WO2010060383A1 - 导频测量控制方法及双模终端 - Google Patents

导频测量控制方法及双模终端 Download PDF

Info

Publication number
WO2010060383A1
WO2010060383A1 PCT/CN2009/075164 CN2009075164W WO2010060383A1 WO 2010060383 A1 WO2010060383 A1 WO 2010060383A1 CN 2009075164 W CN2009075164 W CN 2009075164W WO 2010060383 A1 WO2010060383 A1 WO 2010060383A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
module
idle state
packet data
pilot
Prior art date
Application number
PCT/CN2009/075164
Other languages
English (en)
French (fr)
Inventor
邓敏智
许明霞
钟鑫
扈曙辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010060383A1 publication Critical patent/WO2010060383A1/zh
Priority to US13/117,992 priority Critical patent/US8437311B2/en
Priority to US13/275,064 priority patent/US8233904B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a pilot measurement control method and a dual mode terminal. Background technique
  • CDMA2000 is one of the mainstream technologies of 3G and has been put into commercial use in various regions of the world.
  • CDMA2000-1X is the first phase of the development of CDMA2000 systems.
  • the corresponding protocol versions are "CDMA2000 Release 0", “CDMA2000 Release A” and “CDMA2000 Release B", which are backward compatible with the existing IS-95 standard.
  • High Data Rate (HDR) technology accepted by TIA/EIA as IS-856 standard (Release 0 version), also known as High Rate Packet Data (hereinafter referred to as: HRPD) Or lx EV-DO, where IX indicates that it has exactly the same RF bandwidth and chip rate as the CDMA2000 IX system, and has good backward compatibility; EV ( Evolution) indicates that it is an evolved version of CDMA2000 IX; DO (Data Optimization ) indicates that it is a technology optimized for packet data services.
  • Lx EV-DO is accepted by ITU-R as one of the 3G technical standards.
  • LTE Long Term Evolution
  • MIMO multi-input Multiple Output
  • LTE technology can better support big data download services such as VoIP or video calling.
  • CDMA/HRPD operators have decided to gradually upgrade from existing HRPD networks to LTE. In the process of network upgrade, due to the existence of both HRPD and LTE networks, where LTE is partially covered and HRPD is completely covered, some users need to use HRPD-LTE dual-mode terminals for roaming throughout the network.
  • LTE-HRPD-optimized handover means that when the dual-mode terminal enters the edge area of the LTE coverage area, the HRPD module in the dual-mode terminal is pre-registered through the tunnel between the LTE network and the HRPD network, so that when the dual-mode terminal leaves When LTE-HRPD handover is performed in the LTE coverage area, the registration speed and the like are not required, and the call rate can be greatly improved, the call drop rate can be reduced, and the call quality can be improved.
  • the LTE module in the dual-mode terminal needs to periodically let the HRPD module perform the measurement of the HRPD network pilot, and will measure The result is reported to the LTE network for handover decision by the LTE network.
  • the embodiment of the invention provides a pilot measurement control method, including:
  • the idle state protocol sub-module in the high-rate packet data module of the dual-mode terminal enters the tunnel state, controls the pilot measurement based on the measurement identification information System.
  • the embodiment of the present invention provides a dual mode terminal, including a non-high rate packet data module and a high rate packet data module, where the high rate packet data module includes an idle state protocol submodule for detecting high after entering a tunnel state.
  • the rate packet data measurement allows variable information, or by detecting measurement indication information stored in the buffer, or according to the air interface connection management protocol sub-module in the high-rate packet data module of the dual mode terminal when the idle state protocol sub-module is activated
  • the measurement indication information sent is used to control the pilot measurement.
  • An embodiment of the present invention provides a pilot measurement control apparatus, including a high rate packet data module, configured to perform network switching from a non-high rate packet data network to a high rate packet data network in the pilot measurement control apparatus.
  • a pilot measurement control apparatus including a high rate packet data module, configured to perform network switching from a non-high rate packet data network to a high rate packet data network in the pilot measurement control apparatus.
  • FIG. 1 is a flow chart of a first embodiment of a pilot measurement control method according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a pilot measurement control method according to the present invention.
  • FIG. 3 is a flow chart of a third embodiment of a pilot measurement control method according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a dual mode terminal according to the present invention. detailed description
  • the LTE network represents a non-high-rate packet data network and an HRPD network dual network coverage as an example.
  • LTE and HRPD networks exist, and users use the HRPD-LTE dual-mode terminal to roam the entire network.
  • the dual-mode terminal is in the LTE network
  • the LTE module inside the terminal works.
  • the dual-mode terminal leaves the LTE network and enters the HRPD network, the HRPD module inside the terminal works.
  • the terminal switches from the LTE network to the HRPD network in order to be able to perform normal communication services.
  • the network is pre-registered with the HRPD module in the dual-mode terminal through the tunnel between the LTE network and the HRPD network, and the HRPD module completes the pre-registration and completes the HRPD protocol.
  • the initialization and initialization protocol sub-modules complete the network capture. After the idle state protocol sub-module enters the tunnel state, the implementation is not normal, and the handover fails, etc., in order to prevent the terminal from receiving the measurement start command sent by the initialization protocol sub-module again.
  • the idle state protocol submodule may The measurement identification information controls the pilot measurement, and specifically includes: the idle state protocol sub-module can control the pilot measurement by detecting the HRPD measurement permission variable information set by the initialization protocol sub-module; in addition, the HRPD module can also detect the information in the cache.
  • the indication information indicating the information based on the measurement of the measurement pilot control may also be in the HRPD module air interface protocol connection management submodule Idle State Protocol is activated first sub-module, and also to the idle state protocol sub The module sends measurement indication information, and the idle state protocol sub-module controls the pilot measurement according to the measurement indication information.
  • the idle state protocol sub-module after the idle state protocol sub-module enters the tunnel state, it does not wait for the measurement start command to trigger the pilot measurement, but directly triggers the pilot by actively searching for the HRPD measurement permission variable information. Measurement; or by pre-buffering the measurement indication information sent by the initialization protocol sub-module, until the idle state protocol sub-module enters the tunnel state, the pilot measurement can be triggered by looking up the cache information; or the idle state protocol sub-module is received according to the activation.
  • the measurement indication information sent by the air interface connection management protocol sub-module performs pilot measurement.
  • the embodiment of the present invention can prevent the idle state protocol sub-module of the HRPD module in the dual-mode terminal from entering the tunnel state.
  • the LTE module has issued the measurement start command but has not issued the measurement stop command, the pilot measurement phenomenon cannot be performed.
  • the idle state protocol sub-module pilot measurement is performed normally, the handover success rate is improved, the system is working normally, and the service quality is improved.
  • the idle state protocol sub-module allows the variable information to be controlled by the HRPD measurement.
  • the idle state protocol sub-module detects the HRPD measurement allowable variable information. If the HRPD measurement allows the variable information to indicate that the measurement is allowed, for example, the HRPD measurement allows the variable. The information is set to "1" to indicate that measurement or the like is allowed, then the pilot measurement sub-module in the high-rate packet data module is turned on for pilot measurement; if the HRPD measurement allows variable information to indicate that measurement is not allowed, for example, HRPD measurement allows variable information When it is set to "0" to indicate that measurement or the like is not allowed, the pilot measurement sub-module is turned off to stop the pilot measurement.
  • the HRPD measurement permission variable information involved in various embodiments of the present invention is a common variable in the HRPD module, and can be accessed not only by the initialization protocol submodule but also by the idle state protocol submodule.
  • 1 is a flowchart of a first embodiment of a pilot measurement control method according to the present invention. As shown in FIG. 1 , the method may specifically include: Step 100: The HRPD module waits for a measurement start command from the LTE module.
  • the HRPD module waits for the measurement start command from the LTE module, and the initialization protocol sub-module is in the network selection state in the active state, and the active state includes the network.
  • the state, pilot measurement state, and time synchronization state are selected, while the idle state protocol sub-module is in an inactive state.
  • Step 101 After the initialization protocol sub-module receives the measurement start command, performs network capture, and sets the HRPD measurement enable variable to “1”, and sends a measurement activation indication to the idle state protocol sub-module;
  • the LTE module sends a measurement start command to the HRPD module, and the initialization protocol sub-module starts the network acquisition process, where the network acquisition process sequentially experiences the network selection state, the pilot measurement state, and the time synchronization state; the HRPD module receives the measurement sent by the LTE module.
  • the HRPD measurement enable variable is set to "1" by the initialization protocol sub-module, indicating that the measurement is allowed at this time, and the measurement activation indication is sent to the idle state protocol sub-module, and the idle state protocol sub-module is not The active state does nothing at this time.
  • Step 102 The idle state protocol sub-module enters a tunnel state, checks the HRPD measurement allowable variable, and controls the pilot measurement.
  • the initialization protocol sub-module After the initialization protocol sub-module completes the network acquisition process, it enters the inactive state, and the HRPD module enters the idle state. At this time, the idle state protocol sub-module activates to enter the tunnel state, and the idle state protocol sub-module first checks the HRPD measurement allowable variable, if the variable is " 1", the measurement module is turned on for measurement; if the variable is "0", the measurement module is turned off to stop the measurement. Since the variable is "1" here, the idle state protocol word module opens the measurement module for measurement.
  • the idle state protocol submodule controls the pilot measurement by detecting the measurement indication information stored in the buffer, and the idle state protocol submodule detects the measurement indication information stored in the cache. If the measurement indication information indicates that measurement is allowed, the pilot measurement sub-module is turned on to perform pilot measurement; if the measurement indication information indicates that measurement is not allowed, the pilot measurement sub-module is turned off to stop the pilot measurement.
  • 2 is a flowchart of a second embodiment of a pilot measurement control method according to the present invention. As shown in FIG. 2, the method may specifically include: Step 200: The HRPD module waits for a measurement start command from an LTE module.
  • the dual mode terminal completes the pre-registration and when the air interface connection management protocol is opened, the HRPD module waits for
  • the measurement start command of the LTE module in which the initialization protocol sub-module is in a network selection state in an active state, where the activation state includes a network selection state, a pilot measurement state, and a time synchronization state, and the idle state protocol sub-module is inactive. state.
  • Step 201 After the initialization protocol sub-module receives the measurement start command, performs network capture, and sets the HRPD measurement enable variable to “1”, and sends a measurement activation indication to the idle state protocol sub-module, where the idle state protocol sub-module caches the measurement activation indication.
  • the LTE module issues a measurement start command, and the initialization protocol sub-module starts the network acquisition process, and sequentially goes through the network selection state, the pilot measurement state, and the time synchronization state.
  • the HRPD module After receiving the measurement start command sent by the LTE module, the HRPD module immediately sets the HRPD measurement enable variable to "1" through the initialization protocol sub-module, indicating that the measurement is allowed at this time, and sends the measurement activation indication to the idle state protocol sub-module.
  • the idle state protocol submodule receives the measurement activation indication information sent by the initialization protocol submodule, and stores the measurement indication information, that is, the measurement activation indication, in the cache.
  • Step 202 The idle state protocol sub-module enters a tunnel state, checks an indication stored in the cache, and controls pilot measurement.
  • the initialization protocol sub-module After the initialization protocol sub-module completes the network acquisition process, it enters an inactive state, and the HRPD module enters an idle state, at which time the idle state protocol sub-module is activated to enter the tunnel state. At this time, the idle state protocol submodule detects whether the measurement activation indication or the measurement deactivation indication is buffered, if the cache is measured activation. If yes, the pilot measurement sub-module is turned on for pilot measurement; if the measurement deactivation indication is buffered, the pilot measurement sub-module is turned off to stop the pilot measurement. Since the measurement activation indication is buffered here, the idle state protocol turns on the pilot measurement sub-module to perform pilot measurement.
  • the LTE module after the LTE module sends a measurement start command to the initialization protocol sub-module, the measurement activation command sent by the initialization protocol sub-module to the idle state protocol sub-module is performed, and the initialization protocol sub-module functions as a forwarding.
  • the LTE module can directly send a measurement start command to the idle state protocol submodule, and the forwarding process of the initialization protocol submodule is omitted.
  • the idle state protocol submodule controls the pilot measurement according to the measurement indication information sent by the air interface connection management protocol submodule in the dual mode terminal HRPD module when the idle state protocol submodule is activated, including the idle state protocol submodule. Detecting measurement indication information sent by the air interface connection management protocol sub-module in the dual-mode terminal HRPD module when the idle state protocol sub-module is activated, and if the measurement indication information indicates that measurement is allowed, the pilot measurement sub-module is turned on to perform pilot measurement; If the measurement indication information indicates that the measurement is not allowed, the pilot measurement sub-module is turned off to stop the pilot measurement.
  • 3 is a flowchart of a third embodiment of a pilot measurement control method according to the present invention. As shown in FIG. 3, the method may specifically include:
  • Step 300 the HRPD module waits for a measurement start command from the LTE module
  • the HRPD module waits for the measurement start command from the LTE module, and the initialization protocol is in the network selection state in the active state, and the activation state includes the network selection state and the guide state.
  • Step 301 The initialization protocol sub-module performs network capture after receiving the measurement start command
  • the measurement activation indication is sent to the idle state protocol sub-module; the LTE module sends a measurement start command to the HRPD module, and the initialization protocol sub-module starts network capture.
  • the network acquisition process sequentially undergoes a network selection state, a pilot measurement state, and a time synchronization state; after receiving the measurement start command sent by the LTE module, the HRPD module immediately measures the allowed variable by the initialization protocol submodule.
  • Setting "1" indicates that the measurement is allowed at this time, and sends a measurement activation indication to the idle state protocol sub-module, while the idle state protocol sub-module does not perform any operation at this time because it is in an inactive state.
  • Step 302 After completing the network capture process, the initialization protocol sub-module enters an inactive state, and submits the HRPD measurement permission information to the air interface connection management protocol sub-module;
  • Step 303 After the idle state protocol sub-module enters the tunnel state, the air interface connection management protocol sub-module sends measurement indication information to the idle state protocol sub-module according to the HRPD measurement permission information, and the idle state protocol sub-module controls the pilot measurement according to the measurement indication information.
  • the HRPD module enters the idle state, and the idle state protocol sub-module is activated to enter the tunnel state.
  • the air interface connection management protocol sub-module transmits the measurement according to the HRPD measurement permission information submitted by the previous initialization protocol sub-module while activating the idle state protocol sub-module.
  • the indication information for example, the measurement activation indication or the measurement deactivation indication to the idle state protocol sub-module, may be sent after the activation information of the activation idle state protocol sub-module is sent, or may be carried in the activation information.
  • the idle state protocol sub-module opens the pilot measurement sub-module to perform pilot measurement.
  • the pilot measurement control method provided by the foregoing embodiments can directly measure the pilot according to the specific information after the idle state protocol performs the tunnel state, and ensure the success rate of the handover of the dual mode terminal from the LTE network to the HRPD network, and improve the service. quality.
  • the LTE module may be included in the LTE module for some reason, and the measurement stop command may be sent to the HRPD module.
  • Initial The protocol submodule does not have any operation because it is in an inactive state, but sets the HRPD measurement enable variable to "0" and sends a measurement deactivation indication to the idle state protocol submodule. After receiving the indication, the idle state protocol sub-module closes the measurement module and stops the measurement. Subsequently, the LTE module expects the HRPD module to start measuring again for some reason, and then issues a measurement start command to the HRPD module again.
  • the initialization protocol submodule does not have any operation because it is in an inactive state, but sets the HRPD measurement enable variable to "1" and sends a measurement activation indication to the idle state protocol submodule.
  • the idle state protocol sub-module After receiving the measurement activation indication, the idle state protocol sub-module will open the pilot measurement sub-module to perform pilot measurement, and stop measuring until the measurement stop command of the LTE module is received.
  • the initialization protocol sub-module has started the network capture process, and the measurement stop command is received before the network capture process has been completed. At this time, the network capture process will not stop, but the initialization protocol sub-module will send the measurement.
  • the activation indication is given to the idle state protocol sub-module.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the dual mode terminal includes a non-high rate packet data module and a high rate packet data module, that is, an HRPD module 2, wherein the non-high rate packet data module may be
  • a communication network function module such as an LTE module, a WIMAX module, a UMTS module, or a UMB module, is described by taking an LTE module as an example.
  • the LTE module 1 is used to implement the wireless communication service of the terminal in the LTE network
  • the HRPD module 2 is used to implement the wireless communication service of the terminal in the HRPD network, so that the same terminal can communicate in the two networks.
  • the HRPD module 2 includes an initialization protocol sub-module 21, an idle state protocol sub-module 22, and an air interface connection management protocol sub-module. 23, wherein the initialization protocol sub-module 21 is configured to send the measurement indication information to the idle state protocol sub-module 22 after receiving the measurement start command or the measurement stop command sent by the LTE module 1; the idle state protocol sub-module 22 is configured to enter the tunnel. After the status, the measurement is performed by detecting the HRPD measurement permission variable, or by detecting the measurement indication information stored in the buffer, or according to the air interface connection management protocol sub-module 23 in the dual-mode terminal HRPD module when the idle state protocol sub-module 22 is activated. The indication information is used to control the pilot measurement; the air interface connection management protocol sub-module 23 is used for unified management of the idle state protocol sub-module 22 and the initialization protocol sub-module 21.
  • the idle state protocol sub-module 22 enters the tunnel state and is idle.
  • the status protocol sub-module 22 can directly perform the pilot measurement control by detecting the HRPD measurement permission variable information, detecting the cache information, or receiving the measurement indication information sent by the air interface connection management protocol sub-module 23, without waiting for the initialization protocol sub-module 21 to transmit.
  • the measurement start information is used to ensure the normal operation of the network handover and improve the quality of service.
  • the pilot measurement by the dual mode terminal can be performed by the pilot measurement sub-module 24 in the HRPD module, and the pilot measurement sub-module 24 can perform pilot measurement under the control of the idle state protocol sub-module 22.
  • the idle state protocol sub-module 22 may include one or a combination of the first unit 221, the second unit 222, and the third unit 223, where the first unit 221 is configured to detect HRPD measurement permission variable information, and according to The detection result controls the pilot measurement; the initialization protocol sub-module 21 immediately sets the HRPD measurement allowable variable information to "1" after receiving the measurement start command sent by the LTE module, and the first unit 221 allows the measurement by the HRPD measurement.
  • the variable information is known to allow pilot measurements, and the pilot measurement sub-module 24 performs pilot measurements.
  • the initialization protocol sub-module 21 will stand after receiving the measurement start command sent by the LTE module. That is, after the HRPD measurement permission variable information is set to "1", the measurement indication information is sent to the idle state protocol sub-module 22, indicating that the idle state protocol sub-module 22 can control the pilot-side measurement, and the second unit 222 is buffer-initialized. The measurement indication information sent by the protocol sub-module 21, and after the tunnel state is entered, controls the pilot measurement according to the buffered measurement indication information.
  • the initialization protocol sub-module 21 is further configured to: after receiving the measurement start command or the measurement stop command sent by the LTE module 1, send the HRPD measurement permission variable information to the air interface connection management protocol sub-module 23; the HRPD module 2 enters an idle state, The idle state protocol sub-module 22 activates the entry tunnel state, and the air interface connection management protocol sub-module 23 activates the idle state protocol sub-module 22, and according to the HRPD measurement allowable variable information submitted by the previous initialization protocol module 21, to the idle state protocol sub-module 22
  • the measurement indication information is sent, and the third unit 223 receives the measurement indication information sent by the air interface connection management protocol sub-module 23, and controls the pilot measurement according to the measurement indication information.
  • the dual-mode terminal provided in this embodiment triggers the pilot measurement after waiting for the measurement start command after the idle state protocol sub-module enters the tunnel state, but directly triggers the pilot measurement by actively searching for the HRPD measurement permission variable information; or By pre-buffering the measurement indication information sent by the initialization protocol, the idle state protocol sub-module can trigger the pilot measurement by looking up the cache information after entering the tunnel state; or the idle state protocol sub-module receives the air interface connection management protocol according to the activated The measurement indication information sent by the submodule is used for pilot measurement.
  • the idle state protocol sub-module of the HRPD module in the dual-mode terminal It is possible to prevent the idle state protocol sub-module of the HRPD module in the dual-mode terminal from entering the tunnel state, and if the LTE module has issued the measurement start command but has not issued the measurement stop command, the pilot measurement phenomenon cannot be performed, and the LTE of the dual-mode terminal is guaranteed.
  • the idle state protocol sub-module pilot measurement is performed normally, the handover success rate is improved, the system is working properly, and the service quality is improved.
  • the embodiment of the invention further provides a pilot measurement control device, including a high rate packet data mode Block for idle state protocol in a high rate packet data module of the pilot measurement control device during network switching of the pilot measurement control device from a non-high rate packet data network to a high rate packet data network After the sub-module enters the tunnel state, the idle state protocol sub-module controls the pilot measurement according to the measurement identification information.
  • the pilot measurement control apparatus provided in this embodiment may be a user mobile device such as a mobile terminal.

Description

导频测量控制方法及汉模终端
本申请要求于 2008 年 11 月 28 日提交中国专利局、 申请号为 200810178380.2、 发明名称为"导频测量控制方法及双模终端"的中国专利申请 的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种导频测量控制方法及双模 终端。 背景技术
自 20世纪 90年代以来,码分多址 (Code Division Multiple Access; 以下筒 称: CDMA)系统引起了人们的广泛关注, 相关的研究工作十分活跃。 CDMA2000 是 3G 的主流技术之一, 在世界各个地区已经投入商用。 CDMA2000-1X是 CDMA2000系统发展的第一个阶段, 其对应的协议版本为 "CDMA2000 Release 0" , "CDMA2000 Release A" 以及 "CDMA2000 Release B " , 它与现有的 IS-95标准后向兼容。 高数据速率 (High Data Rate; 筒称 HDR) 技术, 并被 TIA/EIA接受为 IS-856标准( Release 0版本), 又称为高速率分组 数据 ( High Rate Packet Data; 以下筒称: HRPD )或 lx EV-DO, 其中 IX表 示它与 CDMA2000 IX系统所采用的射频带宽和码片速率完全相同,具有良好 的后向兼容性; EV( Evolution )表示它是 CDMA2000 IX的演进版本; DO( Data Optimization )表示它是专门针对分组数据业务优化的技术。 lx EV-DO被 ITU-R 接受为 3G技术标准之一。
另夕卜, 长期演进( Long Term Evolution; 以下筒称: LTE )技术被认为是 4G 移动通信系统的主流技术。 LTE 系统采用正交频分多址 (Orthogonal Frequency Division Multiple Access; 筒称: OFDMA )和多方式输入多方式输 出 ( Multiple Input Multiple Output; 筒称: MIMO )技术, 能够大大提高通信 系统的频谱利用率和容量。 除此之外, LTE技术能够更好的支持诸如 VoIP或 视频通话等大数据下载业务。 作为下一代主流技术, 目前一些全球领先的 CDMA/HRPD运营商决定从现有的 HRPD网络逐步升级到 LTE。 在网络升级 的过程中, 由于同时存在 HRPD和 LTE两种网络,其中 LTE部分覆盖, HRPD 完全覆盖, 一些用户需要使用 HRPD-LTE双模终端来进行全网络的漫游。
LTE-HRPD优化切换是指当双模终端进入 LTE覆盖区的边缘区域时, 通 过 LTE网络与 HRPD网络之间的隧道, 为双模终端中的 HRPD模块预先进行 网络注册, 这样当双模终端离开 LTE覆盖区进行 LTE-HRPD切换时, 由于不 需要再进行注册等工作,能够大大加快切换速度,减少掉话率,提高通话质量。 在 LTE-HRPD优化切换过程中, 当 HRPD模块完成了预注册, 也就是完成了 HRPD协议的初始化之后, 双模终端中的 LTE模块需要定期让 HRPD模块进 行 HRPD网络导频的测量, 并将测量的结果上报给 LTE网络, 供 LTE网络进 行切换判决。 发明内容
本发明实施例提供一种导频测量控制方法, 包括:
在双模终端进行从非高速率分组数据网络到高速率分组数据网络的网络 切换过程中,所述双模终端的高速率分组数据模块中的空闲状态协议子模块进 入隧道状态后,所述空闲状态协议子模块根据测量标识信息对导频测量进行控 制。
本发明实施例提供一种双模终端,包括非高速率分组数据模块和高速率分 组数据模块, 所述高速率分组数据模块包括空闲状态协议子模块, 用于在进入 隧道状态后,通过检测高速率分组数据测量允许变量信息, 或通过检测緩存中 存储的测量指示信息,或根据所述双模终端的高速率分组数据模块中的空口连 接管理协议子模块在激活所述空闲状态协议子模块时发送的测量指示信息,对 导频测量进行控制。
本发明实施例提供一种导频测量控制装置, 包括括高速率分组数据模块, 用于在所述导频测量控制装置进行从非高速率分组数据网络到高速率分组数 据网络的网络切换过程中,所述导频测量控制装置的高速率分组数据模块中的 空闲状态协议子模块进入隧道状态后,所述空闲状态协议子模块根据测量标识 信息对导频测量进行控制。 附图说明
图 1为本发明导频测量控制方法第一实施例流程图;
图 2为本发明导频测量控制方法第二实施例流程图;
图 3为本发明导频测量控制方法第三实施例流程图;
图 4为本发明双模终端实施例结构示意图。 具体实施方式
下面结合附图和具体实施例进一步说明本发明实施例的技术方案。
随着网络技术的不断发展, 在原有 HRPD网络的基础上, 将陆续增加覆盖 多种无线通信网络, 例如 LTE网络、 波存取全球互通 ( Worldwide Interoperability for Microwave Access; 筒称: WiMAX )网给、 通用移动通信系 统( Universal Mobile Telecommunications System; 筒称: UMTS ) 网络及增强 型移动宽带 (Ultra Mobile Broadband; 筒称: UMB)网络等, 本发明实施例均以 LTE网络代表非高速率分组数据网络和 HRPD网络双网络覆盖为例进行说明。 为了适应网络升级过程同时存在 LTE和 HRPD两种网络, 用户使用 HRPD-LTE 双模终端来进行全网络的漫游。 当双模终端处在 LTE网络时, 终端内部的 LTE 模块进行工作, 当双模终端离开 LTE网络进入 HRPD网络时,终端内部的 HRPD 模块进行工作。 当双模终端从 LTE网络向 HRPD网络移动时, 终端为了能够进 行正常的通信业务, 要从 LTE网络切换到 HRPD网络。 具体地, 双模终端进入 LTE网络覆盖的边缘区域时, 通过 LTE网络与 HRPD网络之间的隧道, 为双模 终端中的 HRPD模块预先进行网络注册,当 HRPD模块完成预注册及完成 HRPD 协议的初始化、初始化协议子模块完成网络捕获, 空闲状态协议子模块进入隧 道状态后,为了避免终端因没有再次接收到初始化协议子模块发送的测量开始 命令而导致工作不正常,切换失败等缺陷, 本实施例提供的导频测量控制方法 中, 在双模终端进行从 LTE网络到 HRPD网络的网络切换过程中, 双模终端 HRPD模块中的空闲状态协议子模块进入隧道状态后, 空闲状态协议子模块可 以测量标识信息对导频测量进行控制,具体包括该空闲状态协议子模块可以通 过检测初始化协议子模块设置的 HRPD测量允许变量信息对导频测量进行控 制; 另外, HRPD模块还可以检测緩存中的信息, 若緩存中存储有测量指示信 息则根据该测量指示信息对导频测量进行控制; 还可以是 HRPD模块中的空口 连接管理协议子模块首先激活空闲状态协议子模块,并同时向空闲状态协议子 模块发送测量指示信息,空闲状态协议子模块根据该测量指示信息对导频测量 进行控制。
本实施例提供的导频测量控制方法中,在空闲状态协议子模块进入隧道状 态后不再等待测量开始命令而触发进行导频测量, 而是通过主动查找 HRPD测 量允许变量信息而直接触发导频测量;或通过事先緩存初始化协议子模块发送 来的测量指示信息,等到空闲状态协议子模块进入隧道状态后能够通过查找緩 存信息触发导频测量;或者是空闲状态协议子模块根据被激活时接收到的空口 连接管理协议子模块发送的测量指示信息进行导频测量。本发明实施例能够避 免双模终端中 HRPD模块的空闲状态协议子模块在进入隧道状态后, 如果 LTE 模块已经发出了测量开始命令而尚未发出测量停止命令不能进行导频测量现 象的发生,保证双模终端的 LTE-HRPD切换过程中空闲状态协议子模块导频测 量的正常进行, 提高切换成功率, 确保系统工作正常, 提高服务质量。
上述实施例中, 空闲状态协议子模块通过 HRPD测量允许变量信息对导频 测量进行控制包括空闲状态协议子模块检测 HRPD测量允许变量信息, 若 HRPD测量允许变量信息表示允许测量, 例如 HRPD测量允许变量信息被设置 成 "1" 表示允许测量等, 则开启所述高速率分组数据模块中的导频测量子模 块进行导频测量; 若 HRPD测量允许变量信息表示不允许测量, 例如 HRPD测 量允许变量信息被设置成 "0" 表示不允许测量等, 则关闭导频测量子模块停 止导频测量。 本发明各实施例中涉及的 HRPD测量允许变量信息为 HRPD模块 内的公共变量, 不但能被初始化协议子模块访问,也可以被空闲状态协议子模 块访问。 图 1为本发明导频测量控制方法第一实施例流程图,如图 1所示该方法 具体可以包括: 步骤 100, HRPD模块等待来自 LTE模块的测量开始命令;
双模终端完成预注册且当空口连接管理协议子模块打开后, HRPD模块等 待来自 LTE模块的测量开始命令,此时初始化协议子模块处于激活态中的网络 选择状态, 所述的激活态包括网络选择状态、 导频测量状态和时间同步状态, 而空闲状态协议子模块处于非激活态。
步骤 101 , 初始化协议子模块接收测量开始命令后进行网络捕获, 并将 HRPD测量允许变量置 "1" 后, 发送测量激活指示给空闲状态协议子模块;
LTE模块向 HRPD模块发送测量开始命令, 初始化协议子模块开始网络捕 获过程, 所述的网络捕获过程依次经历网络选择状态、导频测量状态和时间同 步状态; HRPD模块中接收到 LTE模块发送的测量开始命令后, 将立即通过初 始化协议子模块将 HRPD测量允许变量置 "1" , 表示此时是允许测量的, 并 发送测量激活指示给空闲状态协议子模块,而空闲状态协议子模块由于处于非 激活态此时不做任何操作。
步骤 102, 空闲状态协议子模块进入隧道状态, 检查 HRPD测量允许变量, 对导频测量进行控制。
初始化协议子模块完成网络捕获过程后进入非激活态, HRPD模块进入空 闲状态, 此时空闲状态协议子模块激活进入隧道状态, 空闲状态协议子模块此 时先检查 HRPD测量允许变量, 如果变量为 "1" , 则打开测量模块进行测量; 如果变量为 "0" , 则关闭测量模块停止测量。 由于此处该变量为 "1" , 则空 闲状态协议字模块打开测量模块进行测量。
上述实施例中,空闲状态协议子模块通过检测緩存中存储的测量指示信息 对导频测量进行控制包括空闲状态协议子模块检测緩存中存储的测量指示信 息, 若测量指示信息表示允许测量, 则开启导频测量子模块进行导频测量; 若 测量指示信息表示不允许测量, 则关闭导频测量子模块停止导频测量。 图 2为 本发明导频测量控制方法第二实施例流程图,如图 2所示该方法具体可以包括: 步骤 200, HRPD模块等待来自 LTE模块的测量开始命令;
双模终端完成预注册且当空口连接管理协议打开后, HRPD模块等待来自
LTE模块的测量开始命令,此时初始化协议子模块处于激活态中的网络选择状 态, 所述的激活态包括网络选择状态、 导频测量状态和时间同步状态, 而空闲 状态协议子模块处于非激活态。
步骤 201 , 初始化协议子模块接收测量开始命令后进行网络捕获, 并将 HRPD测量允许变量置 "1" 后, 发送测量激活指示给空闲状态协议子模块, 空闲状态协议子模块緩存该测量激活指示;
LTE模块发出测量开始命令, 初始化协议子模块开始网络捕获过程, 依次 经历网络选择状态、 导频测量状态和时间同步状态。 HRPD模块中接收到 LTE 模块发送的测量开始命令后, 将立即通过初始化协议子模块将 HRPD测量允许 变量置 "1" , 表示此时是允许测量的, 并发送测量激活指示给空闲状态协议 子模块, 空闲状态协议子模块接收初始化协议子模块发送的测量激活指示信 息, 并在緩存中存储测量指示信息即该测量激活指示。
步骤 202, 空闲状态协议子模块进入隧道状态, 检查緩存中存储的指示, 对导频测量进行控制。
初始化协议子模块完成网络捕获过程后进入非激活态, HRPD模块进入空 闲状态, 此时空闲状态协议子模块激活进入隧道状态。此时空闲状态协议子模 块检测是否緩存了测量激活指示或者测量去激活指示,如果緩存的是测量激活 指示, 则打开导频测量子模块进行导频测量; 如果緩存的是测量去激活指示, 则关闭导频测量子模块停止导频测量。 由于此处緩存的是测量激活指示, 空闲 状态协议打开导频测量子模块进行导频测量。本实施例中 LTE模块向初始化协 议子模块发送测量开始命令后,再有初始化协议子模块向空闲状态协议子模块 发送的测量激活指示, 初始化协议子模块起转发作用。 当然也可以 LTE模块直 接向空闲状态协议子模块发送测量开始命令,省略初始化协议子模块的转发流 程。
上述实施例中, 空闲状态协议子模块根据双模终端 HRPD模块中的空口连 接管理协议子模块在激活空闲状态协议子模块时发送的测量指示信息,对导频 测量进行控制包括空闲状态协议子模块检测双模终端 HRPD模块中的空口连 接管理协议子模块在激活所述空闲状态协议子模块时发送的测量指示信息,若 测量指示信息表示允许测量, 则开启导频测量子模块进行导频测量; 若测量指 示信息表示不允许测量, 则关闭导频测量子模块停止导频测量。 图 3为本发明 导频测量控制方法第三实施例流程图, 如图 3所示该方法具体可以包括:
步骤 300, HRPD模块等待来自 LTE模块的测量开始命令;
双模终端完成预注册且当空口连接管理协议打开后, HRPD模块等待来自 LTE模块的测量开始命令, 此时初始化协议处于激活态中的网络选择状态, 所 述的激活态包括网络选择状态、导频测量状态和时间同步状态, 而空闲状态协 议子模块处于非激活态。
步骤 301 , 初始化协议子模块接收测量开始命令后进行网络捕获, 并将
HRPD测量允许变量置 "1" 后, 发送测量激活指示给空闲状态协议子模块; LTE模块向 HRPD模块发送测量开始命令, 初始化协议子模块开始网络捕 获过程, 所述的网络捕获过程依次经历网络选择状态、导频测量状态和时间同 步状态; HRPD模块中接收到 LTE模块发送的测量开始命令后, 将立即通过初 始化协议子模块将 HRPD测量允许变量置 "1" , 表示此时是允许测量的, 并 发送测量激活指示给空闲状态协议子模块,而空闲状态协议子模块由于处于非 激活态此时不做任何操作。
步骤 302,初始化协议子模块完成网络捕获过程后进入非激活态,将 HRPD 测量允许信息提交给空口连接管理协议子模块;
步骤 303, 空闲状态协议子模块进入隧道状态后, 空口连接管理协议子模 块根据 HRPD测量允许信息向空闲状态协议子模块发送测量指示信息, 空闲状 态协议子模块根据测量指示信息对导频测量进行控制。
HRPD模块进入空闲状态, 此时空闲状态协议子模块被激活进入隧道状 态, 空口连接管理协议子模块在激活空闲状态协议子模块的同时,根据之前初 始化协议子模块提交的 HRPD测量允许信息, 发送测量指示信息例如测量激活 指示或测量去激活指示给空闲状态协议子模块,发送的测量指示信息可以是在 发送激活空闲状态协议子模块的激活信息后发送,也可以是在激活信息中携带 指示。 空闲状态协议子模块收到测量激活指示后,打开导频测量子模块进行导 频测量。
以上各实施例提供的导频测量控制方法,可以在空闲状态协议进行隧道状 态后, 直接根据特定信息对导频进行测量, 保证双模终端从 LTE网络到 HRPD 网络的切换的成功率, 提高服务质量。
上述各实施例中, 在进行导频测量的过程中, 还可以包括 LTE模块由于某 些原因希望 HRPD模块停止测量, 可以向 HRPD模块发出测量停止命令。 初始 化协议子模块由于处于非激活态因此没有任何操作, 但会将 HRPD测量允许变 量置 "0" , 并发送测量去激活指示给空闲状态协议子模块。 空闲状态协议子 模块收到指示后关闭测量模块, 停止测量。 随后, LTE模块由于某些原因希望 HRPD模块又开始测量, 于是向 HRPD模块再次发出测量开始命令。 初始化协 议子模块由于处于非激活态因此没有任何操作, 但会将 HRPD测量允许变量置 "1" , 并发送测量激活指示给空闲状态协议子模块。 空闲状态协议子模块接 到测量激活指示后将打开导频测量子模块进行导频测量, 直到收到 LTE模块的 测量停止命令才停止测量。 另外还有一种情况, 就是初始化协议子模块已经开 始网络捕获过程了,在还没完成网络捕获过程之前收到了测量停止命令, 此时 网络捕获过程不会停止,但初始化协议子模块会发送测量去激活指示给空闲状 态协议子模块。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
图 4为本发明双模终端实施例结构示意图,如图 4所示, 该双模终端包括非 高速率分组数据模块和高速率分组数据模块即 HRPD模块 2, 其中非高速率分 组数据模块可以为 LTE模块、 WIMAX模块、 UMTS模块或 UMB模块等通信网 络功能模块, 本实施例仅以 LTE模块为例进行说明。 LTE模块 1用于实现终端 在 LTE网络中的无线通信业务, HRPD模块 2用于实现终端在 HRPD网络中的无 线通信业务, 达到同一终端可以在两个网络中进行通信的目的。 HRPD模块 2 包括初始化协议子模块 21、空闲状态协议子模块 22和空口连接管理协议子模块 23 , 其中初始化协议子模块 21用于在收到 LTE模块 1发送的测量开始命令或测 量停止命令后, 向空闲状态协议子模块 22发送测量指示信息; 空闲状态协议子 模块 22用于在进入隧道状态后, 通过检测 HRPD测量允许变量信息, 或通过检 测緩存中存储的测量指示信息, 或根据双模终端 HRPD模块中的空口连接管理 协议子模块 23在激活空闲状态协议子模块 22时发送的测量指示信息,对导频测 量进行控制;空口连接管理协议子模块 23用于对空闲状态协议子模块 22和初始 化协议子模块 21进行统一管理。
双模终端进行从 LTE网络到 HRPD网络切换的过程中, 当 HRPD模块 2完成 预注册及完成 HRPD协议的初始化、 初始化协议子模块 21完成网络捕获, 空闲 状态协议子模块 22进入隧道状态后, 空闲状态协议子模块 22可以通过检测 HRPD测量允许变量信息、 检测緩存信息或接收空口连接管理协议子模块 23发 送的测量指示信息, 直接进行导频测量的控制, 而不用再等待初始化协议子模 块 21发送测量开始信息了, 保证网络切换的正常进行, 提高服务质量。
双模终端进行导频测量可以是由 HRPD模块中的导频测量子模块 24完成, 导频测量子模块 24可以在空闲状态协议子模块 22控制下进行导频测量。
本实施例中, 空闲状态协议子模块 22可以包括第一单元 221、 第二单元 222 和第三单元 223中的一个或其组合, 其中第一单元 221用于检测 HRPD测量允许 变量信息, 并根据检测结果对导频测量进行控制; 初始化协议子模块 21在收到 LTE模块发送的测量开始命令后,将立即将 HRPD测量允许变量信息置成 "1" , 第一单元 221通过检测该 HRPD测量允许变量信息得知允许进行导频测量, 则 控制导频测量子模块 24进行导频测量。
另外, 初始化协议子模块 21在收到 LTE模块发送的测量开始命令后, 将立 即并将 HRPD测量允许变量信息置位成 "1" 后, 会向空闲状态协议子模块 22 发送测量指示信息,指示空闲状态协议子模块 22可以控制进行导频侧测量, 第 二单元 222緩存初始化协议子模块 21发送的所述测量指示信息, 并在进入隧道 状态后根据緩存的测量指示信息对导频测量进行控制。
再有, 初始化协议子模块 21还用于在收到 LTE模块 1发送的测量开始命令 或测量停止命令后, 向空口连接管理协议子模块 23发送 HRPD测量允许变量信 息; HRPD模块 2进入空闲状态, 空闲状态协议子模块 22激活进入隧道状态, 空口连接管理协议子模块 23在激活空闲状态协议子模块 22的同时,根据之前初 始化协议模块 21提交的 HRPD测量允许变量信息, 向空闲状态协议子模块 22发 送测量指示信息, 第三单元 223接收空口连接管理协议子模块 23发送的测量指 示信息, 并根据所述测量指示信息对导频测量进行控制。
本实施例提供的双模终端,在空闲状态协议子模块进入隧道状态后不再等 待测量开始命令而触发进行导频测量, 而是通过主动查找 HRPD测量允许变量 信息而直接触发导频测量; 或通过事先緩存初始化协议发送来的测量指示信 息,等到空闲状态协议子模块进入隧道状态后能够通过查找緩存信息触发导频 测量;或者是空闲状态协议子模块根据被激活时接收到的空口连接管理协议子 模块发送的测量指示信息进行导频测量。 能够避免双模终端中 HRPD模块的空 闲状态协议子模块在进入隧道状态后,如果 LTE模块已经发出了测量开始命令 而尚未发出测量停止命令不能进行导频测量现象的发生, 保证双模终端的 LTE-HRPD切换过程中空闲状态协议子模块导频测量的正常进行,提高切换成 功率, 确保系统工作正常, 提高服务质量。
本发明实施例还提供一种导频测量控制装置, 包括括高速率分组数据模 块,用于在所述导频测量控制装置进行从非高速率分组数据网络到高速率分组 数据网络的网络切换过程中,所述导频测量控制装置的高速率分组数据模块中 的空闲状态协议子模块进入隧道状态后,所述空闲状态协议子模块根据测量标 识信息对导频测量进行控制。本实施例提供的导频测量控制装置可以为移动终 端等用户移动设备。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种导频测量控制方法, 其特征在于, 包括:
在双模终端进行从非高速率分组数据网络到高速率分组数据网络的网络 切换过程中,所述双模终端的高速率分组数据模块中的空闲状态协议子模块进 入隧道状态后,所述空闲状态协议子模块根据测量标识信息对导频测量进行控 制。
2、根据权利要求 1所述的导频测量控制方法, 其特征在于, 所述空闲状态 协议子模块根据测量标识信息对导频测量进行控制包括:
所述空闲状态协议子模块通过检测高速率分组数据测量允许变量信息,对 导频测量进行控制; 或
所述空闲状态协议子模块通过检测緩存中存储的测量指示信息,对导频测 量进行控制; 或
所述空闲状态协议子模块根据所述双模终端的高速率分组数据模块中的 空口连接管理协议子模块在激活所述空闲状态协议子模块时发送的测量指示 信息, 对导频测量进行控制。
3、根据权利要求 2所述的导频测量控制方法, 其特征在于, 所述空闲状态 协议子模块通过检测高速率分组数据测量允许变量信息对导频测量进行控制 包括:
所述空闲状态协议子模块检测所述检测高速率分组数据测量允许变量信 息, 若所述检测高速率分组数据测量允许变量信息表示允许测量, 则开启所述 高速率分组数据模块中的导频测量子模块进行导频测量。
4、根据权利要求 3所述的导频测量控制方法, 其特征在于, 还包括所述空 闲状态协议子模块检测所述检测高速率分组数据测量允许变量信息,若所述检 测高速率分组数据测量允许变量信息表示不允许测量,则关闭所述导频测量子 模块停止导频测量。
5、根据权利要求 2所述的导频测量控制方法, 其特征在于, 所述空闲状态 协议子模块通过检测緩存中存储的测量指示信息对导频测量进行控制包括: 所述空闲状态协议子模块检测緩存中存储的测量指示信息,若所述测量指 示信息表示允许测量,则开启所述高速率分组数据模块中的导频测量子模块进 行导频测量。
6、根据权利要求 5所述的导频测量控制方法, 其特征在于, 还包括所述空 闲状态协议子模块检测所述检测高速率分组数据测量允许变量信息,若所述测 量指示信息表示不允许测量, 则关闭所述导频测量子模块停止导频测量。
7、 根据权利要求 5或 6所述的导频测量控制方法, 其特征在于, 所述空闲 状态协议子模块进入隧道状态之前还包括:
所述空闲状态协议子模块接收所述双模终端的高速率分组数据模块中的 初始化协议子模块发送的、或接收所述双模终端非高速率分组数据模块发送的 所述测量指示信息, 并在所述緩存中存储所述测量指示信息。
8、根据权利要求 2所述的导频测量控制方法, 其特征在于, 所述空闲状态 协议子模块根据所述双模终端的高速率分组数据模块中的空口连接管理协议 子模块在激活所述空闲状态协议子模块时发送的测量指示信息,对导频测量进 行控制包括:
所述空闲状态协议子模块检测所述双模终端的高速率分组数据模块中的 空口连接管理协议子模块在激活所述空闲状态协议子模块时发送的测量指示 信息, 若所述测量指示信息表示允许测量, 则开启所述高速率分组数据模块中 的导频测量子模块进行导频测量。
9、根据权利要求 8所述的导频测量控制方法, 其特征在于, 还包括所述空 闲状态协议子模块检测所述双模终端的高速率分组数据模块中的空口连接管 理协议子模块在激活所述空闲状态协议子模块时发送的测量指示信息,若所述 测量指示信息表示不允许测量, 则关闭所述导频测量子模块停止导频测量。
10、 根据权利要求 8或 9所述的导频测量控制方法, 其特征在于, 所述空闲 状态协议子模块根据所述双模终端的高速率分组数据模块中的空口连接管理 协议子模块在激活所述空闲状态协议子模块时发送的测量指示信息之前,还包 括:
所述双模终端的高速率分组数据模块中的初始化协议子模块收到所述双 模终端非高速率分组数据模块发送的测量开始命令或测量停止命令后,向所述 空口连接管理协议子模块发送所述高速率分组数据测量允许变量信息;
所述空口连接管理协议子模块在激活所述空闲状态协议子模块的同时,根 据所述检测高速率分组数据测量允许变量信息向所述空闲状态协议子模块发 送所述测量指示信息。
11、 一种双模终端, 包括非高速率分组数据模块和高速率分组数据模块, 其特征在于, 所述高速率分组数据模块包括:
空闲状态协议子模块, 用于在进入隧道状态后,通过检测高速率分组数据 测量允许变量信息, 或通过检测緩存中存储的测量指示信息, 或根据所述双模 终端的高速率分组数据模块中的空口连接管理协议子模块在激活所述空闲状 态协议子模块时发送的测量指示信息, 对导频测量进行控制。
12、 根据权利要求 11所述的双模终端, 其特征在于, 所述高速率分组数据 模块还包括:
导频测量子模块, 用于在所述空闲状态协议子模块控制下进行导频测量。
13、 根据权利要求 11或 12所述的双模终端, 其特征在于, 所述空闲状态协 议子模块包括以下单元的一个或其组合:
第一单元, 用于检测高速率分组数据测量允许变量信息, 并根据检测结果 对导频测量进行控制;
第二单元, 用于緩存所述初始化协议子模块发送的所述测量指示信息, 并 根据緩存的测量指示信息对导频测量进行控制;
第三单元, 用于接收所述空口连接管理协议子模块发送的测量指示信息, 并根据所述测量指示信息对导频测量进行控制。
14、 根据权利要求 13所述的双模终端, 其特征在于, 所述初始化协议子模 块还用于在收到所述非高速率分组数据演进模块发送的测量开始命令或测量 停止命令后 ,向所述空口连接管理协议子模块发送高速率分组数据测量允许变 量信息;所述空口连接管理协议子模块还用于在激活所述空闲状态协议子模块 的同时,根据所述检测高速率分组数据测量允许变量信息向所述空闲状态协议 子模块发送所述测量指示信息。
15、 一种导频测量控制装置, 其特征在于, 包括高速率分组数据模块, 用 于在所述导频测量控制装置进行从非高速率分组数据网络到高速率分组数据 网络的网络切换过程中,所述导频测量控制装置的高速率分组数据模块中的空 闲状态协议子模块进入隧道状态后,所述空闲状态协议子模块根据测量标识信 息对导频测量进行控制。
PCT/CN2009/075164 2008-11-28 2009-11-27 导频测量控制方法及双模终端 WO2010060383A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/117,992 US8437311B2 (en) 2008-11-28 2011-05-27 Pilot-measurement control method and dual-mode terminal
US13/275,064 US8233904B2 (en) 2008-11-28 2011-10-17 Pilot-measurement control method and dual-mode terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101783802A CN101754313B (zh) 2008-11-28 2008-11-28 导频测量控制方法及双模终端
CN200810178380.2 2008-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/117,992 Continuation US8437311B2 (en) 2008-11-28 2011-05-27 Pilot-measurement control method and dual-mode terminal

Publications (1)

Publication Number Publication Date
WO2010060383A1 true WO2010060383A1 (zh) 2010-06-03

Family

ID=42225268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075164 WO2010060383A1 (zh) 2008-11-28 2009-11-27 导频测量控制方法及双模终端

Country Status (3)

Country Link
US (2) US8437311B2 (zh)
CN (2) CN101754313B (zh)
WO (1) WO2010060383A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101754313B (zh) 2008-11-28 2012-07-04 华为技术有限公司 导频测量控制方法及双模终端
US9451505B2 (en) 2011-10-20 2016-09-20 Qualcomm Incorporated Methods and apparatus for handling failure and retry mechanisms during eHRPD pre-registration
US8948776B2 (en) * 2012-09-05 2015-02-03 Dynamic Invention Llc Secondary user selection in cooperative sensing scheduling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529434A (zh) * 2003-09-29 2004-09-15 中兴通讯股份有限公司 宽带码分多址系统到个人便携式电话系统间切换的判决方法
US20060126564A1 (en) * 2004-11-22 2006-06-15 Shreesha Ramanna Method and system for inter-technology active handoff of a hybrid communication device
CN101098546A (zh) * 2006-06-27 2008-01-02 华为技术有限公司 一种将会话切换到高速分组数据网络的方法和系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050046835A (ko) 2003-11-14 2005-05-19 에스케이 텔레콤주식회사 더미 파일럿 신호를 이용하여 광대역 부호 분할 다중접속망에서 부호 분할 다중 접속망으로 핸드오버하는 방법및 시스템
CN100382545C (zh) * 2004-10-08 2008-04-16 华为技术有限公司 实现双模终端同时接收双网消息的系统及方法
US20060109818A1 (en) * 2004-11-22 2006-05-25 Shreesha Ramanna Method and system for inter-technology active handoff of a hybrid communication device
US7567791B2 (en) 2005-09-19 2009-07-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in a wireless communications system that uses a multi-mode base station
CN101009907B (zh) * 2006-01-24 2011-12-21 华为技术有限公司 演进网络架构中隧道建立、释放方法及装置
US9461736B2 (en) * 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
CN101039507B (zh) * 2006-03-14 2011-09-14 华为技术有限公司 演进网络架构中隧道建立、释放方法及装置
CN100466618C (zh) 2006-03-30 2009-03-04 华为技术有限公司 一种建立高速率分组数据网络分组数据会话的方法及系统
US8644247B2 (en) 2006-10-12 2014-02-04 Telefonaktiebolaget L M Ericsson (Publ) Inter-system handoffs in multi-access environments
KR100771900B1 (ko) 2006-10-27 2007-10-31 삼성전자주식회사 휴대용 단말기에서 셀 재선택 방법 및 장치
US7710987B2 (en) 2006-12-14 2010-05-04 Motorola, Inc. Efficient transitions between operating states in a communication network
US8289920B2 (en) * 2007-03-16 2012-10-16 Qualcomm Incorporated Method and apparatus for handoff between access systems
US8009612B2 (en) 2007-07-17 2011-08-30 Motorola Mobility, Inc. Method of establishing an HRPD signal link
CN101159964B (zh) * 2007-11-19 2010-06-02 北京天碁科技有限公司 多模终端的测量调度方法及多模终端
CN101291535B (zh) * 2008-06-11 2012-09-05 中兴通讯股份有限公司 终端在不同网络间的切换方法及系统
US20100046477A1 (en) 2008-08-19 2010-02-25 Motorola, Inc. Method for Hand-Over In A Heterogeneous Wireless Network
CN101754313B (zh) 2008-11-28 2012-07-04 华为技术有限公司 导频测量控制方法及双模终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1529434A (zh) * 2003-09-29 2004-09-15 中兴通讯股份有限公司 宽带码分多址系统到个人便携式电话系统间切换的判决方法
US20060126564A1 (en) * 2004-11-22 2006-06-15 Shreesha Ramanna Method and system for inter-technology active handoff of a hybrid communication device
CN101098546A (zh) * 2006-06-27 2008-01-02 华为技术有限公司 一种将会话切换到高速分组数据网络的方法和系统

Also Published As

Publication number Publication date
US20110249587A1 (en) 2011-10-13
CN101754313A (zh) 2010-06-23
US20120033576A1 (en) 2012-02-09
US8437311B2 (en) 2013-05-07
CN102711205B (zh) 2015-08-19
CN101754313B (zh) 2012-07-04
US8233904B2 (en) 2012-07-31
CN102711205A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
TWI735837B (zh) 無線傳輸/接收單元(wtru)及5g nas 中協定增強方法
TW201830922A (zh) 用於維護在多sim多待機(msms)模式下操作的無線通訊設備中的多個sim上的服務的系統和方法
KR102521134B1 (ko) 내장형 범용 집적 회로 카드로부터의 다중 가입 서비스들의 획득
WO2012171456A1 (zh) 分流数据到无线局域网的方法、终端及网络设备
US10911994B2 (en) Method and system for end device management of voice over new radio and non-voice over new radio in multi-rat environment
US20130223335A1 (en) Multi-mode terminal and method for controlling operation mode thereof
US8417254B2 (en) Systems and methods for multiple radio access bearier traffic throttling
JP2011505757A (ja) 高速移動無線装置用のネットワーク起動型事前ハンドオーバ手順
JP2015524210A (ja) 複数のプロセッサを用いた熱緩和のためのシステムおよび方法
WO2013102323A1 (zh) 无线局域网热点功能控制处理方法及装置
WO2016011603A1 (zh) 用户设备及电路域回落切换方法
US20140066118A1 (en) Systems and methods for sending floor requests in parallel with traffic channel setup in wireless networks
WO2012174944A1 (zh) 网络切换方法及系统
JP6461154B2 (ja) 統合ネットワークにおけるセルラーからwlanへのハンドオーバ
WO2013104152A1 (zh) 多模终端业务切换方法及装置
WO2015032056A1 (zh) 传输数据的方法及基站、用户设备
WO2010127585A1 (zh) 一种多模终端及其实现自动呼叫保持的方法
WO2013053327A1 (zh) 网络选择方法、移动终端及基站
WO2010060383A1 (zh) 导频测量控制方法及双模终端
WO2013097411A1 (zh) 通信终端及其网络切换方法
KR102305063B1 (ko) 로밍 핸드오프 방법, 중앙 제어 디바이스, 및 스테이션
JP2021510993A (ja) セルアクセスプロシージャの改善
WO2018095015A1 (zh) 电路域回落的方法、基站、移动管理实体和终端
WO2014048099A1 (zh) 一种移动性管理网元和方法
CN113543282A (zh) 一种无线漫游方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2315/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09828643

Country of ref document: EP

Kind code of ref document: A1