WO2010061626A1 - 無線通信基地局装置及び送信電力制御方法 - Google Patents

無線通信基地局装置及び送信電力制御方法 Download PDF

Info

Publication number
WO2010061626A1
WO2010061626A1 PCT/JP2009/006430 JP2009006430W WO2010061626A1 WO 2010061626 A1 WO2010061626 A1 WO 2010061626A1 JP 2009006430 W JP2009006430 W JP 2009006430W WO 2010061626 A1 WO2010061626 A1 WO 2010061626A1
Authority
WO
WIPO (PCT)
Prior art keywords
hue
propagation loss
maximum
hnb
base station
Prior art date
Application number
PCT/JP2009/006430
Other languages
English (en)
French (fr)
Inventor
蛯子恵介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/128,849 priority Critical patent/US8417280B2/en
Priority to JP2010540386A priority patent/JP5455927B2/ja
Priority to CN200980146029.8A priority patent/CN102217389B/zh
Priority to EP09828876.4A priority patent/EP2352343B1/en
Publication of WO2010061626A1 publication Critical patent/WO2010061626A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • H04W16/16Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • the present invention relates to a radio communication base station apparatus and a transmission power control method for controlling transmission power of an uplink radio channel.
  • a radio communication base station device (femto base station, Home Node-B, etc.) that covers a small cell (femtocell) with a cell radius of about several tens of meters. , HNB) is under consideration.
  • a radio system configuration including HNB is shown in FIG.
  • a mobile terminal existing in a building where the HNB is installed performs data transmission with the HNB through a wireless line.
  • the HNB uses a fixed network such as an optical fiber drawn into a home as a backbone, and connects to the core network via a line concentrator (GW).
  • GW line concentrator
  • femtocells and macrocells share the same frequency band in urban areas and are expected to be operated in the hierarchical cell arrangement shown in FIG. Access to the HNB is expected to be limited to registered users (CSG: Closed : Subscriber Group) only. In such an operation, the interference of the uplink radio channel between the macro cell and the femto cell becomes a problem. On the other hand, there is a possibility that a trade-off in which an increase in cell throughput leads to an increase in radio interference and a decrease in throughput on the other side may occur.
  • One of the uplink radio channel interference between the macro cell and the femto cell is uplink radio channel interference given to the HNB by a terminal (hereinafter referred to as MUE) connected to the macro cell.
  • MUE uplink radio channel interference given to the HNB by a terminal (hereinafter referred to as MUE) connected to the macro cell.
  • MNB macro cell base station
  • the MUE increases, the radio transmission power of the MUE increases.
  • the femto cell is located at the macro cell edge, it is necessary to take measures against interference from the MUE that does not have the right to access the HNB.
  • Non-Patent Document 1 describes raising the control target value of the total received power in the HNB and adjusting the receiver gain in the HNB according to the interference level in the HNB.
  • HUE uplink radio channel interference
  • a terminal hereinafter referred to as HUE
  • the amount of interference from the HUE in the MNB increases.
  • a measure for suppressing interference from the HUE to the MNB is required.
  • Non-Patent Document 1 and Patent Document 1 describe the limitation on the maximum transmission power of HUE.
  • FIG. 2 is a sequence diagram illustrating a procedure of HUE maximum transmission power limitation described in Non-Patent Document 1.
  • FIG. 2 only a part related to uplink interference control is extracted and described.
  • 3GPP (3rd Generation Partnership Project) Release.6 (HSUPA) is assumed as an uplink access method.
  • the HNB has a function (measurement unit 24) for measuring the reception level of a macro cell signal (for example, downlink common pilot channel (CPICH)).
  • a macro cell signal for example, downlink common pilot channel (CPICH)
  • the measurement unit 24 measures the reception level of the macro cell signal (ST11). More specifically, as described in Non-Patent Document 2, the RSCP of the macro cell CPICH is measured, and P-CPICH transmission power information is acquired.
  • the measurement unit 24 notifies the control unit 23 of the measurement result (ST12).
  • the control unit 23 determines the maximum transmission power of the HUE using the notified measurement result (ST13).
  • the control unit 23 decreases the set value of the HUE maximum transmission power as the reception level of the macro cell signal increases.
  • an RRC (Radio Resource Control) connection is established (ST14).
  • the HNB control unit 23 notifies the HUE 21 of the setting of the HUE maximum transmission power.
  • the HUE 21 transmits an uplink radio signal within the range of the notified maximum transmission power.
  • the HUE 21 measures the reception level of the macro cell signal (ST15) and reports the measurement value to the HNB (ST16).
  • the control unit 23 of the HNB updates the setting value of the maximum transmission power of the HUE 21 based on the report value from the HUE 21, and notifies the HUE 21 (ST16).
  • the HUE 21 transmits an uplink radio signal within the range of the maximum transmission power notified of the update.
  • FIGS. 3 (a) and 3 (b) Changes in HNB reception power and HUE transmission power when the above interference control is used are shown in FIGS. 3 (a) and 3 (b), respectively.
  • the horizontal axis of the graph represents the spatial propagation loss between the HNB and the HUE
  • the vertical axis of the graph in FIG. 3 (a) represents the received power
  • the vertical axis of the graph in FIG. 3 (b) represents the transmission power. .
  • the HNB reception power control target value (RoT target) is constant regardless of the spatial propagation loss between the HNB and the HUE (hereinafter referred to as propagation loss) and the reception level of the macrocell signal in the HNB.
  • the maximum value of the total transmission power in the HUE is adjusted according to the reception level of the macro cell signal in the HNB.
  • the thick solid line indicates the power value. It can be seen from FIG. 3 that when the HUE moves away from the HNB and the propagation loss between the HNB and the HUE increases, the HUE total transmission power reaches the maximum value and the HNB reception power decreases.
  • the ratio of the transmission power of the HSUPA channel (E-DCH) to the transmission power of the physical control channel (DPCCH) constituting the W-CDMA channel (DCH) is defined. Since the required power increases as the E-DCH transmission rate increases, the specification is determined so that the power ratio increases (transmission power increases) as the E-DCH transmission rate increases.
  • the transmission power of the DCH is controlled so that the reception quality at the base station becomes a desired value, if the propagation loss increases, the transmission power of the E-DCH also increases in proportion to the DCH.
  • the HUE transmission power reaches the maximum value, the required power corresponding to the E-DCH transmission rate cannot be secured. Therefore, based on the transmission power margin (UE power headroom) and the like reported from the HUE, the HNB HSUPA scheduler lowers the transmission rate assigned to this HUE.
  • the above-described interference control method that directly controls the maximum transmission power of the HUE has the following problems. That is, as is apparent from FIG. 2, after determining the HUE maximum transmission power in the HNB, the determination result must be notified (signaled) from the HNB to the HUE, so that radio resources are consumed and data transmission efficiency is reduced. In particular, in order to perform interference control with high accuracy, it is necessary to frequently update the HUE maximum transmission power using the reception level measurement result of the macro cell signal in the HUE. The efficiency will be further reduced.
  • An object of the present invention is to provide a radio communication base station apparatus and transmission power for reducing uplink radio channel interference from a femto connection terminal to a macro cell base station while avoiding an increase in signaling and a decrease in transmission rate of the femto connection terminal at the femto cell edge. It is to provide a control method.
  • the radio communication base station apparatus of the present invention includes a measuring means for measuring the reception intensity of a signal transmitted from a macro cell radio communication base station apparatus, a radio communication terminal apparatus connected to the own apparatus, and a propagation loss between the own apparatus And a determination means for comparing the maximum reception strength of the measured reception strengths with a first threshold value, and comparing the maximum propagation loss of the estimated propagation losses with a second threshold value. And, when the maximum reception strength is equal to or greater than the first threshold and the maximum propagation loss is equal to or greater than the second threshold, adjustment means for lowering the maximum value that can be taken by the control target value of the total received power in the own apparatus The structure which comprises these is taken.
  • the transmission power control method of the present invention includes a measurement step of measuring the reception intensity of a signal transmitted from a macrocell radio communication base station apparatus, a radio communication terminal apparatus connected to the own apparatus, and a propagation loss between the own apparatus.
  • An estimation step for estimation a determination step for comparing the maximum reception strength of the measured reception strength with a first threshold value, and a comparison of the maximum propagation loss of the estimated propagation loss with a second threshold value;
  • the present invention it is possible to reduce uplink radio channel interference from the femto connected terminal to the macro cell base station while avoiding an increase in signaling and a decrease in the transmission rate of the femto connected terminal at the femto cell edge.
  • the flowchart which shows the interference control procedure which concerns on Embodiment 3 of this invention The figure which shows the change of the HNB receiving power at the time of using the interference control which concerns on Embodiment 3 of this invention, and HUE transmission power.
  • the present invention is not limited to LTE (Long Term Evolution) being standardized by 3GPP and the wireless access technology standardized by 3GPP, but is not limited to WLAN (Wireless Local Area Network), IEEE 802.16, IEEE 802.16e, or IEEE802. It may be applied to wireless access technologies such as WiMAX (Worldwide Interoperability for Microwave Access), 3GPP2, etc.
  • FIG. 4 is a block diagram showing a configuration of the femto base station apparatus according to Embodiment 1 of the present invention.
  • the reception unit 102 receives a signal (macro cell signal) transmitted from the MNB and a signal (HUE signal) transmitted from the HUE from the antenna 101, outputs the macro cell signal to the measurement unit 103, and outputs the HUE signal. It outputs to the propagation loss estimation part 104 and the scheduler 107.
  • the measurement unit 103 measures the reception level of the macro cell signal (eg, downlink common pilot channel (CPICH)) output from the reception unit 102 and outputs the measurement result to the determination unit 105.
