WO2010060236A1 - 大规模非并网风电直接应用于生产甲醇的方法 - Google Patents

大规模非并网风电直接应用于生产甲醇的方法 Download PDF

Info

Publication number
WO2010060236A1
WO2010060236A1 PCT/CN2008/002109 CN2008002109W WO2010060236A1 WO 2010060236 A1 WO2010060236 A1 WO 2010060236A1 CN 2008002109 W CN2008002109 W CN 2008002109W WO 2010060236 A1 WO2010060236 A1 WO 2010060236A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
methanol
water
oxygen
grid
Prior art date
Application number
PCT/CN2008/002109
Other languages
English (en)
French (fr)
Inventor
顾为东
倪维斗
Original Assignee
江苏省信息化研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省信息化研究中心 filed Critical 江苏省信息化研究中心
Publication of WO2010060236A1 publication Critical patent/WO2010060236A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/06Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by mixing with gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1621Compression of synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1684Integration of gasification processes with another plant or parts within the plant with electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the invention relates to a method for producing methanol, in particular to a method for producing methanol by using hydrogen and oxygen which are electrolyzed by water as a power source for large-scale non-grid-connected wind power electrolysis equipment, which belongs to the production field of chemical raw materials. .
  • coal resources there are two main ways to effectively use coal resources: one is to use water gas to produce methanol, thus to create carbon-based chemistry with methanol as the source; the other is to use coal as raw material to prepare by water gas.
  • Technologies for the production of diesel, gasoline and liquefied petroleum gas by technologies such as formazan reforming and naphtha isomerization.
  • This production method using coal as a raw material and power source has low utilization efficiency of coal, and brings a large amount of greenhouse gas CO 2 emission and a large amount of water consumption, which seriously affects the natural environment.
  • Methanol is an extremely important organic chemical raw material. It can also be directly used as a transportation fuel. Its molecular formula is C 0H, which is a colorless, slightly ethanol-containing volatile liquid. It is the basic product of carbon-based chemistry and plays an important role in the national economy.
  • methanol production requires coal as raw material, and at the same time, fossil energy such as coal is needed to provide energy. Therefore, methanol is both an energy supply and a chemical product with large energy consumption. For the methanol industry, it is urgent to solve the problem of energy saving and consumption reduction in the production process and organic comprehensive utilization of new energy, and improve energy utilization efficiency. The production method of methanol has matured.
  • methanol is almost always synthesized by a catalytic hydrogenation process using carbon monoxide or carbon dioxide.
  • Typical processes include the production of feed gas, purification of feed gas, methanol synthesis, and refining of crude methanol, as shown in Figure 1.
  • the manufacture of raw material gas and the purification of raw material gas are extremely important parts of the methanol production process, and also the most energy-consuming part of the methanol production process, accounting for about 45% of the total energy consumption of the methanol process.
  • the solid fuel for producing the methanol feed gas is mainly coal and coke.
  • a flammable gas that is, a gas, can be obtained by hot working coal and coke with steam and oxygen.
  • the oxygen required for production is mainly provided by the air separation unit, and the operation of the air separation unit requires the consumption of electric energy. If the electric energy is realized by the form of thermal power generation, for every ton of methanol produced, only about 11 parts of the air separation unit will be consumed. Tons of coal and 118 tons of water, while producing 28 tons of carbon dioxide by-product.
  • the main purpose is to adjust the hydrocarbon ratio.
  • the stoichiometric ratio of hydrogen to methanol for methanol synthesis is 2, and dioxide is
  • the carbon equivalent ratio of the carbon reaction is 3.
  • the hydrogen to carbon ratio in the feed gas is as follows:
  • the composition of the raw material gas produced by different processes using different raw materials tends to deviate from the f value or the M value.
  • the ratio of hydrogen to carbon in the crude feed gas obtained from coal as raw material is too low. It is therefore necessary to adjust the proportion of hydrogen to carbon in the feed gas.
  • a typical process for adjusting the hydrogen to carbon ratio is a carbon monoxide shift reaction: a reaction between carbon monoxide and steam is converted to hydrogen and carbon dioxide, followed by a carbon dioxide removal process.
  • This method of adjusting the hydrogen to carbon ratio has the following disadvantages:
  • Wind power grid connection is the only application method for large-scale wind farms in the world.
  • the utilization of wind energy is mainly carried out in accordance with the route of “wind turbine-generator-power grid-user (load)” (Fig. 2a), where the grid is the load of wind power and the power supply of the user, and the existence of the grid ensures the utilization of wind power.
  • load load
  • Fig. 2a large-scale wind power grids still have technical obstacles that are difficult to overcome at this stage. It is difficult to overcome the contribution rate of wind power to the power grid by more than 10%.
  • the wind power grid puts forward the requirements for the wind turbine to meet the stability, voltage regulation and steady phase of the power grid, which greatly increases the wind turbine manufacturing cost and wind power price, and limits the large-scale application of wind power.
  • the object of the present invention is to find a suitable load for a large-scale random change of wind power with green environmental protection, and to provide a large-scale non-grid-connected wind power directly for improving methanol production, reducing coal consumption and reducing carbon dioxide emissions.
  • a method applied to the production of methanol. is to find a suitable load for a large-scale random change of wind power with green environmental protection, and to provide a large-scale non-grid-connected wind power directly for improving methanol production, reducing coal consumption and reducing carbon dioxide emissions.
  • the large-scale non-grid-connected wind power of the invention is directly applied to the method for producing methanol, mainly using large-scale non-grid-connected wind power as the working power source of the electrolysis equipment, and oxygen which is electrolyzed by water as a gasifying agent, and hydrogen which is electrolyzed by water. It is used to adjust the hydrocarbon-to-hydrogen ratio in the water gas after desulfurization, and the water gas obtained at the optimum hydrocarbon ratio is re-formed into methanol.
  • the method consists mainly of the following steps:
  • oxygen and hydrogen electrolyzed by water into the oxygen storage tank and the hydrogen storage tank are respectively stored in the oxygen storage tank, and the oxygen compressor is connected at the outlet of the oxygen storage tank.
  • the oxygen compressor is connected at the outlet of the oxygen storage tank.
  • step (3) The water-gas stream of the optimum hydrocarbon ratio produced in step (2) is introduced into the methanol synthesis tower. After the synthesis, the crude methanol is obtained, and the crude methanol is subjected to a conventional process such as condensation and rectification to obtain a methanol product.
  • the electrolysis equipment uses DQ375/1.6 type pressurized water electrolysis hydrogen production unit or ZDQ375/1.6 water electrolysis hydrogen production unit or a larger output electrolysis unit in order to obtain sufficient electricity.
  • the large-scale non-grid-connected wind power generator set uses a plurality of high-power wind turbines equal to or greater than 1.5 megawatts to be directly connected to each other in parallel.
  • the process for producing methanol by using non-grid-connected wind power provided by the present invention is different from the conventional process for adjusting the hydrogen-carbon ratio by using the variation method, and is also different from the simple process of producing methanol by using conventional grid-connected electric energy electrolysis water. Because of the use of grid-connected electricity to produce methanol, the essence is to use fossil energy such as coal to convert, and there is the loss of coal into electricity and the environmental pollution of carbon dioxide emissions.
  • Figure 1 is a flow chart of the process of manufacturing and purifying the raw material gas
  • Figure 2 (a) is a schematic structural view of a conventional wind power system
  • Figure 2 (b) is a schematic diagram of the structure of a non-grid-connected wind power system
  • Figure 3 is a schematic diagram of the process flow of large-scale non-grid-connected wind power directly applied to methanol production. ' detailed description
  • Converting wind energy into 100 randomly varying pulsating DC power through 100 1500KW wind turbines The wind turbine can be purchased with the simplified version of Goldwind 70/1500 produced by Goldwind Technology Co., Ltd. (providing full power inverter) (Director), direct output DC, its technical parameters are shown in Table 1. Other models of high-power wind turbines equal to or greater than 1.5 MW can also be selected. Gold wind 70/1500 wind turbine technical parameters
  • the pulsating DC electric energy obtained by the high-power wind turbine generator is used as the working power source of the electrolysis water tank, and the electrolysis water tank equipment is matched according to the total output of the wind power output.
  • the model produced by Suzhou Jingli Hydrogen Equipment Co., Ltd. is DQ375/1. 6 type.
  • the main technical parameters of pressurized water electrolysis hydrogen production unit are shown in Table 2.
  • Other types of water electrolysis devices such as ZDQ375/1.6 and other models can also be used.
  • the main process flow of the present invention is shown in FIG. 3, and the method includes the following three steps: (1) using large-scale non-grid-connected wind powers 8 and 9 as the working power source of the electrolysis device 10, and water using the electrolysis device 10.
  • the electrolyzed oxygen and hydrogen are separately stored in the oxygen storage tank 11 and the hydrogen storage tank 13, and the oxygen compressor 12 is connected to the outlet of the oxygen storage tank 11, and the outlet pressure of the oxygen is adjusted according to the production demand; at the outlet of the hydrogen storage tank 13
  • the hydrogen stream is connected to the hydrogen compressor 14, the heat exchanger 15, and the flow regulating valve 16, and the temperature, pressure and flow rate of the hydrogen outlet are adjusted according to the production requirements, such as: adjusting the temperature of the hydrogen outlet to 230 to 420 ° C, and the pressure to 5 to 30 MPa.
  • the carbon stream 1 and the water stream 2 prepared by the conventional method are introduced into the coal gasifier 4, and the oxygen in the oxygen storage tank 11 in the above step (1) is used as a gasifying agent, and an appropriate amount of the oxygen stream 3 is adjusted to enter the coal gasification.
  • the furnace 4, combined with the carbon-water mixture stream, can produce a water gas stream rich in C0, C0 2 and the water gas stream is compressed by the compressor 5, heat exchanged by the heat exchanger 6, and then sent to the desulfurization unit 7 to be treated as desulfurized water gas.
  • the flow rate is detected by the on-line detecting device 17 to detect the proportion of hydrocarbons in the water gas stream, and the flow rate of the hydrogen in the step (1) is controlled according to the target hydrocarbon ratio, and the appropriate amount of the hydrogen stream is mixed with the desulfurized water gas stream to form A water-gas stream with an optimum hydrocarbon ratio of 18.
  • the water gas stream 18 having the optimum hydrocarbon ratio produced in the step (2) is introduced into the methanol synthesis column 19 to obtain crude methanol 20, and then the crude methanol 20 is subjected to a conventional process such as condensation and rectification. A methanol product is available.
  • the electrolysis equipment adopts DQ375/1.6 type pressurized water electrolysis hydrogen production device or ZDQ375/1.6 water electrolysis hydrogen production device or a larger output electrolysis device, and the large-scale non-grid-connected wind power generation wind turbine generator selects A plurality of high-power wind turbines equal to or greater than 1.5 MW are connected in parallel and directly supplied.
  • the invention is a large-scale non-grid-connected wind power that is not only suitable for environmental protection, but also provides a suitable load for producing methanol, which can greatly improve the yield, reduce the coal consumption, and reduce the carbon dioxide emissions. A good way to methanol.

Description

大规模非并网风电直接应用于生产甲醇的方法 技术领域
本发明涉及一种甲醇的生产方法, 特别是一种使用大规模非并网风电作 电解设备的电源将水电解成的氢气和氧气作为重要的生产原料生产甲醇的方 法, 属于化工原料的生产领域。
背景技术
能源与环境是当今世界各国关注的两大主题。 据美国能源信息管理局
(Energy Information Administration) 在其发布的 《2007年度国际能源展 望》 (International Energy Outlook 2007)分析, 世界能源消耗在今后的 20年中仍将持续增长, 预计到 2030年, 世界年能源消耗将由 2004年的 447 X 1015 Btu (British thermal unit) 增加到 702 X Ιθ'5 Btu, 增长达 57%。 而 国际能源署(International Energy Agency) 的 《2007年度世界能源展望》
(World Energy Outlook 2007)则指出, 中国和印度已经成为世界上能源消 费增长最快的区域。
随着研究的不断深入, 对于煤炭资源的有效利用方式主要有两种途径- 一是利用水煤气生产甲醇, 从而开创以甲醇为源头的碳一化学; 另外一种是 以煤为原料, 通过水煤气制备、 甲垸重整、 石脑油异构化等技术生产柴油、 汽油、 液化石油气的技术。 但是无论采用何种途径利用煤炭资源, 均存在生 产过程中要消耗大量的能量,而这些能量的绝大部分还是来源于煤炭资源 (约 75%) 。 这种以煤炭为原料和动力来源的生产方式, 对于煤的利用效率较低, 而且带来大量温室气体 C02的排放和大量水资源消耗, 严重影响自然环境。
甲醇是一种极其重要的有机化工原料, 也可以作为运输燃料直接应用, 其分子式是 C 0H,为无色、略带乙醇香气的挥发性液体。是碳一化学的基础 产品,在国民经济中占有重要的地位。另一方面, 甲醇生产需要以煤为原料, 同时生产过程中还需要煤等化石能源提供能量, 因此甲醇既是一种能源供给 品同时也是一种能源消耗较大的化工产品。 对于甲醇工业, 急需解决的是生 产过程中的节能降耗以及与新能源的有机综合利用, 提高能源的利用效率。 甲醇的生产方法已经趋于成熟。 目前工业上几乎都是采用一氧化碳、 二 氧化碳加压催化氢化法合成甲醇。 典型的流程包括原料气的制造、 原料气的 净化、 甲醇合成和粗甲醇的精制等工序, 如图 1所示。 其中原料气的制造以 及原料气的净化是甲醇生产工艺中极其重要的一部分, 也是甲醇生产工艺中 耗能最高的部分, 约占甲醇工艺总耗能的 45%。
原料气制造工艺中, 制造甲醇原料气的固体燃料主要是煤和焦碳。 用蒸 汽和氧气对煤、 焦碳进行热加工即可制得可燃性的气体即煤气。 生产中需要 的氧气主要由空分装置提供, 而空分装置的运行需要消耗电能, 若电能是通 过火力发电的形式来实现, 则每生产一吨甲醇, 仅运行空分装置就要消耗约 11吨煤和 118吨水, 同时副产 28吨的二氧化碳。
而在原料气的净化工艺中, 除脱除工艺中所产生的会使催化剂中毒的硫 外, 主要的目的是调节碳氢比。 根据化学反应计量式(1 )和式 (2)可知, 氢与一氧化碳合成甲醇的化学当量比为 2, 与二氧化
CO + 2H2 ^=±CH3OH ( 1)
C02 + 3H2 <—— > CH3OH + H20 (2)
碳反应的化学当量比为 3, 当一氧化碳和二氧化碳都存在时, 对原料气中的 氢碳比的要求如下:
H2 - C02 = 2 1o一 2.15 ( )
co+co2 j 或 M =—— ^—— = 2.0 -2.05 ( 4 )
CO + 1.5C02 、 不同的原料所采用不同的工艺所制得的原料气的组成往往偏离 f值或 M值。 以煤为原料所制得的粗原料气中氢碳比太低。 因此必须调节原料气中的氢碳 比例。
典型的调节氢碳比的工艺为一氧化碳变换反应: 使一氧化碳和水蒸汽反 应变换为氢气和二氧化碳, 进而进行二氧化碳的脱除工艺。 这种调节氢碳比 的方法存在着以下的缺点:
(一)对于一氧化碳和水蒸气的变换反应需要在 5. 5MPa、 320〜550°C下 才能发生, 因此需要消耗大量的能量, 同时高压操作, 会大大增加工艺的固 定资产投资和操作运行风险;
(二)一氧化碳和水蒸气的变换反应中,副产大量的 co2, 同时需要消耗 大量的水;
(三)对于二氧化碳的脱碳工艺主要有化学吸收法和物理吸收法, 但是 无论采取何种方法, 都需要在高达 5. 0MPa (表压)下操作, 设备成本投资巨 大。 同时, 脱碳吸收工艺还需配套吸收剂的再生系统,操作成本高。
因此, 对于原料气的制造和原料气的净化系统, 若有一种 "绿色"的能 源能够提供原料气制造过程所需要的氧气以及能够直接提供氢气来调节氢碳 比, 这将大大促进甲醇工艺的优化和节能降耗。
风能作为一种绿色的能源, 已经越来越收到研究学者的青睐。 风电并网 是目前世界上大规模风电场的唯一应用方式。 风能的利用主要按照 "风轮一 发电机一电网一用户 (负载)"这个路线来进行(图 2a), 其中电网是风电的 负载和用户的电源, 电网的存在保证了风电的利用。 但是由于风电的不稳定 性和波动特性, 大规模风电上网还存在着现阶段难以克服的技术障碍, 风电 对电网贡献率难以超过 10%已成为一个世界性难题。 同时风电上网对风力机 提出了满足电网稳频、 稳压和稳相位的要求, 由此大幅度增加了风力机制造 成本和风电价格, 使风电大规模应用受到限制。
针对风电并网存在的缺点, 本研究者提出了 "非并网风电"理论, 简言 之, 就是风电系统的终端负荷不再是传统的单一电网, 而是直接应用于一系 列能适应风电特性的高耗能产业及其它特殊领域,主要适用于 10万- 1000万 kW 以上大规模风电场。 其主要特点是: 将风电直接应用于用户 (负载) (见 图 2b) o
风电的这种非并网运行方式的优势体现在:
(一)采用直流电, 回避风电上网电压差、 相位差、 频率差难以控制的 问题, 绕开电网这一限制风电大规模应用的瓶颈, 也避免了风电并网对电网 系统的影响。
(二)突破终端负荷使用风电的局限, 使大规模风电在非并网风电系统 中的供电比重达到 100%。 (三)提高风能利用效率, 简化风力机结构和风电并网运行时所需大量 辅助设备, 风电经简单配置就可以直接应用于某些特定产业, 大幅度降低风 电场的制造成本和风电价格。
基于上述的背景, 我们提出了一种非并网风电直接应用于煤化工的生产 工艺。 此工艺是将大规模、 随机性变化的风能转化为脉动直流电, 并直接利 用该电能电解水生产氢气和氧气。 用获得的氢气和氧气作为甲醇生产工艺中 的原料。 利用该工艺将风能有效利用的同时, 还可以优化传统煤化工工艺, 实现生产工艺的节能降耗、 绿色环保。
发明内容
本发明的目的是既为绿色环保的大规模随机性变化的风电找到合适的负 载, 又为生产甲醇提供一种能大幅度提高产率、 降低煤耗、 减少二氧化碳排 放的大规模非并网风电直接应用于生产甲醇的方法。 ,
本发明的大规模非并网风电直接应用于生产甲醇的方法, 主要是使用大 规模非并网风电作为电解设备的工作电源, 将水电解成的氧气作为气化剂, 将水电解成的氢气用于调节脱硫后的水煤气中的碳氢比, 将获得的最佳碳氢 比的水煤气再制成甲醇。 该方法主要由以下步骤组成:
( 1 )将大规模非并网风电作为电解设备的工作电源,用电解设备将水电 解成的氧气和氢气分别进入氧气储罐和氢气储罐储存, 并在氧气储罐出口连 接氧气压縮机, 根据生产需要, 调节氧气的出口压力; 在氢气储罐的出口处 连接氢气压缩机、换热器和流量调节阀,根据生产需要调节氢气出口的温度、 压力和流量;
(2)将常规方法制成的碳水混合物流进入煤气化炉, 以上述步骤(1 ) 中的氧气储罐的氧气为气化剂, 调节适量的氧气进入煤气化炉, 与碳水混合 物流结合即可生产出富含 C0、 C02和 ¾的水煤气物流, 该水煤气物流经压缩 机压缩、 换热器换热后, 再进入脱硫装置处理成脱硫的水煤气物流, 通过在 线检测装置检测该水煤气物流中碳氢的比例, 根据目标碳氢比, 控制调节上 述步骤(1)中的氢气的流量, 与脱硫的水煤气物流混合后, 形成一股最佳碳 氢比的水煤气物流;
(3)将步骤(2) 中所产生的最佳碳氢比的水煤气物流进入甲醇合成塔 中合成后得粗甲醇, 再将粗甲醇经冷凝、 精馏等常规工艺处理后即可获得甲 醇产品。
为了获得足够的氧气和氢气, 所述电解设备选用 DQ375/1. 6型加压水电 解制氢装置或 ZDQ375/1. 6水电解制氢装置或产量更大的电解装置,为了获得 足够的电量, 所述大规模非并网风电的风力发电机组选用多台等于或大于 1. 5兆瓦的大功率风力发电机组相并联而直接供电。
本发明提供的利用非并网风电生产甲醇工艺, 并不同于传统的利用变化 法调节氢碳比的工艺, 同时也不同于单纯的利用传统并网电能电解水生产甲 醇的工艺。 因为利用并网电能生产甲醇, 其本质还是利用煤等化石能源来转 化, 而且其中存在煤转化为电能的损失以及大量排放二氧化碳的环境污染问 题。
采用本专利提供的方法生产甲醇具有以下的优点:
(一) 大幅度提高甲醇的产率, 其中单位煤量的甲醇产量增加一倍;
(二) 大大降低甲醇生产工艺的设备投资和操作费用, 节能降耗;
(三)大幅度减排二氧化碳, 使绿色煤化工成为可能。传统的利用变化法 生产甲醇会产生大量的 C02,而利用本发明提供的方法可以减少 50%以上的二 氧化碳排放量。
(四) 生产每吨甲醇的耗水量减少近 20%。
(五)将瞬时变化性的风能进行累计最终转化成为一种稳定性的能源,充 分利用了可再生风能资源, 且对环境和生态的干扰小。
附图说明
图 1 是原料气的制造及净化工艺流程图;
图 2 (a)为常规风电系统结构示意图;
图 2 (b) 为非并网风电系统结构示意图;
图 3为大规模非并网风电直接应用于甲醇生产工艺流程示意图。 ' 具体实施方式
参见图 3, 图中的 1为碳物流; 2为水物流; 3为氧气物流; 4为煤气化 炉; 5为压縮机; 6为换热器; 7为脱硫装置; 8为风能; 9为风力发电机组; 10为电解设备; 11为氧气储罐; 12氧气压縮机; 13为氢气储罐; 14为氢气 压缩机; 15为换热器; 16为流量调节阀; 17为在线检测装置; 18为最佳碳 氢比的水煤气物流; 19为甲醇合成塔; 20为粗甲醇。
结合图 3的工艺流程图, 通过以下实施例解释本发明。
将风能通过 100台 1500KW的风力发电机组转化为随机性变化的脉动直流 电, 该风力发电机可选购金风科技股份有限公司生产的型号为金风 70/1500 的简化型 (省却全功率逆变器), 直接输出直流电, 其技术参数如表 1所示。 也可选用等于或大于 1. 5兆瓦的其它型号的大功率风力发电机组。 金风 70/1500风力发电机技术参数
Figure imgf000008_0001
利用大功率风力发电机组获得的脉动直流电能作为电解水槽的工作电 源, 该电解水槽设备按风电输出总功率进行匹配, 如选苏州竞力制氢设备有 限公司生产的型号为 DQ375/1. 6型加压水电解制氢装置, 其主要技术参数指 标如表 2所示。 也可选用 ZDQ375/1. 6等其它型号的产量大的水电解装置。
DQ375/1. 6制氢设备技术参数
Figure imgf000008_0002
本发明的主要工艺流程如图 3所示, 其方法包括以下 3个步骤: (1 )将 大规模非并网风电 8和 9作为电解设备 10的工作电源, 用电解设备 10将水 电解成的氧气和氢气分别进入氧气储罐 11和氢气储罐 13储存, 并在氧气储 罐 11出口连接氧气压缩机 12, 根据生产需要, 调节氧气的出口压力; 在氢 气储罐 13的出口处氢气物流连接氢气压缩机 14、换热器 15、流量调节阀 16, 根据生产需要调节氢气出口的温度、 压力和流量, 如: 调节氢气出口的温度 为 230〜420°C、压力为 5〜30MPa。 (2)将常规方法制成的碳物流 1和水物流 2进入煤气化炉 4, 以上述步骤(1)中的氧气储罐 11的氧气为气化剂, 调节 适量的氧气物流 3进入煤气化炉 4,与碳水混合物流结合即可生产出富含 C0、 C02和 的水煤气物流,该水煤气物流经压缩机 5压缩、换热器 6换热后,再 进入脱硫装置 7处理成脱硫的水煤气物流,通过在线检测装置 17检测该水煤 气物流中碳氢的比例, 根据目标碳氢比, 控制调节上述步骤(1)中的氢气的 流量, 该适量的氢气物流与脱硫的水煤气物流混合后, 形成一股最佳碳氢比 的水煤气物流 18。 (3)将步骤(2) 中所产生的最佳碳氢比的水煤气物流 18 进入甲醇合成塔 19中合成后得粗甲醇 20, 再将粗甲醇 20经冷凝、精馏等常 规工艺处理后即可获得甲醇产品。
所述电解设备选用 DQ375/1. 6型加压水电解制氢装置或 ZDQ375/1. 6水电 解制氢装置或产量更大的电解装置, 所述大规模非并网风电的风力发电机组 选用多台等于或大于 1. 5兆瓦的大功率风力发电机组相并联而直接供电。
本发明是一种既为绿色环保的随机性变化的大规模非并网风电找到合适 的负载, 又为生产甲醇提供一种能大幅度提高产率、 降低煤耗、 减少二氧化 碳排放两全齐美的生产甲醇的好方法。

Claims

权 利 要 求
1. 一种大规模非并网风电直接应用于生产甲醇的方法,其特征在于包括 以下步骤:
( 1)将大规模非并网风电作为电解设备的工作电源,用电解设备将水电 解成的氧气和氢气分别进入氧气储罐和氢气储罐储存, 并在氧气储罐出口连 接氧气压缩机, 根据生产需要, 调节氧气的出口压力; 在氢气储罐的出口处 连接氢气压缩机、换热器和流量调节阀,根据生产需要调节氢气出口的温度、 压力和流量;
(2)将常规方法制成的碳水混合物流进入煤气化炉, 以上述步骤(1 ) 中的氧气储罐的氧气为气化剂, 调节适量的氧气进入煤气化炉, 与碳水混合 物流结合即可生产出富含 C0、 C02和 的水煤气物流, 该水煤气物流经压缩 机压缩、 换热器换热后, 再进入脱硫装置处理成脱硫的水煤气物流, 通过在 线检测装置检测该水煤气物流中碳氢的比例, 根据目标碳氢比, 控制调节上 述步骤(1)中的氢气的流量, 与脱硫的水煤气物流混合后,形成一股最佳碳 氢比的水煤气物流;
(3)将步骤(2) 中所产生的最佳碳氢比的水煤气物流进入甲醇合成塔 中合成后得粗甲醇, .再将粗甲醇经冷凝、 精馏等常规工艺处理后即可获得甲 醇产品。
2、 如权利要求 1所述的大规模非并网风电直接应用于生产甲醇的方法, 其特征在于所述电解设备选用 DQ375/1. 6 型加压水电解制氢装置或 ZDQ375/1. 6水电解制氢装置,所述大规模非并网风电的风力发电机组选用等 于或大于 1. 5兆瓦的大功率风力发电机组。
PCT/CN2008/002109 2008-11-27 2008-12-29 大规模非并网风电直接应用于生产甲醇的方法 WO2010060236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102362798A CN101440019B (zh) 2008-11-27 2008-11-27 大规模非并网风电直接应用于生产甲醇的方法
CN200810236279.8 2008-11-27

Publications (1)

Publication Number Publication Date
WO2010060236A1 true WO2010060236A1 (zh) 2010-06-03

Family

ID=40724651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/002109 WO2010060236A1 (zh) 2008-11-27 2008-12-29 大规模非并网风电直接应用于生产甲醇的方法

Country Status (2)

Country Link
CN (1) CN101440019B (zh)
WO (1) WO2010060236A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034929A2 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrylsäure aus methanol und essigsäure
DE102010040923A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Ethanol und Formaldehyd
WO2014070735A1 (en) 2012-10-31 2014-05-08 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
WO2014209633A2 (en) 2013-06-27 2014-12-31 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
CN114262262A (zh) * 2021-12-27 2022-04-01 西安热工研究院有限公司 一种利用合成甲醇废气制取甲醇的储能系统及方法
GB2599967A (en) * 2020-10-14 2022-04-20 Velocys Tech Ltd Gasification process
WO2022242174A1 (zh) * 2021-05-20 2022-11-24 中国华能集团清洁能源技术研究院有限公司 用于电解水制氢的风网协同供电系统及供电方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787993B (zh) * 2012-08-06 2015-05-13 上海合既得动氢机器有限公司 一种发电供应系统及方法
CN104371780B (zh) * 2014-11-03 2016-06-08 中国华能集团清洁能源技术研究院有限公司 风、光弃电和工业有机废水用于煤制天然气的系统及方法
DE102014225063A1 (de) 2014-12-05 2016-06-09 Siemens Aktiengesellschaft Kraftwerk
CN106977369B (zh) * 2016-12-15 2020-12-01 稳力(广东)科技有限公司 一种综合利用电能联合制甲醇及氨的装置及方法
CN108898242B (zh) * 2018-06-07 2021-07-27 汉谷云智(武汉)科技有限公司 一种多目标原油选购优化方法
CN110862838A (zh) * 2018-08-27 2020-03-06 襄阳中诚检测科技有限公司 一种化学产品提供系统
CN109384646A (zh) * 2018-12-24 2019-02-26 宁夏宝丰能源集团股份有限公司 一种无变换系统的合成气制甲醇装置及其工艺
CN112457159A (zh) * 2019-09-09 2021-03-09 中国科学院大连化学物理研究所 一种基于煤制备甲醇的装置及甲醇制备工艺
CN111140359A (zh) * 2019-12-16 2020-05-12 华北电力大学 太阳能驱动煤气化甲醇合成与零排放发电联产系统
CN111559956A (zh) * 2020-06-08 2020-08-21 甘肃华亭煤电股份有限公司煤制甲醇分公司 一种煤制甲醇过程二氧化碳转化系统及其工作方法
CN113956131A (zh) * 2021-10-08 2022-01-21 华陆工程科技有限责任公司 一种通过煤化工与绿氢耦合实现甲醇/乙二醇联产的方法
CN115959970A (zh) * 2021-10-11 2023-04-14 新奥科技发展有限公司 零碳排放的煤制甲醇系统及煤制甲醇的方法
CN114394883A (zh) * 2021-11-02 2022-04-26 华陆工程科技有限责任公司 粉煤废锅气化耦合绿电绿氢实现近零碳排放制备甲醇的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5510393A (en) * 1994-12-06 1996-04-23 Wright Malta Corporation Method for producing methanol
CN1141027A (zh) * 1993-11-12 1997-01-22 综合能源发展公司 制造甲醇的协同方法
US6133328A (en) * 2000-02-22 2000-10-17 Lightner; Gene E. Production of syngas from a biomass
US6645442B2 (en) * 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material
WO2005005312A2 (en) * 2003-06-30 2005-01-20 General Electric Company Co-producing hydrogen and power by biomass gasification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141027A (zh) * 1993-11-12 1997-01-22 综合能源发展公司 制造甲醇的协同方法
US5510393A (en) * 1994-12-06 1996-04-23 Wright Malta Corporation Method for producing methanol
US6133328A (en) * 2000-02-22 2000-10-17 Lightner; Gene E. Production of syngas from a biomass
US6645442B2 (en) * 2000-12-28 2003-11-11 Mitsubishi Heavy Industries, Ltd. Method and apparatus for producing methanol making use of biomass material
WO2005005312A2 (en) * 2003-06-30 2005-01-20 General Electric Company Co-producing hydrogen and power by biomass gasification

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877966B2 (en) 2010-09-16 2014-11-04 Basf Se Process for preparing acrylic acid from methanol and acetic acid
WO2012034929A2 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrylsäure aus methanol und essigsäure
WO2012035019A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von acrysläure aus ethanol und formaldehyd
DE102010040921A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Methanol und Essigsäure
US8507721B2 (en) 2010-09-16 2013-08-13 Basf Se Process for preparing acrylic acid from ethanol and formaldehyde
DE102010040923A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Ethanol und Formaldehyd
WO2014070735A1 (en) 2012-10-31 2014-05-08 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
WO2014209633A2 (en) 2013-06-27 2014-12-31 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
WO2022078915A1 (en) 2020-10-14 2022-04-21 Velocys Technologies Ltd Gasification process
GB2599967A (en) * 2020-10-14 2022-04-20 Velocys Tech Ltd Gasification process
GB2599967B (en) * 2020-10-14 2022-12-14 Velocys Tech Ltd Gasification process
US11572512B2 (en) 2020-10-14 2023-02-07 Velocys Technologies Ltd. Gasification process
US11840668B2 (en) 2020-10-14 2023-12-12 Velocys Technologies Ltd Gasification process
WO2022242174A1 (zh) * 2021-05-20 2022-11-24 中国华能集团清洁能源技术研究院有限公司 用于电解水制氢的风网协同供电系统及供电方法
CN114262262A (zh) * 2021-12-27 2022-04-01 西安热工研究院有限公司 一种利用合成甲醇废气制取甲醇的储能系统及方法

Also Published As

Publication number Publication date
CN101440019B (zh) 2011-11-30
CN101440019A (zh) 2009-05-27

Similar Documents

Publication Publication Date Title
WO2010060236A1 (zh) 大规模非并网风电直接应用于生产甲醇的方法
CN106977369B (zh) 一种综合利用电能联合制甲醇及氨的装置及方法
US9771822B2 (en) Carbon-dioxide-neutral compensation for current level fluctuations in an electrical power supply system
JP6611013B2 (ja) 柔軟に運転可能な電力プラントおよびそれの運転のための方法
CN102660340B (zh) 利用过剩电能将烟气中的二氧化碳转化成天然气的工艺及设备
CN100582201C (zh) 基于煤气化与甲烷化的电-替代天然气联产系统及工艺
WO2022193349A1 (zh) 一种基于可再生能源电解水和碳捕技术的联合制氢系统
WO2007076363B1 (en) Improved method for providing auxiliary power to an electric power plant using fischer-tropsch technology
CN103756741B (zh) 一种利用可再生电力的固体氧化物电解池制天然气的方法
US20110291425A1 (en) Low co2 emissions systems
CN103897736B (zh) 以太阳能及生物质气化为基础的氢能产储输用一体化系统
CN101540410B (zh) 天然气制氢与质子交换膜燃料电池集成发电的方法及装置
CN101993730B (zh) 基于化石燃料化学能适度转化的多功能能源系统
CN208182929U (zh) 一种将气化和电解耦合生产合成气的系统
CN114394883A (zh) 粉煤废锅气化耦合绿电绿氢实现近零碳排放制备甲醇的方法
CN202596893U (zh) 基于催化气化的电-合成天然气调峰发电系统
CN104987892A (zh) 一种分级气化化工未反应气适度循环型化工-动力多联产系统
CN103013598B (zh) 一种合成天然气的生产方法和装置
CN201334445Y (zh) 用大规模非并网风电进行甲醇生产的装置
CN214734561U (zh) 一种清洁氢与可再生能源氢联合生产系统
CN201402833Y (zh) 基于天然气制氢与质子交换膜燃料的电池集成发电装置
CN203904281U (zh) 以太阳能及生物质气化为基础的氢能产储输用一体化装置
CN105296035A (zh) 一种制取合成天然气的补氢甲烷化方法
CN220887417U (zh) 一种高效煤碳基原料化工—动力多联产装置
CN201334456Y (zh) 用大规模非并网风电进行液化煤制油的生产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878354

Country of ref document: EP

Kind code of ref document: A1