WO2010061449A1 - Power source system, hybrid vehicle, and method for controlling charging of power source system - Google Patents

Power source system, hybrid vehicle, and method for controlling charging of power source system Download PDF

Info

Publication number
WO2010061449A1
WO2010061449A1 PCT/JP2008/071522 JP2008071522W WO2010061449A1 WO 2010061449 A1 WO2010061449 A1 WO 2010061449A1 JP 2008071522 W JP2008071522 W JP 2008071522W WO 2010061449 A1 WO2010061449 A1 WO 2010061449A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
power
charging
unit
storage unit
Prior art date
Application number
PCT/JP2008/071522
Other languages
French (fr)
Japanese (ja)
Inventor
高田 登志広
宏紀 原田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2008/071522 priority Critical patent/WO2010061449A1/en
Publication of WO2010061449A1 publication Critical patent/WO2010061449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power supply system and a hybrid vehicle equipped with a plurality of chargeable / dischargeable power storage units, and a charge control method for the power supply system, and in particular, a configuration for externally charging a plurality of power storage units with electric power from an external power supply.
  • a power supply system and a hybrid vehicle equipped with a plurality of chargeable / dischargeable power storage units, and a charge control method for the power supply system, and in particular, a configuration for externally charging a plurality of power storage units with electric power from an external power supply.
  • a hybrid vehicle that travels by efficiently combining an internal combustion engine and an electric motor has been put into practical use.
  • Such a hybrid vehicle is equipped with a chargeable / dischargeable power storage unit to supply electric power to the electric motor when starting or accelerating and generating driving force, while the kinetic energy of the vehicle is used during downhill or braking. Is recovered as electric power.
  • a configuration for charging a power storage unit to be mounted with electric power from an external power source such as a commercial power source has been proposed.
  • an external power source such as a commercial power source
  • the fuel consumption can be improved because the internal combustion engine can be kept stopped for relatively short distances such as commuting and shopping. It becomes possible.
  • Such traveling is also referred to as EV (Electric Vehicle) traveling.
  • Patent Document 1 describes the amount of remaining power up to the SOC where charging power is limited by a plurality of power storage devices.
  • a distribution ratio calculation unit that calculates a distribution ratio of charging power to a plurality of power storage devices according to the calculated ratio of the remaining power amount, and distribution of charging power when power is supplied from the load device to the power supply system.
  • a configuration including a converter control unit that controls a plurality of converters provided corresponding to a plurality of power storage devices in accordance with a rate is disclosed.
  • the power storage unit since the power storage unit stores electrical energy using an electrochemical action, its charge / discharge characteristics are easily affected by temperature. In a general power storage unit, the charge / discharge characteristics decrease as the temperature decreases. In addition, the power storage unit has a temperature dependency that the internal resistance increases as the temperature decreases.
  • the battery voltage of the power storage unit is represented by the sum of the electromotive voltage and the voltage drop in the internal resistance.
  • the voltage drop in the internal resistance increases. Therefore, in order to keep the battery voltage within a predetermined allowable range, it is necessary to reduce the charging current of the power storage unit as the electromotive voltage increases. This is effective in preventing the deterioration of the power storage unit, but significantly reduces the charging efficiency of the power storage unit.
  • Patent Document 1 in the configuration in which a plurality of power storage devices are charged according to the charge distribution ratio, due to the decrease in charging efficiency, at a low temperature, As a result, it takes a long time to complete charging of all the power storage devices. As a result, the external charging cannot be completed in the period from the completion of traveling until the next traveling is started, that is, the period in which external charging is to be performed, and the SOC of each power storage device becomes a relatively low value. Therefore, the transition from EV traveling to HV traveling in which the operation of the engine is allowed is inevitably performed in a relatively short time after the start of traveling. As a result, the travel distance in EV travel cannot be extended, and the contribution to the fuel efficiency improvement and environmental protection of the hybrid vehicle having the external charging function is reduced.
  • an object of the present invention is to provide a power supply system and a hybrid vehicle that can efficiently externally charge a plurality of power storage units even in a low temperature environment, And providing a charge control method for the power supply system.
  • a power supply system includes a plurality of chargeable / dischargeable power storage units, a plurality of voltage conversion units respectively associated with the plurality of power storage units, and a plurality of voltage conversion units connected in parallel to each other.
  • a power line pair a charging unit for externally charging a plurality of power storage units by receiving power from an external power source, a voltage detection unit for detecting a voltage value for each of the plurality of power storage units, and a plurality of power storage units
  • a control device that controls the plurality of voltage conversion units so that the plurality of power storage units are charged with the charging power from the charging unit when the external power supply is in a chargeable state.
  • the control device converts the corresponding voltage conversion so that the first power storage unit among the plurality of power storage units is charged with the charging power from the charging unit. And the second power storage unit among the first power storage unit and the remaining power storage unit is charged from the charging unit when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value.
  • a charge control unit that controls the corresponding voltage conversion unit to be charged with electric power is included.
  • the charging control unit is configured to perform voltage conversion so that the first power storage unit is charged with the first charging power from the charging unit when the plurality of power storage units are in a state that can be charged by an external power source.
  • the first charging is performed so that the voltage value of the first power storage unit does not exceed the predetermined upper limit voltage value.
  • control device further includes a state estimation unit that estimates a charge state value for each of the plurality of power storage units.
  • a state estimation unit that estimates a charge state value for each of the plurality of power storage units.
  • the charge control unit controls the corresponding voltage conversion unit so that the second power storage unit is charged with the charging power from the charging unit.
  • the charging control unit is selected as the first power storage unit in the previous external charging of the plurality of power storage units among the plurality of power storage units when the plurality of power storage units are made chargeable by an external power source.
  • a power storage unit switching unit that selects a power storage unit different from the power storage unit as the first power storage unit.
  • the hybrid vehicle is an internal combustion engine that operates by fuel, a power generation unit that can generate power by receiving power generated by the operation of the internal combustion engine, and is charged by electric power from the power generation unit A plurality of power storage units, a motor that generates a driving force by power from at least one of the power generation unit and the plurality of power storage units, and a power line pair configured to be able to transfer power between the motor and the plurality of power storage units And a plurality of voltage conversion units provided between the plurality of power storage units and the power line pairs, each of which performs a voltage conversion operation between the corresponding power storage unit and the power line pair, and are electrically connected to an external power source.
  • the control device converts the corresponding voltage conversion so that the first power storage unit among the plurality of power storage units is charged with the charging power from the charging unit.
  • the second power storage unit among the first power storage unit and the remaining power storage unit is charged from the charging unit when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value.
  • a charge control unit that controls the corresponding voltage conversion unit to be charged with electric power is included.
  • a charge control method for a power supply system including a plurality of chargeable / dischargeable power storage units, the power supply system including a plurality of voltage conversion units respectively associated with the plurality of power storage units.
  • a power line pair in which a plurality of voltage conversion units are connected in parallel to each other, and a charging unit for externally charging the plurality of power storage units by receiving power from an external power source.
  • the charging control method includes a step of detecting a voltage value for each of the plurality of power storage units, and a first power storage unit among the plurality of power storage units when the plurality of power storage units are in a state capable of being charged by an external power source.
  • the step of controlling the voltage conversion unit corresponds to the corresponding voltage conversion so that the first power storage unit is charged with the first charging power when the plurality of power storage units are made chargeable by an external power source.
  • the voltage value of the first power storage unit reaches a predetermined upper limit voltage value
  • the first charging is performed so that the voltage value of the first power storage unit does not exceed the predetermined upper limit voltage value.
  • the charge control method further includes a step of estimating a charge state value for each of the plurality of power storage units.
  • the step of controlling the voltage conversion unit corresponds to voltage conversion so that the second power storage unit is charged with the charging power from the charging unit when the state of charge value of the first power storage unit reaches a predetermined upper limit value. Control part.
  • the charge control method is selected as the first power storage unit in the previous external charging of the plurality of power storage units among the plurality of power storage units when the plurality of power storage units are made chargeable by an external power source.
  • the method further includes the step of selecting a power storage unit different from the power storage unit as the first power storage unit.
  • a plurality of power storage units can be efficiently externally charged even in a low temperature environment.
  • FIG. 1 is a schematic configuration diagram for charging a vehicle including a power supply system according to an embodiment of the present invention with an external power supply.
  • FIG. It is a block diagram which shows the control structure in the control apparatus according to embodiment of this invention. It is a block diagram which shows the more detailed control structure in the converter control part shown in FIG. It is a figure which shows an example of the time change of the battery voltage of an electrical storage part, SOC, and battery current in execution of external charging. It is a figure which shows power transfer in case a 1st electrical storage part is made into charge object. It is a figure which shows electric power transfer at the time of making a 1st electrical storage part and a 2nd electrical storage part into charge object. It is a figure which shows an example of the time change of the battery voltage and SOC of an electrical storage part in execution of the external charge at the time of low temperature. It is a flowchart which shows the process sequence of the external charge according to embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram for charging vehicle 100 including a power supply system according to an embodiment of the present invention with an external power supply.
  • a vehicle 100 is typically a hybrid vehicle, and is mounted with an internal combustion engine (engine) 18 and electric motors (motor generators) MG1 and MG2, and driven from each of them. Drive with optimal force ratio. Furthermore, vehicle 100 is equipped with a plurality of power storage units (for example, two) for supplying electric power to this motor generator. These power storage units can be charged by receiving the power generated by the operation of the engine 18 in the system start-up state of the vehicle 100 (hereinafter also referred to as “IG-on state”), while the system of the vehicle 100 is stopped (hereinafter, In the “IG off state”), the battery can be charged by being electrically connected to an external power source via the connector portion 350.
  • IG-on state system start-up state of the vehicle 100
  • IG off state the system of the vehicle 100
  • the battery can be charged by being electrically connected to an external power source via the connector portion 350.
  • charging of the power storage unit by the external power source is also referred to as “external charging”
  • Connector unit 350 typically constitutes a coupling mechanism for supplying external power source such as commercial power source to vehicle 100, and is coupled to a charging station (not shown) via power line PSL formed of a cabtire cable or the like. .
  • Connector unit 350 is connected to vehicle 100 during external charging, and electrically connects an external power source and charging unit 30 mounted on vehicle 100.
  • vehicle 100 is provided with a connector receiving portion 150 that is connected to connector portion 350 and receives an external power supply.
  • the external power supplied to the vehicle 100 via the connector unit 350 may be power generated by a solar cell panel installed on the roof of a house instead of or in addition to the commercial power.
  • Vehicle 100 includes an engine (ENG) 18, a first motor generator MG 1, and a second motor generator MG 2 as driving force sources, which are mechanically coupled via a power split mechanism 22. Then, according to the traveling state of the vehicle 100, the driving force is distributed and combined among the three persons via the power split mechanism 22, and as a result, the driving wheels 24F are driven.
  • ENG engine
  • first motor generator MG 1 motor generator
  • second motor generator MG 2 driving force sources
  • power split mechanism 22 divides the driving force generated by the operation of engine 18 into two parts, distributes one of them to first motor generator MG1 side, and the remaining part. Is distributed to the second motor generator MG2.
  • the driving force distributed from the power split mechanism 22 to the first motor generator MG1 side is used for power generation, while the driving force distributed to the second motor generator MG2 side is the driving force generated by the second motor generator MG2. It is synthesized and used to drive the drive wheel 24F.
  • first inverter (INV1) 8-1 and the second inverter (INV2) 8-2 respectively associated with the motor generators MG1 and MG2 mutually convert DC power and AC power.
  • first inverter 8-1 converts AC power generated by first motor generator MG1 into DC power in response to switching command PWM1 from control device 2, and supplies the DC power to positive bus MPL and negative bus MNL.
  • the second inverter 8-2 converts the DC power supplied via the positive bus MPL and the negative bus MNL into AC power in response to the switching command PWM2 from the control device 2 to generate the second motor generator MG2. To supply.
  • vehicle 100 includes second motor generator MG2 that can receive electric power from power storage units 4-1 and 4-2 and generate a driving force as a load device, and can generate electric power by receiving a driving force from engine 18.
  • second motor generator MG2 that can receive electric power from power storage units 4-1 and 4-2 and generate a driving force as a load device, and can generate electric power by receiving a driving force from engine 18.
  • a first motor generator MG1 which is a possible power generation unit is provided.
  • Each of the first power storage unit (BAT1) 4-1 and the second power storage unit (BAT2) 4-2 is a chargeable / dischargeable power storage element, typically a secondary battery such as a lithium ion battery or nickel metal hydride, Or it is comprised with electrical storage elements, such as an electric double layer capacitor.
  • a first converter (CONV1) 6-1 capable of mutually converting DC voltages is arranged, and the first power storage unit 4-1 The input / output voltage of 1 and the line voltage between the positive bus MPL and the negative bus MNL are boosted or lowered with respect to each other.
  • a second converter (CONV2) 6-2 capable of mutually converting a DC voltage is arranged between the second power storage unit 4-2 and the second inverter 8-2.
  • the input / output voltage of unit 4-2 and the line voltage between positive bus MPL and negative bus MNL are boosted or lowered mutually.
  • converters 6-1 and 6-2 are connected in parallel to positive bus MPL and negative bus MNL, which are power line pairs.
  • the step-up / step-down operations in converters 6-1 and 6-2 are controlled in accordance with switching commands PWC1 and PWC2 from control device 2, respectively.
  • the control device 2 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface ( ECU: Electronic Control Unit). And the control apparatus 2 performs control which concerns on vehicle driving
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • ECU Electronic Control Unit
  • FIG. 1 shows battery currents Ibat1, Ibat2 from the current sensors 10-1, 10-2 inserted in the positive lines PL1, PL2, a positive line PL1, and a negative line.
  • Battery voltage Vbat1 from voltage sensor 12-1 disposed between lines with NL1 battery voltage Vbat2 from voltage sensor 12-2 disposed between lines between positive line PL2 and negative line NL2, power storage unit 4- 1, battery temperature Tbat1, Tbat2 from temperature sensors 11-1, 11-2 arranged in proximity to the bus, bus current IDC from current sensor 14 inserted in the positive bus MPL, positive bus MPL
  • the bus voltage VDC from the voltage sensor 16 arranged between the negative bus MNL and the line is illustrated.
  • control device 2 continuously estimates the state of charge (SOC: State Of Charge; hereinafter, also simply referred to as “SOC”) of power storage units 4-1 and 4-2.
  • SOC State Of Charge
  • the SOC can also be expressed as an absolute value (unit [A ⁇ h] or the like) of the charge amount of the power storage unit.
  • the SOC is a ratio of the charge amount to the charge capacity of the power storage unit (0 to 100). %).
  • Vehicle 100 further includes a connector receiving unit 150 and a charging unit 30 as a configuration for externally charging power storage units 4-1 and 4-2.
  • connector unit 350 is connected to connector receiving unit 150, so that an external power source can be connected via positive charging line CPL and negative charging line CNL. Is supplied to the charging unit 30.
  • the connector receiving unit 150 includes a connection detection sensor 150a for detecting the connection state between the connector receiving unit 150 and the connector unit 350, and the control device 2 receives the connection signal CON from the connection detection sensor 150a. Detect that charging is possible with an external power supply. In the present embodiment, a case where a single-phase AC commercial power supply is used as an external power supply is illustrated.
  • the “state that can be charged by an external power source” typically means a state in which the connector portion 350 is physically inserted into the connector receiving portion 150.
  • a configuration in which an external power source and a vehicle are electromagnetically coupled in a non-contact manner to supply power specifically, a primary coil is provided on the external power source side, and a vehicle side is provided.
  • the state in which charging by an external power supply is possible means that the primary coil and the secondary coil are positioned. It means the combined state.
  • Charging unit 30 is a device for externally charging power storage units 4-1 and 4-2 by receiving electric power from an external power source, and includes positive line PL1, negative line NL1, positive charge line CPL, and negative charge line CNL. It is arranged between. That is, charging unit 30 is electrically connected between first power storage unit 4-1 and first converter 6-1 corresponding to first power storage unit 4-1.
  • Charging unit 30 includes a current control unit 30a and a voltage conversion unit 30b, and converts power from an external power source into power suitable for charging power storage units 4-1, 4-2.
  • voltage conversion unit 30b is a device for converting the supply voltage of the external power source into a voltage suitable for charging power storage units 4-1, 4-2, and typically has a predetermined transformation ratio. It consists of a wound-type transformer, an AC-AC switching regulator, and the like.
  • current control unit 30a rectifies the AC voltage after voltage conversion by voltage conversion unit 30b to generate a DC voltage, and in accordance with charging current command Ich * from control device 2, power storage units 4-1, 4- The charging current supplied to 2 is controlled.
  • the current control unit 30a typically includes a single-phase bridge circuit or the like. Instead of the configuration including the current control unit 30a and the voltage conversion unit 30b, the charging unit 30 may be realized by an AC-DC switching regulator or the like.
  • control device 2 when control device 2 according to the present embodiment detects that charging is possible with an external power supply, it selects one of power storage units 4-1 and 4-2 as a charging target and starts external charging. To do. When the battery voltage Vbat of the power storage unit to be charged reaches a predetermined upper limit voltage value VL, the control device 2 starts external charging to the remaining power storage unit, thereby externally charging the power storage unit to be charged. Charging and external charging for the remaining power storage unit are executed in parallel.
  • the upper limit voltage value VL is the upper limit value of the allowable range of the battery voltage Vbat, and may be set in advance based on the characteristic value of the power storage unit, or may be dynamically set according to the usage status of the power storage unit. May be set.
  • the power storage units 4-1 and 4-1 are started.
  • the total value of the allowable discharge power of power storage units 4-1 and 4-2 (the maximum power value that is allowed to be discharged in the power storage unit) It is possible to increase the total allowable discharge power in a shorter period.
  • each SOC is relatively low (for example, x%), and the SOC is relatively higher (for example, 2x%) than the total allowable discharge power value of power storage units 4-1, 4-2.
  • the allowable discharge power of power storage unit 4-1 becomes larger.
  • the total allowable discharge power value increases rapidly by selecting one power storage unit and starting external charging, so that the discharge capacity of the entire power supply system can be increased. Therefore, even when the period during which external charging is performed is short, the travel distance for EV travel in vehicle 100 can be extended after the next start of the vehicle system.
  • control device 2 performs EV traveling until the SOC of power storage unit falls below a predetermined value, but the SOC of power storage units 4-1, 4-2.
  • both are relatively low values, the EV travel is shifted to the HV travel in a relatively short time.
  • the SOC of one selected power storage unit has a relatively high value, the travel distance in EV travel can be extended. As a result, fuel consumption and environmental performance can be improved.
  • power storage units 4-1 and 4-2 correspond to “a plurality of power storage units”, and converters 6-1 and 6-2 have “ The positive bus MPL and the negative bus MNL correspond to the “power line pair”, and the charging unit 30 corresponds to the “charging unit”.
  • Control structure A control structure for externally charging a plurality of power storage units in the power supply system according to the present embodiment will now be described with reference to FIGS.
  • FIG. 2 is a block diagram showing a control structure in control device 2 according to the embodiment of the present invention.
  • Each function block shown in FIG. 2 is typically realized by the control device 2 executing a program stored in advance, but part or all of the function may be implemented as hardware.
  • control device 2 includes an SOC1 calculation unit 50, an SOC2 calculation unit 52, and a converter control unit 54.
  • the SOC1 calculation unit 50 estimates the SOC1 of the first power storage unit 4-1, based on the battery temperature Tbat1, the battery current Ibat1, the battery voltage Vbat1, and the like. Specifically, SOC1 calculating unit 50 sequentially calculates SOC1 of first power storage unit 4-1, based on the integrated value of the charge / discharge amount of first power storage unit 4-1. Note that the integrated value of the charge / discharge amount can be obtained by temporally integrating the product (electric power) of the battery voltage and the battery current of the corresponding power storage unit. Similar to SOC1 calculation unit 50, SOC2 calculation unit 52 estimates SOC2 of second power storage unit 4-2 based on battery temperature Tbat2, battery current Ibat2, battery voltage Vbat2, and the like.
  • Converter control unit 54 receives SOC1 of first power storage unit 4-1 from SOC1 calculation unit 50 as information regarding first power storage unit 4-1, and receives temperature sensor 11-1, current sensor 10-1, voltage sensor 12-. 1 receives battery temperature Tbat1, battery current Ibat1, and battery voltage Vbat1. Further, converter control unit 54 receives SOC2 of second power storage unit 4-1 from SOC2 calculation unit 50 as information related to second power storage unit 4-2, and receives temperature sensor 11-2, current sensor 10-2, voltage sensor. The battery temperature Tbat2, battery current Ibat2, and battery voltage Vbat2 from 12-2 are received. Further, converter control unit 54 receives bus current IDC from current sensor 14, bus voltage VDC from voltage sensor 16, connection signal CON from connection detection sensor 150a, and signal IG indicating the operation state of the ignition switch. . Then, based on these input information, converter control unit 54 is configured to charge power storage units 4-1 and 4-2 with charging current Ich from charging unit 30 when charging is possible with an external power supply. The converters 6-1 and 6-2 corresponding to are controlled.
  • FIG. 3 is a block diagram showing a more detailed control structure in converter control unit 54 shown in FIG.
  • converter control unit 54 includes a power storage unit switching unit 60, a current command generation unit 62, a drive signal generation unit 64, and a storage unit 66.
  • Power storage unit switching unit 60 stores the history of external charging of power storage units 4-1 and 4-2 stored in storage unit 66, SOC 1 and SOC 2 of power storage units 4-1 and 4-2, and battery voltage Vbat 1. , Vbat2 to switch the power storage unit to be charged during the execution of external charging.
  • power storage unit switching unit 60 first selects a power storage unit to be charged based on an external charging execution history read from storage unit 66 when charging is possible with an external power supply.
  • storage part 66 consists of non-volatile memories, and memorize
  • power storage unit switching unit 60 reads from power storage unit 66 a power storage unit (for example, second power storage unit 4-2) that was first selected as a charging target in the previous external charging, power storage unit ( For example, the first power storage unit 4-1) is selected as the first charging target in the current external charging.
  • the power storage unit switching unit 60 updates the first power storage unit selected in the previous external charging stored in the storage unit 66 to the selected first power storage unit 4-1.
  • the power storage unit switching unit 60 determines that the battery voltage Vbat1 has reached a predetermined upper limit voltage value VL. The charging target is switched from the first power storage unit 4-1 to the first power storage unit 4-1 and the second power storage unit 4-2. Further, power storage unit switching unit 60 switches charging targets from first power storage unit 4-1 and second power storage unit 4-2 when SOC1 of first power storage unit 4-1 reaches a predetermined SOC upper limit value. Switching to the second power storage unit 4-2.
  • the current command generation unit 62 Upon receiving a signal indicating the power storage unit selected as the charging target from the power storage unit switching unit 60, the current command generation unit 62 performs the power storage units 4-1, 4-4- by a method described later based on the battery voltages Vbat1, Vbat2. 2, current target values Ibat1 * and Ibat2 * , which are target values of the charging current, are determined. Further, the current command generation unit 62 generates a charging current command Ich * and outputs it to the charging unit 30.
  • the drive signal generator 64 When the drive signal generator 64 receives the current target value Ibat1 * from the current command generator 62, the drive signal generator 64 performs the switching command PWC1 by feedback control based on the current deviation between the current target value Ibat1 * and the battery current Ibat1 from the current sensor 10-1. Is output to the first converter 6-1.
  • the drive signal generator 64 receives the current target value Ibat2 * from the current command generator 62, the drive signal generator 64 performs switching by feedback control based on a current deviation between the current target value Ibat2 * and the battery current Ibat2 from the current sensor 10-2.
  • Command PWC2 is generated and output to second converter 6-2.
  • FIG. 4 is a diagram illustrating an example of temporal changes in battery voltage, SOC, and battery current of power storage units 4-1, 4-2 during execution of external charging.
  • power storage unit switching unit 60 when charging is possible by an external power source at time t ⁇ b> 0, power storage unit switching unit 60 first selects a power storage unit to be charged by the method described above. In FIG. 4, it is assumed that the first power storage unit 4-1 is selected as the charging target.
  • the current command generator 62 determines the current target value Ibat1 * of the first power storage unit 4-1 to be charged. Specifically, the current command generation unit 62 sets the maximum output power of the charging unit 30 (the maximum value of power allowed to be output by the charging unit 30) Pch_max as the target of the charging power for the first power storage unit 4-1.
  • a target current value Ibat * of the first power storage unit 4-1 is determined by dividing the charging power target value Pch_max by the battery voltage Vbat1.
  • the current target value Ibat1 * is determined to be a predetermined current value I1.
  • the current command generation unit 62 determines the charging current command Ich * as a predetermined current value I1 and outputs it to the charging unit 30.
  • FIG. 5 shows power transfer when the first power storage unit 4-1 is a charging target.
  • first power storage unit 4-1 With the charging current from charging unit 30, as shown in FIG. 4, SOC1 (corresponding to line k3) and battery voltage Vbat1 (corresponding to line k1) ) Both increase.
  • battery voltage Vbat1 reaches upper limit voltage value VL at time t1, power storage unit switching unit 60 switches charging targets from first power storage unit 4-1, first power storage unit 4-1, and second power storage unit 4- Switch to 2. Thereby, after time t1, external charging of first power storage unit 4-1 and external charging of second power storage unit 4-2 are performed in parallel.
  • current command generation unit 62 determines current target value Ibat1 * of first power storage unit 4-1, so that battery voltage Vbat1 does not exceed upper limit voltage value VL. Specifically, the current command generation unit 62 divides the predetermined output power Pch1 set in advance so as to be lower than the maximum output power Pch_max of the charging unit 30 by the battery voltage Vbat1, thereby the first power storage unit 4-1. Current target value Ibat1 * is determined. In FIG. 4, the current target value Ibat1 * is determined to be a predetermined current value I2.
  • Current target value Ibat2 * is determined. In FIG. 4, the current target value Ibat2 * is determined to be a predetermined current value I3.
  • FIG. 6 shows power transfer when first power storage unit 4-1 and second power storage unit 4-2 are charged.
  • the voltage conversion operation is performed as described above. That is, first converter 6-1 performs a boosting operation using current value I3 as a current target value.
  • second converter 6-2 performs a step-down operation so that a current value substantially the same as the current value flowing through first converter 6-1 is supplied to second power storage unit 4-2.
  • a part of the charging power (maximum output power Pch_max) from the charging unit 30 is supplied to the first power storage unit 4-1 in a range where the battery voltage Vbat1 does not reach the upper limit voltage value VL, and the remaining power Electric power is supplied to the second power storage unit 4-2.
  • the first power storage unit 4-1 externally charges the first power storage unit 4-1 and the second power storage unit 4-2 in parallel with the charging current from the charging unit 30, so that the battery voltage Vbat1 Is suppressed below the upper limit voltage value VL, while SOC1 increases.
  • SOC1 reaches SOC upper limit SH at time t2
  • the first power storage unit is switched by switching the charging target from first power storage unit 4-1 and second power storage unit 4-2 to second power storage unit 4-2. 4-1 external charging ends.
  • all the charging power (maximum output power Pch_max) from charging unit 30 is supplied to second power storage unit 4-1.
  • the drive signal generator 64 controls the voltage conversion operations of the first converter 6-1 and the second converter 6-2. That is, first converter 6-1 performs a boosting operation using current value I1 as a current target value.
  • second converter 6-2 performs a step-down operation so that a current value substantially the same as the current value flowing through first converter 6-1 is supplied to second power storage unit 4-2.
  • current command generation unit 62 sets current target value Ibat2 * of second power storage unit 4-2 to battery voltage Vbat2 equal to or higher than upper limit voltage value VL. Decide not to be. Specifically, the current command generation unit 62 divides the predetermined output power Pch1 set in advance so as to be lower than the maximum output power Pch_max of the charging unit 30 by the battery voltage Vbat2, thereby the second power storage unit 4-2. Current target value Ibat2 * is determined. In FIG. 4, the current target value Ibat2 * is determined to be a predetermined current value I2.
  • battery voltage Vbat2 is suppressed to less than upper limit voltage value VL, while SOC2 increases.
  • SOC2 reaches SOC upper limit value SH at time t4
  • power storage unit switching unit 60 switches the charging target from second power storage unit 4-2 to the non-selected state, so that external power storage unit 4-2 Stop charging.
  • the power storage units 4-1, 4-2 By performing external charging of the second power storage unit 4-2 in parallel using the remaining power obtained by subtracting the charging power for the first power storage unit 4-1 from the power, the power storage units 4-1, 4-2 It is possible to reduce the execution time of external charging as compared with a configuration in which the charging is individually performed.
  • FIG. 7 is a diagram illustrating an example of temporal changes in battery voltage and SOC of power storage units 4-1 and 4-2 during execution of external charging at a low temperature.
  • section a where external charging of first power storage unit 4-1 is performed is relatively shorter than section a at normal temperature in FIG. This is because the battery voltage Vbat is expressed by the sum of the electromotive voltage and the voltage drop in the internal resistance, and the internal resistance of the power storage unit is higher at low temperatures than at normal temperatures.
  • section b until the SOC1 of the first power storage unit 4-1 reaches the SOC upper limit SH is relatively longer than that at room temperature.
  • section b due to the high internal resistance, the limit on the charging current Ibat1 to the first power storage unit 4-1 is strengthened to keep the battery voltage Vbat1 below the upper limit voltage value VL. It is further increased than time.
  • the vehicle 100 even if the vehicle 100 is in a system activation state by being given an ignition-on command by the driver's operation in the middle of the section b, the vehicle has a high discharge capability in the entire power supply system.
  • the traveling distance in EV traveling at 100 can be extended.
  • the contribution of the hybrid vehicle having the external charging function to the improvement of fuel consumption and environmental protection can be maintained.
  • control device 2 corresponds to the “control device”
  • converter control unit 54 corresponds to the “charge control unit”
  • SOC 1 The calculation unit 50 and the SOC2 calculation unit 52 correspond to a “state estimation unit”.
  • FIG. 8 is a flowchart showing a processing procedure of external charging according to the embodiment of the present invention. Note that the processing of each step shown in FIG. 8 is realized by the control device 2 (FIG. 1) functioning as each control block shown in FIGS. 2 and 3.
  • control device 2 determines whether or not vehicle 100 is in a stopped state (IG off state) (step S01). If vehicle 100 is not in a stopped state (IG off state) (NO in step S01), the process returns to the beginning.
  • control device 2 determines whether connector unit 350 is connected to vehicle 100 (step S01). S02). If connector unit 350 is not connected to vehicle 100 (NO in step S02), the process returns to the beginning.
  • control device 2 first selects the charging target based on the external charging execution history read from storage unit 66. Is selected (step S03). In the following processing procedure, it is assumed that the first power storage unit 4-1 is selected as a charging target.
  • control device 2 starts external charging of the first power storage unit 4-1 to be charged.
  • control device 2 controls converters 6-1 and 6-2 such that first power storage unit 4-1 is charged with a charging current (for example, predetermined value I1) from charging unit 30 (step S04). ).
  • a charging current for example, predetermined value I1
  • control device 2 determines whether or not the battery voltage Vbat1 detected by the voltage sensor 12-1 is equal to or higher than the upper limit voltage value VL (step S05). If battery voltage Vbat1 is lower than upper limit voltage value VL (NO in step S05), the process returns to step S04.
  • control device 2 determines that SOC1 of first power storage unit 4-1 is equal to or higher than SOC upper limit value SH. Whether or not (step S06).
  • control device 2 charges first power storage unit 4-1 with a charging current (for example, predetermined value I2) from charging unit 30 (step S16).
  • a charging current for example, predetermined value I2
  • step S07 When SOC1 falls below SOC upper limit value SH (NO in step S06), control device 2 charges first power storage unit 4-1 with a charging current (for example, predetermined value I2) from charging unit 30 (step S16).
  • step S07 When SOC1 falls below SOC upper limit value SH (NO in step S06), control device 2 charges first power storage unit 4-1 with a charging current (for example, predetermined value I2) from charging unit 30 (step S16).
  • step S07 When SOC1 falls below SOC upper limit value SH (NO in step S06), control device 2 charges first power storage unit 4-1 with a charging current (for example, predetermined value I2) from charging unit 30 (step S16).
  • step S07 When SOC1 falls below SOC upper limit value SH (NO in step S06), control device 2 charges first power storage unit 4-1 with
  • a charging current for example, predetermined value I1
  • control device 2 determines whether or not the battery voltage Vbat2 detected by the voltage sensor 12-2 is equal to or higher than the upper limit voltage value VL (step S11). If battery voltage Vbat2 is lower than upper limit voltage value VL (NO in step S11), the process returns to step S09.
  • controller 2 further determines that SOC2 of second power storage unit 4-2 is equal to or higher than SOC upper limit value SH. Whether or not (step S12).
  • SOC2 falls below SOC upper limit SH (NO in step S12)
  • control device 2 controls converters 6-1 and 6-2 such that second power storage unit 4-2 is charged with charging current I2. (Step S13), and the process returns to Step S11.
  • control device 2 completes external charging of second power storage unit 4-2, and thereby controls all power storage units.
  • step S14 the processing related to the external charging ends.
  • the vehicle 100 including the two power storage units 4-1 and 4-2 is illustrated as a representative example of the vehicle including a plurality of power storage units. It is obvious that the present invention can be applied to a vehicle having a section. In this case, external charging of the third power storage unit is started in section d shown in FIG.
  • the embodiment of the present invention when charging is possible with an external power supply, external charging to one power storage unit selected from a plurality of power storage units is started, and the power storage When the battery voltage of the unit reaches a predetermined upper limit voltage value, external charging is performed in parallel to the power storage unit and one power storage unit selected from the remaining power storage units. Therefore, even if a plurality of power storage units are in a low temperature state, the allowable discharge power of the entire power supply system can be quickly increased.
  • the charging efficiency of each power storage unit is reduced at low temperatures. Even if it exists, the execution time of the external charge with respect to all the electrical storage parts can be shortened.
  • the present invention can be applied to a power supply system including a plurality of chargeable / dischargeable power storage units and a hybrid vehicle including the power supply system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A vehicle wherein a plurality of mounted battery units can be charged by an external power source has a controller which starts external charging of a first battery unit among the battery units when charging by the external power source becomes possible (time t0). When the battery voltage Vbat1 of the first battery unit reaches a predetermined upper limit voltage value VL (time t1), the controller restricts a charge current Ibat1 to the first battery unit so as to prevent the battery voltage Vbat1 from exceeding the upper limit voltage value VL, thereby continuing the external charging of the first battery unit and performing, at the same time, external charging of a second battery unit with remaining charging power obtained as a result of subtracting charging power to the first battery unit from that from a charging unit.

Description

電源システムおよびハイブリッド車両、ならびに電源システムの充電制御方法Power supply system and hybrid vehicle, and charging control method for power supply system
 この発明は、充放電可能な複数の蓄電部を搭載した電源システムおよびハイブリッド車両、ならびにその電源システムに対する充電制御方法に関し、特に、外部電源からの電力により複数の蓄電部を外部充電するための構成に関する。 The present invention relates to a power supply system and a hybrid vehicle equipped with a plurality of chargeable / dischargeable power storage units, and a charge control method for the power supply system, and in particular, a configuration for externally charging a plurality of power storage units with electric power from an external power supply. About.
近年、環境問題を考慮して、内燃機関と電動機とを効率的に組合せて走行するハイブリッド車両が実用化されている。このようなハイブリッド車両は、充放電可能な蓄電部を搭載し、発進時や加速時などに電動機へ電力を供給して駆動力を発生する一方で、下り坂や制動時などに車両の運動エネルギーを電力として回収する。 In recent years, in consideration of environmental problems, a hybrid vehicle that travels by efficiently combining an internal combustion engine and an electric motor has been put into practical use. Such a hybrid vehicle is equipped with a chargeable / dischargeable power storage unit to supply electric power to the electric motor when starting or accelerating and generating driving force, while the kinetic energy of the vehicle is used during downhill or braking. Is recovered as electric power.
 このようなハイブリッド車両においては、搭載する蓄電部を商用電源などの外部電源からの電力によって充電するための構成が提案されている。このように外部電源により蓄電部を予め充電することにより、通勤や買い物などの比較的短距離の走行であれば、内燃機関を停止状態に保ったまま走行することができるため、燃費を向上させることが可能となる。このような走行は、EV(Electric Vehicle)走行とも称される。 In such a hybrid vehicle, a configuration for charging a power storage unit to be mounted with electric power from an external power source such as a commercial power source has been proposed. By charging the power storage unit in advance using an external power source in this manner, the fuel consumption can be improved because the internal combustion engine can be kept stopped for relatively short distances such as commuting and shopping. It becomes possible. Such traveling is also referred to as EV (Electric Vehicle) traveling.
 このようなEV走行における走行距離を伸ばすためには、蓄電部の充放電能力を高めることが望ましい。蓄電部の充放電能力を高めるための一つの方法として、複数の蓄電部を搭載する構成が提案されている。このような構成では、各蓄電部の充放電電流を制御するための電力変換部(コンバータなど)が各蓄電部に対応付けて設けられる。各蓄電部に対する充放電を独立に行なうことで、各々を適正な充電状態値(SOC:State Of Charge;以下、単に「SOC」とも称す)に維持し、過放電や過充電などを回避することができる。 In order to extend the traveling distance in such EV traveling, it is desirable to increase the charge / discharge capacity of the power storage unit. As one method for increasing the charge / discharge capacity of the power storage unit, a configuration in which a plurality of power storage units are mounted has been proposed. In such a configuration, a power conversion unit (such as a converter) for controlling the charge / discharge current of each power storage unit is provided in association with each power storage unit. By independently charging and discharging each power storage unit, each is maintained at an appropriate charge state value (SOC: State Of Charge; hereinafter, also simply referred to as “SOC”) to avoid overdischarge and overcharge. Can do.
 各蓄電部に対する充放電を独立に実行可能な構成の一例として、特開2008-109840号公報(特許文献1)には、充電電力が制限されるSOCまでの残存電力量を複数の蓄電装置の各々について算出し、その算出した残存電力量の比率に応じて、複数の蓄電装置への充電電力の分配率を算出する分配率算出部と、負荷装置から電源システムへの給電時には、充電電力分配率に従って、複数の蓄電装置に対応して設けられた複数のコンバータを制御するコンバータ制御部とを備えた構成が開示されている。これによれば、複数の蓄電装置のいずれかにおいて他の蓄電装置よりも早く充電限界に達してしまうケースが抑制されるため、複数の蓄電装置の充放電特性が異なる場合であっても、電源システム全体としての最大の充放電特性を得ることが可能となる。
特開2008-109840号公報 特開2001-286071号公報
As an example of a configuration in which charging and discharging of each power storage unit can be performed independently, Japanese Patent Application Laid-Open No. 2008-109840 (Patent Document 1) describes the amount of remaining power up to the SOC where charging power is limited by a plurality of power storage devices. A distribution ratio calculation unit that calculates a distribution ratio of charging power to a plurality of power storage devices according to the calculated ratio of the remaining power amount, and distribution of charging power when power is supplied from the load device to the power supply system A configuration including a converter control unit that controls a plurality of converters provided corresponding to a plurality of power storage devices in accordance with a rate is disclosed. According to this, since the case where the charging limit is reached earlier than the other power storage devices in any of the plurality of power storage devices is suppressed, the power source is different even when the charge / discharge characteristics of the plurality of power storage devices are different. It becomes possible to obtain the maximum charge / discharge characteristics of the entire system.
JP 2008-109840 A JP 2001-286071 A
 その一方で、蓄電部は、電気化学的な作用を利用して電気エネルギーを蓄えるため、その充放電特性は温度の影響を受けやすい。一般的な蓄電部では、低温になるほど、その充放電特性が低下する。また、蓄電部は、低温になるほど内部抵抗が高くなるという温度依存性を有している。 On the other hand, since the power storage unit stores electrical energy using an electrochemical action, its charge / discharge characteristics are easily affected by temperature. In a general power storage unit, the charge / discharge characteristics decrease as the temperature decreases. In addition, the power storage unit has a temperature dependency that the internal resistance increases as the temperature decreases.
 そのため、蓄電部の電池電圧は、起電圧と内部抵抗における電圧降下分との和で表わされるところ、低温環境下で蓄電部の充電を行なう場合には、内部抵抗における電圧降下分が大きくなる。したがって、電池電圧を所定の許容範囲内に保持するためには、起電圧が増加するに従って蓄電部の充電電流を小さくする必要がある。これは、蓄電部の劣化を防止する点で有効である反面、蓄電部の充電効率を著しく低下させることとなる。 Therefore, the battery voltage of the power storage unit is represented by the sum of the electromotive voltage and the voltage drop in the internal resistance. When charging the power storage unit in a low temperature environment, the voltage drop in the internal resistance increases. Therefore, in order to keep the battery voltage within a predetermined allowable range, it is necessary to reduce the charging current of the power storage unit as the electromotive voltage increases. This is effective in preventing the deterioration of the power storage unit, but significantly reduces the charging efficiency of the power storage unit.
 したがって、上記の特開2008-109840号公報(特許文献1)に開示されるように、充電分配率に従って複数の蓄電装置を充電する構成では、この充電効率の低下に起因して、低温時では、全ての蓄電装置の充電が完了するまでに多くの時間を要するという問題が生じてしまう。これにより、走行完了後から次回の走行が開始されるまでの期間、すなわち外部充電がなされるべき期間において外部充電を完了することができず、各蓄電装置のSOCが相対的に低い値となってしまうため、走行開始後から比較的短時間にEV走行から、エンジンの作動が許容されるHV走行への移行を余儀なくされることになる。この結果、EV走行での走行距離を伸ばすことができず、外部充電機能を有するハイブリッド車両の燃費向上および環境保護に対する寄与度を減少させることとなる。 Therefore, as disclosed in the above Japanese Patent Application Laid-Open No. 2008-109840 (Patent Document 1), in the configuration in which a plurality of power storage devices are charged according to the charge distribution ratio, due to the decrease in charging efficiency, at a low temperature, As a result, it takes a long time to complete charging of all the power storage devices. As a result, the external charging cannot be completed in the period from the completion of traveling until the next traveling is started, that is, the period in which external charging is to be performed, and the SOC of each power storage device becomes a relatively low value. Therefore, the transition from EV traveling to HV traveling in which the operation of the engine is allowed is inevitably performed in a relatively short time after the start of traveling. As a result, the travel distance in EV travel cannot be extended, and the contribution to the fuel efficiency improvement and environmental protection of the hybrid vehicle having the external charging function is reduced.
 それゆえ、この発明はかかる課題を解決するために成されたものであり、その目的は、低温環境下においても、複数の蓄電部を効率良く外部充電することが可能な電源システムおよびハイブリッド車両、ならびに電源システムの充電制御方法を提供することである。 Therefore, the present invention has been made to solve such a problem, and an object of the present invention is to provide a power supply system and a hybrid vehicle that can efficiently externally charge a plurality of power storage units even in a low temperature environment, And providing a charge control method for the power supply system.
 この発明のある局面に従えば、電源システムは、充放電可能な複数の蓄電部と、複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部と、複数の電圧変換部が互いに並列接続された電力線対と、外部電源からの電力を受けて複数の蓄電部を外部充電するための充電部と、複数の蓄電部の各々についての電圧値を検出する電圧検出部と、複数の蓄電部が外部電源により充電可能な状態にされたときに、複数の蓄電部が充電部からの充電電力で充電されるように複数の電圧変換部を制御する制御装置とを備える。制御装置は、複数の蓄電部が外部電源により充電可能な状態にされたときには、複数の蓄電部のうちの第1の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御し、かつ、第1の蓄電部の電圧値が所定の上限電圧値に達したときには、第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御する充電制御部を含む。 According to an aspect of the present invention, a power supply system includes a plurality of chargeable / dischargeable power storage units, a plurality of voltage conversion units respectively associated with the plurality of power storage units, and a plurality of voltage conversion units connected in parallel to each other. A power line pair, a charging unit for externally charging a plurality of power storage units by receiving power from an external power source, a voltage detection unit for detecting a voltage value for each of the plurality of power storage units, and a plurality of power storage units And a control device that controls the plurality of voltage conversion units so that the plurality of power storage units are charged with the charging power from the charging unit when the external power supply is in a chargeable state. When the plurality of power storage units are made chargeable by an external power source, the control device converts the corresponding voltage conversion so that the first power storage unit among the plurality of power storage units is charged with the charging power from the charging unit. And the second power storage unit among the first power storage unit and the remaining power storage unit is charged from the charging unit when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value. A charge control unit that controls the corresponding voltage conversion unit to be charged with electric power is included.
 好ましくは、充電制御部は、複数の蓄電部が外部電源により充電可能な状態にされたときには、第1の蓄電部が充電部からの第1の充電電力で充電されるように対応の電圧変換部を制御し、かつ、第1の蓄電部の電圧値が所定の上限電圧値に達したときには、第1の蓄電部の電圧値が所定の上限電圧値を超えないように、第1の充電電力よりも小さい第2の充電電力で第1の蓄電部を充電するとともに、第1の充電電力から第2の充電電力を差し引いた充電電力で第2の蓄電部を充電するように対応の電圧変換部を制御する。 Preferably, the charging control unit is configured to perform voltage conversion so that the first power storage unit is charged with the first charging power from the charging unit when the plurality of power storage units are in a state that can be charged by an external power source. When the voltage value of the first power storage unit reaches a predetermined upper limit voltage value, the first charging is performed so that the voltage value of the first power storage unit does not exceed the predetermined upper limit voltage value. A voltage corresponding to charging the first power storage unit with a second charging power smaller than the power and charging the second power storage unit with a charging power obtained by subtracting the second charging power from the first charging power. Control the converter.
 好ましくは、制御装置は、複数の蓄電部の各々についての充電状態値を推定する状態推定部をさらに含む。充電制御部は、第1の蓄電部の充電状態値が所定の上限値に達したときには、第2の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御する。 Preferably, the control device further includes a state estimation unit that estimates a charge state value for each of the plurality of power storage units. When the charge state value of the first power storage unit reaches a predetermined upper limit value, the charge control unit controls the corresponding voltage conversion unit so that the second power storage unit is charged with the charging power from the charging unit. .
 好ましくは、充電制御部は、複数の蓄電部が外部電源により充電可能な状態にされたときには、複数の蓄電部のうち、前回の複数の蓄電部に対する外部充電において第1の蓄電部に選択された蓄電部とは異なる蓄電部を、第1の蓄電部に選択する蓄電部切替部を含む。 Preferably, the charging control unit is selected as the first power storage unit in the previous external charging of the plurality of power storage units among the plurality of power storage units when the plurality of power storage units are made chargeable by an external power source. A power storage unit switching unit that selects a power storage unit different from the power storage unit as the first power storage unit.
 この発明の別の局面に従えば、ハイブリッド車両であって、燃料の燃料により作動する内燃機関と、内燃機関の作動により生じる動力を受けて発電可能な発電部と、発電部からの電力により充電される複数の蓄電部と、発電部および複数の蓄電部の少なくとも一方からの電力により駆動力を発生する電動機と、電動機と複数の蓄電部との間で電力を授受可能に構成された電力線対と、複数の蓄電部と電力線対との間にそれぞれ設けられ、各々が対応の蓄電部と電力線対との間で電圧変換動作を行なう複数の電圧変換部と、外部電源と電気的に接続され、外部電源からの電力を受けて複数の蓄電部を外部充電するための充電部と、複数の蓄電部の各々についての電圧値を検出する電圧検出部と、複数の蓄電部が外部電源により充電可能な状態にされたときに、複数の蓄電部が充電部からの充電電力で充電されるように複数の電圧変換部を制御する制御装置とを備える。制御装置は、複数の蓄電部が外部電源により充電可能な状態にされたときには、複数の蓄電部のうちの第1の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御し、かつ、第1の蓄電部の電圧値が所定の上限電圧値に達したときには、第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御する充電制御部を含む。 According to another aspect of the present invention, the hybrid vehicle is an internal combustion engine that operates by fuel, a power generation unit that can generate power by receiving power generated by the operation of the internal combustion engine, and is charged by electric power from the power generation unit A plurality of power storage units, a motor that generates a driving force by power from at least one of the power generation unit and the plurality of power storage units, and a power line pair configured to be able to transfer power between the motor and the plurality of power storage units And a plurality of voltage conversion units provided between the plurality of power storage units and the power line pairs, each of which performs a voltage conversion operation between the corresponding power storage unit and the power line pair, and are electrically connected to an external power source. A charging unit for externally charging a plurality of power storage units by receiving power from an external power source, a voltage detection unit for detecting a voltage value for each of the plurality of power storage units, and the plurality of power storage units being charged by an external power source Possible state When it is provided with a plurality of power storage units and a control unit for controlling the plurality of voltage conversion units to be charged by the charging power from the charging unit. When the plurality of power storage units are made chargeable by an external power source, the control device converts the corresponding voltage conversion so that the first power storage unit among the plurality of power storage units is charged with the charging power from the charging unit. And the second power storage unit among the first power storage unit and the remaining power storage unit is charged from the charging unit when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value. A charge control unit that controls the corresponding voltage conversion unit to be charged with electric power is included.
 この発明の別の局面に従えば、充放電可能な複数の蓄電部を備える電源システムの充電制御方法であって、電源システムは、複数の蓄電部にそれぞれ対応付けられた複数の電圧変換部と、複数の電圧変換部が互いに並列接続された電力線対と、外部電源からの電力を受けて複数の蓄電部を外部充電するための充電部とを含む。充電制御方法は、複数の蓄電部の各々についての電圧値を検出するステップと、複数の蓄電部が外部電源により充電可能な状態にされたときには、複数の蓄電部のうちの第1の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御するとともに、第1の蓄電部の電圧値が所定の上限電圧値に達したときには、第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御するステップとを備える。 According to another aspect of the present invention, there is provided a charge control method for a power supply system including a plurality of chargeable / dischargeable power storage units, the power supply system including a plurality of voltage conversion units respectively associated with the plurality of power storage units. A power line pair in which a plurality of voltage conversion units are connected in parallel to each other, and a charging unit for externally charging the plurality of power storage units by receiving power from an external power source. The charging control method includes a step of detecting a voltage value for each of the plurality of power storage units, and a first power storage unit among the plurality of power storage units when the plurality of power storage units are in a state capable of being charged by an external power source. Is controlled by the charging power from the charging unit, and when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value, the first power storage unit and the remaining power And controlling a corresponding voltage conversion unit so that a second power storage unit of the power storage units is charged with charging power from the charging unit.
 好ましくは、電圧変換部を制御するステップは、複数の蓄電部が外部電源により充電可能な状態にされたときには、第1の蓄電部が第1の充電電力で充電されるように対応の電圧変換部を制御し、かつ、第1の蓄電部の電圧値が所定の上限電圧値に達したときには、第1の蓄電部の電圧値が所定の上限電圧値を超えないように、第1の充電電力よりも小さい第2の充電電力で第1の蓄電部を充電するとともに、第1の充電電力から第2の充電電力を差し引いた充電電力で第2の蓄電部を充電するように対応の電圧変換部を制御する。 Preferably, the step of controlling the voltage conversion unit corresponds to the corresponding voltage conversion so that the first power storage unit is charged with the first charging power when the plurality of power storage units are made chargeable by an external power source. When the voltage value of the first power storage unit reaches a predetermined upper limit voltage value, the first charging is performed so that the voltage value of the first power storage unit does not exceed the predetermined upper limit voltage value. A voltage corresponding to charging the first power storage unit with a second charging power smaller than the power and charging the second power storage unit with a charging power obtained by subtracting the second charging power from the first charging power. Control the converter.
 好ましくは、充電制御方法は、複数の蓄電部の各々についての充電状態値を推定するステップをさらに備える。電圧変換部を制御するステップは、第1の蓄電部の充電状態値が所定の上限値に達したときには、第2の蓄電部が充電部からの充電電力で充電されるように対応の電圧変換部を制御する。 Preferably, the charge control method further includes a step of estimating a charge state value for each of the plurality of power storage units. The step of controlling the voltage conversion unit corresponds to voltage conversion so that the second power storage unit is charged with the charging power from the charging unit when the state of charge value of the first power storage unit reaches a predetermined upper limit value. Control part.
 好ましくは、充電制御方法は、複数の蓄電部が外部電源により充電可能な状態にされたときには、複数の蓄電部のうち、前回の複数の蓄電部に対する外部充電において第1の蓄電部に選択された蓄電部とは異なる蓄電部を、第1の蓄電部に選択するステップをさらに備える。 Preferably, the charge control method is selected as the first power storage unit in the previous external charging of the plurality of power storage units among the plurality of power storage units when the plurality of power storage units are made chargeable by an external power source. The method further includes the step of selecting a power storage unit different from the power storage unit as the first power storage unit.
 この発明によれば、低温環境下においても、複数の蓄電部を効率良く外部充電することができる。 According to the present invention, a plurality of power storage units can be efficiently externally charged even in a low temperature environment.
この発明の実施の形態に従う電源システムを備える車両に対して外部電源による充電を行なうための概略構成図である。1 is a schematic configuration diagram for charging a vehicle including a power supply system according to an embodiment of the present invention with an external power supply. FIG. この発明の実施の形態に従う制御装置における制御構造を示すブロック図である。It is a block diagram which shows the control structure in the control apparatus according to embodiment of this invention. 図2に示すコンバータ制御部におけるより詳細な制御構造を示すブロック図である。It is a block diagram which shows the more detailed control structure in the converter control part shown in FIG. 外部充電の実行中における蓄電部の電池電圧、SOCおよび電池電流の時間的変化の一例を示す図である。It is a figure which shows an example of the time change of the battery voltage of an electrical storage part, SOC, and battery current in execution of external charging. 第1蓄電部を充電対象とした場合の電力授受を示す図である。It is a figure which shows power transfer in case a 1st electrical storage part is made into charge object. 第1蓄電部および第2蓄電部を充電対象とした場合の電力授受を示す図である。It is a figure which shows electric power transfer at the time of making a 1st electrical storage part and a 2nd electrical storage part into charge object. 低温時での外部充電の実行中における蓄電部の電池電圧およびSOCの時間的変化の一例を示す図である。It is a figure which shows an example of the time change of the battery voltage and SOC of an electrical storage part in execution of the external charge at the time of low temperature. この発明の実施の形態に従う外部充電の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the external charge according to embodiment of this invention.
符号の説明Explanation of symbols
 2 制御装置、4-1 第1蓄電部、4-2 第2蓄電部、6-1 第1コンバータ、6-2 第2コンバータ、8-1 第1インバータ、8-2 第2インバータ、10-1,10-2,14 電流センサ、11-1,11-2 温度センサ、12-1,12-2,16 電圧センサ、18 エンジン、22 動力分割機構、24F 駆動輪、30 充電部、30b 電圧変換部、30a 電流制御部、50 SOC1演算部、52 SOC2演算部、54 コンバータ制御部、60 蓄電部切替部、62 電流指令生成部、64 駆動信号生成部、66 記憶部、100 車両、150 コネクタ受入部、150a 連結検出センサ、350 コネクタ部、CNL 負充電線、CPL 正充電線、MG1 第1モータジェネレータ、MG2 第2モータジェネレータ、MNL 負母線、MPL 正母線、NL1,NL2 負線、PL1,PL2 正線、PSL 電力線。 2 Control unit, 4-1 First power storage unit, 4-2 Second power storage unit, 6-1 First converter, 6-2 Second converter, 8-1 First inverter, 8-1 Second inverter, 10- 1, 10-2, 14 current sensor, 11-1, 11-2 temperature sensor, 12-1, 12-2, 16 voltage sensor, 18 engine, 22 power split mechanism, 24F driving wheel, 30 charging unit, 30b voltage Conversion unit, 30a current control unit, 50 SOC1 calculation unit, 52 SOC2 calculation unit, 54 converter control unit, 60 power storage unit switching unit, 62 current command generation unit, 64 drive signal generation unit, 66 storage unit, 100 vehicle, 150 connector Receiving part, 150a connection detection sensor, 350 connector part, CNL negative charging line, CPL positive charging line, MG1, first motor generator, M 2 second motor generator, MNL negative bus, MPL positive bus, NL1, NL2 negative line, PL1, PL2 positive line, PSL power line.
 以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 (車両の概略構成)
 図1は、この発明の実施の形態に従う電源システムを備える車両100に対して外部電源による充電を行なうための概略構成図である。
(Schematic configuration of the vehicle)
FIG. 1 is a schematic configuration diagram for charging vehicle 100 including a power supply system according to an embodiment of the present invention with an external power supply.
 図1を参照して、この発明の実施の形態に従う車両100は、代表的にハイブリッド車両であり、内燃機関(エンジン)18と電動機(モータジェネレータ)MG1,MG2とを搭載し、それぞれからの駆動力を最適な比率に制御して走行する。さらに、車両100は、このモータジェネレータに電力を供給するための複数の蓄電部(たとえば、2個)を搭載する。これらの蓄電部は、車両100のシステム起動状態(以下、「IGオン状態」とも記す)において、エンジン18の作動により生じる動力を受けて充電可能であるとともに、車両100のシステム停止中(以下、「IGオフ状態」とも記す)において、コネクタ部350を介して外部電源と電気的に接続されて充電可能である。以下の説明では、それぞれの充電動作を区別するために、外部電源による蓄電部の充電を「外部充電」とも記し、エンジン18の作動による蓄電部の充電を「内部充電」とも記す。 Referring to FIG. 1, a vehicle 100 according to an embodiment of the present invention is typically a hybrid vehicle, and is mounted with an internal combustion engine (engine) 18 and electric motors (motor generators) MG1 and MG2, and driven from each of them. Drive with optimal force ratio. Furthermore, vehicle 100 is equipped with a plurality of power storage units (for example, two) for supplying electric power to this motor generator. These power storage units can be charged by receiving the power generated by the operation of the engine 18 in the system start-up state of the vehicle 100 (hereinafter also referred to as “IG-on state”), while the system of the vehicle 100 is stopped (hereinafter, In the “IG off state”), the battery can be charged by being electrically connected to an external power source via the connector portion 350. In the following description, in order to distinguish each charging operation, charging of the power storage unit by the external power source is also referred to as “external charging”, and charging of the power storage unit by the operation of the engine 18 is also referred to as “internal charging”.
 コネクタ部350は、代表的に商用電源などの外部電源を車両100に供給するための連結機構を構成し、キャブタイヤケーブルなどからなる電力線PSLを介して充電ステーション(図示せず)と連結される。そして、コネクタ部350は、外部充電時に車両100と連結され、外部電源と車両100に搭載された充電部30とを電気的に接続する。一方、車両100には、コネクタ部350と連結され、外部電源を受入れるためのコネクタ受入部150が設けられる。 Connector unit 350 typically constitutes a coupling mechanism for supplying external power source such as commercial power source to vehicle 100, and is coupled to a charging station (not shown) via power line PSL formed of a cabtire cable or the like. . Connector unit 350 is connected to vehicle 100 during external charging, and electrically connects an external power source and charging unit 30 mounted on vehicle 100. On the other hand, vehicle 100 is provided with a connector receiving portion 150 that is connected to connector portion 350 and receives an external power supply.
 なお、コネクタ部350を介して車両100に供給される外部電源は、商用電源に代えて、もしくはこれに加えて住宅の屋根などに設置された太陽電池パネルによる発電電力などであってもよい。 It should be noted that the external power supplied to the vehicle 100 via the connector unit 350 may be power generated by a solar cell panel installed on the roof of a house instead of or in addition to the commercial power.
 車両100は、エンジン(ENG)18と、第1モータジェネレータMG1と、第2モータジェネレータMG2とを駆動力源として備え、これらは動力分割機構22を介して機械的に連結される。そして、車両100の走行状況に応じて、動力分割機構22を介して上記3者の間で駆動力の分配および結合が行なわれ、その結果として、駆動輪24Fが駆動される。 Vehicle 100 includes an engine (ENG) 18, a first motor generator MG 1, and a second motor generator MG 2 as driving force sources, which are mechanically coupled via a power split mechanism 22. Then, according to the traveling state of the vehicle 100, the driving force is distributed and combined among the three persons via the power split mechanism 22, and as a result, the driving wheels 24F are driven.
 車両100の走行時(すなわち、非外部充電時)において、動力分割機構22は、エンジン18の作動によって発生する駆動力を二分割し、その一方を第1モータジェネレータMG1側へ配分するとともに、残部を第2モータジェネレータMG2へ配分する。動力分割機構22から第1モータジェネレータMG1側へ配分された駆動力は発電動作に用いられる一方、第2モータジェネレータMG2側へ配分された駆動力は、第2モータジェネレータMG2で発生した駆動力と合成されて、駆動輪24Fの駆動に使用される。 During travel of vehicle 100 (that is, during non-external charging), power split mechanism 22 divides the driving force generated by the operation of engine 18 into two parts, distributes one of them to first motor generator MG1 side, and the remaining part. Is distributed to the second motor generator MG2. The driving force distributed from the power split mechanism 22 to the first motor generator MG1 side is used for power generation, while the driving force distributed to the second motor generator MG2 side is the driving force generated by the second motor generator MG2. It is synthesized and used to drive the drive wheel 24F.
 このとき、モータジェネレータMG1およびMG2にそれぞれ対応付けられた第1インバータ(INV1)8-1および第2インバータ(INV2)8-2は、直流電力と交流電力とを相互に変換する。主として、第1インバータ8-1は、制御装置2からのスイッチング指令PWM1に応じて、第1モータジェネレータMG1で発生する交流電力を直流電力に変換し、正母線MPLおよび負母線MNLへ供給する。一方、第2インバータ8-2は、制御装置2からのスイッチング指令PWM2に応じて、正母線MPLおよび負母線MNLを介して供給される直流電力を交流電力に変換して、第2モータジェネレータMG2へ供給する。すなわち、車両100は、負荷装置として、蓄電部4-1,4-2からの電力を受けて駆動力を発生可能な第2モータジェネレータMG2を備えるとともに、エンジン18からの駆動力を受けて発電可能な発電部である第1モータジェネレータMG1を備える。 At this time, the first inverter (INV1) 8-1 and the second inverter (INV2) 8-2 respectively associated with the motor generators MG1 and MG2 mutually convert DC power and AC power. Mainly, first inverter 8-1 converts AC power generated by first motor generator MG1 into DC power in response to switching command PWM1 from control device 2, and supplies the DC power to positive bus MPL and negative bus MNL. On the other hand, the second inverter 8-2 converts the DC power supplied via the positive bus MPL and the negative bus MNL into AC power in response to the switching command PWM2 from the control device 2 to generate the second motor generator MG2. To supply. In other words, vehicle 100 includes second motor generator MG2 that can receive electric power from power storage units 4-1 and 4-2 and generate a driving force as a load device, and can generate electric power by receiving a driving force from engine 18. A first motor generator MG1 which is a possible power generation unit is provided.
 第1蓄電部(BAT1)4-1および第2蓄電部(BAT2)4-2は、いずれも充放電可能な電力貯蔵要素であり、代表的にリチウムイオン電池やニッケル水素などの二次電池、もしくは電気二重層キャパシタなどの蓄電素子で構成される。第1蓄電部4-1と第1インバータ8-1との間には、直流電圧を相互に電圧変換可能な第1コンバータ(CONV1)6-1が配置されており、第1蓄電部4-1の入出力電圧と、正母線MPLと負母線MNLとの間の線間電圧とを相互に昇圧または降圧する。同様に、第2蓄電部4-2と第2インバータ8-2との間には、直流電圧を相互に電圧変換可能な第2コンバータ(CONV2)6-2が配置されており、第2蓄電部4-2の入出力電圧と、正母線MPLと負母線MNLとの間の線間電圧とを相互に昇圧または降圧する。すなわち、コンバータ6-1,6-2は、電力線対である正母線MPLおよび負母線MNLに対して並列接続される。コンバータ6-1,6-2における昇降圧動作は、制御装置2からのスイッチング指令PWC1,PWC2に従ってそれぞれ制御される。 Each of the first power storage unit (BAT1) 4-1 and the second power storage unit (BAT2) 4-2 is a chargeable / dischargeable power storage element, typically a secondary battery such as a lithium ion battery or nickel metal hydride, Or it is comprised with electrical storage elements, such as an electric double layer capacitor. Between the first power storage unit 4-1 and the first inverter 8-1, a first converter (CONV1) 6-1 capable of mutually converting DC voltages is arranged, and the first power storage unit 4-1 The input / output voltage of 1 and the line voltage between the positive bus MPL and the negative bus MNL are boosted or lowered with respect to each other. Similarly, a second converter (CONV2) 6-2 capable of mutually converting a DC voltage is arranged between the second power storage unit 4-2 and the second inverter 8-2. The input / output voltage of unit 4-2 and the line voltage between positive bus MPL and negative bus MNL are boosted or lowered mutually. In other words, converters 6-1 and 6-2 are connected in parallel to positive bus MPL and negative bus MNL, which are power line pairs. The step-up / step-down operations in converters 6-1 and 6-2 are controlled in accordance with switching commands PWC1 and PWC2 from control device 2, respectively.
 制御装置2は、代表的に、CPU(Central Processing Unit)と、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶部と、入出力インターフェイスとを主体として構成された電子制御装置(ECU:Electronic Control Unit)からなる。そして、制御装置2は、予めROMなどに格納されたプログラムをCPUがRAMに読出して実行することによって、車両走行(内部充電を含む)および外部充電に係る制御を実行する。 The control device 2 is typically an electronic control device mainly composed of a CPU (Central Processing Unit), a storage unit such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an input / output interface ( ECU: Electronic Control Unit). And the control apparatus 2 performs control which concerns on vehicle driving | running | working (including internal charging) and external charging, when CPU reads the program previously stored in ROM etc. to RAM, and performs it.
 制御装置2に入力される情報の一例として、図1には、正線PL1,PL2に介挿された電流センサ10-1,10-2からの電池電流Ibat1,Ibat2、正線PL1と負線NL1との線間に配置された電圧センサ12-1からの電池電圧Vbat1、正線PL2と負線NL2との線間に配置された電圧センサ12-2からの電池電圧Vbat2、蓄電部4-1,4-2に近接して配置された温度センサ11-1,11-2からの電池温度Tbat1,Tbat2、正母線MPLに介挿された電流センサ14からの母線電流IDC、正母線MPLと負母線MNLとの線間に配置された電圧センサ16からの母線電圧VDCを例示する。 As an example of information input to the control device 2, FIG. 1 shows battery currents Ibat1, Ibat2 from the current sensors 10-1, 10-2 inserted in the positive lines PL1, PL2, a positive line PL1, and a negative line. Battery voltage Vbat1 from voltage sensor 12-1 disposed between lines with NL1, battery voltage Vbat2 from voltage sensor 12-2 disposed between lines between positive line PL2 and negative line NL2, power storage unit 4- 1, battery temperature Tbat1, Tbat2 from temperature sensors 11-1, 11-2 arranged in proximity to the bus, bus current IDC from current sensor 14 inserted in the positive bus MPL, positive bus MPL The bus voltage VDC from the voltage sensor 16 arranged between the negative bus MNL and the line is illustrated.
 また、制御装置2は、蓄電部4-1,4-2の充電状態値(SOC:State Of Charge;以下、単に「SOC」とも称す)を連続的に推定する。SOCは、蓄電部の充電量の絶対値(単位[A・h]など)としても表わすことができるが、本明細書においては、SOCは蓄電部の充電容量に対する充電量の比率(0~100%)として表わす。 Further, control device 2 continuously estimates the state of charge (SOC: State Of Charge; hereinafter, also simply referred to as “SOC”) of power storage units 4-1 and 4-2. The SOC can also be expressed as an absolute value (unit [A · h] or the like) of the charge amount of the power storage unit. In this specification, the SOC is a ratio of the charge amount to the charge capacity of the power storage unit (0 to 100). %).
 車両100は、蓄電部4-1,4-2を外部充電するための構成として、コネクタ受入部150と、充電部30とをさらに備える。蓄電部4-1,4-2に対して外部充電を行なう場合には、コネクタ部350がコネクタ受入部150に連結されることで、正充電線CPLおよび負充電線CNLを介して外部電源からの電力が充電部30へ供給される。また、コネクタ受入部150は、コネクタ受入部150とコネクタ部350との連結状態を検出するための連結検出センサ150aを含んでおり、この連結検出センサ150aからの連結信号CONによって制御装置2は、外部電源により充電可能な状態となったことを検出する。なお、本実施の形態においては、外部電源として単相交流の商用電源が用いられる場合について例示する。 Vehicle 100 further includes a connector receiving unit 150 and a charging unit 30 as a configuration for externally charging power storage units 4-1 and 4-2. When external charging is performed on power storage units 4-1 and 4-2, connector unit 350 is connected to connector receiving unit 150, so that an external power source can be connected via positive charging line CPL and negative charging line CNL. Is supplied to the charging unit 30. Further, the connector receiving unit 150 includes a connection detection sensor 150a for detecting the connection state between the connector receiving unit 150 and the connector unit 350, and the control device 2 receives the connection signal CON from the connection detection sensor 150a. Detect that charging is possible with an external power supply. In the present embodiment, a case where a single-phase AC commercial power supply is used as an external power supply is illustrated.
 また、本明細書において、「外部電源により充電可能な状態」とは、代表的に、コネクタ部350がコネクタ受入部150に物理的に挿入されている状態を意味する。なお、図1に示す構成に代えて、外部電源と車両とを非接触のまま電磁的に結合して電力を供給する構成、具体的には外部電源側に一次コイルを設けるとともに、車両側に二次コイルを設け、一次コイルと二次コイルとの間の相互インダクタンスを利用して電力供給を行なう構成では、「外部電源により充電可能な状態」とは、一次コイルと二次コイルとが位置合せされた状態を意味する。 In addition, in this specification, the “state that can be charged by an external power source” typically means a state in which the connector portion 350 is physically inserted into the connector receiving portion 150. In addition to the configuration shown in FIG. 1, a configuration in which an external power source and a vehicle are electromagnetically coupled in a non-contact manner to supply power, specifically, a primary coil is provided on the external power source side, and a vehicle side is provided. In a configuration in which a secondary coil is provided and power is supplied by utilizing the mutual inductance between the primary coil and the secondary coil, the state in which charging by an external power supply is possible means that the primary coil and the secondary coil are positioned. It means the combined state.
 充電部30は、外部電源からの電力を受けて蓄電部4-1,4-2を外部充電するための装置であり、正線PL1および負線NL1と正充電線CPLおよび負充電線CNLとの間に配置される。すなわち、充電部30は、第1蓄電部4-1と第1蓄電部4-1に対応する第1コンバータ6-1との間に電気的に接続される。 Charging unit 30 is a device for externally charging power storage units 4-1 and 4-2 by receiving electric power from an external power source, and includes positive line PL1, negative line NL1, positive charge line CPL, and negative charge line CNL. It is arranged between. That is, charging unit 30 is electrically connected between first power storage unit 4-1 and first converter 6-1 corresponding to first power storage unit 4-1.
 また、充電部30は、電流制御部30aと、電圧変換部30bとを含み、外部電源からの電力を蓄電部4-1,4-2の充電に適した電力に変換する。具体的には、電圧変換部30bは、外部電源の供給電圧を蓄電部4-1,4-2の充電に適した電圧に変換するための装置であり、代表的に所定の変圧比を有する巻線型の変圧器や、AC-ACスイッチングレギュレータなどからなる。また、電流制御部30aは、電圧変換部30bによる電圧変換後の交流電圧を整流して直流電圧を生成するとともに、制御装置2からの充電電流指令Ichに従って、蓄電部4-1,4-2に供給する充電電流を制御する。電流制御部30aは、代表的に単相のブリッジ回路などからなる。なお、電流制御部30aおよび電圧変換部30bからなる構成に代えて、AC-DCスイッチングレギュレータなどによって充電部30を実現してもよい。 Charging unit 30 includes a current control unit 30a and a voltage conversion unit 30b, and converts power from an external power source into power suitable for charging power storage units 4-1, 4-2. Specifically, voltage conversion unit 30b is a device for converting the supply voltage of the external power source into a voltage suitable for charging power storage units 4-1, 4-2, and typically has a predetermined transformation ratio. It consists of a wound-type transformer, an AC-AC switching regulator, and the like. Further, current control unit 30a rectifies the AC voltage after voltage conversion by voltage conversion unit 30b to generate a DC voltage, and in accordance with charging current command Ich * from control device 2, power storage units 4-1, 4- The charging current supplied to 2 is controlled. The current control unit 30a typically includes a single-phase bridge circuit or the like. Instead of the configuration including the current control unit 30a and the voltage conversion unit 30b, the charging unit 30 may be realized by an AC-DC switching regulator or the like.
 特に、本実施の形態に従う制御装置2は、外部電源により充電可能な状態となったことを検出すると、蓄電部4-1,4-2のいずれかを充電対象に選択して外部充電を開始する。そして、充電対象の蓄電部の電池電圧Vbatが予め定められた上限電圧値VLに達したときには、制御装置2は、残余の蓄電部に対する外部充電を開始することにより、充電対象の蓄電部に対する外部充電と、残余の蓄電部に対する外部充電とを並行して実行する。 In particular, when control device 2 according to the present embodiment detects that charging is possible with an external power supply, it selects one of power storage units 4-1 and 4-2 as a charging target and starts external charging. To do. When the battery voltage Vbat of the power storage unit to be charged reaches a predetermined upper limit voltage value VL, the control device 2 starts external charging to the remaining power storage unit, thereby externally charging the power storage unit to be charged. Charging and external charging for the remaining power storage unit are executed in parallel.
 なお、上限電圧値VLは、電池電圧Vbatの許容範囲の上限値であり、蓄電部の特性値などに基づいて予め設定しておいてもよいし、蓄電部の使用状況などに応じて動的に設定してもよい。 The upper limit voltage value VL is the upper limit value of the allowable range of the battery voltage Vbat, and may be set in advance based on the characteristic value of the power storage unit, or may be dynamically set according to the usage status of the power storage unit. May be set.
 このように、外部電源により充電可能な状態となったときに、蓄電部4-1,4-2から1個の蓄電部を選択して外部充電を開始することにより、蓄電部4-1,4-2の外部充電を同時に開始する構成と比較して、蓄電部4-1,4-2のそれぞれの許容放電電力(蓄電部で放電が許容される最大の電力値)の合計値である許容放電電力合計値をより短期間で増大させることが可能となる。 As described above, when the battery can be charged by the external power supply, by selecting one power storage unit from the power storage units 4-1 and 4-2 and starting external charging, the power storage units 4-1 and 4-1 are started. Compared to the configuration in which external charging of 4-2 is started at the same time, it is the total value of the allowable discharge power of power storage units 4-1 and 4-2 (the maximum power value that is allowed to be discharged in the power storage unit) It is possible to increase the total allowable discharge power in a shorter period.
 これは、蓄電部の許容放電電力がSOCが低下するに従って減少するとともに、電池温度が低下するに従って減少することに基づいている。そのため、低温時では、各々のSOCが相対的に低い(たとえば、x%)蓄電部4-1,4-2の許容放電電力合計値よりも、SOCが相対的に高い(たとえば、2x%)蓄電部4-1の許容放電電力の方が大きくなるケースが発生する。このようなケースでは、1個の蓄電部を選択して外部充電を開始することで許容放電電力合計値が迅速に増大するため、電源システム全体としての放電能力を高めることができる。したがって、外部充電が実行される期間が短い場合であっても、次回の車両システムの起動後において、車両100におけるEV走行での走行距離を伸ばすことができる。 This is based on the fact that the allowable discharge power of the power storage unit decreases as the SOC decreases and decreases as the battery temperature decreases. Therefore, at a low temperature, each SOC is relatively low (for example, x%), and the SOC is relatively higher (for example, 2x%) than the total allowable discharge power value of power storage units 4-1, 4-2. There is a case where the allowable discharge power of power storage unit 4-1 becomes larger. In such a case, the total allowable discharge power value increases rapidly by selecting one power storage unit and starting external charging, so that the discharge capacity of the entire power supply system can be increased. Therefore, even when the period during which external charging is performed is short, the travel distance for EV travel in vehicle 100 can be extended after the next start of the vehicle system.
 また、運転者の操作によってイグニッションオン指令が与えられると、制御装置2は、蓄電部のSOCが所定値を下回るまでの間、EV走行を行なうが、蓄電部4-1,4-2のSOCがともに相対的に低い値となっているときには、比較的短時間にEV走行からHV走行へ移行する。これに対しては、選択された1個の蓄電部のSOCは相対的に高い値となっていることから、EV走行での走行距離を伸ばすことができる。この結果、燃費および環境性能を向上させることが可能となる。 In addition, when an ignition-on command is given by the driver's operation, control device 2 performs EV traveling until the SOC of power storage unit falls below a predetermined value, but the SOC of power storage units 4-1, 4-2. When both are relatively low values, the EV travel is shifted to the HV travel in a relatively short time. On the other hand, since the SOC of one selected power storage unit has a relatively high value, the travel distance in EV travel can be extended. As a result, fuel consumption and environmental performance can be improved.
 図1に示すこの発明の実施の形態と本願発明との対応関係については、蓄電部4-1,4-2が「複数の蓄電部」に相当し、コンバータ6-1,6-2が「複数の電圧変換部」に相当し、正母線MPLおよび負母線MNLが「電力線対」に相当し、充電部30が「充電部」に相当する。 Regarding the correspondence between the embodiment of the present invention shown in FIG. 1 and the present invention, power storage units 4-1 and 4-2 correspond to “a plurality of power storage units”, and converters 6-1 and 6-2 have “ The positive bus MPL and the negative bus MNL correspond to the “power line pair”, and the charging unit 30 corresponds to the “charging unit”.
 (制御構造)
 次に、図2および図3を参照して、本実施の形態に従う電源システムにおける複数の蓄電部を外部充電するための制御構造について説明する。
(Control structure)
A control structure for externally charging a plurality of power storage units in the power supply system according to the present embodiment will now be described with reference to FIGS.
 図2は、この発明の実施の形態に従う制御装置2における制御構造を示すブロック図である。図2に示す各機能ブロックは、代表的に制御装置2が予め格納されたプログラムを実行することで実現されるが、その機能の一部または全部をハードウェアとして実装してもよい。 FIG. 2 is a block diagram showing a control structure in control device 2 according to the embodiment of the present invention. Each function block shown in FIG. 2 is typically realized by the control device 2 executing a program stored in advance, but part or all of the function may be implemented as hardware.
 図2を参照して、制御装置2は、SOC1演算部50と、SOC2演算部52と、コンバータ制御部54とを含む。 Referring to FIG. 2, control device 2 includes an SOC1 calculation unit 50, an SOC2 calculation unit 52, and a converter control unit 54.
 SOC1演算部50は、電池温度Tbat1、電池電流Ibat1、電池電圧Vbat1などに基づいて、第1蓄電部4-1のSOC1を推定する。具体的には、SOC1演算部50は、第1蓄電部4-1の充放電量の積算値に基づいて第1蓄電部4-1のSOC1を順次演算する。なお、充放電量の積算値は、対応する蓄電部の電池電圧と電池電流との積(電力)を時間的に積分することで得られる。SOC2演算部52は、SOC1演算部50と同様に、電池温度Tbat2、電池電流Ibat2、電池電圧Vbat2などに基づいて、第2蓄電部4-2のSOC2を推定する。 The SOC1 calculation unit 50 estimates the SOC1 of the first power storage unit 4-1, based on the battery temperature Tbat1, the battery current Ibat1, the battery voltage Vbat1, and the like. Specifically, SOC1 calculating unit 50 sequentially calculates SOC1 of first power storage unit 4-1, based on the integrated value of the charge / discharge amount of first power storage unit 4-1. Note that the integrated value of the charge / discharge amount can be obtained by temporally integrating the product (electric power) of the battery voltage and the battery current of the corresponding power storage unit. Similar to SOC1 calculation unit 50, SOC2 calculation unit 52 estimates SOC2 of second power storage unit 4-2 based on battery temperature Tbat2, battery current Ibat2, battery voltage Vbat2, and the like.
 コンバータ制御部54は、第1蓄電部4-1に関する情報として、SOC1演算部50から第1蓄電部4-1のSOC1を受け、温度センサ11-1、電流センサ10-1、電圧センサ12-1から電池温度Tbat1、電池電流Ibat1、電池電圧Vbat1をそれぞれ受ける。また、コンバータ制御部54は、第2蓄電部4-2に関する情報として、SOC2演算部50から第2蓄電部4-1のSOC2を受け、温度センサ11-2、電流センサ10-2、電圧センサ12-2からの電池温度Tbat2、電池電流Ibat2、電池電圧Vbat2をそれぞれ受ける。さらに、コンバータ制御部54は、電流センサ14からの母線電流IDCおよび電圧センサ16からの母線電圧VDCと、連結検出センサ150aからの連結信号CONと、イグニッションスイッチの操作状態を示す信号IGとを受ける。そして、コンバータ制御部54は、これらの入力情報に基づき、外部電源により充電可能な状態となったときには、蓄電部4-1,4-2が充電部30からの充電電流Ichで充電されるように対応のコンバータ6-1,6-2を制御する。 Converter control unit 54 receives SOC1 of first power storage unit 4-1 from SOC1 calculation unit 50 as information regarding first power storage unit 4-1, and receives temperature sensor 11-1, current sensor 10-1, voltage sensor 12-. 1 receives battery temperature Tbat1, battery current Ibat1, and battery voltage Vbat1. Further, converter control unit 54 receives SOC2 of second power storage unit 4-1 from SOC2 calculation unit 50 as information related to second power storage unit 4-2, and receives temperature sensor 11-2, current sensor 10-2, voltage sensor. The battery temperature Tbat2, battery current Ibat2, and battery voltage Vbat2 from 12-2 are received. Further, converter control unit 54 receives bus current IDC from current sensor 14, bus voltage VDC from voltage sensor 16, connection signal CON from connection detection sensor 150a, and signal IG indicating the operation state of the ignition switch. . Then, based on these input information, converter control unit 54 is configured to charge power storage units 4-1 and 4-2 with charging current Ich from charging unit 30 when charging is possible with an external power supply. The converters 6-1 and 6-2 corresponding to are controlled.
 図3は、図2に示すコンバータ制御部54におけるより詳細な制御構造を示すブロック図である。 FIG. 3 is a block diagram showing a more detailed control structure in converter control unit 54 shown in FIG.
 図3を参照して、コンバータ制御部54は、蓄電部切替部60と、電流指令生成部62と、駆動信号生成部64と、記憶部66とを含む。 Referring to FIG. 3, converter control unit 54 includes a power storage unit switching unit 60, a current command generation unit 62, a drive signal generation unit 64, and a storage unit 66.
 蓄電部切替部60は、記憶部66に格納される蓄電部4-1,4-2の外部充電が実行された履歴と、蓄電部4-1,4-2のSOC1,SOC2および電池電圧Vbat1,Vbat2とに基づいて、外部充電の実行中において充電対象となる蓄電部を切替える。 Power storage unit switching unit 60 stores the history of external charging of power storage units 4-1 and 4-2 stored in storage unit 66, SOC 1 and SOC 2 of power storage units 4-1 and 4-2, and battery voltage Vbat 1. , Vbat2 to switch the power storage unit to be charged during the execution of external charging.
 具体的には、蓄電部切替部60は、外部電源により充電可能な状態となったときには、記憶部66から読み出した外部充電の実行履歴に基づいて、最初に充電対象となる蓄電部を選択する。より具体的には、記憶部66は、不揮発性のメモリからなり、外部充電が実行されるごとに、最初に充電対象に選択された蓄電部を記憶する。蓄電部切替部60は、記憶部66から、前回の外部充電において最初に充電対象に選択された蓄電部(たとえば第2蓄電部4-2)を読み出すと、該蓄電部とは異なる蓄電部(たとえば第1蓄電部4-1)を今回の外部充電における最初の充電対象に選択する。なお、蓄電部切替部60は、記憶部66に格納される前回の外部充電において最初に選択された蓄電部を、選択した第1蓄電部4-1に更新する。 Specifically, power storage unit switching unit 60 first selects a power storage unit to be charged based on an external charging execution history read from storage unit 66 when charging is possible with an external power supply. . More specifically, the memory | storage part 66 consists of non-volatile memories, and memorize | stores the electrical storage part selected as charge object first, whenever external charging is performed. When power storage unit switching unit 60 reads from power storage unit 66 a power storage unit (for example, second power storage unit 4-2) that was first selected as a charging target in the previous external charging, power storage unit ( For example, the first power storage unit 4-1) is selected as the first charging target in the current external charging. The power storage unit switching unit 60 updates the first power storage unit selected in the previous external charging stored in the storage unit 66 to the selected first power storage unit 4-1.
 一般的に、二次電池や電気二重層キャパシタでは、SOCが高い状態が長時間継続することは劣化の観点から好ましくない。そのため、蓄電部切替部60が外部充電が実行されるごとに最初に充電対象となる蓄電部を切替えることにすることができる。これにより、蓄電部4-1,4-2の間で劣化度合いにばらつきが生じるのを抑えることができる。 Generally, in a secondary battery or an electric double layer capacitor, it is not preferable from the viewpoint of deterioration that the state where the SOC is high continues for a long time. Therefore, each time power storage unit switching unit 60 performs external charging, the power storage unit to be charged can be switched first. Thereby, it is possible to suppress variation in the degree of deterioration between power storage units 4-1, 4-2.
 そして、充電対象の蓄電部(第1蓄電部4-1)の外部充電が開始されると、蓄電部切替部60は、電池電圧Vbat1が所定の上限電圧値VLに達したことに応じて、充電対象を第1蓄電部4-1から第1蓄電部4-1および第2蓄電部4-2へと切替える。さらに、蓄電部切替部60は、第1蓄電部4-1のSOC1が予め定められたSOC上限値に達したときには、充電対象を第1蓄電部4-1および第2蓄電部4-2から第2蓄電部4-2へと切替える。 When external charging of the power storage unit (first power storage unit 4-1) to be charged is started, the power storage unit switching unit 60 determines that the battery voltage Vbat1 has reached a predetermined upper limit voltage value VL. The charging target is switched from the first power storage unit 4-1 to the first power storage unit 4-1 and the second power storage unit 4-2. Further, power storage unit switching unit 60 switches charging targets from first power storage unit 4-1 and second power storage unit 4-2 when SOC1 of first power storage unit 4-1 reaches a predetermined SOC upper limit value. Switching to the second power storage unit 4-2.
 電流指令生成部62は、蓄電部切替部60から充電対象に選択された蓄電部を示す信号を受けると、電池電圧Vbat1,Vbat2に基づいて、後述する方法によって、蓄電部4-1,4-2の各々についての充電電流の目標値である電流目標値Ibat1,Ibat2を決定する。さらに、電流指令生成部62は、充電電流指令Ichを生成して充電部30へ出力する。 Upon receiving a signal indicating the power storage unit selected as the charging target from the power storage unit switching unit 60, the current command generation unit 62 performs the power storage units 4-1, 4-4- by a method described later based on the battery voltages Vbat1, Vbat2. 2, current target values Ibat1 * and Ibat2 * , which are target values of the charging current, are determined. Further, the current command generation unit 62 generates a charging current command Ich * and outputs it to the charging unit 30.
 駆動信号生成部64は、電流指令生成部62から電流目標値Ibat1を受けると、電流目標値Ibat1と電流センサ10-1からの電池電流Ibat1との電流偏差に基づくフィードバック制御によってスイッチング指令PWC1を生成し、第1コンバータ6-1へ出力する。また、駆動信号生成部64は、電流指令生成部62から電流目標値Ibat2を受けると、電流目標値Ibat2と電流センサ10-2からの電池電流Ibat2との電流偏差に基づくフィードバック制御によってスイッチング指令PWC2を生成し、第2コンバータ6-2へ出力する。 When the drive signal generator 64 receives the current target value Ibat1 * from the current command generator 62, the drive signal generator 64 performs the switching command PWC1 by feedback control based on the current deviation between the current target value Ibat1 * and the battery current Ibat1 from the current sensor 10-1. Is output to the first converter 6-1. When the drive signal generator 64 receives the current target value Ibat2 * from the current command generator 62, the drive signal generator 64 performs switching by feedback control based on a current deviation between the current target value Ibat2 * and the battery current Ibat2 from the current sensor 10-2. Command PWC2 is generated and output to second converter 6-2.
 次に、図4を用いて、図3における蓄電部切替部60、電流指令生成部62および駆動信号生成部64における詳細な制御構造を説明する。 Next, detailed control structures in the power storage unit switching unit 60, the current command generation unit 62, and the drive signal generation unit 64 in FIG. 3 will be described with reference to FIG.
 図4は、外部充電の実行中における蓄電部4-1,4-2の電池電圧、SOCおよび電池電流の時間的変化の一例を示す図である。 FIG. 4 is a diagram illustrating an example of temporal changes in battery voltage, SOC, and battery current of power storage units 4-1, 4-2 during execution of external charging.
 図4を参照して、時刻t0において外部電源により充電可能な状態になると、蓄電部切替部60は、上述した方法によって最初に充電対象となる蓄電部を選択する。図4では、第1蓄電部4-1が充電対象に選択されたものとする。 Referring to FIG. 4, when charging is possible by an external power source at time t <b> 0, power storage unit switching unit 60 first selects a power storage unit to be charged by the method described above. In FIG. 4, it is assumed that the first power storage unit 4-1 is selected as the charging target.
 これにより、時刻t0以降では、第1蓄電部4-1の外部充電が開始される。このとき、電流指令生成部62は、充電対象の第1蓄電部4-1の電流目標値Ibat1を決定する。具体的には、電流指令生成部62は、充電部30の最大出力電力(充電部30で出力が許容される電力の最大値)Pch_maxを、第1蓄電部4-1への充電電力の目標値に決定すると、この充電電力目標値Pch_maxを電池電圧Vbat1で除算することにより、第1蓄電部4-1の電流目標値Ibatを決定する。なお、図4では、電流目標値Ibat1は、所定の電流値I1に決定されている。電流指令生成部62は、充電電流指令Ichを所定の電流値I1に決定して充電部30へ出力する。 Thereby, after time t0, external charging of first power storage unit 4-1 is started. At this time, the current command generator 62 determines the current target value Ibat1 * of the first power storage unit 4-1 to be charged. Specifically, the current command generation unit 62 sets the maximum output power of the charging unit 30 (the maximum value of power allowed to be output by the charging unit 30) Pch_max as the target of the charging power for the first power storage unit 4-1. When the value is determined, a target current value Ibat * of the first power storage unit 4-1 is determined by dividing the charging power target value Pch_max by the battery voltage Vbat1. In FIG. 4, the current target value Ibat1 * is determined to be a predetermined current value I1. The current command generation unit 62 determines the charging current command Ich * as a predetermined current value I1 and outputs it to the charging unit 30.
 駆動信号生成部64は、第1蓄電部4-1の電池電流Ibat1が電流目標値Ibat1(=I1)に一致するように、第1コンバータ6-1および第2コンバータ6-2を制御する。図5には、第1蓄電部4-1を充電対象とした場合の電力授受が示される。図5を参照して、充電部30からの充電電流Ich(=I1)によって第1蓄電部4-1が充電されるように、駆動信号生成部64は、第1コンバータ6-1および第2コンバータ6-2の電圧変換動作を停止させる。これにより、充電部30からの充電電力(最大出力電力Pch_max)は全て第1蓄電部4-1へ供給される。 Drive signal generation unit 64 controls first converter 6-1 and second converter 6-2 so that battery current Ibat1 of first power storage unit 4-1 matches current target value Ibat1 * (= I1). . FIG. 5 shows power transfer when the first power storage unit 4-1 is a charging target. Referring to FIG. 5, drive signal generating unit 64 includes first converter 6-1 and second converter 6-1 so that first power storage unit 4-1 is charged by charging current Ich (= I1) from charging unit 30. The voltage conversion operation of converter 6-2 is stopped. Thereby, all the charging power (maximum output power Pch_max) from the charging unit 30 is supplied to the first power storage unit 4-1.
 このようにして、充電部30からの充電電流によって第1蓄電部4-1を外部充電することにより、図4に示すように、SOC1(ラインk3に相当)および電池電圧Vbat1(ラインk1に相当)はともに増加する。そして、時刻t1において電池電圧Vbat1が上限電圧値VLに達すると、蓄電部切替部60は、充電対象を、第1蓄電部4-1から第1蓄電部4-1および第2蓄電部4-2へ切替える。これにより、時刻t1以降においては、第1蓄電部4-1の外部充電と第2蓄電部4-2の外部充電とが並行して行なわれる。 Thus, by externally charging first power storage unit 4-1 with the charging current from charging unit 30, as shown in FIG. 4, SOC1 (corresponding to line k3) and battery voltage Vbat1 (corresponding to line k1) ) Both increase. When battery voltage Vbat1 reaches upper limit voltage value VL at time t1, power storage unit switching unit 60 switches charging targets from first power storage unit 4-1, first power storage unit 4-1, and second power storage unit 4- Switch to 2. Thereby, after time t1, external charging of first power storage unit 4-1 and external charging of second power storage unit 4-2 are performed in parallel.
 このとき、電流指令生成部62は、第1蓄電部4-1の電流目標値Ibat1を、電池電圧Vbat1が上限電圧値VL以上とならないように決定する。具体的には、電流指令生成部62は、充電部30の最大出力電力Pch_maxを下回るように予め設定された所定の出力電力Pch1を電池電圧Vbat1で除算することにより、第1蓄電部4-1の電流目標値Ibat1を決定する。なお、図4では、電流目標値Ibat1は、所定の電流値I2に決定されている。 At this time, current command generation unit 62 determines current target value Ibat1 * of first power storage unit 4-1, so that battery voltage Vbat1 does not exceed upper limit voltage value VL. Specifically, the current command generation unit 62 divides the predetermined output power Pch1 set in advance so as to be lower than the maximum output power Pch_max of the charging unit 30 by the battery voltage Vbat1, thereby the first power storage unit 4-1. Current target value Ibat1 * is determined. In FIG. 4, the current target value Ibat1 * is determined to be a predetermined current value I2.
 また、電流指令生成部62は、充電部30の最大出力電力Pch_maxから所定の出力電力Pch1を差し引いた電力(=Pch_max-Pch1)を電池電圧Vbat2で除算することにより、第2蓄電部4-2の電流目標値Ibat2を決定する。なお、図4では、電流目標値Ibat2は、所定の電流値I3に決定されている。電流指令生成部62は、充電電流指令Ichを所定の電流値I2およびI3の合計値(=I2+I3)に決定して充電部30へ出力する。 Further, the current command generation unit 62 divides the power (= Pch_max−Pch1) obtained by subtracting the predetermined output power Pch1 from the maximum output power Pch_max of the charging unit 30 by the battery voltage Vbat2, thereby the second power storage unit 4-2. Current target value Ibat2 * is determined. In FIG. 4, the current target value Ibat2 * is determined to be a predetermined current value I3. Current command generation unit 62 determines charging current command Ich * as a total value (= I2 + I3) of predetermined current values I2 and I3, and outputs the result to charging unit 30.
 駆動信号生成部64は、電池電流Ibat1,Ibat2が電流目標値Ibat1(=I2),Ibat2(=I3)にそれぞれ一致するように、第1コンバータ6-1および第2コンバータ6-2を制御する。図6には、第1蓄電部4-1および第2蓄電部4-2を充電対象とした場合の電力授受が示される。図6を参照して、第1コンバータ6-1は、充電部30からの充電電流Ichから電池電流Ibat1(=I2)を差し引いた電流(=I3)によって第2蓄電部4-2が充電されるように電圧変換動作を行なう。すなわち、第1コンバータ6-1は、電流値I3を電流目標値として昇圧動作を行なう。一方、第2コンバータ6-2は、第1コンバータ6-1を流れる電流値と実質的に同じ電流値が第2蓄電部4-2へ供給されるように、降圧動作を行なう。これにより、充電部30からの充電電力(最大出力電力Pch_max)は、電池電圧Vbat1が上限電圧値VLに達しない範囲でその一部が第1蓄電部4-1へ供給されるとともに、残りの電力が第2蓄電部4-2へ供給される。 The drive signal generator 64 sets the first converter 6-1 and the second converter 6-2 so that the battery currents Ibat1 and Ibat2 coincide with the current target values Ibat1 * (= I2) and Ibat2 * (= I3), respectively. Control. FIG. 6 shows power transfer when first power storage unit 4-1 and second power storage unit 4-2 are charged. Referring to FIG. 6, in first converter 6-1, second power storage unit 4-2 is charged by a current (= I3) obtained by subtracting battery current Ibat1 (= I2) from charging current Ich from charging unit 30. The voltage conversion operation is performed as described above. That is, first converter 6-1 performs a boosting operation using current value I3 as a current target value. On the other hand, second converter 6-2 performs a step-down operation so that a current value substantially the same as the current value flowing through first converter 6-1 is supplied to second power storage unit 4-2. Thereby, a part of the charging power (maximum output power Pch_max) from the charging unit 30 is supplied to the first power storage unit 4-1 in a range where the battery voltage Vbat1 does not reach the upper limit voltage value VL, and the remaining power Electric power is supplied to the second power storage unit 4-2.
 このようにして、充電部30からの充電電流によって第1蓄電部4-1および第2蓄電部4-2を並行して外部充電することにより、第1蓄電部4-1では、電池電圧Vbat1は上限電圧値VL未満に抑えられる一方で、SOC1が増加する。そして、時刻t2においてSOC1がSOC上限値SHに達すると、充電対象を第1蓄電部4-1および第2蓄電部4-2から第2蓄電部4-2へ切替えることにより、第1蓄電部4-1の外部充電を終了する。これにより、時刻t2以降では、充電部30からの充電電力(最大出力電力Pch_max)は全て第2蓄電部4-1へ供給される。 In this way, the first power storage unit 4-1 externally charges the first power storage unit 4-1 and the second power storage unit 4-2 in parallel with the charging current from the charging unit 30, so that the battery voltage Vbat1 Is suppressed below the upper limit voltage value VL, while SOC1 increases. When SOC1 reaches SOC upper limit SH at time t2, the first power storage unit is switched by switching the charging target from first power storage unit 4-1 and second power storage unit 4-2 to second power storage unit 4-2. 4-1 external charging ends. Thus, after time t2, all the charging power (maximum output power Pch_max) from charging unit 30 is supplied to second power storage unit 4-1.
 すなわち、充電部30の最大出力電力Pch_maxを電池電圧Vbat2で除算することによって電流目標値Ibat2(=I1)が決定され、充電部30からの充電電流Ich(=I1)によって第2蓄電部4-2が充電されるように、駆動信号生成部64は、第1コンバータ6-1および第2コンバータ6-2の電圧変換動作を制御する。すなわち、第1コンバータ6-1は、電流値I1を電流目標値として昇圧動作を行なう。一方、第2コンバータ6-2は、第1コンバータ6-1を流れる電流値と実質的に同じ電流値が第2蓄電部4-2へ供給されるように、降圧動作を行なう。 That is, current target value Ibat2 * (= I1) is determined by dividing maximum output power Pch_max of charging unit 30 by battery voltage Vbat2, and second power storage unit 4 is determined by charging current Ich (= I1) from charging unit 30. -2 is charged, the drive signal generator 64 controls the voltage conversion operations of the first converter 6-1 and the second converter 6-2. That is, first converter 6-1 performs a boosting operation using current value I1 as a current target value. On the other hand, second converter 6-2 performs a step-down operation so that a current value substantially the same as the current value flowing through first converter 6-1 is supplied to second power storage unit 4-2.
 さらに、時刻t3において、電池電圧Vbat1が上限電圧値VLに達すると、電流指令生成部62は、第2蓄電部4-2の電流目標値Ibat2を、電池電圧Vbat2が上限電圧値VL以上とならないように決定する。具体的には、電流指令生成部62は、充電部30の最大出力電力Pch_maxを下回るように予め設定された所定の出力電力Pch1を電池電圧Vbat2で除算することにより、第2蓄電部4-2の電流目標値Ibat2を決定する。なお、図4では、電流目標値Ibat2は、所定の電流値I2に決定されている。 Furthermore, when battery voltage Vbat1 reaches upper limit voltage value VL at time t3, current command generation unit 62 sets current target value Ibat2 * of second power storage unit 4-2 to battery voltage Vbat2 equal to or higher than upper limit voltage value VL. Decide not to be. Specifically, the current command generation unit 62 divides the predetermined output power Pch1 set in advance so as to be lower than the maximum output power Pch_max of the charging unit 30 by the battery voltage Vbat2, thereby the second power storage unit 4-2. Current target value Ibat2 * is determined. In FIG. 4, the current target value Ibat2 * is determined to be a predetermined current value I2.
 駆動信号生成部64は、第2蓄電部4-2の電池電流Ibat2が電流目標値Ibat2(=I2)に一致するように、第1コンバータ6-1および第2コンバータ6-2を制御する。このようにして、充電部30からの充電電流によって第2蓄電部4-2を外部充電することにより、電池電圧Vbat2は上限電圧値VL未満に抑えられる一方で、SOC2が増加する。そして、時刻t4においてSOC2がSOC上限値SHに達すると、蓄電部切替部60は、充電対象を第2蓄電部4-2から非選択状態へ切替えることにより、第2蓄電部4-2の外部充電を終了する。 Drive signal generation unit 64 controls first converter 6-1 and second converter 6-2 so that battery current Ibat2 of second power storage unit 4-2 matches current target value Ibat2 * (= I2). . Thus, by externally charging second power storage unit 4-2 with the charging current from charging unit 30, battery voltage Vbat2 is suppressed to less than upper limit voltage value VL, while SOC2 increases. When SOC2 reaches SOC upper limit value SH at time t4, power storage unit switching unit 60 switches the charging target from second power storage unit 4-2 to the non-selected state, so that external power storage unit 4-2 Stop charging.
 以上に述べたように、外部電源により充電可能な状態にされたときには、蓄電部4-1,4-2のいずれかを充電対象に選択して外部充電を開始するとともに、充電対象の蓄電部の電池電圧が予め定められた上限電圧値VLに達したときには、充電対象の蓄電部に対する外部充電と残余の蓄電部に対する外部充電とを並行して行なうことにより、蓄電部4-1,4-2の許容放電電力合計値を迅速に増大させることができる。さらには、電源システム全体の外部充電に要する時間を短縮することが可能となる。 As described above, when the battery can be charged by the external power supply, either one of the power storage units 4-1 and 4-2 is selected as a charging target, and external charging is started. When the battery voltage reaches a predetermined upper limit voltage value VL, external charging for the power storage unit to be charged and external charging for the remaining power storage unit are performed in parallel, whereby power storage units 4-1, 4- The total allowable discharge power value of 2 can be increased rapidly. Furthermore, the time required for external charging of the entire power supply system can be shortened.
 すなわち、図4を参照して、時刻t0から時刻t1までの区間aにおいては、第1蓄電部4-1を選択して外部充電を行なうことにより、許容放電電力合計値を迅速に増大させることができる一方で、電池電圧Vbat1が上限電圧値VLに到達すると(時刻t1)、蓄電部の保護の観点から、第1蓄電部4-1への充電電力を制限する必要が生じる。そこで、時刻t1から時刻t2までの区間bにおいては、第1蓄電部4-1への充電電力を電池電圧Vbat1が上限電圧値VLを超えないように制限する一方で、充電部30からの供給電力から第1蓄電部4-1への充電電力を差し引いた残りの電力を用いて、第2蓄電部4-2の外部充電を並行して行なうことにより、蓄電部4-1,4-2を個別に充電する構成と比較して、外部充電の実行時間を短縮することが可能となる。 That is, referring to FIG. 4, in section a from time t0 to time t1, by selecting externally charged first power storage unit 4-1, the allowable discharge power total value can be rapidly increased. On the other hand, when the battery voltage Vbat1 reaches the upper limit voltage value VL (time t1), it is necessary to limit the charging power to the first power storage unit 4-1, from the viewpoint of protecting the power storage unit. Therefore, in the interval b from time t1 to time t2, the charging power to the first power storage unit 4-1 is limited so that the battery voltage Vbat1 does not exceed the upper limit voltage value VL, while being supplied from the charging unit 30. By performing external charging of the second power storage unit 4-2 in parallel using the remaining power obtained by subtracting the charging power for the first power storage unit 4-1 from the power, the power storage units 4-1, 4-2 It is possible to reduce the execution time of external charging as compared with a configuration in which the charging is individually performed.
 なお、以上に述べた効果は、特に、蓄電部4-1,4-2が低温である場合により顕著となって表われる。図7は、低温時での外部充電の実行中における蓄電部4-1,4-2の電池電圧およびSOCの時間的変化の一例を示す図である。 Note that the effects described above are particularly prominent when the power storage units 4-1 and 4-2 are at a low temperature. FIG. 7 is a diagram illustrating an example of temporal changes in battery voltage and SOC of power storage units 4-1 and 4-2 during execution of external charging at a low temperature.
 図7を参照して、低温時においては、第1蓄電部4-1の外部充電が行なわれる区間aは、図4における常温時の区間aと比較して相対的に短くなる。これは、電池電圧Vbatは、起電圧と内部抵抗における電圧降下分との和で表わされるところ、低温時には、常温時と比較して蓄電部の内部抵抗が高くなることによる。 Referring to FIG. 7, at a low temperature, section a where external charging of first power storage unit 4-1 is performed is relatively shorter than section a at normal temperature in FIG. This is because the battery voltage Vbat is expressed by the sum of the electromotive voltage and the voltage drop in the internal resistance, and the internal resistance of the power storage unit is higher at low temperatures than at normal temperatures.
 そして、この区間aが短縮されたことにより、第1蓄電部4-1のSOC1がSOC上限値SHに達するまでの区間bは、常温時と比較して相対的に長くなる。また、区間bでは、内部抵抗が高いことに起因して、電池電圧Vbat1を上限電圧値VL未満に抑えるために第1蓄電部4-1への充電電流Ibat1の制限が強化されるため、常温時よりもさらに増長される。 And since this section a is shortened, the section b until the SOC1 of the first power storage unit 4-1 reaches the SOC upper limit SH is relatively longer than that at room temperature. In section b, due to the high internal resistance, the limit on the charging current Ibat1 to the first power storage unit 4-1 is strengthened to keep the battery voltage Vbat1 below the upper limit voltage value VL. It is further increased than time.
 したがって、この区間bにおいて、充電部30から供給される電力から第1蓄電部4-1への充電電力を差し引いた残りの電力を用いて第2蓄電部4-2の外部充電を並行して行なうことによって、低温時における充電効率低下の影響を回避でき、第2蓄電部4-2の外部充電が行なわれる区間cおよび区間dを短縮することができる。 Therefore, in this section b, external charging of the second power storage unit 4-2 is performed in parallel using the remaining power obtained by subtracting the charging power for the first power storage unit 4-1 from the power supplied from the charging unit 30. By doing so, it is possible to avoid the influence of a decrease in charging efficiency at low temperatures, and it is possible to shorten the section c and the section d where the second power storage unit 4-2 is externally charged.
 また、万一、区間bの途中で運転者の操作によるイグニッションオン指令が与えられることにより車両100がシステム起動状態となった場合であっても、電源システム全体の放電能力が高いことから、車両100におけるEV走行での走行距離を伸ばすことができる。この結果、外部充電機能を有するハイブリッド車両の燃費向上および環境保護に対する寄与度を保つことができる。 In addition, even if the vehicle 100 is in a system activation state by being given an ignition-on command by the driver's operation in the middle of the section b, the vehicle has a high discharge capability in the entire power supply system. The traveling distance in EV traveling at 100 can be extended. As a result, the contribution of the hybrid vehicle having the external charging function to the improvement of fuel consumption and environmental protection can be maintained.
 図2および図3に示すこの発明の実施の形態と本願発明との対応関係については、制御装置2が「制御装置」に相当し、コンバータ制御部54が「充電制御部」に相当し、SOC1演算部50およびSOC2演算部52が「状態推定部」に相当する。 2 and FIG. 3, the control device 2 corresponds to the “control device”, the converter control unit 54 corresponds to the “charge control unit”, and the SOC 1 The calculation unit 50 and the SOC2 calculation unit 52 correspond to a “state estimation unit”.
 以上の処理は、図8に示すような処理フローにまとめることができる。
 (フローチャート)
 図8は、この発明の実施の形態に従う外部充電の処理手順を示すフローチャートである。なお、図8に示す各ステップの処理は、制御装置2(図1)が図2および図3に示す各制御ブロックとして機能することで実現される。
The above processing can be summarized in a processing flow as shown in FIG.
(flowchart)
FIG. 8 is a flowchart showing a processing procedure of external charging according to the embodiment of the present invention. Note that the processing of each step shown in FIG. 8 is realized by the control device 2 (FIG. 1) functioning as each control block shown in FIGS. 2 and 3.
 図8を参照して、まず、外部充電を実行するために、制御装置2は、車両100が停止状態(IGオフ状態)になったか否かを判断する(ステップS01)。車両100が停止状態(IGオフ状態)でない場合(ステップS01においてNO)、処理は最初に戻る。 Referring to FIG. 8, first, in order to execute external charging, control device 2 determines whether or not vehicle 100 is in a stopped state (IG off state) (step S01). If vehicle 100 is not in a stopped state (IG off state) (NO in step S01), the process returns to the beginning.
 これに対して、車両100が停止状態(IGオフ状態)になった場合(ステップS01においてYES)には、制御装置2は、コネクタ部350が車両100に連結されたか否かを判断する(ステップS02)。コネクタ部350が車両100に連結されていない場合(ステップS02においてNO)には、処理は最初に戻る。 On the other hand, when vehicle 100 is in a stopped state (IG off state) (YES in step S01), control device 2 determines whether connector unit 350 is connected to vehicle 100 (step S01). S02). If connector unit 350 is not connected to vehicle 100 (NO in step S02), the process returns to the beginning.
 これに対して、コネクタ部350が車両100に連結された場合(ステップS02においてYES)には、制御装置2は、記憶部66から読み出した外部充電の実行履歴に基づいて、最初に充電対象となる蓄電部を選択する(ステップS03)。なお、以下の処理手順においては、第1蓄電部4-1が充電対象に選択されたものと仮定する。 On the other hand, when connector unit 350 is connected to vehicle 100 (YES in step S02), control device 2 first selects the charging target based on the external charging execution history read from storage unit 66. Is selected (step S03). In the following processing procedure, it is assumed that the first power storage unit 4-1 is selected as a charging target.
 次に、制御装置2は、充電対象である第1蓄電部4-1の外部充電を開始する。このとき、制御装置2は、第1蓄電部4-1が充電部30からの充電電流(たとえば、所定値I1)で充電されるようにコンバータ6-1,6-2を制御する(ステップS04)。 Next, the control device 2 starts external charging of the first power storage unit 4-1 to be charged. At this time, control device 2 controls converters 6-1 and 6-2 such that first power storage unit 4-1 is charged with a charging current (for example, predetermined value I1) from charging unit 30 (step S04). ).
 さらに、制御装置2は、電圧センサ12-1により検出された電池電圧Vbat1が上限電圧値VL以上であるか否かを判断する(ステップS05)。電池電圧Vbat1が上限電圧値VLを下回る場合(ステップS05にてNO)には、処理はステップS04に戻される。 Further, the control device 2 determines whether or not the battery voltage Vbat1 detected by the voltage sensor 12-1 is equal to or higher than the upper limit voltage value VL (step S05). If battery voltage Vbat1 is lower than upper limit voltage value VL (NO in step S05), the process returns to step S04.
 これに対して、電池電圧Vbat1が上限電圧値VL以上である場合(ステップS05にてYES)には、制御装置2は、さらに第1蓄電部4-1のSOC1がSOC上限値SH以上であるか否かを判断する(ステップS06)。 In contrast, when battery voltage Vbat1 is equal to or higher than upper limit voltage value VL (YES in step S05), control device 2 further determines that SOC1 of first power storage unit 4-1 is equal to or higher than SOC upper limit value SH. Whether or not (step S06).
 SOC1がSOC上限値SHを下回る場合(ステップS06においてNO)には、制御装置2は、第1蓄電部4-1が充電部30からの充電電流(たとえば、所定値I2)で充電され(ステップS07)、かつ、第2蓄電部4-2が充電電流(たとえば、所定値I3)で充電されるように(ステップS08)、コンバータ6-1,6-2を制御する。これにより、第1蓄電部4-1および第2蓄電部4-2の外部充電が並行して行なわれる。そして、処理はステップS05に戻される。 When SOC1 falls below SOC upper limit value SH (NO in step S06), control device 2 charges first power storage unit 4-1 with a charging current (for example, predetermined value I2) from charging unit 30 (step S16). S07), and converters 6-1 and 6-2 are controlled such that second power storage unit 4-2 is charged with a charging current (for example, predetermined value I3) (step S08). Thus, external charging of first power storage unit 4-1 and second power storage unit 4-2 is performed in parallel. Then, the process returns to step S05.
 これに対して、SOC1がSOC上限値SH以上となる場合(ステップS06においてYES)には、制御装置2は、第1蓄電部4-1の充電電流Ibat1=0とすることにより、第1蓄電部4-1の外部充電を完了する(ステップS09)。さらに、制御装置2は、第2蓄電部4-2が充電部30からの充電電流(たとえば、所定値I1)で充電されるようにコンバータ6-1,6-2を制御する(ステップS10)。 On the other hand, when SOC1 is equal to or higher than SOC upper limit SH (YES in step S06), control device 2 sets first charging power by setting charging current Ibat1 = 0 of first power storage unit 4-1. External charging of unit 4-1 is completed (step S09). Furthermore, control device 2 controls converters 6-1 and 6-2 such that second power storage unit 4-2 is charged with a charging current (for example, predetermined value I1) from charging unit 30 (step S10). .
 そして、制御装置2は、電圧センサ12-2により検出された電池電圧Vbat2が上限電圧値VL以上であるか否かを判断する(ステップS11)。電池電圧Vbat2が上限電圧値VLを下回る場合(ステップS11にてNO)には、処理はステップS09に戻される。 Then, the control device 2 determines whether or not the battery voltage Vbat2 detected by the voltage sensor 12-2 is equal to or higher than the upper limit voltage value VL (step S11). If battery voltage Vbat2 is lower than upper limit voltage value VL (NO in step S11), the process returns to step S09.
 これに対して、電池電圧Vbat2が上限電圧値VL以上である場合(ステップS11にてYES)には、制御装置2は、さらに第2蓄電部4-2のSOC2がSOC上限値SH以上であるか否かを判断する(ステップS12)。SOC2がSOC上限値SHを下回る場合(ステップS12においてNO)には、制御装置2は、第2蓄電部4-2が充電電流I2で充電されるようにコンバータ6-1,6-2を制御し(ステップS13)、処理はステップS11に戻される。 In contrast, when battery voltage Vbat2 is equal to or higher than upper limit voltage value VL (YES in step S11), controller 2 further determines that SOC2 of second power storage unit 4-2 is equal to or higher than SOC upper limit value SH. Whether or not (step S12). When SOC2 falls below SOC upper limit SH (NO in step S12), control device 2 controls converters 6-1 and 6-2 such that second power storage unit 4-2 is charged with charging current I2. (Step S13), and the process returns to Step S11.
 これに対して、SOC2がSOC上限値SH以上となる場合(ステップS12においてYES)には、制御装置2は、第2蓄電部4-2の外部充電を完了することにより、全ての蓄電部に対する外部充電が完了すると(ステップS14)、外部充電に係る処理は終了する。 On the other hand, when SOC2 is equal to or higher than SOC upper limit SH (YES in step S12), control device 2 completes external charging of second power storage unit 4-2, and thereby controls all power storage units. When the external charging is completed (step S14), the processing related to the external charging ends.
 なお、上述の説明においては、複数の蓄電部を備える車両の代表例として、2個の蓄電部4-1,4-2を備える車両100について例示したが、本願発明は、3個以上の蓄電部を備える車両についても適用できることは自明である。この場合において、第3蓄電部の外部充電は、図4に示す区間dにおいて開始されることとなる。 In the above description, the vehicle 100 including the two power storage units 4-1 and 4-2 is illustrated as a representative example of the vehicle including a plurality of power storage units. It is obvious that the present invention can be applied to a vehicle having a section. In this case, external charging of the third power storage unit is started in section d shown in FIG.
 以上のように、この発明の実施の形態によれば、外部電源により充電可能な状態となったときに、複数の蓄電部から選択した1個の蓄電部に対する外部充電を開始するとともに、該蓄電部の電池電圧が所定の上限電圧値に到達すると、該蓄電部と残余の蓄電部から選択した1個の蓄電部とに対する外部充電を並行して行なう。そのため、たとえ複数の蓄電部が低温状態であっても、電源システム全体の許容放電電力を迅速に増大させることができる。 As described above, according to the embodiment of the present invention, when charging is possible with an external power supply, external charging to one power storage unit selected from a plurality of power storage units is started, and the power storage When the battery voltage of the unit reaches a predetermined upper limit voltage value, external charging is performed in parallel to the power storage unit and one power storage unit selected from the remaining power storage units. Therefore, even if a plurality of power storage units are in a low temperature state, the allowable discharge power of the entire power supply system can be quickly increased.
 また、各蓄電部の電池電圧が上限電圧値を超えるのを抑制しながら2個の蓄電部の外部充電を並行に行なうことにより、低温時において各蓄電部の充電効率が低下している場合であっても、全ての蓄電部に対する外部充電の実行時間を短縮することができる。 In addition, by charging the two power storage units in parallel while suppressing the battery voltage of each power storage unit from exceeding the upper limit voltage value, the charging efficiency of each power storage unit is reduced at low temperatures. Even if it exists, the execution time of the external charge with respect to all the electrical storage parts can be shortened.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 この発明は、充放電可能な複数の蓄電部を搭載した電源システムおよびそれを備えるハイブリッド車両に適用することができる。 The present invention can be applied to a power supply system including a plurality of chargeable / dischargeable power storage units and a hybrid vehicle including the power supply system.

Claims (9)

  1.  充放電可能な複数の蓄電部(4-1,4-2)と、
     前記複数の蓄電部(4-1,4-2)にそれぞれ対応付けられた複数の電圧変換部(6-1,6-2)と、
     前記複数の電圧変換部(6-1,6-2)が互いに並列接続された電力線対(MPL,MNL)と、
     外部電源からの電力を受けて前記複数の蓄電部(4-1,4-2)を外部充電するための充電部(30)と、
     前記複数の蓄電部(4-1,4-2)の各々についての電圧値を検出する電圧検出部(12-1,12-2)と、
     前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときに、前記複数の蓄電部(4-1,4-2)が前記充電部からの充電電力で充電されるように前記複数の電圧変換部(6-1,6-2)を制御する制御装置(2)とを備え、
     前記制御装置(2)は、前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記複数の蓄電部(4-1,4-2)のうちの第1の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御し、かつ、前記第1の蓄電部の電圧値が所定の上限電圧値に達したときには、前記第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が前記充電部からの充電電力で充電されるように対応の電圧変換部を制御する充電制御部(54)を含む、電源システム。
    A plurality of chargeable / dischargeable power storage units (4-1, 4-2);
    A plurality of voltage conversion units (6-1, 6-2) respectively associated with the plurality of power storage units (4-1, 4-2);
    A pair of power lines (MPL, MNL) in which the plurality of voltage converters (6-1, 6-2) are connected in parallel;
    A charging unit (30) for externally charging the plurality of power storage units (4-1, 4-2) by receiving power from an external power source;
    Voltage detectors (12-1, 12-2) for detecting a voltage value for each of the plurality of power storage units (4-1, 4-2);
    When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the plurality of power storage units (4-1, 4-2) are charged by the charging unit. A control device (2) for controlling the plurality of voltage converters (6-1, 6-2) so that the battery is charged with
    When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the control device (2) includes a plurality of power storage units (4-1, 4-2). The corresponding voltage conversion unit is controlled so that the first power storage unit is charged with the charging power from the charging unit (30), and the voltage value of the first power storage unit is a predetermined upper limit voltage value. A charge control unit that controls the corresponding voltage conversion unit so that the second power storage unit of the first power storage unit and the remaining power storage unit is charged with the charging power from the charging unit ( 54).
  2.  前記充電制御部(54)は、前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記第1の蓄電部が前記充電部(30)からの第1の充電電力で充電されるように対応の電圧変換部を制御し、かつ、前記第1の蓄電部の電圧値が前記所定の上限電圧値に達したときには、前記第1の蓄電部の電圧値が前記所定の上限電圧値を超えないように、前記第1の充電電力よりも小さい第2の充電電力で前記第1の蓄電部を充電するとともに、前記第1の充電電力から前記第2の充電電力を差し引いた充電電力で前記第2の蓄電部を充電するように対応の電圧変換部を制御する、請求の範囲第1項に記載の電源システム。 When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the charge control unit (54) moves the first power storage unit from the charging unit (30). When the corresponding voltage conversion unit is controlled to be charged with the first charging power and the voltage value of the first power storage unit reaches the predetermined upper limit voltage value, the first power storage unit The first power storage unit is charged with a second charging power smaller than the first charging power so that the voltage value of the first charging power does not exceed the predetermined upper limit voltage value, and from the first charging power, the 2. The power supply system according to claim 1, wherein the corresponding voltage conversion unit is controlled to charge the second power storage unit with the charging power obtained by subtracting the second charging power.
  3.  前記制御装置(2)は、前記複数の蓄電部(4-1,4-2)の各々についての充電状態値を推定する状態推定部(50,52)をさらに含み、
     前記充電制御部(50,52)は、前記第1の蓄電部の充電状態値が所定の上限値に達したときには、前記第2の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御する、請求の範囲第2項に記載の電源システム。
    The control device (2) further includes a state estimation unit (50, 52) for estimating a charge state value for each of the plurality of power storage units (4-1, 4-2),
    When the charge state value of the first power storage unit reaches a predetermined upper limit value, the charge control unit (50, 52) charges the second power storage unit with the charging power from the charging unit (30). The power supply system according to claim 2, wherein the corresponding voltage converter is controlled as described above.
  4.  前記充電制御部(54)は、前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記複数の蓄電部(4-1,4-2)のうち、前回の前記複数の蓄電部(4-1,4-2)に対する外部充電において前記第1の蓄電部に選択された蓄電部とは異なる蓄電部を、前記第1の蓄電部に選択する蓄電部切替部(60)を含む、請求の範囲第1項に記載の電源システム。 When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the charge control unit (54) is configured to store the plurality of power storage units (4-1, 4-2). Among them, a power storage unit that is different from the power storage unit selected as the first power storage unit in the previous external charging for the plurality of power storage units (4-1, 4-2) is selected as the first power storage unit. The power supply system according to claim 1, further comprising a power storage unit switching unit (60).
  5.  ハイブリッド車両(100)であって、
     燃料の燃料により作動する内燃機関(18)と、
     前記内燃機関(18)の作動により生じる動力を受けて発電可能な発電部(MG1)と、
     前記発電部(MG1)からの電力により充電される複数の蓄電部(4-1,4-2)と、
     前記発電部(MG1)および前記複数の蓄電部(4-1,4-2)の少なくとも一方からの電力により駆動力を発生する電動機(MG2)と、
     前記電動機(MG2)と前記複数の蓄電部との間で電力を授受可能に構成された電力線対(MPL,MNL)と、
     前記複数の蓄電部(4-1,4-2)と前記電力線対(MPL,MNL)との間にそれぞれ設けられ、各々が対応の蓄電部と前記電力線対(MPL,MNL)との間で電圧変換動作を行なう複数の電圧変換部(6-1,6-2)と、
     外部電源と電気的に接続され、外部電源からの電力を受けて前記複数の蓄電部(4-1,4-2)を外部充電するための充電部(30)と、
     前記複数の蓄電部(4-1,4-2)の各々についての電圧値を検出する電圧検出部(12-1,12-2)と、
     前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときに、前記複数の蓄電部(4-1,4-2)が前記充電部(30)からの充電電力で充電されるように前記複数の電圧変換部(6-1,6-2)を制御する制御装置(2)とを備え、
     前記制御装置(2)は、前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記複数の蓄電部(4-1,4-2)のうちの第1の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御し、かつ、前記第1の蓄電部の電圧値が所定の上限電圧値に達したときには、前記第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御する充電制御部(54)を含む、ハイブリッド車両。
    A hybrid vehicle (100),
    An internal combustion engine (18) operated by fuel of fuel;
    A power generation unit (MG1) capable of receiving power generated by the operation of the internal combustion engine (18) and generating power;
    A plurality of power storage units (4-1, 4-2) to be charged by power from the power generation unit (MG1);
    An electric motor (MG2) that generates a driving force by electric power from at least one of the power generation unit (MG1) and the plurality of power storage units (4-1, 4-2);
    A pair of power lines (MPL, MNL) configured to be able to exchange power between the electric motor (MG2) and the plurality of power storage units;
    Provided between the plurality of power storage units (4-1, 4-2) and the power line pair (MPL, MNL), respectively, and between each corresponding power storage unit and the power line pair (MPL, MNL) A plurality of voltage conversion units (6-1, 6-2) for performing a voltage conversion operation;
    A charging unit (30) that is electrically connected to an external power source and receives electric power from the external power source to externally charge the plurality of power storage units (4-1, 4-2);
    Voltage detectors (12-1, 12-2) for detecting a voltage value for each of the plurality of power storage units (4-1, 4-2);
    When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the plurality of power storage units (4-1, 4-2) are removed from the charging unit (30). A control device (2) for controlling the plurality of voltage converters (6-1, 6-2) so that the battery is charged with the charging power of
    When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the control device (2) includes a plurality of power storage units (4-1, 4-2). The corresponding voltage conversion unit is controlled so that the first power storage unit is charged with the charging power from the charging unit (30), and the voltage value of the first power storage unit is a predetermined upper limit voltage value. When the first power storage unit and the remaining power storage unit reach the second power storage unit is charged with the charging power from the charging unit (30), the charging for controlling the corresponding voltage conversion unit A hybrid vehicle including a control unit (54).
  6.  充放電可能な複数の蓄電部(4-1,4-2)を備える電源システムの充電制御方法であって、
     前記電源システムは、
     前記複数の蓄電部(4-1,4-2)にそれぞれ対応付けられた複数の電圧変換部(6-1,6-2)と、
     前記複数の電圧変換部(6-1,6-2)が互いに並列接続された電力線対(MPL,MNL)と、
     外部電源からの電力を受けて前記複数の蓄電部(4-1,4-2)を外部充電するための充電部(30)とを含み、
     前記充電制御方法は、
     前記複数の蓄電部(4-1,4-2)の各々についての電圧値を検出するステップと、
     前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記複数の蓄電部(4-1,4-2)のうちの第1の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御するとともに、前記第1の蓄電部の電圧値が所定の上限電圧値に達したときには、前記第1の蓄電部および残余の蓄電部のうちの第2の蓄電部が前記充電部(30)からの充電電流で充電されるように対応の電圧変換部を制御するステップとを備える、充電制御方法。
    A charging control method for a power supply system including a plurality of chargeable / dischargeable power storage units (4-1, 4-2),
    The power supply system includes:
    A plurality of voltage conversion units (6-1, 6-2) respectively associated with the plurality of power storage units (4-1, 4-2);
    A pair of power lines (MPL, MNL) in which the plurality of voltage converters (6-1, 6-2) are connected in parallel;
    A charging unit (30) for externally charging the power storage units (4-1, 4-2) by receiving power from an external power source,
    The charge control method includes:
    Detecting a voltage value for each of the plurality of power storage units (4-1, 4-2);
    When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the first power storage unit among the plurality of power storage units (4-1, 4-2) The corresponding voltage conversion unit is controlled to be charged with the charging power from the charging unit (30), and when the voltage value of the first power storage unit reaches a predetermined upper limit voltage value, And a step of controlling the corresponding voltage converter so that the second power storage unit among the power storage unit and the remaining power storage unit is charged with the charging current from the charging unit (30).
  7.  前記電圧変換部を制御するステップは、前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記第1の蓄電部が第1の充電電力で充電されるように対応の電圧変換部を制御し、かつ、前記第1の蓄電部の電圧値が前記所定の上限電圧値に達したときには、前記第1の蓄電部の電圧値が前記所定の上限電圧値を超えないように、前記第1の充電電力よりも小さい第2の充電電力で前記第1の蓄電部を充電するとともに、前記第1の充電電力から前記第2の充電電力を差し引いた充電電力で前記第2の蓄電部を充電するように対応の電圧変換部を制御する、請求の範囲第6項に記載の充電制御方法。 The step of controlling the voltage conversion unit includes: when the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the first power storage unit uses the first charging power. When the corresponding voltage conversion unit is controlled to be charged and the voltage value of the first power storage unit reaches the predetermined upper limit voltage value, the voltage value of the first power storage unit is The first power storage unit is charged with a second charging power smaller than the first charging power so as not to exceed an upper limit voltage value, and the second charging power is subtracted from the first charging power. The charge control method according to claim 6, wherein the corresponding voltage converter is controlled so as to charge the second power storage unit with the charged power.
  8.  前記複数の蓄電部(4-1,4-2)の各々についての充電状態値を推定するステップをさらに備え、
     前記電圧変換部を制御するステップは、前記第1の蓄電部の充電状態値が所定の上限値に達したときには、前記第2の蓄電部が前記充電部(30)からの充電電力で充電されるように対応の電圧変換部を制御する、請求の範囲第7項に記載の充電制御方法。
    Further comprising estimating a state of charge value for each of the plurality of power storage units (4-1, 4-2),
    The step of controlling the voltage conversion unit is configured such that when the charge state value of the first power storage unit reaches a predetermined upper limit value, the second power storage unit is charged with the charging power from the charging unit (30). The charge control method according to claim 7, wherein the corresponding voltage conversion unit is controlled so as to achieve this.
  9.  前記複数の蓄電部(4-1,4-2)が外部電源により充電可能な状態にされたときには、前記複数の蓄電部(4-1,4-2)のうち、前回の前記複数の蓄電部(4-1,4-2)に対する外部充電において前記第1の蓄電部に選択された蓄電部とは異なる蓄電部を、前記第1の蓄電部に選択するステップをさらに備える、請求の範囲第6項に記載の充電制御方法。 When the plurality of power storage units (4-1, 4-2) can be charged by an external power source, the previous plurality of power storage units among the plurality of power storage units (4-1, 4-2). The method further comprises the step of selecting, as the first power storage unit, a power storage unit different from the power storage unit selected as the first power storage unit in external charging of the unit (4-1, 4-2). The charge control method according to item 6.
PCT/JP2008/071522 2008-11-27 2008-11-27 Power source system, hybrid vehicle, and method for controlling charging of power source system WO2010061449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071522 WO2010061449A1 (en) 2008-11-27 2008-11-27 Power source system, hybrid vehicle, and method for controlling charging of power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/071522 WO2010061449A1 (en) 2008-11-27 2008-11-27 Power source system, hybrid vehicle, and method for controlling charging of power source system

Publications (1)

Publication Number Publication Date
WO2010061449A1 true WO2010061449A1 (en) 2010-06-03

Family

ID=42225342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/071522 WO2010061449A1 (en) 2008-11-27 2008-11-27 Power source system, hybrid vehicle, and method for controlling charging of power source system

Country Status (1)

Country Link
WO (1) WO2010061449A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004846A1 (en) * 2010-07-05 2012-01-12 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
WO2015097527A1 (en) * 2013-12-25 2015-07-02 Toyota Jidosha Kabushiki Kaisha Power supply system with multiple batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322522A (en) * 1994-05-23 1995-12-08 Brother Ind Ltd Charging apparatus
JPH08308123A (en) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd Method for charging a plurality of lithium ion batteries
JP2004289973A (en) * 2003-03-24 2004-10-14 Toshiba Tec Corp Electrical device
JP2006115571A (en) * 2004-10-13 2006-04-27 Shin Kobe Electric Mach Co Ltd Method of charging lithium ion battery for electric-motor car
JP2008167620A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Vehicle power supply device and the vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322522A (en) * 1994-05-23 1995-12-08 Brother Ind Ltd Charging apparatus
JPH08308123A (en) * 1995-04-28 1996-11-22 Sanyo Electric Co Ltd Method for charging a plurality of lithium ion batteries
JP2004289973A (en) * 2003-03-24 2004-10-14 Toshiba Tec Corp Electrical device
JP2006115571A (en) * 2004-10-13 2006-04-27 Shin Kobe Electric Mach Co Ltd Method of charging lithium ion battery for electric-motor car
JP2008167620A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Vehicle power supply device and the vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012004846A1 (en) * 2010-07-05 2012-01-12 トヨタ自動車株式会社 Control device for vehicle and control method for vehicle
JP5413507B2 (en) * 2010-07-05 2014-02-12 トヨタ自動車株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
WO2015097527A1 (en) * 2013-12-25 2015-07-02 Toyota Jidosha Kabushiki Kaisha Power supply system with multiple batteries
CN105848960A (en) * 2013-12-25 2016-08-10 丰田自动车株式会社 Power supply system with multiple batteries
CN105848960B (en) * 2013-12-25 2018-06-12 丰田自动车株式会社 Power-supply system

Similar Documents

Publication Publication Date Title
JP4715881B2 (en) Power supply system and vehicle equipped with the same
JP4798087B2 (en) Electric power system and vehicle equipped with the same
JP5036416B2 (en) Power supply system, vehicle equipped with the same, and charge / discharge control method
JP5267740B1 (en) Vehicle power system
JP4900535B2 (en) Vehicle power conversion device and vehicle equipped with the same
JP4525809B2 (en) Power supply system, vehicle equipped with the same, and control method of power supply system
EP2937242B1 (en) Charging control device using in-vehicle solar cell
US8473136B2 (en) Power supply system for electrically powered vehicle and method for controlling the same
JP4144646B1 (en) Electric vehicle, vehicle charging device, and vehicle charging system
EP2404801B1 (en) Charge/discharge control system for hybrid vehicle, and control method therefor
CN101779356B (en) Power source system, vehicle having the system, and control method for the power source system
US8538616B2 (en) Power supply system for electrically powered vehicle, electrically powered vehicle, and method for controlling the same
RU2480348C2 (en) Hybrid transport facility
EP2823987B1 (en) Electric-powered vehicle and method for controlling same
JP2007295701A (en) Power supply system and vehicle
CN101743679A (en) Vehicle
JP2010004667A (en) Power supply system
JP5783129B2 (en) Electric vehicle
JP2008312382A (en) Power system, vehicle equipped with same, control method of power system, and computer-readable recording medium recording program for making computer perform control method
JP2022141339A (en) Electric vehicle and charging control method for electric vehicle
JP2008306821A (en) Power supply system, vehicle equipped with the same, control method of power supply system, and computer-readable recording medium with program for making computer implement the control method
WO2010061449A1 (en) Power source system, hybrid vehicle, and method for controlling charging of power source system
JP2010166760A (en) Power supply system
JP6492001B2 (en) DRIVE DEVICE, TRANSPORTATION DEVICE, AND CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878406

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP