WO2010061613A1 - Method, system and kit for supporting pregnancy - Google Patents

Method, system and kit for supporting pregnancy Download PDF

Info

Publication number
WO2010061613A1
WO2010061613A1 PCT/JP2009/006399 JP2009006399W WO2010061613A1 WO 2010061613 A1 WO2010061613 A1 WO 2010061613A1 JP 2009006399 W JP2009006399 W JP 2009006399W WO 2010061613 A1 WO2010061613 A1 WO 2010061613A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
concentration
ovulation
memory
hormone
Prior art date
Application number
PCT/JP2009/006399
Other languages
French (fr)
Japanese (ja)
Inventor
穴沢隆
藤田毅
矢澤義昭
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010540378A priority Critical patent/JP5308452B2/en
Publication of WO2010061613A1 publication Critical patent/WO2010061613A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • G01N33/76Human chorionic gonadotropin including luteinising hormone, follicle stimulating hormone, thyroid stimulating hormone or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/59Follicle-stimulating hormone [FSH]; Chorionic gonadotropins, e.g. HCG; Luteinising hormone [LH]; Thyroid-stimulating hormone [TSH]

Definitions

  • the present invention relates to an analysis system and method for analyzing biological substances such as nucleic acids, proteins and microorganisms contained in biological samples such as blood, urine and saliva.
  • the present invention relates to a monitoring method, a monitoring system, and a test kit for analyzing luteinizing hormone contained in urine for the purpose of estimating ovulation time for supporting pregnancy of women.
  • ⁇ Infertility treatment mainly includes (1) timing therapy, (2) hormone therapy, (3) artificial insemination, and (4) in vitro fertilization, which are generally performed while stepping up in this order. For example, perform (1) for the first 3 months, and if you do not become pregnant at this stage, perform (2) while using (1) for the next 3 months.
  • (1) to (3) are also called general fertility treatments, and (4) is also called advanced fertility treatments.
  • the statistical proportion of successful pregnancy steps is 14% for (1), 33% for (2), and (3) Is 19% and (4) is around 34%.
  • Timing therapy is a method of estimating the date of ovulation based on the fact that the period before and after the date of ovulation is most likely to become pregnant, and adjusting the timing of sex accordingly.
  • (A) is a method that has been known for a long time and is the most popular method, and is performed using a female thermometer.
  • the low temperature period continues, transitions from the low temperature period to the high temperature period after the day of ovulation, and repeats a basal body temperature cycle with a change range of 0.3 to 0.5 ° C that returns to the low temperature period just before the next menstruation. Since the rise in basal body temperature occurs after the day of ovulation, it is too late to wait for the rise in basal body temperature and adjust the timing. For this reason, the individual's basal body temperature cycle is learned several times, and the date of ovulation is estimated based on this. However, in addition to the unstable body temperature measurement itself, the date of ovulation changes depending on the physical condition and the like, and it is said that an error of about ⁇ 3 days is caused in the estimation of the ovulation date.
  • (B) is a method of capturing luteinizing hormone (Luteinizing Hormone, LH) secreted from the pituitary gland in the urine using immunochromatography, which is a simple test device. Since LH release occurs at once, it is called LH surge, and the change in concentration over time shows a mountain profile with a half width of about 24 hours and a base width of about 48 hours in blood and urine. It is known that ovulation is promoted by LH surge, and ovulation occurs in about 36 hours from the start of LH surge and in about 12 hours from LH surge peak.
  • the LH surge peak indicates the peak of the peak profile
  • the LH surge indicates the peak profile itself.
  • the urinary LH test is repeated discretely at intervals of about 24 hours from several days before the expected date of ovulation, and the date of ovulation is estimated based on the obtained signal.
  • the principle of the immunochromatography method is as follows.
  • the primary antibody (immobilized antibody) against the antigen to be tested (LH in the case of this test) is placed on the permeable membrane such as nitrocellulose stored inside the container of the handy strip-shaped test device in advance.
  • (C) is a method of directly observing the follicle by transvaginal ultrasound diagnosis.
  • the follicle size is known to be 18-23 mm on the day before ovulation and 21-27 mm just before ovulation.
  • (B) is the main timing therapy that can be easily performed at home.
  • LH simple test kits are sold not only for medical use but also for general use at pharmacies.
  • Non-Patent Document 3 An attempt is made to estimate the date of ovulation by LH test by conducting serum LH test and follicular ultrasonography for a large number of female subjects. While many other documents perform the same inspection at intervals of 24 hours, Non-Patent Document 3 performs the same inspection at intervals of 4 hours, and thus is one of the documents with the highest time accuracy.
  • the LH test is a highly accurate quantitative measurement by radioimmunoassay. From these, this document is considered to provide the most accurate knowledge.
  • the time course of serum LH concentration is roughly a Gaussian profile with a baseline of 20 ⁇ mIU / ml, a peak height of 200 ⁇ mIU / ml, and a standard deviation of about 14 hours, 27 hours and 20 minutes after the start of the LH surge, and It is concluded that ovulation occurs 10 hours after the LH surge peak time.
  • the LH surge start time is defined as the time when the serum LH concentration exceeds the threshold of 60 ⁇ mIU / ml. Based on these findings, the ovulation date can be estimated from the LH test results.
  • Non-patent document 4 attempts to estimate the date of ovulation by urinary LH test. It is considered that the time change of LH concentration in serum and urine is different in baseline and peak height, but the profile is almost similar and the time lag is about several hours. Non-Patent Document 4 reports that this time lag is about 2 hours. In addition, it is considered that the time change profile of the LH concentration changes depending not only on the type of sample but also on the sample pretreatment method, the quantitative measurement method of the LH concentration, the difference in the population of sample collection targets, and the like.
  • Non-Patent Document 5 when a urine LH test was performed on 26 female subjects using a commercially available kit Ovuquick (Quidel), all cases were positively detected. Among these, 19 cases (73%) were positively detected in the range of 0-24 hours preceding the ovulation time, and 24 cases (92%) were positively detected in 0-48 hours. The kit has been shown to be effective in estimating ovulation dates.
  • Non-Patent Document 6 five commercial kits ClearPlan Easy One-Step (Unipath Diagnostics), OvuKit Self-Test (Quidel), OvuQuick Self-Test (Quidel), Sure Step Ovulation Predicator (Applied Biotech), The urinary LH test by EZ-LH One Step Ovulation Kit (Norwell Technologies) and radioimmunoassay, which is a high-precision quantitative measurement, are compared for 11 female subjects.
  • LH surge peak concentrations varied from 13.5 to 73.0 ⁇ mIU / ml, ovulation occurred within 24 hours from the peak time in 8 cases, and ovulation occurred in 24 to 48 hours from the peak time in 2 cases.
  • the positive detection lower limit concentration of each kit varies in the range of 25.5-48.7 mIU / ml
  • the most sensitive kit ClearPlan Easy One-Step is 6 cases
  • the least sensitive kit EZ-LH One Step Ovulation Kit is Three cases were positively detected.
  • a concentration range bordering between positive and negative was observed in each kit.
  • menstrually related hormones such as estrogen, progesterone, or LH are quantitatively measured at 24-hour intervals, and when it is confirmed that the quantitative concentration exceeds a preset concentration threshold, the ovulation period, ovulation It proposes a method to estimate the day, the date of menstruation, the expected date of delivery, etc.
  • LH concentration quantitative value when it is confirmed that the LH concentration quantitative value has exceeded a preset concentration threshold, or when it has been confirmed that it has passed the peak of the concentration profile, it is preset at each time point.
  • Patent Document 2 estrogen and progesterone are quantitatively measured at 24-hour intervals, points are given based on preset criteria for each concentration quantitative value and its rate of change, and each cumulative score is preset. When it is confirmed that the cumulative score threshold has been exceeded, a method for estimating the date of each time point as the start date and the end date of the fertile period is proposed. Furthermore, Patent Document 3 proposes a simple quantitative test kit that performs positive or negative quantitative measurement. In addition, according to Non-Patent Document 7, the peak of the estradiol concentration change profile exists about 24 hours before the peak of the LH surge, and ovulation occurs about 34 hours after the peak time of the estradiol concentration change profile. Are known.
  • Timing therapy that can be easily done at home without going to the hospital is based on the urinary LH simple test, but there are 400,000 couples who are concerned about infertility but have not been to the hospital, It is important to disseminate to wider layers. For this purpose, it is effective to realize early and highly accurate ovulation time estimation as a timing therapy that can be easily performed at home without performing follicle size measurement that cannot be performed without going to a hospital.
  • the time interval of LH inspection is set to 24 hours.
  • the interval between the LH surge start time and the ovulation time is ⁇ tso
  • the interval between the LH surge peak time and the ovulation time is ⁇ tpo.
  • the unit of time is hours (hours) unless otherwise specified, and rounded to the nearest decimal place.
  • the unit of LH concentration is expressed as mIU / ml unless otherwise specified, and is rounded off after the decimal point.
  • Patent document 1 corresponds.
  • Patent Document 2 a cumulative score threshold is used instead of a simple density threshold, but since the estimation is performed based on the threshold excess time at the threshold excess time, the performance is essentially the same.
  • a high-precision quantitative measurement device is placed at home without using a simple LH inspection kit and LH inspection is performed. This involves problems such as device cost, space for installing the device at home, and labor for operating the device.
  • the LH surge peak excess time tn is set as the estimated LH surge peak time tep.
  • the time tn when the ovulation time is estimated may be immediately before the actual ovulation time to (tn to to) or may pass the ovulation time to (to ⁇ tn). Is unsuitable.
  • the threshold excess time tm m is any one of 1, 2, 3,...) Is later than the actual LH concentration threshold time tt (tt ⁇ tm).
  • the LH surge start excess time tm is later than the actual LH surge start time ts (ts ⁇ tm).
  • the LH concentration threshold excess time tm may vary in the range of tt ⁇ tm ⁇ tt + 24 and ts ⁇ tm ⁇ ts + 24, so that tep and tes, and teo based on them, are at least 24 hours. Variation. That is, the ovulation time is estimated with a resolution that is coarser than the daily unit. This occurs because the presence or absence of the LH surge is only quantitatively determined without considering the profile of the LH surge. Even when tep and tes are not written, the same performance is obtained when ovulation time is estimated based on tn and tm.
  • the performance is equivalent to the above case.
  • the LH simple test kit has low sensitivity and Cd> Cs, or high sensitivity and Cd ⁇ Cs.
  • the time tm when the LH surge start can be recognized (the time when the positive detection is first obtained) is further delayed than when the LH test is quantitative, and the sample collection time and LH surge timing This increases the chance that LH surge peaks cannot be positively detected.
  • the LH surge peak cannot be detected positively at all, and the ovulation time cannot be estimated.
  • the LH simple test kit becomes highly sensitive, the chance of recognizing the start of the LH surge at the baseline stage before the start of the LH surge (tm ⁇ ts) increases, and the ovulation time is estimated with no grounds. descend.
  • the main object of the present invention is to provide a monitoring method, a monitoring system, and a test kit for pregnancy support, which solve each of the above-mentioned problems and realize an early and highly accurate estimation of the LH surge peak time and the ovulation time. To do.
  • the present invention is a method for monitoring a fertile state, the step of bringing a biological sample into contact with a detection device, detecting the hormone concentration in the biological sample and storing it in a memory, and the collection time of the biological sample And the hormone concentration to be measured in the collected biological sample is detected to exceed a hormone concentration threshold value stored in advance in the memory, and the hormone stored and set in the memory is detected.
  • the present invention enables early and highly accurate ovulation time estimation by the LH test, and therefore enables highly reliable timing therapy that can be easily performed at home without going to the hospital.
  • many couples who want a natural pregnancy especially those who are concerned about infertility and feel resistance to going to the hospital, have used this method, resulting in many couples becoming pregnant early, The number of births is expected to improve.
  • for couples who do not readily become pregnant even if the present invention is used notice early on the possibility that some kind of infertility treatment is necessary, and by prompting hospital visits, as a result, early pregnancy results, The number of births is expected to improve.
  • the present invention is expected to save many couples who want to become pregnant and provide a solution to the problem of declining birthrate.
  • concentration in FIG. The figure which shows the relationship between the standard time of # 1 of Table 2, and LH density
  • FIG. 2 is a diagram showing an approximate LH concentration time variation profile derived from Method 1 from FIG.
  • FIG. 3 is a diagram showing an approximate LH concentration time variation profile derived from FIG.
  • FIG. 6 is a diagram showing a performance comparison of LH surge peak time estimation between the present methods 1 and 2 and the conventional method in Example 1 of the present invention.
  • FIG. 6 is a diagram showing an approximate LH concentration time change profile derived by the present method 1 from the relationship between the standard time of Non-Patent Document 4 and the LH concentration in Example 2 of the present invention.
  • FIG. 6 is a diagram showing an improvement in performance of LH surge peak time estimation by renewal or improvement of an approximate LH concentration time change profile in Example 2.
  • FIG. 5 is a schematic diagram when an optical sensor chip is used in Example 3.
  • FIG. 4 is a schematic diagram of a configuration and chemical reaction of an inspection device in Example 3.
  • FIG. 4 is a schematic diagram of the configuration and chemical reaction of an inspection device and an external measurement device in Example 3.
  • the flowchart which shows an example of the estimation process at the time of ovulation of this invention.
  • a quantitative LH test is performed as a timing therapy that can be easily performed at home without going to the hospital.
  • the time interval of the LH inspection is arbitrary, the case of 24 hours will be described as a typical example.
  • FIG. 27 shows an example of the flow of ovulation estimation processing according to the present invention.
  • the biological sample is brought into contact with a detection device, the hormone concentration in the biological sample is detected and stored in a memory (S01 to S03), and the collection time of the biological sample is stored in the memory. And detecting that the concentration of the hormone to be measured in the collected biological sample exceeds a threshold value of the hormone concentration stored in advance in the memory, and the concentration time change of the hormone concentration stored and set in the memory.
  • the algorithm of the estimation process at the time of ovulation in the present invention is as follows. Time-discrete quantitative value of LH concentration of a certain population shown in literature etc., or time-discrete quantification of LH concentration acquired for a specific population or individual as a true LH concentration time change profile TP (T)
  • the values are TP (T1), TP (T2), TP (T3), and so on. That is, to simplify the explanation, it is assumed that TP (T1), TP (T2), TP (T3), ... have no error from the true value.
  • T is a standard time standardized so that the LH surge peak time becomes 0, and represents only a part of one physiological cycle.
  • TP (T1), TP (T2), TP (T3), ... are statistical values such as the mean value in the population, whereas C (t1), C (t2), C ( t3), ... are non-statistical values determined for each physiological cycle of each subject.
  • the time axis is converted from the standard time T to the sample collection time t.
  • the least square method may be used, or AP (t) may pass a specific quantitative value, for example, C (tm).
  • fitting with correction of coefficients other than the time in the function may be performed.
  • Example 1 of the present invention an example will be described in which the estimated ovulation time teo is acquired by fixing the approximate LH concentration time change profile AP (T) based on the flow of FIG.
  • T approximate LH concentration time change profile
  • Non-Patent Document 3 unlike many other documents, serum LH test and follicular ultrasonography are performed at 4-hour intervals, so high time accuracy of about 4 hours can be obtained for TP (T).
  • T11 144.
  • T1 -96
  • T2 -72
  • T3 -48
  • T4 -24
  • T8 72
  • T9 96
  • T10 120
  • T11 144.
  • TP (T) be the black circle plot and the solid broken line connecting them.
  • T5 0, TP (T) shows an LH surge peak with a maximum value of 200 ⁇ 89 ⁇ mIU / ml.
  • the standard time is set to a random value -96 + R (# 1) in the range of -96 ⁇ T ⁇ ⁇ 72, and the random value RP between the above broken line 1 and the broken line 2 at this standard time -96 + R (# 1)
  • the LH surge peak in Table 3 is used. Estimate time tp and compare their performance. At this time, among the information in Table 2, when the time when the LH concentration quantitative value first exceeds the concentration threshold Ct is tm (m is any of 1, 2, 3, ...), t1, t2, ⁇ ⁇ Use only tm information.
  • the information in Table 2 is data that is randomly distributed according to the actual situation both in the time axis direction and in the concentration axis direction, so it is considered appropriate for comparing the ovulation time estimation methods.
  • the LH surge peak time is estimated by a conventional method with quantitative LH inspection.
  • the correct LH surge peak time tp is recorded, and at the same time, the deviation from each estimated LH surge peak time tep.
  • a cross is indicated in the column.
  • the concentration threshold Ct is often unknown or the concentration threshold Ct is often deviated from the optimum value 60. Even if the LH simple test kit is the same product, the concentration threshold Ct varies depending on individual differences. For example, if the concentration threshold Ct varies between 30 and 120, tep varies between the threshold 30 AV and SD in Table 4 and the threshold 120 AV and SD, so the LH surge peak time estimation performance is quantitative. It is inferior to some conventional methods.
  • the LH surge peak time tep is estimated according to the present invention.
  • AP (T) 200 does not have to be a condition.
  • This AP (T) is shown by a solid line in FIG. 13 together with the black circle plot and error bar in FIG.
  • Fig. 14 the time axis is converted from the standard time T to the sample collection time t, the data of # 7 in Table 2 is indicated by a rhombus plot, and AP (t) is indicated by a solid line. Add arrows to the first three square plots used for fitting.
  • the approximate LH concentration time change profile AP (T) is expressed by a line segment.
  • AP (T) 5.67 * T + 200 (0 ⁇ AP (T) ⁇ 200), which is indicated by a solid line in FIG. 15 together with the black circle plot and error bar in FIG.
  • the time axis is converted from the standard time T to the sample collection time t, the data of # 7 in Table 2 is indicated by a rhombus plot, and AP (t) is indicated by a solid line.
  • Table 5 The results of similar estimations for all cases # 1 to # 10 are summarized in Table 5 as “Method 2”. As in Table 4, the number of deviations, tp, AV, SD, and x are also shown.
  • FIG. 17 shows the frequency distribution of 100 deviations according to each method.
  • the upper part of Fig. 17 shows the conventional method (threshold 30) as a black triangle plot, the conventional method (threshold 60) as a black circle plot, and the conventional method (threshold 120) as a black square plot.
  • the lower part of Fig. 17 shows this method 1 as a round plot. This method 2 is indicated by a white triangle plot.
  • the threshold 60 is optimal, and the LH surge peak time can be estimated with an accuracy of ⁇ 14 ⁇ 12 hours 14 hours before the average.
  • the value of 14 is a value determined by TP (T), Ct, and the time interval of sample collection, and can be derived by the above analysis.
  • this method is another means for solving the problems of the present invention.
  • this method does not change the standard deviation of the deviation, so the performance is lower than Method 1 and Method 2.
  • the LH inspection does not have quantification, it is difficult to apply this method because the threshold value varies.
  • Method 1 and Method 2 have almost the same performance, and the deviation and its variation are greatly reduced compared to the conventional method (threshold value 60).
  • Example 2 will be described.
  • the approximate LH concentration time variation profile AP (T) was fixed and the performance evaluation of ovulation time estimation was performed.
  • AP based on the LH test results of individual physiological cycles of individual subjects The performance of ovulation time estimation is improved by renewing or improving T).
  • Non-Patent Document 4 attempts to estimate the date of ovulation by LH test by conducting urinary LH test and follicular ultrasonography on a large number of female subjects.
  • the main cause is considered to be that the sample has changed from serum to urine, but there are other differences in conditions such as the sample pretreatment method, the LH concentration quantitative measurement method, and the sample collection target population.
  • Example 1 is a comparison between the conventional method and the present method with the conditions fixed without considering these differences, but the comparison result is considered to be effective under other conditions.
  • the ovulation time was estimated by this method 1 for 5 cases # 6 to # 10 using this AP (T) and Cs, the deviation was 5 ⁇ 8.
  • Non-Patent Document 4 there is a significant improvement in ovulation time estimation.
  • the second physiological cycle is over and only the LH concentration quantitative values of # 1 and # 2 are obtained.
  • the method of renewing and improving AP (T) shown in this embodiment is an example, and the same effect can be obtained by other methods.
  • LH concentration quantification means including time measurement means is required.
  • an immunoassay apparatus for clinical tests may be used as a high-precision quantitative measurement method, it is not realistic in terms of apparatus cost and installation space to perform daily tests at home.
  • devices that automatically read optically and quantify the substances to be tested instead of visually reading the results of various test kits using immunochromatography, devices that automatically read optically and quantify the substances to be tested have been developed by Roche Diagnostics Co., Ltd., Otsuka Electronics ( Etc.) are sold for in-situ inspection (POCT).
  • the simple quantitative inspection kit proposed in Patent Document 3 solves the above-described problems of quantitative accuracy, device size, and device cost, and is suitable for implementation of the present invention.
  • the effect of the present invention is further enhanced by improving the kit of Patent Document 3.
  • FIG. 20 shows a schematic diagram of the simple quantitative inspection kit and system of the present invention.
  • An external measurement device such as the reader 202 or the personal computer 203 includes at least memories 205 and 208 and calculation units 206 and 209, and the results calculated by the method of the present invention using the inspection device 201 are displayed on the display units 204 and 207.
  • FIG. 21 is a schematic diagram of the case where an optical sensor chip is used, in which the color reaction of the immunochromatography method is switched to a luminescent reaction, and an RFID equipped with a photosensor in the luminescent reaction part on the permeable membrane inside the container of the inspection device 201 A chip (light sensor chip) is installed and the emission intensity is measured.
  • FIG. 21 is a schematic diagram of the case where an optical sensor chip is used, in which the color reaction of the immunochromatography method is switched to a luminescent reaction, and an RFID equipped with a photosensor in the luminescent reaction part on the permeable membrane inside the container of the inspection device 201 A chip (light sensor chip
  • the inspection device 22 schematically shows the flow of the substance to be inspected, the flow and localization of various reagents, and the luminescence reaction on the permeable membrane in the inspection device 201.
  • nitrocellulose is used for the osmotic membrane, but other materials may be used.
  • the immobilized antibody is immobilized in the test part that becomes the luminescence reaction part, the photosensor chip is arranged at this position, and the photosensor chip is also arranged in the blank part as a reference in the vicinity thereof.
  • the enzyme-labeled antibody is held in a dry state in the specimen absorption part (urine absorption part) on the left end side of the osmosis membrane.
  • the antigen (LH) which is the test substance in the sample
  • the enzyme-labeled antibody binds to the enzyme-labeled antibody, and at the same time, through the osmotic membrane toward the right end by capillary action.
  • the antigen also binds to the immobilized antibody, a sandwich complex of the immobilized antibody-antigen-enzyme labeled antibody is formed in the test part.
  • the enzyme-labeled antibody that does not form a sandwich complex passes through the test part and is absorbed by the solution absorption part.
  • Luminescence intensity measurement has a wider linear response range with respect to the concentration of the test target substance than that of color intensity measurement, and therefore has excellent sensitivity and dynamic range for the determination of the test target substance.
  • FIG. 23 shows the results of a calibration curve obtained by quantitative measurement of hCG, which is a pregnancy test marker, instead of LH as the test object by this method.
  • the horizontal axis represents the hCG concentration
  • the vertical axis represents the emission intensity.
  • the light emission intensity is obtained by integrating the output difference between the test part and the blank part for a certain period of time.
  • the hCG concentration of 10 0 to 10 1 ng / ml is a transition region from negative to positive, and the detection lower limit concentration exists in this concentration range.
  • the inspection device has a light shielding structure, and adverse effects due to ambient light can be avoided. There is no window for viewing from the outside of the container of the inspection device.
  • the inspection device is in a sealed state, it is possible to prevent the attached urine from being contaminated to the outside. Since the RFID chip (photosensor chip) is supplied with driving power wirelessly by a reader 212 outside the inspection device as shown in FIG. 21B, the inspection device and the optical sensor chip do not have a power source such as a battery. Therefore, the inspection device can be made disposable by suppressing the unit price by mass production of the optical sensor chip and reducing the manufacturing cost of the inspection device.
  • the inspection device 211 is connected to the reader 212 as shown in FIG.
  • the reader 212 is equipped with a battery as a power source.
  • the reader is not disposable, but is used for multiple inspections.
  • the reader 212 wirelessly feeds and controls the optical sensor chip 211 and reads the optical sensor chip ID and emission intensity data. That is, the inspection device and the reader are not connected by wire. This also contributes to a reduction in the manufacturing cost of the inspection device and at the same time improves the connection reliability.
  • it is desirable that the reader has a socket structure of the inspection device as shown in FIG. Conversely, there is no worry that the data transfer here will be read by others from a distance.
  • the connected inspection device and the reader can be stored in a small bag such as a cosmetic pouch. This is effective for conducting inspections at places other than home, such as toilets at work.
  • the emission intensity data is stored in a memory mounted on the reader.
  • the predetermined switch on the reader is pressed to transmit the emission intensity data to the external measuring device, here the user.
  • time information it is good to memorize
  • any means such as infrared communication, ZigBee, etc. may be used, but safety is ensured so that it cannot be read by others.
  • the mobile phone is preinstalled with LH concentration analysis software, ovulation time estimation software, and display software, and data necessary for analysis by the software is stored in the memory.
  • the LH concentration analysis software quantifies the LH concentration by analyzing the luminescence intensity data, and the ovulation time estimation software estimates the LH surge start time, LH surge peak time, and ovulation time from the LH concentration quantitative value using a unique algorithm, and the display software Displays the LH concentration quantitative value, estimated ovulation time, etc. on the display as numerical values, tables, graphs, etc.
  • the mobile phone has a function of storing emission intensity data and subsequent processing data. In recent years, most people already own and carry their own mobile phones, so by using the mobile phone as an information processing device for computing and displaying results, the simple quantitative test kit and the entire system can be substantially In addition, the cost can be reduced and the size can be reduced.
  • the information processing apparatus may be a personal computer or a portable information terminal as shown in FIG. 20, or a dedicated information processing apparatus. Further, the connection between the reader and the information processing apparatus may be wired, and the reader and the information processing apparatus may be separate devices as shown in FIG. 20, or may be an integrated structure device. In either case, only the inspection device is disposable for each inspection, and it is desirable that the reader and the information processing apparatus are repeatedly used for a plurality of inspections.
  • the external measuring device may incorporate the optical sensor as shown in FIG. good.
  • a window is provided in the container of the inspection device so that the luminescence reaction can be measured from the outside of the container. If the window is closed with a transparent material such as glass, the sealed state of the container can be maintained.
  • the optical sensor of the external measurement device is connected to the container as shown in FIG. It becomes possible to measure the luminescence reaction in the test part inside the container close to the window.
  • the external measuring device shows only a part near the optical sensor.
  • the external measuring device includes at least a circuit for measuring emission intensity, a storage element for storing emission intensity data and time, and a battery for a power source for driving these. Therefore, the element of the optical sensor does not need to have a wireless communication function. Further, the optical sensor can be used repeatedly without being disposable.
  • the inspection device does not need to incorporate an optical sensor chip, it can be manufactured at a lower cost and is more suitable for disposable use.
  • the information processing apparatus that performs calculation and result display may be built in the external measurement device, or may be connected to the external storage device wirelessly or by wire.
  • Example 4 on the display of an information processing device such as a mobile phone, personal computer, or portable information terminal, the LH concentration quantification result, LH surge start time, LH surge peak time, ovulation time, sex timing suitable for pregnancy ( Estimated results such as the period of pregnancy) and the timing of sex suitable for contraception (contraception period) are displayed.
  • an information processing device such as a mobile phone, personal computer, or portable information terminal
  • FIG. 25 (A) shows an example of the result display of the LH concentration quantitative value on the third day from the start of the LH test. Show the bar graph with the quantitative values of LH concentration on the 1st and 2nd days so that the transition of the LH concentration can be seen at a glance. By changing the color of the LH concentration quantitative value on the third day, it is easy to understand that it is the latest data at the present time.
  • the horizontal axis indicates the number of days counted from the start of the LH test, but may indicate the number of days counted from the start of menstruation or a date such as “10/15”.
  • “October 17th (Friday) at 7:00 am, sample collection day: 3rd day, LH concentration: 72 (mIU / ml)” will be shown together so that the current quantitative LH concentration can be determined. To do.
  • the results may be displayed in a graph or table other than the bar graph. Also, since the LH concentration quantitative value on the third day exceeds the concentration threshold value 60, the message “LH concentration exceeds the threshold value. Do you want to estimate the ovulation time?” Is displayed and the user is asked whether execution is possible.
  • the LH surge peak time is estimated according to Method 1 of Example 1 and the result is shown as FIG. 25 (B).
  • the estimation may be performed according to the method 2 of the first embodiment and other algorithms.
  • the LH concentration quantitative value is shown as a rhombus plot, and for the third day, the color of the plot is changed to make it easy to understand that it is the latest data at the present time.
  • the horizontal axis shows the number of days from the start of the LH test, and each day starts at 7:00 am.
  • the result of fitting a Gaussian distribution, which is an approximate LH concentration time change profile, is displayed, and the peak time is displayed as “estimated LH surge peak time: October 18 (Sat) 4 am”.
  • This time is 69 hours after 7 am (Wednesday), October 15, 2008 (Wednesday), when the LH test starts, and is consistent with the results in Table 5.
  • it is expressed as “estimate LH surge peak 21 hours from now”, “estimate LH surge peak within 24 hours from now”, “estimate LH surge peak 12 to 24 hours from now”. It is also effective to clarify the comparison with the current time of Friday, October 17, 2008 at 7:00 am.
  • the error of the estimated LH surge peak time can be expected, for example, if the error is ⁇ 7 hours, “estimated LH surge peak time: Saturday, October 18 4 ⁇ 7 am” or “estimated LH surge peak time: 10 May 17 (Friday) from 9:00 pm to October 18 (Saturday) at 11:00 am ”.
  • the LH surge start time may be estimated and the result may be displayed.
  • the probability distribution of the ovulation time is a Gaussian with a standard deviation of 5 hours. Since the distribution can be assumed, the probability distribution is displayed so as to overlap with the fitting result of the approximate LH concentration time change profile as shown in FIG.
  • the two Gaussian distributions are color-coded, or one Gaussian distribution region is colored so that they can be easily distinguished from each other. Also, as shown in Fig.
  • the pregnancy possible period and the contraceptive possible period are displayed as shown in FIG.
  • the sperm survival time is 48 hours and the egg survival time is 12 hours
  • this time domain is the fitting result of the approximate LH concentration time change profile and It is displayed overlapping the time region of the estimated ovulation time.
  • the period other than the pregnancy possible period is a contraceptive period
  • Fig. 26 (B) "Contraception possible period:-October 16 (Thursday) 9:00 am, October 19 (Sunday) am 7 o'clock ”is displayed, and this time region is displayed so as to overlap with the fitting result of the approximate LH concentration time change profile and the time region of the estimated ovulation time.
  • the contraceptive period and the estimated ovulation time are displayed in different colors so that they can be easily distinguished from each other.
  • timing therapy can be effectively performed by displaying advice more specifically according to the user's needs.
  • the ovulation time is estimated before ovulation for the purpose of estimating the ovulation time early and with high accuracy, but also using the results of the LH test after ovulation, Therefore, the ovulation time may be estimated by the method of the present invention. Since the latter case uses a larger amount of information for estimation, the accuracy of ovulation time estimation is further improved. This allows you to look back on the past after ovulation, check the transition, evaluate your own judgment and behavior, and improve the probability of pregnancy after the next time by reflecting it in the subsequent judgment and behavior. Become. In addition, displaying the history of the user's LH test results for each menstrual cycle or displaying the history of a plurality of organizing cycles in an overlapping manner can be useful for timing determinations from the next time onward.
  • the LH surge peak time or LH surge start time is estimated from the LH concentration quantitative value, and the ovulation time is estimated based on these times, but the method of the present invention is used for hormones other than LH. May be.
  • estradiol estradiol
  • estradiol is a hormone that is secreted by many women just before ovulation, just like LH.
  • Non-Patent Document 7 it is known that the peak of estradiol concentration change profile exists about 24 hours before the peak of LH surge, and ovulation occurs about 34 hours after the peak time of estradiol concentration change profile. ing.
  • the ovulation time can be estimated earlier than in the case of LH. .
  • a more accurate estimated ovulation time can be derived. It is easy for the user to display the concentration change profiles and estimated ovulation times of a plurality of hormones or to display the integrated estimated ovulation times in an overlapping manner.
  • the sum of probability distributions of ovulation times obtained for each may be used, or a product may be used.
  • an estimation method of ovulation time using basal body temperature may be displayed together with this method. For example, if the changes in basal body temperature and changes in the LH concentration quantitative value for each day are overlaid, and the ovulation time estimated from each or the integrated estimated ovulation time is overlaid, more accurate ovulation time estimation is possible. Become.
  • the present invention provides a test kit and system for hormones such as LH that realizes early and highly accurate ovulation time estimation.