  • the measurement unit 103 outputs the maximum reception level to determination unit 105. Further, since the amount of interference with the macro cell using the adjacent frequency band of the femtocell uplink radio channel is small, only the signal of the macro cell using the same frequency band for the uplink radio channel may be measured by the measurement unit 103.
  • CPICH downlink common pilot channel
  • the propagation loss estimation unit 104 estimates the propagation loss between the HUE and the HNB based on the received power of the HUE signal (for example, uplink pilot signal) output from the reception unit 102, and outputs the estimation result to the determination unit 105. To do. When a plurality of HUEs are connected simultaneously, the propagation loss estimation unit 104 outputs the maximum propagation loss to the determination unit 105.
  • the HUE signal for example, uplink pilot signal
  • the determination unit 105 compares the macro cell signal reception level output from the measurement unit 103 with the first threshold value, and outputs the first comparison result to the adjustment unit 106. Also, the determination unit 105 compares the propagation loss output from the propagation loss estimation unit 104 with the second threshold value, and outputs the second comparison result to the adjustment unit 106.
  • the adjustment unit 106 Based on the first comparison result and the second comparison result output from the determination unit 105, the adjustment unit 106 generates an instruction to adjust the maximum value that the control target value of the HNB total received power can take, and the generated instruction The data is output to the scheduler 107.
  • the scheduler 107 controls the HUE signal output from the receiving unit 102 (specifically, the HUE transmission buffer status, transmission power margin, allocation transmission rate improvement request), and the total HNB received power specified by the adjusting unit 106.
  • An allocation transmission rate to the HUE is determined based on the maximum value that the target value can take.
  • the transmission rate allocation algorithm itself in the scheduler 107 is not changed by the addition of interference control.
  • the scheduler 107 adjusts the direction in which the transmission rate assigned to the HUE is lowered. Further, the change of the control target value affects the allocated transmission rate of all the HUEs connected to the HNB.
  • the scheduler 107 outputs a scheduling grant indicating the determined assigned transmission rate to the transmission unit 108.
  • the transmission unit 108 transmits the scheduling grant output from the scheduler 107 to the HUE.
  • FIG. 5 is a sequence diagram showing an interference control procedure according to Embodiment 1 of the present invention.
  • HNB measurement section 103 measures the reception level of the macrocell signal (ST201), and outputs the measurement result to determination section 105 (ST202).
  • Determination section 105 compares the reception level of the macro cell signal with the first threshold value (ST203).
  • the propagation loss estimation unit 104 estimates the propagation loss between the HUE and HNB based on the received power of the HUE signal (ST204), and outputs the estimation result to the determination unit 105 (ST205).
  • the determination unit 105 compares the propagation loss with the second threshold value (ST206), and outputs the first comparison result that is the comparison result in ST203 and the second comparison result that is the comparison result in ST206 to the adjustment unit 106 ( ST207).
  • adjustment section 106 Based on the first comparison result and the second comparison result, adjustment section 106 generates an instruction to adjust the maximum value that can be taken by the control target value (RoT target) of the total HNB received power (ST208), and generates the generated instruction.
  • the data is output to scheduler 107 (ST209).
  • the processing related to interference control is performed only within the HNB, and no additional signaling for interference control is required between the HUE and the HNB.
  • FIG. 6 is a flowchart showing an interference control procedure in determination section 105 according to Embodiment 1 of the present invention.
  • the first determination condition is “compare the macro cell signal reception level with the first threshold (ST301)”.
  • the first determination condition is satisfied when the femtocell is installed at the center of the macrocell.
  • the second determination condition is “comparison of propagation loss between HUE-HNB and second threshold (ST302)”.
  • the second determination condition is satisfied when the distance between HUE and HNB is long. Only when the two determination conditions are satisfied at the same time, in order to reduce the amount of interference that the HUE gives to the MNB, the maximum value that the control target value of the HNB total received power can take is reduced (ST303).
  • the flowchart of FIG. 6 is an example of mounting, and mounting in another order is also possible.
  • the determination process of ST301 may be performed after the determination process of ST302.
  • FIG. 7 shows changes in HNB reception power and HUE transmission power when interference control according to Embodiment 1 of the present invention is used.
  • the horizontal axis of the graph represents the HNB-HUE propagation loss
  • the vertical axis of the graph in FIG. 7A represents the HNB received power
  • the vertical axis of FIG. 7B represents the HUE transmission power. Yes.
  • the reception power control target value (RoTotarget) of the HNB varies according to the propagation loss between the HNB and the HUE and the reception level of the macro cell signal in the HNB.
  • FIG. 7A illustrates the received power control target value when the reception level of the macro cell signal is equal to or higher than the first threshold value.
  • the maximum value of the total transmission power in the HUE is a constant value.
  • the thick solid line indicates the power value.
  • the reception power control target value (RoT target) of HNB is lowered. Accordingly, since the transmission rate assigned to the HUE decreases, the required transmission power of the HUE also decreases. Here, the maximum value of the HUE transmission power itself is not lowered. Therefore, as shown in FIG. 7B, the HUE transmission power increases as the propagation loss between HNB and HUE increases.
  • the femtocell coverage is reduced to a cell radius of [m] because the downlink signal receives very strong interference from the macrocell. Therefore, the propagation loss between the HNB and the HUE within the femtocell coverage is limited to a certain range. In the present embodiment, even if the HUE transmission power increases with an increase in propagation loss between HNB and HUE, the amount of interference that the femto cell gives to the macro cell is limited.
  • the allocated transmission rate and transmission power of the HUEs near the HNB are lower than those of the conventional interference reduction method that limits the maximum transmission power of the HUE. Therefore, by appropriately setting the reduction range of the control target value and the second threshold value, the transmission rate assigned to the HUE located at the edge of the femtocell can be set to the conventional interference reduction method while maintaining the interference reduction amount in the entire femtocell. Can be increased.
  • FIG. 8 shows the relationship between the maximum value that can be taken by the reception power control target value (RoT target) of the femto base station according to Embodiment 1 of the present invention and the macro cell signal reception level.
  • the horizontal axis of the graph represents the reception level of the macro cell signal
  • the vertical axis of the graph represents the maximum value that can be taken by the control target value (RoT ⁇ ⁇ target) of the received power.
  • a thick solid line shows an example of a control function.
  • the control function is not limited to the example of FIG. 8, and a function in which the maximum value that can be taken by the control target value of received power decreases as the macro cell signal reception level increases can be used.
  • the maximum transmission power value of the total reception power in the HNB can be adjusted to adjust the transmission power of the HUE. Can be indirectly suppressed. Thereby, it is possible to prevent an increase in signaling due to the direct limitation of the HUE transmission power and reduce uplink radio channel interference from the HUE to the MNB without incurring radio resource consumption. Further, it is possible to increase the allocated transmission rate of the HUE located at the femtocell edge while maintaining the interference reduction amount in the entire femtocell.
  • Embodiment 2 In the second embodiment of the present invention, a case will be described in which, in addition to the interference control function described in the first embodiment, a function of changing the second threshold according to the reception power level of the macrocell signal in the HNB is provided.
  • the structure of the femto base station apparatus which concerns on Embodiment 2 of this invention is the same as that of the structure shown in FIG. 4 of Embodiment 1, it demonstrates using FIG.
  • FIG. 9 is a flowchart showing an interference control procedure according to the second embodiment of the present invention. 9 that are the same as those in FIG. 6 are denoted by the same reference numerals as those in FIG. In FIG. 9, determination section 105 adjusts the second threshold based on the maximum received power level value of the macrocell signal (ST401).
  • the femtocell As the femtocell is installed at a position far from the center of the macrocell, the amount of interference given to the macrocell by the HUE decreases, and the necessity for lowering the maximum value that can be taken by the control target value of the total HNB received power is reduced. .
  • the reduction range of the maximum value that the control target value can take is adjusted according to the reception power level of the macrocell signal, whereas in the second embodiment, the femtocell that lowers the control target value. Is adjusted according to the reception power level of the macro cell signal.
  • the second threshold is increased as the received power level of the macro cell signal is decreased, the communication area where the control target value is not reduced is expanded, and the second threshold is increased as the received power level of the macro cell signal is increased.
  • the communication area in which the control target value is not reduced is reduced (ST401).
  • 10 and 11 show changes in HNB reception power and HUE transmission power when the interference control according to Embodiment 2 of the present invention is used.
  • the horizontal axis of the graph represents the propagation loss between HNB and HUE
  • the vertical axis of the graph in FIGS. 10A and 11A represents the HNB received power
  • FIGS. 10B and 11B represents the HUE transmission power.
  • FIG. 10 shows the case where the macro cell signal reception power level in HNB is large
  • FIG. 11 shows the case where the macro cell signal reception power level in HNB is small
  • FIG. 10 shows a state in which the reduction range of the control target value is large and the reduction range is wide (the reduction starts at a stage where the propagation loss between the HNB and the HUE is small).
  • FIG. 11 shows a state in which the reduction range of the control target value is small and the reduction region is narrow (initiating reduction when the propagation loss between HNB and HUE is larger).
  • FIG. 12 shows the relationship between the second threshold and the macro cell signal reception level when the interference control according to Embodiment 2 of the present invention is used.
  • the horizontal axis of the graph represents the reception level of the macro cell signal
  • the vertical axis of the graph represents the second threshold used for comparison with the propagation loss.
  • a thick solid line shows an example of a control function.
  • the control function is not limited to the example of FIG. 12, and a function in which the second threshold value decreases as the macro cell signal reception level increases can be used.
  • the communication area itself in the femtocell that lowers the control target value is adjusted according to the reception power level of the macrocell signal, thereby adversely affecting the throughput of the femtocell more than necessary. And more efficient interference control can be realized. Thereby, it is possible to prevent an increase in signaling due to the direct limitation of the HUE transmission power and reduce uplink radio channel interference from the HUE to the MNB without incurring radio resource consumption. Further, it is possible to increase the allocated transmission rate of the HUE located at the femtocell edge while maintaining the interference reduction amount in the entire femtocell.
  • FIG. 13 is a flowchart showing an interference control procedure according to the third embodiment of the present invention. 13 that are the same as those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • determination section 105 uses the third threshold in addition to the second threshold, and compares it with the propagation loss between HNB and HUE (ST501). However, it is assumed that the relationship “third threshold> second threshold” is satisfied.
  • the propagation loss between the HNB and the HUE is equal to or greater than the second threshold and less than the third threshold, the range of reduction of the maximum value that can be taken by the control target value of the total received power is reduced (ST502).
  • the propagation loss between the HNB and the HUE is in the range equal to or greater than the third threshold, the maximum reduction range that the control target value of the total received power can take is increased (ST503).
  • FIG. 14 shows changes in HNB reception power and HUE transmission power when interference control according to Embodiment 3 of the present invention is used.
  • the horizontal axis of the graph represents the propagation loss between HNB and HUE
  • the vertical axis of the graph in FIG. 14A represents the HNB received power
  • the vertical axis of the graph in FIG. 14B represents the transmission power.
  • FIG. 14B in the region where the propagation loss between the HNB and the HUE is relatively small, it is possible to reduce the suppression width of the HUE transmission power and prevent the terminal throughput from decreasing.
  • the femtocell throughput is not adversely affected more than necessary. Further, more efficient interference control can be realized. Thereby, it is possible to prevent an increase in signaling due to the direct limitation of the HUE transmission power and reduce uplink radio channel interference from the HUE to the MNB without incurring radio resource consumption. Further, it is possible to increase the allocated transmission rate of the HUE located at the femtocell edge while maintaining the interference reduction amount in the entire femtocell.
  • two threshold values used for comparison with the propagation loss between HNB and HUE are provided as an example, but the number of threshold values may be increased to three or more. Further, the maximum value that can be taken by the control target value of the total received power may be continuously reduced according to the propagation loss between the HNB and the HUE, instead of the stepped shape as shown in FIG.
  • a reference HUE (reference HUE) is used when adjusting the maximum value that the control target value of the total received power of HNB can take. If the required transmission power is less than the transmission power that can be allocated to the reference HUE based on the control target value of the total reception power in the HNB, a case where the reduction range of the control target value is reduced will be described.
  • the structure of the femto base station apparatus which concerns on Embodiment 4 of this invention is the same as that of the structure shown in FIG. 4 of Embodiment 1, it demonstrates using FIG.
  • FIG. 15 is a flowchart showing an interference control procedure according to the fourth embodiment of the present invention. 15 that are the same as those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • determination section 105 calculates the required transmission power from the propagation loss and the required transmission rate for the HUE having the maximum propagation loss between HNB and HUE (ST601).
  • determination section 105 compares the required transmission power with the transmission power that can be allocated to the HUE based on the control target value of HNB total reception power (calculated from the allocation power that can be allocated and the propagation loss) (ST602). . As a result of the comparison, if the HUE required transmission power is smaller than the assignable transmission power, adjustment section 106 reduces the maximum value reduction range that can be taken by the control target value of the total received power (ST603).
  • the uplink transmission throughput of the femtocell can be improved without exceeding the amount of interference to the macrocell that is allowed for the entire femtocell.
  • the maximum reduction possible for the control target value of the total HNB received power is changed according to the required transmission power of the reference HUE, so that the throughput of the femto cell is more than necessary. Even more efficient interference control can be realized without adversely affecting it. Thereby, it is possible to prevent an increase in signaling due to the direct limitation of the HUE transmission power and reduce uplink radio channel interference from the HUE to the MNB without incurring radio resource consumption.
  • FIG. 16 is a flowchart showing an interference control procedure according to the fifth embodiment of the present invention. 16 that are the same as those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • determination section 105 determines whether or not the propagation loss between HNB and HUE is greater than or equal to the second threshold for all HUEs connected to HNB (ST701). In other words, it is determined whether all the HUEs are located at the femtocell edge.
  • the transmission power is large for all the HUEs, and therefore the total amount of interference from the femto cell to the macro cell may exceed the allowable range.
  • the total amount of interference from the femto cell to the macro cell is surely kept within a certain value (ST702).
  • the maximum value that can be taken by the control target value of the total HNB received power is reduced (ST303).
  • the allocated transmission rate and transmission power of the HUE in the vicinity of the HNB can be decreased to maintain the total amount of interference from the femto cell to the macro cell.
  • the total amount of interference from the femto cell to the macro cell is reliably suppressed within a certain value. Therefore, it is possible to cope with an exceptional case where HUEs are centrally arranged at the femtocell edge.
  • the method for determining whether the propagation loss between HNB and HUE is equal to or greater than the second threshold for all HUEs has been described as an example.
  • Other judgment conditions can be used without departing from the gist of changing the interference reduction method.
  • FIG. 17 is a flowchart showing an interference control procedure according to the sixth embodiment of the present invention. 17 that are the same as those in FIG. 6 are denoted by the same reference numerals as those in FIG.
  • measurement section 103 extracts macro cell uplink interference amount information included in the macro cell broadcast signal (BCH) (ST801).
  • BCH macro cell broadcast signal
  • a maximum reduction range that can be taken by the control target value of the total received power in the HNB is set (ST802). That is, when the macro cell interference amount is small, the reduction width is set small, and when the macro cell interference amount is large, the reduction width is set large.
  • FIG. 18 shows the relationship between the maximum value that can be taken by the reception power control target value of the femto base station according to the present embodiment and the macro cell signal reception level.
  • the adjustment function for the maximum value that the control target value of the total received power of HNB can take is changed according to the macro cell uplink interference amount.
  • the amount of interference reduction in one femtocell is constant, the total amount of interference in the macrocell varies depending on the number of femtocells installed in the macrocell and the installation position. Therefore, in order to optimize the interference reduction between the macro cell and the femto cell, adjustment according to the macro cell uplink interference amount is necessary.
  • the femto cell throughput is adversely affected more than necessary. More efficient interference control can be realized without giving. Thereby, it is possible to prevent an increase in signaling due to the direct limitation of the HUE transmission power and reduce uplink radio channel interference from the HUE to the MNB without incurring radio resource consumption. Further, it is possible to increase the allocated transmission rate of the HUE located at the femtocell edge while maintaining the interference reduction amount in the entire femtocell.
  • the macro cell uplink interference amount information is transmitted to the HNB by the broadcast signal (BCH).
  • BCH broadcast signal
  • the macro cell uplink interference amount information may be transmitted using a wired line between the MNB and the HNB. Is possible.
  • the measurement unit of the femto base station measures the reception level of the macro cell signal.
  • the measurement of the macro cell signal reception level in the femto connection terminal is performed without changing the gist of the present invention. It is also possible to adopt a configuration using the result. That is, the macro cell signal reception level measured by the femto connection terminal can be reported to the femto base station via the uplink, and the interference control described in each of the above embodiments can be executed in the femto base station.
  • the measurement unit of the femto base station measures the reception level of the macro cell signal.
  • uplink radio between adjacent femto cells is performed. It is also possible to adopt a configuration that reduces line interference.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the radio communication base station apparatus and the transmission power control method according to the present invention can be used, for example, in a mobile phone communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 シグナリング増加を回避しつつ、フェムト接続端末からマクロセル基地局への上り無線回線干渉を低減する基地局装置及び送信電力制御方法を提供する。測定部(103)は、マクロセル信号の受信レベルを測定し、伝搬損失推定部(104)は、HUE信号の受信電力等に基づいて、HUEとHNB間の伝搬損失を推定する。判定部(105)は、マクロセル信号受信レベルと第1閾値との第1比較、及び、伝搬損失と第2閾値との第2比較を行い、調整部(106)は、マクロセル信号受信レベルが第1閾値以上であり、かつ、伝搬損失が第2閾値以上である場合、HNB総受信電力の制御目標値がとりうる最大値を引き下げる指示を生成する。スケジューラ(107)は、HUE信号と、HNB総受信電力の制御目標値がとりうる最大値とに基づいて、HUEへの割り当て伝送レートを決定する。

Description

無線通信基地局装置及び送信電力制御方法
 本発明は、上り無線回線の送信電力を制御する無線通信基地局装置及び送信電力制御方法に関する。
 一般家庭やオフィスなどの建物内において、セル半径が数十メートル程度の小セル(フェムトセル)をカバー範囲とする無線通信基地局装置(フェムト基地局、Home Node-B等と称される。以下、HNBと記す)の設置が検討されている。HNBを含む無線システム構成を図1に示す。HNBが設置された建物内に存在する携帯端末は、HNBとの間で無線回線を通じたデータ伝送を行う。HNBは、家庭に引き込まれた光ファイバーなどの固定網をバックボーンとして使用し、集線装置(GW)を経由してコアネットワークと接続する。
 HNB普及時には、都市部においてフェムトセルとマクロセルとで同一周波数帯を共用し、図1に示す階層的セル配置で運用されることが見込まれている。また、HNBへのアクセスは登録ユーザ(CSG:Closed Subscriber Group)のみに限定される見込みである。このような運用では、マクロセル-フェムトセル間の上り無線回線の干渉が課題となる。一方、セルのスループット増加が他方の無線干渉増加及びスループット低下につながるトレード・オフが発生する可能性がある。
 マクロセル-フェムトセル間における上り無線回線干渉の一つは、マクロセルに接続する端末(以下、MUEと記す)がHNBへ与える上り無線回線干渉である。特に、マクロセル基地局(以下、MNBと記す)とMUE間の距離が大きくなるとMUEの無線送信電力が増加する。このため、フェムトセルがマクロセルエッジに位置する場合には、HNBへのアクセス権を持たないMUEからの干渉に対する対策が必要となる。具体的な対策として、HNBでの干渉レベルに応じたHNBにおける総受信電力の制御目標値の引き上げと、HNBにおける受信機利得の調整について非特許文献1に記載されている。
 マクロセル-フェムトセル間における上り無線回線干渉の二つは、フェムトセルに接続する端末(以下、HUEと記す)がMNBへ与える上り無線回線干渉である。特に、HUEとHNBの距離が離れており、かつ、HUEとMNB間の距離が短いと、MNBにおけるHUEからの干渉量が増加する。このため、フェムトセルがマクロセル中心部に存在する場合には、HUEからMNBへの干渉を抑制する対策が必要となる。具体的な対策として、HUE最大送信電力の制限について非特許文献1及び特許文献1に記載されている。
 以下、HUE最大送信電力の制限方法について詳細に説明する。図2は、非特許文献1に記載されたHUE最大送信電力制限の手順を示すシーケンス図である。図2では、特に上り干渉制御に関連する部分のみ抜き出して記載している。また、上りアクセス方式として3GPP(3rd Generation Partnership Project)Release.6(HSUPA)を想定している。
 HNBは、マクロセル信号(例えば、下り共通パイロットチャネル(CPICH))の受信レベルを測定する機能(測定部24)を具備している。HNBの起動時等に測定部24において、マクロセル信号の受信レベルを測定する(ST11)。より具体的には、非特許文献2に記載の通り、マクロセルCPICHのRSCPを測定し、P‐CPICH送信電力情報を取得する。測定部24は、測定結果を制御部23に通知する(ST12)。制御部23は、通知された測定結果を用いて、HUEの最大送信電力を決定する(ST13)。制御部23は、マクロセル信号の受信レベルが大きいほど、HUE最大送信電力の設定値を引き下げる。
 HUEがHNBに接続を開始する際に、RRC(Radio Resource Control)コネクションが確立される(ST14)。このとき、HNBの制御部23からHUE21に対して、HUE最大送信電力の設定を通知する。HUE21は、通知された最大送信電力の範囲内で上り無線信号を送信する。
 HNBからの指示に従い、HUE21はマクロセル信号の受信レベルを測定し(ST15)、HNBに測定値を報告する(ST16)。HNBの制御部23では、HUE21からの報告値に基づき、HUE21の最大送信電力の設定値を更新し、HUE21へ通知する(ST16)。HUE21は、更新通知された最大送信電力の範囲内で上り無線信号を送信する。
 以上の干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を図3(a)及び図3(b)にそれぞれ示す。図3において、グラフ横軸はHNB-HUE間の空間伝搬損失を表し、図3(a)のグラフ縦軸は受信電力を、図3(b)のグラフ縦軸は送信電力をそれぞれ表している。
 図3から分かるように、HNB-HUE間の空間伝搬損失(以下、伝搬損失と記す)やHNBにおけるマクロセル信号の受信レベルに関わらず、HNBの受信電力制御目標値(RoT target)は一定である。一方、HUEにおける総送信電力の最大値は、HNBにおけるマクロセル信号の受信レベルに応じて調整される。
 図3では、太い実線が電力値を示している。HUEがHNBから離れ、HNB-HUE間の伝搬損失が大きくなると、HUE総送信電力が最大値に達すると共に、HNB受信電力が低下することが、図3より読み取れる。
 ここで、HSUPAチャネル(E-DCH)の送信電力については、W-CDMAチャネル(DCH)を構成する物理制御チャネル(DPCCH)の送信電力への比率が規定されている。E-DCH伝送レートが増大するほど所要電力が増加するため、E-DCH伝送レートの増大に合わせて電力比率が大きくなる(送信電力が大きくなる)ように仕様が定められている。
 DCHの送信電力は基地局における受信品質が所望値となるように制御されるので、伝搬損失が大きくなると、DCHに比例してE-DCHの送信電力も増加する。ここで、HUE送信電力が最大値に達すると、E-DCH伝送レートに対応した所要電力を確保できなくなる。そこで、HUEから報告される送信電力余裕(UE power headroom)等に基づき、HNBのHSUPAスケジューラはこのHUEへの割り当て伝送レートを低下させる。
米国特許出願公開第2008/0188265A1号明細書
3GPP TSG RAN Working Group 4, R4-082643 3GPP TSG RAN Working Group 4, R4-082623
 しかしながら、HUEの最大送信電力を直接制御する上述の干渉制御方法では、以下のような問題がある。すなわち、図2から明らかなように、HNBにおいてHUE最大送信電力を決定後、決定結果をHNBからHUEへ通知(シグナリング)しなければならないため、無線リソースが消費され、データ伝送効率が低下する。特に、干渉制御を精度良く行うためにはHUEでのマクロセル信号の受信レベル測定結果を用い、頻繁にHUE最大送信電力を更新する必要があるが、更新のためにシグナリング量が増加し、データ伝送効率がさらに低下することになる。
 また、図3から明らかなように、HNB-HUE間の伝搬損失が大きくなるHUEのみを犠牲にして干渉低減を図るので、フェムトセルエッジに存在するHUEのみ上り回線の伝送レートが大きく低下することになる。
 本発明の目的は、シグナリング増加とフェムトセルエッジにおけるフェムト接続端末の伝送レート低下とを回避しつつ、フェムト接続端末からマクロセル基地局への上り無線回線干渉を低減する無線通信基地局装置及び送信電力制御方法を提供することである。
 本発明の無線通信基地局装置は、マクロセル無線通信基地局装置から送信された信号の受信強度を測定する測定手段と、自装置に接続する無線通信端末装置と、自装置との間の伝搬損失を推定する推定手段と、測定された前記受信強度のうち最大受信強度と第1閾値との比較、及び、推定された前記伝搬損失のうち最大伝搬損失と第2閾値との比較を行う判定手段と、前記最大受信強度が前記第1閾値以上であり、かつ、前記最大伝搬損失が前記第2閾値以上である場合、自装置における総受信電力の制御目標値がとりうる最大値を引き下げる調整手段と、を具備する構成を採る。
 本発明の送信電力制御方法は、マクロセル無線通信基地局装置から送信された信号の受信強度を測定する測定工程と、自装置に接続する無線通信端末装置と、自装置との間の伝搬損失を推定する推定工程と、測定された前記受信強度のうち最大受信強度と第1閾値との比較、及び、推定された前記伝搬損失のうち最大伝搬損失と第2閾値との比較を行う判定工程と、前記最大受信強度が前記第1閾値以上であり、かつ、前記最大伝搬損失が前記第2閾値以上である場合、自装置における総受信電力の制御目標値がとりうる最大値を引き下げる調整工程と、を具備するようにした。
 本発明によれば、シグナリング増加とフェムトセルエッジにおけるフェムト接続端末の伝送レート低下とを回避しつつ、フェムト接続端末からマクロセル基地局への上り無線回線干渉を低減することができる。
HNBを含む無線システム構成を示す図 非特許文献1に記載されたHUE最大送信電力制限の手順を示すシーケンス図 非特許文献1に記載の干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す図 本発明の実施の形態1に係るフェムト基地局装置の構成を示すブロック図 本発明の実施の形態1に係る干渉制御手順を示すシーケンス図 本発明の実施の形態1に係る判定部における干渉制御手順を示すフロー図 本発明の実施の形態1に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す図 本発明の実施の形態1に係るフェムト基地局の受信電力制御目標値がとりうる最大値と、マクロセル信号受信レベルとの関係を示す図 本発明の実施の形態2に係る干渉制御手順を示すフロー図 本発明の実施の形態2に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す図 本発明の実施の形態2に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す図 本発明の実施の形態2に係る干渉制御を用いた場合の第2閾値と、マクロセル信号受信レベルとの関係を示す図 本発明の実施の形態3に係る干渉制御手順を示すフロー図 本発明の実施の形態3に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す図 本発明の実施の形態4に係る干渉制御手順を示すフロー図 本発明の実施の形態5に係る干渉制御手順を示すフロー図 本発明の実施の形態6に係る干渉制御手順を示すフロー図 本発明の実施の形態6に係るフェムト基地局の受信電力制御目標値がとりうる最大値と、マクロセル信号受信レベルとの関係を示す図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、以下の各実施の形態では、HSUPA無線アクセス技術に基づいて説明する。ただし、本発明は、3GPPで規格化中のLTE(Long Term Evolution)及び3GPPで規格されている無線アクセス技術に限らず、WLAN(Wireless Local Area Network)、IEEE802.16、IEEE802.16e又はIEEE802.16m等のWiMAX(Worldwide Interoperability for Microwave Access)、3GPP2等の無線アクセス技術に適用してもよい。
 (実施の形態1)
 図4は、本発明の実施の形態1に係るフェムト基地局装置の構成を示すブロック図である。図4において、受信部102は、MNBから送信された信号(マクロセル信号)及びHUEから送信された信号(HUE信号)をアンテナ101から受信し、マクロセル信号を測定部103に出力し、HUE信号を伝搬損失推定部104及びスケジューラ107に出力する。
 測定部103は、受信部102から出力されたマクロセル信号(例えば、下り共通パイロットチャネル(CPICH))の受信レベルを測定し、測定結果を判定部105に出力する。なお、複数のマクロセル信号を測定した場合には、測定部103は最大の受信レベルを判定部105に出力する。また、フェムトセル上り無線回線の隣接周波数帯を用いるマクロセルへの干渉量は少ないので、上り無線回線に同一周波数帯を用いるマクロセルの信号のみを測定部103の測定対象としてよい。
 伝搬損失推定部104は、受信部102から出力されたHUE信号(例えば、上りパイロット信号)の受信電力等に基づいて、HUEとHNB間の伝搬損失を推定し、推定結果を判定部105に出力する。なお、複数のHUEが同時接続する場合には、伝搬損失推定部104は最大の伝搬損失を判定部105に出力する。
 判定部105は、測定部103から出力されたマクロセル信号受信レベルと第1閾値とを比較し、第1比較結果を調整部106に出力する。また、判定部105は、伝搬損失推定部104から出力された伝搬損失と第2閾値とを比較し、第2比較結果を調整部106に出力する。
 調整部106は、判定部105から出力された第1比較結果及び第2比較結果に基づいて、HNB総受信電力の制御目標値がとりうる最大値を調整する指示を生成し、生成した指示をスケジューラ107に出力する。
 スケジューラ107は、受信部102から出力されたHUE信号(具体的には、HUEの送信バッファ状況と送信電力余裕、割り当て伝送レート向上要求)と、調整部106から指定されたHNB総受信電力の制御目標値がとりうる最大値とに基づいて、HUEへの割り当て伝送レートを決定する。スケジューラ107における伝送レート割り当てアルゴリズム自体については、干渉制御の追加によって変更されることはない。HNB総受信電力の制御目標値が引き下げられれば、スケジューラ107はHUEへの割り当て伝送レートを引き下げる方向に調整する。また、制御目標値の変更は、当該HNBに接続する全てのHUEの割り当て伝送レートに影響を及ぼす。スケジューラ107は、決定した割り当て伝送レートを示すスケジューリンググラントを送信部108に出力する。
 送信部108は、スケジューラ107から出力されたスケジューリンググラントをHUEに送信する。
 図5は、本発明の実施の形態1に係る干渉制御手順を示すシーケンス図である。図5において、HNBの測定部103は、マクロセル信号の受信レベルを測定し(ST201)、測定結果を判定部105に出力する(ST202)。判定部105は、マクロセル信号の受信レベルと第1閾値とを比較する(ST203)。
 伝搬損失推定部104は、HUE信号の受信電力等に基づいて、HUE-HNB間の伝搬損失を推定し(ST204)、推定結果を判定部105に出力する(ST205)。判定部105は、伝搬損失と第2閾値とを比較し(ST206)、ST203における比較結果である第1比較結果と、ST206における比較結果である第2比較結果とを調整部106に出力する(ST207)。
 調整部106は、第1比較結果及び第2比較結果に基づいて、HNB総受信電力の制御目標値(RoT target)がとりうる最大値を調整する指示を生成し(ST208)、生成した指示をスケジューラ107に出力する(ST209)。
 図5より明らかなように、干渉制御に関する処理がHNB内部のみで行われており、HUE-HNB間において干渉制御用のシグナリング追加は不要である。
 図6は、本発明の実施の形態1に係る判定部105における干渉制御手順を示すフロー図である。干渉制御のための判定条件は2つあり、第1の判定条件は「マクロセル信号受信レベルと第1閾値とを比較すること(ST301)」である。第1の判定条件が成立するのは、フェムトセルがマクロセル中心部に設置される場合である。第2の判定条件は「HUE-HNB間の伝搬損失と第2閾値とを比較すること(ST302)」である。第2の判定条件が成立するのは、HUEとHNBとの距離が離れている場合である。2つの判定条件が同時に成立するときのみ、HUEがMNBに与える干渉量を低減するために、HNB総受信電力の制御目標値がとりうる最大値を引き下げる(ST303)。
 なお、2つの判定条件のうちどちらを先に処理するかについては順序を問わない。図6のフロー図は実装の一例であり、別の順序で実装することも可能である。例えば、ST302の判定処理後にST301の判定処理を行ってもよい。
 図7に、本発明の実施の形態1に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す。図7において、グラフ横軸はHNB-HUE間の伝搬損失を表し、図7(a)のグラフ縦軸はHNB受信電力を、図7(b)のグラフ縦軸はHUE送信電力をそれぞれ表している。
 ここで、HNB-HUE間の伝搬損失及びHNBにおけるマクロセル信号の受信レベルに応じて、HNBの受信電力制御目標値(RoT target)は変動する。図7(a)では、マクロセル信号の受信レベルが第1閾値以上である場合の受信電力制御目標値を例示している。一方、HUEにおける総送信電力の最大値は一定値である。
 図7では、太い実線が電力値を示している。HUE-HNB間の距離が大きく、HNB-HUE間の伝搬損失が第2の閾値以上になると、HNBの受信電力制御目標値(RoT target)は引き下げられる。それに伴い、HUEへの割り当て伝送レートが下がるので、HUEの所要送信電力も低下する。ここで、HUE送信電力の最大値自体が引き下げられるわけではない。従って、図7(b)に示す通り、HNB-HUE間の伝搬損失の増加に伴って、HUE送信電力が増加していく。
 フェムトセルがマクロセル中心部に設置される場合、下り信号に関しマクロセルから非常に強い干渉を受けるため、フェムトセルのカバー範囲がセル半径数[m]にまで縮小する。従って、フェムトセルのカバー範囲でのHNB-HUE間の伝搬損失は一定範囲内に制限される。本実施の形態では、HNB-HUE間の伝搬損失の増加に伴いHUE送信電力が増加しても、フェムトセルがマクロセルに与える干渉量は限定されたものとなる。
 また、HNBに複数のHUEが同時接続する場合、HNB近傍のHUEについては、HUEの最大送信電力を制限する従来の干渉低減方式よりも割り当て伝送レート及び送信電力が低下する。従って、制御目標値の引き下げ幅及び第2閾値を適切に設定することにより、フェムトセル全体での干渉低減量を維持しつつ、フェムトセルエッジに位置するHUEの割り当て伝送レートを従来の干渉低減方式よりも増加させることができる。
 図8に、本発明の実施の形態1に係るフェムト基地局の受信電力制御目標値(RoT target)がとりうる最大値と、マクロセル信号受信レベルとの関係を示す。図8において、グラフ横軸はマクロセル信号の受信レベルを表し、グラフ縦軸は受信電力の制御目標値(RoT target)がとりうる最大値を表す。また、太い実線は制御用関数の一例を示している。制御用関数については、図8の例に限らず、マクロセル信号受信レベルの増加に伴って受信電力の制御目標値がとりうる最大値が減少する関数を用いることができる。
 このように実施の形態1によれば、HUEの送信電力最大値に直接的制限を行う代わりに、HNBにおける総受信電力の制御目標値がとりうる最大値を調整することにより、HUEの送信電力を間接的に抑制することができる。これにより、HUE送信電力の直接的制限に伴うシグナリング増加を防ぎ、無線リソースの消費を招くことなく、HUEからMNBへの上り無線回線干渉を低減することができる。また、フェムトセル全体での干渉低減量を維持しつつ、フェムトセルエッジに位置するHUEの割り当て伝送レート増加させることができる。
 (実施の形態2)
 本発明の実施の形態2では、実施の形態1で説明した干渉制御機能に加えて、HNBにおけるマクロセル信号の受信電力レベルに応じて、第2閾値を変更する機能を具備する場合について説明する。なお、本発明の実施の形態2に係るフェムト基地局装置の構成は、実施の形態1の図4に示した構成と同様であるので、図4を援用して説明する。
 図9は、本発明の実施の形態2に係る干渉制御手順を示すフロー図である。なお、図9が図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。図9において、判定部105は、マクロセル信号の受信電力レベル最大値に基づいて、第2閾値を調整する(ST401)。
 ここで、フェムトセルがマクロセル中心部から離れた位置に設置されるほど、HUEがマクロセルに与える干渉量は少なくなり、HNB総受信電力の制御目標値がとりうる最大値を引き下げる必要性は低くなる。実施の形態1では、制御目標値がとりうる最大値の引き下げ幅のみを、マクロセル信号の受信電力レベルに応じて調整していたのに対し、実施の形態2では、制御目標値を引き下げるフェムトセルにおける通信エリア自体を、マクロセル信号の受信電力レベルに応じて調整する。具体的には、マクロセル信号の受信電力レベルが小さくなるほど、第2閾値を増加させ、制御目標値の引き下げを行わない通信エリアを拡大し、マクロセル信号の受信電力レベルが大きくなるほど、第2閾値を低減させ、制御目標値の引き下げを行わない通信エリアを縮小する(ST401)。
 図10及び図11に、本発明の実施の形態2に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す。図10及び図11において、グラフ横軸はHNB-HUE間の伝搬損失を表し、図10(a)及び図11(a)のグラフ縦軸はHNB受信電力を、図10(b)及び図11(b)のグラフ縦軸はHUE送信電力をそれぞれ表している。
 図10は、HNBでのマクロセル信号受信電力レベルが大きい場合について示しており、図11は、HNBでのマクロセル信号受信電力レベルが小さい場合について示している。図10では、制御目標値の引き下げ幅が大きく、引き下げる領域が広い(HNB-HUE間の伝搬損失が小さい段階で引き下げを開始する)様子を示している。一方、図11では、制御目標値の引き下げ幅が小さく、引き下げる領域が狭い(HNB-HUE間の伝搬損失がより大きい段階で引き下げを開始する)様子を示している。
 図12に、本発明の実施の形態2に係る干渉制御を用いた場合の第2閾値と、マクロセル信号受信レベルとの関係を示す。図12において、グラフ横軸はマクロセル信号の受信レベルを表し、グラフ縦軸は伝搬損失との比較に用いる第2閾値を表す。また、太い実線は制御用関数の一例を示している。制御用関数については、図12の例に限らず、マクロセル信号受信レベルの増加に伴って第2閾値が減少する関数を用いることができる。
 このように実施の形態2によれば、制御目標値の引き下げを行うフェムトセルにおける通信エリア自体をマクロセル信号の受信電力レベルに応じて調整することにより、フェムトセルのスループットに必要以上の悪影響を与えることなく、さらに効率的な干渉制御を実現することができる。これにより、HUE送信電力の直接的制限に伴うシグナリング増加を防ぎ、無線リソースの消費を招くことなく、HUEからMNBへの上り無線回線干渉を低減することができる。また、フェムトセル全体での干渉低減量を維持しつつ、フェムトセルエッジに位置するHUEの割り当て伝送レートを増加させることができる。
 (実施の形態3)
 本発明の実施の形態3では、実施の形態1で説明した干渉制御機能に加えて、HNB-HUE間の伝搬損失との比較に用いる閾値を複数設けた場合、及び、総受信電力の制御目標値がとりうる最大値の引き下げ幅を伝搬損失に応じて変更する場合について説明する。なお、本発明の実施の形態3に係るフェムト基地局装置の構成は、実施の形態1の図4に示した構成と同様であるので、図4を援用して説明する。
 図13は、本発明の実施の形態3に係る干渉制御手順を示すフロー図を示す。なお、図13が図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。図13において、判定部105は、第2閾値の他に第3閾値を用いて、HNB-HUE間の伝搬損失と比較する(ST501)。ただし、「第3閾値>第2閾値」の関係が成立しているものとする。
 HNB-HUE間の伝搬損失が第2閾値以上かつ第3閾値未満の場合には、総受信電力の制御目標値がとりうる最大値の引き下げ幅を小さくする(ST502)。一方、HNB-HUE間の伝搬損失が第3閾値以上の範囲にある場合には、総受信電力の制御目標値がとりうる最大値の引き下げ幅を大きくする(ST503)。
 図14に、本発明の実施の形態3に係る干渉制御を用いた場合のHNB受信電力及びHUE送信電力の変化を示す。図14において、グラフ横軸はHNB-HUE間の伝搬損失を表し、図14(a)のグラフ縦軸はHNB受信電力を、図14(b)のグラフ縦軸は送信電力をそれぞれ表している。図14(b)から明らかなように、HNB-HUE間の伝搬損失が比較的小さい領域では、HUE送信電力の抑制幅を小さくし、端末スループットの低下を防ぐことができる。
 このように実施の形態3によれば、総受信電力の制御目標値がとりうる最大値の引き下げ幅を伝搬損失に応じて変更することにより、フェムトセルのスループットに必要以上の悪影響を与えることなく、さらに効率的な干渉制御を実現することができる。これにより、HUE送信電力の直接的制限に伴うシグナリング増加を防ぎ、無線リソースの消費を招くことなく、HUEからMNBへの上り無線回線干渉を低減することができる。また、フェムトセル全体での干渉低減量を維持しつつ、フェムトセルエッジに位置するHUEの割り当て伝送レートを増加させることができる。
 なお、本実施の形態では、例としてHNB-HUE間の伝搬損失との比較に用いる閾値を2個設けたが、閾値の数を3個以上に増やしてもよい。また、総受信電力の制御目標値がとりうる最大値の引き下げを図14(a)に示すような階段状ではなく、HNB-HUE間の伝搬損失に応じて連続的に行ってもよい。
 (実施の形態4)
 本発明の実施の形態4では、実施の形態1で説明した干渉制御機能に加えて、HNB総受信電力の制御目標値がとりうる最大値を調整する際に、基準となるHUE(基準HUE)の所要送信電力が、HNBにおける総受信電力の制御目標値に基づいて当該基準HUEに割り当て可能な送信電力未満であれば、制御目標値の引き下げ幅を縮小する場合について説明する。なお、本発明の実施の形態4に係るフェムト基地局装置の構成は、実施の形態1の図4に示した構成と同様であるので、図4を援用して説明する。
 図15は、本発明の実施の形態4に係る干渉制御手順を示すフロー図である。なお、図15が図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。図15において、判定部105は、HNB-HUE間の伝搬損失が最大となるHUEについて、伝搬損失と所要伝送レートとから所要送信電力を算出する(ST601)。
 また、判定部105は、所要送信電力を、HNB総受信電力の制御目標値に基づいて当該HUEに割り当て可能な送信電力(割り当て可能な受信電力と伝搬損失とから算出)と比較する(ST602)。比較の結果、HUE所要送信電力が、割り当て可能な送信電力よりも小さい場合には、調整部106において、総受信電力の制御目標値がとりうる最大値の引き下げ幅を縮小する(ST603)。
 ここで、引き下げ幅の縮小を行っても、基準HUEは、所要伝送レートが低いために、送信電力と伝送レートの増加は発生しない。一方、基準HUE以外で当該HNBに接続するHUEでは、送信電力と伝送レートとを増加させることが可能となる。すなわち、フェムトセル全体で許容されるマクロセルへの干渉量を超えることなく、フェムトセルの上り伝送スループットを改善することができる。
 このように実施の形態4によれば、HNB総受信電力の制御目標値がとりうる最大値の引き下げ幅を基準HUEの所要送信電力に応じて変更することにより、フェムトセルのスループットに必要以上の悪影響を与えることなく、さらに効率的な干渉制御を実現することができる。これにより、HUE送信電力の直接的制限に伴うシグナリング増加を防ぎ、無線リソースの消費を招くことなく、HUEからMNBへの上り無線回線干渉を低減することができる。
 (実施の形態5)
 本発明の実施の形態5では、実施の形態1で説明した干渉制御機能に加えて、HNBに接続している全てのHUEが、HNB-HUE間の伝搬損失が閾値以上であるか否かに応じて、干渉低減方法としてHUE最大送信電力を制限するか、HNB総受信電力の制御目標値がとりうる最大値を引き下げる場合について説明する。なお、本発明の実施の形態5に係るフェムト基地局装置の構成は、実施の形態1の図4に示した構成と同様であるので、図4を援用して説明する。
 図16は、本発明の実施の形態5に係る干渉制御手順を示すフロー図である。なお、図16が図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。図16において、判定部105は、HNBに接続中のHUE全てについて、HNB-HUE間の伝搬損失が第2閾値以上であるかを判定する(ST701)。換言すれば、全てのHUEがフェムトセルエッジに位置するか否かを判定する。
 全てのHUEがフェムトセルエッジに位置する場合には、全てのHUEについて送信電力が大きいため、フェムトセルからマクロセルへの干渉量の総和が許容範囲を超える可能性がある。このような場合には、HUE送信電力の最大値を直接制限することによって、フェムトセルからマクロセルへの干渉量の総和を確実に一定値以内とする(ST702)。
 一方、フェムトセル内で一部のHUEでもセルエッジに位置しない場合には、HNB総受信電力の制御目標値がとりうる最大値を引き下げる(ST303)。これにより、フェムトセルエッジのHUEの送信電力増加を許容する代わりに、HNB近傍のHUEの割り当て伝送レート及び送信電力を減少させて、フェムトセルからマクロセルへの干渉量の総和を維持することができる。
 このように実施の形態5によれば、HUE送信電力の最大値を直接制限する干渉低減方法に切り替えることにより、フェムトセルからマクロセルへの干渉量の総和を確実に一定値以内に抑制する。これにより、HUEがフェムトセルエッジに集中配置される例外的な場合に対処可能となる。
 なお、本実施の形態では、全てのHUEについてHNB-HUE間の伝搬損失が第2閾値以上であるかを判定する方法を例に挙げて説明したが、フェムトセル内の全HUE配置に応じて干渉低減方法を変更するという趣旨を逸脱しなければ、別の判定条件を用いることも可能である。例えば、フェムトセル内におけるHUEの位置分布(伝搬損失分布)を算出し、位置のばらつき度合いに応じて、干渉低減方法を変更することなども考えられる。
 (実施の形態6)
 本発明の実施の形態6では、実施の形態1で説明した干渉制御機能に加えて、MNBからマクロセルの上り干渉量情報を報知し、HNBにおける総受信電力の制御目標値がとりうる最大値の引き下げ幅をマクロセル上り干渉量情報に応じて設定する場合について説明する。なお、本発明の実施の形態6に係るフェムト基地局装置の構成は、実施の形態1の図4に示した構成と同様であるので、図4を援用して説明する。
 図17は、本発明の実施の形態6に係る干渉制御手順を示すフロー図である。なお、図17が図6と共通する部分には、図6と同一の符号を付し、重複する説明は省略する。図17において、測定部103は、マクロセル報知信号(BCH)に含まれるマクロセル上り回線干渉量情報を抽出する(ST801)。
 抽出されたマクロセル上り回線干渉量情報に基づき、HNBにおける総受信電力の制御目標値がとりうる最大値の引き下げ幅を設定する(ST802)。すなわち、マクロセル干渉量が小さい場合には引き下げ幅を小さく、マクロセル干渉量が大きい場合には引き下げ幅を大きく設定する。
 図18に、本実施の形態に係るフェムト基地局の受信電力制御目標値がとりうる最大値と、マクロセル信号受信レベルとの関係を示す。マクロセル上り回線干渉量に応じて、HNB総受信電力の制御目標値がとりうる最大値に対する調整関数を変更している。
 1フェムトセルにおける干渉低減量が一定であるとすると、マクロセル内のフェムトセル設置数や設置位置によって、マクロセルでの総干渉量は変化する。従って、マクロセルとフェムトセル間での干渉低減を最適化するためには、マクロセル上り回線干渉量に応じた調整が必要である。
 このように実施の形態6によれば、総受信電力の制御目標値がとりうる最大値の引き下げ幅をマクロセル上り回線干渉量に応じて変更することにより、フェムトセルのスループットに必要以上の悪影響を与えることなく、さらに効率的な干渉制御を実現することができる。これにより、HUE送信電力の直接的制限に伴うシグナリング増加を防ぎ、無線リソースの消費を招くことなく、HUEからMNBへの上り無線回線干渉を低減することができる。また、フェムトセル全体での干渉低減量を維持しつつ、フェムトセルエッジに位置するHUEの割り当て伝送レートを増加させることができる。
 なお、本実施の形態では、マクロセル上り干渉量情報を報知信号(BCH)によりHNBへ伝達する例を述べたが、MNB-HNB間の有線回線を用いてマクロセル上り干渉量情報を伝達することも可能である。
 以上、本発明の実施の形態について説明した。
 なお、上記各実施の形態では、フェムト基地局の測定部がマクロセル信号の受信レベルを測定する構成を採ったが、本発明の要旨を変更することなく、フェムト接続端末におけるマクロセル信号受信レベルの測定結果を用いる構成を採ることも可能である。すなわち、フェムト接続端末で測定したマクロセル信号受信レベルを、上り回線を介してフェムト基地局に報告し、フェムト基地局において上記各実施の形態で述べた干渉制御を実行することができる。
 また、上記各実施の形態では、フェムト基地局の測定部がマクロセル信号の受信レベルを測定する構成を採ったが、隣接フェムトセル信号の受信レベルを測定することにより、隣接フェムトセル間の上り無線回線干渉を低減する構成を採ることも可能である。
 上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。例えば、バイオ技術の適用等が可能である。
 2008年11月28日出願の特願2008-304662の日本出願に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる無線通信基地局装置及び送信電力制御方法は、例えば、携帯電話通信システムに利用できる。
 

Claims (8)

  1.  マクロセル無線通信基地局装置から送信された信号の受信強度を測定する測定手段と、
     自装置に接続する無線通信端末装置と、自装置との間の伝搬損失を推定する推定手段と、
     測定された前記受信強度のうち最大受信強度と第1閾値との比較、及び、推定された前記伝搬損失のうち最大伝搬損失と第2閾値との比較を行う判定手段と、
     前記最大受信強度が前記第1閾値以上であり、かつ、前記最大伝搬損失が前記第2閾値以上である場合、自装置における総受信電力の制御目標値がとりうる最大値を引き下げる調整手段と、
     を具備する無線通信基地局装置。
  2.  前記調整手段は、前記最大受信強度に応じて引き下げ幅を設定する請求項1に記載の無線通信基地局装置。
  3.  前記判定手段は、前記最大受信強度に応じて前記第2閾値を調整する請求項1に記載の無線通信基地局装置。
  4.  前記調整手段は、前記最大伝搬損失に応じて引き下げ幅を設定する請求項1に記載の無線通信基地局装置。
  5.  前記調整手段は、自装置に接続する無線通信端末装置のうち自装置との間の伝搬損失が最大となる無線通信端末装置の所要送信電力が、自装置における総受信電力の制御目標値に基づき当該無線通信端末装置に割り当て可能な送信電力未満である場合、引き下げ幅を縮小する請求項1に記載の無線通信基地局装置。
  6.  前記調整手段は、自装置に接続する全ての無線通信端末装置の前記伝搬損失が前記第2閾値以上である場合、自装置における総受信電力の制御目標値がとりうる最大値を調整せず、自装置に接続する無線通信端末装置の最大送信電力制限値を引き下げる請求項1に記載の無線通信基地局装置。
  7.  前記調整手段は、マクロセル上り回線干渉量に応じて引き下げ幅を設定する請求項1に記載の無線通信基地局装置。
  8.  マクロセル無線通信基地局装置から送信された信号の受信強度を測定する測定工程と、
     自装置に接続する無線通信端末装置と、自装置との間の伝搬損失を推定する推定工程と、
     測定された前記受信強度のうち最大受信強度と第1閾値との比較、及び、推定された前記伝搬損失のうち最大伝搬損失と第2閾値との比較を行う判定工程と、
     前記最大受信強度が前記第1閾値以上であり、かつ、前記最大伝搬損失が前記第2閾値以上である場合、自装置における総受信電力の制御目標値がとりうる最大値を引き下げる調整工程と、
     を具備する送信電力制御方法。
PCT/JP2009/006430 2008-11-28 2009-11-27 無線通信基地局装置及び送信電力制御方法 WO2010061626A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/128,849 US8417280B2 (en) 2008-11-28 2009-11-27 Radio communication base station device and transmission power control method
JP2010540386A JP5455927B2 (ja) 2008-11-28 2009-11-27 無線通信基地局装置及び送信電力制御方法
CN200980146029.8A CN102217389B (zh) 2008-11-28 2009-11-27 无线通信基站装置和发送功率控制方法
EP09828876.4A EP2352343B1 (en) 2008-11-28 2009-11-27 Radio communication base station device and transmission power control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008304662 2008-11-28
JP2008-304662 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061626A1 true WO2010061626A1 (ja) 2010-06-03

Family

ID=42225511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006430 WO2010061626A1 (ja) 2008-11-28 2009-11-27 無線通信基地局装置及び送信電力制御方法

Country Status (5)

Country Link
US (1) US8417280B2 (ja)
EP (1) EP2352343B1 (ja)
JP (1) JP5455927B2 (ja)
CN (1) CN102217389B (ja)
WO (1) WO2010061626A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122738A1 (ja) * 2009-04-23 2010-10-28 日本電気株式会社 セルラー方式の通信システム、該システムの基地局、及び該システムの電力制御方法
JP2012034074A (ja) * 2010-07-29 2012-02-16 Hitachi Ltd 基地局及びセルラ無線通信システム
JP2012039168A (ja) * 2010-08-03 2012-02-23 Ntt Docomo Inc 無線基地局装置及び送信電力制御方法
JP2013535869A (ja) * 2010-06-29 2013-09-12 クゥアルコム・インコーポレイテッド フェムトセル展開における干渉を緩和するための方法および装置
JP2016511602A (ja) * 2013-02-25 2016-04-14 アップル インコーポレイテッド 無線通信技術間の機器内共存の容易化
JP2020137068A (ja) * 2019-02-25 2020-08-31 ソフトバンク株式会社 基地局、通信システム、基地局管理装置、基地局の協調方法及びプログラム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067841A1 (ja) * 2009-12-02 2011-06-09 富士通株式会社 基地局装置、移動体通信システム及び無線信号品質測定方法
US8295335B2 (en) * 2009-12-31 2012-10-23 Intel Corporation Techniques to control uplink power
GB2479076C (en) * 2011-05-03 2014-08-13 Broadcom Corp Uplink transmission power control mechanism
WO2012173430A2 (ko) * 2011-06-15 2012-12-20 엘지전자 주식회사 무선 접속 시스템에서 신호 전송 방법 및 이를 위한 장치
GB2544932B (en) 2011-11-28 2017-08-23 Ubiquisys Ltd Power management in a cellular system
CN103249128B (zh) * 2012-02-02 2016-03-16 京信通信系统(中国)有限公司 一种femto基站自适应调整功率的方法及装置
US9332458B2 (en) 2012-03-25 2016-05-03 Cisco Technology, Inc. System and method for optimizing performance of a communication network
CN102711116B (zh) * 2012-06-05 2016-01-20 中兴通讯股份有限公司 一种cdma微型基站动态配置方法、装置及系统
WO2014007691A1 (en) * 2012-07-02 2014-01-09 Telefonaktiebolaget L M Ericsson (Publ) A network node and a method therein for controlling uplink power control
IL222709A (en) 2012-10-25 2016-02-29 Intucell Ltd A method and mechanism for coordinating interference between communications cells in solar systems
US9078276B2 (en) * 2012-11-13 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Scheduling and rate control coordination accounting for interference cancellation at a mobile terminal
TWI467936B (zh) * 2012-11-22 2015-01-01 Ind Tech Res Inst 光載無線通訊系統中抑制干擾的方法與裝置
US9167444B2 (en) 2012-12-04 2015-10-20 Cisco Technology, Inc. Method for managing heterogeneous cellular networks
US9014004B2 (en) 2012-12-04 2015-04-21 Cisco Technology, Inc. Method for managing load balance in a cellular heterogeneous network
IL224926A0 (en) 2013-02-26 2013-07-31 Valdimir Yanover A method and system for allocating resources in the @telecommunications@cellphone network
US9215644B2 (en) 2013-03-15 2015-12-15 Facebook, Inc. Distribution node and client node for next generation data network
GB2518584B (en) * 2013-07-09 2019-12-25 Cisco Tech Inc Power setting
US9414310B2 (en) 2013-11-27 2016-08-09 Cisco Technology, Inc. System and method for small cell power control in an enterprise network environment
US9655102B2 (en) 2014-06-20 2017-05-16 Cisco Technology, Inc. Interference control in a cellular communications network
US9402195B2 (en) 2014-09-07 2016-07-26 Cisco Technology, Inc. Operation of base station in a cellular communications network
US9844070B2 (en) 2014-09-10 2017-12-12 Cisco Technology, Inc. System and method for decoupling long term evolution media access control scheduling from subframe rate procedures
US9729396B2 (en) 2014-11-04 2017-08-08 Cisco Technology, Inc. System and method for providing dynamic radio access network orchestration
US9918314B2 (en) 2015-04-14 2018-03-13 Cisco Technology, Inc. System and method for providing uplink inter cell interference coordination in a network environment
US10244422B2 (en) 2015-07-16 2019-03-26 Cisco Technology, Inc. System and method to manage network utilization according to wireless backhaul and radio access network conditions
US9860852B2 (en) 2015-07-25 2018-01-02 Cisco Technology, Inc. System and method to facilitate small cell uplink power control in a network environment
US9648569B2 (en) 2015-07-25 2017-05-09 Cisco Technology, Inc. System and method to facilitate small cell uplink power control in a network environment
US9826408B2 (en) 2015-12-07 2017-11-21 Cisco Technology, Inc. System and method to provide uplink interference coordination in a network environment
US10143002B2 (en) 2016-01-12 2018-11-27 Cisco Technology, Inc. System and method to facilitate centralized radio resource management in a split radio access network environment
US9813970B2 (en) 2016-01-20 2017-11-07 Cisco Technology, Inc. System and method to provide small cell power control and load balancing for high mobility user equipment in a network environment
US10420134B2 (en) 2016-02-02 2019-09-17 Cisco Technology, Inc. System and method to facilitate subframe scheduling in a split medium access control radio access network environment
US10091697B1 (en) 2016-02-08 2018-10-02 Cisco Technology, Inc. Mitigation of uplink interference within heterogeneous wireless communications networks
US9787373B1 (en) 2016-06-29 2017-10-10 Facebook, Inc. Hybrid node
US10356826B2 (en) 2016-06-29 2019-07-16 Facebook, Inc. Simultaneous bidirectional wireless link
CN110022601B (zh) * 2019-04-12 2022-07-22 海能达通信股份有限公司 一种信号功率的控制方法、装置、存储介质及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188265A1 (en) 2007-02-02 2008-08-07 Ubiquisys Limited Access point power control
JP2008304662A (ja) 2007-06-07 2008-12-18 Sony Corp 表示装置および表示方法
JP2009119212A (ja) * 2007-11-13 2009-06-04 Takashi Takashima 「洗浄入れ歯箱(イレバコ)」(洗浄ブラシ付き入れ歯収納容器)
WO2009122778A1 (ja) * 2008-03-31 2009-10-08 日本電気株式会社 無線局装置、無線リソースの制御方法、無線局制御プログラムを格納した記録媒体、及び無線通信システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102655446B (zh) * 2004-06-30 2016-12-14 亚马逊科技公司 用于控制信号传输的装置和方法、以及通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080188265A1 (en) 2007-02-02 2008-08-07 Ubiquisys Limited Access point power control
JP2008304662A (ja) 2007-06-07 2008-12-18 Sony Corp 表示装置および表示方法
JP2009119212A (ja) * 2007-11-13 2009-06-04 Takashi Takashima 「洗浄入れ歯箱(イレバコ)」(洗浄ブラシ付き入れ歯収納容器)
WO2009122778A1 (ja) * 2008-03-31 2009-10-08 日本電気株式会社 無線局装置、無線リソースの制御方法、無線局制御プログラムを格納した記録媒体、及び無線通信システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352343A4 *
VODAFONE GROUP ET AL.: "Merged Text Proposals for TR 25.9xx - Home NodeB RF", TSG-RAN WORKING GROUP 4 MEETING #48BIS R4-082623, 29 September 2008 (2008-09-29), XP050325856 *
VODAFONE GROUP ET AL.: "Text Proposal for HNB TR25.9xx: Revised Guidance on UL interference mitigation", 3GPP TSG-RAN WG 4 MEETING #48BIS R4-082643, 29 September 2008 (2008-09-29), XP050325873 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122738A1 (ja) * 2009-04-23 2010-10-28 日本電気株式会社 セルラー方式の通信システム、該システムの基地局、及び該システムの電力制御方法
JP2013535869A (ja) * 2010-06-29 2013-09-12 クゥアルコム・インコーポレイテッド フェムトセル展開における干渉を緩和するための方法および装置
US9008030B2 (en) 2010-06-29 2015-04-14 Qualcomm Incorporated Method and apparatus for mitigating interference in femtocell deployments
JP2012034074A (ja) * 2010-07-29 2012-02-16 Hitachi Ltd 基地局及びセルラ無線通信システム
JP2012039168A (ja) * 2010-08-03 2012-02-23 Ntt Docomo Inc 無線基地局装置及び送信電力制御方法
JP2016511602A (ja) * 2013-02-25 2016-04-14 アップル インコーポレイテッド 無線通信技術間の機器内共存の容易化
US9838054B2 (en) 2013-02-25 2017-12-05 Apple Inc. Facilitating in-device coexistence between wireless communication technologies
US10205474B2 (en) 2013-02-25 2019-02-12 Apple Inc. Facilitating in-device coexistence between wireless communication technologies
US10700724B2 (en) 2013-02-25 2020-06-30 Apple Inc. Facilitating in-device coexistence between wireless communication technologies
JP2020137068A (ja) * 2019-02-25 2020-08-31 ソフトバンク株式会社 基地局、通信システム、基地局管理装置、基地局の協調方法及びプログラム

Also Published As

Publication number Publication date
EP2352343A4 (en) 2014-01-22
JPWO2010061626A1 (ja) 2012-04-26
CN102217389A (zh) 2011-10-12
EP2352343B1 (en) 2016-08-17
CN102217389B (zh) 2014-01-01
JP5455927B2 (ja) 2014-03-26
US20110223964A1 (en) 2011-09-15
EP2352343A1 (en) 2011-08-03
US8417280B2 (en) 2013-04-09

Similar Documents

Publication Publication Date Title
JP5455927B2 (ja) 無線通信基地局装置及び送信電力制御方法
KR101507529B1 (ko) 무선 통신 시스템, 기지국 장치, 기지국 제어 장치, 기지국의 송신 전력 제어 방법, 및 컴퓨터 판독 가능 매체
EP2469910B1 (en) Interference-control method and femto base station
US9942882B2 (en) Wireless communication system, wireless communication method, base station, mobile station, base station control method, mobile station control method, and control program
US8725191B2 (en) Wireless communication system, wireless communication method, base station, control method of base station, and control program of base station
CN102027774B (zh) 用于在无线通信网络中使用虚拟噪声系数的方法和装置
JP5366975B2 (ja) 無線通信基地局装置及び総送信電力制御方法
EP2469912B1 (en) Interference control methods, macro terminal and macro base station
Morita et al. Adaptive power level setting of femtocell base stations for mitigating interference with macrocells
US20110003559A1 (en) Radio station apparatus, radio resource control method, recording medium storing radio station control program, and radio communication system
KR101751219B1 (ko) 아웃바운드 핸드오버들시 작은 셀들에서의 선행적 업링크 송신 전력 증가
WO2011114729A1 (ja) 無線通信装置及び無線通信方法
US9055493B2 (en) Wireless communication system, base station, wireless communication method and recording medium
US20130023299A1 (en) Low power base station and communication control method
KR101500678B1 (ko) 펨토 기지국의 부하 제어 방법 및 이를 위한 펨토 기지국
KR101687501B1 (ko) 무선 기지국 장치 및 통신 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980146029.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540386

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13128849

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009828876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009828876

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE