WO2010060867A1 - Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine - Google Patents

Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine Download PDF

Info

Publication number
WO2010060867A1
WO2010060867A1 PCT/EP2009/065543 EP2009065543W WO2010060867A1 WO 2010060867 A1 WO2010060867 A1 WO 2010060867A1 EP 2009065543 W EP2009065543 W EP 2009065543W WO 2010060867 A1 WO2010060867 A1 WO 2010060867A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
shroud segments
blades
contact surfaces
locking surfaces
Prior art date
Application number
PCT/EP2009/065543
Other languages
English (en)
French (fr)
Inventor
Igor Tsypkaikine
Andre Saxer
Original Assignee
Alstom Technology Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd. filed Critical Alstom Technology Ltd.
Priority to EP09760513A priority Critical patent/EP2350440B1/de
Publication of WO2010060867A1 publication Critical patent/WO2010060867A1/de
Priority to US13/117,166 priority patent/US20110293428A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/18Two-dimensional patterned
    • F05D2250/183Two-dimensional patterned zigzag

Definitions

  • the present invention relates to the field of gas turbines. It relates to a method for optimizing the contact surfaces between the
  • the blades of gas turbines are exposed in operation strong centrifugal forces, high temperatures and high pressures. This load causes the blades to deform, which can be composed of expansion, tilting and twisting.
  • the change in the blade geometry can be significant, especially with long blades. In particular, it has an effect on blades which are each equipped with a shroud segment at the blade tip.
  • the shroud segments of adjacent blades of a row of blades engage with each other or abut each other and form an annular shroud that surrounds the outside of the hot gas channel of the gas turbine and seals to the outside.
  • the shroud segments should on the one hand connect as close to each other as possible, so that no hot gas from the hot gas channel can penetrate into the usually cooled cavity formed outside the shroud.
  • it must be prevented that the shroud segments due to operational deformations of the blade at narrow contact surfaces build up large compressive stresses, which leads to a plastic deformation and / or flow of the blade material and / or to a welding of the blades can lead yourself.
  • the life of the blades is significantly reduced or obstructed the removal of the blades for maintenance purposes.
  • Shroud segment itself, but are compared with other deformations of the blade such. a twist around the longitudinal axis largely ineffective.
  • the invention aims to remedy this situation. It is therefore an object of the invention to provide a method for producing a gas turbine blade, through which the contact surfaces between the locking surfaces of the adjoining shroud segments of adjacent blades of a
  • Blade row can be optimized so that tightly limited contact surfaces with high compressive stresses safely avoided without giving up the necessary tightness between the adjacent shroud segments.
  • Essential for the method according to the invention are the following steps: a) Providing a 3D model of the individual blade (10, 10 '); b) a calculation of the geometry of the individual blade (10, 10 ') on the basis of the provided 3D model taking into account the centrifugal forces, temperature loads, pressure loads, the blade occurring during operation; c) An optimized embodiment of the contact surfaces of the adjoining shroud segments (14) of adjacent blades (10, 10 ') in the loaded state of the operating blades (10, 10') with respect to functionally serving locking surfaces (F2, F2 ') and on both sides of the locking surfaces arranged functionally serving wedge surfaces (F 1, FV, F3, F3') and d) Determining the necessary geometry of the
  • the calculation based on b) may also be dependent on additional parameters with respect to the parameters focussed here, for example on the particular material used for the blade, on the particular production method of the blade, on the respective further finishing processes to which the blade is subjected , In such cases, the corresponding parameters for calculating the geometry are included.
  • the invention is based on the recognition that it is not sufficient to equip the shroud segments in the unloaded state with mutually parallel locking surfaces in order to obtain a large-area contact between the adjacent shroud segments in the loaded state. Rather, the deformation of the blade due to the operational stresses must be included in the design of the (unloaded) blade, that only with the deformation of an approximate parallelization of the locking surfaces is achieved, the same time a sufficient tightness and a large distribution of any compressive stresses between the segments guaranteed.
  • the deformation behavior of the respective blade is calculated on the basis of a 3D model of the blade, so that it can be predicted mathematically, which configuration (geometry) of the shroud segments in the unloaded condition of the blade to the desired configuration (geometry) of the shroud segments in the loaded state Shovel leads. If this (optimized) output configuration (with possibly non-parallel locking surfaces) is determined from the model calculation, it can be used in the model calculation Manufacture of the blade, eg in the formation of the mold, are taken into account.
  • the current shape of the locking surfaces depends significantly on the deformation behavior of the respective blade, which is among other things determined by the wall thicknesses, the blade length, the shape of the airfoil and the location of the respective blade in conjunction with the adjacent blades.
  • the contact surfaces between the locking surfaces of the adjoining shroud segments of adjacent blades in the loaded state of the blade are optimized in such a way that an increase in the contact pressure is avoided by heating the blade to operating temperature.
  • FIG. 1 is a side view of a (long) blade of a gas turbine with shroud segment on the blade tip, as to
  • Fig. 2 in plan view from above in the direction of the blade longitudinal axis two adjacent blades of the type shown in Fig. 1 with the interlocking locking surfaces of their shroud segments;
  • Shroud segments according to an embodiment of the invention.
  • a (relatively long) blade is shown in a side view, as it is suitable for the application of the invention.
  • the blade 10 extends in its longitudinal direction (radial direction within the gas turbine) along a longitudinal axis 15 and comprises a blade root 11 for attachment of the blade to the rotor, a platform 12, which forms the inner boundary of the hot gas channel, an airfoil 13 and an on the Vane tip arranged shroud segment 14.
  • the shroud segment 14 In the plan view in the radial direction (in the direction of the longitudinal axis 15) has the shroud segment 14, for example, the edge contour shown in Fig. 2.
  • the shroud segment 14 of FIG. 2 In the circumferential direction (y-direction in Fig. 2), the shroud segment 14 of FIG. 2 by zigzag arranged wedge surfaces F1 and F3 or FV and F3 ', and interposed locking surfaces F2 and F2' limited. If two adjacent blades 10 and 10 'in the direction of the arrows in Fig. 2 (y-direction) resp.
  • the two shroud segments 14 mesh with the locking surfaces F2 and F2 ', the opposing wedge surfaces F1, FV and F3, F3' disposed on both sides of the locking surfaces F2, F2 'providing a stabilizing guiding function take.
  • the locking surfaces F2, F2 'in the manufacture of the blades 10, 10' were previously aligned in pairs parallel to each other. If the blades 10, 10 'then twist in use, for example, about the longitudinal axis 15 in the direction of the rotary arrows shown in FIG.
  • the locking surfaces F2, F2' are no longer in pairs in parallel, but strongly localized contact areas with high compressive stresses occur the shroud segments 14 abut each other, this can sometimes also lead to plastic deformation in operation, which also does not exclude that then comes to local welds.
  • the blade is now described by a 3D model which allows a calculation of the geometry changed under load (steps A and B in FIG. 4).
  • the connection surfaces can now be chosen such that the undesired strongly localized contact areas between the adjacent shroud segments are avoided without impairing the tightness between the shroud segments too much (step C in FIG. 4). If the shroud segments 14 are configured accordingly in the loaded state, it is possible to deduce the corresponding configuration in the unloaded state on the basis of the 3D model (step D in FIG. 4). This corresponding configuration is then used to manufacture the blade 10 or 10 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Optimierung der Kontaktflächen von aneinander anstossenden Deckbandsegmenten (14) benachbarter Schaufeln (10, 10') einer Laufschaufelreihe einer Gasturbine. Diese Optimierung wird durch eine Reihe von Schritten erreicht, nämlich: Zu Beginn wird ein 3D-Modell der einzelnen Schaufel (10, 10') bereitgestellt. Danach wird eine Berechnung der Geometrie der einzelnen Schaufel (10, 10') vorgenommen, auf der Grundlage des bereitgestellten 3D-Modells unter Berücksichtigung mindestens der im Betrieb auftretenden Zentrifugal-, und/oder Temperatur- und/oder Druckbelastungen der Schaufel. Sodann erfolgt eine Optimierung der Kontaktflächen der aneinander anstossenden Deckbandsegmente (14) benachbarter Schaufeln (10, 10') im belasteten Zustand der Schaufel (10, 10'), dies betreffend jene Kontaktflächen, welche funktional als Verriegelungsflächen (F2, F2') dienen, und betreffend jene Kontaktflächen, welche beidseitig der Verriegelungsflächen angeordnet sind und funktional als Keilflächen (F 1, F1'; F3, F3') dienen. Schliesslich wird die dafür notwendige Geometrie der Verriegelungsflächen (F2, F2') und der Keilflächen (F1, F1'; F3, F3') im unbelasteten Zustand der Schaufel (10, 10') bestimmt.

Description

Verfahren zur Optimierung der Kontaktflächen von aneinander anstossenden
Deckbandsegmenten benachbarter Schaufeln einer Gasturbine
Technisches Gebiet
Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinen. Sie betrifft ein Verfahren zur Optimierung der Kontaktflächen zwischen den
Verriegelungsflächen der aneinander anstossenden Deckbandsegmente benachbarter Schaufeln einer Laufschaufelreihe einer Gasturbine.
Stand der Technik
Die Laufschaufeln von Gasturbinen sind im Betrieb starken Zentrifugalkräften, hohen Temperaturen und hohen Drücken ausgesetzt. Diese Belastung führt bei den Schaufeln zu einer Verformung, die sich aus einer Ausdehnung, Verkippung und Verwindung zusammensetzen kann. Die Veränderung der Schaufelgeometrie kann besonders bei langen Schaufeln erheblich sein. Sie hat vor allem Auswirkungen bei Laufschaufeln, die an der Schaufelspitze jeweils mit einem Deckbandsegment ausgestattet sind. Die Deckbandsegmente benachbarter Schaufeln einer Schaufelreihe greifen ineinander bzw. stossen aneinander an und bilden ein ringförmiges Deckband, dass den Heissgaskanal der Gasturbine aussen umschliesst und nach aussen hin abdichtet.
Die Deckbandsegmente sollen einerseits möglichst dicht aneinander anschliessen, damit kein Heissgas aus dem Heissgaskanal in den ausserhalb des Deckbandes gebildeten, meist gekühlten Hohlraum eindringen kann. Andererseits muss verhindert werden, dass die Deckbandsegmente aufgrund betriebsbedingter Verformungen der Schaufel an eng begrenzten Kontaktflächen grosse Druckspannungen aufbauen, die zu einer plastischen Verformung und/oder zum Fliessen des Schaufelmaterials und/oder zu einem Verschweissen der Schaufeln selbst führen können. Hierdurch wird die Lebensdauer der Schaufeln erheblich verringert bzw. der Ausbau der Schaufeln zu Wartungszwecken behindert.
In der Druckschrift EP-A1-1 591 625 ist auf das Problem der betriebsbedingten Schaufelverformung bereits hingewiesen worden. Um die Verformung im Bereich der Deckbandsegmente zu verringern, wurde dort vorgeschlagen, die Deckbandsegmente durch an den Seiten vorgesehene Schienen zu verstärken und zu versteifen.
Derartige Verstärkungen begrenzen zwar wirksam die Verformung im
Deckbandsegment selbst, sind jedoch gegenüber anderen Verformungen der Schaufel wie z.B. einer Verwindung um die Längsachse weitgehend wirkungslos.
Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Es ist daher Aufgabe der Erfindung, ein Verfahren zum Herstellen einer Gasturbinen-Laufschaufel anzugeben, durch welches die Kontaktflächen zwischen den Verriegelungsflächen der aneinander anstossenden Deckbandsegmente benachbarter Schaufeln einer
Laufschaufelreihe dahingehend optimiert werden können, dass eng begrenzte Kontaktflächen mit hohen Druckspannungen sicher vermieden werden, ohne die notwendige Dichtigkeit zwischen den benachbarten Deckbandsegmenten aufzugeben.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Wesentlich für das erfindungsgemässe Verfahren sind die folgenden Schritte: a) Ein Bereitstellen eines 3D-Modells der einzelnen Schaufel (10, 10'); b) Eine Berechnung der Geometrie der einzelnen Schaufel (10, 10') auf der Grundlage des bereitgestellten 3D-Modells unter Berücksichtigung der im Betrieb auftretenden Zentrifugalkräfte, Temperaturbelastungen, Druckbelastungen, der Schaufel; c) Eine optimierte Ausführung der Kontaktflächen der aneinander anstossenden Deckbandsegmente (14) benachbarter Schaufeln (10, 10') im belasteten Zustand der auf Betriebstemperatur gehenden Schaufeln (10, 10') betreffend funktional dienende Verriegelungsflächen (F2, F2') und betreffend beidseitig der Verriegelungsflächen angeordnete funktional dienende Keilflächen (F 1 , FV; F3, F3') und d) Ein Bestimmen der dafür notwendigen Geometrie der
Verriegelungsflächen (F2, F2') und der Keilflächen (F 1 , FV; F3, F3') im unbelasteten Zustand der Schaufel (10, 10').
Die unter b) zugrunde gelegte Berechnung kann von Fall zu Fall auch von zusätzlichen Parametern gegenüber den hier fokussierten Parameter abhängig sein, beispielsweise vom jeweiligen eingesetzten Material der Schaufel, von der jeweiligen Herstellungsart der Schaufel, von den jeweiligen weiteren Veredelungsprozessen, welchen die Schaufel unterzogen wird. In solchen Fällen werden die entsprechenden Parameter zur Berechung der Geometrie miteinbezogen.
Die Erfindung geht von der Erkenntnis aus, dass es nicht ausreicht, die Deckbandsegmente im unbelasteten Zustand mit zueinander parallelen Verriegelungsflächen auszustatten, um im belasteten Zustand einen grossflächigen Kontakt zwischen den benachbarten Deckbandsegmenten zu erhalten. Vielmehr muss die Verformung der Schaufel aufgrund der betriebsbedingten Belastungen so in die Ausgestaltung der (unbelasteten) Schaufel mit einbezogen werden, dass erst mit der Verformung eine näherungsweise Parallelisierung der Verriegelungsflächen erreicht wird, die gleichzeitig eine ausreichende Dichtigkeit und eine grossflächige Verteilung allfälliger Druckspannungen zwischen den Segmenten gewährleistet.
Das Verformungsverhalten der jeweiligen Schaufel wird dazu auf der Grundlage eines 3D-Modells der Schaufel berechnet, so dass rechnerisch vorausbestimmt werden kann, welche Konfiguration (Geometrie) der Deckbandsegmente im unbelasteten Zustand der Schaufel zu der gewünschten Konfiguration (Geometrie) der Deckbandsegmente im belasteten Zustand der Schaufel führt. Ist diese (optimierte) Ausgangskonfiguration (mit möglicherweise nicht-parallelen Verriegelungsflächen) aus der Modellberechnung ermittelt, kann sie bei der Herstellung der Schaufel, z.B. bei der Ausbildung der Gussform, berücksichtigt werden. Die aktuelle Form der Verriegelungsflächen hängt dabei massgeblich vom Verformungsverhalten der jeweiligen Schaufel ab, das unter anderem durch die Wanddicken, die Schaufellänge, die Form des Schaufelblattes und den Einsatzort der jeweiligen Schaufel im Verbund mit den benachbarten Schaufeln mitbestimmt wird.
Vorzugsweise werden die Kontaktflächen zwischen den Verriegelungsflächen der aneinander anstossenden Deckbandsegmente benachbarter Schaufeln im belasteten Zustand der Schaufel dahingehend optimiert, dass eine Erhöhung des Kontaktdrucks durch das Erwärmen der Schaufel auf Betriebstemperatur vermieden wird.
Es ist aber auch alternativ oder zusätzlich nach Bedarf vorgesehen, die Kontaktflächen zwischen den Verriegelungsflächen der aneinander anstossenden Deckbandsegmente benachbarter Schaufeln im belasteten Zustand der Schaufel dahingehend zu optimieren, dass ein Abfall der Eigenfrequenz der Schaufel durch das Erwärmen der Schaufel auf Betriebstemperatur vermieden wird.
Kurze Erläuterung der Figuren
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind weggelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Es zeigen
Fig. 1 in einer Seitenansicht eine (lange) Laufschaufel einer Gasturbine mit Deckbandsegment an der Schaufelspitze, wie sie zur
Anwendung der Erfindung geeignet ist;
Fig. 2 in der Draufsicht von oben in Richtung der Schaufellängsachse zwei benachbarte Schaufeln der in Fig. 1 dargestellten Art mit den ineinander greifenden Verriegelungsflächen ihrer Deckbandsegmente;
Fig. 3 in einem Ausschnitt den Schnitt durch die gegenüberliegenden Kanten benachbarter Deckbandsegmente mit den
Verriegelungsflächen F2, F2' und
Fig. 4 verschiedene Schritte bei der Optimierung der Kontaktflächen der
Deckbandsegmente gemäss einem Ausführungsbeispiel der Erfindung.
Wege zur Ausführung der Erfindung
In Fig. 1 ist in einer Seitenansicht eine (relativ lange) Laufschaufel dargestellt, wie sie zur Anwendung der Erfindung geeignet ist. Die Schaufel 10 erstreckt sich in ihrer Längsrichtung (radiale Richtung innerhalb der Gasturbine) entlang einer Längsachse 15 und umfasst einen Schaufelfuss 11 zur Befestigung der Schaufel am Rotor, eine Plattform 12, welche die innere Begrenzung des Heissgaskanals bildet, ein Schaufelblatt 13 und ein an der Schaufelspitze angeordnetes Deckbandsegment 14.
In der Draufsicht in radialer Richtung (in Richtung der Längsachse 15) hat das Deckbandsegment 14 beispielsweise die in Fig. 2 dargestellte Randkontur. In Umfangsrichtung (y-Richtung in Fig. 2) wird das Deckbandsegment 14 der Fig. 2 durch zickzackförmig angeordnete Keilflächen F1 und F3 bzw. FV und F3', sowie dazwischen angeordnete Verriegelungsflächen F2 und F2' begrenzt. Werden zwei benachbarte Schaufeln 10 und 10' in Richtung der Pfeile in Fig. 2 (y-Richtung) resp. der Pfeile gemäss Fig. 3 aufeinander zu bewegt, greifen die beiden Deckbandsegmente 14 mit den Verriegelungsflächen F2 und F2' ineinander, wobei die beidseitig von den Verriegelungsflächen F2, F2' angeordneten, gegenläufigen Keilflächen F1 , FV bzw. F3, F3' eine stabilisierende Führungsfunktion übernehmen. Im Stand der Technik wurden die Verriegelungsflächen F2, F2' bei der Herstellung der Schaufeln 10, 10' bisher paarweise parallel zueinander ausgerichtet. Verwinden sich dann die Schaufeln 10, 10' im Betrieb beispielsweise um die Längsachse 15 in Richtung der in Fig. 2 eingezeichneten Drehpfeile, sind die Verriegelungsflächen F2, F2' nicht länger paarweise parallel, sondern es entstehen stark lokalisierte Kontaktbereiche mit hoher Druckspannung, an denen die Deckbandsegmente 14 aneinanderstossen, dies im Betrieb dann teilweise auch zu plastischen Deformationen führen können, wobei auch nicht ausgeschlossen bleibt, dass dann auch zu lokalen Verschweissungen kommt.
Erfindungsgemäss wird die Schaufel nun durch ein 3D-Modell beschrieben, das eine Berechnung der unter Belastung veränderten Geometrie ermöglicht (Schritte A und B in Fig. 4). Für die veränderte Geometrie können nun die Anschlussflächen so gewählt werden, dass die unerwünschten stark lokalisierten Kontaktbereiche zwischen den benachbarten Deckbandsegmenten vermieden werden, ohne die Dichtigkeit zwischen den Deckbandsegmenten zu sehr zu beeinträchtigen (Schritt C in Fig. 4). Sind die Deckbandsegmente 14 im Belastungszustand entsprechend konfiguriert, kann aufgrund des 3D-Modells auf die korrespondierende Konfiguration im unbelasteten Zustand zurückgeschlossen werden (Schritt D in Fig. 4). Diese korrespondierende Konfiguration wird dann zur Herstellung der Schaufel 10 bzw. 10' verwendet.
Bezugszeichenliste
10,10' Schaufel (Gasturbine)
11 Seh auf elf u ss
12 Plattform
13 Schaufelblatt
14 Deckbandsegment
15 Längsachse (Schaufel)
F1.F1 ' Keilfläche
F2,F2' Verriegelungsfläche
F3,F3' Keilfläche

Claims

Patentansprüche
1. Verfahren zur Optimierung der Kontaktflächen von aneinander anstossenden Deckbandsegmenten (14) benachbarter Schaufeln (10, 10') einer Laufschaufelreihe einer Gasturbine, gekennzeichnet durch die Schritte: a) Bereitstellen eines 3D-Modells der einzelnen Schaufel (10, 10'); b) Berechnung der Geometrie der einzelnen Schaufel (10, 10') auf der Grundlage des bereitgestellten 3D-Modells, unter Berücksichtigung der im Betrieb auftretenden Zentrifugalkräfte, Temperaturbelastungen, Druckbelastungen, der Schaufel; c) Optimierung der Kontaktflächen von aneinander anstossenden Deckbandsegmenten (14) benachbarter Schaufeln (10, 10') im belasteten Zustand der Schaufel (10, 10'), betreffend funktional dienende Verriegelungsflächen (F2, F2') und betreffend beidseitig der Verriegelungsflächen angeordnete funktional dienende Keilflächen (F 1 , FT; F3, F3') und d) Bestimmen der dafür notwendigen Geometrie der Verriegelungsflächen (F2, F2') und der Keilflächen (F 1 , FT; F3, F3') im unbelasteten Zustand der Schaufel (10, 10').
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kontaktflächen zwischen den Verriegelungsflächen (F2, F2') der aneinander anstossenden Deckbandsegmente (14) benachbarter
Schaufeln (10, 10') im belasteten Zustand der Schaufel (10, 10') dahingehend optimiert aufgeführt werden, dass eine Erhöhung des Kontaktdrucks aufgrund der sich einstellenden Betriebstemperatur der Schaufeln untereinander vermieden wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kontaktflächen zwischen den Verriegelungsflächen (F2, F2') der aneinander anstossenden Deckbandsegmente (14) benachbarter Schaufeln (10, 10') im belasteten Zustand der Schaufel (10, 10') dahingehend optimiert ausgeführt werden, dass ein Abfall der Eigenfrequenz der Schaufel (10, 10') aufgrund der sich einstellenden Betriebstemperatur der Schaufeln vermieden wird.
Schaufel durch Durchführung des Verfahrens nach einem der Ansprüche 1-
3, dadurch gekennzeichnet, dass die als funktional dienenden Keilflächen (F 1 , FV; F3, F3') gegenläufig zu den Verriegelungsflächen (F2, F2') angeordnet sind, und dass die Keilflächen (F1 , FV; F3, F3') eine Führungsfunktion übernehmen.
PCT/EP2009/065543 2008-11-27 2009-11-20 Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine WO2010060867A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09760513A EP2350440B1 (de) 2008-11-27 2009-11-20 Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine
US13/117,166 US20110293428A1 (en) 2008-11-27 2011-05-27 Method for optimizing the contact surfaces of shroud segments, which abut against one another, of adjacent blades of a gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1854/08 2008-11-27
CH01854/08A CH699984A1 (de) 2008-11-27 2008-11-27 Verfahren zur Optimierung der Kontaktflächen von aneinander anstossenden Deckbandsegmenten benachbarter Schaufeln einer Gasturbine.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/117,166 Continuation US20110293428A1 (en) 2008-11-27 2011-05-27 Method for optimizing the contact surfaces of shroud segments, which abut against one another, of adjacent blades of a gas turbine

Publications (1)

Publication Number Publication Date
WO2010060867A1 true WO2010060867A1 (de) 2010-06-03

Family

ID=40691093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065543 WO2010060867A1 (de) 2008-11-27 2009-11-20 Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine

Country Status (4)

Country Link
US (1) US20110293428A1 (de)
EP (1) EP2350440B1 (de)
CH (1) CH699984A1 (de)
WO (1) WO2010060867A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201508763D0 (en) 2015-05-22 2015-07-01 Rolls Royce Plc Rotary blade manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241471B1 (en) * 1999-08-26 2001-06-05 General Electric Co. Turbine bucket tip shroud reinforcement
EP1491723A1 (de) * 2003-06-23 2004-12-29 ALSTOM Technology Ltd Verfahren zum Modifizieren der Kopplungsgeometrie bei Deckbandsegmenten von Turbinenlaufschaufeln
US20050079058A1 (en) * 2003-10-09 2005-04-14 Pratt & Whitney Canada Corp. Shrouded turbine blades with locally increased contact faces
EP1881155A1 (de) * 2006-07-21 2008-01-23 Ansaldo Energia S.P.A. Vorrichtung für den Entwurf von Turbinen und Turbinenschaufeln
US20080075600A1 (en) * 2006-09-22 2008-03-27 Thomas Michael Moors Methods and apparatus for fabricating turbine engines
EP1970535A1 (de) * 2007-03-15 2008-09-17 ABB Turbo Systems AG Deckbandverbindung einer Turbinenschaufel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034417B2 (ja) * 1994-02-18 2000-04-17 株式会社東芝 軸流タービンの動翼制振装置
US6223524B1 (en) * 1998-01-23 2001-05-01 Diversitech, Inc. Shrouds for gas turbine engines and methods for making the same
US6393331B1 (en) * 1998-12-16 2002-05-21 United Technologies Corporation Method of designing a turbine blade outer air seal
DE10047307A1 (de) * 2000-09-25 2002-08-01 Alstom Switzerland Ltd Dichtungsanordnung
DE50211431D1 (de) * 2001-09-25 2008-02-07 Alstom Technology Ltd Dichtungsanordnung zur dichtspaltreduzierung innerhalb einer strömungsrotationsmaschine
US7206709B2 (en) * 2003-05-29 2007-04-17 Carnegie Mellon University Determination of damping in bladed disk systems using the fundamental mistuning model
CH698087B1 (de) * 2004-09-08 2009-05-15 Alstom Technology Ltd Schaufel mit Deckbandelement.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241471B1 (en) * 1999-08-26 2001-06-05 General Electric Co. Turbine bucket tip shroud reinforcement
EP1491723A1 (de) * 2003-06-23 2004-12-29 ALSTOM Technology Ltd Verfahren zum Modifizieren der Kopplungsgeometrie bei Deckbandsegmenten von Turbinenlaufschaufeln
US20050079058A1 (en) * 2003-10-09 2005-04-14 Pratt & Whitney Canada Corp. Shrouded turbine blades with locally increased contact faces
EP1881155A1 (de) * 2006-07-21 2008-01-23 Ansaldo Energia S.P.A. Vorrichtung für den Entwurf von Turbinen und Turbinenschaufeln
US20080075600A1 (en) * 2006-09-22 2008-03-27 Thomas Michael Moors Methods and apparatus for fabricating turbine engines
EP1970535A1 (de) * 2007-03-15 2008-09-17 ABB Turbo Systems AG Deckbandverbindung einer Turbinenschaufel

Also Published As

Publication number Publication date
EP2350440A1 (de) 2011-08-03
EP2350440B1 (de) 2012-12-19
US20110293428A1 (en) 2011-12-01
CH699984A1 (de) 2010-05-31

Similar Documents

Publication Publication Date Title
EP3420196B1 (de) Turbinenschaufel mit kühlstruktur und zugehöriges herstellungsverfahren
EP3298242B1 (de) Schaufel für eine strömungskraftmaschine und verfahren zu deren herstellung
EP2719484B1 (de) Bauteil für eine strömungsmachine
CH700001A1 (de) Laufschaufelanordnung, insbesondere für eine gasturbine.
EP1757773A1 (de) Hohle Turbinenschaufel
EP1766192A1 (de) Schaufelrad einer turbine mit einer schaufel und mindestens einem kühlkanal
WO2011054342A1 (de) Blisk, gasturbine und verfahren zur herstellung einer derartigen blisk
EP2584146A1 (de) Verfahren zum Herstellen einer Laufschaufel für eine Strömungsmaschine und entsprechende Laufschaufel
EP3056677B1 (de) Schaufel und Strömungsmaschine
DE602004003757T2 (de) Verfahren zur Aufbereitung und Verfahren zur Herstellung einer Turbinenschaufel
DE2944987C3 (de) Laufschaufel für Dampfturbinen
EP2410132B1 (de) Verdichterschaufel eines Gasturbinentriebwerks mit selbstschärfender Vorderkantenstruktur
EP3647547A1 (de) Dichtanordnung für eine strömungsmaschine und herstellungsverfahren
EP2394028B1 (de) Abdichtvorrichtung an dem Schaufelschaft einer Rotorstufe einer axialen Strömungsmaschine und ihre Verwendung
DE102009013819A1 (de) Verfahren zur Herstellung eines Leitschaufelkranzes für eine Gasturbine sowie Leitschaufelkranz
EP2350440B1 (de) Verfahren zur optimierung der kontaktflächen von aneinander anstossenden deckbandsegmenten benachbarter schaufeln einer gasturbine
EP1491723B2 (de) Verfahren zum Modifizieren der Kopplungsgeometrie bei Deckbandsegmenten von Turbinenlaufschaufeln
EP3156588B1 (de) Reparaturverfahren für dichtsegmente
EP3428402A1 (de) Leitschaufelsegment mit gekrümmter entlastungsfuge
EP3198049B1 (de) Verfahren zur beschichtung einer turbinenschaufel
EP2454451B1 (de) Rotor mit kopplungselementen zur mechanischen kopplung von schaufeln
EP2927503B1 (de) Gasturbinenverdichter, Flugtriebwerk und Auslegungsverfahren
EP1914382B1 (de) Verfahren zur Reparatur einer Turbinenschaufel
DE10217390A1 (de) Turbinenschaufel
DE102011102251A1 (de) Verfahren zur Herstellung einer integral beschaufelten Rotorscheibe, integral beschaufelte Rotorscheibe, Rotor und Strömungsmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009760513

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE