WO2010058811A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2010058811A1
WO2010058811A1 PCT/JP2009/069617 JP2009069617W WO2010058811A1 WO 2010058811 A1 WO2010058811 A1 WO 2010058811A1 JP 2009069617 W JP2009069617 W JP 2009069617W WO 2010058811 A1 WO2010058811 A1 WO 2010058811A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
concentration
methanol
electrode
fuel cell
Prior art date
Application number
PCT/JP2009/069617
Other languages
French (fr)
Japanese (ja)
Inventor
西村 勝憲
安藤 慎輔
貢 中原
正義 菅野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010539246A priority Critical patent/JPWO2010058811A1/en
Publication of WO2010058811A1 publication Critical patent/WO2010058811A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell using a liquid organic compound as a fuel.
  • solid polymer fuel cells that use liquid organic compounds as fuel
  • solid polymer fuel cells that use liquid organic compounds such as methanol, ethanol, and formic acid as fuels have low noise and low operating temperatures (about 70-80 ° C).
  • the fuel supply is easy. Therefore, a wide range of uses are expected as a portable power source, a power source for an electric vehicle, or a power source for an electric motorcycle, an assisted bicycle, and a light vehicle such as a wheelchair or a senior car for medical care.
  • a direct methanol fuel cell (hereinafter referred to as DMFC) using methanol as a fuel can eliminate a reformer, can supply fuel at room temperature, and has a fuel cost relative to output such as gasoline. It has advantages such as a cheaper point and a short start-up time because it can generate power at a low temperature of 50-60 ° C.
  • an “active” DMFC that forcibly distributes fuel using a pump or the like can obtain a high output of several tens of watts to several hundred watts, and is suitable for feeding relatively low power devices such as electronic devices and lighting fixtures. Yes.
  • a DMFC of 1 kW or more is used due to an increase in cell size and an increase in the number of stacked cells, the present invention can be applied to a moving body.
  • the electrolyte membrane used in the cell has a problem that the permeation of fuel such as methanol from the fuel electrode to the oxidation electrode cannot be completely prevented.
  • methanol and oxidant for example, oxygen contained in the air permeated through the oxidation electrode directly react to cause a problem of output reduction and fuel loss.
  • An object of the present invention is to provide a fuel cell equipped with a fuel control method using an oxidation current of fuel.
  • an object of the present invention is to realize control of a fuel concentration range wider than that in the conventional fuel cell that requires large load fluctuations.
  • Requirement for an element for measuring fuel concentration is that an object can be detected in a wide concentration range, and the detection signal does not greatly decrease with respect to the concentration.
  • One of the objects of the present invention is to obtain sufficient detection sensitivity even when the amount of noble metal such as platinum used is small. In other words, both detection sensitivity and cost are compatible.
  • an appropriate methanol concentration is determined for a frequently used output range, and the methanol concentration is managed within a predetermined range based on the concentration.
  • the methanol concentration is managed within a predetermined range based on the concentration.
  • a system is adopted in which a fuel tank is temporarily stored and a methanol tank is installed to supply the fuel to the DMFC, and the fuel is circulated by connecting the methanol tank and the DMFC with a pipe.
  • An object of the present invention is to provide a fuel cell system capable of accurately controlling the fuel concentration in a wide range in a fuel cell using liquid fuel.
  • a fuel control circuit for installing a concentration measuring element having a methanol oxidation electrode and a fuel flow passage formed on the electrode in the middle of a fuel circulation pipe for circulating the fuel, and controlling the fuel concentration according to the methanol concentration detected by the element It is to provide.
  • the second solution means is that the concentration measuring element of the first solution means is added with a configuration comprising a methanol oxidation electrode and a hydrogen generation electrode.
  • the third solution means that, in the second solution means, the hydrogen generating electrode is provided with a function of improving water repellency as compared with the methanol oxidation electrode.
  • the fourth solution is to install a porous membrane that does not allow liquid methanol to permeate but allows methanol vapor to permeate on the methanol oxidation electrode of the first solution.
  • a methanol oxidation electrode and a hydrogen generation electrode are formed on respective surfaces of the hydrogen ion conductor, and the hydrogen ion conductor has a flow path through which fuel flows. And the members are electrically insulated from each other.
  • the sixth solution is that, in the second solution, the amount of platinum used for the methanol oxidation electrode or the hydrogen generation electrode is 1 mg or less per 1 cm 2 of electrode area.
  • the seventh solution means that in the first solution means, the fuel control circuit has a function of storing and calculating the amount of electricity generated and the methanol concentration, and changes the methanol concentration or flow rate of the fuel flowing through the fuel circulation pipe. That is.
  • An eighth solution is a membrane electrode joint comprising a solid polymer film, a cathode formed on one surface of the solid polymer film, and an anode formed on the other surface of the solid polymer film.
  • a fuel tank that stores a fuel made of a liquid organic compound that is supplied to the fuel cell.
  • the fuel cell includes a separator that sandwiches the membrane electrode assembly.
  • a fuel circulation system that circulates the fuel between the fuel tank and the fuel cell, and a concentration measuring element that is disposed in the fuel circulation pipe and measures an oxidation current of the fuel
  • a fuel control circuit for detecting the fuel concentration from the oxidation current measured by the concentration measuring element and controlling the fuel concentration of the fuel tank based on the fuel concentration.
  • the present invention can provide a fuel cell system capable of accurately controlling the concentration of liquid fuel in a wide range.
  • the structure of the fuel cell system of this invention is shown.
  • the structure of the fuel detection part of this invention is shown.
  • concentration measuring element of this invention is shown.
  • 2 shows a cross-sectional structure of a concentration measuring element of the present invention.
  • 2 shows a cross-sectional structure of a concentration measuring element of the present invention.
  • 1 shows a cross-sectional structure of a fuel cell main body of the present invention.
  • the relationship between the methanol concentration and the current ratio in the flow cell structure device of the present invention is shown.
  • the structure of the fuel cell system of this invention is shown.
  • the result of the active fuel control of this invention is shown.
  • the principle of the fuel detection method of the present invention is to calculate the fuel from the oxidation current of the fuel.
  • the fuel used for the DMFC that is, methanol, will be described as an example as follows.
  • Methanol is oxidized according to (Equation 1) on the methanol oxidation electrode constituting the concentration measuring element of the present invention.
  • the generated carbon dioxide is dissolved or released as a gas in the fuel near the methanol oxidation pole.
  • the hydrogen ions pass through the hydrogen ion conductor and are reduced at the hydrogen generation electrode provided on the opposite surface of the methanol oxidation electrode (Formula 2).
  • the fuel in which hydrogen ions are generated by the oxidation reaction can be detected as an oxidation current in combination with the hydrogen generation reaction of (Equation 2) using a hydrogen ion conductor.
  • a material that conducts the ions is selected.
  • the concentration measuring element has a flow cell structure, and the measurable concentration range is expanded.
  • the flow cell structure since the fuel is flowing on the electrode surface, the gas generated from the electrode is removed from the electrode surface together with the fuel. Thereby, it can suppress that reaction on an electrode is obstructed by generated gas. Further, since the fuel near the electrode is always replaced, the fuel is oxidized on the oxidation electrode (Equation 3, Equation 4, and Equation 6), and the concentration near the electrode does not decrease. Compared to when it is left in the fuel tank, the oxidation current increases and the fuel detection sensitivity is improved.
  • a concentration measuring element characterized by measuring a fuel concentration from an oxidation current accompanying a decomposition reaction of fuel, and a concentration measuring element having a flow cell structure, and a specific configuration in which the concentration measuring element is applied to a fuel cell will be described in detail. .
  • FIG. 1 shows the configuration of a fuel cell (DMFC) system 101 equipped with a methanol concentration control mechanism using the concentration measuring element 112 of the present invention.
  • DMFC fuel cell
  • the fuel used for power generation of the DMFC main body 102 is filled in the methanol container 103.
  • the methanol stored in the methanol container 103 may be 100% methanol, but generally an aqueous methanol solution diluted with water is used.
  • a required amount of methanol is introduced into the fuel tank 108 by the fuel supply means 104 including a valve and a pump.
  • the fuel supply means 104 operates when the methanol concentration becomes a predetermined concentration or less.
  • a control circuit 120 such as a microcomputer is used for these controls.
  • the methanol concentration measuring element 112 is installed in the middle of the fuel circulation line 105 that connects the fuel tank 108 and the fuel supply port of the DMFC main body 102.
  • the control circuit 120 monitors that the methanol fuel supplied to the DMFC main body 102 has a predetermined value. By providing it in the vicinity of the fuel tank, it is possible to avoid a measurement time delay and to perform concentration control quickly.
  • the control circuit 120 determines whether or not the sum is a predetermined value.
  • the pure water supply means 107 is operated. In this case, necessary water is supplied from the pure water container 106 to the fuel circulation line 105 or the fuel tank 108, and the methanol concentration is maintained in an appropriate range.
  • the fuel tank 108 has a function of temporarily storing a methanol aqueous solution controlled to a predetermined concentration range, and also makes the fuel concentration uniform when fuel and water are replenished from the methanol container 103 and the pure water container 106 described above. It also has a function to
  • methanol aqueous solution is supplied to the DMFC main body 102 via the fuel circulation line 105 by the fuel circulation pump 109.
  • methanol is oxidized at the anode (Formula 8). Thereafter, the methanol drainage is returned to the fuel tank 108 again.
  • Carbon dioxide generated by the oxidation reaction of methanol (Formula 8) exists in the DMFC main body 102 in a state dissolved in the fuel or as fine bubbles.
  • the carbon dioxide moves to the fuel tank 108 via the fuel circulation line 105, and most of the carbon dioxide is released into the gas phase in the fuel tank 108.
  • the gas-liquid separator 110 installed at the upper part of the fuel tank 108.
  • the gas-liquid separator 110 may be provided with a mechanism for removing a trace amount of organic substances by providing a catalyst treatment reactor.
  • Air is supplied from the fan or other air supply means 111 to the DMFC main body 102, and water is generated (formula 9).
  • the hydrogen ions shown on the left side of (Equation 9) are the hydrogen ions produced by the methanol oxidation reaction (Equation 8) at the anode permeating through the electrolyte membrane.
  • the fuel detector 217 of the concentration measuring element of the present invention has a configuration shown in FIG.
  • a fuel oxidation electrode 215 and a gas generation electrode 216 are stacked on each surface of the ion conductor 214.
  • a methanol oxidation reaction (formula 1) proceeds at the fuel oxidation electrode 215, and a hydrogen generation reaction (formula 2) occurs at the gas generation electrode 216.
  • a solid polymer electrolyte membrane that allows hydrogen ions to pass therethrough can be selected.
  • the materials of the fuel oxidation electrode 215 and the ion conductor 214 can be changed.
  • FIGS. 3A and 3B The flow cell structure of the present invention is illustrated in FIGS. 3A and 3B.
  • FIG. 3A is a view of the fuel oxidation electrode 315 as viewed from above.
  • FIG. 3B shows a cross-sectional structure of the flow cell.
  • the fuel oxidation electrode 315 is installed on the upper part of the ion conductor 314, and the gas generating electrode is under the ion conductor 314. In FIG. 3A, it is omitted because it is hidden behind the ion conductor 314. In FIG. 3B showing a cross-sectional structure, a gas generating electrode 316 is shown.
  • a current terminal 318 for taking out electricity is connected to the fuel oxidation electrode 315. Since the current terminal 318 is exposed to the potential of the fuel oxidation electrode 315, the current terminal 318 is required to have corrosion resistance. Further, when the current terminal 318 is electrochemically active with respect to the fuel, an oxidation current on the current terminal 318 is generated as an error in the oxidation current at the fuel oxidation electrode 315. Therefore, it is preferable that the current terminal 318 is electrochemically inactive with respect to the fuel in order to improve the fuel measurement accuracy. Even when the fuel is electrochemically active, the error can be minimized by limiting the wire diameter and length so that the surface area of the current terminal 318 is reduced.
  • a current terminal 319 is also connected to the gas generating electrode (316 in FIG. 3B) from the lower surface of the ion conductor 314 so that a current can be taken out to the outside. Since the current terminal 319 is not in an oxidized state like the fuel oxidation electrode 315, any conductive material is selected as long as it is a material that does not naturally corrode even when immersed in the fuel without applying a voltage. be able to. Further, since hydrogen generation occurs at the gas generating electrode 316, it is preferable to be electrochemically inert to these reactions in order to improve the fuel measurement accuracy. However, even if there is electrochemical activity with respect to the gas generation reaction, it is possible to avoid the problem of error if the wire diameter and length are limited so that the surface area of the current terminal 319 is reduced.
  • the entire fuel detection unit is housed inside the fuel flow pipe 320, and the fuel oxidation electrode 315 and the gas generation electrode 316 are always in contact with the fuel.
  • the fuel flow pipe 320 is electrically in non-contact with the current terminals 318 and 319 or the fuel oxidation electrode 315 and the gas generation electrode 316 to ensure insulation.
  • the material of the fuel flow pipe 320 can be arbitrarily selected as long as it is not affected by the fuel, and stainless steel or plastic can be used.
  • FIG. 4 is an example of a side view of the flow cell.
  • the left figure shows a side view and the right figure shows a cross-sectional view.
  • the fuel flow pipe 420 corresponds to the fuel flow pipe 320 of FIG. It is desirable to manufacture with a low cost material that is durable against fuel penetration and heat. Further, since a voltage is applied to the fuel oxidation electrode and the gas generation electrode, it is particularly desirable that the electrode is manufactured from an insulator or a high resistance material.
  • a laminated body composed of a fuel oxidation electrode, an ion conductor, and a gas generation electrode is collectively shown as a fuel detection unit 417.
  • This has a radius smaller than the outer diameter of the fuel flow pipe 420 and is sandwiched from above and below the fuel detection unit 417 by graphite parts 421 and 422 having an arch shape.
  • the graphite parts can be changed to other materials.
  • a material other than graphite can be used as long as it is conductive and does not corrode with fuel or water. For example, it can be replaced with titanium or a titanium-coated metal laminate.
  • a counterbore 423 having a depth corresponding to the thickness of the graphite parts 421 and 422 is provided so that the inner diameters of the graphite parts 421 and 422 coincide with the inner diameter of the fuel flow pipe 420, and the graphite parts 421 and 422 are fitted therein.
  • the inner wall of the fuel flow pipe 420 has a smooth shape with no irregularities. This is effective for reducing the pressure loss during the flow of the fuel and preventing the adhesion of the gas generated by the fuel detector 417. Airtightness can be secured by applying an adhesive or sealant that is not attacked by the fuel and does not deteriorate at the fuel temperature to the contact surface between the spot facing portion 423 and the graphite parts 421 and 422.
  • Part of the graphite parts 421 and 422 is exposed from the opening window of the fuel flow pipe 420, and current terminals 418 and 419 are connected from the part to apply a voltage to the fuel detection unit 417.
  • the upper and lower fuel flow pipes 420 may be manufactured in a semicircular shape, and the end portions of the semicircle may be bonded or welded together, or the entire side surface may be covered with a heat shrinkable tube and crimped. It is more preferable to provide a notch at the end of the semicircle so that the two semicircular ends engage with each other (so-called notch structure), so that misalignment can be avoided.
  • FIG. 4 is incorporated in the fuel cell system of the present invention shown in FIG. 1 (112 in FIG. 1), and is connected to the control circuit 120 shown in FIG. 1 through current terminals 418 and 419.
  • Current terminals 418 and 419 are represented by current signal lines 121 in FIG.
  • the upstream fuel detection unit 417 measures the oxidation current
  • the downstream fuel detection unit 417 measures the oxidation current in the fuel after the concentration change. Become.
  • the control circuit 120 has a DC power source. This has a function of applying a voltage to the fuel detection unit 417 of FIG. 4 via the current signal line 121 and measuring the flowing current. An arithmetic process is executed based on the current, and the fuel concentration is calculated.
  • the temperature data measured by the thermocouple for measuring the battery temperature provided in the DMFC main body 102 or the thermocouple for measuring the fuel temperature inserted in the fuel circulation line 105 (both are omitted in FIG. 1)
  • the signal can be taken into the control circuit 120 as a signal.
  • the temperature dependence of the current can be corrected. As a result, the accuracy of fuel concentration can be improved.
  • a sensor for measuring the volume of the fuel is installed in the fuel tank 108, a signal representing the volume measurement result can be taken into the control circuit 120 from the sensor. In this way, the number of moles of methanol can be calculated from the fuel volume and the methanol concentration. As a result, it is possible to execute methanol concentration control in which both the fuel volume and the number of moles of methanol are monitored.
  • a methanol supply command signal is output from the fuel control line 122 to the fuel supply means 104.
  • a pure water supply command signal is output from the pure water control line 123 to the pure water supply means 107.
  • control circuit 120 When the fuel volume of the fuel tank 108 is insufficient, the control circuit 120 outputs both a fuel supply command and a pure water supply command.
  • FIG. 5 shows a cross-sectional structure of the DMFC main body.
  • Methanol oxidation reaction (Formula 8) or oxygen reduction reaction (Formula 9) proceeds on the anode and cathode surfaces of a membrane electrode assembly (hereinafter referred to as MEA), respectively.
  • the MEA 502 has a three-layer structure in which an anode is stacked on one surface of an electrolyte membrane and a cathode is stacked on the other surface.
  • a structure in which the MEA 502 is sandwiched between two separators 504 is referred to as a single cell 501.
  • a flow path through which fuel flows is formed on one side of the separator, and a flow path through which oxidant flows is formed on the other side.
  • the separator 504 was formed with a fuel channel on one side and an oxidant channel on the other side.
  • the gasket 505 can be made of an oxidation resistant, reduction resistant, water resistant elastic body such as ethylene / propylene rubber, fluorine rubber, or silicon rubber. An epoxy resin may be used as an adhesive and cured to replace the gasket.
  • a plurality of single cells 501 are connected in series, current collecting plates 513 and 514 are installed at both ends, and further tightened with an end plate 509 from the outside via an insulating plate 507. If the end plate is made of an insulating material, the insulating plate 507 can be omitted.
  • a channel was formed inward of the battery, and no channel was formed on the surface in contact with the current collector plate. This is because if the flow path is formed on the surface in contact with the current collector plate, the current collector plate may corrode. However, if the current collector plates 513 and 514 are corrosion resistant, a channel may be formed on the surface.
  • Fuel is supplied from the fuel supply line 105 in FIG. 1 to a fuel supply connector 510 on the fuel supply side provided on the end plate 509 in FIG. Then, the fuel is oxidized on the MEA anode while passing through each single cell 501. Thereafter, the fuel is discharged from the fuel discharge connector 522 provided on the opposite end plate 509. The discharged fuel is sent to the fuel tank 108 of FIG.
  • liquid organic fuel such as methanol can be used.
  • a liquid fuel such as a methanol aqueous solution.
  • the oxidant is supplied from the air supply means 111 of FIG. 1 from the oxidant supply connector 511 on the oxidant supply side provided on the left end plate 509 shown in FIG. 5, and the oxidant discharge side of the opposite end plate 509.
  • the oxidizer pipe connector 523 is discharged. Air was supplied from an air fan (air supply means 111 in FIG. 1) installed outside the battery.
  • a cell stack composed of 25 single cells 501 was manufactured with such a component structure.
  • the first embodiment is a DMFC system in which the cell stack is incorporated so as to have the configuration shown in FIG. Electric power from the DMFC main body is supplied to the DC-DC converter 520 or the inverter 520 via the external power line 519 connected to the current collector plates 513 and 514, and the load 521 installed outside can be operated.
  • This system is referred to as S1.
  • the specifications of the concentration measuring element used in the system S1 are as follows.
  • the shape of the concentration measuring element is a cylindrical flow cell shown in FIG.
  • the outer diameter of the fuel flow pipe 420 was 8 mm, the inner diameter was 6 mm, and the total length was 50 mm.
  • the size of the fuel detector 417 was 6 mm ⁇ 4 mm.
  • the Pt loading was 0.5 mg / cm 2 for both the fuel oxidation electrode and the hydrogen generation electrode.
  • a perfluorosulfonic acid electrolyte membrane (thickness 25 ⁇ m) was used as the electrolyte membrane, and a porous carbon sheet (thickness 0.2 mm, porosity 75%) mainly composed of carbon fibers was used as the gas diffusion layer. Only the gas diffusion layer used for the hydrogen generation electrode was made of a porous carbon sheet impregnated with 10% PTFE dispersion and dried.
  • the amount of Pt supported used for the fuel oxidation electrode and the hydrogen generation electrode is preferably 5 mg / cm 2 or less in order to prevent a decrease in the diffusion rate of methanol or hydrogen due to an increase in the thickness of the electrode layer. This is because when the amount is high, the oxidation current decreases with high concentration of methanol. Further, it is preferable that the amount is 1 mg / cm 2 or less in order to reduce the cost of the fuel detection unit while maintaining the detection sensitivity.
  • the voltage applied to the fuel oxidation electrode and the hydrogen generation electrode be equal to or higher than the fuel oxidation start voltage and the oxygen generation current by water electrolysis does not exceed the fuel oxidation current. Therefore, the voltage applied to both electrodes when the organic fuel is methanol is suitably 0.2 V or more and 1.3 V or less. Particularly, 0.6 V or more is suitable for avoiding CO poisoning at the methanol oxidation electrode, and 1.2 V or less is suitable for increasing the ratio of the methanol oxidation current to the oxygen generation current. In this example, the applied voltage was set to 1.1V.
  • the methanol concentration of the aqueous methanol solution stored in the fuel tank 103 in FIG. 1 is 50%, the aqueous methanol solution when flowing through the fuel circulation line 105 is 5% as a control reference value, and the control accuracy range is 3 to 6%.
  • an external data input port is provided in the control circuit 120 so that data can be written to and changed in the microcomputer in the control circuit 120 so that the control reference value can be adjusted from the outside as needed.
  • the volume of fuel stored in the fuel tank was 100 cc.
  • the voltage that is the air supply means 111 was set so that the oxidant utilization rate would be 10%.
  • the system S1 was operated with the above configuration.
  • the data of the method of the present invention in FIG. 6 is the result of examining whether or not the fuel control value of the system S1 is in accordance with the reference value according to the value transferred from the external personal computer to the microcomputer.
  • the current ratio representing the oxidation current on the vertical axis is displayed as a relative value based on the current at a methanol concentration of 3%. According to this data, it was found that the current increased monotonously at a high concentration of 10% by weight concentration or 3.1 mol / liter or more at a molar concentration, and the rate at which the current increase rate decreased at a high concentration was small. .
  • the accuracy range of control during continuous power generation was within a range of ⁇ 1% ( ⁇ 0.3 mol / liter) at any control reference value.
  • the control reference value was changed from the external personal computer to the microcomputer, and it was examined whether the fuel control value of the system S2 was in accordance with the reference value. According to this data, it was observed that the rate of increase in current decreased from around 5% (1.5 mol / liter) and reached saturation. In particular, the increase in current was small near the 10% (3.1 mol / liter) concentration or higher, and it was found that the concentration measurement error increased, and it was found that the methanol concentration cannot actually be controlled. . In addition, the control accuracy range during continuous power generation has been expanded to ⁇ 2% ( ⁇ 0.6 mol / liter) at any control reference value. One reason is that the density detection error tends to increase due to natural diffusion. Another major factor is that the concentration at the time point measured by the concentration measuring element and the target concentration to be controlled by the control circuit are likely to be shifted, that is, the time lag between the measurement and the control.
  • the system was generated with a current of 20 A (current density was 0.2 A / cm 2 ), and a rated output of 200 W was obtained.
  • the battery temperature was controlled at 55 to 60 ° C.
  • the methanol concentration could be controlled within a control standard value of 4% and variation of ⁇ 1% within the range of the rated current of 20A.
  • the control reference value is the same, the variation is expanded to ⁇ 2%.
  • a polyethylene porous film or a fluorine-based porous film is used on the upper surface of the catalyst layer of the fuel oxidation electrode 215 in FIG.
  • a thickness of about 1 mm can be used, a porous film having a thickness of 0.05 mm to 0.3 mm is particularly preferable from the viewpoint of easy adhesion to the electrode and shortening of the methanol diffusion time.
  • the conditions for selecting the membrane include that the liquid permeation amount is extremely small relative to the gas permeation amount, that no melting or alteration occurs at the fuel temperature, and that no impurities affecting the fuel cell are released. Any material can be selected as long as these conditions are satisfied. Further, it may be a film, a sheet, a plate, or a multilayer laminate, and the outer shape may be any shape such as a square shape or a round shape.
  • thermocompression bonding a fluorine binder solution is thinly applied to the surface of the porous membrane, the coated surface is pressure-bonded to the fuel oxidation electrode 215, and dried to bond the porous membrane and the fuel oxidation electrode 215.
  • Any method can be adopted as long as it does not block the pores of the porous membrane and does not inhibit the oxidation reaction on the fuel oxidation electrode 215.
  • the fuel liquid does not directly contact the fuel oxidation electrode 215, measurement up to a high concentration is possible. Since the liquid does not permeate and only methanol vapor reaches the electrode, the current is smaller than when the porous membrane is not used, but the electrode surface is covered with droplets and the three-layer interface inside the electrode is Since it becomes difficult to decrease, it is possible to measure even pure methanol. Moreover, since water vapor permeates through the porous membrane, the electrolyte membrane can be appropriately moisturized, so that an increase in the resistance of the concentration measuring element can also be suppressed.
  • a new system in which the concentration measuring element using the porous membrane of the present embodiment is replaced with the concentration measuring element of the system S1 is referred to as S3.
  • Other configurations are the same as those of the system S1.
  • the control reference value was changed from the external personal computer to the microcomputer, and it was examined whether the fuel control value of the system S2 was in accordance with the reference value.
  • the oxidation current decreased to about 1/10 overall with respect to the current value at each concentration shown in FIG.
  • the oxidation current with respect to the methanol concentration became almost proportional, and the linearity was improved.
  • the oxidation current increases almost linearly in the high concentration range up to 60% methanol, and high concentration fuel control is possible.
  • the gas diffusion layer laminated on the fuel oxidation electrode is a carbon sheet that has not been subjected to water repellency treatment by adding a binder having high water repellency, such as tetrafluoropolyethylene, it has electrical conductivity and water repellency. Fewer electrodes can be formed. In this way, current can be taken out from the entire methanol oxidation electrode, and the generated carbon dioxide can be excluded to the liquid phase, so that methanol can be easily detected.
  • the thickness of the carbon sheet used as the gas diffusion layer of the fuel oxidation electrode is in the range of 0.05 to 4 mm, a relationship in which the oxidation current with respect to the methanol concentration increases monotonously is obtained, and the methanol concentration can be easily detected from the oxidation current. .
  • the thickness of the carbon sheet is 0.1 mm or more, the strength of the carbon sheet is increased and the entire methanol oxidation electrode can be pressure-bonded. As a result, the contact resistance between the methanol oxidation electrode and the carbon sheet can be reduced. If the thickness of the carbon sheet is 0.3 mm or less, the methanol diffusion time in the thickness direction of the carbon sheet can be shortened. As a result, the responsiveness of the oxidation current to changes in methanol concentration is improved.
  • the reaction rate is not governed by the rate of the substance that diffuses in the gas diffusion layer as in the methanol oxidation reaction. That is, the reaction rate of (Equation 2) is governed by the diffusion rate of hydrogen ions in the electrolyte membrane. Therefore, it is sufficient that the gas diffusion layer facilitates the release of the generated hydrogen gas into the liquid phase.
  • the gas diffusion layer to which a binder with high water repellency such as tetrafluoropolyethylene is added is used to facilitate the hydrogen release. In this way, the oxidation current is unlikely to decrease at a high methanol concentration of 10% or more, and the methanol concentration can be easily detected.
  • the thickness of the carbon sheet used as the gas diffusion layer of the hydrogen oxidation electrode is set in the range of 0.05 to 5 mm.
  • the thickness of the carbon sheet is preferably in the range of 0.15 to 0.3 mm.
  • the third embodiment uses a concentration measuring element comprising a methanol oxidation electrode in which a platinum catalyst layer is formed on a polymer solid electrolyte that allows hydrogen ions to permeate, and a conductive porous layer (such as a carbon sheet) is omitted on the top. It was the way. It is excellent in that the time for which methanol contacts the methanol oxidation electrode can be shortened and quick response can be obtained.
  • the methanol oxidation electrode can extract current by pressure bonding with the graphite component 421 or 422 of FIG.
  • the distance between the two contact portions of the graphite part and the electrode is determined by the electric resistance in the surface direction of the methanol oxidation electrode.
  • the distance can be increased when the catalyst layer is thick, and conversely the distance is decreased when the catalyst layer is thin.
  • the interval is preferably 0.5 to 5 mm, particularly 1 to 2 mm.
  • the conductive porous layer (carbon sheet or the like) may be omitted even on the hydrogen generation electrode side.
  • hydrogen is generated directly from the hydrogen generation electrode and does not consume water or methanol contained in the fuel. Therefore, it is advantageous to use the conductive porous layer because the conductive porous layer can function the entire catalyst layer of the hydrogen generating electrode.
  • FIG. 7 shows a configuration in which the flow cell type concentration measuring elements 712 and 713 of the present invention are installed in the fuel circulation line 705 on the supply side and the discharge side of the DMFC main body 702.
  • a DMFC main body 702 almost at the center of the fuel cell system 701.
  • Methanol-containing fuel used for power generation of the DMFC main body 702 is stored in a methanol container 703.
  • the methanol stored in the methanol container 703 may be 100% methanol, but generally an aqueous methanol solution diluted with water is used.
  • a required amount of methanol is introduced into the fuel tank 708 by a fuel supply means 704 including a valve and a pump.
  • the fuel supply means 704 operates when the methanol concentration becomes a predetermined concentration or less.
  • a control circuit 720 such as a microcomputer is used for these controls.
  • the pure water supply means 707 operates, and necessary water is supplied from the pure water container 706 to the fuel circulation line 705, and the methanol concentration is maintained in an appropriate range. Is done.
  • the fuel tank 708 has a function of temporarily storing an aqueous methanol solution controlled to a predetermined concentration range, and also makes the fuel concentration uniform when fuel or water is replenished from the methanol container 703 and the pure water container 706 described above. It also has a function to In the present embodiment, the volume of fuel stored in the fuel tank is reduced from 100 cc to 20 cc in order to execute “active fuel control”. Accordingly, when fuel is supplied from the fuel supply unit 704 or pure water is supplied from the pure water supply unit 707, it is possible to quickly adjust the fuel concentration to a predetermined level.
  • the methanol aqueous solution in the fuel tank 708 is supplied to the DMFC main body 702 via the fuel circulation line 705 by the operation of the fuel circulation pump 709. At the anode, methanol is oxidized (Equation 8). Thereafter, the methanol drainage is returned to the fuel tank 708 again.
  • Carbon dioxide generated by the oxidation reaction of methanol exists in the DMFC main body 702 as dissolved or fine bubbles.
  • the carbon dioxide moves to the fuel tank 708 via the fuel circulation line 705, and most of the carbon dioxide exists in the gas phase in the fuel tank 708. Further, when the pressure in the gas phase increases, the gas is discharged to the outside of the fuel cell system 701 through the gas-liquid separator 710 installed at the upper part of the fuel tank 708.
  • the air is supplied from the fan or other air supply means 711 to the DMFC main body 702 to generate water (Formula 9).
  • the hydrogen ions are the hydrogen ions generated by the methanol oxidation reaction (Equation 8) at the anode permeating through the electrolyte membrane.
  • the exhaust gas after power generation is released to the outside of the fuel cell system 701 via the oxidant discharge system 725.
  • the concentration measuring elements 712 and 713 of the present invention are one in the middle of the fuel circulation line 705 connecting the DMFC main body 702 and the fuel tank 708, and the fuel circulation line 705 connecting the fuel tank 708 from the fuel discharge port of the DMF main body 702. Another concentration measuring element was installed between them.
  • the voltage applied to the methanol oxidation electrode and the hydrogen generation electrode in each concentration measuring element was 1.1V.
  • the current terminals connected to the concentration measuring elements 712 and 713 of the present invention are the current terminals 418 and 419 in FIG. 4 and are shown as current signal lines 721 and 724 in FIG.
  • the current signal lines 721 and 724 are connected to the control circuit 720.
  • the control circuit 720 has a DC power supply, and has a function of applying a voltage to the concentration measuring elements 712 and 713 through the current signal lines 721 and 724 and measuring the flowing current.
  • the measured fuel concentration data is converted into an electrical signal, and the signal is transmitted to the control circuit 720 from the current signal lines 721 and 724, and arithmetic processing based on the fuel data is started.
  • a methanol supply command signal is output from the fuel control line 722 to the fuel supply means 704.
  • a pure water supply command signal is output from the pure water control line 723 to the pure water supply means 707.
  • thermocouple for monitoring the battery temperature and the like, and the sensor for measuring the fuel volume of the fuel tank 708 can be used in the same manner as in the first embodiment described above. These additional sensors enable appropriate fuel concentration adjustment according to temperature, and output both a fuel supply command and a pure water supply command from the control circuit 720 when the fuel volume of the fuel tank 708 is insufficient. Then, fuel can be replenished.
  • the upstream concentration measuring element 712 monitors the concentration of methanol supplied to the DMFC main body 702, and the downstream concentration measuring element 713 uses the power consumption and the amount of methanol loss (loss due to evaporation, methanol crossover, etc.). The concentration of methanol containing all of the amount can be monitored.
  • the methanol concentration detected by the upstream concentration measuring element 712 is C1 (mol / liter)
  • the methanol concentration detected by the downstream concentration measuring element 713 is C2 (mol / liter)
  • the fuel circulation flow rate is V (liter / minute)
  • methanol is generated by power generation.
  • V ⁇ (C1 ⁇ C2) Q1 + Q2 (Equation 10) Since Q1 increases when the load current is increased, the fuel supply means 704 of FIG. 7 is driven to increase C1 so that the concentration of C1 increases accordingly. On the contrary, when the load current is lowered, Q1 becomes small. Therefore, the pure water supply means 707 may be operated to dilute the methanol in the fuel tank 708, or the fuel supply means 704 may be paused until it reaches a predetermined concentration. Further, even when the fuel circulation flow rate V is changed, the methanol concentration can be monitored according to (Equation 10). This is effective for increasing the system efficiency by performing variable flow control that lowers the fuel circulation flow rate when the output is low and increases the flow rate when the output is high.
  • the means described above is a concentration control method whose main purpose is to manage the methanol concentration of the DMFC main body 702. This method can also be applied to organic fuels other than methanol.
  • Q2 in (Equation 10) is arithmetically processed by the control circuit 720 based on functions such as methanol concentration, temperature, and load current, and is taken into account when controlling C1.
  • the concentration in the fuel tank 708 can be predicted from the values of C1 and C2. That is, the methanol concentration Ct and volume of the fuel tank 708 are Vt, the piping volume from the fuel tank 708 to the DMFC main body 702 of the fuel circulation line 705 is Vi, the total volume of the fuel flow path of the DMFC main body 702 is Vc, and the DMFC main body 702 If the piping volume of the fuel circulation line 705 is set to Vo, it can be approximated that the following relational expression (formula 11) holds.
  • the methanol concentration inside the fuel cell was the average value of the methanol concentration at the inlet and outlet ((C1 + C2) / 2).
  • the concentration of the fuel flow path of the DMFC main body 702 is an average value of the concentrations detected by the concentration measuring elements 712 and 713. Separately, a correction formula for the current may be obtained by measuring the methanol concentration at each load current, and the concentration calculated from the concentration function may be substituted. According to (Equation 11), the concentration of the fuel tank 708 can be estimated even when the fuel supply unit 704 and the pure water supply unit 707 are in operation.
  • the methanol concentration inside the fuel cell is the average value of the methanol concentration at the inlet and outlet. If there is a loss due to methanol crossover, add Q2 to the right side of (Equation 11). The calculation accuracy can be increased by using the corrected value.
  • the concentration when methanol is uniformly dissolved cannot be determined until the fuel tank 708 has a uniform methanol concentration.
  • the methanol concentration (more strictly speaking, the total number of moles of methanol) is obtained even if the concentration in the tank is transiently changing (equation 11). ).
  • the concentration in the tank is transiently changing (equation 11). ).
  • FIG. 8 shows the results of a three-stage output fluctuation test with a maximum current of 20 A.
  • the methanol concentration was adjusted substantially in steps by adjusting the flow rate of the fuel supply means 704 in FIG.
  • the flow rate of the fuel supply means 704 was increased so that the concentration change rate was 5 seconds per 1% change width (0.3 mol / liter).
  • water was added by the pure water supply means 707 to dilute the methanol.
  • the dilution rate is slightly reduced.
  • the range of change in the dilution direction was 10 seconds per 1% (0.3 mol / liter).
  • the load current was set to be 10 seconds per change width of 1A.
  • Fuel circulation pump 110 710 Gas-liquid separator 111, 711 Air supply means 112, 712, 713 Concentration measuring element 120, 720 Control circuit 121, 721, 724 Current signal line 122, 722 Fuel control line 123, 723 Pure Water control line 124, 725 Oxidant discharge system 214, 314 Ion conductor 215, 315 Fuel oxidation electrode 216, 316 Gas generation electrode 217, 417 Fuel detector 318, 319, 418, 419 Current terminal 320, 420 Fuel flow pipe 421 , 422 Graphite parts 423 Counterbore part 501 Single cell 502 Membrane-electrode assembly (MEA) 504 Separator having fuel flow path and oxidant flow path 505 Gasket (MEA) 504 Separator having fuel flow path and oxidant flow path 505 Gasket (MEA) 504 Separator having fuel flow path and oxidant flow path 505 Gasket (MEA) 504 Separator having fuel flow path and oxidant flow path 505 Gasket (MEA) 504

Abstract

Provided is a fuel cell that uses a liquid organic compound as a fuel, wherein a concentration measuring element having a methanol oxidation electrode and a fuel circulation passage formed on the methanol oxidation electrode are provided in a fuel circulation pipe for circulating the fuel, and a fuel control circuit for controlling the fuel concentration according to the methanol concentration detected by the concentration measuring element is provided. The fuel concentration is monitored and controlled by means of a fuel detection unit having a flow cell structure which is provided in the fuel supply line.

Description

燃料電池Fuel cell
 本発明は、液体有機化合物を燃料とする燃料電池に関する。 The present invention relates to a fuel cell using a liquid organic compound as a fuel.
 液体有機化合物を燃料とする燃料電池には、メタノール、エタノール、ぎ酸などの液体有機化合物を燃料とする固体高分子形燃料電池は、騒音が小さく、運転温度が低い(約70~80℃)、燃料の補給が容易であることなどの特徴を有する。そのため、可搬式電源、電気自動車の電源、あるいは電動バイクやアシスト式自転車、さらには医療介護用の車椅子やシニアカーなどの軽車両用電源として、幅広い用途が期待されている。 For fuel cells that use liquid organic compounds as fuel, solid polymer fuel cells that use liquid organic compounds such as methanol, ethanol, and formic acid as fuels have low noise and low operating temperatures (about 70-80 ° C). The fuel supply is easy. Therefore, a wide range of uses are expected as a portable power source, a power source for an electric vehicle, or a power source for an electric motorcycle, an assisted bicycle, and a light vehicle such as a wheelchair or a senior car for medical care.
 これらの用途の中で、メタノールを燃料とする直接メタノール形燃料電池(以下、DMFCと称する。)は、改質器を省略できる点、燃料を室温で補給できる点、出力に対する燃料コストがガソリン等よりも安い点、50~60℃の低温で発電できるので起動時間が短い点などの利点を有している。特に、燃料をポンプ等により強制的に流通させる“アクティブ式”DMFCは、数十Wから数百Wの高い出力が得られ、電子機器、照明器具などの比較的低電力機器の給電に適している。また、セルサイズの大型化、積層セル数の増加により1kW以上のDMFCを用いれば、移動体にも適用可能である。 Among these uses, a direct methanol fuel cell (hereinafter referred to as DMFC) using methanol as a fuel can eliminate a reformer, can supply fuel at room temperature, and has a fuel cost relative to output such as gasoline. It has advantages such as a cheaper point and a short start-up time because it can generate power at a low temperature of 50-60 ° C. In particular, an “active” DMFC that forcibly distributes fuel using a pump or the like can obtain a high output of several tens of watts to several hundred watts, and is suitable for feeding relatively low power devices such as electronic devices and lighting fixtures. Yes. Moreover, if a DMFC of 1 kW or more is used due to an increase in cell size and an increase in the number of stacked cells, the present invention can be applied to a moving body.
 このようにDMFCは優れた環境適応性を有する一方で、そのセルに用いる電解質膜が燃料極から酸化極へのメタノール等の燃料の透過を完全に防止できていないという課題を有する。その結果、酸化極に透過したメタノールと酸化剤(例えば、空気に含まれる酸素。)が直接反応し、出力低下や燃料損失の問題を生じさせる。 Thus, while the DMFC has excellent environmental adaptability, the electrolyte membrane used in the cell has a problem that the permeation of fuel such as methanol from the fuel electrode to the oxidation electrode cannot be completely prevented. As a result, methanol and oxidant (for example, oxygen contained in the air) permeated through the oxidation electrode directly react to cause a problem of output reduction and fuel loss.
 従来の技術によると、メタノール濃度を比較的低めに制御し、出力低下等を軽減しながら運転する制御方法が開示されている(特許文献1または2)。 According to the conventional technique, a control method is disclosed in which the methanol concentration is controlled to be relatively low, and the operation is performed while reducing a decrease in output (Patent Document 1 or 2).
US6254748US6254748 特開2004-95376号公報JP 2004-95376 A
 本発明の目的は、燃料の酸化電流を利用した燃料制御方法を備えた燃料電池を提供することである。特に、大きな負荷変動が要求される燃料電池において、従来よりも幅広い燃料濃度範囲の制御を実現することを目的としている。 An object of the present invention is to provide a fuel cell equipped with a fuel control method using an oxidation current of fuel. In particular, an object of the present invention is to realize control of a fuel concentration range wider than that in the conventional fuel cell that requires large load fluctuations.
 燃料濃度を計測する素子に必要な要件は、幅広い濃度範囲で対象物を検出でき、その検出信号が濃度に対して大きく低下しないことである。 Requirement for an element for measuring fuel concentration is that an object can be detected in a wide concentration range, and the detection signal does not greatly decrease with respect to the concentration.
 たとえば、従来の技術によると、メタノール濃度が1モル/リットルの範囲では、検出する電流がほぼ濃度に比例し、この濃度範囲では感度が変化していない(例えば非特許文献1の図7)。しかしながら、濃度が増加すると、電流が比例して増加しなくなり、感度が低下する(同文献の図6、図8)。 For example, according to the conventional technique, when the methanol concentration is in the range of 1 mol / liter, the detected current is almost proportional to the concentration, and the sensitivity does not change in this concentration range (for example, FIG. 7 of Non-Patent Document 1). However, when the concentration increases, the current does not increase in proportion and the sensitivity decreases (FIGS. 6 and 8 of the same document).
 加えて重要なことは、白金等の貴金属の使用量が少なくても、十分な感度を得られることである。白金等の触媒量が増えれば、白金単位面積当たりの電流密度が減少し、相対的に感度が維持される。しかし、触媒量が増えれば、計測素子の価格上昇につながり、望ましくない。 In addition, it is important that sufficient sensitivity can be obtained even if the amount of noble metal such as platinum used is small. If the amount of catalyst such as platinum increases, the current density per platinum unit area decreases, and the sensitivity is relatively maintained. However, an increase in the amount of catalyst leads to an increase in the price of the measuring element, which is not desirable.
 本発明の目的の一つは、白金等の貴金属使用量も少なくても、十分な検出感度を得ることである。換言すると、検出感度とコストを両立させることである。 One of the objects of the present invention is to obtain sufficient detection sensitivity even when the amount of noble metal such as platinum used is small. In other words, both detection sensitivity and cost are compatible.
 さらに重要な要件として、ユーザが要求する負荷に対して、短時間で必要な出力を供給できるように燃料を制御できることである。 An even more important requirement is that the fuel can be controlled so that the required output can be supplied in a short time to the load requested by the user.
 例えば、DMFCでは、使用頻度の高い出力範囲に適切なメタノール濃度を決め、その濃度を基準に所定の範囲にメタノール濃度を管理している。ところが、その範囲を超えた出力要求があったときに、速やかにメタノール濃度を高め、その出力を外部に出すことが必要である。逆に、出力が元のレベルに戻った後には、メタノール濃度を下げる必要がある。このような出力変動に対応するため、可能な限り迅速なメタノール濃度制御が必要とされる。 For example, in DMFC, an appropriate methanol concentration is determined for a frequently used output range, and the methanol concentration is managed within a predetermined range based on the concentration. However, when there is an output request exceeding the range, it is necessary to quickly increase the methanol concentration and to output the output to the outside. Conversely, after the output returns to the original level, it is necessary to lower the methanol concentration. In order to cope with such output fluctuations, methanol concentration control as quickly as possible is required.
 従来の技術によると、燃料を一時的に貯蔵し、それをDMFCに供給するものとしてメタノールタンクを設置し、メタノールタンクとDMFCとの間を配管で接続して燃料を循環させる方式が採られている。 According to the conventional technology, a system is adopted in which a fuel tank is temporarily stored and a methanol tank is installed to supply the fuel to the DMFC, and the fuel is circulated by connecting the methanol tank and the DMFC with a pipe. Yes.
 メタノールタンク内に濃度センサを設置する従来の方法では、タンク内に含まれる溶液に追加するメタノール濃度変化の時間遅れが生じ、高負荷要求に追従できない。また、逆に低負荷に戻すときには、時間遅れによって、メタノール濃度が過剰なレベルに達してしまい、濃度の調整に時間を要してしまう。 In the conventional method of installing a concentration sensor in a methanol tank, there is a time delay in changing the concentration of methanol added to the solution contained in the tank, and it is not possible to follow a high load requirement. On the other hand, when returning to a low load, the methanol concentration reaches an excessive level due to a time delay, and it takes time to adjust the concentration.
 したがって、負荷変動に迅速に追従した燃料制御を行うためには、従来とは異なったコンセプトに基づく濃度制御技術が必要となる。 Therefore, in order to perform fuel control that quickly follows load fluctuations, a concentration control technique based on a concept different from the conventional one is required.
 本発明は、液体燃料を用いる燃料電池において、燃料濃度を幅広い範囲で精度よく制御することが可能な燃料電池システムを提供することを目的とする。 An object of the present invention is to provide a fuel cell system capable of accurately controlling the fuel concentration in a wide range in a fuel cell using liquid fuel.
 そこで、発明者らは、広い濃度範囲にて燃料濃度を制御する方法を鋭意検討した結果、新規な燃料制御技術を確立することができた。 Therefore, as a result of intensive studies on a method for controlling the fuel concentration in a wide concentration range, the inventors have established a new fuel control technique.
 第一の解決手段は、固体高分子電解質膜と、前記電解質膜の表面に接合された電極と、燃料または酸化剤を流通させる溝を有し、液体有機化合物を燃料とする燃料電池において、前記燃料を循環させる燃料循環配管の途中にメタノール酸化電極と前記電極上に形成した燃料流通路を有する濃度計測素子を設置し、前記素子で検知したメタノール濃度に応じて燃料濃度を制御する燃料制御回路を設けることである。 In a fuel cell having a solid polymer electrolyte membrane, an electrode joined to the surface of the electrolyte membrane, and a groove through which a fuel or an oxidant flows, and using a liquid organic compound as a fuel, A fuel control circuit for installing a concentration measuring element having a methanol oxidation electrode and a fuel flow passage formed on the electrode in the middle of a fuel circulation pipe for circulating the fuel, and controlling the fuel concentration according to the methanol concentration detected by the element It is to provide.
 第二の解決手段は、第一の解決手段の濃度計測素子が、メタノール酸化電極と水素発生電極からなる構成を付加することである。 The second solution means is that the concentration measuring element of the first solution means is added with a configuration comprising a methanol oxidation electrode and a hydrogen generation electrode.
 第三の解決手段は、第二の解決手段において、水素発生電極に、メタノール酸化電極よりも撥水性を高める機能を具備させたことである。 The third solution means that, in the second solution means, the hydrogen generating electrode is provided with a function of improving water repellency as compared with the methanol oxidation electrode.
 第四の解決手段は、第一の解決手段のメタノール酸化電極上に液状のメタノールを透過させないが、メタノール蒸気を透過させる多孔質膜を設置させることである。 The fourth solution is to install a porous membrane that does not allow liquid methanol to permeate but allows methanol vapor to permeate on the methanol oxidation electrode of the first solution.
 第五の解決手段は、第二の解決手段において、メタノール酸化電極と水素発生電極が水素イオン伝導体のそれぞれの面に形成し、前記水素イオン伝導体が燃料を流通させる流路を有する2個の導電性部材で挟持され、かつ、前記部材が互いに電気的に絶縁させることである。 According to a fifth solution means, in the second solution means, a methanol oxidation electrode and a hydrogen generation electrode are formed on respective surfaces of the hydrogen ion conductor, and the hydrogen ion conductor has a flow path through which fuel flows. And the members are electrically insulated from each other.
 第六の解決手段は、第二の解決手段において、メタノール酸化電極または水素発生電極に使用される白金使用量が、電極面積1cm2当り1mg以下とすることである。 The sixth solution is that, in the second solution, the amount of platinum used for the methanol oxidation electrode or the hydrogen generation electrode is 1 mg or less per 1 cm 2 of electrode area.
 第七の解決手段は、第一の解決手段において、燃料制御回路が、発電電気量とメタノール濃度を記憶、演算する機能を有し、燃料循環配管を流通する燃料のメタノール濃度あるいは流量を変化させることである。 The seventh solution means that in the first solution means, the fuel control circuit has a function of storing and calculating the amount of electricity generated and the methanol concentration, and changes the methanol concentration or flow rate of the fuel flowing through the fuel circulation pipe. That is.
 第八の解決手段は、固体高分子膜と、前記固体高分子膜の一方の面に形成されたカソードと、前記固体高分子膜の他方の面に形成されたアノードで構成される膜電極接合体と、燃料または酸化剤を流通させる流路が形成され、前記膜電極接合体を挟持するセパレータとを有する燃料電池と、前記燃料電池に供給される液体有機化合物からなる燃料を貯蔵する燃料タンクと、前記燃料を前記燃料タンクと前記燃料電池との間を循環させる燃料循環配管とを備える燃料電池システムにおいて、前記燃料循環配管に配置され、前記燃料の酸化電流を計測するための濃度計測素子と、前記濃度計測素子で計測された酸化電流から燃料濃度を検出し、該燃料濃度に基づき、前記燃料タンクの燃料濃度を制御する燃料制御回路とを備えたことである。 An eighth solution is a membrane electrode joint comprising a solid polymer film, a cathode formed on one surface of the solid polymer film, and an anode formed on the other surface of the solid polymer film. And a fuel tank that stores a fuel made of a liquid organic compound that is supplied to the fuel cell. The fuel cell includes a separator that sandwiches the membrane electrode assembly. And a fuel circulation system that circulates the fuel between the fuel tank and the fuel cell, and a concentration measuring element that is disposed in the fuel circulation pipe and measures an oxidation current of the fuel And a fuel control circuit for detecting the fuel concentration from the oxidation current measured by the concentration measuring element and controlling the fuel concentration of the fuel tank based on the fuel concentration.
 本発明によって、液体燃料の濃度を幅広い範囲で精度よく制御することが可能な燃料電池システムを提供することができる。
 本発明の他の目的、特徴及び利点は添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。
The present invention can provide a fuel cell system capable of accurately controlling the concentration of liquid fuel in a wide range.
Other objects, features and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
本発明の燃料電池システムの構成を示す。The structure of the fuel cell system of this invention is shown. 本発明の燃料検知部の構成を示す。The structure of the fuel detection part of this invention is shown. 本発明の濃度計測素子の上面図を示す。The top view of the density | concentration measuring element of this invention is shown. 本発明の濃度計測素子の断面構造を示す。2 shows a cross-sectional structure of a concentration measuring element of the present invention. 本発明の濃度計測素子の断面構造を示す。2 shows a cross-sectional structure of a concentration measuring element of the present invention. 本発明の燃料電池本体の断面構造を示す。1 shows a cross-sectional structure of a fuel cell main body of the present invention. 本発明のフローセル構造の素子におけるメタノール濃度と電流比の関係を示す。The relationship between the methanol concentration and the current ratio in the flow cell structure device of the present invention is shown. 本発明の燃料電池システムの構成を示す。The structure of the fuel cell system of this invention is shown. 本発明のアクティブ燃料制御の結果を示す。The result of the active fuel control of this invention is shown.
 本発明の燃料検知法の原理は、燃料の酸化電流から燃料を算出することである。DMFCに用いられる燃料、すなわちメタノールを例にして説明すると、以下のようになる。 The principle of the fuel detection method of the present invention is to calculate the fuel from the oxidation current of the fuel. The fuel used for the DMFC, that is, methanol, will be described as an example as follows.
 メタノールは、本発明の濃度計測素子を構成するメタノール酸化極上で、(式1)に従って酸化される。ここで、生じた二酸化炭素はメタノール酸化極近傍の燃料へ溶解またはガスとして放出される。水素イオンは、水素イオン伝導体を透過し、メタノール酸化極の反対面に設けた水素発生極で還元される(式2)。 Methanol is oxidized according to (Equation 1) on the methanol oxidation electrode constituting the concentration measuring element of the present invention. Here, the generated carbon dioxide is dissolved or released as a gas in the fuel near the methanol oxidation pole. The hydrogen ions pass through the hydrogen ion conductor and are reduced at the hydrogen generation electrode provided on the opposite surface of the methanol oxidation electrode (Formula 2).
  CH3OH+H2O → CO2+6H++6e-  ・・・・・ (式1)
  6H++6e- → 3H2  ・・・・・ (式2)
 本発明の濃度計測素子の全体では、メタノールが二酸化炭素と水素に分解される反応が進行する(式3)。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (Formula 1)
6H + + 6e - → 3H 2 ····· ( Equation 2)
In the entire concentration measuring element of the present invention, a reaction in which methanol is decomposed into carbon dioxide and hydrogen proceeds (Formula 3).
  CH3OH+H2O → CO2+3H2  ・・・・・ (式3)
 本発明では、このメタノール分解反応(式3)に伴う酸化電流(式1)を計測し、それがメタノール濃度によって規定される性質を利用するものである。
CH 3 OH + H 2 O → CO 2 + 3H 2 (Formula 3)
In the present invention, the oxidation current (formula 1) associated with the methanol decomposition reaction (formula 3) is measured, and this utilizes the property defined by the methanol concentration.
 他の燃料の場合も、酸化反応が定まれば、同様なメカニズムで反応が進行する。燃料がホルムアルデヒドの場合は(式4)と(式5)の組み合わせ、
  HCHO+H2O → CO2+4H++4e-  ・・・・・ (式4)
  4H++4e- → 2H2  ・・・・・ (式5)
ぎ酸の場合は、(式6)と(式7)の組み合わせからなる。
In the case of other fuels, if the oxidation reaction is determined, the reaction proceeds by the same mechanism. When the fuel is formaldehyde, the combination of (Formula 4) and (Formula 5)
HCHO + H 2 O → CO 2 + 4H + + 4e (Formula 4)
4H + + 4e → 2H 2 (Formula 5)
In the case of formic acid, it consists of a combination of (Formula 6) and (Formula 7).
  HCOOH → CO2+2H++2e-  ・・・・・ (式6)
  2H++2e- → H2  ・・・・・ (式7)
 他に、エタノール、ジメチルエーテル、ジメトキシエタン、ジオキサンなどについても、二酸化炭素と水素イオンの生成を伴う酸化反応式を得ることができる。
HCOOH → CO 2 + 2H + + 2e - ····· ( Equation 6)
2H + + 2e → H 2 (Formula 7)
In addition, with respect to ethanol, dimethyl ether, dimethoxyethane, dioxane, and the like, an oxidation reaction formula that involves generation of carbon dioxide and hydrogen ions can be obtained.
 酸化反応により水素イオンが生じる燃料は、全て水素イオン伝導体を用いて(式2)の水素発生反応と組み合わせて、酸化電流として検知することができる。また、他のイオンが生じる燃料の場合は、そのイオンを伝導する材料を選択する。 The fuel in which hydrogen ions are generated by the oxidation reaction can be detected as an oxidation current in combination with the hydrogen generation reaction of (Equation 2) using a hydrogen ion conductor. In the case of a fuel that generates other ions, a material that conducts the ions is selected.
 これらの反応において、幅広い濃度範囲で燃料の酸化電流を濃度に対し比例的に増加させるには、酸化極での二酸化炭素(式1)、(式4)、(式6)、水素発生極での水素(式2)、(式5)、(式7)が全体の反応速度を阻害しないようにすることがポイントとなる。そこで、計測可能な濃度範囲を拡張する方法を明確にするために、DMFCを例に説明する。 In these reactions, in order to increase the fuel oxidation current in proportion to the concentration over a wide concentration range, carbon dioxide at the oxidation electrode (Equation 1), (Equation 4), (Equation 6), at the hydrogen generation electrode It is important to prevent hydrogen (formula 2), (formula 5), and (formula 7) from inhibiting the overall reaction rate. Therefore, in order to clarify the method for extending the measurable concentration range, DMFC will be described as an example.
 燃料酸化反応(式1)から発生する二酸化炭素は、水に対する溶解度が高いので、二酸化炭素の溶解によって、酸化反応(式1、式4、式6など)が阻害されにくい。これに対し、水素発生極では、水素の溶解度が低い(25℃、1気圧にて二酸化炭素の1/5の値。)ことと、二酸化炭素発生量に対する水素発生量の比率が1より大きいこと(メタノール酸化の場合、(式3)よりその比率は3である。)、水素の気泡が電極近傍に溜まりやすい。その結果、ガス発生による反応阻害は水素発生極において顕著となる。 Since carbon dioxide generated from the fuel oxidation reaction (formula 1) has high solubility in water, the oxidation reaction (formula 1, formula 4, formula 6, etc.) is not easily inhibited by the dissolution of carbon dioxide. On the other hand, at the hydrogen generation electrode, the solubility of hydrogen is low (25 ° C., 1/5 the value of carbon dioxide at 1 atmosphere), and the ratio of the hydrogen generation amount to the carbon dioxide generation amount is greater than 1. (In the case of methanol oxidation, the ratio is 3 from (Equation 3)), hydrogen bubbles tend to accumulate near the electrode. As a result, reaction inhibition due to gas generation becomes significant at the hydrogen generation electrode.
 したがって、メタノール酸化極、水素発生極の近傍に存在する液体が常に流通し、電極から発生したガスを連続的に除去する構成であれば、電極上の反応がガスによって妨害されにくくなる。特に、水素発生極では、ガス除去対策が極めて有効になる。 Therefore, if the liquid present in the vicinity of the methanol oxidation electrode and the hydrogen generation electrode always flows and the gas generated from the electrode is continuously removed, the reaction on the electrode is not easily disturbed by the gas. In particular, gas removal measures are extremely effective at the hydrogen generation electrode.
 そこで、本発明では濃度計測素子をフローセル構造とし、計測可能な濃度範囲を広げることとした。フローセル構造では、電極表面を燃料が流れている状態となるため、電極から発生したガスは燃料と共に電極表面から除去される。これにより、電極上の反応が発生ガスにより妨害されることを抑制できる。さらに、電極近傍の燃料が常に置換されるので、燃料が酸化極上で酸化されて(式3、式4、式6)、電極近傍の濃度が低下することがない。燃料タンク内に静置したときに比べると、酸化電流が増大し、燃料検出感度が向上する。 Therefore, in the present invention, the concentration measuring element has a flow cell structure, and the measurable concentration range is expanded. In the flow cell structure, since the fuel is flowing on the electrode surface, the gas generated from the electrode is removed from the electrode surface together with the fuel. Thereby, it can suppress that reaction on an electrode is obstructed by generated gas. Further, since the fuel near the electrode is always replaced, the fuel is oxidized on the oxidation electrode (Equation 3, Equation 4, and Equation 6), and the concentration near the electrode does not decrease. Compared to when it is left in the fuel tank, the oxidation current increases and the fuel detection sensitivity is improved.
 燃料の分解反応に伴う酸化電流から燃料濃度を計測すること、ならびに濃度計測素子をフローセル構造にすることを特徴とした濃度計測素子と、それを燃料電池に適用した具体的な構成を詳述する。 A concentration measuring element characterized by measuring a fuel concentration from an oxidation current accompanying a decomposition reaction of fuel, and a concentration measuring element having a flow cell structure, and a specific configuration in which the concentration measuring element is applied to a fuel cell will be described in detail. .
 図1は、本発明の濃度計測素子112によるメタノール濃度制御機構を具備した燃料電池(DMFC)システム101の構成を示す。 FIG. 1 shows the configuration of a fuel cell (DMFC) system 101 equipped with a methanol concentration control mechanism using the concentration measuring element 112 of the present invention.
 燃料電池システム101のほぼ中央にDMFC本体102がある。このDMFC本体102の発電に使われる燃料は、メタノール容器103に充填されている。メタノール容器103に貯蔵されているメタノールは100%のメタノールでも良いが、一般的には水で希釈されたメタノール水溶液が用いられる。この中から必要量のメタノールが、バルブやポンプからなる燃料供給手段104によって燃料タンク108に導入される。前記燃料供給手段104は、メタノール濃度が所定濃度以下になったときに動作するものとする。これらの制御には、マイコン等の制御回路120が用いられる。 There is a DMFC main body 102 at almost the center of the fuel cell system 101. The fuel used for power generation of the DMFC main body 102 is filled in the methanol container 103. The methanol stored in the methanol container 103 may be 100% methanol, but generally an aqueous methanol solution diluted with water is used. A required amount of methanol is introduced into the fuel tank 108 by the fuel supply means 104 including a valve and a pump. The fuel supply means 104 operates when the methanol concentration becomes a predetermined concentration or less. A control circuit 120 such as a microcomputer is used for these controls.
 メタノールの濃度計測素子112は、燃料タンク108とDMFC本体102の燃料供給口を連絡する燃料循環ライン105の途中に設置する。制御回路120は、DMFC本体102に供給されるメタノール燃料を所定値になっていることを監視する。燃料タンク近傍に設けることで、計測の時間遅れを回避し、濃度制御を迅速に行うことができる。 The methanol concentration measuring element 112 is installed in the middle of the fuel circulation line 105 that connects the fuel tank 108 and the fuel supply port of the DMFC main body 102. The control circuit 120 monitors that the methanol fuel supplied to the DMFC main body 102 has a predetermined value. By providing it in the vicinity of the fuel tank, it is possible to avoid a measurement time delay and to perform concentration control quickly.
 別の方法として、DMFC本体102の燃料排出口と燃料タンク108を連絡する燃料循環ライン105の途中に設置しても良い。この場合は、DMFC本体102にて消費されるメタノール濃度に、DMFC本体102にて流れる電流から計算される消費速度や電解質膜を透過するメタノールの損失速度(メタノール・クロスオーバーによる損失速度とする。)などから計算される消費メタノール濃度を加算する。その合計が所定値になっているか否かを制御回路120で判断する。 Alternatively, it may be installed in the middle of the fuel circulation line 105 that connects the fuel outlet of the DMFC main body 102 and the fuel tank 108. In this case, the consumption rate calculated from the current flowing in the DMFC main body 102 or the loss rate of methanol permeating the electrolyte membrane (loss rate due to methanol crossover) is added to the methanol concentration consumed in the DMFC main body 102. ) Etc., add the concentration of methanol consumed. The control circuit 120 determines whether or not the sum is a predetermined value.
 制御回路120が、燃料タンク108のメタノール濃度が上限値を超えたと判断したときには、純水供給手段107を作動させる。この場合、純水容器106から必要な水が燃料循環ライン105、又は、燃料タンク108に供給され、メタノール濃度は適正な範囲に維持される。 When the control circuit 120 determines that the methanol concentration in the fuel tank 108 exceeds the upper limit value, the pure water supply means 107 is operated. In this case, necessary water is supplied from the pure water container 106 to the fuel circulation line 105 or the fuel tank 108, and the methanol concentration is maintained in an appropriate range.
 燃料タンク108は、所定の濃度範囲に制御されたメタノール水溶液を一時的に貯蔵する機能の他、上述のメタノール容器103と純水容器106から燃料や水が補充されたときの燃料濃度を均一にする機能も有する。 The fuel tank 108 has a function of temporarily storing a methanol aqueous solution controlled to a predetermined concentration range, and also makes the fuel concentration uniform when fuel and water are replenished from the methanol container 103 and the pure water container 106 described above. It also has a function to
 この中の一部のメタノール水溶液が、燃料循環ポンプ109によって燃料循環ライン105を経由し、DMFC本体102に供給される。DMFC本体102では、アノードにおいてメタノールが酸化される(式8)。その後、メタノールの排液は、再び燃料タンク108に戻される。 Some of the methanol aqueous solution is supplied to the DMFC main body 102 via the fuel circulation line 105 by the fuel circulation pump 109. In the DMFC main body 102, methanol is oxidized at the anode (Formula 8). Thereafter, the methanol drainage is returned to the fuel tank 108 again.
  CH3OH+H2O → CO2+6H++6e-  ・・・・・ (式8)
 メタノールの酸化反応(式8)によって発生した二酸化炭素は、DMFC本体102では、燃料に溶存した状態にて存在するか、あるいは微小な気泡として存在する。その二酸化炭素は燃料循環ライン105を経由して燃料タンク108に移り、燃料タンク108中の気相に大半の二酸化炭素が放出される。さらに、その気相の圧力が増加すると、燃料タンク108の上部に設置した気液分離器110を通して燃料電池システム101の外部に放出される。この気液分離器110には、触媒処理反応器を設け、微量の有機物を除去する機構を付与しても良い。
CH 3 OH + H 2 O → CO 2 + 6H + + 6e (Formula 8)
Carbon dioxide generated by the oxidation reaction of methanol (Formula 8) exists in the DMFC main body 102 in a state dissolved in the fuel or as fine bubbles. The carbon dioxide moves to the fuel tank 108 via the fuel circulation line 105, and most of the carbon dioxide is released into the gas phase in the fuel tank 108. Further, when the pressure in the gas phase increases, the gas is discharged to the outside of the fuel cell system 101 through the gas-liquid separator 110 installed at the upper part of the fuel tank 108. The gas-liquid separator 110 may be provided with a mechanism for removing a trace amount of organic substances by providing a catalyst treatment reactor.
 空気は、ファンやその他の空気供給手段111からDMFC本体102に供給され、水が生成する(式9)。(式9)の左辺に示された水素イオンは、アノードでのメタノールの酸化反応(式8)により生成した水素イオンが、電解質膜を透過してきたものである。 Air is supplied from the fan or other air supply means 111 to the DMFC main body 102, and water is generated (formula 9). The hydrogen ions shown on the left side of (Equation 9) are the hydrogen ions produced by the methanol oxidation reaction (Equation 8) at the anode permeating through the electrolyte membrane.
  3/2O2+6H+ → 3H2O  ・・・・・ (式9)
 発電後の排ガスは、酸化剤排出系統124を通じて、燃料電池システム101の外部に放出される。空気排ガス出口に気液分離膜と冷却器を設置し、水を回収し、冷却水タンク106に戻す方法も採ることができる。
3 / 2O 2 + 6H + → 3H 2 O (formula 9)
The exhaust gas after power generation is released to the outside of the fuel cell system 101 through the oxidant discharge system 124. A method of installing a gas-liquid separation membrane and a cooler at the air exhaust gas outlet, collecting water, and returning it to the cooling water tank 106 can also be adopted.
 図1に示したDMFCシステム構成によって、メタノール濃度を調整した燃料を、燃料タンク108からDMFC本体102に供給することができる。 1 can be supplied from the fuel tank 108 to the DMFC main body 102 by the DMFC system configuration shown in FIG.
 本発明の濃度計測素子の燃料検知部217は、図2に示す構成となっている。イオン伝導体214のそれぞれの面に燃料酸化極215とガス発生極216が積層されている。エタノールを検知する場合は、燃料酸化極215においてメタノール酸化反応(式1)が進行し、ガス発生極216では水素発生反応(式2)が起こる。イオン伝導体214は、水素イオンを透過させる固体高分子電解質膜を選択することができる。燃料の種類に応じて、燃料酸化極215とイオン伝導体214の材料を変更することも可能である。 The fuel detector 217 of the concentration measuring element of the present invention has a configuration shown in FIG. A fuel oxidation electrode 215 and a gas generation electrode 216 are stacked on each surface of the ion conductor 214. When ethanol is detected, a methanol oxidation reaction (formula 1) proceeds at the fuel oxidation electrode 215, and a hydrogen generation reaction (formula 2) occurs at the gas generation electrode 216. As the ion conductor 214, a solid polymer electrolyte membrane that allows hydrogen ions to pass therethrough can be selected. Depending on the type of fuel, the materials of the fuel oxidation electrode 215 and the ion conductor 214 can be changed.
 図2に示した燃料検知部217は、燃料を流通させる管の中に収納し、フローセル構造にすると、ガス発生による分解反応(式3)の阻害を回避することができる。 When the fuel detection unit 217 shown in FIG. 2 is housed in a pipe through which fuel is circulated and has a flow cell structure, it is possible to avoid the inhibition of the decomposition reaction (formula 3) due to gas generation.
 本発明のフローセル構造を図3A、3Bに例示した。図3Aは、燃料酸化極315の上方から見た図である。図3Bは、フローセルの断面構造を示す。 The flow cell structure of the present invention is illustrated in FIGS. 3A and 3B. FIG. 3A is a view of the fuel oxidation electrode 315 as viewed from above. FIG. 3B shows a cross-sectional structure of the flow cell.
 燃料酸化極315は、イオン伝導体314の上部に設置され、イオン伝導体314の下にガス発生極がある。図3Aでは、イオン伝導体314に隠れているため省略されている。断面構造を示す図3Bでは、ガス発生極316が示されている。 The fuel oxidation electrode 315 is installed on the upper part of the ion conductor 314, and the gas generating electrode is under the ion conductor 314. In FIG. 3A, it is omitted because it is hidden behind the ion conductor 314. In FIG. 3B showing a cross-sectional structure, a gas generating electrode 316 is shown.
 燃料酸化極315に電気を取り出すための電流端子318が接続されている。電流端子318は、燃料酸化極315の電位にさらされるので、耐食性を有していることが条件である。また、電流端子318が燃料に対し電気化学的に活性な場合には、電流端子318上の酸化電流が燃料酸化極315での酸化電流の誤差として生じる。そのため、電流端子318は燃料に対し電気化学的に不活性であることが、燃料計測精度を高める上で好ましい。燃料に対し電気化学的に活性があっても、電流端子318の表面積が小さくなるように線径、長さを制限すれば、誤差をできるだけ小さくすることは可能である。 A current terminal 318 for taking out electricity is connected to the fuel oxidation electrode 315. Since the current terminal 318 is exposed to the potential of the fuel oxidation electrode 315, the current terminal 318 is required to have corrosion resistance. Further, when the current terminal 318 is electrochemically active with respect to the fuel, an oxidation current on the current terminal 318 is generated as an error in the oxidation current at the fuel oxidation electrode 315. Therefore, it is preferable that the current terminal 318 is electrochemically inactive with respect to the fuel in order to improve the fuel measurement accuracy. Even when the fuel is electrochemically active, the error can be minimized by limiting the wire diameter and length so that the surface area of the current terminal 318 is reduced.
 ガス発生極(図3Bの316)にも、イオン伝導体314の下面から電流端子319が接続され、外部に電流を取り出せるようになっている。電流端子319は、燃料酸化極315のように酸化状態にならないので、電圧を印加しない状態にて燃料中に浸漬しても自然に腐食が起こりにくい材料であれば、任意の伝導材料を選択することができる。また、ガス発生極316では水素発生などが起こるので、これらの反応に対して電気化学的に不活性であることが、燃料計測精度を高める上で好ましい。ただし、ガス発生反応に対し電気化学的に活性があっても、電流端子319の表面積が小さくなるように線径、長さを制限すれば、誤差の問題を回避することは可能である。 A current terminal 319 is also connected to the gas generating electrode (316 in FIG. 3B) from the lower surface of the ion conductor 314 so that a current can be taken out to the outside. Since the current terminal 319 is not in an oxidized state like the fuel oxidation electrode 315, any conductive material is selected as long as it is a material that does not naturally corrode even when immersed in the fuel without applying a voltage. be able to. Further, since hydrogen generation occurs at the gas generating electrode 316, it is preferable to be electrochemically inert to these reactions in order to improve the fuel measurement accuracy. However, even if there is electrochemical activity with respect to the gas generation reaction, it is possible to avoid the problem of error if the wire diameter and length are limited so that the surface area of the current terminal 319 is reduced.
 燃料検知部全体は、燃料流通管320の内部に収納され、燃料酸化極315、ガス発生極316は、燃料と常時接触している。燃料流通管320は、電流端子318、319あるいは燃料酸化極315やガス発生極316と、電気的に非接触とし、絶縁性を確保する。また、燃料流通管320の材質は、燃料に侵されないものであれば任意に選択することができ、ステンレス鋼やプラスチックを用いることができる。 The entire fuel detection unit is housed inside the fuel flow pipe 320, and the fuel oxidation electrode 315 and the gas generation electrode 316 are always in contact with the fuel. The fuel flow pipe 320 is electrically in non-contact with the current terminals 318 and 319 or the fuel oxidation electrode 315 and the gas generation electrode 316 to ensure insulation. The material of the fuel flow pipe 320 can be arbitrarily selected as long as it is not affected by the fuel, and stainless steel or plastic can be used.
 次に、図3A、3Bのフローセルを、より実際的な形態に変更した構成を説明する。図4は、そのフローセルの側面図の一例である。左図は側面図、右図は断面図を示す。 Next, a configuration in which the flow cell of FIGS. 3A and 3B is changed to a more practical form will be described. FIG. 4 is an example of a side view of the flow cell. The left figure shows a side view and the right figure shows a cross-sectional view.
 燃料流通管420は、図3の燃料流通管320に相当する。燃料の浸透や熱に対して耐久性があり、かつ、低コストな材料で製作することが望ましい。また、燃料酸化極とガス発生極に電圧を印加するので、絶縁体もしくは高抵抗素材から製作されることが特に望ましい。 The fuel flow pipe 420 corresponds to the fuel flow pipe 320 of FIG. It is desirable to manufacture with a low cost material that is durable against fuel penetration and heat. Further, since a voltage is applied to the fuel oxidation electrode and the gas generation electrode, it is particularly desirable that the electrode is manufactured from an insulator or a high resistance material.
 燃料酸化極、イオン伝導体とガス発生極からなる積層体は、燃料検知部417として一括して図示されている。これは、燃料流通管420の外径より小さい半径を有し、アーチ状の形状とした黒鉛部品421、422により燃料検知部417の上下方向から挟持されている。黒鉛部品は他の材質に変更することができる。導電性があり、燃料や水により腐食しないものであれば、黒鉛以外の材料を用いることができる。例えば、チタンやチタンコートした金属積層体に置き換えることが可能である。 A laminated body composed of a fuel oxidation electrode, an ion conductor, and a gas generation electrode is collectively shown as a fuel detection unit 417. This has a radius smaller than the outer diameter of the fuel flow pipe 420 and is sandwiched from above and below the fuel detection unit 417 by graphite parts 421 and 422 having an arch shape. The graphite parts can be changed to other materials. A material other than graphite can be used as long as it is conductive and does not corrode with fuel or water. For example, it can be replaced with titanium or a titanium-coated metal laminate.
 黒鉛部品421、422の内径は燃料流通管420の内径に一致するように、黒鉛部品421、422の肉厚に相当する深さのざぐり部423を設け、その中に黒鉛部品421、422をはめ込むようにする。このようにすれば、図4右側の断面図に示すように、燃料流通管420の内壁が凹凸のなくスムーズな形状となる。燃料流通時の圧損を低減したり、燃料検知部417で発生したガスの付着を防止することに有効である。ざぐり部423と黒鉛部品421、422の接触する面には、燃料に侵されず、燃料温度にて劣化しない接着剤やシール剤を塗布することにより、気密性を確保することができる。 A counterbore 423 having a depth corresponding to the thickness of the graphite parts 421 and 422 is provided so that the inner diameters of the graphite parts 421 and 422 coincide with the inner diameter of the fuel flow pipe 420, and the graphite parts 421 and 422 are fitted therein. Like that. In this way, as shown in the cross-sectional view on the right side of FIG. 4, the inner wall of the fuel flow pipe 420 has a smooth shape with no irregularities. This is effective for reducing the pressure loss during the flow of the fuel and preventing the adhesion of the gas generated by the fuel detector 417. Airtightness can be secured by applying an adhesive or sealant that is not attacked by the fuel and does not deteriorate at the fuel temperature to the contact surface between the spot facing portion 423 and the graphite parts 421 and 422.
 黒鉛部品421、422の一部は、燃料流通管420の開口窓から露出し、その部分から電流端子418、419を接続し、燃料検知部417に電圧を印加することができる。 Part of the graphite parts 421 and 422 is exposed from the opening window of the fuel flow pipe 420, and current terminals 418 and 419 are connected from the part to apply a voltage to the fuel detection unit 417.
 上下の燃料流通管420は、半円状に製作し、半円の端部同士を接着または溶着しても良いし、側面全体を熱収縮チューブで被覆、圧着しても良い。半円の端部には切り欠きを設け、2個の半円端部がかみ合う構造(いわゆるノッチ構造)にすると、位置ずれを回避できるのでより望ましい。 The upper and lower fuel flow pipes 420 may be manufactured in a semicircular shape, and the end portions of the semicircle may be bonded or welded together, or the entire side surface may be covered with a heat shrinkable tube and crimped. It is more preferable to provide a notch at the end of the semicircle so that the two semicircular ends engage with each other (so-called notch structure), so that misalignment can be avoided.
 図4に示した濃度計測素子は、図1の本発明の燃料電池システムに組み込まれ(図1の112)、電流端子418、419を介して図1の制御回路120に接続されている。電流端子418と419は、図1では電流信号ライン121で表示されている。 4 is incorporated in the fuel cell system of the present invention shown in FIG. 1 (112 in FIG. 1), and is connected to the control circuit 120 shown in FIG. 1 through current terminals 418 and 419. Current terminals 418 and 419 are represented by current signal lines 121 in FIG.
 図4では燃料検知部417を一つのみ設けているが、同一の燃料流通管420の異なる位置にざぐり部423を複数箇所、形成し、複数の燃料検知部417を設けることも可能である。このようにすると、燃料流通管420を燃料が流通する過程で、上流の燃料検知部417で酸化電流を計測し、下流の燃料検知部417が濃度変化後の燃料における酸化電流を計測することになる。その結果、両燃料検知部の酸化電流差からメタノールをさらに高精度で計測する方法を採ることができる。 Although only one fuel detection unit 417 is provided in FIG. 4, it is also possible to form a plurality of counterbore portions 423 at different positions of the same fuel flow pipe 420 and provide a plurality of fuel detection units 417. In this way, in the process of fuel flowing through the fuel flow pipe 420, the upstream fuel detection unit 417 measures the oxidation current, and the downstream fuel detection unit 417 measures the oxidation current in the fuel after the concentration change. Become. As a result, it is possible to employ a method of measuring methanol with higher accuracy from the difference in oxidation current between the two fuel detection units.
 図1に再び戻って、図4の濃度計測素子の動作方法について説明する。制御回路120は直流電源を有している。これは、図4の燃料検知部417に電流信号ライン121を介して電圧を印加し、流れた電流を計測する機能を有する。その電流に基づいて演算処理が実行され、燃料濃度を計算する。 Referring back to FIG. 1, the operation method of the concentration measuring element of FIG. 4 will be described. The control circuit 120 has a DC power source. This has a function of applying a voltage to the fuel detection unit 417 of FIG. 4 via the current signal line 121 and measuring the flowing current. An arithmetic process is executed based on the current, and the fuel concentration is calculated.
 DMFC本体102に設けた電池温度計測用熱電対、または燃料循環ライン105の内部に挿入した燃料温度計測用熱電対(いずれも図1では省略されている。)にて測定した温度データも、電気信号として制御回路120に取り込むことができる。温度データを演算処理に加えることにより、電流の温度依存分を補正することができる。その結果、燃料濃度の精度を向上させることができる。 The temperature data measured by the thermocouple for measuring the battery temperature provided in the DMFC main body 102 or the thermocouple for measuring the fuel temperature inserted in the fuel circulation line 105 (both are omitted in FIG. 1) The signal can be taken into the control circuit 120 as a signal. By adding the temperature data to the calculation process, the temperature dependence of the current can be corrected. As a result, the accuracy of fuel concentration can be improved.
 また、燃料タンク108に燃料の容積を計測するセンサを設置すれば、そのセンサから容積計測結果を表す信号を、制御回路120に取り込むことができる。このようにすれば、燃料容積とメタノール濃度からメタノールのモル数を算出することができる。その結果、燃料容積のみならずメタノールのモル数の両方を監視したメタノール濃度制御を実行することができる。 If a sensor for measuring the volume of the fuel is installed in the fuel tank 108, a signal representing the volume measurement result can be taken into the control circuit 120 from the sensor. In this way, the number of moles of methanol can be calculated from the fuel volume and the methanol concentration. As a result, it is possible to execute methanol concentration control in which both the fuel volume and the number of moles of methanol are monitored.
 制御回路120の演算結果に基づき、燃料濃度が目標値より低いと判断されたときには、燃料制御ライン122から燃料供給手段104にメタノールの供給指令信号を出力する。逆に、燃料濃度が目標値より高いと判断されたときには、純水制御ライン123から純水供給手段107に純水の供給指令信号を出力する。 When it is determined that the fuel concentration is lower than the target value based on the calculation result of the control circuit 120, a methanol supply command signal is output from the fuel control line 122 to the fuel supply means 104. Conversely, when it is determined that the fuel concentration is higher than the target value, a pure water supply command signal is output from the pure water control line 123 to the pure water supply means 107.
 燃料タンク108の燃料容積が不足している場合には、制御回路120から燃料供給指令と純水供給指令の両方を出力する。 When the fuel volume of the fuel tank 108 is insufficient, the control circuit 120 outputs both a fuel supply command and a pure water supply command.
 次に、本発明のDMFC本体102の構成を説明する。図5はDMFC本体の断面構造を示している。 Next, the configuration of the DMFC main body 102 of the present invention will be described. FIG. 5 shows a cross-sectional structure of the DMFC main body.
 メタノール酸化反応(式8)または酸素還元反応(式9)は、膜電極接合体(以下、MEAという)のアノード、カソードの表面でそれぞれ進行するようになっている。MEA502は、電解質膜の一方の面にアノード、他方の面にカソードを積層した三層構造で構成されている。このMEA502を二枚のセパレータ504で挟持させたものを単セル501と称する。このセパレータの一方の面には、燃料を流通させる流路を形成し、他方の面には酸化剤を流通させる流路を形成する。 Methanol oxidation reaction (Formula 8) or oxygen reduction reaction (Formula 9) proceeds on the anode and cathode surfaces of a membrane electrode assembly (hereinafter referred to as MEA), respectively. The MEA 502 has a three-layer structure in which an anode is stacked on one surface of an electrolyte membrane and a cathode is stacked on the other surface. A structure in which the MEA 502 is sandwiched between two separators 504 is referred to as a single cell 501. A flow path through which fuel flows is formed on one side of the separator, and a flow path through which oxidant flows is formed on the other side.
 二枚のセパレータ504の間にガスケット505、MEA502の電解質膜部分、ガスケット505とを積層し、圧着させることによって、燃料や酸化剤の漏洩を防止している。セパレータ504の一方の面には燃料流路、他方の面には酸化剤流路を形成した。ガスケット505には、エチレン・プロピレンゴム、フッ素ゴム、シリコンゴム等の耐酸化性、耐還元性、耐水性の弾性体を用いることができる。エポキシ樹脂を接着剤として用い、硬化させてガスケットの代用としても良い。 Between the two separators 504, the gasket 505, the electrolyte membrane portion of the MEA 502, and the gasket 505 are laminated and pressed to prevent leakage of fuel and oxidant. The separator 504 was formed with a fuel channel on one side and an oxidant channel on the other side. The gasket 505 can be made of an oxidation resistant, reduction resistant, water resistant elastic body such as ethylene / propylene rubber, fluorine rubber, or silicon rubber. An epoxy resin may be used as an adhesive and cured to replace the gasket.
 複数の単セル501を直列に接続し、両末端に集電板513、514を設置し、さらに絶縁板507を介して外側より端板509で締め付ける。端板が絶縁性の材料とすれば、絶縁板507を省略することができる。 A plurality of single cells 501 are connected in series, current collecting plates 513 and 514 are installed at both ends, and further tightened with an end plate 509 from the outside via an insulating plate 507. If the end plate is made of an insulating material, the insulating plate 507 can be omitted.
 集電板に接する末端のセパレータ531、532には、電池の内向きに流路を形成し、集電板に接する面には流路を形成しなかった。集電板に接する面に流路を形成すると、集電板の腐食が起こる可能性があるからである。ただし、集電板513、514が耐食性であれば、その面に流路を形成しても良い。 In the separators 531 and 532 at the end in contact with the current collector plate, a channel was formed inward of the battery, and no channel was formed on the surface in contact with the current collector plate. This is because if the flow path is formed on the surface in contact with the current collector plate, the current collector plate may corrode. However, if the current collector plates 513 and 514 are corrosion resistant, a channel may be formed on the surface.
 締め付け部品として、ボルト516、ばね517、ナット518を用いる。 ボ ル ト Bolts 516, springs 517, and nuts 518 are used as tightening parts.
 燃料は、図1の燃料供給ライン105から、図5の端板509に設けた燃料供給側の燃料配管用コネクタ510に供給される。次いで、各単セル501を通過する途中で、MEAのアノード上にて燃料が酸化される。その後、反対の端板509に設けた燃料排出側の燃料配管用コネクタ522から排出される。排出された燃料は、図1の燃料タンク108に送られる。本システムの燃料としては、メタノール等の液体有機燃料を用いることができる。さらに、メタノール水溶液などの液体燃料を用いることも可能である。 Fuel is supplied from the fuel supply line 105 in FIG. 1 to a fuel supply connector 510 on the fuel supply side provided on the end plate 509 in FIG. Then, the fuel is oxidized on the MEA anode while passing through each single cell 501. Thereafter, the fuel is discharged from the fuel discharge connector 522 provided on the opposite end plate 509. The discharged fuel is sent to the fuel tank 108 of FIG. As the fuel of this system, liquid organic fuel such as methanol can be used. Furthermore, it is possible to use a liquid fuel such as a methanol aqueous solution.
 酸化剤は、図1の空気供給手段111から、図5に示す左側の端板509に設けた酸化剤供給側の酸化剤配管用コネクタ511から供給され、反対の端板509の酸化剤排出側の酸化剤配管用コネクタ523から排出される。空気は、電池の外部に設置した空気ファン(図1の空気供給手段111)から供給した。 The oxidant is supplied from the air supply means 111 of FIG. 1 from the oxidant supply connector 511 on the oxidant supply side provided on the left end plate 509 shown in FIG. 5, and the oxidant discharge side of the opposite end plate 509. The oxidizer pipe connector 523 is discharged. Air was supplied from an air fan (air supply means 111 in FIG. 1) installed outside the battery.
 このような部品構成にて、25個の単セル501からなるセルスタックを製作した。 A cell stack composed of 25 single cells 501 was manufactured with such a component structure.
 第一の実施形態は、上記セルスタックを図1の構成になるように組み込んだDMFCシステムである。DMFC本体からの電力は、集電板513、514に接続した外部電力線519を介してDC-DCコンバータ520またはインバータ520に供給され、外部に設置した負荷521を動作させることができる。本システムをS1と称する。 The first embodiment is a DMFC system in which the cell stack is incorporated so as to have the configuration shown in FIG. Electric power from the DMFC main body is supplied to the DC-DC converter 520 or the inverter 520 via the external power line 519 connected to the current collector plates 513 and 514, and the load 521 installed outside can be operated. This system is referred to as S1.
 システムS1に使用する濃度計測素子の仕様は、以下の通りである。濃度計測素子形状は図4に示す円筒型フローセルである。燃料流通管420の外径は8mm、内径は6mmとし、全長は50mmとした。燃料検知部417のサイズは6mm×4mmとした。また、燃料酸化極、水素発生極ともに、Pt担持量0.5mg/cm2とした。電解質膜にはパーフロロスルホン酸電解質膜(厚さ25μm)、ガス拡散層には炭素繊維を主成分とする多孔質炭素シート(厚さ0.2mm、空隙率75%)を用いた。なお、水素発生極に用いるガス拡散層のみ、PTFEディスパージョンを10%含浸させ、乾燥させた多孔質炭素シートを用いた。 The specifications of the concentration measuring element used in the system S1 are as follows. The shape of the concentration measuring element is a cylindrical flow cell shown in FIG. The outer diameter of the fuel flow pipe 420 was 8 mm, the inner diameter was 6 mm, and the total length was 50 mm. The size of the fuel detector 417 was 6 mm × 4 mm. Further, the Pt loading was 0.5 mg / cm 2 for both the fuel oxidation electrode and the hydrogen generation electrode. A perfluorosulfonic acid electrolyte membrane (thickness 25 μm) was used as the electrolyte membrane, and a porous carbon sheet (thickness 0.2 mm, porosity 75%) mainly composed of carbon fibers was used as the gas diffusion layer. Only the gas diffusion layer used for the hydrogen generation electrode was made of a porous carbon sheet impregnated with 10% PTFE dispersion and dried.
 燃料酸化極、水素発生極に用いるPt担持量は、電極層の厚さ増加によるメタノールや水素の拡散速度の低下を防止するために、5mg/cm2以下であるのが望ましい。高担持量にすると、高濃度のメタノールでは酸化電流が低下するからである。また、さらに、1mg/cm2以下であることが、検出感度を維持しつつ、燃料検知部のコスト削減のためにも好ましい。 The amount of Pt supported used for the fuel oxidation electrode and the hydrogen generation electrode is preferably 5 mg / cm 2 or less in order to prevent a decrease in the diffusion rate of methanol or hydrogen due to an increase in the thickness of the electrode layer. This is because when the amount is high, the oxidation current decreases with high concentration of methanol. Further, it is preferable that the amount is 1 mg / cm 2 or less in order to reduce the cost of the fuel detection unit while maintaining the detection sensitivity.
 燃料酸化極と水素発生極に印加する電圧は、燃料の酸化開始電圧以上であって、水電解による酸素発生電流が燃料酸化電流を超えない範囲にすることが望ましい。したがって、有機燃料がメタノールであるときの両電極への印加電圧は、0.2V以上、1.3V以下が適切である。特に、メタノール酸化極でのCO被毒を回避するために0.6V以上、酸素発生電流に対するメタノール酸化電流の比率を高めるために1.2V以下が適している。本実施例では、印加電圧を1.1Vに設定した。 It is desirable that the voltage applied to the fuel oxidation electrode and the hydrogen generation electrode be equal to or higher than the fuel oxidation start voltage and the oxygen generation current by water electrolysis does not exceed the fuel oxidation current. Therefore, the voltage applied to both electrodes when the organic fuel is methanol is suitably 0.2 V or more and 1.3 V or less. Particularly, 0.6 V or more is suitable for avoiding CO poisoning at the methanol oxidation electrode, and 1.2 V or less is suitable for increasing the ratio of the methanol oxidation current to the oxygen generation current. In this example, the applied voltage was set to 1.1V.
 図1の燃料タンク103に蓄えられるメタノール水溶液のメタノール濃度は50%、燃料循環ライン105を流通するときのメタノール水溶液は5%を制御基準値とし、制御の精度幅としては3~6%とした。また、必要に応じて、制御基準値を外部から調整できるように、制御回路120内のマイコンへのデータ書き込み、変更ができるように制御回路120に外部データ入力ポートを設けた。燃料タンクに貯蔵される燃料の容積は100ccとした。 The methanol concentration of the aqueous methanol solution stored in the fuel tank 103 in FIG. 1 is 50%, the aqueous methanol solution when flowing through the fuel circulation line 105 is 5% as a control reference value, and the control accuracy range is 3 to 6%. . Further, an external data input port is provided in the control circuit 120 so that data can be written to and changed in the microcomputer in the control circuit 120 so that the control reference value can be adjusted from the outside as needed. The volume of fuel stored in the fuel tank was 100 cc.
 酸化剤利用率は10%になるように、空気供給手段111である電圧を設定した。 The voltage that is the air supply means 111 was set so that the oxidant utilization rate would be 10%.
 以上の構成にて、システムS1を運転した。図6の本発明方式のデータは、制御基準値を外部パソコンからマイコンへ転送し、その値に応じて、システムS1の燃料制御値が基準値通りになっているかどうかを検討した結果である。縦軸の酸化電流を表す電流比は、メタノール濃度3%時の電流を基準とし、相対的な値として表示している。本データによると、重量濃度で10%、あるいはモル濃度で3.1モル/リットル以上の高濃度においても電流が単調に増加し、高濃度において電流増加率が低下する割合が小さいことがわかった。また、連続発電時における制御の精度幅としては、いずれの制御基準値においても±1%(±0.3モル/リットル)のレンジに納まっていた。 The system S1 was operated with the above configuration. The data of the method of the present invention in FIG. 6 is the result of examining whether or not the fuel control value of the system S1 is in accordance with the reference value according to the value transferred from the external personal computer to the microcomputer. The current ratio representing the oxidation current on the vertical axis is displayed as a relative value based on the current at a methanol concentration of 3%. According to this data, it was found that the current increased monotonously at a high concentration of 10% by weight concentration or 3.1 mol / liter or more at a molar concentration, and the rate at which the current increase rate decreased at a high concentration was small. . In addition, the accuracy range of control during continuous power generation was within a range of ± 1% (± 0.3 mol / liter) at any control reference value.
 比較のため、図4の電流端子418、419をフッ素チューブで燃料に接触しないようにシールした濃度計測素子を製作し、それを図1の燃料タンク108に静置したシステムも製作した。なお、濃度計測素子の管の長さは、ざぐり部423より約2mmだけ残し、全長8mmとした短い濃度計測素子を製作した。濃度計測素子の短縮によって、燃料タンク内のメタノールが短時間で燃料検知部417に到達できるようになる。ただし、濃度計測素子の燃料検知部417に燃料が自然拡散によって燃料が燃料検知部417に到達するが、S1のように燃料が常時流通しない点が異なる。本システムをS2とする。 For comparison, a concentration measuring element in which the current terminals 418 and 419 in FIG. 4 were sealed with a fluorine tube so as not to come into contact with the fuel was manufactured, and a system was also manufactured in which it was placed in the fuel tank 108 in FIG. In addition, the length of the pipe | tube of a density | concentration measuring element left about 2 mm from the counterbore part 423, and produced the short density | concentration measuring element which made 8 mm in total length. By shortening the concentration measuring element, methanol in the fuel tank can reach the fuel detector 417 in a short time. However, although the fuel reaches the fuel detector 417 by natural diffusion to the fuel detector 417 of the concentration measuring element, the difference is that the fuel does not always flow as in S1. Let this system be S2.
 システムS1と同じように、外部パソコンからマイコンに制御基準値の変更操作を行い、その値に応じて、システムS2の燃料制御値が基準値通りになっているかどうかを検討した。本データによると、5%(1.5モル/リットル)付近から電流の増加率が減少しほぼ飽和に達する挙動が認められた。特に、10%(3.1モル/リットル)濃度付近以上においては電流増加が小さいため、濃度の計測誤差が大きくなることがわかり、実際上メタノール濃度を制御することができないことが明らかになった。また、連続発電時における制御の精度幅としては、いずれの制御基準値においても±2%(±0.6モル/リットル)まで拡大した。自然拡散によると、濃度検出誤差の増大しやすいことが一因である。また、濃度計測素子で計測した時点の濃度と制御回路による制御しようとする目標濃度にずれが生じやすいこと、すなわち計測と制御のタイムラグ(時間のずれ)の問題も大きな要因である。 As with the system S1, the control reference value was changed from the external personal computer to the microcomputer, and it was examined whether the fuel control value of the system S2 was in accordance with the reference value. According to this data, it was observed that the rate of increase in current decreased from around 5% (1.5 mol / liter) and reached saturation. In particular, the increase in current was small near the 10% (3.1 mol / liter) concentration or higher, and it was found that the concentration measurement error increased, and it was found that the methanol concentration cannot actually be controlled. . In addition, the control accuracy range during continuous power generation has been expanded to ± 2% (± 0.6 mol / liter) at any control reference value. One reason is that the density detection error tends to increase due to natural diffusion. Another major factor is that the concentration at the time point measured by the concentration measuring element and the target concentration to be controlled by the control circuit are likely to be shifted, that is, the time lag between the measurement and the control.
 次に、電流20A(電流密度は0.2A/cm2とした。)にて上記システムの発電を実施し、定格出力200Wを得た。なお、電池温度は55から60℃に制御した。システムS1においては、定格電流20Aの範囲で、メタノール濃度を制御基準値4%、ばらつき±1%以内に制御することができた。これに対し、システムS2では、同じ制御基準値であっても、ばらつきが±2%に拡大した。 Next, the system was generated with a current of 20 A (current density was 0.2 A / cm 2 ), and a rated output of 200 W was obtained. The battery temperature was controlled at 55 to 60 ° C. In the system S1, the methanol concentration could be controlled within a control standard value of 4% and variation of ± 1% within the range of the rated current of 20A. On the other hand, in the system S2, even when the control reference value is the same, the variation is expanded to ± 2%.
 第二の実施形態として、図2の燃料酸化極(メタノール酸化極)215の触媒層上面に多孔質膜を接着した濃度計測素子を用いた燃料制御方法を説明する。 As a second embodiment, a fuel control method using a concentration measuring element in which a porous film is bonded to the upper surface of a catalyst layer of a fuel oxidation electrode (methanol oxidation electrode) 215 in FIG. 2 will be described.
 図2の燃料酸化極215の触媒層上面にポリエチレン製多孔質膜またはフッ素系多孔質膜を用いる。厚さは1mm程度まで使用可能であるが、0.05mm~0.3mmの厚さの多孔質膜が電極との接着の容易さ、メタノール拡散時間の短縮の点で特に好ましい。膜の選定条件としては、液の透過量がガス透過量に対し極めて小さいこと、燃料温度にて溶融、変質等が起こらないこと、燃料電池に影響を及ぼす不純物を放出しないことなどが挙げられ、これらの条件を満足すればいずれの材料でも選ぶことができる。また、膜、シート状、板状、多層ラミネート状であっても良いし、外形は角型、丸型など任意の形にして良い。 2 A polyethylene porous film or a fluorine-based porous film is used on the upper surface of the catalyst layer of the fuel oxidation electrode 215 in FIG. Although a thickness of about 1 mm can be used, a porous film having a thickness of 0.05 mm to 0.3 mm is particularly preferable from the viewpoint of easy adhesion to the electrode and shortening of the methanol diffusion time. The conditions for selecting the membrane include that the liquid permeation amount is extremely small relative to the gas permeation amount, that no melting or alteration occurs at the fuel temperature, and that no impurities affecting the fuel cell are released. Any material can be selected as long as these conditions are satisfied. Further, it may be a film, a sheet, a plate, or a multilayer laminate, and the outer shape may be any shape such as a square shape or a round shape.
 接着方法としては、熱圧着、フッ素バインダ溶液を多孔質膜の表面に薄く塗布し、その塗布面を燃料酸化極215に圧着し、乾燥することによって多孔質膜と燃料酸化極215を接着することができる。多孔質膜の細孔を閉塞せず、燃料酸化極215上の酸化反応を阻害しない方法であれば、いずれの方法でも採用することができる。 As a bonding method, thermocompression bonding, a fluorine binder solution is thinly applied to the surface of the porous membrane, the coated surface is pressure-bonded to the fuel oxidation electrode 215, and dried to bond the porous membrane and the fuel oxidation electrode 215. Can do. Any method can be adopted as long as it does not block the pores of the porous membrane and does not inhibit the oxidation reaction on the fuel oxidation electrode 215.
 このような構成にすると、燃料液が燃料酸化極215に直接接触しないので、高濃度までの計測が可能となる。液が透過せず、メタノール蒸気のみが電極に到達するようになるため、電流は多孔質膜を使用しない場合と比べ小さくなるが、電極表面が液滴により被覆され、電極内部の三層界面が減少しにくくなるため、純メタノールまで計測可能になる。また、水蒸気が多孔質膜を透過するため、電解質膜に適度な保湿をすることができるので、濃度計測素子の抵抗が増大することも抑制することができる。 With such a configuration, since the fuel liquid does not directly contact the fuel oxidation electrode 215, measurement up to a high concentration is possible. Since the liquid does not permeate and only methanol vapor reaches the electrode, the current is smaller than when the porous membrane is not used, but the electrode surface is covered with droplets and the three-layer interface inside the electrode is Since it becomes difficult to decrease, it is possible to measure even pure methanol. Moreover, since water vapor permeates through the porous membrane, the electrolyte membrane can be appropriately moisturized, so that an increase in the resistance of the concentration measuring element can also be suppressed.
 本実施形態の多孔質膜を用いた濃度計測素子を、システムS1の濃度計測素子と交換した新たなシステムをS3と称する。他の構成はシステムS1と同じである。 A new system in which the concentration measuring element using the porous membrane of the present embodiment is replaced with the concentration measuring element of the system S1 is referred to as S3. Other configurations are the same as those of the system S1.
 システムS1と同じように、外部パソコンからマイコンに制御基準値の変更操作を行い、その値に応じて、システムS2の燃料制御値が基準値通りになっているかどうかを検討した。燃料検知部に多孔質膜を用いた濃度計測素子の場合は、図6に示した各濃度における電流値に対し全体的に1/10程度までに、酸化電流が減少した。しかし、メタノール濃度に対する酸化電流がほぼ比例するようになり、直線性が向上した。さらに、メタノール濃度が60%までの高濃度範囲にてほぼ直線的に酸化電流が増加し、高濃度の燃料制御が可能となることがわかった。 As with the system S1, the control reference value was changed from the external personal computer to the microcomputer, and it was examined whether the fuel control value of the system S2 was in accordance with the reference value. In the case of a concentration measuring element using a porous membrane for the fuel detection part, the oxidation current decreased to about 1/10 overall with respect to the current value at each concentration shown in FIG. However, the oxidation current with respect to the methanol concentration became almost proportional, and the linearity was improved. Furthermore, it has been found that the oxidation current increases almost linearly in the high concentration range up to 60% methanol, and high concentration fuel control is possible.
 燃料酸化極の上に積層するガス拡散層を、4フッ化ポリエチレンなどの撥水性の高いバインダーを添加する撥水処理を行っていない炭素シートとすると、電気伝導性があり、かつ、撥水性の少ない電極を形成することができる。このようにすると、特にメタノール酸化極全体から電流を取り出すことができ、さらに生成した二酸化炭素を液相へ排除することができるのでメタノールを検出しやすくなる。 When the gas diffusion layer laminated on the fuel oxidation electrode is a carbon sheet that has not been subjected to water repellency treatment by adding a binder having high water repellency, such as tetrafluoropolyethylene, it has electrical conductivity and water repellency. Fewer electrodes can be formed. In this way, current can be taken out from the entire methanol oxidation electrode, and the generated carbon dioxide can be excluded to the liquid phase, so that methanol can be easily detected.
 燃料酸化極のガス拡散層として用いる炭素シートの厚さを0.05~4mmの範囲にすると、メタノール濃度に対する酸化電流が単調に増加する関係が得られ、酸化電流からメタノール濃度を検出しやすくなる。特に、炭素シートの厚さを0.1mm以上にすると、炭素シートの強度が増し、メタノール酸化極全体を圧着することができるようになる。その結果、メタノール酸化極と炭素シートの接触抵抗を小さくすることができる。また、炭素シートの厚さを0.3mm以下にすると、炭素シートの厚さ方向のメタノール拡散時間を短くすることができる。その結果、メタノール濃度変化に対する酸化電流の応答性が向上する。 When the thickness of the carbon sheet used as the gas diffusion layer of the fuel oxidation electrode is in the range of 0.05 to 4 mm, a relationship in which the oxidation current with respect to the methanol concentration increases monotonously is obtained, and the methanol concentration can be easily detected from the oxidation current. . In particular, when the thickness of the carbon sheet is 0.1 mm or more, the strength of the carbon sheet is increased and the entire methanol oxidation electrode can be pressure-bonded. As a result, the contact resistance between the methanol oxidation electrode and the carbon sheet can be reduced. If the thickness of the carbon sheet is 0.3 mm or less, the methanol diffusion time in the thickness direction of the carbon sheet can be shortened. As a result, the responsiveness of the oxidation current to changes in methanol concentration is improved.
 また、水素発生極では、電解質膜を透過した水素イオンの還元反応が起こるので(式2)、反応速度はメタノール酸化反応のようにガス拡散層を拡散する物質の速度に支配されない。すなわち、(式2)の反応速度は電解質膜中の水素イオンの拡散速度に支配される。したがって、ガス拡散層は生成した水素ガスを液相に放出しやすくすれば十分である。このように、水素発生極はガスの排出が優先されるので、4フッ化ポリエチレンなどの撥水性の高いバインダーを添加したガス拡散層を用い、水素の放出を容易にする。このようにすれば、10%以上の高いメタノール濃度において酸化電流が低下しにくくなり、メタノール濃度を検知しやすくなる。 In addition, since a reduction reaction of hydrogen ions that permeate the electrolyte membrane occurs at the hydrogen generation electrode (Equation 2), the reaction rate is not governed by the rate of the substance that diffuses in the gas diffusion layer as in the methanol oxidation reaction. That is, the reaction rate of (Equation 2) is governed by the diffusion rate of hydrogen ions in the electrolyte membrane. Therefore, it is sufficient that the gas diffusion layer facilitates the release of the generated hydrogen gas into the liquid phase. As described above, since the gas generation is prioritized in the hydrogen generation electrode, the gas diffusion layer to which a binder with high water repellency such as tetrafluoropolyethylene is added is used to facilitate the hydrogen release. In this way, the oxidation current is unlikely to decrease at a high methanol concentration of 10% or more, and the methanol concentration can be easily detected.
 水素酸化極のガス拡散層として用いる炭素シートの厚さを0.05~5mmの範囲にする。ガス拡散層中の水素の拡散速度が速く、ガス拡散層と水素発生極との密着性を得るために、炭素シートの厚さは0.15~0.3mmの範囲にすることが望ましい。 The thickness of the carbon sheet used as the gas diffusion layer of the hydrogen oxidation electrode is set in the range of 0.05 to 5 mm. In order to obtain a high diffusion rate of hydrogen in the gas diffusion layer and to obtain adhesion between the gas diffusion layer and the hydrogen generation electrode, the thickness of the carbon sheet is preferably in the range of 0.15 to 0.3 mm.
 第三の実施形態は、水素イオンを透過させる高分子固体電解質上に白金触媒層を形成し、上部に導電性多孔質層(炭素シートなど)を省略したメタノール酸化電極からなる濃度計測素子を用いた方法である。メタノールがメタノール酸化極に接触する時間を短縮し、迅速な応答性を得ることができる点で優れている。 The third embodiment uses a concentration measuring element comprising a methanol oxidation electrode in which a platinum catalyst layer is formed on a polymer solid electrolyte that allows hydrogen ions to permeate, and a conductive porous layer (such as a carbon sheet) is omitted on the top. It was the way. It is excellent in that the time for which methanol contacts the methanol oxidation electrode can be shortened and quick response can be obtained.
 メタノール酸化極は、図4の黒鉛部品421または422との圧着により、電流を取り出すことができる。黒鉛部品と電極との2つの接触部分の間隔は、メタノール酸化極の面方向の電気抵抗によって決められ、触媒層が厚い場合は間隔を広くすることができ、逆に薄い場合は間隔を狭くする。間隔は0.5から5mmにすることが望ましく、特に1~2mmが良い。 The methanol oxidation electrode can extract current by pressure bonding with the graphite component 421 or 422 of FIG. The distance between the two contact portions of the graphite part and the electrode is determined by the electric resistance in the surface direction of the methanol oxidation electrode. The distance can be increased when the catalyst layer is thick, and conversely the distance is decreased when the catalyst layer is thin. . The interval is preferably 0.5 to 5 mm, particularly 1 to 2 mm.
 これに対し、水素発生極側でも導電性多孔質層(炭素シートなど)を省略しても良い。ただし、水素は水素発生極から直接、生成され、燃料中に含まれる水やメタノールを消費しない。したがって、導電性多孔質層は設けた方が水素発生極の触媒層全体を機能させることができるので、導電性多孔質層を用いた方が有利である。 In contrast, the conductive porous layer (carbon sheet or the like) may be omitted even on the hydrogen generation electrode side. However, hydrogen is generated directly from the hydrogen generation electrode and does not consume water or methanol contained in the fuel. Therefore, it is advantageous to use the conductive porous layer because the conductive porous layer can function the entire catalyst layer of the hydrogen generating electrode.
 次に、第四の実施形態では、本発明の濃度計測素子を複数個用い、ユーザの出力要求に迅速に対応できるシステムの構築例を説明する。これを本発明では、“アクティブ燃料制御”と称する。図7は、本発明のフローセル式濃度計測素子712、713を、DMFC本体702の供給側と排出側の燃料循環ライン705に設置した構成を示す。 Next, in the fourth embodiment, an example of the construction of a system that can quickly respond to a user's output request using a plurality of concentration measuring elements of the present invention will be described. In the present invention, this is referred to as “active fuel control”. FIG. 7 shows a configuration in which the flow cell type concentration measuring elements 712 and 713 of the present invention are installed in the fuel circulation line 705 on the supply side and the discharge side of the DMFC main body 702.
 燃料電池システム701のほぼ中央にDMFC本体702がある。このDMFC本体702の発電に使われるメタノール含有燃料は、メタノール容器703に貯蔵されている。メタノール容器703に貯蔵されているメタノールは100%のメタノールでも良いが、一般的には水で希釈されたメタノール水溶液が用いられる。この中から必要量のメタノールが、バルブやポンプからなる燃料供給手段704によって燃料タンク708に導入される。前記燃料供給手段704は、メタノール濃度が所定濃度以下になったときに動作するものとする。これらの制御には、マイコン等の制御回路720が用いられる。 There is a DMFC main body 702 almost at the center of the fuel cell system 701. Methanol-containing fuel used for power generation of the DMFC main body 702 is stored in a methanol container 703. The methanol stored in the methanol container 703 may be 100% methanol, but generally an aqueous methanol solution diluted with water is used. A required amount of methanol is introduced into the fuel tank 708 by a fuel supply means 704 including a valve and a pump. The fuel supply means 704 operates when the methanol concentration becomes a predetermined concentration or less. A control circuit 720 such as a microcomputer is used for these controls.
 また、燃料タンク708のメタノール濃度が上限値を超えたときには、純水供給手段707が作動し、純水容器706から必要な水が燃料循環ライン705に供給され、メタノール濃度は適正な範囲に維持される。 Further, when the methanol concentration in the fuel tank 708 exceeds the upper limit value, the pure water supply means 707 operates, and necessary water is supplied from the pure water container 706 to the fuel circulation line 705, and the methanol concentration is maintained in an appropriate range. Is done.
 燃料タンク708は、所定の濃度範囲に制御されたメタノール水溶液を一時的に貯蔵する機能の他、上述のメタノール容器703と純水容器706から燃料や水が補充されたときの燃料濃度を均一にする機能も有する。本実施形態では、“アクティブ燃料制御”を実行するために、燃料タンクに貯蔵される燃料の容積を100ccから20ccに小さくした。これによって、燃料供給手段704から燃料が供給されたり、純水供給手段707から純水が補給されたときに、速やかに所定の燃料濃度に調整することが可能となる。 The fuel tank 708 has a function of temporarily storing an aqueous methanol solution controlled to a predetermined concentration range, and also makes the fuel concentration uniform when fuel or water is replenished from the methanol container 703 and the pure water container 706 described above. It also has a function to In the present embodiment, the volume of fuel stored in the fuel tank is reduced from 100 cc to 20 cc in order to execute “active fuel control”. Accordingly, when fuel is supplied from the fuel supply unit 704 or pure water is supplied from the pure water supply unit 707, it is possible to quickly adjust the fuel concentration to a predetermined level.
 燃料タンク708のメタノール水溶液が、燃料循環ポンプ709の運転により、燃料循環ライン705を経由してDMFC本体702に供給される。アノードにおいて、メタノールが酸化される(式8)。その後、メタノールの排液は、再び燃料タンク708に戻される。 The methanol aqueous solution in the fuel tank 708 is supplied to the DMFC main body 702 via the fuel circulation line 705 by the operation of the fuel circulation pump 709. At the anode, methanol is oxidized (Equation 8). Thereafter, the methanol drainage is returned to the fuel tank 708 again.
 メタノールの酸化反応(式8)によって発生した二酸化炭素は、DMFC本体702では、溶存あるいは微小な気泡として存在する。その二酸化炭素は燃料循環ライン705を経由して燃料タンク708に移り、燃料タンク708中の気相に大半の二酸化炭素が存在する。さらに、その気相の圧力が増加すると、燃料タンク708の上部に設置した気液分離器710を通して燃料電池システム701の外部に放出される。 Carbon dioxide generated by the oxidation reaction of methanol (formula 8) exists in the DMFC main body 702 as dissolved or fine bubbles. The carbon dioxide moves to the fuel tank 708 via the fuel circulation line 705, and most of the carbon dioxide exists in the gas phase in the fuel tank 708. Further, when the pressure in the gas phase increases, the gas is discharged to the outside of the fuel cell system 701 through the gas-liquid separator 710 installed at the upper part of the fuel tank 708.
 空気は、ファンやその他の空気供給手段711からDMFC本体702に供給され、水を生成する(式9)。水素イオンは、アノードでのメタノールの酸化反応(式8)により生成した水素イオンが、電解質膜を透過してきたものである。発電後の排ガスは、酸化剤排出系統725を経由して、燃料電池システム701の外部に放出される。 The air is supplied from the fan or other air supply means 711 to the DMFC main body 702 to generate water (Formula 9). The hydrogen ions are the hydrogen ions generated by the methanol oxidation reaction (Equation 8) at the anode permeating through the electrolyte membrane. The exhaust gas after power generation is released to the outside of the fuel cell system 701 via the oxidant discharge system 725.
 本発明の濃度計測素子712、713は、DMFC本体702と燃料タンク708を連絡する燃料循環ライン705の途中に1個、DMF本体702の燃料排出口から燃料タンク708を連絡する燃料循環ライン705の間にもう一個の濃度計測素子を設置した。各濃度計測素子におけるメタノール酸化極と水素発生極に印加した電圧は、1.1Vとした。 The concentration measuring elements 712 and 713 of the present invention are one in the middle of the fuel circulation line 705 connecting the DMFC main body 702 and the fuel tank 708, and the fuel circulation line 705 connecting the fuel tank 708 from the fuel discharge port of the DMF main body 702. Another concentration measuring element was installed between them. The voltage applied to the methanol oxidation electrode and the hydrogen generation electrode in each concentration measuring element was 1.1V.
 本発明の濃度計測素子712、713に接続する電流端子は図4の電流端子418、419からなり、図7では電流信号ライン721、724として表示している。電流信号ライン721、724は、制御回路720に接続されている。 The current terminals connected to the concentration measuring elements 712 and 713 of the present invention are the current terminals 418 and 419 in FIG. 4 and are shown as current signal lines 721 and 724 in FIG. The current signal lines 721 and 724 are connected to the control circuit 720.
 制御回路720は直流電源を有し、電流信号ライン721、724を通じて濃度計測素子712、713に電圧を印加し、流れた電流を計測する機能を有する。計測した燃料濃度のデータは電気信号に変換され、その信号は電流信号ライン721、724から制御回路720に伝達され、燃料データに基づいた演算処理が開始される。 The control circuit 720 has a DC power supply, and has a function of applying a voltage to the concentration measuring elements 712 and 713 through the current signal lines 721 and 724 and measuring the flowing current. The measured fuel concentration data is converted into an electrical signal, and the signal is transmitted to the control circuit 720 from the current signal lines 721 and 724, and arithmetic processing based on the fuel data is started.
 制御回路720の演算結果に基づき、燃料濃度が目標値より低いと判断されたときには、燃料制御ライン722から燃料供給手段704にメタノールの供給指令信号を出力する。逆に、燃料濃度が目標値より高いと判断されたときには、純水制御ライン723から純水供給手段707に純水の供給指令信号を出力する。 When it is determined that the fuel concentration is lower than the target value based on the calculation result of the control circuit 720, a methanol supply command signal is output from the fuel control line 722 to the fuel supply means 704. Conversely, when it is determined that the fuel concentration is higher than the target value, a pure water supply command signal is output from the pure water control line 723 to the pure water supply means 707.
 電池温度等を監視する熱電対、燃料タンク708の燃料容積を計測するセンサは、先に述べた第一の実施態様と同様に使用することができる。これらの追加のセンサにより、温度に応じた適切な燃料濃度調整が可能になり、燃料タンク708の燃料容積が不足しているときに制御回路720から燃料供給指令と純水供給指令の両方を出力すれば、燃料の補給が可能となる。 The thermocouple for monitoring the battery temperature and the like, and the sensor for measuring the fuel volume of the fuel tank 708 can be used in the same manner as in the first embodiment described above. These additional sensors enable appropriate fuel concentration adjustment according to temperature, and output both a fuel supply command and a pure water supply command from the control circuit 720 when the fuel volume of the fuel tank 708 is insufficient. Then, fuel can be replenished.
 このような構成によって、上流の濃度計測素子712は、DMFC本体702に供給するメタノール濃度を監視し、下流の濃度計測素子713は発電による消費やメタノールロス量(蒸発やメタノール・クロスオーバーなどによる損失量。)を全て含んだメタノール濃度を監視することができる。 With such a configuration, the upstream concentration measuring element 712 monitors the concentration of methanol supplied to the DMFC main body 702, and the downstream concentration measuring element 713 uses the power consumption and the amount of methanol loss (loss due to evaporation, methanol crossover, etc.). The concentration of methanol containing all of the amount can be monitored.
 上流濃度計測素子712で検出したメタノール濃度をC1(モル/リットル)、下流濃度計測素子713で検出したメタノール濃度をC2(モル/リットル)、燃料循環流量をV(リットル/分)、発電によるメタノール消費量をQ1(電気量からモル数に換算した値)、メタノールロス量をQ2(モル数)とすると、以下の関係式(式10)が成り立つ。 The methanol concentration detected by the upstream concentration measuring element 712 is C1 (mol / liter), the methanol concentration detected by the downstream concentration measuring element 713 is C2 (mol / liter), the fuel circulation flow rate is V (liter / minute), and methanol is generated by power generation. When the consumption is Q1 (value converted from the amount of electricity to the number of moles) and the amount of methanol loss is Q2 (number of moles), the following relational expression (Formula 10) is established.
  V×(C1-C2)=Q1+Q2  ・・・・・ (式10)
 負荷電流を増加させたときはQ1が増加するため、それに応じてC1の濃度が高くなるように、図7の燃料供給手段704を駆動し、C1を増加させる。逆に負荷電流を下げるときには、Q1が小さくなるので、純水供給手段707を作動させ、燃料タンク708のメタノールを希釈させるか、燃料供給手段704を所定濃度になるまで休止させれば良い。また、燃料循環流量Vを変化させた場合においても、(式10)に従って、メタノール濃度を監視することが可能となる。出力が低いときには燃料循環流量を下げ、出力が高くなると流量を増加させる流量可変制御を行い、システム効率を高める場合に有効である。以上で説明した手段は、DMFC本体702のメタノール濃度を管理することを主目的にした濃度制御方法である。本手法は、メタノール以外の有機燃料にも適用可能である。なお、(式10)のQ2は、メタノール濃度、温度、負荷電流等の関数に基づき制御回路720にて演算処理され、C1の制御時に考慮される。
V × (C1−C2) = Q1 + Q2 (Equation 10)
Since Q1 increases when the load current is increased, the fuel supply means 704 of FIG. 7 is driven to increase C1 so that the concentration of C1 increases accordingly. On the contrary, when the load current is lowered, Q1 becomes small. Therefore, the pure water supply means 707 may be operated to dilute the methanol in the fuel tank 708, or the fuel supply means 704 may be paused until it reaches a predetermined concentration. Further, even when the fuel circulation flow rate V is changed, the methanol concentration can be monitored according to (Equation 10). This is effective for increasing the system efficiency by performing variable flow control that lowers the fuel circulation flow rate when the output is low and increases the flow rate when the output is high. The means described above is a concentration control method whose main purpose is to manage the methanol concentration of the DMFC main body 702. This method can also be applied to organic fuels other than methanol. Note that Q2 in (Equation 10) is arithmetically processed by the control circuit 720 based on functions such as methanol concentration, temperature, and load current, and is taken into account when controlling C1.
 次に視点を変え、燃料タンク708のメタノール濃度の管理を中心に考えると、C1とC2の値から燃料タンク708の濃度を予測することができることがわかる。すなわち、燃料タンク708のメタノール濃度Ct、容積をVt、燃料循環ライン705の燃料タンク708からDMFC本体702までの配管容積をVi、DMFC本体702の燃料流路の全容積をVc、DMFC本体702から燃料循環ライン705の配管容積をVoとおくと、以下の関係式(式11)が成り立つと近似できる。ここで、燃料電池内部のメタノール濃度は、入口と出口のメタノール濃度の平均値((C1+C2)/2)とした。 Next, changing the viewpoint and focusing on the management of the methanol concentration in the fuel tank 708, it can be seen that the concentration in the fuel tank 708 can be predicted from the values of C1 and C2. That is, the methanol concentration Ct and volume of the fuel tank 708 are Vt, the piping volume from the fuel tank 708 to the DMFC main body 702 of the fuel circulation line 705 is Vi, the total volume of the fuel flow path of the DMFC main body 702 is Vc, and the DMFC main body 702 If the piping volume of the fuel circulation line 705 is set to Vo, it can be approximated that the following relational expression (formula 11) holds. Here, the methanol concentration inside the fuel cell was the average value of the methanol concentration at the inlet and outlet ((C1 + C2) / 2).
  Vi×C1+Vc×(C1+C2)/2+Vo×C2=Vt×Ct  
                             ・・・・・ (式11)
 ここで、DMFC本体702の燃料流路の濃度は、濃度計測素子712と713で検出した濃度の平均値とした。別途、各負荷電流におけるメタノール濃度の測定によって、電流に対する補正式を求めて、濃度関数から計算した濃度を代入しても良い。(式11)によると、燃料供給手段704や純水供給手段707の動作中であっても、燃料タンク708の濃度を見積もることができる。
Vi * C1 + Vc * (C1 + C2) / 2 + Vo * C2 = Vt * Ct
(Equation 11)
Here, the concentration of the fuel flow path of the DMFC main body 702 is an average value of the concentrations detected by the concentration measuring elements 712 and 713. Separately, a correction formula for the current may be obtained by measuring the methanol concentration at each load current, and the concentration calculated from the concentration function may be substituted. According to (Equation 11), the concentration of the fuel tank 708 can be estimated even when the fuel supply unit 704 and the pure water supply unit 707 are in operation.
 なお、(式11)において、燃料電池内部のメタノール濃度を入口・出口のメタノール濃度の平均値としたが、メタノール・クロスオーバーなどによる損失があるときには、(式11)の右辺にQ2を加えて補正した値を用いて、計算精度を高めることができる。 In (Equation 11), the methanol concentration inside the fuel cell is the average value of the methanol concentration at the inlet and outlet. If there is a loss due to methanol crossover, add Q2 to the right side of (Equation 11). The calculation accuracy can be increased by using the corrected value.
 燃料電池システムに燃料を温度や流速を計測するための機器を追加した場合には、(式11)にて計算されていない空間が生じる。その部分に燃料が存在している場合は、(式11)においてその容積と濃度を補正すれば良い。 When a device for measuring the temperature and flow rate of fuel is added to the fuel cell system, a space that is not calculated in (Equation 11) is generated. If fuel exists in that portion, the volume and concentration may be corrected in (Equation 11).
 センサを燃料タンクに浸漬する従来技術によると、燃料タンク708が均一のメタノール濃度になるまで、メタノールが均一に溶解したときの濃度を決定することができない。しかし、本発明の制御方法によると、タンク内の濃度が過渡的に変動している途中であっても、メタノール濃度(より厳密に言うと、メタノールの総モル数である。)を(式11)から計算することができる。その結果、負荷要求に対し、速やかな燃料調整が可能となる。この点において、本発明の“アクティブ濃度制御”の優位性がある。 According to the conventional technique in which the sensor is immersed in the fuel tank, the concentration when methanol is uniformly dissolved cannot be determined until the fuel tank 708 has a uniform methanol concentration. However, according to the control method of the present invention, the methanol concentration (more strictly speaking, the total number of moles of methanol) is obtained even if the concentration in the tank is transiently changing (equation 11). ). As a result, it is possible to quickly adjust the fuel in response to the load request. In this respect, there is an advantage of the “active density control” of the present invention.
 本実施態様において、上述の(式11)のプログラムを制御回路720のマイコンに記憶させて、運転試験を行った。図8は、最大電流20Aの間で3段階の出力変動試験を行った結果を示す。メタノール濃度は、図7の燃料供給手段704の流量を調整し、ほぼステップ的に濃度を変化させることにした。濃度変化速度は、変化幅1%(0.3モル/リットル)当り5秒になるように、燃料供給手段704の流量を増加させた。メタノール濃度を低下させる場合、純水供給手段707によって水を追加し、メタノールを希釈した。メタノール濃度を希釈する場合には、メタノール濃度不足がDMFC本体702のアノードの劣化をもたらすため、希釈速度をやや遅くさせた。本実施態様では、希釈方向の変化幅を1%(0.3モル/リットル)当り10秒とした。 In this embodiment, the program of the above (formula 11) was stored in the microcomputer of the control circuit 720, and the driving test was performed. FIG. 8 shows the results of a three-stage output fluctuation test with a maximum current of 20 A. The methanol concentration was adjusted substantially in steps by adjusting the flow rate of the fuel supply means 704 in FIG. The flow rate of the fuel supply means 704 was increased so that the concentration change rate was 5 seconds per 1% change width (0.3 mol / liter). When lowering the methanol concentration, water was added by the pure water supply means 707 to dilute the methanol. In the case of diluting the methanol concentration, since the methanol concentration deficiency causes deterioration of the anode of the DMFC main body 702, the dilution rate is slightly reduced. In this embodiment, the range of change in the dilution direction was 10 seconds per 1% (0.3 mol / liter).
 一方、負荷電流は、変化幅1A当り10秒になるように設定した。 On the other hand, the load current was set to be 10 seconds per change width of 1A.
 このような条件にて、メタノール濃度を制御したところ、図8に示したように、負荷要求に応じてメタノール濃度を制御できることがわかった。
 上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業者に明らかである。
When the methanol concentration was controlled under these conditions, it was found that the methanol concentration could be controlled according to the load demand as shown in FIG.
While the above description has been made with reference to exemplary embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the spirit of the invention and the scope of the appended claims.
 101、701 燃料電池システム
 102、702 燃料電池
 103、703 燃料原液を貯蔵する容器
 104、704 燃料供給手段
 105、705 燃料循環ライン
 106、706 純水容器
 107、707 純水供給手段
 108、708 燃料タンク
 109、709 燃料循環ポンプ
 110、710 気液分離器
 111、711 空気供給手段
 112、712、713 濃度計測素子
 120、720 制御回路
 121、721、724 電流信号ライン
 122、722 燃料制御ライン
 123、723 純水制御ライン
 124、725 酸化剤排出系統
 214、314 イオン伝導体
 215、315 燃料酸化極
 216、316 ガス発生極
 217、417 燃料検知部
 318、319、418、419 電流端子
 320、420 燃料流通管
 421、422 黒鉛部品
 423 ざぐり部
 501 単セル
 502 膜-電極接合体(MEA)
 504 燃料流路と酸化剤流路を有するセパレータ
 505 ガスケット(シール)
 507 絶縁板
 509 端板
 510、522 燃料配管用コネクタ
 511、523 酸化剤配管用コネクタ
 513、514 集電板
 516 ボルト
 517 ばね
 518 ナット
 519 外部電力線
 520 DC-DCコンバータまたはインバータ
 521 外部に設置した負荷
 531 燃料流路を有するセパレータ
 532 酸化剤流路を有するセパレータ
101, 701 Fuel cell system 102, 702 Fuel cell 103, 703 Container for storing fuel stock solution 104, 704 Fuel supply means 105, 705 Fuel circulation line 106, 706 Pure water container 107, 707 Pure water supply means 108, 708 Fuel tank 109, 709 Fuel circulation pump 110, 710 Gas-liquid separator 111, 711 Air supply means 112, 712, 713 Concentration measuring element 120, 720 Control circuit 121, 721, 724 Current signal line 122, 722 Fuel control line 123, 723 Pure Water control line 124, 725 Oxidant discharge system 214, 314 Ion conductor 215, 315 Fuel oxidation electrode 216, 316 Gas generation electrode 217, 417 Fuel detector 318, 319, 418, 419 Current terminal 320, 420 Fuel flow pipe 421 , 422 Graphite parts 423 Counterbore part 501 Single cell 502 Membrane-electrode assembly (MEA)
504 Separator having fuel flow path and oxidant flow path 505 Gasket (seal)
507 Insulating plate 509 End plate 510, 522 Fuel piping connector 511, 523 Oxidant piping connector 513, 514 Current collecting plate 516 Bolt 517 Spring 518 Nut 519 External power line 520 DC-DC converter or inverter 521 Load 531 installed outside Separator having fuel flow path 532 Separator having oxidant flow path

Claims (15)

  1.  固体高分子電解質膜と、前記電解質膜の表面に接合された電極と、燃料または酸化剤を流通させる溝を形成したセパレータと、燃料供給口と、燃料排出口を有し、液体有機化合物を燃料とする燃料電池において、
     前記燃料供給口と前記燃料排出口の間に燃料を循環させる燃料循環配管の途中に、メタノール酸化電極と前記電極上に形成した燃料流通路を有する濃度計測素子を設置し、前記濃度計測素子で検知したメタノール濃度に応じて燃料濃度を制御する燃料制御回路を設けた燃料電池。
    A solid polymer electrolyte membrane; an electrode joined to the surface of the electrolyte membrane; a separator formed with a groove for circulating a fuel or an oxidant; a fuel supply port; and a fuel discharge port. In the fuel cell
    A concentration measuring element having a methanol oxidation electrode and a fuel flow passage formed on the electrode is installed in the middle of a fuel circulation pipe for circulating fuel between the fuel supply port and the fuel discharge port. A fuel cell provided with a fuel control circuit for controlling the fuel concentration according to the detected methanol concentration.
  2.  前記濃度計測素子が、メタノール酸化電極と水素発生電極を有する請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the concentration measuring element has a methanol oxidation electrode and a hydrogen generation electrode.
  3.  前記水素発生電極に、メタノール酸化電極よりも撥水性を高める機能を具備させた請求項2に記載の燃料電池。 3. The fuel cell according to claim 2, wherein the hydrogen generating electrode is provided with a function of increasing water repellency as compared with a methanol oxidation electrode.
  4.  前記メタノール酸化電極上に、液状のメタノールの透過を抑制し、メタノール蒸気を透過させる多孔質膜を設置した請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein a porous membrane that suppresses permeation of liquid methanol and permeates methanol vapor is installed on the methanol oxidation electrode.
  5.  前記メタノール酸化電極と前記水素発生電極が水素イオン伝導体のそれぞれの面に形成され、前記水素イオン伝導体が燃料を流通させる流路を有する2個の導電性部材で挟持され、かつ、前記部材が互いに電気的に絶縁されている請求項2に記載の燃料電池。 The methanol oxidation electrode and the hydrogen generation electrode are formed on respective surfaces of a hydrogen ion conductor, the hydrogen ion conductor is sandwiched between two conductive members having a flow path for flowing fuel, and the member The fuel cell according to claim 2, wherein the two are electrically insulated from each other.
  6.  前記メタノール酸化電極または前記水素発生電極に使用される白金使用量が、電極面積1cm2当り1mg以下である請求項2に記載の燃料電池。 The fuel cell according to claim 2, wherein the amount of platinum used for the methanol oxidation electrode or the hydrogen generation electrode is 1 mg or less per 1 cm 2 of electrode area.
  7.  前記燃料制御回路が、発電電気量とメタノール濃度を記憶、演算する機能を有し、燃料循環配管を流通する燃料のメタノール濃度あるいは流量を変化させる請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the fuel control circuit has a function of storing and calculating a generated electricity amount and a methanol concentration, and changes a methanol concentration or a flow rate of the fuel flowing through the fuel circulation pipe.
  8.  固体高分子膜と、前記固体高分子膜の一方の面に形成されたカソードと、前記固体高分子膜の他方の面に形成されたアノードで構成される膜電極接合体と、燃料または酸化剤を流通させる流路が形成され、前記膜電極接合体を挟持するセパレータとを有する燃料電池と、
     前記燃料電池に供給される液体有機化合物からなる燃料を貯蔵する燃料タンクと、
     前記燃料を前記燃料タンクと前記燃料電池との間を循環させる燃料循環配管とを備える燃料電池システムにおいて、
     前記燃料循環配管に配置され、前記燃料の酸化電流を計測するための濃度計測素子と、
     前記濃度計測素子で計測された酸化電流から燃料濃度を検出し、該燃料濃度に基づき、前記燃料タンクの燃料濃度を制御する燃料制御回路とを有する燃料電池システム。
    A membrane electrode assembly comprising a solid polymer membrane, a cathode formed on one surface of the solid polymer membrane, an anode formed on the other surface of the solid polymer membrane, and a fuel or an oxidant A fuel cell having a separator that sandwiches the membrane electrode assembly;
    A fuel tank for storing fuel comprising a liquid organic compound supplied to the fuel cell;
    In a fuel cell system comprising a fuel circulation pipe for circulating the fuel between the fuel tank and the fuel cell,
    A concentration measuring element disposed in the fuel circulation pipe for measuring an oxidation current of the fuel;
    A fuel cell system comprising: a fuel control circuit that detects a fuel concentration from an oxidation current measured by the concentration measuring element and controls the fuel concentration of the fuel tank based on the fuel concentration.
  9.  請求項8に記載の燃料電池システムにおいて、前記濃度計測素子は、水素イオン伝導体と、前記水素イオン伝導体の一方の面に燃料酸化電極、他方の面に水素発生電極を積層した燃料検知部と、燃料検知部からの電流を素子外部に取り出すための電流端子とで構成されている燃料電池システム。 9. The fuel cell system according to claim 8, wherein the concentration measuring element includes a hydrogen ion conductor, a fuel oxidation electrode on one surface of the hydrogen ion conductor, and a hydrogen generation electrode on the other surface. And a current terminal for taking out the current from the fuel detection part to the outside of the element.
  10.  請求項9に記載の燃料電池システムにおいて、前記燃料電池の出力値の変化に応じて、燃料中の濃度を増減させる燃料電池システム。 10. The fuel cell system according to claim 9, wherein the concentration in the fuel is increased or decreased according to a change in an output value of the fuel cell.
  11.  請求項9に記載の燃料電池システムにおいて、前記燃料酸化電極の表面に、液体の透過を抑制し、蒸気を透過させる特性を有する多孔質膜を有する燃料電池システム。 10. The fuel cell system according to claim 9, wherein the fuel oxidation electrode has a porous membrane on the surface of the fuel oxidation electrode that has a characteristic of suppressing liquid permeation and allowing vapor to permeate.
  12.  請求項9に記載の燃料電池システムにおいて、前記濃度計測素子がフローセル構造である燃料電池システム。 10. The fuel cell system according to claim 9, wherein the concentration measuring element has a flow cell structure.
  13.  請求項8に記載の燃料電池システムにおいて、
     前記燃料タンクに貯蔵された燃料の濃度を調整するための所定濃度の燃料又は水を貯蔵した燃料濃度調整用タンクと、前記燃料濃度調整用タンクから燃料タンクへ所定濃度の燃料又は水を供給する供給手段とを備え、
     前記燃料制御回路は、前記供給手段から燃料タンクに供給される所定濃度の燃料又は水の供給量を制御する燃料電池システム。
    The fuel cell system according to claim 8, wherein
    A fuel concentration adjusting tank storing fuel or water having a predetermined concentration for adjusting the concentration of fuel stored in the fuel tank, and supplying fuel or water having a predetermined concentration from the fuel concentration adjusting tank to the fuel tank. Supply means,
    The fuel control circuit controls a supply amount of fuel or water having a predetermined concentration supplied from the supply means to a fuel tank.
  14.  請求項8に記載の燃料電池システムにおいて、前記燃料循環配管に複数個の前記濃度計測素子が配置されている燃料電池システム。 9. The fuel cell system according to claim 8, wherein a plurality of the concentration measuring elements are arranged in the fuel circulation pipe.
  15.  請求項8に記載の燃料電池システムにおいて、前記燃料がメタノール、エタノール、ジメチルエーテル、ジメトキシエタン、ジオキサン、ホルムアルデヒド、ぎ酸のいずれかである燃料電池システム。 9. The fuel cell system according to claim 8, wherein the fuel is any one of methanol, ethanol, dimethyl ether, dimethoxyethane, dioxane, formaldehyde, and formic acid.
PCT/JP2009/069617 2008-11-21 2009-11-19 Fuel cell WO2010058811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010539246A JPWO2010058811A1 (en) 2008-11-21 2009-11-19 Fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008297472 2008-11-21
JP2008-297472 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010058811A1 true WO2010058811A1 (en) 2010-05-27

Family

ID=42198250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069617 WO2010058811A1 (en) 2008-11-21 2009-11-19 Fuel cell

Country Status (2)

Country Link
JP (1) JPWO2010058811A1 (en)
WO (1) WO2010058811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094461A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Fuel cell system and operation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307656A (en) * 1988-06-06 1989-12-12 Hirotaka Ikeda Detecting electrode
US6306285B1 (en) * 1997-04-08 2001-10-23 California Institute Of Technology Techniques for sensing methanol concentration in aqueous environments
WO2004030134A1 (en) * 2002-09-30 2004-04-08 Gs Yuasa Corporation Liquid fuel direct supply fuel cell system and its operation controlling method and controller
JP2005032610A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell device and fuel supply method of fuel cell
JP2006047065A (en) * 2004-08-03 2006-02-16 Nec Corp Solution concentration measuring device
WO2007114175A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Fuel cell and electronic device equipped with the fuel cell
JP2008210566A (en) * 2007-02-23 2008-09-11 Toshiba Corp Fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307656A (en) * 1988-06-06 1989-12-12 Hirotaka Ikeda Detecting electrode
US6306285B1 (en) * 1997-04-08 2001-10-23 California Institute Of Technology Techniques for sensing methanol concentration in aqueous environments
WO2004030134A1 (en) * 2002-09-30 2004-04-08 Gs Yuasa Corporation Liquid fuel direct supply fuel cell system and its operation controlling method and controller
JP2005032610A (en) * 2003-07-07 2005-02-03 Sony Corp Fuel cell device and fuel supply method of fuel cell
JP2006047065A (en) * 2004-08-03 2006-02-16 Nec Corp Solution concentration measuring device
WO2007114175A1 (en) * 2006-03-31 2007-10-11 Kyocera Corporation Fuel cell and electronic device equipped with the fuel cell
JP2008210566A (en) * 2007-02-23 2008-09-11 Toshiba Corp Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094461A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Fuel cell system and operation method thereof

Also Published As

Publication number Publication date
JPWO2010058811A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
EP2269257B1 (en) Fuel cell system and operating method of a fuel cell
Wang et al. Real‐time mass spectrometric study of the methanol crossover in a direct methanol fuel cell
JP5936976B2 (en) Operation method of fuel cell
US20080248338A1 (en) Fuel Cell and Power Generating Method
US20040247954A1 (en) Method for controlling the methanol concentration in direct methanol fuel cells
JPWO2004030134A1 (en) Liquid fuel direct supply fuel cell system, operation control method and operation control apparatus thereof
JP5519858B2 (en) Direct oxidation fuel cell system
US20100233554A1 (en) Fuel cell system and operating method thereof
WO2007110969A1 (en) Method and apparatus for measuring crossover loss of fuel cell
US20120009495A1 (en) Concentration sensor using an electrolytic cell for aqueous hydrocarbon fuel
JP5254022B2 (en) Dynamically controllable direct oxidation fuel cell system and method
CN104953144A (en) Fuel cell system and water content control method of fuel cell
US20030196913A1 (en) Method of measuring methanol concentration in an arqueous solution
US8785078B2 (en) Fuel cell
JP2003331895A (en) Short supply detection method of fuel gas, and control method of fuel cell
JP6868800B2 (en) Electrochemical hydrogen pump
JP5268832B2 (en) Fuel cell using organic fuel
WO2010058811A1 (en) Fuel cell
US20110165487A1 (en) Method for controlling the flow rate of fuel supplied to a fuel cell, fuel supply device, and fuel cell system using the same
KR100625968B1 (en) Fuel cell system
JP2009123469A (en) Fuel battery power generation system
JP6639994B2 (en) Fuel cell system
JP2012094461A (en) Fuel cell system and operation method thereof
JP2022044327A (en) Fuel cell system
JPWO2020054334A1 (en) Hydrogen generation system and how to operate the hydrogen generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010539246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827592

Country of ref document: EP

Kind code of ref document: A1