Abstract

Provided are a method and a system for enabling highly accurate estimation of LH surge peak time and ovulation time at the early stage. A method which comprises: collecting urine samples of a single subject at intervals of 24 hours during a single menstruation cycle; determining luteinizing hormone (LH) in the samples to give LH concentrations (quantitative values) (a diamond plot); at the point (48 hours of the sampling) when the LH concentration exceeds a predetermined LH concentration threshold (60 mlU/ml), fitting a predetermined LH concentration time-change function (Gauss distribution) for the LH concentrations (quantitative values) obtained until that point (three diamond plots indicated by the arrows) using the least squares method; estimating the peak time of the function after the fitting as the LH surge peak time (69 hours of the sampling); and estimating the ovulation time based on the LH surge peak time.  The dotted line indicates the correct LH surge peak time (75 hours of the sampling).

Description

妊娠支援方法、システム及びキットPregnancy support method, system and kit
 本発明は、血液、尿、唾液、等々の生体試料に含まれる、核酸、タンパク質、微生物などの生体物質を分析対象とする分析システムおよび方法に関する。特に、女性の妊娠支援のための排卵時刻推定を目的とする、尿中に含まれる黄体化ホルモンを分析対象とするモニタ方法、モニタシステム及び検査キットに関する。 The present invention relates to an analysis system and method for analyzing biological substances such as nucleic acids, proteins and microorganisms contained in biological samples such as blood, urine and saliva. In particular, the present invention relates to a monitoring method, a monitoring system, and a test kit for analyzing luteinizing hormone contained in urine for the purpose of estimating ovulation time for supporting pregnancy of women.
 少子化は最も重要な国家課題のひとつである。2005年の日本の合計特殊出生率は1.26(出生数106万人)と戦後最低を記録し、人口減少社会に突入した。主な原因として、女性の社会進出、経済的自立を背景とする未婚化、晩婚化、晩産化が挙げられる。一方、これらは女性個人にとっても切実な課題である。本人の社会的および経済的な問題だけでなく、望んでも妊娠出来ないと言う不妊の問題が大きい。非特許文献1によれば、子供ができる年代(生殖年齢)の夫婦の約10%、140万組の夫婦が子供を持たず、この内の半数の70万組の夫婦が不妊を心配している(国立社会保障・人口問題研究所 出生動向基本調査)。これに対して、実際に不妊治療を受けている夫婦は30万組に過ぎず(厚生労働省推計)、その半数の15万組の夫婦が子供を授かっている(日経メディカル推計)。不妊治療を受けない理由は、「病院で治療してまで子供を持ちたいと思わない」、「不妊治療はお金がかかる」「子供を持つことに対して夫婦間で気持ちが一致しない」、「どの病院を受診したら良いか分からない」等、様々である。働く女性にとっては、仕事と治療の両立が困難であり、これらの二者択一を迫られる等、事情はさらに深刻である(非特許文献2)。 Declining birthrate is one of the most important national issues. In 2005, Japan's total fertility rate reached 1.26 (1.06 million births), the lowest after the war, and entered a society with a declining population. The main causes are women's social advancement, unmarried women, late marriage and late birth due to economic independence. On the other hand, these are serious issues for women. Not only the social and economic problems of the person, but also the problem of infertility that you cannot get pregnant if you want. According to Non-Patent Document 1, about 10% of couples of the age (reproductive age) that children can make, 1.4 million couples do not have children, and half of them 700,000 couples are worried about infertility Yes (National Institute of Population and Social Security Research Basic Survey on Birth Trends). On the other hand, only 300,000 couples are actually receiving infertility treatment (estimated by the Ministry of Health, Labor and Welfare), and half 150,000 couples have children (Nikkei Medical Estimate). Reasons for not receiving infertility treatment are: “I don't want to have a child until after treatment in the hospital”, “Infertility treatment costs money”, “I do n’t agree with my husband ’s feelings about having a child,” “ I don't know which hospital I should go to. " For working women, it is difficult to achieve a balance between work and treatment, and the situation is more serious, such as being forced to choose between these two options (Non-patent Document 2).
 不妊治療には主に、(1)タイミング療法、(2)ホルモン療法、(3)人工授精、(4)体外受精があり、一般にこの順番でステップアップしながら行われる。例えば、最初の3ヶ月間は(1)を実施し、この段階で妊娠に至らなければ、次の3ヶ月間は(1)を併用しながら(2)を実施する等である。(1)~(3)は一般不妊治療、(4)は高度不妊治療とも呼ばれる。非特許文献1および不妊治療を実施する各病院のホームページによれば、妊娠がどのステップで成功したかの統計的な割合は、(1)が14%、(2)が33%、(3)が19%、(4)が34%程度である。 不 Infertility treatment mainly includes (1) timing therapy, (2) hormone therapy, (3) artificial insemination, and (4) in vitro fertilization, which are generally performed while stepping up in this order. For example, perform (1) for the first 3 months, and if you do not become pregnant at this stage, perform (2) while using (1) for the next 3 months. (1) to (3) are also called general fertility treatments, and (4) is also called advanced fertility treatments. According to Non-Patent Document 1 and the homepages of hospitals that conduct infertility treatment, the statistical proportion of successful pregnancy steps is 14% for (1), 33% for (2), and (3) Is 19% and (4) is around 34%.
 仮に、(1)を病院に通院せずに、同等のレベルを自宅で簡単に実施できるようになれば、不妊を心配しながら不妊治療を受けていない40万組の夫婦は、上記の精神的・経済的・物理的な障壁が低くなるため(1)に取り組み易くなり、救われる可能性が生じる。40万組の夫婦すべてが(1)に取り組めば、新たに40万組×50%×14%=3万組の夫婦が妊娠に至ると期待される。この数は統計上そのまま出生数の増加分につながる。また、それでも妊娠に至らない残りの37万組の夫婦は早期に問題認識ができるため、病院に通って(2)以降の不妊治療を受ける動機付けがなされ、結果として早期に妊娠に至ると期待される。 If the same level can be easily implemented at home without going to the hospital (1), 400,000 couples who are concerned about infertility and who have not received infertility treatment will・ Economical / physical barriers will be lower, making it easier to work on (1) and potentially being saved. If all 400,000 couples work on (1), it is expected that 400,000 couples x 50% x 14% = 30,000 couples will become pregnant. This number is statistically linked to the increase in the number of births. In addition, the remaining 370,000 couples who still do not become pregnant are able to recognize problems early, so they are motivated to go to hospitals and receive infertility treatment after (2), resulting in early pregnancy as a result. Is done.
 (1)タイミング療法とは、排卵日の前後が最も妊娠しやすい時期であることを踏まえて、排卵日を推定し、それに合わせてセックスのタイミングを合わせる方法である。排卵日の推定には、(A)基礎体温計測、(B)尿中LH簡易検査、(C)卵胞サイズ計測の3つの方法が良く知られている。 (1) Timing therapy is a method of estimating the date of ovulation based on the fact that the period before and after the date of ovulation is most likely to become pregnant, and adjusting the timing of sex accordingly. There are three well-known methods for estimating the date of ovulation: (A) basal body temperature measurement, (B) simple urinary LH test, and (C) follicle size measurement.
 (A)は古くより知られ、最も普及している方法であり、婦人用電子体温計を用いて行う。女性は、月経が始まると低温期が続き、排卵日を境にして低温期から高温期に移行し、次の月経の直前で低温期に戻る変化幅0.3~0.5℃の基礎体温サイクルを繰り返す。基礎体温の上昇が排卵日を過ぎてから生じるため、基礎体温上昇を待ってタイミングを合わせたのでは手遅れである。このため、個人の基礎体温サイクルを数回学習し、それに基づいて排卵日を推定する。しかし、体温計測そのものが不安定であることに加えて、体調等によって排卵日が前後するため、排卵日推定に±3日程度の誤差を生じると言われている。 (A) is a method that has been known for a long time and is the most popular method, and is performed using a female thermometer. When menstruation begins, the low temperature period continues, transitions from the low temperature period to the high temperature period after the day of ovulation, and repeats a basal body temperature cycle with a change range of 0.3 to 0.5 ° C that returns to the low temperature period just before the next menstruation. Since the rise in basal body temperature occurs after the day of ovulation, it is too late to wait for the rise in basal body temperature and adjust the timing. For this reason, the individual's basal body temperature cycle is learned several times, and the date of ovulation is estimated based on this. However, in addition to the unstable body temperature measurement itself, the date of ovulation changes depending on the physical condition and the like, and it is said that an error of about ± 3 days is caused in the estimation of the ovulation date.
 (B)は、簡易検査デバイスであるイムノクロマト法を用いて、下垂体から分泌される黄体化ホルモン(Luteinizing Hormone, LH)を尿中で捕らえる方法である。LHの放出は一気に生じるためLHサージと呼ばれ、その濃度の時間変化は血液や尿中で半値幅が24時間程度、底辺幅が48時間程度の山型プロファイルを示す。LHサージにより排卵が促され、LHサージ開始から36時間程度、LHサージピークから12時間程度で排卵が生じることが知られている。ここで、LHサージピークは山型プロファイルの頂点、LHサージは山型プロファイルそのものを指すことにする。排卵想定日の数日前より24時間程度の間隔で時間離散的に尿中LH検査を繰り返し、得られた信号を元に排卵日を推定する。イムノクロマト法の原理は以下の通りである。ハンディーサイズの短冊形状の検査デバイスの容器の内部に収納されたニトロセルロース等の浸透膜に、検査対象となる抗原(本検査の場合はLH)に対する1次抗体(固定化抗体)をあらかじめ所定位置に固定化し、抗原を含む血清や尿等の検体と、酵素を標識した抗原に対する2次抗体(酵素標識抗体)を含む溶液を毛細管現象を利用して浸透膜に浸透させると、先の所定位置において固定化抗体-抗原-酵素標識抗体のサンドイッチ複合体が形成される。ここで酵素基質を浸透膜に浸透させると、所定位置において酵素反応に基づいて呈色反応が生じる。呈色反応は抗原の検出下限濃度を境に無(陰性)から有(陽性)に遷移する。この呈色の有無を容器の窓を通して外部から目視により識別することにより、抗原の有無を検査する。本法は定量性を持たない定性計測であるが、一連の処理が簡単で5-30分程度で終了する上、特別な装置を必要としないため、LHに限らず様々な検査対象の簡易検査法として普及している。 (B) is a method of capturing luteinizing hormone (Luteinizing Hormone, LH) secreted from the pituitary gland in the urine using immunochromatography, which is a simple test device. Since LH release occurs at once, it is called LH surge, and the change in concentration over time shows a mountain profile with a half width of about 24 hours and a base width of about 48 hours in blood and urine. It is known that ovulation is promoted by LH surge, and ovulation occurs in about 36 hours from the start of LH surge and in about 12 hours from LH surge peak. Here, the LH surge peak indicates the peak of the peak profile, and the LH surge indicates the peak profile itself. The urinary LH test is repeated discretely at intervals of about 24 hours from several days before the expected date of ovulation, and the date of ovulation is estimated based on the obtained signal. The principle of the immunochromatography method is as follows. The primary antibody (immobilized antibody) against the antigen to be tested (LH in the case of this test) is placed on the permeable membrane such as nitrocellulose stored inside the container of the handy strip-shaped test device in advance. When a solution containing a serum or urine sample containing an antigen and a secondary antibody (enzyme-labeled antibody) against an enzyme-labeled antigen is permeated into the osmotic membrane using capillary action, A sandwich complex of immobilized antibody-antigen-enzyme labeled antibody is formed. Here, when the enzyme substrate is permeated into the permeable membrane, a color reaction occurs based on the enzyme reaction at a predetermined position. The color reaction transits from none (negative) to present (positive) at the lower limit of detection of antigen. The presence or absence of the antigen is examined by visually identifying the presence or absence of coloration from the outside through the window of the container. This method is a qualitative measurement that does not have quantitativeness, but since a series of processing is simple and completes in about 5-30 minutes, and no special equipment is required, it is not limited to LH. It is popular as a law.
 (C)は経膣超音波診断により卵胞を直接観察する方法である。卵胞サイズは排卵日前日に18~23 mm、排卵直前に21~27 mmになることが知られている。病院における(1)タイミング療法では、(B)と(C)を併用するのが信頼性が高く、一般的になっている。しかし、現在の技術では(C)を病院以外で行うことは困難であるため、家庭で簡便に実施できるタイミング療法としては(B)が中心となる。この目的で、LH簡易検査キットは医療用だけでなく、一般用として薬局で販売されている。 (C) is a method of directly observing the follicle by transvaginal ultrasound diagnosis. The follicle size is known to be 18-23 mm on the day before ovulation and 21-27 mm just before ovulation. In (1) timing therapy in hospitals, the combination of (B) and (C) is highly reliable and common. However, with current technology, it is difficult to perform (C) outside a hospital, so (B) is the main timing therapy that can be easily performed at home. For this purpose, LH simple test kits are sold not only for medical use but also for general use at pharmacies.
 血清中および尿中のLH濃度の時間変化と排卵時刻の関係、およびその関係を利用した排卵日推定についての知見が様々な文献で報告されている。非特許文献3では、多数の女性被験者を対象に血清中LH検査および卵胞超音波検査を実施することにより、LH検査による排卵日推定を試みている。他の多くの文献は24時間間隔で同検査を行っているのに対して、非特許文献3は4時間間隔で同検査を行っているため、最も時間精度が高い文献のひとつである。また、LH検査はラジオイムノアッセイによる高精度定量計測である。これらより、本文献は最も高精度な知見を提供していると考えられる。血清中のLH濃度時間変化はおおよそ、ベースライン20 mIU/ml、ピークの高さ200 mIU/ml、標準偏差14時間程度のガウス曲線のプロファイルとなり、LHサージ開始時刻から27時間20分後、およびLHサージピーク時刻から10時間後に排卵が生じるとの結論が得られている。ここでLHサージ開始時刻は血清中LH濃度が閾値60 mIU/mlを超える時刻と定義されている。これらの知見を元にLH検査結果から排卵日推定を行うことができる。 The knowledge about the relationship between the time change of LH concentration in serum and urine and the time of ovulation, and the estimation of ovulation date using the relationship has been reported in various literatures. In Non-Patent Document 3, an attempt is made to estimate the date of ovulation by LH test by conducting serum LH test and follicular ultrasonography for a large number of female subjects. While many other documents perform the same inspection at intervals of 24 hours, Non-Patent Document 3 performs the same inspection at intervals of 4 hours, and thus is one of the documents with the highest time accuracy. The LH test is a highly accurate quantitative measurement by radioimmunoassay. From these, this document is considered to provide the most accurate knowledge. The time course of serum LH concentration is roughly a Gaussian profile with a baseline of 20 μmIU / ml, a peak height of 200 μmIU / ml, and a standard deviation of about 14 hours, 27 hours and 20 minutes after the start of the LH surge, and It is concluded that ovulation occurs 10 hours after the LH surge peak time. Here, the LH surge start time is defined as the time when the serum LH concentration exceeds the threshold of 60 μmIU / ml. Based on these findings, the ovulation date can be estimated from the LH test results.
 非特許文献4では、尿中LH検査による排卵日推定を試みている。血清中と尿中のLH濃度の時間変化は、ベースラインやピーク高さは異なるがプロファイルはほぼ相似形状となり、タイムラグは数時間程度になると考えられている。非特許文献4では、このタイムラグは2時間程度と報告されている。また、LH濃度の時間変化プロファイルは、検体の種類だけでなく、検体前処理法、LH濃度の定量計測法、検体採取対象の母集団の違い等によっても変化すると考えられる。 Non-patent document 4 attempts to estimate the date of ovulation by urinary LH test. It is considered that the time change of LH concentration in serum and urine is different in baseline and peak height, but the profile is almost similar and the time lag is about several hours. Non-Patent Document 4 reports that this time lag is about 2 hours. In addition, it is considered that the time change profile of the LH concentration changes depending not only on the type of sample but also on the sample pretreatment method, the quantitative measurement method of the LH concentration, the difference in the population of sample collection targets, and the like.
 LH簡易検査キットを用いた排卵日推定の有効性についての知見も様々な文献で報告されている。非特許文献5では、市販キットOvuquick(Quidel社)を用いて26人の女性被験者を対象に尿中LH検査を実施したところ、全件陽性検出された。この内、排卵時刻に先行する0-24時間の範囲で陽性検出されたのが19件(73%)、0-48時間で陽性検出されたのが24件(92%)となり、LH簡易検査キットが排卵日推定に有効であることを示されている。 The knowledge about the effectiveness of ovulation day estimation using the LH simple test kit is also reported in various literatures. In Non-Patent Document 5, when a urine LH test was performed on 26 female subjects using a commercially available kit Ovuquick (Quidel), all cases were positively detected. Among these, 19 cases (73%) were positively detected in the range of 0-24 hours preceding the ovulation time, and 24 cases (92%) were positively detected in 0-48 hours. The kit has been shown to be effective in estimating ovulation dates.
 非特許文献6では、5種類の市販キットClearPlan Easy One-Step(Unipath Diagnostics社)、OvuKit Self-Test(Quidel社)、OvuQuick Self-Test(Quidel社)、Sure Step Ovulation Predicator(Applied Biotech社)、EZ-LH One Step Ovulation Kit(Norwell Technologies社)による尿中LH検査と、高精度定量計測であるラジオイムノアッセイを11人の女性被験者を対象に比較している。LHサージピーク濃度は13.5~73.0 mIU/mlの範囲でばらつき、8例でピーク時刻から24時間以内に排卵が生じ、2例でピーク時刻から24~48時間で排卵が生じた。これに対して各キットの陽性検出下限濃度は25.5~48.7 mIU/mlの範囲でばらつき、最も高感度なキットClearPlan Easy One-Stepは6例、最も低感度なキットEZ-LH One Step Ovulation Kitは3例を陽性検出した。また、各キットで陽性と陰性の間にボーダーとなる濃度範囲が認められた。 In Non-Patent Document 6, five commercial kits ClearPlan Easy One-Step (Unipath Diagnostics), OvuKit Self-Test (Quidel), OvuQuick Self-Test (Quidel), Sure Step Ovulation Predicator (Applied Biotech), The urinary LH test by EZ-LH One Step Ovulation Kit (Norwell Technologies) and radioimmunoassay, which is a high-precision quantitative measurement, are compared for 11 female subjects. LH surge peak concentrations varied from 13.5 to 73.0 ~ mIU / ml, ovulation occurred within 24 hours from the peak time in 8 cases, and ovulation occurred in 24 to 48 hours from the peak time in 2 cases. On the other hand, the positive detection lower limit concentration of each kit varies in the range of 25.5-48.7 mIU / ml, the most sensitive kit ClearPlan Easy One-Step is 6 cases, the least sensitive kit EZ-LH One Step Ovulation Kit is Three cases were positively detected. In addition, a concentration range bordering between positive and negative was observed in each kit.
 特許文献1では、エストロゲン、プロゲステロン、またはLH、等の月経関連ホルモンを24時間間隔で定量測定し、濃度定量値があらかじめ設定された濃度閾値を超えたことを確認した時点で、排卵期、排卵日、月経開始日、出産予定日、等を推定する方法を提案している。LH検査の場合、LH濃度定量値があらかじめ設定された濃度閾値を超えたことを確認した時点で、もしくは濃度プロファイルのピークを過ぎたことを確認した時点で、それぞれの時点の時刻にあらかじめ設定された時間幅を加えた時刻の日を排卵日として推定する。 In Patent Literature 1, menstrually related hormones such as estrogen, progesterone, or LH are quantitatively measured at 24-hour intervals, and when it is confirmed that the quantitative concentration exceeds a preset concentration threshold, the ovulation period, ovulation It proposes a method to estimate the day, the date of menstruation, the expected date of delivery, etc. In the case of an LH test, when it is confirmed that the LH concentration quantitative value has exceeded a preset concentration threshold, or when it has been confirmed that it has passed the peak of the concentration profile, it is preset at each time point. Estimated as the day of ovulation
 また、特許文献2では、エストロゲン、およびプロゲステロンを24時間間隔で定量測定し、各濃度定量値とその変化率に対してあらかじめ設定された基準に基づいて点数を与え、各累積点数があらかじめ設定された累積点数閾値を超えたことを確認した時点で、それぞれの時点の日を妊娠可能期間の開始日および終了日として推定する方法を提案している。さらに、特許文献3には、陽性または陰性定量計測する簡易定量検査キットが提案されている。また、非特許文献7によれば、エストラジオールの濃度変化プロファイルのピークはLHサージのピークよりも24時間程度前に存在し、エストラジオールの濃度変化プロファイルのピーク時刻から34時間程度後に排卵が生じることが知られている。 Also, in Patent Document 2, estrogen and progesterone are quantitatively measured at 24-hour intervals, points are given based on preset criteria for each concentration quantitative value and its rate of change, and each cumulative score is preset. When it is confirmed that the cumulative score threshold has been exceeded, a method for estimating the date of each time point as the start date and the end date of the fertile period is proposed. Furthermore, Patent Document 3 proposes a simple quantitative test kit that performs positive or negative quantitative measurement. In addition, according to Non-Patent Document 7, the peak of the estradiol concentration change profile exists about 24 hours before the peak of the LH surge, and ovulation occurs about 34 hours after the peak time of the estradiol concentration change profile. Are known.
特開2003-290230号公報Japanese Patent Laid-Open No. 2003-290230 特表平9-506713号公報Japanese National Patent Publication No. 9-506713 特開2007-333695号公報JP 2007-333695 A
 少子化問題の最も基本的な解決策のひとつは、妊娠を望む夫婦に少しでも早期かつ確実に妊娠をもたらすことである。病院に通わずに自宅で簡単にできるタイミング療法は、尿中LH簡易検査による方法が利用されているが、不妊を心配しているが病院への通院に至っていない40万組の夫婦を始め、より広い層へ普及させることが重要である。そのためには、病院に通院しなければできない卵胞サイズ計測を行わずとも、自宅で簡単にできるタイミング療法として、早期かつ高精度な排卵時刻推定を実現することが有効である。しかしながら、尿中LH簡易検査を含めて、LH濃度の時間変化と排卵時刻の関係に基づいて排卵時刻推定を従来技術の範囲内で行う場合、(1)一連の検体採取の時間間隔が粗いこと、すなわち検体採取時刻とLHサージのタイミングがずれること、(2)LH検査に定量性がないことにより、排卵時刻の推定実施が遅くなったり、推定排卵時刻の精度が低くなったりする。 One of the most basic solutions to the declining birthrate problem is to bring pregnancy to a couple who wants to become pregnant as soon as possible. The timing therapy that can be easily done at home without going to the hospital is based on the urinary LH simple test, but there are 400,000 couples who are worried about infertility but have not been to the hospital, It is important to disseminate to wider layers. For this purpose, it is effective to realize early and highly accurate ovulation time estimation as a timing therapy that can be easily performed at home without performing follicle size measurement that cannot be performed without going to a hospital. However, when performing ovulation time estimation within the scope of the prior art based on the relationship between time change of LH concentration and ovulation time, including simple urinary LH tests, (1) the time interval between collection of samples is coarse That is, the specimen collection time is shifted from the LH surge timing, and (2) the LH test is not quantitative, the estimation of the ovulation time is delayed or the accuracy of the estimated ovulation time is lowered.
 LHサージの時間幅(半値幅24時間程度)と比較して十分短い時間間隔、例えば4時間以下の時間間隔でLH検査を繰り返すためには、病院に入院でもしない限り不可能である。日常生活の中でLH検査を繰り返すのであれば24時間以上の時間間隔が許容であり、実際多くの市販LH簡易検査キットでは24時間程度の時間間隔、例えば毎朝起床後の最初の尿を用いることを推奨している。そこで以下ではLH検査の時間間隔を24時間に設定する。あらかじめ得られている知見として、LHサージ開始時刻と排卵時刻の間隔をΔtso、LHサージピーク時刻と排卵時刻の間隔をΔtpoとする。時刻の単位は、特に断りのない限り時間(hours)とし、小数点以下を四捨五入して表す。また、LH濃度の単位は、特に断りのない限りmIU/mlとし、小数点以下を四捨五入して表す。 It is impossible to repeat the LH test at a sufficiently short time interval compared to the LH surge time width (half-value width of about 24 hours), for example, at a time interval of 4 hours or less unless hospitalized. If you repeat the LH test in your daily life, a time interval of 24 hours or more is acceptable, and in fact many commercial LH simple test kits use a time interval of about 24 hours, for example, the first urine after getting up every morning Is recommended. Therefore, in the following, the time interval of LH inspection is set to 24 hours. As the knowledge obtained in advance, the interval between the LH surge start time and the ovulation time is Δtso, and the interval between the LH surge peak time and the ovulation time is Δtpo. The unit of time is hours (hours) unless otherwise specified, and rounded to the nearest decimal place. The unit of LH concentration is expressed as mIU / ml unless otherwise specified, and is rounded off after the decimal point.
 まず、LH検査に定量性がある場合を考える。特許文献1が対応している。特許文献2の場合は単純な濃度閾値ではなく、累積点数閾値を用いているが、閾値超過時刻において、閾値超過時刻を基準とする推定を行っているため、本質的に同じ性能である。LH簡易検査キットを用いずに高精度定量計測装置を自宅に置いてLH検査を行う。これには、装置コストを要する、自宅に装置を設置するスペースを要する、装置を操作する手間を要する、等の課題を伴う。検体採取時刻t=t1, t2, t3,・・・に対するLH濃度の定量値C(t)が増加から減少に転ずることを認めた時点であるLHサージピーク超過時刻tn(nは1, 2, 3,・・・のいずれか)は、実際のLHサージピーク時刻tpよりも後であるが(tp≦tn)、この時点でLHサージピーク超過時刻tnを推定LHサージピーク時刻tepとすることにより(tep=tn)、LHサージピーク時刻に基づいて推定排卵時刻teo=tep+Δtpoを導出可能になる。ここで、最初の検体採取時刻をt1=0とし、以降t2=24, t3=48,・・・とする。排卵時刻推定を行う時刻tnは実際の排卵時刻toの直前になったり(tn~to)、排卵時刻toを過ぎてしまうことがあるため(to≦tn)、この方法は早期の排卵時刻推定には不向きである。 First, consider the case where the LH test is quantitative. Patent document 1 corresponds. In the case of Patent Document 2, a cumulative score threshold is used instead of a simple density threshold, but since the estimation is performed based on the threshold excess time at the threshold excess time, the performance is essentially the same. A high-precision quantitative measurement device is placed at home without using a simple LH inspection kit and LH inspection is performed. This involves problems such as device cost, space for installing the device at home, and labor for operating the device. LH surge peak excess time tn (n is 1, 2, n2) when the quantitative value C (t) of LH concentration for sample collection time t = t1, t2, t3,. 3) is later than the actual LH surge peak time tp (tp ≦ tn). At this point, the LH surge peak excess time tn is set as the estimated LH surge peak time tep. (Tep = tn), the estimated ovulation time teo = tep + Δtpo can be derived based on the LH surge peak time. Here, the first specimen collection time is set to t1 = 0, and thereafter t2 = 24, t3 = 48,. The time tn when the ovulation time is estimated may be immediately before the actual ovulation time to (tn to to) or may pass the ovulation time to (to ≦ tn). Is unsuitable.
 同様に、LH濃度の定量値C(t)(t=t1(=0), t2(=24), t3(=48),・・・)が適当な濃度閾値Ctを超えた時点のLH濃度閾値超過時刻tm(mは1, 2, 3,・・・のいずれか)は、実際のLH濃度閾値時刻ttよりも後になる(tt≦tm)。この時点でLH濃度閾値超過時刻tmを推定LHサージピーク時刻tepとすることにより(tep=tm)、LHサージピーク時刻に基づいて推定排卵時刻teo=tep+Δtpoを導出可能になる。ここで、濃度閾値をLHサージ開始を示す濃度閾値Csに設定すると(Ct=Cs)、LHサージ開始超過時刻tmは、実際のLHサージ開始時刻tsよりも後になる(ts≦tm)。この時点でLH濃度閾値超過時刻tmを推定LHサージ開始時刻tesとすることにより(tes=tm)、LHサージ開始時刻に基づいて推定排卵時刻teo=tes+Δtsoを導出可能になる。検体採取時刻とLHサージのタイミングにより、LH濃度閾値超過時刻tmはtt≦tm≦tt+24およびts≦tm≦ts+24の範囲でばらつき得るため、tepおよびtes、およびそれらに基づくteoはいずれも少なくとも24時間のばらつきを有する。つまり、日単位よりも粗い分解能での排卵時刻推定になる。これはLHサージのプロファイルを考慮せずに、LHサージの有無を定量的に判断しているに過ぎないために生じている。tepやtesを表記しない場合であっても、tnやtmを基準に排卵時刻推定を行う場合も同等の性能となる。 Similarly, LH concentration when LH concentration quantitative value C (t) (t = t1 (= 0), t2 (= 24), t3 (= 48), ...) exceeds the appropriate concentration threshold Ct The threshold excess time tm (m is any one of 1, 2, 3,...) Is later than the actual LH concentration threshold time tt (tt ≦ tm). At this time, by setting the LH concentration threshold excess time tm as the estimated LH surge peak time tep (tep = tm), the estimated ovulation time teo = tep + Δtpo can be derived based on the LH surge peak time. Here, when the concentration threshold is set to the concentration threshold Cs indicating the start of the LH surge (Ct = Cs), the LH surge start excess time tm is later than the actual LH surge start time ts (ts ≦ tm). By setting the LH concentration threshold excess time tm as the estimated LH surge start time tes at this time (tes = tm), the estimated ovulation time teo = tes + Δtso can be derived based on the LH surge start time. Depending on the sample collection time and the LH surge timing, the LH concentration threshold excess time tm may vary in the range of tt ≦ tm ≦ tt + 24 and ts ≦ tm ≦ ts + 24, so that tep and tes, and teo based on them, are at least 24 hours. Variation. That is, the ovulation time is estimated with a resolution that is coarser than the daily unit. This occurs because the presence or absence of the LH surge is only quantitatively determined without considering the profile of the LH surge. Even when tep and tes are not written, the same performance is obtained when ovulation time is estimated based on tn and tm.
 次に、LH検査に定量性がない場合を考える。LH簡易検査キットを用いて定性計測を行う場合である。この場合、上記の定量性がある場合の課題に加えて、以下の課題が新たに生じる。LH簡易検査キットは検出下限濃度CdがLHサージ開始を示す濃度閾値Csと一致するとき最適感度となり(Cd=Cs)、LHサージ開始時刻に基づいた排卵時刻推定は、LH検査に定量性がある上記の場合と同等性能になる。しかしながら、LH簡易検査キットの検出下限濃度Cdを一定値に固定することは技術的に困難であり、同じ製品であっても個体差によるばらつきを持つ。しかも、LH濃度時間変化プロファイルは個人や母集団によって異なるため、Csも変動する。つまり、LH簡易検査キットが低感度でCd>Csとなったり、高感度でCd<Csとなる場合がほとんどである。LH簡易検査キットが低感度になると、LHサージ開始を認識できる時刻tm(最初に陽性検出を得る時刻)はLH検査に定量性がある場合よりさらに遅くなる上、検体採取時刻とLHサージのタイミングのずれによってLHサージピークを陽性検出できない機会が増える。さらに低感度になり、検出下限濃度CdがLHサージピーク濃度Cpを上回ると(Cd>Cp)、LHサージピークを全く陽性検出できなくなるため、排卵時刻推定不能となる。一方、LH簡易検査キットが高感度になると、LHサージ開始前のベースラインの段階でLHサージ開始と認識してしまう機会が増え(tm<ts)、根拠のない排卵時刻推定になり、精度が低下する。 Next, consider the case where the LH test is not quantitative. This is a case where qualitative measurement is performed using an LH simple test kit. In this case, in addition to the problem in the case where there is the above quantitative property, the following problem newly arises. The LH simple test kit has optimum sensitivity when the detection lower limit concentration Cd matches the concentration threshold Cs indicating the start of LH surge (Cd = Cs), and the ovulation time estimation based on the LH surge start time is quantitative in the LH test. The performance is equivalent to the above case. However, it is technically difficult to fix the detection lower limit concentration Cd of the LH simple test kit to a constant value, and even the same product has variations due to individual differences. In addition, since the LH concentration time change profile varies depending on the individual and the population, Cs also varies. That is, in most cases, the LH simple test kit has low sensitivity and Cd> Cs, or high sensitivity and Cd <Cs. When the sensitivity of the LH simple test kit becomes low, the time tm when the LH surge start can be recognized (the time when the positive detection is first obtained) is further delayed than when the LH test is quantitative, and the sample collection time and LH surge timing This increases the chance that LH surge peaks cannot be positively detected. If the sensitivity becomes lower and the detection lower limit concentration Cd exceeds the LH surge peak concentration Cp (Cd> Cp), the LH surge peak cannot be detected positively at all, and the ovulation time cannot be estimated. On the other hand, when the LH simple test kit becomes highly sensitive, the chance of recognizing the start of the LH surge at the baseline stage before the start of the LH surge (tm <ts) increases, and the ovulation time is estimated with no grounds. descend.
 本発明は、上記各課題を解決し、LHサージピーク時刻および排卵時刻の早期かつ高精度な推定を実現する、妊娠支援のためのモニタ方法、モニタシステム及び検査キットを提供することを主たる目的とする。 The main object of the present invention is to provide a monitoring method, a monitoring system, and a test kit for pregnancy support, which solve each of the above-mentioned problems and realize an early and highly accurate estimation of the LH surge peak time and the ovulation time. To do.
 本発明の代表的なものの一例を示せば以下の通りである。すなわち、本発明は、妊娠可能状態をモニタする方法であって、生体サンプルを検出デバイスに接触させ、前記生体サンプル中のホルモン濃度を検出してメモリに記憶する工程と、前記生体サンプルの採取時刻を前記メモリに記憶する工程と、採取された前記生体サンプルの測定対象ホルモン濃度が、前記メモリに予め記憶されたホルモン濃度の閾値を超えたことを検出し、メモリに記憶され設定された前記ホルモン濃度の濃度時間変化プロファイル関数を抽出して、前記メモリに記憶されたホルモン濃度と採取時刻に対しフィッティングする工程と、フィッティングすることにより得られたフィッティング関数から、ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻を推定する工程と、前記推定された時刻と、前記メモリに予め記憶された排卵時刻までの時間間隔とから、排卵時刻を算出して出力する工程とを有することを特徴とする。 An example of a representative example of the present invention is as follows. That is, the present invention is a method for monitoring a fertile state, the step of bringing a biological sample into contact with a detection device, detecting the hormone concentration in the biological sample and storing it in a memory, and the collection time of the biological sample And the hormone concentration to be measured in the collected biological sample is detected to exceed a hormone concentration threshold value stored in advance in the memory, and the hormone stored and set in the memory is detected. Extracting the concentration time change profile function of the concentration and fitting the hormone concentration stored in the memory and the collection time, and the time at which the hormone concentration takes the maximum value from the fitting function obtained by the fitting or Estimating the time when the hormone concentration exceeds a threshold indicating the start of surge; and And time, and a time interval between pre-stored ovulation time in the memory, characterized by a step of calculating and outputting the ovulation time.
 本発明により、LH検査による早期かつ高精度な排卵時刻推定が可能になるため、病院に通わずに自宅で簡単にできる高信頼なタイミング療法が可能となる。これにより、自然な妊娠を望む多数の夫婦、中でも不妊を心配しながら病院に通うことに抵抗を感じている多数の夫婦が本法を利用し、結果として多数の夫婦が早期に妊娠に至り、出生数が向上することが期待される。また、本発明を利用してもなかなか妊娠に至らない夫婦については、何らかの不妊治療が必要である可能性に早期に気付かせ、病院への通院を促すことにより、結果として早期に妊娠に至り、出生数が向上することが期待される。つまり、本発明は、妊娠を望む多くの夫婦を救い、少子化問題のひとつの解決策を提供することが期待される。 The present invention enables early and highly accurate ovulation time estimation by the LH test, and therefore enables highly reliable timing therapy that can be easily performed at home without going to the hospital. As a result, many couples who want a natural pregnancy, especially those who are worried about infertility and feel resistance to going to the hospital, have used this method, resulting in many couples becoming pregnant early, The number of births is expected to improve. In addition, for couples who do not readily become pregnant even if the present invention is used, notice early on the possibility that some kind of infertility treatment is necessary, and by prompting hospital visits, as a result, early pregnancy results, The number of births is expected to improve. In other words, the present invention is expected to save many couples who want to become pregnant and provide a solution to the problem of declining birthrate.
本発明の実施例1における、非特許文献3における標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time in Nonpatent literature 3, and LH density | concentration in Example 1 of this invention. 図1において、LH濃度の平均±標準偏差で囲まれる領域を示す図。The figure which shows the area | region enclosed in the average +/- standard deviation of LH density | concentration in FIG. 表2の#1の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 1 of Table 2, and LH density | concentration. 表2の#2の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 2 of Table 2, and LH density | concentration. 表2の#3の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 3 of Table 2, and LH density | concentration. 表2の#4の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 4 of Table 2, and LH density | concentration. 表2の#5の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 5 of Table 2, and LH density | concentration. 表2の#6の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 6 of Table 2, and LH density | concentration. 表2の#7の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 7 of Table 2, and LH density | concentration. 表2の#8の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 8 of Table 2, and LH density | concentration. 表2の#9の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 9 of Table 2, and LH density | concentration. 表2の#10の標準時刻とLH濃度の関係を示す図。The figure which shows the relationship between the standard time of # 10 of Table 2, and LH density | concentration. 図1から本法1により導出される近似LH濃度時間変化プロファイルを示す図。FIG. 2 is a diagram showing an approximate LH concentration time variation profile derived from Method 1 from FIG. 表2の#7に関して、本法1による近似LH濃度時間変化プロファイルのフィッティング結果を示す図。The figure which shows the fitting result of the approximate LH density | concentration time change profile by this method 1 regarding # 7 of Table 2. 図1から本法2により導出される近似LH濃度時間変化プロファイルを示す図。FIG. 3 is a diagram showing an approximate LH concentration time variation profile derived from FIG. 表2の#7に関して、本法2による近似LH濃度時間変化プロファイルのフィッティング結果を示す図。The figure which shows the fitting result of the approximate LH density | concentration time change profile by this method 2 regarding # 7 of Table 2. FIG. 本発明の実施例1における、本法1,2と従来法のLHサージピーク時刻推定の性能比較を示す図。FIG. 6 is a diagram showing a performance comparison of LH surge peak time estimation between the present methods 1 and 2 and the conventional method in Example 1 of the present invention. 本発明の実施例2における、非特許文献4の標準時刻とLH濃度の関係から本法1により導出される近似LH濃度時間変化プロファイルを示す図。FIG. 6 is a diagram showing an approximate LH concentration time change profile derived by the present method 1 from the relationship between the standard time of Non-Patent Document 4 and the LH concentration in Example 2 of the present invention. 実施例2における、近似LH濃度時間変化プロファイルの改新または改良によるLHサージピーク時刻推定の性能向上を示す図。FIG. 6 is a diagram showing an improvement in performance of LH surge peak time estimation by renewal or improvement of an approximate LH concentration time change profile in Example 2. 本発明の実施例3における、簡易定量検査キットおよびシステムの模式図。The schematic diagram of the simple quantitative test kit and system in Example 3 of this invention. 実施例3における、光センサチップを用いた場合の模式図。FIG. 5 is a schematic diagram when an optical sensor chip is used in Example 3. 実施例3における、検査デバイスの構成と化学反応の模式図。FIG. 4 is a schematic diagram of a configuration and chemical reaction of an inspection device in Example 3. 図21の方法によるhCGの検量線取得結果を示す図。The figure which shows the calibration curve acquisition result of hCG by the method of FIG. 実施例3における、検査デバイスおよび外部計測装置の構成と化学反応の模式図。FIG. 4 is a schematic diagram of the configuration and chemical reaction of an inspection device and an external measurement device in Example 3. 本発明の実施例4における、LH定量結果、LHサージピーク時刻推定結果、排卵時刻推定結果を表示する図。The figure which displays the LH fixed_quantity | quantitative_assay result, the LH surge peak time estimation result, and the ovulation time estimation result in Example 4 of this invention. 本発明の実施例4における、妊娠可能期間、避妊可能期間の推定結果を表示する図。The figure which displays the estimation result of the pregnancy possible period and the contraceptive possible period in Example 4 of this invention. 本発明の排卵時推定処理の一例を示すフローチャート。The flowchart which shows an example of the estimation process at the time of ovulation of this invention.
 本発明のモニタ方法、モニタシステム及び検査キットによれば、病院に通わずに自宅で簡単にできるタイミング療法として、定量性のあるLH検査を行う。LH検査の時間間隔は任意であるが、代表的な実施例として24時間の場合について説明する。本発明によれば、検出デバイス等で検出したLH濃度の定量値C(t)(t=t1(=0), t2(=24), t3(=48),・・・)を入力とし、計算装置及びメモリに記憶された情報を用いて、独自のアルゴリズムにより算出した推定LHサージ開始時刻tes、推定LHサージピーク時刻tep、推定排卵時刻teoの少なくともひとつを出力とする、早期かつ高精度な排卵時刻推定の方法、キットまたはシステムを提供する。特に、定量値C(t)が濃度閾値Ctを最初に超える時刻をtm(mは1, 2, 3,・・・のいずれか)とするとき、C(t1), C(t2),・・・, C(tm)のみを入力とすることで、より早期の排卵時刻推定を行う。 According to the monitoring method, monitoring system, and test kit of the present invention, a quantitative LH test is performed as a timing therapy that can be easily performed at home without going to the hospital. Although the time interval of the LH inspection is arbitrary, the case of 24 hours will be described as a typical example. According to the present invention, the quantitative value C (t) (t = t1 (= 0), t2 (= 24), t3 (= 48),...) Of the LH concentration detected by a detection device or the like is input, Using the information stored in the calculation device and memory, output at least one of the estimated LH surge start time tes, estimated LH surge peak time tep, estimated ovulation time teo calculated by a unique algorithm, and early and highly accurate A method, kit or system for estimating ovulation time is provided. In particular, when the time at which the quantitative value C (t) first exceeds the concentration threshold Ct is tm (m is any of 1, 2, 3, ...), C (t1), C (t2),・ ・ Early estimation of ovulation time is performed by inputting only C (tm).
 図27に、本発明による排卵時推定処理のフローの一例を示す。  
 本発明のモニタ方法は、生体サンプルを検出デバイスに接触させ、前記生体サンプル中のホルモン濃度を検出してメモリに記憶する工程(S01~S03)と、前記生体サンプルの採取時刻を前記メモリに記憶する工程と、採取された前記生体サンプルの測定対象ホルモン濃度が、前記メモリに予め記憶されたホルモン濃度の閾値を超えたことを検出し、メモリに記憶され設定された前記ホルモン濃度の濃度時間変化プロファイル関数を抽出して、前記メモリに記憶されたホルモン濃度と採取時刻に対しフィッティングする工程(S04~S06)と、フィッティングすることにより得られたフィッティング関数から、ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻を推定する工程(S07,S09)と、前記推定された時刻と、前記メモリに予め記憶された排卵時刻までの時間間隔とから、排卵時刻を算出して出力する工程(S08,S10)とを有する。
FIG. 27 shows an example of the flow of ovulation estimation processing according to the present invention.
In the monitoring method of the present invention, the biological sample is brought into contact with a detection device, the hormone concentration in the biological sample is detected and stored in a memory (S01 to S03), and the collection time of the biological sample is stored in the memory. And detecting that the concentration of the hormone to be measured in the collected biological sample exceeds a threshold value of the hormone concentration stored in advance in the memory, and the concentration time change of the hormone concentration stored and set in the memory. A step of extracting a profile function and fitting the hormone concentration stored in the memory and the collection time (S04 to S06), and a time at which the hormone concentration takes a maximum value from the fitting function obtained by the fitting or A step (S07, S09) of estimating a time when the hormone concentration exceeds a threshold value indicating a surge start, and the estimated time; And calculating and outputting the ovulation time from the time interval until the ovulation time stored in advance in the memory (S08, S10).
 すなわち、本発明における排卵時推定処理のアルゴリズムは以下のような内容である。真のLH濃度時間変化プロファイルTP(T)とし、文献等に示されるある母集団のLH濃度の時間離散的な定量値、または特定の母集団や個人について取得したLH濃度の時間離散的な定量値をTP(T1), TP(T2), TP(T3),・・・とする。つまり、説明を簡単にするためTP(T1), TP(T2), TP(T3),・・・は真値との誤差がないと仮定する。ここで、TはLHサージピーク時刻が0になるように規格化された標準時刻であり、1回の生理周期の一部分のみを表す。TP(T1), TP(T2), TP(T3),・・・に対して、まず、近似LH濃度時間変化プロファイルAP(T)を求める(S05)。AP(T)はT=0でLHサージピークとなり、そのピーク値をCpとする(AP(0)=Cp)。LH濃度時間変化プロファイルはヒトの複雑な生理現象を表しており、これまでのところ解析的に解かれていない現象であるため、AP(T)を特定の関数で表現する根拠はない。そこで、AP(T)を例えばガウス曲線、直線(線分)、複数の直線(線分)の組み合わせ、多項式曲線、等を用いて表現することを考える。これら以外の関数であってもTP(T1), TP(T2), TP(T3),・・・を良好に近似できれば良い。 That is, the algorithm of the estimation process at the time of ovulation in the present invention is as follows. Time-discrete quantitative value of LH concentration of a certain population shown in literature etc., or time-discrete quantification of LH concentration acquired for a specific population or individual as a true LH concentration time change profile TP (T) The values are TP (T1), TP (T2), TP (T3), and so on. That is, to simplify the explanation, it is assumed that TP (T1), TP (T2), TP (T3), ... have no error from the true value. Here, T is a standard time standardized so that the LH surge peak time becomes 0, and represents only a part of one physiological cycle. For TP (T1), TP (T2), TP (T3),..., First, an approximate LH concentration time change profile AP (T) is obtained (S05). AP (T) becomes an LH surge peak at T = 0, and the peak value is Cp (AP (0) = Cp). Since the LH concentration time-varying profile represents a complex physiological phenomenon in humans and is a phenomenon that has not been solved analytically so far, there is no basis for expressing AP (T) with a specific function. Therefore, consider expressing AP (T) using, for example, a Gaussian curve, a straight line (line segment), a combination of a plurality of straight lines (line segments), a polynomial curve, and the like. Even functions other than these need only be able to approximate TP (T1), TP (T2), TP (T3), ... well.
 次に、時刻tmにおいて、C(t1), C(t2),・・・, C(tm)に対してAP(T)を時間軸方向に平行移動するフィッティングを行ってAP(t)を求める(S06)。一般に、TP(T1), TP(T2), TP(T3),・・・が母集団中の平均値等の統計値であるのに対して、C(t1), C(t2), C(t3),・・・は個々の被験者の個々の生理周期毎に定められる非統計値である。この段階で時間軸を標準時刻Tから検体採取時刻tへ変換する。フィッティングの手段としては最小二乗法を用いても良いし、特定の定量値、例えばC(tm)をAP(t)が通るとしても良い。また、単純な時間軸方向への並行移動だけでなく、関数中の時刻以外の係数の修正を伴うフィッティングを行っても良い。 Next, at time tm, C (t1), C (t2),..., C (tm) is subjected to fitting that translates AP (T) in the time axis direction to obtain AP (t). (S06). In general, TP (T1), TP (T2), TP (T3), ... are statistical values such as the mean value in the population, whereas C (t1), C (t2), C ( t3), ... are non-statistical values determined for each physiological cycle of each subject. At this stage, the time axis is converted from the standard time T to the sample collection time t. As a means for fitting, the least square method may be used, or AP (t) may pass a specific quantitative value, for example, C (tm). In addition to simple parallel movement in the time axis direction, fitting with correction of coefficients other than the time in the function may be performed.
 続いて、AP(t)=Cpとなる時刻を推定LHサージピーク時刻tepとして(S07)、LHサージピーク時刻に基づく推定排卵時刻tep+Δtpoを導出する(S08)。従来法ではtep=tmであったのに対して、本法ではtep≠tmとなる場合が多い。tep≦tmとなることが稀にあるが、大抵の場合はtm<tepとなる。また、AP(t)=Csとなる時刻(二つ解がある場合は小さい方を選択)を推定LHサージ開始時刻tesとして(S09)、LHサージ開始時刻に基づく推定排卵時刻tes+Δtpoを導出する(S10)。 Subsequently, the time when AP (t) = Cp is assumed as the estimated LH surge peak time tep (S07), and the estimated ovulation time tep + Δtpo based on the LH surge peak time is derived (S08). In the conventional method, tep = tm, whereas in this method, tep ≠ tm. In rare cases, tep ≦ tm, but in most cases, tm <tep. Moreover, the estimated ovulation time tes + Δtpo based on the LH surge start time is derived by setting the time when AP (t) = Cs (select the smaller one when there are two solutions) as the estimated LH surge start time tes (S09) ( S10).
 従来法ではtes=tmであったのに対して、本発明による推定方法ではtes≠tmとなる場合が多い。tm≦tesとなることが稀にあるが、大抵の場合はtes<tmとなる。従来法ではLHサージのプロファイルを考慮していないために推定排卵時刻に少なくとも24時間のばらつきを有していたのに対して、本方法ではLHサージのプロファイルを考慮して排卵時刻を推定するため、推定精度が向上する。 In the conventional method, tes = tm, whereas in the estimation method according to the present invention, tes ≠ tm often occurs. Although it is rare that tm ≦ tes, in most cases, tes <tm. Since the conventional method did not consider the LH surge profile, the estimated ovulation time had a variation of at least 24 hours, whereas this method estimated the ovulation time considering the LH surge profile. The estimation accuracy is improved.
 以下、図面を参照しながら、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の実施例1として、図27のフローに基づき近似LH濃度時間変化プロファイルAP(T)を固定して推定排卵時刻teoを取得した例について説明する。以下では、特に、図1~図17を参照しながら、本発明による排卵時刻推定法の性能評価について詳細に説明する。 As Example 1 of the present invention, an example will be described in which the estimated ovulation time teo is acquired by fixing the approximate LH concentration time change profile AP (T) based on the flow of FIG. In the following, the performance evaluation of the ovulation time estimation method according to the present invention will be described in detail with particular reference to FIGS.
 多くの文献では、ある母集団の時間離散的なLH濃度の平均定量値TP(T1), TP(T2), TP(T3),・・・のデータが示されているが、個々の被験者の個々の生理周期毎のケースについてLH濃度の定量値C(t1), C(t2), C(t3),・・・のデータは開示されていない。また、T1, T2, T3,・・・の時間間隔が24時間程度であるため、TP(T)の持つ時間精度は24時間程度に過ぎない。したがって、文献に示されるデータのみを用いて本発明による方法(本法)が従来法と比較して排卵時刻の早期・高精度推定に優れているかどうかを評価することは困難である。 Many literatures show average quantitative values TP (T1), TP (T2), TP (T3), ... of time-discrete LH concentrations in a population. The data of quantitative values C (t1), C (t2), C (t3),... Of LH concentration is not disclosed for each case in each physiological cycle. Also, since the time interval between T1, T2, T3,... Is about 24 hours, the time accuracy of TP (T) is only about 24 hours. Therefore, it is difficult to evaluate whether the method according to the present invention (the present method) is superior in the early and high-precision estimation of the ovulation time as compared with the conventional method using only the data shown in the literature.
 そこで、文献に示されるデータを元にしたシミュレーションにより、妥当なLH濃度の定量値C(#j, t1), C(#j, t2), C(#j, t3),・・・を生成し、これらを用いて本法が従来法と比較して排卵時刻の早期・高精度推定に優れていることを示す。ここで、#j(j=1, 2, 3,・・・)は個々の被験者の個々の生理周期毎に定められるケースの固有番号を表す。以下では、特に、本法による推定LHサージピーク時刻tepの精度が優れていることを示す。推定LHサージ開始時刻tes、およびこれらを基準とした推定排卵時刻teoの精度についても同じ結論が導き出される。 Therefore, the appropriate LH concentration quantitative values C (#j, t1), C (#j, t2), C (#j, t3), ... are generated by simulation based on the data shown in the literature. Using these, we show that this method is superior to the conventional method for early and high-precision estimation of ovulation time. Here, #j (j = 1, 2, 3,...) Represents a unique number of a case determined for each physiological cycle of each subject. In the following, it is shown that the accuracy of the estimated LH surge peak time tep by this method is particularly excellent. The same conclusions are derived for the accuracy of the estimated LH surge start time tes and the estimated ovulation time teo based on these.
 非特許文献3では、他の多くの文献と異なり、4時間間隔で血清LH検査および卵胞超音波検査を実施しているため、TP(T)についても4時間程度の高い時間精度が得られる。非特許文献3のFIG.2のコントロールデータは4時間間隔の血清中LH濃度定量値の平均およびその標準偏差を示している。これらのデータを24時間間隔でマニュアルにより読み出し(標準時刻T=-192, -168,・・・, -24, 0, 24,・・・, 168, 192)、平均AVおよび標準偏差SDを数値化したものを表1に示し、それをグラフ化したものを図1(平均:黒丸プロット、標準偏差:エラーバー)に示す。 In Non-Patent Document 3, unlike many other documents, serum LH test and follicular ultrasonography are performed at 4-hour intervals, so high time accuracy of about 4 hours can be obtained for TP (T). The control data of FIG. 2 of Non-Patent Document 3 shows the mean and standard deviation of the quantitative values of serum LH concentration at 4-hour intervals. These data are read manually at 24 hour intervals (standard time T = -192, -168, ..., -24, 0, 24, ..., 168, 192), and average AV and standard deviation SD are numerical values. The results are shown in Table 1, and the graphed results are shown in FIG. 1 (average: black circle plot, standard deviation: error bar).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
ここで、標準時刻をT1=-96, T2=-72, T3=-48, T4=-24, T5=0, T6=24, T7=48, T8=72, T9=96, T10=120, T11=144と定義する。黒丸プロット、およびこれらを結んだ実線の折れ線をTP(T)とする。標準時刻T5=0でTP(T)は最大値200±89 mIU/mlのLHサージピークを示す。また、非特許文献3では、LHサージ開始を示す濃度閾値はCs=60 mIU/mlと設定されている。これを図1中に点線で示す。一方、図2では、図1の-96≦T≦144の範囲で、標準時刻Tk(k=1, 2,・・・, 11)における平均+標準偏差(表1にAV+SDで示す)を結んだ折れ線1、および平均-標準偏差(表1にAV-SDで示す)を結んだ折れ線2を点線で示す。ここで、標準時刻Tにおいて、折れ線1と折れ線2の間の範囲の乱数値を出力とする関数をRP(T)とする。 Where standard time is T1 = -96, T2 = -72, T3 = -48, T4 = -24, T5 = 0, T6 = 24, T7 = 48, T8 = 72, T9 = 96, T10 = 120, Define T11 = 144. Let TP (T) be the black circle plot and the solid broken line connecting them. At standard time T5 = 0, TP (T) shows an LH surge peak with a maximum value of 200 ± 89 μmIU / ml. In Non-Patent Document 3, the concentration threshold indicating the start of LH surge is set to Cs = 60 μmIU / ml. This is indicated by a dotted line in FIG. On the other hand, in FIG. 2, the average + standard deviation at the standard time Tk (k = 1, 2,..., 11) in the range of −96 ≦ T ≦ 144 in FIG. 1 (shown as AV + SD in Table 1) A broken line 1 connecting the two points and a broken line 2 connecting the mean-standard deviation (shown as AV-SD in Table 1) are shown by dotted lines. Here, at the standard time T, a function that outputs a random value in a range between the polygonal line 1 and the polygonal line 2 is RP (T).
 以下の手順により妥当なLH濃度の定量値C(#j, t1), C(#j, t2),・・・, C(#j, t10)を生成する。検体採取時刻はt1=0, t2=24,・・・, t10=216とする。まず、#1について考える。R(#1)を0<R(#1)≦24の乱数値とする。標準時刻を-96<T≦-72の範囲の乱数値-96+R(#1)とし、この標準時刻-96+R(#1)における上記の折れ線1と折れ線2の間の乱数値RP(-96+R(#1))をt1=0における定量値とする(C(#1, 0)=RP(-96+R(#1)))。また、上記標準時刻から24時間後の標準時刻-72+R(#1)における乱数値RP(-72+R(#1))をt2=24における定量値とする(C(#1, 24)=RP(-72+R(#1)))。t3=48以降も同様に24時間毎の乱数値RP(T)を定量値とする。一般化すると、R(#j)(j=1, 2, 3,・・・)を0<R(#j)≦24の乱数値とし、C(#j, tk)=RP(tk-96+R(#j))(k=1, 2,・・・, 10)と定義する。この方法により、#1, #2,・・・, #10の独立する10件のケースについて、t1=0, t2=24,・・・, t10=216でのLH濃度定量値を生成した結果を表2に示す。 The following procedure generates appropriate LH concentration quantitative values C (#j, t1), C (#j, t2), ..., C (#j, t10). The sample collection time is t1 = 0, t2 = 24, ..., t10 = 216. First, consider # 1. Let R (# 1) be a random value of 0 <R (# 1) ≦ 24. The standard time is set to a random value -96 + R (# 1) in the range of -96 <T ≦ −72, and the random value RP between the above broken line 1 and the broken line 2 at this standard time -96 + R (# 1) Let (−96 + R (# 1)) be the quantitative value at t1 = 0 (C (# 1, 0) = RP (−96 + R (# 1))). In addition, the random value RP (-72 + R (# 1)) at the standard time -72 + R (# 1) 24 hours after the standard time is set as the quantitative value at t2 = 24 (C (# 1, 24 ) = RP (-72 + R (# 1))). Similarly, after t3 = 48, the random value RP (T) every 24 hours is used as the quantitative value. To generalize, let R (#j) (j = 1, 2, 3, ...) be a random value where 0 <R (#j) ≤ 24, and C (#j, tk) = RP (tk-96 + R (#j)) (k = 1, 2, ..., 10). Result of generating quantitative LH concentration values at t1 = 0, t2 = 24, ..., t10 = 216 for 10 independent cases of # 1, # 2, ..., # 10 by this method Is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 #1, #2,・・・, #10の各場合について、それぞれ図3から図12に標準時刻T=tk-96+R(#j)とLH濃度定量値RP(tk-96+R(#j))の関係を四角プロットで示す。また、この際に用いたR(#1), R(#2),・・・, R(#10)を表3に示す。LHサージピークは標準時刻ではT=0で生じるため、T=t-96+R(#j)=0、すなわち検体採取時刻ではt=96-R(#j)で生じる。これをLHサージピーク時刻tpとし、表3に示す。 For each of the cases # 1, # 2, ..., # 10, the standard time T = tk-96 + R (#j) and the LH concentration quantitative value RP (tk-96 + R ( #j)) is shown as a square plot. Table 3 shows R (# 1), R (# 2),..., R (# 10) used in this case. Since the LH surge peak occurs at T = 0 at the standard time, it occurs at T = t−96 + R (#j) = 0, that is, at t = 96−R (#j) at the sample collection time. This is shown as Table 3 as LH surge peak time tp.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 ここでは、表2の情報のみを用いて(すなわち、表3のR(#j)およびtpが未知の条件下で)、従来法および本発明の独自の方法によるアルゴリズムにより表3のLHサージピーク時刻tpを推定し、それらの性能比較を行う。この際、表2の情報の中でも、LH濃度定量値が濃度閾値Ctを最初に超える時刻をtm(mは1, 2, 3,・・・のいずれか)とするとき、t1, t2,・・・, tmの情報のみを用いる。表2の情報は、時間軸方向にも濃度軸方向にも実情に即してランダムに分散したデータであるため、排卵時刻推定方法を比較する上で妥当と考えられる。 Here, using only the information in Table 2 (ie, under the conditions where R (#j) and tp in Table 3 are unknown), the conventional method and the algorithm according to the original method of the present invention, the LH surge peak in Table 3 is used. Estimate time tp and compare their performance. At this time, among the information in Table 2, when the time when the LH concentration quantitative value first exceeds the concentration threshold Ct is tm (m is any of 1, 2, 3, ...), t1, t2,・ ・ Use only tm information. The information in Table 2 is data that is randomly distributed according to the actual situation both in the time axis direction and in the concentration axis direction, so it is considered appropriate for comparing the ovulation time estimation methods.
 最初に、LH検査に定量性がある従来法によりLHサージピーク時刻を推定する。LH濃度定量値の濃度閾値Ctを、非特許文献3で推奨されているLHサージ開始を示す濃度閾値Cs=60 mIU/mlに設定する(Ct=60 mIU/ml)。LH濃度定量値が閾値60を超える検体採取時刻tmは、表2より、#7および#10ではtm=t3=48、これら以外の場合はtm=t4=72となる。また、濃度閾値CtをCsよりも低く、Ct=30 mIU/mlに設定すると、#7および#10ではtm=t2=24、#8ではtm=t4=72、これら以外の場合はtm=t3=48となる。一方、濃度閾値CtをCsよりも高く、Ct=120 mIU/mlに設定すると、#1, #7, および#8ではLH濃度定量値が閾値を超えることがなく、#2ではtm=t5=96、これら以外の場合はtm=t4=72となる。以上、LH濃度定量値が閾値を超えない場合を除き、それぞれの場合で、検体採取時刻tmにおいて、推定LHサージピーク時刻をtep=tmとする。LH濃度定量値が閾値を超えない場合はLHサージピーク時刻を推定不能となる。以上の結果を表4にまとめる。 First, the LH surge peak time is estimated by a conventional method with quantitative LH inspection. The concentration threshold value Ct of the LH concentration quantitative value is set to the concentration threshold value Cs = 60 μmIU / ml indicating the start of the LH surge recommended in Non-Patent Document 3 (Ct = 60 μmIU / ml). From Table 2, the sample collection time tm at which the LH concentration quantitative value exceeds the threshold value 60 is tm = t3 = 48 in # 7 and # 10, and tm = t4 = 72 in other cases. Also, if the concentration threshold Ct is lower than Cs and Ct = 30 mIU / ml, tm = t2 = 24 for # 7 and # 10, tm = t4 = 72 for # 8, tm = t3 otherwise = 48. On the other hand, if the concentration threshold Ct is higher than Cs and Ct = 120 mIU / ml, the LH concentration quantitative value does not exceed the threshold in # 1, # 7, and # 8, and in # 2, tm = t5 = 96, otherwise tm = t4 = 72. As described above, the estimated LH surge peak time is set to tep = tm at the sample collection time tm in each case except when the LH concentration quantitative value does not exceed the threshold value. If the LH concentration quantitative value does not exceed the threshold value, the LH surge peak time cannot be estimated. The results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に正解となるLHサージピーク時刻tpを記すと同時に、それぞれの推定LHサージピーク時刻tepとの偏差を記す。推定不能の場合は欄に×を示す。また、各項目の#1から#10の平均AV、標準偏差SD、×の件数を示す。濃度閾値が低いほど早期に推定実行できるが、偏差が大きくなることが分かる。逆に濃度閾値が高いほど偏差が小さくなるが、推定実行が遅くなる上、推定実行できない場合が生じる。したがって、これらの中では濃度閾値がCt=60 mIU/mlが早期・高精度なLHサージピーク時刻の推定に最も適していると考えられる。一方、LH簡易検査キットのように定量性がない従来法では、濃度閾値Ctが不明である場合や、濃度閾値Ctが最適値60からずれている場合が多い。また、同じ製品のLH簡易検査キットであっても個体差により濃度閾値Ctがばらつきを持つ。例えば濃度閾値Ctが30と120の間でばらつくと、表4の閾値30のAVおよびSDと、閾値120のAVおよびSDの間でtepがばらつくため、LHサージピーク時刻推定の性能は定量性がある従来法と比較して劣る。 In Table 3, the correct LH surge peak time tp is recorded, and at the same time, the deviation from each estimated LH surge peak time tep. When estimation is impossible, a cross is indicated in the column. Moreover, the average AV of # 1 to # 10 of each item, the standard deviation SD, and the number of x are shown. It can be seen that the lower the concentration threshold, the earlier the estimation can be performed, but the deviation increases. Conversely, the higher the concentration threshold, the smaller the deviation, but the estimation execution is delayed and the estimation cannot be performed. Therefore, among these, the concentration threshold Ct = 60 μmIU / ml is considered to be most suitable for the early and highly accurate estimation of the LH surge peak time. On the other hand, in the conventional method that does not have quantitativeness like the LH simple test kit, the concentration threshold Ct is often unknown or the concentration threshold Ct is often deviated from the optimum value 60. Even if the LH simple test kit is the same product, the concentration threshold Ct varies depending on individual differences. For example, if the concentration threshold Ct varies between 30 and 120, tep varies between the threshold 30 AV and SD in Table 4 and the threshold 120 AV and SD, so the LH surge peak time estimation performance is quantitative. It is inferior to some conventional methods.
 次に、本発明によりLHサージピーク時刻tepを推定する。まず、近似LH濃度時間変化プロファイルAP(T)をガウス曲線で表現する。T=0でピーク値Cp=200 mIU/ml(AP(0)=200)をとる条件下で、ガウス曲線を図1のすべての黒丸プロットに対して最小二乗法によりフィッティングすると、AP(T)=177*exp(T/19)+23が導出される。ここで、AP(T)の導出の際にAP(0) =200を条件としなくても良い。このAP(T)を図1の黒丸プロットおよびエラーバーとともに図13に実線で示す。LH濃度定量値の濃度閾値Ctを、非特許文献3で推奨されているLHサージ開始を示す濃度閾値Cs=60 mIU/mlに設定する(Ct=60 mIU/ml)。続いて、#1~#10のそれぞれについて、表2のt1, t2,・・・, tm(tmは濃度閾値60を最初に超える検体採取時刻)およびそのLH濃度定量値C(t2), C(t2),・・・, C(tm)に対して、最小二乗法により、AP (T)を時間軸方向の平行移動のみによりフィッティングする。例えば、#7の場合はtm=t3であり、AP(t)=177*exp((t-69)/19)+23が導出される。 Next, the LH surge peak time tep is estimated according to the present invention. First, the approximate LH concentration time change profile AP (T) is expressed by a Gaussian curve. Fitting a Gaussian curve to all the black circle plots in Fig. 1 under the condition of T = 0 and peak value Cp = 200 mIU / ml (AP (0) = 200), AP (T) = 177 * exp (T / 19) +23 is derived. Here, when AP (T) is derived, AP (0) = 200 does not have to be a condition. This AP (T) is shown by a solid line in FIG. 13 together with the black circle plot and error bar in FIG. The concentration threshold value Ct of the LH concentration quantitative value is set to the concentration threshold value Cs = 60 μmIU / ml indicating the start of the LH surge recommended in Non-Patent Document 3 (Ct = 60 μmIU / ml). Subsequently, for each of # 1 to # 10, t1, t2,..., の tm (tm is the sample collection time that first exceeds the concentration threshold 60) and its LH concentration quantitative value C (t2), C (t2),..., C (tm) is fitted to AP) (T) only by translation in the time axis direction by the method of least squares. For example, in the case of # 7, tm = t3, and AP (t) = 177 * exp ((t−69) / 19) +23 is derived.
 図14に、時間軸を標準時刻Tから検体採取時刻tへ変換し、表2の#7のデータを菱形プロットで、AP(t)を実線で示す。フィッティングに用いた最初の3個の四角プロットに矢印を記す。また、正解となるLHサージピーク時刻tp=75を点線で示す。検体採取時刻tm=t3=48においてLHサージピーク時刻を推定する。推定LHサージピーク時刻tepはAP(t)のピーク時刻であり、tep=69である。このピーク時刻tepと点線で示す正解のピーク時刻tp=75の偏差-6が推定誤差である。#1~#10のすべての場合について同様の推定を行った結果を表5に「本法1」としてまとめる。表4と同様に偏差、tp、AV、SD、×の件数を併記する。推定LHサージピーク時刻tepに基づき、推定排卵時刻teoをtep+Δtpoにより導出する。非特許文献3のTABLE 3によれば、Δtpo=10±5であるため、teo=79±5となる。 In Fig. 14, the time axis is converted from the standard time T to the sample collection time t, the data of # 7 in Table 2 is indicated by a rhombus plot, and AP (t) is indicated by a solid line. Add arrows to the first three square plots used for fitting. In addition, a correct LH surge peak time tp = 75 is indicated by a dotted line. The LH surge peak time is estimated at the sample collection time tm = t3 = 48. The estimated LH surge peak time tep is the peak time of AP (t), and tep = 69. The deviation -6 between the peak time tep and the correct peak time tp = 75 indicated by the dotted line is the estimation error. The results of similar estimations for all cases # 1 to # 10 are summarized in Table 5 as “Method 1”. As in Table 4, the number of deviations, tp, AV, SD, and x are also shown. Based on the estimated LH surge peak time tep, the estimated ovulation time teo is derived by tep + Δtpo. According to TABLE 3 of Non-Patent Document 3, Δtpo = 10 ± 5, so teo = 79 ± 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 次に、近似LH濃度時間変化プロファイルAP(T)を線分で表現する。図1のT=-24およびT=0の2点の黒丸プロットを通る直線の内、0≦AP(T)≦200の条件を満たす線分をAP(T)とする。AP(T)=5.67*T+200(0≦AP(T)≦200)と表現され、これを図1の黒丸プロットおよびエラーバーとともに図15に実線で示す。LH濃度定量値の濃度閾値は先と同様にCt=60とする。続いて、#1~#10のそれぞれについて、表2のtm(tmは濃度閾値60を最初に超える検体採取時刻)およびそのLH濃度定量値C(tm)を通るように、AP(T)を時間軸方向の平行移動のみによりフィッティングする。例えば、#7の場合はtm=t3であり、AP(t)=5.67*(t-71)+200(0≦AP(T)≦200)が導出される。図16に、時間軸を標準時刻Tから検体採取時刻tへ変換し、表2の#7のデータを菱形プロットで、AP(t)を実線で示す。フィッティングに用いた3個目の四角プロットに矢印を記す。また、正解となるLHサージピーク時刻tp=75を点線で示す。検体採取時刻tm=t3=48においてLHサージピーク時刻を推定する。推定LHサージピーク時刻tepはAP(t)の線分の右上端の時刻であり、tep=71である。このピーク時刻tepと点線で示す正解のピーク時刻tp=75の偏差-4が推定誤差である。#1~#10のすべての場合について同様の推定を行った結果を表5に「本法2」としてまとめる。表4と同様に、偏差、tp、AV、SD、×の件数を併記する。 Next, the approximate LH concentration time change profile AP (T) is expressed by a line segment. Of the straight lines passing through the two black dot plots of T = −24 and T = 0 in FIG. 1, a line segment satisfying the condition of 0 ≦ AP (T) ≦ 200 is defined as AP (T). AP (T) = 5.67 * T + 200 (0 ≦ AP (T) ≦ 200), which is indicated by a solid line in FIG. 15 together with the black circle plot and error bar in FIG. The concentration threshold value of the LH concentration quantitative value is Ct = 60 as before. Subsequently, for each of # 1 to # 10, AP (T) is passed so as to pass through tm in Table 2 (tm is the sample collection time that first exceeds the concentration threshold 60) and its LH concentration quantitative value C (tm). Fitting is performed only by parallel movement in the time axis direction. For example, in the case of # 7, tm = t3, and AP (t) = 5.67 * (t−71) +200 (0 ≦ AP (T) ≦ 200) is derived. In FIG. 16, the time axis is converted from the standard time T to the sample collection time t, the data of # 7 in Table 2 is indicated by a rhombus plot, and AP (t) is indicated by a solid line. Add an arrow to the third square plot used for fitting. In addition, a correct LH surge peak time tp = 75 is indicated by a dotted line. The LH surge peak time is estimated at the sample collection time tm = t3 = 48. The estimated LH surge peak time tep is the time at the upper right end of the line segment of AP (t), and tep = 71. The deviation -4 between the peak time tep and the correct peak time tp = 75 indicated by the dotted line is the estimation error. The results of similar estimations for all cases # 1 to # 10 are summarized in Table 5 as “Method 2”. As in Table 4, the number of deviations, tp, AV, SD, and x are also shown.
 本法1と本法2のAV、SDを比較すると、LHサージピーク時刻推定の性能はほぼ同等と言える。表4と表5を比較すると、ほとんどの場合で本法の偏差は従来法の偏差より小さかった。#3と#10でのみ、従来法(閾値120)の偏差が本法の偏差より小さかった。これは、従来法(閾値120)では、正解のLHサージピーク時刻tpとLHサージピーク時刻推定の実行時刻tmが近接しているためであり、推定不能になる場合もその分増えている。AV、SDを比較すると、本法1、本法2はいずれの従来法よりもLHサージピーク時刻推定の性能が優れていることが分かる。 比較 Comparing AV and SD of Method 1 and Method 2, it can be said that the performance of LH surge peak time estimation is almost equivalent. Comparing Table 4 and Table 5, in most cases, the deviation of this method was smaller than that of the conventional method. Only in # 3 and # 10, the deviation of the conventional method (threshold 120) was smaller than the deviation of this method. This is because, in the conventional method (threshold 120), the correct LH surge peak time tp and the execution time tm of LH surge peak time estimation are close to each other. Comparing AV and SD, it can be seen that Method 1 and Method 2 have better LH surge peak time estimation performance than either conventional method.
 さらに、以上の表4および表5による性能の比較評価を統計的により明確にするため、ケース件数を#1~#10の10件から100件に増やして同様の分析を行い、各法についてAV、SD、×の件数をまとめた結果を表6および表7にそれぞれ示す。また、各法による100件の偏差の頻度分布を図17に示す。図17の上段に従来法(閾値30)を黒三角プロット、従来法(閾値60)を黒丸プロット、従来法(閾値120)を黒四角プロットで示し、図17の下段に本法1を丸プロット、本法2を白三角プロットで示す。 Furthermore, in order to statistically clarify the performance comparison evaluations in Tables 4 and 5 above, the number of cases was increased from 10 to 100 from # 1 to # 10, and the same analysis was performed. Table 6 and Table 7 show the results of summarizing the numbers of SD, SD, and X, respectively. FIG. 17 shows the frequency distribution of 100 deviations according to each method. The upper part of Fig. 17 shows the conventional method (threshold 30) as a black triangle plot, the conventional method (threshold 60) as a black circle plot, and the conventional method (threshold 120) as a black square plot. The lower part of Fig. 17 shows this method 1 as a round plot. This method 2 is indicated by a white triangle plot.
 表6、図17上段より、LH検査に定量性がある従来法では閾値が増加するのに従い、偏差とそのばらつきが減少するが、推定不能ケースが発生する問題がある。このため閾値60が最適であり、LHサージピーク時刻を平均14時間前に-14±12時間の精度で推定することができる。ここで、あらかじめ偏差の平均-14が分かっていれば、推定LHサージピーク時刻をtep=tmとせずに、tep=tm+14とすることにより、偏差の平均をゼロにすることができる。この14と言う値はTP(T)、Ct、および検体採取の時間間隔で決まる値であり、以上の分析によって導出できる。 From Table 6, the upper part of FIG. 17, in the conventional method with quantitativeness in the LH test, the deviation and its variation decrease as the threshold value increases, but there is a problem that the estimation is impossible. For this reason, the threshold 60 is optimal, and the LH surge peak time can be estimated with an accuracy of −14 ± 12 hours 14 hours before the average. Here, if the average deviation -14 is known in advance, the average deviation can be zeroed by setting tep = tm + 14 without setting the estimated LH surge peak time at tep = tm. The value of 14 is a value determined by TP (T), Ct, and the time interval of sample collection, and can be derived by the above analysis.
 つまり、この方法は本発明の他の課題解決手段である。ただし、この方法では偏差の標準偏差は変化しないため、本法1および本法2より性能が低い。また、LH検査に定量性がない従来法では、閾値にばらつきがあるため、この方法を適用することは困難である。 That is, this method is another means for solving the problems of the present invention. However, this method does not change the standard deviation of the deviation, so the performance is lower than Method 1 and Method 2. In addition, in the conventional method in which the LH inspection does not have quantification, it is difficult to apply this method because the threshold value varies.
