminar las posibles interferencias de luz ambiente, ya que se compensa con Ia medida inicial.The second step consists in the measurement of fluorescence. The measurement sequence is shown in Figure 4. For each of the LEDs 33 an initial measurement is made in t1, the LED is activated and a measurement of the fluorescence is made when it is stabilized (t2). Once this measurement has been made, recovery is expected in t3 before the LED is switched on next. With this it is possible to eliminate the possible interference of ambient light, since it is compensated with the initial measurement.
Por último se realiza Ia medida de Ia turbidez, activando el LED 35 emisor de infrarrojos y almacenando Ia medida estable de los receptores correspondientes 25 situados a 0o y 90° del emisor.Finally the measurement of the turbidity is performed by activating the LED infrared emitter 35 and storing Ia stable measurement of the corresponding receivers 25 located at 0 or 90 ° and the issuer.
Finalmente, el equipo de monitorización 13 está compuesto por un ordenador portátil que recibe Ia información de Ia sonda sumergida mediante un circuito RF600T que convierte Ia señal radioeléctrica a RS232 que dispone de un software para procesar los datos recibidos de Ia sonda 11. 0 bien mediante un conversor RS485 a RS232/USB en el caso de comunicación por cable. Uno de los procesos relevantes al respecto es un análisis estadístico que permite determinar el contenido fitoplanctónico de Ia muestra de agua analizada.Finally, the monitoring equipment 13 is composed of a portable computer that receives the information of the submerged probe by means of an RF600T circuit that converts the radio signal to RS232 that has software to process the data received from the probe 11. 0 or by an RS485 to RS232 / USB converter in the case of cable communication. One of the relevant processes in this regard is a statistical analysis that allows the phytoplankton content of the analyzed water sample to be determined.
En Ia realización preferente que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones. In the preferred embodiment just described, those modifications within the scope defined by the following claims can be introduced.

Claims

REIVINDICACIONES
1.- Aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática que comprende una sonda sumergible (11) y un equipo de monitorización (3) situado en Ia superficie, conectados por cable o radio, caracterizado porque:1.- Apparatus for measuring optical properties of water samples in a specific aquatic area comprising a submersible probe (11) and monitoring equipment (3) located on the surface, connected by cable or radio, characterized in that:
- a) dicha sonda (11) comprende unos sensores (21 , 23, 25) de medición de dichas propiedades ópticas y unos grupos de elementos emisores de luz (31 , 33, 35) afectados a cada uno de dichos sensores (21 , 23, 25), dispuestos de manera que entre emisores y sensores se establezca un camino óptico a través de las muestras de agua, y un controlador con medios para llevar a cabo una activación secuencial de cada uno de los elementos emisores de luz (31 , 33, 35) del grupo afectado a cada uno de dichos sensores (21 , 23, 25);- a) said probe (11) comprises sensors (21, 23, 25) for measuring said optical properties and groups of light emitting elements (31, 33, 35) affected to each of said sensors (21, 23 , 25), arranged so that an optical path through the water samples is established between emitters and sensors, and a controller with means to carry out a sequential activation of each of the light emitting elements (31, 33 , 35) of the group affected to each of said sensors (21, 23, 25);
- b) dicha sonda (11) también comprende un sensor de presión y un sensor de temperatura;- b) said probe (11) also comprises a pressure sensor and a temperature sensor;
- c) dicho equipo de monitorización (13) comprende medios para recibir de dicha sonda (11) datos de las mediciones efectuadas por los sensores (21 , 23, 25) en dicha zona acuática así como medios de visualización y almacenamiento de dichos datos.- c) said monitoring equipment (13) comprises means for receiving from said probe (11) data of the measurements made by the sensors (21, 23, 25) in said aquatic area as well as means for displaying and storing said data.
2.- Aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática según Ia reivindicación 1 , caracterizado porque uno de dichos sensores es un sensor (21) para Ia medición de Ia absorbancia de Ia muestra de agua de Ia luz emitida por el grupo de elementos emisores (31) a diferentes longitudes de onda.2. Apparatus for measuring optical properties of water samples in a specific aquatic area according to claim 1, characterized in that one of said sensors is a sensor (21) for measuring the absorbance of the water sample of the light emitted by the group of emitting elements (31) at different wavelengths.
3.- Aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática según Ia reivindicación 2, caracterizado porque el numero de elementos emisores (31) afectado al sensor (21) de medición de Ia absorbancia es de siete. 3. Apparatus for measuring optical properties of water samples in a specific aquatic area according to claim 2, characterized in that the number of emitting elements (31) affected to the sensor (21) measuring absorbance is seven.
4.- Aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática según cualquiera de las reivindicaciones 1-3, caracterizado porque uno de dichos sensores es un sensor (23) para Ia medición de Ia fluorescencia de Ia muestra de agua a una longitud de onda predeterminada en relación con Ia luz emitida por el grupo de elementos emisores (33) a diferentes longitudes de onda.4. Apparatus for measuring optical properties of water samples in a specific aquatic area according to any of claims 1-3, characterized in that one of said sensors is a sensor (23) for measuring the fluorescence of the sample of water water at a predetermined wavelength in relation to the light emitted by the group of emitting elements (33) at different wavelengths.
5.- Aparato para Ia medición de propiedades ópticas de muestras de agua en una determinada zona acuática según Ia reivindicación 4, caracterizado porque el numero de elementos emisores (33) afectado al sensor (23) de medición de Ia fluorescencia es de cinco y porque dicho sensor (23) mide Ia fluorescencia a una longitud de onda de 660 nm.5. Apparatus for measuring optical properties of water samples in a specific aquatic area according to claim 4, characterized in that the number of emitting elements (33) affected to the sensor (23) measuring the fluorescence is five and why said sensor (23) measures the fluorescence at a wavelength of 660 nm.
6.- Aparato para Ia medición de características ópticas de muestras de agua en una determinada zona acuática según una cualquiera de las reivindicaciones 1-5, caracterizado porque dos de dichos sensores son sensores6. Apparatus for measuring optical characteristics of water samples in a specific aquatic area according to any one of claims 1-5, characterized in that two of said sensors are sensors
(25) para Ia medición de Ia turbidez de Ia muestra de agua en relación con Ia luz emitida por el emisor (35) de luz infrarroja. (25) for measuring the turbidity of the water sample in relation to the light emitted by the infrared light emitter (35).
PCT/ES2009/000552 2008-12-01 2009-11-30 Apparatus for measuring the optical properties of water samples WO2010063856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803488A ES2342757B1 (en) 2008-12-01 2008-12-01 APPARATUS FOR MEASURING OPTICAL PROPERTIES OF WATER SAMPLES.
ESP200803488 2008-12-01

Publications (1)

Publication Number Publication Date
WO2010063856A1 true WO2010063856A1 (en) 2010-06-10

Family

ID=42232914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000552 WO2010063856A1 (en) 2008-12-01 2009-11-30 Apparatus for measuring the optical properties of water samples

Country Status (2)

Country Link
ES (1) ES2342757B1 (en)
WO (1) WO2010063856A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119888A1 (en) * 2011-03-04 2012-09-13 Centre National De La Recherche Scientifique (C.N.R.S) Submersible fluorometer
CN103399131A (en) * 2013-08-09 2013-11-20 中山欧麦克仪器设备有限公司 Turbidity detecting instrument
WO2014145027A3 (en) * 2013-03-15 2014-12-31 Hadal, Inc. Systems and methods for improving buoyancy underwater vehicles
JP2016537618A (en) * 2013-10-04 2016-12-01 マッセー ユニヴァーシティ In-situ optical sensor
CN109443322A (en) * 2018-10-16 2019-03-08 中国海洋大学 The automatic extension bar method in seabed and automatic recycling separation feeler lever method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR201711450A2 (en) * 2017-08-03 2017-09-21 Bahcesehir Ueniversitesi
WO2021022372A1 (en) * 2019-08-06 2021-02-11 Real Tech Holdings Inc. Apparatus for measuring multi-wavelength transmittance using learned led temperature compensation model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994590A (en) * 1975-04-29 1976-11-30 Martini Raymond G Di Discrete frequency colorimeter
EP0459846A2 (en) * 1990-04-27 1991-12-04 Ponselle Mesure Sarl Probe for monitoring the turbidity of water
US5283767A (en) * 1992-02-27 1994-02-01 Mccoy Kim Autonomous oceanographic profiler
US20050168741A1 (en) * 2004-01-30 2005-08-04 Banks Rodney H. Interchangeable tip-open cell fluorometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3994590A (en) * 1975-04-29 1976-11-30 Martini Raymond G Di Discrete frequency colorimeter
EP0459846A2 (en) * 1990-04-27 1991-12-04 Ponselle Mesure Sarl Probe for monitoring the turbidity of water
US5283767A (en) * 1992-02-27 1994-02-01 Mccoy Kim Autonomous oceanographic profiler
US20050168741A1 (en) * 2004-01-30 2005-08-04 Banks Rodney H. Interchangeable tip-open cell fluorometer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119888A1 (en) * 2011-03-04 2012-09-13 Centre National De La Recherche Scientifique (C.N.R.S) Submersible fluorometer
CN103597337A (en) * 2011-03-04 2014-02-19 国家科学研究中心 Submersible fluorometer
US9274055B2 (en) 2011-03-04 2016-03-01 Centre National De La Recherche Scientifique (C.N.R.S.) Submersible fluorometer
WO2014145027A3 (en) * 2013-03-15 2014-12-31 Hadal, Inc. Systems and methods for improving buoyancy underwater vehicles
US9776693B2 (en) 2013-03-15 2017-10-03 Hadal, Inc. Systems and methods for improving buoyancy in underwater vehicles
AU2014233413B2 (en) * 2013-03-15 2017-10-19 Hadal, Inc. Systems and methods for improving buoyancy underwater vehicles
EP3326902A3 (en) * 2013-03-15 2018-09-19 Hadal, Inc. Systems and methods for improving buoyancy underwater vehicles
CN103399131A (en) * 2013-08-09 2013-11-20 中山欧麦克仪器设备有限公司 Turbidity detecting instrument
JP2016537618A (en) * 2013-10-04 2016-12-01 マッセー ユニヴァーシティ In-situ optical sensor
CN109443322A (en) * 2018-10-16 2019-03-08 中国海洋大学 The automatic extension bar method in seabed and automatic recycling separation feeler lever method

Also Published As

Publication number Publication date
ES2342757A1 (en) 2010-07-13
ES2342757B1 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
ES2342757B1 (en) APPARATUS FOR MEASURING OPTICAL PROPERTIES OF WATER SAMPLES.
AU2018274916B2 (en) Aquatic environment water parameter testing systems and methods
ES2225374T5 (en) SMOKE DETECTOR OF DISPERSED LIGHT.
EP1672356A1 (en) Sensor having integrated light detector and/or light source
US20050057753A1 (en) Instrument and method for testing fluid characteristics
EP2718695B1 (en) Optical sensor
US20160116418A1 (en) Aquatic Environment Water Parameter Testing Systems and Methods
US20160103075A1 (en) Wireless remote optical monitoring system
GB2561838A (en) Apparatus and method for low power measurement of a liquid-quality parameter
MX2012009899A (en) Handheld fluorometer and method of use.
ES2945032T3 (en) Incubator device with reader
KR20180041688A (en) Multi-excitation-multi-emission fluorescence spectrometer for multi-parameter water quality monitoring
US20070194247A1 (en) Compact optical module for fluorescence excitation and detection
JP2021525380A (en) Optical detection cells and systems for detecting inorganic analytes
EP2327955A4 (en) Optical detection system for labelling-free high-sensitivity bioassays
US20150233848A1 (en) Electronic indicator device for cleaning monitoring
US20210156791A1 (en) Residual toxicant detection device
ES2390842T3 (en) Measurement arrangement for the determination of at least one parameter of a blood sample
RU2018137426A (en) Whole Blood SO2 Sensor
JP2017058163A (en) Lighting device and bio information measurement device equipped with the same
ES2883862T3 (en) Measurement system to monitor tablet quality
US20210364438A1 (en) Spatial gradient-based fluorometer
US20160089063A1 (en) Component measurement apparatus and component measurement method
ES2234441A1 (en) Apparatus for measuring the optical absorbency of samples of liquids, method and reaction container for its implementation
NZ757524A (en) A monitoring device, a system and a method for monitoring a status of fruits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830033

Country of ref document: EP

Kind code of ref document: A1