 これに対して、表7、図17下段より、本法1と本法2はほぼ同等の性能であり、従来法(閾値60)と比較して、偏差とそのばらつきを大幅に低減している。本法1では、LHサージピーク時刻を平均14時間前に-1±7時間の精度で推定することができる。さらにここでも上記と同様に、推定LHサージピーク時刻をtep'=tep+1とすることにより、偏差の平均をゼロにすることができる。 In contrast, from Table 7 and the lower part of Fig. 17, Method 1 and Method 2 have almost the same performance, and the deviation and its variation are greatly reduced compared to the conventional method (threshold value 60). . In Method 1, the LH surge peak time can be estimated with an accuracy of −1 ± 7 hours before an average of 14 hours. Further, in this case as well, the average of the deviations can be made zero by setting the estimated LH surge peak time to tep ′ = tep + 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 次に、実施例2について説明する。実施例1では近似LH濃度時間変化プロファイルAP(T)を固定して排卵時刻推定の性能評価を行ったが、本実施例では個々の被験者の個々の生理周期のLH検査結果に基づいてAP(T)を改新または改良することによって排卵時刻推定の性能向上を行う。 Next, Example 2 will be described. In Example 1, the approximate LH concentration time variation profile AP (T) was fixed and the performance evaluation of ovulation time estimation was performed.In this example, AP (based on the LH test results of individual physiological cycles of individual subjects The performance of ovulation time estimation is improved by renewing or improving T).
 非特許文献4では、多数の女性被験者を対象に尿中LH検査および卵胞超音波検査を実施することにより、LH検査による排卵日推定を試みている。非特許文献4のTable 2.に7名の被験者の1回の生理周期のケースについて、生理周期の初日を第1日として第10日から第20日までの24時間間隔の尿中LH濃度の定量結果が示されている。7件のケースについて、LH濃度が最大となる日を標準時刻T=0に設定し、この日を基準とする±1日, ±2日,・・・をT=±24, ±48,・・・に設定する。各標準時刻における7件のケースのLH濃度定量値の平均および標準偏差を、図18にそれぞれ黒丸プロットおよびエラーバーで示す。ただし、T=-144, -120については対象ケースが1件になるため、エラーバーは存在しない。また、T=0でピーク値をとる条件下で、ガウス曲線を図18のすべての黒丸プロットに対して最小二乗法によりフィッティングすると、近似LH濃度時間変化プロファイルAP(T)=60*exp(T/17)+14が導出される。 Non-Patent Document 4 attempts to estimate the date of ovulation by LH test by conducting urinary LH test and follicular ultrasonography on a large number of female subjects. Non-patent document 4 Table 7 shows the urinary LH concentration in 24-hour intervals from the 10th day to the 20th day, with the first day of the menstrual cycle as the first day in the case of one menstrual cycle of 7 subjects. The quantitative results are shown. For the seven cases, the day when the LH concentration is maximum is set to the standard time T = 0, and ± 1 day, ± 2 days,... Based on this day, T = ± 24, ± 48,. Set to. The average and standard deviation of the LH concentration quantitative values in seven cases at each standard time are shown by a black circle plot and an error bar in FIG. 18, respectively. However, there is no error bar for T = -144, -120 because there is only one target case. In addition, when a Gaussian curve is fitted to all the black circle plots in FIG. 18 under the condition of taking a peak value at T = 0, the approximate LH concentration time change profile AP (T) = 60 * exp (T / 17) +14 is derived.
 実施例1で非特許文献3について導出したAP(T)=177*exp (T/19)+23と比較すると、ガウス曲線のピーク幅はあまり変わらないが、すなわちプロファイルは同形状であるが、ピーク高さが1/3程度、ベースラインが2/3程度に低下している。この主原因は検体が血清から尿に変化したことと考えられるが、それ以外に検体前処理法、LH濃度の定量計測法、検体採取対象の母集団等の条件の違いが考えられる。実施例1はこれらの違いを考慮せずに、条件を固定して従来法と本法を比較したものであるが、その比較結果は他の条件においても有効と考えられる。したがって、尿を検体とするLH濃度定量値に対して本法1により排卵時刻推定を行う場合、AP(T)=60*exp(T/17)+14を用いる方が少なくともAP(T)=177*exp(T/19)+23を用いるよりも高い推定精度を期待できる。逆に、AP(T)=60*exp(T/17)+14を用いて、血清を検体とするLH濃度定量値に対して本法1により排卵時刻推定を行うと、実施例1と比較して推定精度がどの程度低下するかを次に評価する。 Compared to AP (T) = 177 * exp (T / 19) +23 derived for Non-Patent Document 3 in Example 1, the peak width of the Gaussian curve does not change much, that is, the profile has the same shape, The peak height is about 1/3 and the baseline is about 2/3. The main cause is considered to be that the sample has changed from serum to urine, but there are other differences in conditions such as the sample pretreatment method, the LH concentration quantitative measurement method, and the sample collection target population. Example 1 is a comparison between the conventional method and the present method with the conditions fixed without considering these differences, but the comparison result is considered to be effective under other conditions. Therefore, when estimating the ovulation time by this method 1 for LH concentration quantitative value using urine as a specimen, AP (T) = 60 * exp (T / 17) +14 is at least AP (T) = Higher estimation accuracy can be expected than using 177 * exp (T / 19) +23. Conversely, when AP (T) = 60 * exp (T / 17) +14 was used to estimate the ovulation time according to this method 1 for the LH concentration quantitative value using serum as a sample, it was compared with Example 1. Then, how much the estimation accuracy decreases will be evaluated next.
 表2に示す#6~#10の5件のケースについて、LH濃度定量値に対してAP(T)=60*exp(T/17)+ 14を用いて本法1により排卵時刻推定を行う。ここで、濃度閾値は実施例1の場合に倣い、 (ピーク高さ)*20%+(ベースライン)により設定する(Cs=177*20%+23≒60)。すなわち、ここではCs=60*20%+14=26に設定する。各ケースの偏差の平均±標準偏差を求めたところ-29±9となり、図19の一番左側に非特許文献4として、上段に平均、下段に標準偏差を黒丸プロットする。また、上記5件のケースについて、実施例1のAP (T)=177*exp(T/19)+23およびCs=60を用いて本法1により排卵時刻推定を行った場合は-2±7となり、同様に図19の一番右側に非特許文献3として黒丸プロットする。これは表7に示した-1±7と同等の結果である。つまり、近似LH濃度時間変化プロファイルが不適切に設定されることによって排卵時刻推定精度が著しく低下することが分かる。これに対して、AP(T)を個人のLH検査結果の履歴に基づいて改新または改良することで、排卵時刻推定精度をどの程度向上できるかを次に評価する。 Estimate ovulation time using this method 1 for 5 cases # 6 to # 10 shown in Table 2 using AP (T) = 60 * exp (T / 17) + 14 for the LH concentration quantitative value . Here, the density threshold value is set by (peak height) * 20% + (baseline) (Cs = 177 * 20% + 23≈60) following the case of the first embodiment. In other words, Cs = 60 * 20% + 14 = 26 is set here. The average ± standard deviation of the deviations in each case was calculated to be −29 ± 9. As shown in Non-Patent Document 4 on the leftmost side of FIG. 19, the average is plotted on the top and the standard deviation is plotted on the bottom. In addition, for the above five cases, when ovulation time estimation was performed according to Method 1 using AP (T) = 177 * exp (T / 19) +23 and Cs = 60 in Example 1, −2 ± Similarly, a black circle is plotted as Non-Patent Document 3 on the rightmost side of FIG. This is a result equivalent to −1 ± 7 shown in Table 7. That is, it can be seen that the ovulation time estimation accuracy is significantly lowered by improperly setting the approximate LH concentration time change profile. On the other hand, it is next evaluated how much the ovulation time estimation accuracy can be improved by renewing or improving AP (T) based on the history of individual LH test results.
 表2の#1, #2,・・・, #5をそれぞれ同一個人の第1, 2,・・・, 5生理周期分のLH濃度定量値、#6~#10も同一個人のLH濃度定量値である仮定する。最初に、第1生理周期が終わり、#1のLH濃度定量値のみが得られている状態を想定する。#1のLH濃度定量値である図3のすべての菱形プロットに対してガウス曲線を最小二乗法によりフィッティングすると、AP (T)=80*exp(T/39)+22が導出される。この時点で近似LH濃度時間変化プロファイルをAP(T) =60*exp(T/17)+14からAP(T)=80*exp(T/39)+22に改新する。濃度閾値は先と同じ規則に則り、Cs=80*20%+22=38とする。正確な比較評価を行うため、このAP(T)およびCsを用いて#6~#10の5件のケースについて本法1により排卵時刻推定を行ったところ偏差は5±8となり、図19の左から2番目に#1データとして黒丸プロットする。非特許文献4と比較して排卵時刻推定に大きな改善が見られる。次に、第2生理周期が終わり、#1および#2のLH濃度定量値のみが得られている状態を想定する。各標準時刻毎に#1および#2のLH濃度定量値の平均値を求め、それらに対してガウス曲線を最小二乗法によりフィッティングすると、AP(T)=124*exp(T/24)+25が導出される。この時点で近似LH濃度時間変化プロファイルをAP(T)= 80*exp(T/39)+22からAP(T)=124*exp(T/24)+25に改良する。濃度閾値はCs=124*20%+25=50とする。これらを用いて先と同様の排卵時刻推定を行ったところ偏差は-2±8となり、図19の左から3番目に#1-#2データとして黒丸プロットする。以下同様に、#1~#3、#1~#4、#1~#5の平均値からガウス曲線の近似LH濃度時間変化プロファイルを求めて#6~#10の排卵時刻推定を行った結果をそれぞれ図19に示す。図19の各排卵時刻推定で用いたAP(T)およびCsを表8にまとめる。 In Table 2, # 1, # 2, ..., # 5 are the LH concentration quantitative values for the first, 2, ..., 5 physiological cycles of the same individual, and # 6 to # 10 are the LH concentrations of the same individual. Assuming a quantitative value. First, it is assumed that the first physiological cycle is over and only the LH concentration quantitative value of # 1 is obtained. When a Gaussian curve is fitted to all the rhombus plots of FIG. 3 which are quantitative LH concentration values of # 1, AP (T) = 80 * exp (T / 39) +22 is derived. At this time, the approximate LH concentration time change profile is updated from AP (T) = 60 * exp (T / 17) +14 to AP (T) = 80 * exp (T / 39) +22. The density threshold is Cs = 80 * 20% + 22 = 38 according to the same rule as before. In order to perform an accurate comparative evaluation, when the ovulation time was estimated by this method 1 for 5 cases # 6 to # 10 using this AP (T) and Cs, the deviation was 5 ± 8. Plot black circles as # 1 data second from the left. Compared to Non-Patent Document 4, there is a significant improvement in ovulation time estimation. Next, it is assumed that the second physiological cycle is over and only the LH concentration quantitative values of # 1 and # 2 are obtained. When the average value of the LH concentration quantitative values of # 1 and # 2 is obtained at each standard time, and a Gaussian curve is fitted to them by the least square method, AP (T) = 124 * exp (T / 24) +25 Is derived. At this point, the approximate LH concentration time change profile is improved from AP (T) = 80 * exp (T / 39) +22 to AP (T) = 124 * exp (T / 24) +25. The density threshold is Cs = 124 * 20% + 25 = 50. When these are used to estimate the ovulation time in the same manner as described above, the deviation is −2 ± 8, and the black circle is plotted as # 1- # 2 data third from the left in FIG. Similarly, the result of estimating the ovulation time of # 6 to # 10 by obtaining the approximate LH concentration time change profile of the Gaussian curve from the average value of # 1 to # 3, # 1 to # 4, and # 1 to # 5 These are shown in FIG. Table 8 summarizes AP (T) and Cs used in each ovulation time estimation of FIG.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果から、個人のLH検査結果の履歴に基づいてAP(T)を改新または改良は非常に有効であることが分かる。わずか1回の生理周期分のLH濃度定量値だけで作成したAP(T)でも効果があり、2回以上の生理周期分のLH濃度定量値を用いることで、ほぼ理想的な近似LH濃度時間変化プロファイルAP(T)の導出が可能である。ただし、同一個人のLH濃度時間変化プロファイルTP(T)の生理周期間のばらつきが比較的小さいことが前提となる。逆にこの条件さえ満足されれば、検体の種類、検体前処理法、LH濃度の定量計測法、検体採取対象の母集団等の違いによる排卵時刻推定精度の低下は上記の手段によって解決することができる。 From the above results, it can be seen that it is very effective to upgrade or improve AP (T) based on the history of individual LH test results. AP (T) created with just one LH concentration quantitative value for only one physiological cycle is also effective, and by using LH concentration quantitative values for two or more physiological cycles, it is almost ideal approximate LH concentration time The change profile AP (T) can be derived. However, it is assumed that the variation between physiological cycles of the LH concentration time change profile TP (T) of the same individual is relatively small. On the contrary, if this condition is satisfied, the decrease in ovulation time estimation accuracy due to differences in specimen type, specimen pretreatment method, LH concentration quantitative measurement method, specimen collection target population, etc. should be solved by the above means. Can do.
 本実施例で示したAP(T)の改新および改良の方法は一例であり、その他の方法によっても同様の効果を上げることは可能である。 The method of renewing and improving AP (T) shown in this embodiment is an example, and the same effect can be obtained by other methods.
 本発明による排卵時刻推定を行うためには時刻測定手段を備えるLH濃度定量手段が必要である。高精度定量計測法として臨床検査用免疫分析装置を用いても良いが、家庭で日常的に検査を行うには装置コスト、設置スペースの点で現実的ではない。近年、イムノクロマト法を用いた各種検査キットの結果を目視で読み取るのではなく、光学的に自動的に読み取って検査対象物質を定量化する装置がロシュ・ダイアグノスティックス(株)、大塚電子(株)等から、その場検査(POCT)向けに販売されている。イムノクロマト法の検査キットの容器の窓を通して外部より、発光ダイオードやレーザダイオードによってニトロセルロース膜上の呈色反応部に光照射し、その反射光や透過光を計測することで呈色反応の濃淡度を計測している。同等の装置を用いて本発明を実施することは可能であるが、卓上型装置とは言え、まだ一般家庭で使用するには大型で高価であることが課題である。一方、イムノクロマト法の呈色反応を光学的に読み取る、ハンディーで低価格な装置が、インバネス・メディカル・ジャパン(株)からLH検査向けに、(株)アラクスからhCG検査(妊娠検査)向けに販売されているが、これらは陽性または陰性をデジタル判定する定性計測であり、定量計測はできない。これらに対して特許文献3で提案されている簡易定量検査キットは、以上に示した定量精度、装置サイズ、装置コストの課題を解決しており、本発明の実施に適している。以下ではこの特許文献3のキットに改良を加えることで本発明の効果を一層高める。 In order to perform ovulation time estimation according to the present invention, LH concentration quantification means including time measurement means is required. Although an immunoassay apparatus for clinical tests may be used as a high-precision quantitative measurement method, it is not realistic in terms of apparatus cost and installation space to perform daily tests at home. In recent years, instead of visually reading the results of various test kits using immunochromatography, devices that automatically read optically and quantify the substances to be tested have been developed by Roche Diagnostics Co., Ltd., Otsuka Electronics ( Etc.) are sold for in-situ inspection (POCT). Light intensity of the color reaction by irradiating the color reaction part on the nitrocellulose film from the outside through the window of the container of the immunochromatography test kit with a light emitting diode or laser diode, and measuring the reflected or transmitted light. Is measured. Although it is possible to implement the present invention using an equivalent device, although it is a desktop device, it is still a problem that it is large and expensive for use in a general household. On the other hand, handy and low-cost devices that optically read the color reaction of immunochromatography are sold by Inverness Medical Japan Co., Ltd. for LH testing and from Arax Co., Ltd. for hCG testing (pregnancy testing). However, these are qualitative measurements that digitally determine positive or negative and cannot be quantitatively measured. On the other hand, the simple quantitative inspection kit proposed in Patent Document 3 solves the above-described problems of quantitative accuracy, device size, and device cost, and is suitable for implementation of the present invention. In the following, the effect of the present invention is further enhanced by improving the kit of Patent Document 3.
 図20に、本発明の簡易定量検査キットおよびシステムの模式図を示す。リーダ202やパソコン203といった外部計測装置は、少なくともメモリ205,208と計算部206, 209を備えており、検査デバイス201を用いて本発明の方法により算出された結果を表示部204, 207に示す。図21は光センサチップを用いた場合の模式図であり、イムノクロマト法の呈色反応を発光反応に切り替え、検査デバイス201の容器の内部の浸透膜上の発光反応部に光センサを搭載したRFIDチップ(光センサチップ)を設置し、発光強度を計測する。図22は、検査デバイス201内の浸透膜上での検査対象物質、各種試薬の流動と局在、発光反応を模式的に表している。本実施例では浸透膜にニトロセルロースを用いるが、その他の素材でも構わない。乾燥状態の浸透膜の右端側に、発光反応部となるテスト部に固定化抗体を固定化し、この位置に光センサチップを配置し、その近傍に参照としてブランク部にも光センサチップを配置する。また、浸透膜の左端側の検体吸収部(尿吸収部)に酵素標識抗体を乾燥状態で保持する。ここで、検体吸収部に検体の溶液(尿)を浸すと、検体中の検査対象物質である抗原(LH)が酵素標識抗体と結合し、同時に浸透膜中を右端側に向かって毛細管現象によって浸透する。抗原は固定化抗体とも結合するため、テスト部において固定化抗体-抗原-酵素標識抗体のサンドイッチ複合体が形成される。サンドイッチ複合体を形成しない酵素標識抗体はテスト部を通り過ぎて溶液吸収部に吸収される。次に、検体吸収部に酵素基質の溶液を浸すと、浸透膜中を右端に向かって浸透してテスト部に到達し、テスト部においてサンドイッチ複合体中の酵素との間で発光反応を生じる。発光強度計測は呈色濃淡度計測と比較して、検査対象物質濃度に対する線形応答範囲が広いため、検査対象物質定量の感度、ダイナミックレンジに優れる。 FIG. 20 shows a schematic diagram of the simple quantitative inspection kit and system of the present invention. An external measurement device such as the reader 202 or the personal computer 203 includes at least memories 205 and 208 and calculation units 206 and 209, and the results calculated by the method of the present invention using the inspection device 201 are displayed on the display units 204 and 207. FIG. 21 is a schematic diagram of the case where an optical sensor chip is used, in which the color reaction of the immunochromatography method is switched to a luminescent reaction, and an RFID equipped with a photosensor in the luminescent reaction part on the permeable membrane inside the container of the inspection device 201 A chip (light sensor chip) is installed and the emission intensity is measured. FIG. 22 schematically shows the flow of the substance to be inspected, the flow and localization of various reagents, and the luminescence reaction on the permeable membrane in the inspection device 201. In this embodiment, nitrocellulose is used for the osmotic membrane, but other materials may be used. On the right end of the osmotic membrane in the dry state, the immobilized antibody is immobilized in the test part that becomes the luminescence reaction part, the photosensor chip is arranged at this position, and the photosensor chip is also arranged in the blank part as a reference in the vicinity thereof. . In addition, the enzyme-labeled antibody is held in a dry state in the specimen absorption part (urine absorption part) on the left end side of the osmosis membrane. Here, when the sample solution (urine) is immersed in the sample absorption part, the antigen (LH), which is the test substance in the sample, binds to the enzyme-labeled antibody, and at the same time, through the osmotic membrane toward the right end by capillary action. To penetrate. Since the antigen also binds to the immobilized antibody, a sandwich complex of the immobilized antibody-antigen-enzyme labeled antibody is formed in the test part. The enzyme-labeled antibody that does not form a sandwich complex passes through the test part and is absorbed by the solution absorption part. Next, when the enzyme substrate solution is immersed in the specimen absorption part, it penetrates through the osmotic membrane toward the right end and reaches the test part, where a luminescence reaction occurs with the enzyme in the sandwich complex. Luminescence intensity measurement has a wider linear response range with respect to the concentration of the test target substance than that of color intensity measurement, and therefore has excellent sensitivity and dynamic range for the determination of the test target substance.
 図23は、検査対象としてLHの代わりに妊娠検査マーカであるhCGを本法により定量計測を行って取得した検量線の結果であり、横軸がhCG濃度、縦軸が発光強度である。発光強度はテスト部とブランク部の出力の差分を一定時間積分したものである。プロット、エラーバー(上側のみ表示)は、それぞれn=5の平均と標準偏差を示す。従来の目視判定によるイムノクロマト法ではhCG濃度100~101 ng/mlが陰性から陽性への遷移領域であり、検出下限濃度はこの濃度範囲に存在する。これに対して、本法ではhCG濃度10-1 ng/ml以下の検出下限濃度が得られ、hCG濃度10-1~102 ng/mlの3桁の濃度範囲で検量線が得られており、高い検出感度と広いダイナミックレンジを持つ定量が可能であることが示されている。発光反応を用いることの別の効果は、検査デバイスに検査結果が残存しないため、検査デバイスを廃棄しても他人に検査結果を知られるリスクが低く、プライバシー保護に優れる点である。検査デバイスは外部から目視で発光を確認できない上、発光反応は発光基質の枯渇に伴って短時間で発光が減衰する。また、光センサチップに発光強度データが保存されないため、他人に読み取られる心配もない。 FIG. 23 shows the results of a calibration curve obtained by quantitative measurement of hCG, which is a pregnancy test marker, instead of LH as the test object by this method. The horizontal axis represents the hCG concentration, and the vertical axis represents the emission intensity. The light emission intensity is obtained by integrating the output difference between the test part and the blank part for a certain period of time. Plots and error bars (displayed only on the upper side) show the mean and standard deviation of n = 5, respectively. In the conventional immunochromatography method based on visual judgment, the hCG concentration of 10 0 to 10 1 ng / ml is a transition region from negative to positive, and the detection lower limit concentration exists in this concentration range. In contrast, in this method, a lower detection limit concentration of hCG concentration of 10 -1 ng / ml or less was obtained, and a calibration curve was obtained in a three-digit concentration range of hCG concentrations of 10 -1 to 10 2 ng / ml. It has been shown that quantification with high detection sensitivity and a wide dynamic range is possible. Another advantage of using the luminescent reaction is that the inspection result does not remain in the inspection device, so that even if the inspection device is discarded, the risk that the inspection result is known to others is low, and privacy protection is excellent. The inspection device cannot visually confirm luminescence from the outside, and the luminescence reaction attenuates in a short time as the luminescent substrate is depleted. Further, since the emission intensity data is not stored in the optical sensor chip, there is no fear of being read by others.
 図21の(A)に示す通り、ハンディーサイズの検査デバイス211の尿吸収部にユーザの尿を浸してからキャップを接続すると、尿吸収部およびキャップにあらかじめ保持された酵素標識抗体、発光基質が浸透膜に浸透される。この際、検査デバイスは遮光構造となり、外乱光による悪影響を回避できる。検査デバイスの容器には外部から目視するための窓は存在しない。また、検査デバイスが密閉状態になるため、付着した尿が外部に汚染することを回避できる。RFIDチップ(光センサチップ)は、駆動電力が図21(B)に示すような検査デバイス外部のリーダ212により無線により供給されるため、検査デバイスおよび光センサチップは電池などの電源を持たない。したがって、光センサチップを大量生産によって単価を安く抑え、検査デバイスの製造コストを低減することにより、検査デバイスを使い捨てにすることができる。 As shown in FIG. 21 (A), when the cap is connected after immersing the user's urine in the urine absorbing part of the handy size testing device 211, the enzyme-labeled antibody and the luminescent substrate previously held in the urine absorbing part and the cap are removed. It penetrates the osmotic membrane. At this time, the inspection device has a light shielding structure, and adverse effects due to ambient light can be avoided. There is no window for viewing from the outside of the container of the inspection device. In addition, since the inspection device is in a sealed state, it is possible to prevent the attached urine from being contaminated to the outside. Since the RFID chip (photosensor chip) is supplied with driving power wirelessly by a reader 212 outside the inspection device as shown in FIG. 21B, the inspection device and the optical sensor chip do not have a power source such as a battery. Therefore, the inspection device can be made disposable by suppressing the unit price by mass production of the optical sensor chip and reducing the manufacturing cost of the inspection device.
 次に、図21(B)に示す通り、検査デバイス211をリーダ212に接続する。なお、リーダ212は電池を電源として搭載する。リーダは使い捨てにせずに、複数回の検査に使用する。光センサチップ211に対する給電と制御、および光センサチップのIDと発光強度データの読み出しは、リーダ212が無線により行う。すなわち、検査デバイスとリーダは有線では接続されない。これも検査デバイスの製造コストの低減に寄与すると同時に、接続の信頼性を向上する。検査デバイスとリーダの相対位置を所定の関係に容易に定めて無線接続を確実にするため、図21(B)のようにリーダが検査デバイスのソケット構造になっていることが望ましい。逆に、ここでのデータ転送が遠方から他人に読み取られる心配はない。リーダもハンディーサイズにすることにより、接続状態の検査デバイスとリーダを化粧ポーチ等の小型のカバンに収納することができる。これは職場のトイレ等、自宅以外の外出先において検査を実施する上で有効である。発光強度データはリーダに搭載されたメモリに保存する。 Next, the inspection device 211 is connected to the reader 212 as shown in FIG. The reader 212 is equipped with a battery as a power source. The reader is not disposable, but is used for multiple inspections. The reader 212 wirelessly feeds and controls the optical sensor chip 211 and reads the optical sensor chip ID and emission intensity data. That is, the inspection device and the reader are not connected by wire. This also contributes to a reduction in the manufacturing cost of the inspection device and at the same time improves the connection reliability. In order to easily determine the relative position between the inspection device and the reader in a predetermined relationship to ensure wireless connection, it is desirable that the reader has a socket structure of the inspection device as shown in FIG. Conversely, there is no worry that the data transfer here will be read by others from a distance. By setting the reader to a handy size, the connected inspection device and the reader can be stored in a small bag such as a cosmetic pouch. This is effective for conducting inspections at places other than home, such as toilets at work. The emission intensity data is stored in a memory mounted on the reader.
 続いて、図21(C)に示す通り、発光強度計測が終了してリーダ上の所定のランプがその旨を知らせると、リーダ上の所定スイッチを押して発光強度データを外部計測装置、ここではユーザの携帯電話213に一括して無線により転送する。時刻情報については、リーダ側で検出した時刻として記憶し、情報が転送されるようにするとよい。この無線転送は赤外線通信、ZigBee等、どのような手段を用いても構わないが他人に読まれないための安全性を確保する。携帯電話には、LH濃度解析ソフト、排卵時刻推定ソフト、および表示ソフトがあらかじめインストールされ、ソフトによる解析に必要なデータがメモリに記憶されている。LH濃度解析ソフトは発光強度データを解析してLH濃度を定量化し、排卵時刻推定ソフトはLH濃度定量値からLHサージ開始時刻、LHサージピーク時刻、排卵時刻を独自のアルゴリズムにより推定し、表示ソフトはLH濃度定量値や推定排卵時刻等を数値、表、グラフ等でディスプレイ上に表示する。また、携帯電話は発光強度データおよびそれ以降の加工データを保存する機能を備える。近年は大抵の人が自分専用の携帯電話を既に所有し、携帯しているため、携帯電話を演算および結果表示を行う情報処理装置として活用することにより、簡易定量検査キットおよびシステム全体を実質的に低コスト化、および小型化することができる。 Next, as shown in FIG. 21 (C), when the emission intensity measurement is completed and a predetermined lamp on the reader informs that, the predetermined switch on the reader is pressed to transmit the emission intensity data to the external measuring device, here the user. Wirelessly transferred to the mobile phone 213 at once. About time information, it is good to memorize | store as time detected by the reader | leader side, and to make it transmit information. For this wireless transfer, any means such as infrared communication, ZigBee, etc. may be used, but safety is ensured so that it cannot be read by others. The mobile phone is preinstalled with LH concentration analysis software, ovulation time estimation software, and display software, and data necessary for analysis by the software is stored in the memory. The LH concentration analysis software quantifies the LH concentration by analyzing the luminescence intensity data, and the ovulation time estimation software estimates the LH surge start time, LH surge peak time, and ovulation time from the LH concentration quantitative value using a unique algorithm, and the display software Displays the LH concentration quantitative value, estimated ovulation time, etc. on the display as numerical values, tables, graphs, etc. In addition, the mobile phone has a function of storing emission intensity data and subsequent processing data. In recent years, most people already own and carry their own mobile phones, so by using the mobile phone as an information processing device for computing and displaying results, the simple quantitative test kit and the entire system can be substantially In addition, the cost can be reduced and the size can be reduced.
 また、図21(B)の接続状態の検査デバイスとリーダを、自宅のトイレに放置した状態で、あるいは化粧ポーチに収納した状態で発光強度計測を実行し、ユーザは他の作業に移行し、後で都合の良い時に図21(C)に戻る使い方が可能になる。情報処理装置は図20に記載したようなパーソナルコンピュータや携帯情報端末でも良いし、専用の情報処理装置でも良い。また、リーダと情報処理装置の接続は有線でも構わないし、図20のようにリーダと情報処理装置とが別体の装置であっても良く、あるいはこれらが一体構造の装置であっても良い。いずれの場合も、個々の検査毎に使い捨てにするのは検査デバイスだけであり、リーダおよび情報処理装置は複数回の検査に繰り返し使用するのが望ましい。 In addition, when the inspection device and reader in the connected state in FIG. 21 (B) are left in the toilet at home or stored in a cosmetic pouch, the emission intensity measurement is performed, and the user shifts to other work. It becomes possible to return to FIG. 21 (C) later when convenient. The information processing apparatus may be a personal computer or a portable information terminal as shown in FIG. 20, or a dedicated information processing apparatus. Further, the connection between the reader and the information processing apparatus may be wired, and the reader and the information processing apparatus may be separate devices as shown in FIG. 20, or may be an integrated structure device. In either case, only the inspection device is disposable for each inspection, and it is desirable that the reader and the information processing apparatus are repeatedly used for a plurality of inspections.
 一方、図20に示した簡易定量検査キットの例のように光センサを検査デバイスの中に内蔵するのではなく、図24に示すように外部計測装置(202,203)が光センサを内蔵しても良い。この場合、検査デバイスの容器に窓を設け、容器の外部から発光反応を計測できるようにする。窓をガラス等の透明な材料で塞げば、容器の密閉状態を維持することができる。 On the other hand, instead of incorporating the optical sensor in the inspection device as in the example of the simple quantitative inspection kit shown in FIG. 20, the external measuring device (202, 203) may incorporate the optical sensor as shown in FIG. good. In this case, a window is provided in the container of the inspection device so that the luminescence reaction can be measured from the outside of the container. If the window is closed with a transparent material such as glass, the sealed state of the container can be maintained.
 図21(B)の検査デバイスとリーダの接続に倣い、検査デバイスと外部計測装置を接続することで相対位置を所定の関係に定めると、図24のように外部計測装置の光センサが容器の窓に近接し、容器内部のテスト部における発光反応を計測できるようになる。ただし、図24では外部計測装置は光センサ近傍の一部分のみを描いている。外部計測装置は、光センサ以外に、発光強度計測を行うための回路、発光強度データや時刻を保存するための記憶素子、これらを駆動する電源の電池を少なくとも備える。したがって、光センサの素子は無線通信機能を持つ必要がない。また、光センサを使い捨てにせずに繰り返し使用することができる。一方、検査デバイスは光センサチップを内蔵する必要がないため、より低コストに製造でき、使い捨てに一層適する。演算および結果表示を行う情報処理装置は、外部計測装置に内蔵しても良いし、外部記憶装置と分離して無線または有線で接続しても良い。 Following the connection between the inspection device and reader in FIG. 21 (B), connecting the inspection device and the external measurement device to determine the relative position in a predetermined relationship, the optical sensor of the external measurement device is connected to the container as shown in FIG. It becomes possible to measure the luminescence reaction in the test part inside the container close to the window. However, in FIG. 24, the external measuring device shows only a part near the optical sensor. In addition to the optical sensor, the external measuring device includes at least a circuit for measuring emission intensity, a storage element for storing emission intensity data and time, and a battery for a power source for driving these. Therefore, the element of the optical sensor does not need to have a wireless communication function. Further, the optical sensor can be used repeatedly without being disposable. On the other hand, since the inspection device does not need to incorporate an optical sensor chip, it can be manufactured at a lower cost and is more suitable for disposable use. The information processing apparatus that performs calculation and result display may be built in the external measurement device, or may be connected to the external storage device wirelessly or by wire.
 本発明の実施例4として、推定結果を表示する手段について、図25、図26で説明する。実施例4では、携帯電話、パーソナルコンピュータ、携帯情報端末等の情報処理装置のディスプレイに、LH濃度定量結果、およびLHサージ開始時刻、LHサージピーク時刻、排卵時刻、妊娠に適したセックスのタイミング(妊娠可能期間)、避妊に適したセックスのタイミング(避妊可能期間)等の推定結果を表示する。 As a fourth embodiment of the present invention, means for displaying the estimation result will be described with reference to FIGS. In Example 4, on the display of an information processing device such as a mobile phone, personal computer, or portable information terminal, the LH concentration quantification result, LH surge start time, LH surge peak time, ovulation time, sex timing suitable for pregnancy ( Estimated results such as the period of pregnancy) and the timing of sex suitable for contraception (contraception period) are displayed.
 ここでは、実施例1の#7のケースを例とする。LH検査を起床後の朝7時に24時間毎に繰り返す。2008年10月15日(水)午前7時を表2におけるt1=0、すなわちLH検査開始の日時と仮定する。LH検査開始から3日目のLH濃度定量値の結果表示の例を図25の(A)に示す。1日目、2日目のLH濃度定量値とともに棒グラフで示し、LH濃度の推移が一目で分かるようにする。3日目のLH濃度定量値の棒の色を他と変えることで現時点の最新データであることを分かりやすくする。横軸はLH検査開始からの数え日数で示すが、生理開始からの数え日数で示しても良いし、「10/15」のような日付で示しても良い。ディスプレイに「10月17日(金)午前7時、検体採取日:3日目、LH濃度:72(mIU/ml)」を併記し、現時点の具体的なLH濃度定量値を把握できるようにする。棒グラフ以外のグラフや表で結果表示しても良い。また、3日目のLH濃度定量値は濃度閾値60を超えているため、「LH濃度が閾値を超えました。排卵時刻を推定しますか?」を表示し、ユーザに実行可否を問う。 Here, the case of # 7 in Example 1 is taken as an example. Repeat the LH test every 24 hours at 7am after waking up. We assume 7:00 am on Wednesday, October 15, 2008 as t1 = 0 in Table 2, that is, the date and time of the LH test start. FIG. 25 (A) shows an example of the result display of the LH concentration quantitative value on the third day from the start of the LH test. Show the bar graph with the quantitative values of LH concentration on the 1st and 2nd days so that the transition of the LH concentration can be seen at a glance. By changing the color of the LH concentration quantitative value on the third day, it is easy to understand that it is the latest data at the present time. The horizontal axis indicates the number of days counted from the start of the LH test, but may indicate the number of days counted from the start of menstruation or a date such as “10/15”. On the display, “October 17th (Friday) at 7:00 am, sample collection day: 3rd day, LH concentration: 72 (mIU / ml)” will be shown together so that the current quantitative LH concentration can be determined. To do. The results may be displayed in a graph or table other than the bar graph. Also, since the LH concentration quantitative value on the third day exceeds the concentration threshold value 60, the message “LH concentration exceeds the threshold value. Do you want to estimate the ovulation time?” Is displayed and the user is asked whether execution is possible.
 ユーザが図25の(A)の推定実行を選択すると、実施例1の本法1に従ってLHサージピーク時刻を推定し、その結果を図25の(B)のように示す。実施例1の方法2やその他のアルゴリズムにしたがって推定しても良い。LH濃度定量値を菱形プロットで示し、3日目についてはプロットの色を変えて現時点の最新データであることを分かりやすくする。横軸はLH検査開始からの数え日数で示し、各日は午前7時を起点とする。近似LH濃度時間変化プロファイルであるガウス分布をフィッティングした結果を表示し、そのピーク時刻を「推定LHサージピーク時刻:10月18日(土)午前4時」と表示する。この時刻はLH検査開始の2008年10月15日(水)午前7時から69時間後であり、表5の結果と一致している。ここで、「今から21時間後にLHサージピークを推定」、「今から24時間以内にLHサージピークを推定」、「今から12~24時間後にLHサージピークを推定」のように表現して、現在時刻の2008年10月17日(金)午前7時との対比を明確にすることも有効である。推定LHサージピーク時刻の誤差を見込める場合、例えば誤差が±7時間とすると、「推定LHサージピーク時刻:10月18日(土)午前4±7時」、あるいは「推定LHサージピーク時刻:10月17日(金)午後9時~10月18日(土)午前11時」と表示しても良い。また、実施例1に示すようにLHサージ開始時刻を推定し、その結果を表示しても良い。 When the user selects the estimation execution of FIG. 25 (A), the LH surge peak time is estimated according to Method 1 of Example 1 and the result is shown as FIG. 25 (B). The estimation may be performed according to the method 2 of the first embodiment and other algorithms. The LH concentration quantitative value is shown as a rhombus plot, and for the third day, the color of the plot is changed to make it easy to understand that it is the latest data at the present time. The horizontal axis shows the number of days from the start of the LH test, and each day starts at 7:00 am. The result of fitting a Gaussian distribution, which is an approximate LH concentration time change profile, is displayed, and the peak time is displayed as “estimated LH surge peak time: October 18 (Sat) 4 am”. This time is 69 hours after 7 am (Wednesday), October 15, 2008 (Wednesday), when the LH test starts, and is consistent with the results in Table 5. Here, it is expressed as “estimate LH surge peak 21 hours from now”, “estimate LH surge peak within 24 hours from now”, “estimate LH surge peak 12 to 24 hours from now”. It is also effective to clarify the comparison with the current time of Friday, October 17, 2008 at 7:00 am. When the error of the estimated LH surge peak time can be expected, for example, if the error is ± 7 hours, “estimated LH surge peak time: Saturday, October 18 4 ± 7 am” or “estimated LH surge peak time: 10 May 17 (Friday) from 9:00 pm to October 18 (Saturday) at 11:00 am ”. Further, as shown in the first embodiment, the LH surge start time may be estimated and the result may be displayed.
 次に、実施例1に従って推定LHサージピーク時刻の10時間後を排卵時刻と推定し、図25の(C)のように「推定排卵時刻:10月18日(土)午後2時」と表示する。ここで、「今から31時間後に排卵を推定」、「今から36時間以内に排卵を推定」、「今から24~36時間後に排卵を推定」のように表現して、現在時刻の2008年10月17日(金)午前7時との対比を明確にすることも有効である。推定LHサージピーク時刻を基準とする推定排卵時刻の誤差を見込める場合、例えば非特許文献3に示されている通りに誤差が±5時間とすると、排卵時刻の確率分布が標準偏差5時間のガウス分布と仮定できるため、その確率分布を図25の(C)のように近似LH濃度時間変化プロファイルのフィッティング結果と重ねて表示する。2つのガウス分布を色分けしたり、片方のガウス分布の領域に色を付けることにより、両者を容易に区別できるようにする。また、図25の(D)のように、誤差±5時間を踏まえて、「推定排卵時刻:10月18日(土)午前9時~午後7時」と表示し、この時間領域を近似LH濃度時間変化プロファイルのフィッティング結果と重ねて表示しても良い。推定排卵時刻:10月18日(土)午後2時の時刻のみを直線や矢印等で近似LH濃度時間変化プロファイルのフィッティング結果と重ねて表示しても良い。 Next, 10 hours after the estimated LH surge peak time is estimated as the ovulation time according to Example 1, and “estimated ovulation time: October 18 (Saturday) 2 pm” is displayed as shown in FIG. To do. Here, it is expressed as “estimate ovulation 31 hours from now”, “estimate ovulation within 36 hours from now”, “estimate ovulation 24 to 36 hours from now”, and the current time of 2008 It is also effective to clarify the comparison with 7:00 am on Friday, October 17th. If an error in the estimated ovulation time based on the estimated LH surge peak time can be expected, for example, if the error is ± 5 hours as shown in Non-Patent Document 3, the probability distribution of the ovulation time is a Gaussian with a standard deviation of 5 hours. Since the distribution can be assumed, the probability distribution is displayed so as to overlap with the fitting result of the approximate LH concentration time change profile as shown in FIG. The two Gaussian distributions are color-coded, or one Gaussian distribution region is colored so that they can be easily distinguished from each other. Also, as shown in Fig. 25 (D), based on an error of ± 5 hours, "estimated ovulation time: October 18 (Saturday) 9 am-7 pm" is displayed, and this time region is approximated by LH You may display it superimposed on the fitting result of the density time change profile. Estimated ovulation time: Only the time of 2:00 pm on Saturday, October 18 may be displayed with a fitting result of the approximate LH concentration time change profile by a straight line or an arrow.
 続いて、推定排卵時刻を踏まえて、妊娠可能期間および避妊可能期間を図26のように表示する。例えば、精子の生存期間を48時間、卵子の生存期間を12時間と仮定し、「推定排卵時刻:10月18日(土)午前9時~午後7時」に対して、図26の(A)のように、「妊娠可能期間:10月16日(木)午前9時~10月19日(日)午前7時」と表示し、この時間領域を近似LH濃度時間変化プロファイルのフィッティング結果および推定排卵時刻の時間領域と重ねて表示する。妊娠可能期間と推定排卵時刻の時間領域を異なる色で表示するなどにより、両者を容易に区別できるようにする。一方で、妊娠可能期間以外を避妊可能期間と仮定し、図26の(B)のように、「避妊可能期間:~10月16日(木)午前9時、10月19日(日)午前7時~」と表示し、この時間領域を近似LH濃度時間変化プロファイルのフィッティング結果および推定排卵時刻の時間領域と重ねて表示する。避妊可能期間と推定排卵時刻の時間領域を異なる色で表示するなどにより、両者を容易に区別できるようにする。また、ユーザのニーズに合わせて、より具体的にアドバイスを表示することはタイミング療法を効果的にすることができる。 Subsequently, based on the estimated ovulation time, the pregnancy possible period and the contraceptive possible period are displayed as shown in FIG. For example, assuming that the sperm survival time is 48 hours and the egg survival time is 12 hours, "Estimated ovulation time: Saturday, October 18 from 9:00 am to 7:00 pm" ) “Possible pregnancy period: October 16 (Thursday) from 9:00 am to October 19 (Sunday) at 7:00 am”, and this time domain is the fitting result of the approximate LH concentration time change profile and It is displayed overlapping the time region of the estimated ovulation time. By displaying the time range of the pregnancy possible period and the estimated ovulation time in different colors, the two can be easily distinguished. On the other hand, it is assumed that the period other than the pregnancy possible period is a contraceptive period, and as shown in Fig. 26 (B), "Contraception possible period:-October 16 (Thursday) 9:00 am, October 19 (Sunday) am 7 o'clock ”is displayed, and this time region is displayed so as to overlap with the fitting result of the approximate LH concentration time change profile and the time region of the estimated ovulation time. The contraceptive period and the estimated ovulation time are displayed in different colors so that they can be easily distinguished from each other. Moreover, timing therapy can be effectively performed by displaying advice more specifically according to the user's needs.
 以上のような表示をすることにより、早期、高精度な排卵時刻推定が得られだけでなく、タイミング療法を実行する上で安心感や納得感が得られ、タイミングに迷うことが少なくなる。また、表示がビジュアルで分かりやすく、楽しみながらタイミング療法を実行できる。 By displaying as described above, not only early and highly accurate ovulation time estimation can be obtained, but also a sense of security and satisfaction can be obtained when performing timing therapy, and there is less chance of getting lost in timing. In addition, the display is visual and easy to understand, and you can perform timing therapy while having fun.
 以上では24時間毎にLH検査を繰り返す場合を想定した実施例を示したが、時間間隔はこれに限定される必要はないし、一連のLH検査で時間間隔が一定している必要もない。本発明の方法はいずれの場合にも対応可能である。 In the above, an example was given assuming that the LH inspection is repeated every 24 hours, but the time interval need not be limited to this, and the time interval need not be constant in a series of LH inspections. The method of the present invention can be applied to either case.
 以上の実施例では、早期かつ高精度に排卵時刻を推定することを目的に、排卵前に於いて排卵時刻推定を行っているが、排卵後のLH検査の結果も併せて用いて、排卵後に於いて本発明の方法によって排卵時刻推定を行っても良い。後者の場合の方が推定に用いる情報量が多いため、排卵時刻推定の精度がより向上する。これにより、排卵後に過去を振り返り、推移を確認し、自らの判断や行動を評価することができるようになり、その後の判断や行動に反映させることで次回以降の妊娠の確率を向上できるようになる。また、ユーザのLH検査結果の履歴を生理周期毎に表示したり、複数の整理周期の履歴を重ね表示することも、次回以降にタイミング判断に役立てることができる。 In the above embodiment, the ovulation time is estimated before ovulation for the purpose of estimating the ovulation time early and with high accuracy, but also using the results of the LH test after ovulation, Therefore, the ovulation time may be estimated by the method of the present invention. Since the latter case uses a larger amount of information for estimation, the accuracy of ovulation time estimation is further improved. This allows you to look back on the past after ovulation, check the transition, evaluate your own judgment and behavior, and improve the probability of pregnancy after the next time by reflecting it in the subsequent judgment and behavior. Become. In addition, displaying the history of the user's LH test results for each menstrual cycle or displaying the history of a plurality of organizing cycles in an overlapping manner can be useful for timing determinations from the next time onward.
 以上の実施例では、LH濃度定量値からLHサージピーク時刻またはLHサージ開始時刻を推定し、これらの時刻を基準として排卵時刻を推定しているが、LH以外のホルモンについて本発明の方法を用いても良い。例えば、エストラジオール(エストロゲン)はLHと同様に排卵直前に女性で多く分泌さるホルモンである。非特許文献7によれば、エストラジオールの濃度変化プロファイルのピークはLHサージのピークよりも24時間程度前に存在し、エストラジオールの濃度変化プロファイルのピーク時刻から34時間程度後に排卵が生じることが知られている。すなわち、エストラジオールの濃度定量値から、その濃度変化プロファイルのピーク時刻を本法により推定し、この時刻を基準として排卵時刻を推定すれば、LHの場合よりも早期に排卵時刻を推定することができる。また、本発明を複数のホルモン、例えばLHとエストラジオールに適用し、それぞれについて行われる排卵時刻の推定を統合することで、より精度の高い推定排卵時刻を導出することができる。複数のホルモンの濃度変化プロファイルや推定排卵時刻をそれぞれ重ね表示したり、統合した推定排卵時刻を重ね表示することはユーザにとって分かりやすい。統合の手段としては、それぞれについて得られる排卵時刻の確率分布の和でも良いし、積でも良い。一方、基礎体温を用いた排卵時刻の推定法を本法と併せて表示しても良い。例えば、日毎の基礎体温の変化とLH濃度定量値の変化を重ね表示し、それぞれから推定される排卵時刻、または統合した推定排卵時刻を重ね表示すれば、より精度の高い排卵時刻推定が可能になる。 In the above examples, the LH surge peak time or LH surge start time is estimated from the LH concentration quantitative value, and the ovulation time is estimated based on these times, but the method of the present invention is used for hormones other than LH. May be. For example, estradiol (estrogen) is a hormone that is secreted by many women just before ovulation, just like LH. According to Non-Patent Document 7, it is known that the peak of estradiol concentration change profile exists about 24 hours before the peak of LH surge, and ovulation occurs about 34 hours after the peak time of estradiol concentration change profile. ing. That is, if the peak time of the concentration change profile is estimated from the estradiol concentration quantitative value by this method and the ovulation time is estimated based on this time, the ovulation time can be estimated earlier than in the case of LH. . Further, by applying the present invention to a plurality of hormones, such as LH and estradiol, and integrating the estimation of ovulation time performed for each of them, a more accurate estimated ovulation time can be derived. It is easy for the user to display the concentration change profiles and estimated ovulation times of a plurality of hormones or to display the integrated estimated ovulation times in an overlapping manner. As a means for integration, the sum of probability distributions of ovulation times obtained for each may be used, or a product may be used. On the other hand, an estimation method of ovulation time using basal body temperature may be displayed together with this method. For example, if the changes in basal body temperature and changes in the LH concentration quantitative value for each day are overlaid, and the ovulation time estimated from each or the integrated estimated ovulation time is overlaid, more accurate ovulation time estimation is possible. Become.
 さらに、以上で得られた推定結果を特定の人物とネットワークを通して安全に情報共有することにより他の効果を得られる。例えば、パートナーと情報共有することにより、パートナーの協力が得やすくなり、タイミング療法の成功確率を向上させることができる。 Furthermore, other effects can be obtained by sharing information with the specific person through the network safely through the estimation result obtained above. For example, by sharing information with a partner, it becomes easier to obtain cooperation from the partner, and the success probability of timing therapy can be improved.
 本発明は、早期かつ高精度な排卵時刻推定を実現するLHを始めとするホルモンの検査キット、およびシステムを提供する。 The present invention provides a test kit and system for hormones such as LH that realizes early and highly accurate ovulation time estimation.
 201, 211 …検査デバイス、202, 212 …リーダ、203, 213 …外部計測装置、204, 207 …表示部、205, 208 …メモリ、206, 209 …計算部。 201, 211: Inspection device, 202, 212: Reader, 203, 213: External measuring device, 204, 207: Display, 205, 208: Memory, 206, 209: Calculation unit.

Claims (17)

  1.  妊娠可能状態をモニタする方法であって、
     生体サンプルを検出デバイスに接触させ、前記生体サンプル中のホルモン濃度を検出してメモリに記憶する工程と、
     前記生体サンプルの採取時刻を前記メモリに記憶する工程と、
     採取された前記生体サンプルの測定対象ホルモン濃度が、前記メモリに予め記憶されたホルモン濃度の閾値を超えたことを検出し、メモリに記憶され設定された前記ホルモン濃度の濃度時間変化プロファイル関数を抽出して、前記メモリに記憶されたホルモン濃度と採取時刻に対しフィッティングする工程と、
     フィッティングすることにより得られたフィッティング関数から、ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻を推定する工程と、
     前記推定された時刻と、前記メモリに予め記憶された排卵時刻までの時間間隔とから、排卵時刻を算出して出力する工程とを有することを特徴とするモニタ方法。
    A method for monitoring a fertility state,
    Contacting a biological sample with a detection device, detecting a hormone concentration in the biological sample and storing it in a memory;
    Storing the collection time of the biological sample in the memory;
    Detects that the concentration of hormone to be measured in the collected biological sample exceeds a threshold value of hormone concentration stored in advance in the memory, and extracts a concentration time change profile function of the hormone concentration stored and set in the memory And fitting the hormone concentration and the collection time stored in the memory;
    From the fitting function obtained by fitting, a step of estimating the time when the hormone concentration takes a maximum value or the time when the hormone concentration exceeds a threshold indicating the start of surge;
    And a step of calculating and outputting the ovulation time from the estimated time and a time interval until the ovulation time stored in the memory in advance.
  2.  請求項1に記載のモニタ方法であって、前記フィッティングは、前記濃度時間変化プロファイル関数の、前記メモリに記憶されたホルモン濃度と採取日時のデータに対する最小二乗法の適用であることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the fitting is an application of a least square method to the hormone concentration and collection date / time data stored in the memory of the concentration time change profile function. How to monitor.
  3. 請求項1又は2に記載のモニタ方法であって、前記フィッティングは、前記濃度時間変化プロファイル関数の、時間軸方向の平行移動であることを特徴とするモニタ方法。 3. The monitoring method according to claim 1, wherein the fitting is parallel movement of the concentration time change profile function in a time axis direction.
  4.  請求項1に記載のモニタ方法であって、前記濃度時間変化プロファイル関数は、ガウス曲線であることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the concentration time change profile function is a Gaussian curve.
  5.  請求項1に記載のモニタ方法であって、前記濃度プロファイル関数は、直線であることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the concentration profile function is a straight line.
  6.  請求項1に記載のモニタ方法であって、前記濃度時間変化プロファイル関数は、前記メモリに記憶された周期的データにより作成されることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the concentration time change profile function is created by periodic data stored in the memory.
  7.  請求項6に記載のモニタ方法であって、前記濃度時間変化プロファイル関数は、前記生体サンプルを採取される被検者のデータと、前記被検者に由来しないデータを統合したデータから導出されていることを特徴とするモニタ方法。 The monitoring method according to claim 6, wherein the concentration time change profile function is derived from data obtained by integrating data of a subject from whom the biological sample is collected and data not derived from the subject. A monitoring method characterized by comprising:
  8.  請求項1に記載のモニタ方法であって、前記測定対象ホルモン濃度は、LH濃度、エストラジオール濃度、hCG濃度のいずれか一つ以上であることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the concentration of the hormone to be measured is one or more of an LH concentration, an estradiol concentration, and an hCG concentration.
  9.  請求項1に記載のモニタ方法であって、前記生体サンプルは、尿又は血液であることを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the biological sample is urine or blood.
  10.  請求項1に記載のモニタ方法であって、前記ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻について、前記メモリに記憶された偏差時間を合わせて時刻推定することを特徴とするモニタ方法。 2. The monitoring method according to claim 1, wherein the time at which the hormone concentration takes a maximum value or the time at which the hormone concentration exceeds a threshold value indicating the start of surge is estimated together with the deviation time stored in the memory. A monitoring method characterized by the above.
  11.  妊娠可能性状態をモニタするシステムであって、
     生体サンプルを接触させて前記生体サンプル中のホルモン濃度と生体サンプルの採取時刻を検出する検出デバイスと、
     メモリと、
     計算部と、
     前記計算部によって算出された結果を出力する出力部とを備え、
     前記計算部は、前記生体サンプルの測定対象ホルモン濃度が、前記メモリに予め記憶されたホルモン濃度の閾値を超えたことを検出し、メモリに記憶され設定された前記ホルモン濃度の濃度時間変化プロファイル関数を抽出して、前記メモリに記憶されたホルモン濃度と採取時刻に対しフィッティングし、フィッティングすることにより得られたフィッティング関数から、ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻を推定して排卵時刻を算出し、前記出力部に対し、算出された前記排卵時刻を出力することを特徴とするモニタシステム。
    A system for monitoring a fertility status,
    A detection device for contacting a biological sample to detect a hormone concentration in the biological sample and a collection time of the biological sample;
    Memory,
    A calculation unit;
    An output unit that outputs a result calculated by the calculation unit;
    The calculation unit detects that the measurement target hormone concentration of the biological sample exceeds a hormone concentration threshold value stored in advance in the memory, and the concentration time change profile function of the hormone concentration stored and set in the memory From the fitting function obtained by fitting the hormone concentration stored in the memory and the collection time, and the fitting function obtained by fitting, a threshold value at which the hormone concentration takes a maximum value or a threshold at which the hormone concentration indicates the start of surge is obtained. An ovulation time is estimated by estimating an exceeding time, and the calculated ovulation time is output to the output unit.
  12.  請求項11に記載のモニタシステムであって、前記出力部は、前記ホルモン濃度が閾値を超えたことを出力して、前記計算部による排卵時刻の推定を行うかどうかの入力を受け付けることを特徴とするモニタシステム。 12. The monitor system according to claim 11, wherein the output unit outputs that the hormone concentration has exceeded a threshold value, and receives an input as to whether or not the calculation unit estimates the ovulation time. And monitor system.
  13.  請求項11に記載のモニタシステムであって、前記出力部は、推定された前記排卵時刻を、前記濃度時間変化プロファイル関数と共に表示することを特徴とするモニタシステム。 12. The monitor system according to claim 11, wherein the output unit displays the estimated ovulation time together with the concentration time change profile function.
  14.  妊娠可能性状態を検査する検査キットであって、
     生体サンプルを接触させることにより、前記生体サンプル中の測定対象物質を測定するための反応を起こさせる反応デバイスと、
     前記反応デバイスの反応量を検出する検出器と、
    前記検出器によって検出された反応量と時刻とを記憶するメモリと、計算装置を備えた外部計算手段とを備え、
     前記計算装置は、前記検出器によって検出された反応量を前記測定対象物質であるホルモン濃度とし、測定対象ホルモン濃度が、前記メモリに予め記憶されたホルモン濃度の閾値を超えたことを検出し、メモリに記憶され設定された前記ホルモン濃度の濃度時間変化プロファイル関数を抽出して、前記メモリに記憶されたホルモン濃度と採取時刻に対しフィッティングし、フィッティングすることにより得られたフィッティング関数から、ホルモン濃度が極大値を取る時刻又はホルモン濃度がサージ開始を示す閾値を超える時刻を推定して排卵時刻を算出することを特徴とする検査キット。
    A test kit for testing a fertility state,
    A reaction device for causing a reaction for measuring a measurement target substance in the biological sample by contacting the biological sample;
    A detector for detecting a reaction amount of the reaction device;
    A memory for storing the reaction amount and time detected by the detector, and an external calculation means including a calculation device,
    The calculation device uses the reaction amount detected by the detector as a hormone concentration as the measurement target substance, detects that the measurement target hormone concentration exceeds a hormone concentration threshold value stored in advance in the memory, Extracting the concentration time change profile function of the hormone concentration stored and set in the memory, fitting the hormone concentration and the collection time stored in the memory, and fitting the hormone concentration from the fitting function obtained by fitting A test kit characterized in that the time at which the maximum value is taken or the time when the hormone concentration exceeds a threshold value indicating the start of surge is estimated to calculate the ovulation time.
  15.  請求項14に記載の検査キットであって、前記反応は発光反応であって、前記検出器が光センサチップであり、前記光センサチップが前記反応デバイスに搭載されていることを特徴とする検査キット。 15. The inspection kit according to claim 14, wherein the reaction is a luminescence reaction, the detector is an optical sensor chip, and the optical sensor chip is mounted on the reaction device. kit.
  16.  請求項14に記載の検査キットであって、前記光センサチップと前記外部計算手段は、無線により通信されることを特徴とする検査キット。 15. The inspection kit according to claim 14, wherein the optical sensor chip and the external calculation means are wirelessly communicated.
  17.  請求項14に記載の検査キットであって、前記外部計算手段は、携帯電話であることを特徴とする検査キット。 15. The inspection kit according to claim 14, wherein the external calculation means is a mobile phone.
PCT/JP2009/006399 2008-11-28 2009-11-26 Method, system and kit for supporting pregnancy WO2010061613A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540378A JP5308452B2 (en) 2008-11-28 2009-11-26 Pregnancy support method, system and kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-303425 2008-11-28
JP2008303425 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061613A1 true WO2010061613A1 (en) 2010-06-03

Family

ID=42225498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006399 WO2010061613A1 (en) 2008-11-28 2009-11-26 Method, system and kit for supporting pregnancy

Country Status (2)

Country Link
JP (1) JP5308452B2 (en)
WO (1) WO2010061613A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103126728A (en) * 2013-03-06 2013-06-05 成都大熊猫繁育研究基地 Determination method of normal or delayed ovulation in pandas
CN103185804A (en) * 2011-12-28 2013-07-03 丁鑫 Method for semiquantitatively measuring LH concentration by combination of ovulation test strips of different sensitivities
WO2013099376A1 (en) * 2011-12-26 2013-07-04 国立大学法人福井大学 Mature ovum marker for use in in vitro fertilization, and use thereof
CN108362893A (en) * 2017-12-31 2018-08-03 深圳市金乐智能健康科技有限公司 A kind of control method and system of the smart electronics detection onset of ovulation
CN108362894A (en) * 2017-12-31 2018-08-03 深圳市金乐智能健康科技有限公司 A kind of ovulation tests method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115614A (en) * 1992-08-21 1998-05-06 Unipath Ltd Monitoring apparatus
JP2003290230A (en) * 2002-04-04 2003-10-14 Matsushita Electric Ind Co Ltd Measuring instrument
JP2007333695A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Assay kit for chemical reaction and living body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115614A (en) * 1992-08-21 1998-05-06 Unipath Ltd Monitoring apparatus
JP2003290230A (en) * 2002-04-04 2003-10-14 Matsushita Electric Ind Co Ltd Measuring instrument
JP2007333695A (en) * 2006-06-19 2007-12-27 Hitachi Ltd Assay kit for chemical reaction and living body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GARCIA JE ET AL.: "Prediction of the time of ovulation.", FERTIL STERIL., vol. 36, no. 3, September 1981 (1981-09-01), pages 308 - 15 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099376A1 (en) * 2011-12-26 2013-07-04 国立大学法人福井大学 Mature ovum marker for use in in vitro fertilization, and use thereof
CN103185804A (en) * 2011-12-28 2013-07-03 丁鑫 Method for semiquantitatively measuring LH concentration by combination of ovulation test strips of different sensitivities
CN103126728A (en) * 2013-03-06 2013-06-05 成都大熊猫繁育研究基地 Determination method of normal or delayed ovulation in pandas
CN103126728B (en) * 2013-03-06 2014-03-19 成都大熊猫繁育研究基地 Determination method of normal or delayed ovulation in pandas
CN108362893A (en) * 2017-12-31 2018-08-03 深圳市金乐智能健康科技有限公司 A kind of control method and system of the smart electronics detection onset of ovulation
CN108362894A (en) * 2017-12-31 2018-08-03 深圳市金乐智能健康科技有限公司 A kind of ovulation tests method and device

Also Published As

Publication number Publication date
JPWO2010061613A1 (en) 2012-04-26
JP5308452B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP2755823B2 (en) Monitor device
Cole et al. Accuracy of home pregnancy tests at the time of missed menses
US20180055448A1 (en) Contact lens for analyzing ocular fluid
JP2761291B2 (en) Monitor device
Practice Committee of the American Society for Reproductive Medicine Testing and interpreting measures of ovarian reserve: a committee opinion
CA2326530C (en) Test methods, devices and test kits for fertility
US8024148B2 (en) End-of-life disabling of a diagnostic test system
JP5308452B2 (en) Pregnancy support method, system and kit
JP4487929B2 (en) Diagnosis support system and portable terminal
CN104870997A (en) Diagnostic devices and methods
Tanabe et al. Prediction of the potentially fertile period by urinary hormone measurements using a new home-use monitor: comparison with laboratory hormone analyses
US20070015285A1 (en) Test methods, devices and test kits
US20200141954A1 (en) System of evaluating corpus luteum function by recurrently evaluating progesterone non-serum bodily fluids on multiple days
AU742946B2 (en) Monitoring methods
JPH08500669A (en) Monitor device
CA2938494A1 (en) Fertility and pregnancy monitoring device and method
JP2907553B2 (en) Methods, devices and test kits for monitoring ovulation
WO2006100415A1 (en) Determining the estimated date of embryo implantation and related dates
May Home monitoring with the ClearPlan Easy™ Fertility Monitor for fertility awareness
US11029321B2 (en) Method of evaluating corpus luteum function by recurrently evaluating progesterone non-serum bodily fluids on multiple days
US20050196812A1 (en) Determining the estimated date of embryo implantation and related dates
BS et al. Novel technique for confirmation of the day of ovulation and prediction of ovulation in subsequent cycles using a skin-worn sensor in a population with ovulatory dysfunction: a side-by-side comparison with existing basal body temperature algorithm and vaginal core body temperature algorithm
Keenan et al. Patterns of cortisol reactivity in African‐American neonates from low‐income environments
EP1571451A1 (en) Method and apparatus for estimating due date
Wark et al. Basal temperature measurement using a multi-sensor armband in australian young women: A comparative observational study

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540378

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828863

Country of ref document: EP

Kind code of ref document: A1