WO2010058695A1 - Backside protective sheet for solar cell and solar cell module provided with same - Google Patents

Backside protective sheet for solar cell and solar cell module provided with same Download PDF

Info

Publication number
WO2010058695A1
WO2010058695A1 PCT/JP2009/068708 JP2009068708W WO2010058695A1 WO 2010058695 A1 WO2010058695 A1 WO 2010058695A1 JP 2009068708 W JP2009068708 W JP 2009068708W WO 2010058695 A1 WO2010058695 A1 WO 2010058695A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
silicon
solar cell
film
resin layer
Prior art date
Application number
PCT/JP2009/068708
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 渡邉
昌典 橋本
Original Assignee
テクノポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テクノポリマー株式会社 filed Critical テクノポリマー株式会社
Publication of WO2010058695A1 publication Critical patent/WO2010058695A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/02Layered products comprising a layer of natural or synthetic rubber with fibres or particles being present as additives in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/08Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Patent Document 1 discloses a solar cell in which a base film made of polyethylene terephthalate is provided with a thermal adhesive layer including a styrene / olefin copolymer having thermal adhesiveness with a polyolefin resin such as an ethylene / vinyl acetate copolymer. A backside sealing film is disclosed.
  • An object of the present invention is a film which does not have an adhesive layer for adhering to a filler part embedding a solar cell element on its surface, and has adhesiveness, heat resistance and weather resistance to the filler part.
  • An object of the present invention is to provide a solar cell back surface protective film and a solar cell module including the same.
  • Another object of the present invention is a film that does not have an adhesive layer for adhering to a filler part that embeds a solar cell element on the surface thereof.
  • a back surface protective film for a solar cell comprising a resin layer containing a silicon-containing thermoplastic resin (hereinafter also referred to as “first resin layer”). 2.
  • the light having a wavelength of 400 to 1,400 nm is emitted on the surface of the resin layer (first resin layer) in the solar cell back surface protective film, and the reflectance to the light is 50% or more.
  • Back surface protection film for solar cells 3.
  • or 6 provided with the other resin layer joined to the said resin layer (1st resin layer). 8).
  • a solar cell module comprising the solar cell back surface protective film according to any one of 1 to 9 above.
  • the back surface protective film for a solar cell of the present invention since the first resin layer containing the silicon-containing thermoplastic resin is provided, the first resin layer and the ethylene / vinyl acetate copolymer embedded in the solar cell element. It is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing a coalescence composition. Therefore, a solar cell module in which the filler part is reliably protected can be provided.
  • the reflectance of the light is 50% or more.
  • the layer is highly reflective to sunlight, so that when sunlight leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cells, the reflected light is supplied to the back surface of the solar cell elements. Thus, it can be used for photoelectric conversion to improve power generation efficiency.
  • the first thermoplastic resin composition further contains a white colorant
  • the first resin layer is particularly excellent in reflectivity for sunlight. Therefore, not only in the case of a single layer type film, but also in the case of a laminated film having the first resin layer and another resin layer, etc., depending on the purpose and application, and the filler portion and surface in the first resin layer Even when the member is disposed on the non-side, the effect of improving the power generation efficiency is excellent regardless of the configuration of other resin layers and the like.
  • the transmittance for light with a wavelength of 800 to 1,400 nm is 60% or more and the absorption with respect to light with a wavelength of 400 to 700 nm is 60% or more
  • sunlight is
  • the first resin layer leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cells
  • heat storage due to light having the wavelength of 800 to 1,400 nm is suppressed.
  • the heat storage of the filler part bonded to the layer is also suppressed.
  • the thermal storage in the solar cell module formed using this film is suppressed, and the deformation
  • the back surface protective film for solar cells of this invention is a laminated film provided with the 1st resin layer which has this property, and another resin layer as said member, Comprising: Other resin layers are white resin layers. In this case, the same effect can be surely obtained.
  • the first resin layer has a transmittance of 60% or more for light having a wavelength of 800 to 1,400 nm, and It is possible to provide a solar cell module having a property that the absorptance with respect to light having a wavelength of 400 to 700 nm is 60% or more and having an excellent dark appearance. And when sunlight hits a film, not only the deformation of the structural members including the film and the decrease in power generation efficiency are suppressed, but also the solar cell provided with the back surface protective film for solar cell of the present invention, When placed on a roof or the like, the appearance of the solar cell is excellent.
  • the back surface protective film for solar cells of the present invention is a laminated film comprising a first resin layer containing an infrared transmitting colorant and another resin layer, and the other resin layer is a white resin layer.
  • heat storage in the first resin layer and its deformation are suppressed, heat storage in the solar cell module is suppressed, and the effect of improving power generation efficiency is excellent.
  • the silicon-containing thermoplastic resin contains a graft polymerization resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a silicon-containing rubber, hydrolysis resistance, dimensional stability, Excellent impact properties.
  • the back surface protective film for solar cell of the present invention is provided, it is possible to form a solar cell with excellent shape stability and thereby improved photoelectric conversion efficiency.
  • (co) polymerization means homopolymerization and copolymerization
  • (meth) acryl means acryl and methacryl
  • (meth) acrylate It means acrylate and methacrylate.
  • the back surface protective film for solar cells of the present invention is characterized by including a resin layer (first resin layer) containing a silicon-containing thermoplastic resin.
  • the solar cell back surface protective film of the present invention may be a single-layer film 1A having only the first resin layer (see FIG. 1), the first resin layer 11 and the first resin layer 11. It may be a laminated film (including a laminated sheet) 1B including another layer 15 joined (see FIGS. 2 and 3). The other layer 15 will be described later.
  • the back protective film for a solar cell is a surface of the first resin layer to adhere to the exposed surface of the filler part of the solar cell module, whether it is a single layer film or a laminated film. Used.
  • the first resin layer is a flexible layer obtained by using a silicon-containing thermoplastic resin alone or by using a first thermoplastic resin composition containing the silicon-containing thermoplastic resin.
  • the first thermoplastic resin composition may be a composition containing a silicon-containing thermoplastic resin and a silicon-free thermoplastic resin, or a silicon-containing thermoplastic resin, an additive, It may be a composition containing Since the first resin layer can be a single-layer film as described above, the silicon-containing thermoplastic resin and the first thermoplastic resin composition have at least film-forming properties.
  • the first thermoplastic resin composition is used for forming the first resin layer, including the case where the first resin layer is formed using only the silicon-containing thermoplastic resin.
  • the glass transition temperature (hereinafter also referred to as “Tg”) of the thermoplastic resin contained in the first resin layer is preferably 90 ° C. to 220 ° C., more preferably 95 ° C. to 200 ° C., and still more preferably 100 ° C. to 180 ° C., particularly preferably 105 ° C. to 160 ° C.
  • Tg glass transition temperature
  • the glass transition temperature Tg can be measured by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the 1st thermoplastic resin composition which forms the said 1st resin layer contains several thermoplastic resin
  • at least 1 resin has Tg of the said range.
  • at least one silicon-containing thermoplastic resin has a Tg in the above range.
  • the silicon-containing thermoplastic resin is a resin containing a silicon atom in the molecule, and is an aromatic vinyl resin (hereinafter referred to as “silicon-containing aromatic vinyl resin”), a polyolefin resin (silicon-containing polyolefin resin), a polycrystal.
  • Vinyl chloride resin (silicon-containing polyvinyl chloride resin), polyvinylidene chloride resin (silicon-containing polyvinylidene chloride resin), saturated polyester resin (silicon-containing saturated polyester resin), polycarbonate resin (silicon-containing polycarbonate resin), polyamide Examples thereof include resins (silicon-containing polyamide-based resins), acrylic resins (silicon-containing acrylic resins), fluororesins (silicon-containing fluorine-based resins), silicon resins, and the like. These can be used alone or in combination of two or more.
  • the form of the resin obtained by polymerizing the monomer containing the polymerizable unsaturated compound in the silicon-containing thermoplastic resin is obtained by polymerizing the monomer containing the silicon-containing polymerizable unsaturated compound.
  • a resin comprising a (co) polymer; a graft polymerization resin obtained by polymerizing a monomer containing a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber; a silicon-containing rubber in the presence of a silicon-containing rubber Graft polymerization resin obtained by polymerizing monomer not containing polymerizable unsaturated compound; Graft polymerization obtained by polymerizing monomer containing silicon-containing polymerizable unsaturated compound in the presence of silicon-containing rubber Examples thereof include resins.
  • resins can be used alone or in combination of two or more.
  • it is derived from an aromatic vinyl compound because it is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing an ethylene / vinyl acetate copolymer composition or the like embedding a solar cell element.
  • a silicon-containing aromatic vinyl resin having a structural unit is preferred.
  • the content of the silicon-containing thermoplastic resin contained in the first thermoplastic resin composition is preferably 1 to 100% by mass, more preferably 3 to 100%, based on the total amount of the resin component (thermoplastic resin).
  • the mass is more preferably 10 to 90% by mass. If it is the above ratio, the first resin layer containing the first thermoplastic resin composition is embedded in the solar cell element, and has adhesiveness with a filler part containing an ethylene / vinyl acetate copolymer composition, Excellent heat resistance and weather resistance.
  • the silicon-free thermoplastic resin includes aromatic polyester resin, polyolefin resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other saturated polyester resins.
  • Examples thereof include a silicon-free graft polymerization resin (diene graft polymerization resin, acrylic graft polymerization resin, etc.) obtained by polymerization. These resins can be used alone or in combination of two or more.
  • graft polymerized resin (g1)”) [3] Graft polymerization resin (hereinafter referred to as “graft polymerization resin”) obtained by polymerizing a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m3)”) in the presence of silicon-containing rubber. (G2) ".) Of these, the embodiments [2] to [3] are preferred, and the embodiment [3] is particularly preferred.
  • the silicon-containing copolymer of the above embodiment [1] is a polymer obtained by polymerizing a monomer (m1) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound.
  • the aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring. Examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichloromethane.
  • the silicon-containing polymerizable unsaturated compound is not particularly limited as long as it is a compound having a silicon atom and having at least one vinyl bond.
  • a compound represented by the following general formula (1) is used. be able to.
  • R 1 Si (OR 2 ) 3 (1) R 1 is an organic group having 1 to 20 carbon atoms having at least one carbon-carbon double bond, and R 2 is the same or different from each other, and is a hydrogen atom, an aliphatic hydrocarbon group or an aromatic group. Group hydrocarbon group.
  • Examples of the carbon-carbon double bond include a vinyl group, an acryloyl group, a methacryloyl group, an allyl group, a norbornenyl group, and a cyclohexenyl group.
  • Examples of the silicon-containing polymerizable unsaturated compound represented by the general formula (1) include vinyl trialkoxysilane compounds, 3-methacryloxyalkyltrialkoxysilane compounds, 3-acryloxyalkyltrialkoxysilane compounds, and allyltrialkoxysilanes. Compounds, norbornenyl trialkoxysilane compounds, cyclohexenylethyltrialkoxysilane compounds, and the like.
  • Examples of the vinyl trialkoxysilane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, and vinyltributoxysilane.
  • Examples of the 3-methacryloxyalkyltrialkoxysilane include 3-methacryloxymethyltrimethoxysilane, 3-methacryloxyethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxymethyltriethoxysilane, Methacryloxyethyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxymethyltripropoxysilane, 3-methacryloxyethyltripropoxysilane, 3-methacryloxypropyltripropoxysilane, 3-methacryloxypropyltributoxy Silane etc.
  • 3-acryloxyalkyltrialkoxysilane examples include 3-acryloxymethyltrimethoxysilane, 3-acryloxyethyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxymethyltriethoxysilane, 3- Acryloxyethyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 3-acryloxymethyltripropoxysilane, 3-acryloxyethyltripropoxysilane, 3-acryloxypropyltripropoxysilane, 3-acryloxypropyltripropoxysilane, 3-acryloxypropyltributoxy Silane etc. are mentioned.
  • Examples of the allyltrialkoxysilane include allyltrimethoxysilane, allyltriethoxysilane, allyltripropoxysilane, and allyltributoxysilane.
  • Examples of the norbornenyltrialkoxysilane include norbornenyltrimethoxysilane, norbornenyltriethoxysilane, norbornenyltripropoxysilane, norbornenyltributoxysilane, and the like.
  • cyclohexenylethyltrialkoxysilane examples include cyclohexenylethyltrimethoxysilane, cyclohexenylethyltriethoxysilane, cyclohexenylethyltripropoxysilane, and cyclohexenylethyltributoxysilane.
  • silicon-containing polymerizable unsaturated compounds other than the above include diethoxymethylvinylsilane, tris (2-methoxyethoxy) vinylsilane, p-vinylphenylmethyldimethoxysilane, 1- (m-vinylphenyl) methyldimethyliso Propoxysilane, 3- (p-vinylphenoxy) propylmethyldiethoxysilane, 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, 2- (m- Vinylphenyl) ethylmethyldimethoxysilane, 2- (o-vinylphenyl) ethylmethyldimethoxysilane, 1- (p-vinylphenyl) ethylmethyldimethoxysilane, 1- (m-vinylphenyl) ethylmethyldimethoxysilane,
  • the above silicon-containing polymerizable unsaturated compounds can be used alone or in combination of two or more.
  • the monomer (m1) forming the silicon-containing copolymer of the above embodiment [1] may be composed of an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound, and the aromatic vinyl compound and Further, it may be composed of a silicon-containing polymerizable unsaturated compound and another vinyl compound.
  • Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. Compounds and the like. These can be used alone or in combination of two or more.
  • examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -chloro (meth) acrylonitrile and the like. These vinyl cyanide compounds may be used alone or in combination of two or more.
  • maleimide compounds examples include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N-cyclohexylmaleimide and the like. These maleimide compounds may be used alone or in combination of two or more.
  • a method of copolymerizing maleic anhydride and then imidizing may be used as another method for introducing a structural unit derived from a maleimide compound.
  • unsaturated acid anhydride examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These unsaturated acid anhydrides may be used alone or in combination of two or more.
  • hydroxyl group-containing unsaturated compound examples include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, and 3-hydroxy- 2-methyl-1-propene, hydroxystyrene, N- (4-hydroxyphenyl) maleimide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate , 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate , 7-hydroxyheptyl (meth) acrylate, (meth) acrylic 8-hydroxy-octyl, (meth) acrylic acid 9-hydroxy-nonyl, (meth) acrylate, 12-hydroxylauryl (meth
  • amino group-containing unsaturated compound examples include aminoethyl (meth) acrylate, propylaminoethyl (meth) acrylate, dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, (meth) acrylic acid 2 -Dimethylaminoethyl, 2-diethylaminoethyl (meth) acrylate, 2- (di-n-propylamino) ethyl (meth) acrylate, 2-dimethylaminopropyl (meth) acrylate, 2- (meth) acrylic acid 2- Diethylaminopropyl, 2- (di-n-propylamino) propyl (meth) acrylate, 3-dimethylaminopropyl (meth) acrylate, 3-diethylaminopropyl (meth) acrylate, 3- (di) (meth) acrylate -N-propylamino) prop
  • amide group-containing unsaturated compound examples include (meth) acrylamide, N-methylol (meth) acrylamide, 3-dimethylaminopropyl (meth) acrylamide and the like. These amide group-containing unsaturated compounds can be used alone or in combination of two or more.
  • the content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the silicon-containing polymerizable unsaturated compound is not particularly limited.
  • the total amount of is preferably 40 to 100% by mass, more preferably 60 to 90% by mass, based on the total amount of the structural units constituting the silicon-containing copolymer. If it is the said ratio, the 1st resin layer containing the silicon-containing copolymer of this aspect [1], and the filler part containing an ethylene-vinyl acetate copolymer composition etc. which embeds a solar cell element. Excellent adhesion, heat resistance and weather resistance.
  • the weight average molecular weight (hereinafter also referred to as “Mw”) of the silicon-containing copolymer of the above embodiment [1] is preferably 30,000 from the viewpoint of impact resistance, flexibility, film formability, toughness, and the like. To 1,000,000, more preferably 50,000 to 500,000.
  • the Mw can be measured by GPC using standard polystyrene.
  • the silicon-containing copolymer of the above embodiment [1] is produced by polymerizing the monomer in the presence of a polymerization initiator.
  • a polymerization initiator As the polymerization method, a known method such as solution polymerization is applied.
  • the graft polymerization resin (g1) of the above embodiment [2] is obtained by polymerizing a monomer (m2) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber. Graft polymerization resin.
  • the graft polymerization resin (g2) of the above embodiment [3] is a graft polymerization resin obtained by polymerizing the monomer (m3) containing an aromatic vinyl compound in the presence of a silicon-containing rubber.
  • the components of the non-silicon-containing rubber and silicon-containing rubber (hereinafter also referred to as “rubber component”) used in the above embodiments [2] and [3] will be described below.
  • the shape, size, molecular weight, etc.) are not particularly limited.
  • the shape of the rubber component is not particularly limited, and may be particulate (spherical or substantially spherical), linear, curved, or the like.
  • the volume average particle diameter is preferably 5 to 2,000 nm, more preferably 10 to 1,800 nm, and further preferably 50 to 1,500 nm. If the volume average particle diameter is in the above range, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent.
  • the volume average particle diameter can be measured by image analysis using an electron micrograph, a laser diffraction method, a light scattering method, or the like.
  • silicon-free rubber examples include acrylic rubbers; homopolymers such as polybutadiene and polyisoprene, styrene / butadiene copolymers, styrene / isoprene copolymers, and diene rubbers such as natural rubber; conjugated diene compounds.
  • the acrylic rubber is preferably a (co) polymer containing a structural unit derived from an alkyl acrylate ester compound having an alkyl group with 2 to 8 carbon atoms.
  • the content of the structural unit is preferably 80% by mass or more, more preferably 90% by mass or more, with respect to the total amount of the structural unit.
  • acrylic acid alkyl ester compound examples include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, and the like. These compounds can be used alone or in combination of two or more. Of these, acrylic acid alkyl ester compounds are preferably n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate.
  • the other monomer includes vinyl chloride, vinylidene chloride, vinyl cyanide compound, aromatic vinyl compound, vinyl ester compound, methacrylic acid.
  • Alkyl ester compound, carboxyl group-containing unsaturated compound methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, propoxymethyl (meth) acrylate, butoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) ) Acrylate, propoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, ethoxypropyl (meth) acrylate, propoxypropyl (meth) acrylate, butoxypropyl (meth) acrylate, 2-methoxy- Alkoxy group-containing unsaturation such as methyl-propyl (meth) acrylate, 2-propoxy-1-
  • the other monomer preferably contains a polyfunctional monomer.
  • the acrylic rubber is preferably a copolymer containing a structural unit derived from the polyfunctional monomer.
  • the content of the structural unit derived from the polyfunctional monomer constituting the preferred acrylic rubber is preferably from 0.01 to the total amount of the structural unit from the viewpoint of low-temperature impact properties, flexibility, and the like. It is 10% by mass, more preferably 0.05 to 8% by mass, and still more preferably 0.1 to 5% by mass.
  • the Tg of the acrylic rubber is preferably ⁇ 10 ° C. or lower from the viewpoint of low temperature impact property, flexibility, and the like.
  • Examples of the method for producing the acrylic rubber include emulsion polymerization.
  • the volume average particle size and the like can be adjusted by selecting production conditions such as the type of emulsifier and the amount used, the type of initiator and the amount used, polymerization time, polymerization temperature, and stirring conditions. .
  • the method of blending 2 or more types of the said acrylic rubber which has a different particle diameter may be sufficient.
  • silicon-containing rubber examples include a silicon-containing polymerizable unsaturated compound and at least one selected from conjugated diene compounds such as butadiene, ⁇ -olefin compounds such as ethylene and propylene, and alkyl acrylate compounds.
  • Rubber obtained by copolymerization of a monomer (hydrogenated rubber may be used); silicone rubber comprising polyorganosiloxane obtained by polycondensation of one or more organosiloxanes; organosiloxane and silicon-containing crosslink Obtained by using an agent (a saturated silane compound having 3 or 4 alkoxy groups); rubber obtained by using an organosiloxane and a silicon-containing polymerizable unsaturated compound; an organosiloxane and a silicon-containing crosslink Obtained using an agent (a saturated silane compound having 3 or 4 alkoxy groups) and a silicon-containing polymerizable unsaturated compound A conjugated diene compound, at least one silicon-free polymerizable unsaturated compound selected from an aromatic vinyl compound, a vinyl cyanide compound, a (meth) acrylic acid ester compound, and the like, and a silicon-containing coupling agent (alkyl And dichlorosilane compounds, alkyltrichlorosilane compounds, dialkyl
  • the silicon-containing rubber can be used singly or in combination of two or more.
  • two or more of the silicon-containing rubbers when two or more of the silicon-containing rubbers are combined, and when at least one of the silicon-containing rubbers is combined with another rubber, it may be referred to as a composite rubber.
  • a plurality of rubbers may be chemically bonded, may have entanglement, or may be a mere coexisting substance.
  • the silicon-containing rubber is a rubber obtained by copolymerizing a monomer containing a silicon-containing polymerizable unsaturated compound and an alkyl acrylate ester compound (hereinafter referred to as “silicon-containing rubber (s1)”).
  • silicon-containing rubber (s3) silicon-containing polymerizable unsaturated compound
  • sicon-containing rubber (s4) a composite rubber
  • the compounds exemplified in the above embodiment [1] can be used as the silicon-containing polymerizable unsaturated compound. These compounds can be used alone or in combination of two or more.
  • the silicon-containing polymerizable unsaturated compounds are p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane and 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane.
  • P-vinylphenylmethyldimethoxysilane is particularly preferred.
  • the content of the silicon-containing polymerizable unsaturated compound contained in 100% by mass of the monomer is preferably 0.01 to 15% by mass, more preferably 0.1 to 10% by mass.
  • the acrylic acid alkyl ester compound is preferably an acrylic acid alkyl ester having an alkyl group having 2 to 8 carbon atoms, and the compounds exemplified in the acrylic acid alkyl ester compound used for forming the acrylic rubber may be used. it can. These compounds can be used alone or in combination of two or more. Of these, acrylic acid alkyl ester compounds are preferably n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate.
  • the content of the alkyl acrylate ester compound contained in 100% by mass of the monomer is preferably 85 to 99.99% by mass, more preferably 90 to 99.9% by mass.
  • the monomer used for forming the silicon-containing rubber (s1) may be composed of a silicon-containing polymerizable unsaturated compound and an acrylic acid alkyl ester compound, or a silicon-containing polymerizable unsaturated compound and acrylic. It may consist of an acid alkyl ester compound and another polymerizable compound.
  • Other polymerizable compounds include vinyl cyanide compounds, aromatic vinyl compounds, methacrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, and amide group-containing compounds. Examples thereof include unsaturated compounds, alkoxy group-containing unsaturated compounds, fluorine-containing unsaturated compounds, and polyfunctional monomers having two or more unsaturated bonds.
  • the said monomer contains a polyfunctional monomer, and the compound illustrated in the polyfunctional monomer used for formation of the said acrylic rubber can be used.
  • the amount used is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to 100% by mass of the monomer.
  • the Tg of the silicon-containing rubber (s1) is preferably ⁇ 10 ° C. or less from the viewpoint of low temperature impact property, flexibility, and the like.
  • the silicon-containing rubber (s2) is a rubber obtained by using an organosiloxane and a silicon-containing polymerizable unsaturated compound, and is a polyorganosiloxane rubber containing an organosiloxane segment and another segment.
  • the silicon-containing rubber (s3) is a rubber obtained by using organosiloxane, a silicon-containing crosslinking agent (a saturated silane compound having 3 or 4 alkoxy groups), and a silicon-containing polymerizable unsaturated compound. Yes, it is a polyorganosiloxane rubber containing an organosiloxane segment and other segments.
  • the silicon-containing rubbers (s2) and (s3) are preferably obtained in a latex state by emulsion polymerization, for example, US Pat. Nos. 2,891,920 and 3,294,725.
  • the polyorganosiloxane rubber is obtained by, for example, shear-mixing organosiloxane and water in the presence of a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid using a homomixer or an ultrasonic mixer.
  • a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid using a homomixer or an ultrasonic mixer.
  • the silicone rubber contained in the latex obtained by the condensation method is preferable.
  • Alkylbenzenesulfonic acid is suitable because it acts as an emulsifier for organosiloxane and also as a polymerization initiator.
  • an alkylbenzene sulfonic acid metal salt, an alkyl sulfonic acid metal salt, or the like in combination because it has an effect of stably maintaining the silicone rubber when the graft polymerization resin is produced.
  • a silicon-containing polymerizable unsaturated compound is used in combination, and the polymer terminal may be sealed with a dimethylvinylsilyl group, a methylphenylvinylsilyl group, or the like. Good.
  • the terminal of the polyorganosiloxane rubber may be sealed with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • the organosiloxane used in the above reaction is, for example, a compound having a structural unit represented by the following general formula (2).
  • (R m SiO (4-m) / 2 ) (2) [Wherein, R represents a substituted or unsubstituted monovalent hydrocarbon group, and m represents an integer of 0 to 3. ]
  • the structure of the compound represented by the general formula (2) is linear, branched or cyclic, but the compound is preferably an organosiloxane having a cyclic structure.
  • R which this organosiloxane has, that is, monovalent hydrocarbon group includes alkyl group such as methyl group, ethyl group, propyl group and butyl group; aryl group such as phenyl group and tolyl group; vinyl group, allyl group and the like And a group in which some of the hydrogen atoms bonded to carbon atoms in these hydrocarbon groups are substituted with halogen atoms, cyano groups, etc .; and at least one of the hydrogen atoms in the alkyl group is substituted with a mercapto group And the like.
  • organosiloxane examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, and octaphenylcyclotetrasiloxane.
  • a cyclic compound such as a linear or branched organosiloxane. These can be used alone or in combination of two or more.
  • the organosiloxane may be a polyorganosiloxane condensed in advance, for example, having an Mw of about 500 to 10,000.
  • the organosiloxane is a polyorganosiloxane
  • the molecular chain terminal may be sealed with a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
  • the amount of the silicon-containing polymerizable unsaturated compound used is the sum of these.
  • the amount is preferably 0.01 to 15% by mass, more preferably 0.05 to 12% by mass, and still more preferably 0.1 to 10% by mass with respect to 100% by mass. If the amount of the silicon-containing polymerizable unsaturated compound used is too large, the resulting first resin layer may not have sufficient impact resistance and weather resistance.
  • Examples of the silicon-containing crosslinking agent used in the production of the silicon-containing rubber (s3) include trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane, and tetraethoxysilane. And a tetrafunctional cross-linking agent.
  • a crosslinkable prepolymer obtained by condensation polymerization of these compounds in advance may be used. These may be used alone or in combination of two or more.
  • the first resin layer containing a graft polymerization resin obtained by polymerizing a monomer (m3) containing an aromatic vinyl compound in the presence of the silicon-containing rubber (s3) obtained using the silicon-containing crosslinking agent Especially excellent in impact resistance.
  • the amount of the silicon-containing crosslinking agent used in the production of the silicon-containing rubber (s3) is 100 mass of the total amount of the organosiloxane, the graft crossing agent (usually a silicon-containing polymerizable unsaturated compound) and the silicon-containing crosslinking agent.
  • % Is usually 10% by mass or less, preferably 5% by mass or less, and more preferably 0.01 to 5% by mass.
  • the amount of the emulsifier used in the production of the silicon-containing rubber (s2) or (s3) is usually 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the organosiloxane and the silicon-containing polymerizable unsaturated compound.
  • the amount is preferably 0.3 to 3 parts by mass.
  • the amount of water used in the production of the silicon-containing rubber (s2) or (s3) is usually 100 to 500 parts by weight, preferably 100 parts by weight, based on the total amount of organosiloxane and silicon-containing polymerizable unsaturated compound. Is 200 to 400 parts by mass.
  • the condensation temperature in the production of the silicon-containing rubber (s2) or (s3) is usually 5 ° C. to 100 ° C.
  • the volume average particle diameter of the silicon-containing rubbers (s2) and (s3) is usually 500 nm or less, preferably 400 nm or less, more preferably 50 to 400 nm.
  • the volume average particle diameter is 500 nm or less, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent.
  • the volume average particle diameter exceeds 500 nm, the appearance of the first resin layer tends to be inferior, for example, the glossiness is lowered.
  • the volume average particle size is determined by the amount of emulsifier and water used in the production of the silicon-containing rubbers (s2) and (s3), the method of adding the organosiloxane, and the dispersion when using a homomixer or an ultrasonic mixer. It can be easily controlled depending on the degree.
  • the Tg of the silicon-containing rubber (s2) is preferably ⁇ 150 ° C. to ⁇ 30 ° C. from the viewpoint of low temperature impact property, flexibility, and the like.
  • the Tg of the silicon-containing rubber (s3) is preferably ⁇ 150 ° C. to ⁇ 30 ° C. from the viewpoint of low temperature impact property, flexibility, and the like.
  • the composite rubber (s4) is exemplified below.
  • the rubbers may be chemically bonded, may have entanglement, or may be a mere coexisting substance.
  • (1) Combination of the silicon-containing rubbers (s1) and (s2) (2) Combination of the silicon-containing rubbers (s1) and (s3) (3) Silicone-containing rubbers (s1), (s2) and (s3) (4) Combination of acrylic rubber and silicon-containing rubber (s2) (5) Combination of acrylic rubber and silicon-containing rubber (s3) (6) Acrylic rubber, silicon-containing rubber (s2) and ( Combination of s3)
  • the composite rubbers of the above aspects (4) to (6) can be produced, for example, by the method described in JP-A-4-239010.
  • Examples of commercially available products in these embodiments include “Metablene SX-006” (trade name) manufactured by Mitsubishi Rayon Co., Ltd.
  • the graft polymerization resins (g1) and (g2) according to the above embodiments [2] and [3] are resins generally referred to as rubber-reinforced resins.
  • the rubber As a result of the polymerization of the monomer around the rubber, the rubber The resin having a graft polymer portion on at least the surface and the inside.
  • Examples of the silicon-free rubber used for forming the graft polymerization resin (g1) in the above embodiment [2] include acrylic rubber and diene rubber, and acrylic rubber is preferable.
  • the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) used for forming the graft polymerization resin (g1) the compounds exemplified in the above embodiment [1] can be used.
  • the proportions of the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) are preferably 85 to 99.99% by mass when the total of these is 100% by mass and 0.01 to 15% by mass, more preferably 90 to 99.95% by mass and 0.05 to 10% by mass.
  • the monomer (m2) may be composed of an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound, an aromatic vinyl compound, a silicon-containing polymerizable unsaturated compound, and another vinyl. It may consist of a system compound. In the latter case, the ratio of the total amount of the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) is usually 60% by mass or more.
  • Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds.
  • the graft polymerization resin (g1) is produced by polymerizing the monomer (m2) in the presence of the silicon-free rubber, but the production method is not particularly limited. , Emulsion polymerization, solution polymerization, bulk polymerization and the like can be applied.
  • the proportions of the used amounts of the non-silicon-containing rubber and the monomer (m2) used in the production of the graft polymerization resin (g1) are as follows. ) Is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
  • the monomer (m3) used for forming the graft polymerization resin (g2) of the above embodiment [3] may be composed only of an aromatic vinyl compound, or an aromatic vinyl compound and silicon-containing polymerization. It may consist of other vinyl compounds excluding the unsaturated organic compounds. In the latter case, the proportion of the aromatic vinyl compound contained in the monomer (m3) is preferably 20% by mass or more and less than 100% by mass, more preferably 40 to 90% by mass.
  • Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds.
  • the graft polymerization resin (g2) is produced by polymerizing the monomer (m3) in the presence of the silicon-containing rubber, but the production method is not particularly limited. Emulsion polymerization, solution polymerization, bulk polymerization and the like can be applied.
  • the amount of the silicon-containing rubber and the monomer (m3) used in the production of the graft polymerization resin (g2) is such that the monomer (m3) is based on 100 parts by mass of the silicon-containing rubber.
  • the amount is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
  • the above silicon-containing aromatic vinyl resin may be combined with other thermoplastic resins.
  • Another thermoplastic resin is a resin that contains a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound, and a resin that contains no silicon atom in the molecule and contains a structural unit derived from an aromatic vinyl compound And a resin that does not contain a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound.
  • a resin that contains a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound a resin that does not contain an aromatic vinyl compound in the presence of a silicon-containing rubber (hereinafter referred to as “monomer (m4 ) ”)), A graft polymer resin (hereinafter referred to as“ graft polymer resin (g3) ”), a silicon-containing acrylic resin, a silicon-containing polyolefin resin, a silicon-containing polyvinyl chloride resin, Examples thereof include silicon-containing polyvinylidene chloride resins, silicon-containing saturated polyester resins, silicon-containing polycarbonate resins, silicon-containing polyamide resins, silicon-containing fluorine resins, and silicon resins.
  • a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m5)”) is polymerized.
  • the monomer (hereinafter referred to as “monomer (m6)”) containing an aromatic vinyl compound is polymerized in the presence of the aromatic vinyl (co) polymer obtained and the silicon-free rubber. Examples thereof include a non-silicon-containing graft polymerization resin (hereinafter referred to as “graft polymerization resin (g4)”).
  • Examples of the resin that does not contain a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound include polyolefin resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene.
  • thermoplastic resin composition is composed of a silicon-containing aromatic vinyl resin and another thermoplastic resin as a resin component
  • a combination of a silicon-containing aromatic vinyl resin and a graft polymerization resin (g4) a combination of a silicon-containing aromatic vinyl resin and a graft polymerization resin (g5) can be used.
  • the silicon-containing thermoplastic resin may be a resin other than the silicon-containing aromatic vinyl resin, and specific examples thereof include an aromatic vinyl compound in addition to the graft polymerization resin (g3).
  • examples thereof include a silicon-containing copolymer obtained by polymerizing a monomer containing a polymerizable unsaturated compound not included and a silicon-containing polymerizable unsaturated compound.
  • These resins are aromatic compounds obtained by polymerizing the resin component of the above embodiments [1] to [3] and a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m5)”).
  • a resin having a structural unit derived from an aromatic vinyl compound such as a vinyl (co) polymer and the above graft polymerization resin (g4). It is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing an ethylene / vinyl acetate copolymer composition and the like embedding a solar cell element.
  • the resin component contained in the first thermoplastic resin composition is an aromatic vinyl (co) polymer obtained by polymerizing a graft polymerization resin (g3) and a monomer (m5), and a graft polymerization resin.
  • an aromatic vinyl (co) polymer obtained by polymerizing a graft polymerization resin (g3) and a monomer (m5), and a graft polymerization resin.
  • the resin is a combination of at least one selected from (g4) (hereinafter referred to as “aspect [4]”) will be described. That is, the above aspect [4] is exemplified below.
  • Resin (4-3) A resin comprising a graft polymerization resin (g3), a silicon-free graft polymerization resin (g4), and an aromatic vinyl (co) polymer
  • the monomer (m5) used for the formation of the aromatic vinyl (co) polymer may be composed only of an aromatic vinyl compound, or an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound. It may consist of other vinyl compounds. In the latter case, the proportion of the aromatic vinyl compound contained in the monomer (m5) is preferably 20% by mass or more and less than 100% by mass, more preferably 40 to 90% by mass.
  • Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. A compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like. These can be used alone or in combination of two or more. Of these, vinyl cyanide compounds are preferred.
  • the aromatic vinyl (co) polymer is produced by polymerizing the monomer (m5), but the production method is not particularly limited. For example, emulsion polymerization, solution polymerization, bulk Polymerization or the like can be applied.
  • Examples of the silicon-free rubber used for forming the silicon-free graft polymerization resin (g4) include acrylic rubber and diene rubber, and acrylic rubber is preferable.
  • the silicon-free graft polymerized resin (g4) is produced by polymerizing the monomer (m6) in the presence of the silicon-free rubber, but the production method is particularly limited. For example, emulsion polymerization, solution polymerization, bulk polymerization, and the like can be applied.
  • the amount of the silicon-free rubber and the monomer (m6) used in the production of the silicon-free graft polymerization resin (g4) is as follows.
  • the body (m6) is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
  • the content ratio of the graft polymerization resin (g3) and the silicon-free graft polymerization resin (g4) is not particularly limited, but the graft polymerization resin (g3)
  • the ratio of the total content of the silicon-containing rubber used for forming the silicon-free rubber and the silicon-free rubber used for forming the silicon-free graft polymerized resin (g4) is preferably 3 to 40 based on the entire resin component.
  • the mass is selected to be 5% by mass, more preferably 5 to 30% by mass.
  • the resin component contained in the first thermoplastic resin composition is a graft polymerization resin (g4) and a resin selected from the above embodiments [1] to [3], which is a silicon-containing aromatic vinyl resin.
  • a graft polymerization resin g4
  • a resin selected from the above embodiments [1] to [3] which is a silicon-containing aromatic vinyl resin.
  • a resin comprising the silicon-free graft polymerization resin (g4) and the silicon-containing copolymer of the above embodiment [1] (5-2) a silicon-free graft polymerization resin (g4) and the above embodiment [ 2], that is, a resin comprising the graft polymerization resin (g1) (5-3) a silicon-free graft polymerization resin (g4), and the resin of the above embodiment [3], ie, the graft polymerization resin (g2).
  • the content ratios of the silicon-free graft polymerization resin (g4) and the graft polymerization resin (g1) are not particularly limited.
  • the ratio of the total content of the silicon-free rubber used for forming (g4) and the silicon-free rubber used for forming the graft polymerization resin (g1) is preferably 3 to It is selected to be 40% by mass, more preferably 5 to 30% by mass.
  • the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
  • the content ratios of the silicon-free graft polymerization resin (g4) and the graft polymerization resin (g2) are not particularly limited.
  • the ratio of the total content of the silicon-free rubber used for the formation of (g4) and the silicon-containing rubber used for the formation of the graft polymerization resin (g2) is preferably 3 to 40 with respect to the entire resin component.
  • the mass is selected to be 5% by mass, more preferably 5 to 30% by mass.
  • the resin component contained in the first thermoplastic resin composition polymerizes a monomer (m7) that does not contain an aromatic vinyl compound or a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber.
  • a monomer (m7) that does not contain an aromatic vinyl compound or a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber.
  • the obtained resin is a combination of the non-silicon-containing graft polymerization resin (g5) and a resin selected from the above embodiments [1] to [5] which is a silicon-containing aromatic vinyl resin (hereinafter referred to as an embodiment). [6]) will be described. That is, the above aspect [6] is exemplified below.
  • a resin comprising the silicon-free graft polymerization resin (g5) and the silicon-containing copolymer of the above-mentioned embodiment [1] (6-2) a silicon-free graft polymerization resin (g5) and the above-mentioned embodiment [ 2], that is, a resin comprising a graft polymerization resin (g1)
  • 6-3 a silicon-free graft polymerization resin (g5), and a resin of the above embodiment [3], ie, a graft polymerization resin (g2).
  • Examples of the silicon-free rubber used for forming the silicon-free graft polymerization resin (g5) include acrylic rubber and diene rubber, and acrylic rubber is preferable.
  • the silicon-free graft polymerization resin (g5) is produced by polymerizing the monomer (m7) in the presence of the silicon-free rubber, but its production method is particularly limited. For example, emulsion polymerization, solution polymerization, bulk polymerization, and the like can be applied.
  • the amount of the silicon-free rubber and the monomer (m7) used in the production of the silicon-free graft polymerization resin (g5) is such that the amount of the single monomer is 100 parts by mass of the silicon-free rubber.
  • the body (m7) is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
  • the content ratios of the silicon-free graft polymerization resin (g5) and the silicon-containing copolymer of the above aspect [1] are not particularly limited.
  • the content ratio of the non-silicon-containing rubber used for forming the non-containing graft polymerization resin (g5) is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, based on the entire resin component. Selected. When the content ratio of the non-silicon-containing rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
  • the content ratios of the non-silicon-containing graft polymerization resin (g5) and the graft polymerization resin (g1) are not particularly limited.
  • the total content of the non-silicon-containing rubber used for forming (g5) and the non-silicon-containing rubber used for forming the graft polymerization resin (g1) is preferably 3 to It is selected to be 40% by mass, more preferably 5 to 30% by mass.
  • the ratio of the total content of the silicon-free rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
  • the content ratio of the silicon-free graft polymerization resin (g5) and the graft polymerization resin (g2) is not particularly limited.
  • the ratio of the total content of the silicon-free rubber used for the formation of (g5) and the silicon-containing rubber used for the formation of the graft polymerization resin (g2) is preferably 3 to 40 with respect to the entire resin component.
  • the mass is selected to be 5% by mass, more preferably 5 to 30% by mass.
  • the content ratio of the silicon-free graft polymerization resin (g5) and the resin of the above embodiment [4] is not particularly limited, but silicon-free graft polymerization
  • the ratio of the total content of the non-silicon-containing rubber used for forming the resin (g5) and the rubber component contained in the resin of the above aspect [4] is preferably 3 to 40 mass with respect to the entire resin component. %, More preferably 5 to 30% by mass.
  • the content ratio of the silicon-free graft polymerization resin (g5) and the resin of the above embodiment [5] is not particularly limited, but silicon-free graft polymerization is not limited.
  • the proportion of the total content of the non-silicon-containing rubber used for forming the resin (g5) and the rubber component contained in the resin of the above embodiment [5] is preferably 3 to 40 mass with respect to the entire resin component. %, More preferably 5 to 30% by mass.
  • emulsion polymerization in addition to rubber components and monomers (meaning monomers (m2), (m3), (m4), (m6) and (m7)), usually polymerization initiators and chain transfer agents (Molecular weight regulator), emulsifier, water and the like are used.
  • the polymerization initiator a redox in which an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide and the like, and a reducing agent such as a sugar-containing pyrophosphate formulation and a sulfoxylate formulation are combined.
  • BPO benzoyl peroxide
  • the amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the monomers.
  • the polymerization initiator can be added to the reaction system all at once or continuously.
  • chain transfer agent examples include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, tert-tetradecyl mercaptan; and ⁇ -methylstyrene dimer. These can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is usually 0.05 to 2.0% by mass with respect to the total amount of the monomers.
  • the chain transfer agent can be added to the reaction system all at once or continuously.
  • Examples of the emulsifier include anionic surfactants and nonionic surfactants.
  • Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates, aliphatic phosphates, etc. Is mentioned.
  • Examples of nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds. These can be used alone or in combination of two or more. The amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the monomers.
  • Emulsion polymerization can be performed under temperature conditions depending on the type of monomer, polymerization initiator, and the like.
  • the latex obtained by this emulsion polymerization is usually purified by coagulating with a coagulant to make the resin component powdery, and then washing and drying.
  • the coagulant include inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid.
  • the graft ratio in the graft polymerization resins (g1) to (g5) is preferably 20 to 170%, more preferably 30 to 170%, and further preferably 40 to 150%. If this graft ratio is too low, the flexibility of the first resin layer obtained using the first thermoplastic resin composition may not be sufficient. On the other hand, if the graft ratio is too high, the viscosity of the first thermoplastic resin composition becomes high, and it may be difficult to reduce the thickness.
  • S is obtained by adding 1 gram of graft polymerization resin to 20 ml of acetone (acetonitrile when the rubber component includes acrylic rubber), shaking at 25 ° C. for 2 hours with a shaker, The mass (gram) of insoluble matter obtained by centrifuging at 60 ° C. for 60 minutes with a centrifuge (rotation speed: 23,000 rpm) to separate the insoluble matter and the soluble matter, and T is 1 gram It is the mass (gram) of the rubber component contained in the graft polymerization resin.
  • the mass of the rubber component can be obtained by a method of calculating from a polymerization prescription and a polymerization conversion rate, a method of obtaining from an infrared absorption spectrum (IR), and the like.
  • the graft ratio is determined by appropriately determining, for example, the type and amount of polymerization initiator used in the production of the graft polymerization resin, the type and amount of chain transfer agent, the monomer addition method and addition time, the polymerization temperature, etc. , Can be adjusted by selecting.
  • the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30 ° C.) of the acetone-soluble component of the graft polymerization resin is preferably 0.1 to 2.5 dl / g, more preferably 0.2 to 1.5 dl / g, still more preferably 0.25 to 1.2 dl / g.
  • the intrinsic viscosity is within this range, it is possible to form a first resin layer that is excellent in processability of the first thermoplastic resin composition and has high thickness accuracy.
  • the intrinsic viscosity [ ⁇ ] can be obtained in the following manner.
  • acetone-soluble matter recovered after centrifugation if the rubbery polymer contains acrylic rubber, acetonitrile-soluble matter
  • methyl ethyl ketone if the rubbery polymer contains acrylic rubber, acetonitrile-soluble matter
  • the concentration is different.
  • the reduced viscosity at each concentration is measured at 30 ° C. using an Ubbelohde viscometer to determine the intrinsic viscosity [ ⁇ ].
  • the intrinsic viscosity [ ⁇ ] is used when producing the graft polymerization resin, by adjusting the type and amount of polymerization initiator, chain transfer agent, emulsifier, solvent, etc., and further adjusting the polymerization time, polymerization temperature, etc. It can be controlled easily.
  • the silicon-containing thermoplastic resin is used.
  • the content of the silicon-containing structural unit derived from is preferably 0.05 to 20% by mass with respect to the total amount of the structural unit constituting the resin component (thermoplastic resin) contained in the first thermoplastic resin composition. More preferably, the content is 0.07 to 15% by mass, and still more preferably 0.1 to 10% by mass. When there is too much content of the said silicon-containing structural unit, an external appearance property may fall.
  • the silicon-containing structural unit means a unit derived from a silicon-containing polymerizable unsaturated compound and a unit derived from an organosiloxane.
  • the resin component (thermoplastic resin) contained in the first thermoplastic resin composition is a structural unit derived from a maleimide compound (hereinafter referred to as “ The structural unit (u1) ”is preferably included.
  • This structural unit (u1) may be derived from any resin component. That is, the silicon-containing thermoplastic resin may contain the structural unit (u1), and other resin components may contain the structural unit (u1).
  • the content of the structural unit (u1) is preferably 1 to 45 masses with respect to the total amount of the structural units constituting the resin component (thermoplastic resin) contained in the first thermoplastic resin composition. %, More preferably 5 to 40% by mass, still more preferably 10 to 35% by mass. When there is too much content of the said structural unit (u1), the flexibility of a 1st resin layer may fall.
  • the resin component having the structural unit (u1) is preferably a copolymer comprising a structural unit derived from an aromatic vinyl compound, a structural unit derived from a vinyl cyanide compound, and a structural unit (u1). .
  • the content ratio of each structural unit is not particularly limited. Examples of this copolymer include acrylonitrile / styrene / N-phenylmaleimide copolymer.
  • Additives blended in the first thermoplastic resin composition used to form the first resin layer include antioxidants, ultraviolet absorbers, anti-aging agents, colorants, fluorescent whitening agents, weathering agents, and fillers. , Antistatic agents, flame retardants, antifogging agents, antibacterial agents, fungicides, antifouling agents, tackifiers and the like.
  • antioxidants examples include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds. These can be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
  • the ultraviolet absorber examples include benzophenone compounds, benzotriazole compounds, and triazine compounds. These can be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
  • the anti-aging agent examples include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, thiols. Examples thereof include bisphenol compounds, hindered phenol compounds, phosphite compounds, imidazole compounds, nickel dithiocarbamate salts, phosphoric compounds, and the like. These can be used alone or in combination of two or more.
  • the content of the anti-aging agent is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
  • plasticizer examples include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di- (2-ethylhexyl) phthalate, diisooctyl phthalate, and diisodecyl phthalate; dimethyl adipate , Diisobutyl adipate, di- (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyl decyl adipate, di- (2-ethylhexyl) azelate, diisooctyl azelate, diisobutyl azelate, dibutyl sebacate, di- Fatty acid esters such as (2-ethylhexyl) se,
  • the first thermoplastic resin composition used for forming the first resin layer can be prepared by mixing raw material components such as a silicon-containing thermoplastic resin with a Henschel mixer and then melt-kneading.
  • raw material components such as a silicon-containing thermoplastic resin
  • examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, and a continuous kneader.
  • the production method of this film 1A is not particularly limited, and is an extrusion method (inflation film molding method, T-die casting). Film forming method), calender forming method, press forming method and the like.
  • the thickness of the back protective film for solar cells of the present invention is preferably 10 to 1,000 ⁇ m.
  • the lower limit of the thickness is preferably 15 ⁇ m, more preferably 20 ⁇ m, and still more preferably 25 ⁇ m.
  • the upper limit of the thickness is preferably 950 ⁇ m, more preferably 900 ⁇ m, and still more preferably 850 ⁇ m.
  • the lower limit of the thickness is preferably 10 ⁇ m from the viewpoint of adhesiveness with the filler part.
  • the thickness is preferably 15 ⁇ m, more preferably 20 ⁇ m.
  • the upper limit of the thickness is usually 1,000 ⁇ m, preferably 800 ⁇ m, more preferably 600 ⁇ m, and still more preferably 500 ⁇ m.
  • the back surface protective film for a solar cell of the present invention may be a film composed of only the first resin layer, that is, a single-layer film (see FIG. 1), the first resin layer 11, It may be a laminated film composed of another layer 15 bonded to the first resin layer 11 (see FIGS. 2 and 3).
  • the other layer 15 may be a layer that imparts at least one action of hydrolysis resistance, water resistance (moisture resistance), light reflectivity, and flame retardancy, depending on the purpose and application.
  • the other layer 15 may be a single layer or may be composed of two or more layers.
  • the constituent material of the other layer 15 may be a resin composition (thermoplastic resin composition or cured resin composition), an inorganic compound, a metal, or the like.
  • a film 1 ⁇ / b> B in FIG. 2 that represents a laminated film includes a first resin layer 11 and another layer 15 bonded to the first resin layer 11.
  • the other layer 15 represents another resin layer.
  • 3 is a film in which the other layer 15 includes a metal layer 151 and a resin layer 153, and the first resin layer 11, the metal layer 151, and the resin layer 153 are sequentially joined.
  • the thicknesses of the first resin layer 11 and the other layer 15 are preferably 5 to 600 ⁇ m, respectively. And 5 to 800 ⁇ m, more preferably 10 to 500 ⁇ m and 8 to 700 ⁇ m.
  • the back surface protective film for solar cells of this invention is illustrated below.
  • a film having a reflectance of 50% or more with respect to the light hereinafter referred to as “the present invention”.
  • the present invention a film having a reflectance of 50% or more with respect to the light.
  • the present invention A film having a first resin layer having a transmittance of 60% or more for light having a wavelength of 800 to 1,400 nm and an absorbance of 60% or more for light having a wavelength of 400 to 700 nm (hereinafter referred to as “this” Invented film (II) ")
  • the reflectance with respect to light having a wavelength of 400 to 1,400 nm is such that the above light is applied to the surface of the first resin layer of the back protective film for solar cells (thickness 10 to 1,000 ⁇ m) of the present invention. Is measured by radiating.
  • the reflectance is 50% or more, preferably 60% or more, more preferably 70% or more. The higher the reflectance, the more the light can be reflected toward the solar cell element disposed in the filler portion, and the photoelectric conversion efficiency can be improved.
  • the reflectance with respect to light having a wavelength of 400 to 1,400 nm is 50% or more
  • the reflectance of light in the wavelength range from 400 nm to 1,400 nm is 400 nm or every 1,400 nm to 20 nm.
  • the reflectance with respect to this light is preferably Is 50% or more, more preferably 60% or more, still more preferably 70% or more.
  • the L value (brightness) of the surface of the first resin layer is preferably 60 or more so that the reflectance for light with a wavelength of 400 to 1,400 nm is 50% or more.
  • the first thermoplastic resin composition constituting the first resin layer that satisfies the above properties is preferably a thermoplastic resin composition containing a silicon-containing thermoplastic resin and a white colorant.
  • the white colorant examples include titanium oxide, zinc oxide, calcium carbonate, barium sulfate, calcium sulfate, alumina, silica, 2PbCO 3 .Pb (OH) 2 , [ZnS + BaSO 4 ], talc, and gypsum. Of these, titanium oxide is preferred. Moreover, these can be used individually by 1 type or in combination of 2 or more types.
  • the content ratio of the white colorant in the first thermoplastic resin composition is based on 100 parts by mass of the total amount of the resin component (thermoplastic resin) including the silicon-containing thermoplastic resin from the viewpoint of reflectivity to the light.
  • the amount is preferably 1 to 45 parts by mass, more preferably 3 to 40 parts by mass, and still more preferably 5 to 30 parts by mass.
  • the flexibility of the film (I) of this invention may fall.
  • further another colorant is added.
  • the content is usually 5 parts by mass or less with respect to 100 parts by mass of the total amount of the resin component (thermoplastic resin) including the silicon-containing thermoplastic resin.
  • the reflectance is less than 50% (when the first resin layer does not contain a white colorant or the like)
  • the constituent material of the other layer 15 by selecting the constituent material of the other layer 15, the wavelength 400 to 400 on the surface of the first resin layer is selected. It can be set as the film (I) of this invention whose reflectance with respect to 1,400 nm light is 50% or more, and, thereby, a photoelectric conversion efficiency can be improved.
  • the surface of the first resin layer has excellent reflectivity for light involved in photoelectric conversion. Therefore, when sunlight leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cell, the sunlight is reflected from the first resin layer, and the reflected light is reflected on the back surface of the solar cell element. It can be supplied and used for photoelectric conversion to improve power generation efficiency.
  • the transmittance with respect to light with a wavelength of 800 to 1,400 nm and the absorption with respect to light with a wavelength of 400 to 700 nm are on the surface of the first resin layer, that is, with a thickness of 10 to Each light is emitted only to the surface of a 1,000 ⁇ m single layer film (only the first resin layer) or to the film (thickness 5 to 1,000 ⁇ m) constituting the first resin layer in the laminated film. It is to be measured.
  • the transmittance is 60% or more, preferably 65% or more, and more preferably 70% or more.
  • the transmittance with respect to light having a wavelength of 800 to 1,400 nm is 60% or more” means that the transmittance of light in the wavelength region from 800 nm to 1,400 nm using the film constituting the first resin layer. Is measured every 800 nm or from 1,400 nm to 20 nm, and the average value calculated using each transmittance is 60% or more, and the light transmittance in the above wavelength range is all 60% or more. It is not required to be.
  • the light absorptance of the film constituting the first resin layer is 60% or more, preferably 70% or more, more preferably 80% or more.
  • the transmittance with respect to light having a wavelength of 400 to 700 nm is 60% or more
  • the light absorptance in the wavelength region from 400 nm to 700 nm using the film constituting the first resin layer is 400 nm or Measured every 700 nm to 20 nm, meaning that the average value calculated using each absorptivity is 60% or more, and requires that all the absorptances of light in the above wavelength range are 60% or more is not.
  • the film constituting the first resin layer in the film constituting the first resin layer, the transmittance for light with a wavelength of 800 to 1,400 nm is 60% or more, and the absorptance for light with a wavelength of 400 to 700 nm is 60% or more. Therefore, the film constituting the first resin layer preferably has a property of absorbing visible light and transmitting infrared light.
  • the first thermoplastic resin composition constituting the first resin layer satisfying the above properties includes a silicon-containing thermoplastic resin and a colorant having a property of absorbing visible light and transmitting infrared light (hereinafter referred to as “infrared rays”). It is preferable that the composition contains a “transparent colorant”.
  • the infrared transmissive colorant usually has a color other than white, and is preferably a dark color such as black, brown, dark blue, or dark green.
  • a dark-colored infrared transmissive colorant By using a dark-colored infrared transmissive colorant, a solar cell module having an excellent dark-colored appearance can be provided without impairing the adhesion between the first resin layer and the filler part.
  • Examples of the infrared transmissive colorant include perylene pigments.
  • perylene pigments compounds represented by the following general formulas (3) to (5) can be used. [Wherein, R 5 and R 6 are the same or different from each other, and are a butyl group, a phenylethyl group, a methoxyethyl group, or a 4-methoxyphenylmethyl group.
  • R 7 and R 8 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group.
  • R 7 and R 8 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group.
  • perylene-based pigment commercially available products such as “Paligen Black S 0084”, “Palogen Black L 0086”, “Lumogen Black FK4280”, “Lumogen Black FK4281” (all of which are trade names manufactured by BASF) are used. Can be used.
  • the infrared transmissive colorant can be used alone or in combination of two or more.
  • the content ratio of the infrared transmitting colorant in the first thermoplastic resin composition is 100 in terms of the total amount of the resin component (thermoplastic resin) containing the silicon-containing thermoplastic resin from the viewpoints of the transmittance and absorbability with respect to each light.
  • the amount is preferably 5 parts by mass or less, more preferably 0.1 to 5 parts by mass with respect to parts by mass.
  • the 1st thermoplastic resin composition which comprises the 1st resin layer contained in the film (II) of this invention is according to the objective, a use, etc., unless the said permeability and absorptivity are reduced. Other colorants can be included.
  • a solar cell module having various appearances can be obtained by using a yellow pigment, a blue pigment, or the like as a colorant other than the infrared-transmitting colorant and using the following combinations.
  • Brown coloration by combination of black-based infrared transmitting colorant and yellow pigment [2] Dark blue coloration by combination of black-based infrared transmitting colorant and blue pigment
  • the content in the thermoplastic resin composition is usually 200 parts by mass or less, preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the infrared transmitting colorant.
  • Carbon black is known as a dark colorant. Since this carbon black absorbs light having a wavelength in the infrared region, the temperature of the film rises when sunlight leaks from the gap between adjacent solar cell elements toward the film (II) of the present invention. It is easy to increase the temperature of the filler part including the solar cell element, and may reduce the power generation efficiency, but by using the infrared transmissive colorant, the design property is not reduced without reducing the power generation efficiency. And excellent durability.
  • the film (II) of the present invention is a single-layer film, that is, a film 1A (see FIG. 1) composed of a first resin layer
  • sunlight is reflected from the gap between adjacent solar cell elements to the back surface for solar cells.
  • the light having the wavelength of 800 to 1,400 nm is transmitted through the first resin layer, and heat storage due to this light is suppressed, so that the filler portion that adheres to the first resin layer Heat storage is suppressed.
  • the heat storage in the solar cell module formed using this film (II) is also suppressed, and the fall of power generation efficiency can be suppressed.
  • this film (II) when this film (II) is separately combined with a member having light reflectivity to form a solar cell module, a part of sunlight leaked from the gap between adjacent solar cell elements and transmitted through the first resin layer. Can be reflected from the member, and the reflected light can be supplied to the back surface of the solar cell element while being transmitted through the first resin layer, and used for photoelectric conversion to improve power generation efficiency.
  • the film (II) of the present invention is a laminated film as shown in FIG.
  • a film 1 ⁇ / b> B including the first resin layer 11 and another layer 15 For example, by providing light reflectivity, part of sunlight leaking from the gap between adjacent solar cell elements and transmitted through the first resin layer is reflected from the member, and the reflected light is reflected from the first resin layer. While being transmitted, it can be supplied to the back surface of the solar cell element and used for photoelectric conversion to improve power generation efficiency.
  • the first resin layer has a transmittance of 60% or more for light with a wavelength of 800 to 1,400 nm and an absorptance for light with a wavelength of 400 to 700 nm of 60%. %, And when light having a wavelength of 800 to 1,400 nm is radiated to the surface of the first resin layer in the solar cell back surface protective film, the reflectance to this light is preferably 50% or more. .
  • the reflectance to this light is preferably 50% or more.
  • the other layer is preferably a resin layer, and this resin layer is preferably a white resin layer.
  • the composition which comprises this white resin layer contains a white colorant.
  • this composition is a thermoplastic resin composition or a cured resin composition, and these resin compositions are compositions containing a white colorant, the type of resin, the type of white colorant, and the content thereof The amount is not particularly limited.
  • the back surface protective film for solar cells of the present invention is a laminated film including the first resin layer and other layers, from the viewpoint of optical properties such as productivity, flexibility, workability, and reflectivity.
  • the other layer is a resin layer made of a thermoplastic resin composition (hereinafter referred to as “second thermoplastic resin composition”) containing a thermoplastic resin (hereinafter referred to as “second thermoplastic resin”). It is preferable to include.
  • the second thermoplastic resin is not particularly limited as long as it is a resin having thermoplasticity, and the thermoplastic resins exemplified in the description of the first thermoplastic resin can be used, one kind alone or two kinds. A combination of the above can be used.
  • the second thermoplastic resin may be a copolymer resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a rubbery polymer, or the copolymer resin and rubber.
  • a rubber-reinforced aromatic vinyl resin comprising a mixture with an aromatic vinyl (co) polymer obtained by polymerizing a monomer containing an aromatic vinyl compound in the absence of a porous polymer, polyester Resins and olefin resins are preferred.
  • the second thermoplastic resin contains a rubber-reinforced aromatic vinyl resin, it is excellent in hydrolysis resistance, dimensional stability, impact resistance, and the like.
  • the second thermoplastic resin composition may be a composition composed only of the second thermoplastic resin, or may be a composition containing the second thermoplastic resin and an additive.
  • the content of the additive can be the same as in the case of the first thermoplastic resin composition.
  • the manufacturing method of this film 1B is selected by the constituent materials of the other layers 15 and is not particularly limited.
  • the material is a thermoplastic resin composition
  • methods such as a co-extrusion method (T-die cast film molding method, etc.), a thermal fusion method, a dry lamination method, etc. can be mentioned, and a cured resin composition, an inorganic compound, a metal And the like, examples thereof include a heat fusion method, a vapor deposition method, and a sputtering method.
  • a film obtained using the first thermoplastic resin composition and a film that constitutes the other layer 15 may be a polyurethane resin composition, an epoxy resin composition, an acrylic resin composition, or the like. You may join by the adhesive agent of this.
  • the film constituting the other layer 15 include a film made of a thermoplastic resin composition containing a polyester resin (hereinafter referred to as “polyester film”), a film for forming a water vapor barrier layer described later, and the like.
  • polyester film include a polyethylene terephthalate film, a polyethylene naphthalate film, and a polybutylene terephthalate film.
  • the other layer 15 may be formed using a commercially available product.
  • “Melinex 238” (trade name) manufactured by Teijin DuPont, “SR55” (trade name) manufactured by SKC, “Toray” Lumirror X10P, Lumirror ZV10, Lumirror X10S, Lumirror E20 (above, trade name) and the like.
  • the other layer 15 is formed using a polyester film, it can be set as the back surface protective film for solar cells excellent in scratch resistance.
  • the other layer 15 can include a water vapor barrier layer.
  • the other layer 15 can consist of only a water vapor
  • the solar cell back surface protective film 1 ⁇ / b> C including the water vapor barrier layer is exemplified in FIG. 3, and includes a first resin layer 11, a water vapor barrier layer 15 including a metal layer 151 and a resin layer 153, and a first resin layer. 11 and the metal layer 151 are joined.
  • the water vapor barrier layer has a water vapor transmission rate (also referred to as “water vapor water vapor transmission rate”) measured under conditions of a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K7129, preferably 3 g / (m 2 ⁇ day) or less. More preferably, the layer has a performance of 1 g / (m 2 ⁇ day) or less, and further preferably 0.7 g / (m 2 ⁇ day) or less.
  • the water vapor barrier layer is preferably a layer made of an electrically insulating material.
  • the water vapor barrier layer may have a single layer structure or a multilayer structure made of one kind of material, or may have a single layer structure or a multilayer structure made of two or more kinds of materials.
  • a vapor barrier layer is formed by using a vapor deposition film in which a film made of a metal and / or a metal oxide is formed on the surface as a material for forming a vapor barrier layer. Both the metal and the metal oxide may be a single substance or two or more kinds.
  • the water vapor barrier layer forming material may be a three-layer film in which a film made of a metal and / or a metal oxide is disposed between an upper resin layer and a lower resin layer.
  • Examples of the metal include aluminum.
  • Examples of the metal oxide include oxides of elements such as silicon, aluminum, magnesium, calcium, potassium, tin, sodium, boron, titanium, lead, zirconium, and yttrium. Of these, silicon oxide, aluminum oxide, and the like are particularly preferable from the viewpoint of water vapor barrier properties.
  • the film made of the metal and / or metal oxide may be formed by a method such as plating, vacuum deposition, ion plating, sputtering, plasma CVD, or microwave CVD. Two or more of these methods may be combined.
  • the resin layer in the vapor deposition film examples include polyester films such as polyethylene terephthalate film and polyethylene naphthalate; polyolefin films such as polyethylene and polypropylene; polyvinylidene chloride film, polyvinyl chloride film, fluororesin film, polysulfone film, polystyrene film, polyamide Examples thereof include a film, a polycarbonate film, a polyacrylonitrile film, and a polyimide film.
  • the thickness of this resin film is preferably 5 to 50 ⁇ m, more preferably 8 to 20 ⁇ m.
  • the water vapor barrier layer may be formed using a commercially available product.
  • a film or sheet such as “Tech Barrier AX” manufactured by Mitsubishi Plastics, “GX Film” manufactured by Toppan Printing Co., Ltd., “Ecosia VE500” manufactured by Toyobo Co., Ltd. Can do.
  • the arrangement of the water vapor barrier layer facing the first resin layer is not particularly limited.
  • a vapor deposition film is used as the water vapor barrier layer forming material, a film made of a metal and / or a metal oxide may be bonded to the first resin layer, or the vapor deposition film may be on the outside (surface side). Good.
  • the solar cell module of the present invention is provided with the solar cell back surface protective film of the present invention.
  • a schematic diagram of the solar cell module of the present invention is shown in FIG.
  • the solar cell module 2 in FIG. 4 includes a surface-side transparent protective member 21, a surface-side sealing film (surface-side filler) 23, a solar cell element 25, and a back surface side from the sunlight receiving surface side (upper side in the drawing).
  • the sealing film (back surface side filler portion) 27 and the solar cell back surface protective film 1 of the present invention may be disposed in this order.
  • the transparent substrate which consists of glass, resin, etc. is used normally.
  • glass is excellent in transparency and weather resistance, since impact resistance is not sufficient and heavy, when using as a solar cell mounted on the roof of a house, it is preferable to use a weather resistant transparent resin.
  • the transparent resin include a fluorine-based resin.
  • the thickness of the surface side transparent protective member 21 is usually about 1 to 5 mm when glass is used, and is usually about 0.1 to 5 mm when transparent resin is used.
  • the solar cell element 25 has a power generation function by receiving sunlight.
  • a solar cell element if it has a function as a photovoltaic power, it will not be specifically limited, A well-known thing can be used.
  • a crystalline silicon solar cell element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element; an amorphous silicon solar cell element composed of a single bond type or a tandem structure type; gallium arsenide (GaAs) or indium phosphorus ( III-V compound semiconductor solar cell elements such as InP); II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • GaAs gallium arsenide
  • III-V compound semiconductor solar cell elements such as InP
  • II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ).
  • a crystalline silicon solar cell element is preferable, and a polycrystalline silicon solar cell element is particularly preferable.
  • a thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can be used.
  • the front-side sealing film (front-side filler part) 21 and the back-side sealing film (back-side filler part) 27 are usually the same as each other.
  • the sealing film is usually about 100 ⁇ m to 4 mm, preferably about 200 ⁇ m to 3 mm, more preferably about 300 ⁇ m to 2 mm. If the thickness is too thin, the solar cell element 25 may be damaged. On the other hand, if the thickness is too thick, the manufacturing cost increases, which is not preferable.
  • the sealing film forming material is usually a resin composition or a rubber composition.
  • the resin contained in the composition include an olefin resin, an epoxy resin, and a polyvinyl butyral resin.
  • the rubber include silicone rubber and hydrogenated conjugated diene rubber. Of these, olefin resins and hydrogenated conjugated diene rubbers are preferred.
  • olefin resins examples include olefins such as ethylene, propylene, butadiene, and isoprene, or polymers obtained by polymerizing diolefins, and ethylene and other monomers such as vinyl acetate and acrylate esters. Copolymers, ionomers and the like can be used. Specific examples include polyethylene, polypropylene, polymethylpentene, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid ester copolymer, ethylene / vinyl alcohol copolymer, chlorine. Examples thereof include chlorinated polyethylene and chlorinated polypropylene. Among these, an ethylene / vinyl acetate copolymer and an ethylene / (meth) acrylic acid ester copolymer are preferable, and an ethylene / vinyl acetate copolymer is particularly preferable.
  • hydrogenated conjugated diene rubber examples include hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer, and the like. It is done.
  • the sealing film-forming material may contain a crosslinking agent, a crosslinking aid, a silane coupling agent, an ultraviolet absorber, a hindered phenol-based or phosphite-based antioxidant, a hindered amine-based light stabilizer, a light as necessary. Additives such as diffusing agents, flame retardants, and anti-discoloring agents can be contained.
  • the material for forming the front surface side sealing film (front surface side filler portion) 23 and the material for forming the back surface side sealing film (back surface side filler portion) 27 are the same or different. However, the same is preferable from the viewpoint of adhesiveness.
  • the solar cell module of the present invention for example, after arranging the surface side transparent protective member, the surface side sealing film, the solar cell element, the back surface side sealing film and the solar cell back surface protective film of the present invention in this order, These can be manufactured as one body by a lamination method or the like in which heat pressure bonding is performed while vacuum suction is performed.
  • the lamination temperature in this lamination method is usually about 100 ° C. to 250 ° C. from the viewpoint of adhesion of the solar cell back surface protective film of the present invention.
  • the laminating time is usually about 3 to 30 minutes.
  • the back protective film for solar cells was cut into strips (length 200 mm, width 15 mm, thickness described in the table) to obtain two evaluation films.
  • a film “Ultra Pearl” (trade name, manufactured by Sanvic Co., Ltd.) having a length of 100 mm, a width of 15 mm and a thickness of 400 ⁇ m made of an ethylene / vinyl acetate copolymer is placed between two evaluation films and in a laminated state. I put it in the laminator. Thereafter, the upper and lower portions of the laminator were evacuated and preheated at 150 ° C. for 5 minutes. Next, the upper part was returned to atmospheric pressure and pressed for 15 minutes to obtain a sample for measuring peel strength.
  • the peel strength was measured by peeling the T-shape from the portion where the evaluation film was not adhered to the EVA film. Moreover, the peeling state was evaluated. The peeled state was evaluated as “ ⁇ ” when the EVA film was broken, and “X” when broken at the interface between the EVA film and the evaluation film part.
  • L value Back surface protection film for solar cells 50 mm x 50 mm, thickness is listed in the table), using a spectrophotometer "TCS-II" (model name) manufactured by Toyo Seiki Seisakusho Co., Ltd. L value of the 1st resin layer surface in a protective film was measured.
  • Reflectance (%) for light with a wavelength of 400 to 1,400 nm Using a back protection film for solar cells (50 mm x 50 mm, thickness shown in the table) as a measurement sample, reflectivity was measured with an ultraviolet-visible near-infrared spectrophotometer "V-670" (model name) manufactured by JASCO Corporation did. That is, light was emitted to the surface of the first resin layer of the measurement sample, the reflectance in the wavelength region from 400 nm to 1,400 nm was measured every 20 nm, and the average value thereof was calculated.
  • V-670 ultraviolet-visible near-infrared spectrophotometer
  • Transmittance (%) for light with a wavelength of 800 to 1,400 nm A first resin layer film (50 mm ⁇ 50 mm, thickness is listed in the table) obtained using a first thermoplastic resin composition containing an infrared transmitting colorant (perylene-based black pigment) is used as a measurement sample.
  • the transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer “V-670” (model name) manufactured by Bunko Co., Ltd. That is, light was emitted to the measurement sample, the transmittance in the wavelength region from 800 nm to 1,400 nm was measured every 20 nm, and the average value thereof was calculated.
  • the back surface protective film for a solar cell having a predetermined size was subjected to the following heating test, the length of the marked line before and after heating was measured, and the dimensional change rate was calculated based on the following formula. From the calculated value, the dimensional stability was determined according to the following criteria. ⁇ : Dimensional change rate is less than 1% ⁇ : Dimensional change rate is 1% or more and less than 2% ⁇ : Dimensional change rate is 2% or more ⁇ Heating test>
  • the back surface protective film for solar cells was cut into a square shape (120 mm ⁇ 120 mm), and a square marked line of 100 mm ⁇ 100 mm was drawn at the center. The film was left in a constant temperature bath at a temperature of 120 ° C. for 30 minutes, then taken out and allowed to cool.
  • Photoelectric conversion efficiency improvement rate In a room adjusted to a temperature of 25 ° C. ⁇ 2 ° C. and a humidity of 50 ⁇ 5% RH, a cell is previously prepared using Peccell Technologies' Solar Simulator “PEC-11” (model name). A glass cell with a thickness of 3 mm is placed on the surface of a 1 ⁇ 4 polycrystalline silicon cell whose photoelectric conversion efficiency is measured, and a back surface protective film for a solar cell is placed on the back surface. The silicon cell is sandwiched between the glass and the solar cell. EVA was introduced between the back surface protective films to seal the silicon cells, thereby producing solar cell modules. Then, in order to reduce the influence of temperature, the photoelectric conversion efficiency was measured immediately after the light irradiation.
  • Photoelectric conversion efficiency improvement rate was calculated
  • Photoelectric conversion efficiency improvement rate (%) ⁇ (Photoelectric conversion efficiency of module ⁇ Photoelectric conversion efficiency of single cell) ⁇ (Photoelectric conversion efficiency of single cell) ⁇ ⁇ 100
  • thermoplastic resin composition Production raw materials for the back surface protective film for solar cells
  • the raw material components used for the preparation of the thermoplastic resin composition are shown below.
  • Graft polymerization resin (A-1) 1.3 parts of p-vinylphenylmethyldimethoxysilane and 98.7 parts of octamethylcyclotetrasiloxane are mixed, and this is put into 300 parts of distilled water in which 2.0 parts of dodecylbenzenesulfonic acid is dissolved, and 3 parts by a homogenizer. The mixture was stirred and dispersed for emulsification. This emulsified dispersion was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, and heated at 90 ° C. for 6 hours while stirring. Subsequently, it was kept at 5 ° C.
  • the condensation rate was 93%. Thereafter, the latex was neutralized to pH 7 using an aqueous sodium carbonate solution.
  • the obtained polyorganosiloxane rubber had a volume average particle size of 300 nm.
  • a glass flask equipped with a stirrer and having an internal volume of 7 liters was charged with 100 parts of ion exchange water, 1.5 parts of potassium oleate, 0.01 parts of potassium hydroxide, 0.1 part of tert-dodecyl mercaptan, A batch polymerization component consisting of latex prepared at pH 7 containing 15 parts of organosiloxane rubber, 15 parts of styrene and 5 parts of acrylonitrile was added, and the temperature was raised while stirring.
  • the activity comprises 0.1 part of sodium ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water.
  • Aqueous agent aqueous solution and 0.1 part of diisopropylbenzene hydroperoxide were added and polymerization was carried out for 1 hour.
  • Graft polymerization resin (A-2) Accommodates latex with a solid content concentration of 40% containing 50 parts of acrylic rubber (gel content 90%) with a volume average particle diameter of 100 nm, obtained by emulsion polymerization of 99 parts of n-butyl acrylate and 1 part of allyl methacrylate. 1 part of sodium dodecylbenzenesulfonate and 150 parts of ion-exchanged water were added to the reactor and diluted.
  • the polymerization was continued. After the polymerization for 1 hour, 0.2 part of 2,2′-methylene-bis (4-ethylene-6-tert-butylphenol) was added to complete the polymerization to obtain a latex. Next, magnesium sulfate was added to the latex to coagulate the resin component. Thereafter, the graft polymerization resin (A-4) was obtained by washing with water and drying. The graft ratio was 72%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.47 dl / g. The glass transition temperature (Tg) was 108 ° C.
  • the film for forming the other layers the following water vapor barrier layer forming film and polyester film were used.
  • Water vapor barrier layer forming film (R-1) A transparent vapor deposition film “Tech Barrier AX” (trade name) manufactured by Mitsubishi Plastics, Inc. was used. It is a transparent film having a silica vapor deposition film on one side of a PET film, and has a thickness of 12 ⁇ m and a water vapor transmission rate (JIS K7129) of 0.15 g / (m 2 ⁇ day). 2-11.
  • Water vapor barrier layer forming film (R-2) An inorganic binary vapor barrier film “Ecosia VE500” (trade name) manufactured by Toyobo Co., Ltd. was used.
  • Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-2 A back protective film for a single-layer solar cell was obtained in the same manner as in Example 1-1 except that the components listed in Table 1 were used at a predetermined ratio. Various evaluation was performed about this back surface protective film for solar cells. The results are also shown in Table 1.
  • the back protective films for solar cells according to Comparative Examples 1-1 and 1-2 using a thermoplastic resin composition not containing a silicon-containing thermoplastic resin were made of an ethylene / vinyl acetate copolymer.
  • the peel strength was as low as 12 to 15 N, and the adhesion was not sufficient.
  • the back surface protective films for solar cells according to Examples 1-1 to 1-5 using the first thermoplastic resin composition containing the silicon-containing thermoplastic resin have a high peel strength of 61 to 77 N and excellent adhesion. It was.
  • this two-layer soft film was cooled and solidified while being in surface contact with a cast roll whose surface temperature was controlled to 95 ° C. with an air knife, and a back surface protective film for laminated solar cells (white-white) having a thickness of 70 ⁇ m. White type) was obtained.
  • the thicknesses of the first resin layer and the second resin layer are as shown in Table 2.
  • the thickness of the film was determined by using a thickness gauge (model name “ID-C1112C”, manufactured by Mitutoyo Co., Ltd.), cutting the film after 1 hour from the start of film production, and at the center in the film width direction and at both ends from the center.
  • Examples 2-2 to 2-5 After producing the first resin composition and the second resin composition using the raw material components for forming the first resin composition and the second resin composition described in Table 2, Example 2-1 and Similarly, a back surface protective film (white-white type) for a laminated solar cell was obtained. And about these back surface protection films for solar cells, various evaluation was performed and the result was written together in Table 2.
  • Examples 2-6 to 2-10 After producing the first resin composition and the second resin composition using the raw material components for forming the first resin composition and the second resin composition described in Table 3, Example 2-1 and Similarly, a back surface protective film for a laminated solar cell (black-white type) was obtained. And about these back surface protective films for solar cells, various evaluation was performed and the result was written together in Table 3.
  • Example 2-11 The raw material component for forming the 1st resin composition of Table 4 was knead
  • Example 2-12 Using the first resin composition shown in Table 4 and the resin layer forming film (F-2), a laminated solar cell back surface protective film was obtained in the same manner as in Example 2-11. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 4.
  • Examples 2-13 to 2-14 Using the first resin composition shown in Table 5 and the resin layer forming film (F-1) or (F-2), the back surface of the laminated solar cell in the same manner as in Example 2-11 A protective film was obtained. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 5.
  • Example 3-2 Using the first resin composition described in Table 6, a flexible film was obtained in the same manner as in Example 3-1, and then the water vapor barrier layer forming film described in Table 6 was deposited on the outer surface. Thus, it was made to adhere using a polyurethane-based adhesive to obtain a back surface protective film for solar cells having a water vapor barrier layer. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 6.
  • Examples 3-3 to 3-4 Using the first resin composition described in Table 7, a soft film was obtained in the same manner as in Example 3-1, and then the water vapor barrier layer forming film described in Table 7 was used as the outer surface of the vapor deposition film. Thus, it was made to adhere using a polyurethane-based adhesive to obtain a back surface protective film for solar cells having a water vapor barrier layer. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 7.
  • the resin layer forming film (F-1) described in Table 8 is adhered to the surface of the vapor deposition film in the water vapor barrier layer using a polyurethane-based adhesive, and the solar cell having the water vapor barrier layer and the second resin layer is obtained.
  • a battery back surface protective film was obtained.
  • various evaluation was performed and the result was written together in Table 8.
  • the back surface protective film for solar cells of the present invention includes a filler containing an ethylene / vinyl acetate copolymer composition or the like that embeds a solar cell element constituting a solar cell module in the resin layer (first resin layer). It is excellent in adhesiveness to parts, heat resistance and weather resistance, and as a whole film, it is excellent in light reflectivity or design, and of course a solar cell module constituting a solar cell used for a roof of a house This is useful as a member for protecting the back surface of a flexible solar cell module.

Abstract

Disclosed is a backside protective sheet for a solar cell, which comprises a resin layer containing a silicon-containing thermoplastic resin such as a graft polymer resin which is obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a silicon-containing rubber.  The backside protective sheet for a solar cell may also comprise another resin layer which is bonded to the above-described resin layer.  The thickness of the backside protective sheet for a solar cell is preferably 10-1,000 µm.  Also disclosed is a solar cell module comprising the backside protective sheet for a solar cell.

Description

太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュールSolar cell back surface protective film and solar cell module including the same
 本発明は、太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュールに関し、更に詳しくは、エチレン・酢酸ビニル共重合体組成物等を含む、太陽電池モジュールの充填材部との接着性に優れた太陽電池用裏面保護フィルム及びそれを用いた太陽電池モジュールに関する。 The present invention relates to a back surface protective film for a solar cell and a solar cell module including the same, and more specifically, has excellent adhesion to a filler part of a solar cell module including an ethylene / vinyl acetate copolymer composition and the like. The present invention relates to a solar cell back surface protective film and a solar cell module using the same.
 近年、クリーンエネルギーを利用する発電手段の一つとして、太陽電池モジュールを備える太陽光発電システムが普及している。太陽電池モジュールは、板状の太陽電池素子を多数配置するとともに、これらを、直列、並列に配線し、この素子を保護するためにパッケージして、ユニット化させたものである。そして、この太陽電池モジュールは、通常、太陽電池素子における、太陽光が当たる面をガラス板で覆い、例えば、透明性が高く耐湿性に優れるエチレン・酢酸ビニル共重合体等を含む組成物を用いて、太陽電池素子周辺の間隙を充填して充填材部を形成させた後、裏面、即ち、充填材部の露出面を樹脂材料からなる保護フィルムで封止させた構造となっている。 In recent years, a solar power generation system including a solar cell module has become widespread as one of power generation means using clean energy. In the solar cell module, a large number of plate-like solar cell elements are arranged, and these are wired in series and in parallel, and packaged to protect the elements and unitized. And this solar cell module usually uses a composition containing an ethylene / vinyl acetate copolymer having a high transparency and excellent moisture resistance by covering the surface of the solar cell element that is exposed to sunlight with a glass plate. Then, after the gap around the solar cell element is filled to form the filler portion, the back surface, that is, the exposed surface of the filler portion is sealed with a protective film made of a resin material.
 太陽電池用裏面保護フィルムとしては、従来、フッ素樹脂、ポリエチレン系樹脂、ポリエステル系樹脂等を含むフィルムが知られているが、充填材部との接着性及び長期耐久性が十分ではなかった。
 特許文献1には、ポリエチレンテレフタレートからなるベースフィルムに、エチレン・酢酸ビニル共重合体等のポリオレフィン系樹脂との熱接着性を有するスチレン・オレフィン共重合体を含む熱接着層が形成された太陽電池裏面封止用フィルムが開示されている。
 特許文献2には、ポリエチレンテレフタレートからなるベースフィルムに、ポリウレタン系樹脂又は有機シラン化合物を含む塗布層が形成されたフィルムが開示されている。
 また、特許文献3には、エチレンテレフタレート単位を含むポリエステルフィルム、並びに、このフィルムに、架橋剤と、ガラス転移点が20℃~100℃のポリエステル樹脂、アクリル樹脂等とを含む塗料を用いて形成された塗膜を備える太陽電池裏面保護膜用ポリエステルフィルムが開示されている。
As a back surface protective film for a solar cell, a film containing a fluororesin, a polyethylene resin, a polyester resin, or the like has been conventionally known. However, the adhesiveness to the filler portion and the long-term durability are not sufficient.
Patent Document 1 discloses a solar cell in which a base film made of polyethylene terephthalate is provided with a thermal adhesive layer including a styrene / olefin copolymer having thermal adhesiveness with a polyolefin resin such as an ethylene / vinyl acetate copolymer. A backside sealing film is disclosed.
Patent Document 2 discloses a film in which a coating film containing a polyurethane resin or an organic silane compound is formed on a base film made of polyethylene terephthalate.
Patent Document 3 discloses a polyester film containing an ethylene terephthalate unit, and a paint containing a crosslinking agent, a polyester resin having a glass transition point of 20 ° C. to 100 ° C., an acrylic resin, and the like. The polyester film for solar cell back surface protective films provided with the coated film was disclosed.
特開2003-60218号JP 2003-60218 特開2006-175764号JP 2006-175664 A 特開2007-268710号JP 2007-268710 A
 上記の特許文献1~3のように、接着層を備えるフィルムとした場合、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との一定の接着性が得られるものの、この接着層を形成する工程を、別途、必要とし、また、塗布むら等による欠陥が生じることもあり、充填材部の保護について、必ずしも満足できるものではなかった。
 本発明の目的は、その表面に、太陽電池素子を包埋する充填材部と接着させるための接着層を有さないフィルムであって、この充填材部との接着性、耐熱性及び耐候性に優れた太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュールを提供することにある。
As described in Patent Documents 1 to 3, when the film is provided with an adhesive layer, a certain adhesiveness with the filler part containing the ethylene / vinyl acetate copolymer composition is obtained. The step of forming is separately required, and defects due to uneven coating may occur, and the protection of the filler portion is not always satisfactory.
An object of the present invention is a film which does not have an adhesive layer for adhering to a filler part embedding a solar cell element on its surface, and has adhesiveness, heat resistance and weather resistance to the filler part. An object of the present invention is to provide a solar cell back surface protective film and a solar cell module including the same.
 また、上記のように、太陽電池モジュールは、板状の太陽電池素子が多数配置されてなるものであるが、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルムの方へ漏れることがあった。そして、近年、表裏両面で光電変換することができる太陽電池素子を備える太陽電池モジュールにおいて、太陽電池用裏面保護フィルムに、太陽光に対する反射機能を付与し、発電効率を向上させる検討がされている。
 本発明の他の目的は、その表面に、太陽電池素子を包埋する充填材部と接着させるための接着層を有さないフィルムであって、この充填材部との接着性、耐熱性及び耐候性に優れ、太陽光、特に、波長400~1,400nmの光に対する反射性に優れた樹脂層を備える太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュールを提供することにある。
In addition, as described above, the solar cell module is formed by arranging a large number of plate-like solar cell elements, and the sunlight is applied to the back surface protective film for solar cells from the gap between adjacent solar cell elements. There was a leak. And in recent years, in a solar cell module provided with a solar cell element capable of performing photoelectric conversion on both front and back surfaces, studies have been made to give solar cell back surface protective film a function of reflecting sunlight and improve power generation efficiency. .
Another object of the present invention is a film that does not have an adhesive layer for adhering to a filler part that embeds a solar cell element on the surface thereof. An object of the present invention is to provide a back surface protective film for a solar cell including a resin layer having excellent weather resistance and excellent reflectivity to sunlight, particularly light having a wavelength of 400 to 1,400 nm, and a solar cell module including the same.
 また、太陽電池モジュールにおける太陽電池素子等の部材は、エチレン・酢酸ビニル共重合体組成物等を含む充填材部を通して透視しやすいことから、それを抑制し、太陽電池モジュールの外観性を向上させるために、暗色系着色層を太陽電池用裏面保護フィルムとして配設することが検討されている。しかしながら、暗色系着色層の構成材料によっては、太陽電池素子の隙間から漏れた太陽光を吸収し、蓄熱され、発電効率が低下する場合があった。
 本発明の他の目的は、その表面に、太陽電池素子を包埋する充填材部と接着させるための接着層を有さないフィルムであって、この充填材部との接着性、耐熱性及び耐候性に優れ、波長800~1,400nmの光に対する透過性、及び、波長400~700nmの光に対する吸収性の両方に優れた樹脂層を備える太陽電池用裏面保護フィルム及びそれを備える太陽電池モジュールを提供することにある。
Moreover, since members, such as a solar cell element in a solar cell module, are easy to see through the filler part containing an ethylene-vinyl acetate copolymer composition etc., it is suppressed and the external appearance property of a solar cell module is improved. For this reason, disposing a dark colored colored layer as a back protective film for solar cells has been studied. However, depending on the constituent material of the dark colored colored layer, sunlight leaked from the gaps between the solar cell elements is absorbed and stored, and the power generation efficiency may be reduced.
Another object of the present invention is a film that does not have an adhesive layer for adhering to a filler part that embeds a solar cell element on the surface thereof. Solar cell back surface protective film including a resin layer having both excellent weather resistance, transparency to light with a wavelength of 800 to 1,400 nm, and absorption with respect to light with a wavelength of 400 to 700 nm, and a solar cell module including the same Is to provide.
 本発明は、以下に示される。
1.含珪素熱可塑性樹脂を含む樹脂層(以下、「第1樹脂層」ともいう。)を備えることを特徴とする太陽電池用裏面保護フィルム。
2.波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記樹脂層(第1樹脂層)の表面に放射した場合、該光に対する反射率が50%以上である上記1に記載の太陽電池用裏面保護フィルム。
3.上記樹脂層(第1樹脂層)が、更に、白色系着色剤を含む上記1又は2に記載の太陽電池用裏面保護フィルム。
4.上記樹脂層(第1樹脂層)において、波長800~1,400nmの光に対する透過率が60%以上であり、且つ、波長400~700nmの光に対する吸収率が60%以上である上記1に記載の太陽電池用裏面保護フィルム。
5.上記樹脂層(第1樹脂層)が、更に、赤外線透過性着色剤を含む上記1又は4に記載の太陽電池用裏面保護フィルム。
6.上記含珪素熱可塑性樹脂が、含珪素ゴムの存在下、芳香族ビニル化合物を含む単量体を重合して得られたグラフト重合樹脂を含む上記1乃至5のいずれかに記載の太陽電池用裏面保護フィルム。
7.更に、上記樹脂層(第1樹脂層)に接合された他の樹脂層を備える上記1乃至6のいずれかに記載の太陽電池用裏面保護フィルム。
8.上記他の樹脂層が白色樹脂層である上記7に記載の太陽電池用裏面保護フィルム。
9.厚さが10~1,000μmである上記1乃至8のいずれかに記載の太陽電池用裏面保護フィルム。
10.上記1乃至9のいずれかに記載の太陽電池用裏面保護フィルムを備えることを特徴とする太陽電池モジュール。
The present invention is shown below.
1. A back surface protective film for a solar cell, comprising a resin layer containing a silicon-containing thermoplastic resin (hereinafter also referred to as “first resin layer”).
2. 2. The light having a wavelength of 400 to 1,400 nm is emitted on the surface of the resin layer (first resin layer) in the solar cell back surface protective film, and the reflectance to the light is 50% or more. Back surface protection film for solar cells.
3. 3. The solar cell back surface protective film according to 1 or 2, wherein the resin layer (first resin layer) further contains a white colorant.
4). 2. The resin layer (first resin layer) according to 1 above, wherein the transmittance for light having a wavelength of 800 to 1,400 nm is 60% or more and the absorptance for light having a wavelength of 400 to 700 nm is 60% or more. Back surface protective film for solar cells.
5). The back protective film for a solar cell according to 1 or 4 above, wherein the resin layer (first resin layer) further contains an infrared transmitting colorant.
6). The back surface for solar cells according to any one of 1 to 5 above, wherein the silicon-containing thermoplastic resin contains a graft polymerization resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a silicon-containing rubber. Protective film.
7). Furthermore, the back surface protective film for solar cells in any one of said 1 thru | or 6 provided with the other resin layer joined to the said resin layer (1st resin layer).
8). 8. The back surface protective film for solar cell as described in 7 above, wherein the other resin layer is a white resin layer.
9. 9. The back protective film for a solar cell according to any one of 1 to 8 above, which has a thickness of 10 to 1,000 μm.
10. A solar cell module comprising the solar cell back surface protective film according to any one of 1 to 9 above.
 本発明の太陽電池用裏面保護フィルムによれば、含珪素熱可塑性樹脂を含む第1樹脂層を備えることから、この第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れる。従って、充填材部が確実に保護された太陽電池モジュールを与えることができる。
 波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記第1樹脂層の表面に放射したときに、上記光に対する反射率が50%以上である場合には、この第1樹脂層において、太陽光に対する反射性が優れるので、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルムの方へ漏れたときに、反射光を太陽電池素子の裏面に供給して、光電変換に利用し、発電効率を向上させることができる。
 また、上記第1熱可塑性樹脂組成物が、更に、白色系着色剤を含む場合には、上記第1樹脂層において、太陽光に対する反射性が特に優れる。従って、単層型フィルムである場合のみならず、目的、用途により、第1樹脂層及び他の樹脂層を備える積層型フィルム等とした場合、並びに、第1樹脂層における上記充填材部と面しない側に部材を配設した場合、においても、他の樹脂層等の構成に関わりなく、発電効率の改良効果に優れる。
According to the back surface protective film for a solar cell of the present invention, since the first resin layer containing the silicon-containing thermoplastic resin is provided, the first resin layer and the ethylene / vinyl acetate copolymer embedded in the solar cell element. It is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing a coalescence composition. Therefore, a solar cell module in which the filler part is reliably protected can be provided.
When light having a wavelength of 400 to 1,400 nm is radiated to the surface of the first resin layer in the solar cell back surface protective film, the reflectance of the light is 50% or more. The layer is highly reflective to sunlight, so that when sunlight leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cells, the reflected light is supplied to the back surface of the solar cell elements. Thus, it can be used for photoelectric conversion to improve power generation efficiency.
Further, when the first thermoplastic resin composition further contains a white colorant, the first resin layer is particularly excellent in reflectivity for sunlight. Therefore, not only in the case of a single layer type film, but also in the case of a laminated film having the first resin layer and another resin layer, etc., depending on the purpose and application, and the filler portion and surface in the first resin layer Even when the member is disposed on the non-side, the effect of improving the power generation efficiency is excellent regardless of the configuration of other resin layers and the like.
 上記第1樹脂層において、波長800~1,400nmの光に対する透過率が60%以上であり、且つ、波長400~700nmの光に対する吸収率が60%以上である場合には、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルムの方へ漏れたときに、第1樹脂層において、上記波長800~1,400nmの光による蓄熱が抑制されるので、この第1樹脂層に接着する充填材部の蓄熱も抑制される。そして、このフィルムを用いて形成される太陽電池モジュールにおける蓄熱が抑制され、フィルムをはじめとする構成部材の変形及び発電効率の低下を抑制することができる。尚、上記第1樹脂層の、上記充填材部と面しない側に光反射性に優れた部材を配設した場合には、上記第1樹脂層を透過した光が、この部材の表面から反射し、反射光を太陽電池素子の裏面に供給して、光電変換に利用し、発電効率を向上させることができる。また、本発明の太陽電池用裏面保護フィルムが、この性質を有する第1樹脂層と、上記部材として他の樹脂層とを備える積層型フィルムであって、他の樹脂層が白色樹脂層である場合には、同様の効果を確実に得ることができる。
 また、上記第1熱可塑性樹脂組成物が、更に、赤外線透過性着色剤を含む場合には、第1樹脂層が、波長800~1,400nmの光に対する透過率が60%以上であり、且つ、波長400~700nmの光に対する吸収率が60%以上である性質を有し、優れた暗色系外観を有する太陽電池モジュールを与えることができる。そして、太陽光がフィルムに当たった際に、フィルムをはじめとする構成部材の変形及び発電効率の低下を抑制するだけでなく、本発明の太陽電池用裏面保護フィルムを備える太陽電池を、家屋の屋根等に配設したとき、太陽電池の外観性に優れる。更に、本発明の太陽電池用裏面保護フィルムが、赤外線透過性着色剤を含む第1樹脂層と、他の樹脂層とを備える積層型フィルムであって、他の樹脂層が白色樹脂層である場合には、第1樹脂層における蓄熱及びその変形が抑制され、太陽電池モジュールにおける蓄熱が抑制され、発電効率の改良効果に優れる。
In the first resin layer, when the transmittance for light with a wavelength of 800 to 1,400 nm is 60% or more and the absorption with respect to light with a wavelength of 400 to 700 nm is 60% or more, sunlight is When the first resin layer leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cells, heat storage due to light having the wavelength of 800 to 1,400 nm is suppressed. The heat storage of the filler part bonded to the layer is also suppressed. And the thermal storage in the solar cell module formed using this film is suppressed, and the deformation | transformation of structural members including a film and the fall of electric power generation efficiency can be suppressed. When a member having excellent light reflectivity is disposed on the side of the first resin layer that does not face the filler portion, the light transmitted through the first resin layer is reflected from the surface of the member. Then, the reflected light can be supplied to the back surface of the solar cell element and used for photoelectric conversion to improve power generation efficiency. Moreover, the back surface protective film for solar cells of this invention is a laminated film provided with the 1st resin layer which has this property, and another resin layer as said member, Comprising: Other resin layers are white resin layers. In this case, the same effect can be surely obtained.
When the first thermoplastic resin composition further contains an infrared transmitting colorant, the first resin layer has a transmittance of 60% or more for light having a wavelength of 800 to 1,400 nm, and It is possible to provide a solar cell module having a property that the absorptance with respect to light having a wavelength of 400 to 700 nm is 60% or more and having an excellent dark appearance. And when sunlight hits a film, not only the deformation of the structural members including the film and the decrease in power generation efficiency are suppressed, but also the solar cell provided with the back surface protective film for solar cell of the present invention, When placed on a roof or the like, the appearance of the solar cell is excellent. Furthermore, the back surface protective film for solar cells of the present invention is a laminated film comprising a first resin layer containing an infrared transmitting colorant and another resin layer, and the other resin layer is a white resin layer. In this case, heat storage in the first resin layer and its deformation are suppressed, heat storage in the solar cell module is suppressed, and the effect of improving power generation efficiency is excellent.
 上記含珪素熱可塑性樹脂が、含珪素ゴムの存在下、芳香族ビニル化合物を含む単量体を重合して得られたグラフト重合樹脂を含む場合には、耐加水分解性、寸法安定性、耐衝撃性等に優れる。 When the silicon-containing thermoplastic resin contains a graft polymerization resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a silicon-containing rubber, hydrolysis resistance, dimensional stability, Excellent impact properties.
 本発明の太陽電池モジュールによれば、上記本発明の太陽電池用裏面保護フィルムを備えることから、形状安定性に優れ、これにより、光電変換効率が改良された太陽電池を形成することができる。 According to the solar cell module of the present invention, since the back surface protective film for solar cell of the present invention is provided, it is possible to form a solar cell with excellent shape stability and thereby improved photoelectric conversion efficiency.
本発明の太陽電池用裏面保護フィルム(単層型)の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the back surface protection film for solar cells of this invention (single layer type). 本発明の太陽電池用裏面保護フィルム(積層型)の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the back surface protection film (lamination type) for solar cells of this invention. 本発明の太陽電池用裏面保護フィルム(積層型)の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the back surface protection film for solar cells of this invention (lamination | stacking type). 本発明の太陽電池モジュールの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell module of this invention.
 以下、本発明を詳しく説明する。尚、本明細書において、「(共)重合」とは、単独重合及び共重合を意味し、「(メタ)アクリル」とは、アクリル及びメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。 Hereinafter, the present invention will be described in detail. In the present specification, “(co) polymerization” means homopolymerization and copolymerization, “(meth) acryl” means acryl and methacryl, and “(meth) acrylate” It means acrylate and methacrylate.
 本発明の太陽電池用裏面保護フィルムは、含珪素熱可塑性樹脂を含む樹脂層(第1樹脂層)を備えることを特徴とする。 The back surface protective film for solar cells of the present invention is characterized by including a resin layer (first resin layer) containing a silicon-containing thermoplastic resin.
 本発明の太陽電池用裏面保護フィルムは、上記第1樹脂層のみを備える単層型フィルム1Aであってよいし(図1参照)、上記第1樹脂層11と、この第1樹脂層11に接合された他の層15とを備える積層型フィルム(積層型シートを含む)1Bであってもよい(図2及び図3参照)。他の層15は、後述される。
 本発明において、太陽電池用裏面保護フィルムは、単層型フィルム及び積層型フィルムのいずれであっても、第1樹脂層の表面で、太陽電池モジュールの充填材部の露出面と接着させるために用いられる。
The solar cell back surface protective film of the present invention may be a single-layer film 1A having only the first resin layer (see FIG. 1), the first resin layer 11 and the first resin layer 11. It may be a laminated film (including a laminated sheet) 1B including another layer 15 joined (see FIGS. 2 and 3). The other layer 15 will be described later.
In the present invention, the back protective film for a solar cell is a surface of the first resin layer to adhere to the exposed surface of the filler part of the solar cell module, whether it is a single layer film or a laminated film. Used.
 上記第1樹脂層は、含珪素熱可塑性樹脂を単独で、又は、この含珪素熱可塑性樹脂を含む第1熱可塑性樹脂組成物を用いて得られた、可撓性を有する層である。この第1熱可塑性樹脂組成物は、後述するように、含珪素熱可塑性樹脂と、珪素非含有熱可塑性樹脂とを含有する組成物であってよいし、含珪素熱可塑性樹脂と、添加剤とを含有する組成物であってもよい。この第1樹脂層は、上記のように、単層型フィルムとすることができるので、含珪素熱可塑性樹脂及び第1熱可塑性樹脂組成物は、少なくともフィルム形成性を有する。
 以下、含珪素熱可塑性樹脂のみを用いて第1樹脂層を形成する場合を含めて、上記第1樹脂層の形成に、第1熱可塑性樹脂組成物を用いることとして説明する。
The first resin layer is a flexible layer obtained by using a silicon-containing thermoplastic resin alone or by using a first thermoplastic resin composition containing the silicon-containing thermoplastic resin. As will be described later, the first thermoplastic resin composition may be a composition containing a silicon-containing thermoplastic resin and a silicon-free thermoplastic resin, or a silicon-containing thermoplastic resin, an additive, It may be a composition containing Since the first resin layer can be a single-layer film as described above, the silicon-containing thermoplastic resin and the first thermoplastic resin composition have at least film-forming properties.
Hereinafter, the first thermoplastic resin composition is used for forming the first resin layer, including the case where the first resin layer is formed using only the silicon-containing thermoplastic resin.
 上記第1樹脂層に含まれる熱可塑性樹脂のガラス転移温度(以下、「Tg」ともいう。)は、好ましくは90℃~220℃、より好ましくは95℃~200℃、更に好ましくは100℃~180℃、特に好ましくは105℃~160℃である。このガラス転移温度Tgが上記範囲にあると、耐熱性に優れる。尚、Tgが高すぎると、上記第1樹脂層の可撓性が低下する傾向にある。一方、Tgが低すぎると、耐熱性が不十分となる傾向がある。ガラス転移温度Tgは、示差走査熱量計(DSC)により測定することができる。
 尚、上記第1樹脂層を形成する第1熱可塑性樹脂組成物が複数の熱可塑性樹脂を含む場合、少なくとも1つの樹脂は、上記範囲のTgを有する。好ましくは、少なくとも1つの含珪素熱可塑性樹脂は、上記範囲のTgを有する。
The glass transition temperature (hereinafter also referred to as “Tg”) of the thermoplastic resin contained in the first resin layer is preferably 90 ° C. to 220 ° C., more preferably 95 ° C. to 200 ° C., and still more preferably 100 ° C. to 180 ° C., particularly preferably 105 ° C. to 160 ° C. When the glass transition temperature Tg is in the above range, the heat resistance is excellent. In addition, when Tg is too high, it exists in the tendency for the flexibility of the said 1st resin layer to fall. On the other hand, when Tg is too low, the heat resistance tends to be insufficient. The glass transition temperature Tg can be measured by a differential scanning calorimeter (DSC).
In addition, when the 1st thermoplastic resin composition which forms the said 1st resin layer contains several thermoplastic resin, at least 1 resin has Tg of the said range. Preferably, at least one silicon-containing thermoplastic resin has a Tg in the above range.
 上記含珪素熱可塑性樹脂は、分子中に珪素原子を含む樹脂であり、芳香族ビニル樹脂(以下、「含珪素芳香族ビニル系樹脂」という。)、ポリオレフィン樹脂(含珪素ポリオレフィン系樹脂)、ポリ塩化ビニル樹脂(含珪素ポリ塩化ビニル系樹脂)、ポリ塩化ビニリデン樹脂(含珪素ポリ塩化ビニリデン系樹脂)、飽和ポリエステル樹脂(含珪素飽和ポリエステル系樹脂)、ポリカーボネート樹脂(含珪素ポリカーボネート系樹脂)、ポリアミド樹脂(含珪素ポリアミド系樹脂)、アクリル樹脂(含珪素アクリル系樹脂)、フッ素樹脂(含珪素フッ素系樹脂)、珪素樹脂等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせてアロイとして用いることができる。
 尚、上記含珪素熱可塑性樹脂における、重合性不飽和化合物を含む単量体を重合して得られる樹脂の形態としては、含珪素重合性不飽和化合物を含む単量体を重合して得られた(共)重合体からなる樹脂;珪素非含有ゴムの存在下、含珪素重合性不飽和化合物を含む単量体を重合して得られたグラフト重合樹脂;含珪素ゴムの存在下、含珪素重合性不飽和化合物を含まない単量体を重合して得られたグラフト重合樹脂;含珪素ゴムの存在下、含珪素重合性不飽和化合物を含む単量体を重合して得られたグラフト重合樹脂等が挙げられる。これらの樹脂は、単独であるいは2種以上を組み合わせて用いることができる。
 本発明においては、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れることから、芳香族ビニル化合物に由来する構造単位を有する含珪素芳香族ビニル系樹脂が好ましい。
The silicon-containing thermoplastic resin is a resin containing a silicon atom in the molecule, and is an aromatic vinyl resin (hereinafter referred to as “silicon-containing aromatic vinyl resin”), a polyolefin resin (silicon-containing polyolefin resin), a polycrystal. Vinyl chloride resin (silicon-containing polyvinyl chloride resin), polyvinylidene chloride resin (silicon-containing polyvinylidene chloride resin), saturated polyester resin (silicon-containing saturated polyester resin), polycarbonate resin (silicon-containing polycarbonate resin), polyamide Examples thereof include resins (silicon-containing polyamide-based resins), acrylic resins (silicon-containing acrylic resins), fluororesins (silicon-containing fluorine-based resins), silicon resins, and the like. These can be used alone or in combination of two or more.
The form of the resin obtained by polymerizing the monomer containing the polymerizable unsaturated compound in the silicon-containing thermoplastic resin is obtained by polymerizing the monomer containing the silicon-containing polymerizable unsaturated compound. A resin comprising a (co) polymer; a graft polymerization resin obtained by polymerizing a monomer containing a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber; a silicon-containing rubber in the presence of a silicon-containing rubber Graft polymerization resin obtained by polymerizing monomer not containing polymerizable unsaturated compound; Graft polymerization obtained by polymerizing monomer containing silicon-containing polymerizable unsaturated compound in the presence of silicon-containing rubber Examples thereof include resins. These resins can be used alone or in combination of two or more.
In the present invention, it is derived from an aromatic vinyl compound because it is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing an ethylene / vinyl acetate copolymer composition or the like embedding a solar cell element. A silicon-containing aromatic vinyl resin having a structural unit is preferred.
 尚、上記第1熱可塑性樹脂組成物に含まれる含珪素熱可塑性樹脂の含有量は、樹脂成分(熱可塑性樹脂)の全量に対して、好ましくは1~100質量%、より好ましくは3~100質量%、更に好ましくは10~90質量%である。上記割合であれば、上記第1熱可塑性樹脂組成物を含む第1樹脂層は、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れる。 The content of the silicon-containing thermoplastic resin contained in the first thermoplastic resin composition is preferably 1 to 100% by mass, more preferably 3 to 100%, based on the total amount of the resin component (thermoplastic resin). The mass is more preferably 10 to 90% by mass. If it is the above ratio, the first resin layer containing the first thermoplastic resin composition is embedded in the solar cell element, and has adhesiveness with a filler part containing an ethylene / vinyl acetate copolymer composition, Excellent heat resistance and weather resistance.
 一方、上記珪素非含有熱可塑性樹脂としては、芳香族ビニル樹脂、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、(メタ)アクリル酸エステル化合物に由来する構造単位を含むアクリル樹脂、フッ素樹脂や、珪素非含有ゴムの存在下、含珪素重合性不飽和化合物を含まない単量体を重合して得られた珪素非含有グラフト重合樹脂(ジエン系グラフト重合樹脂、アクリル系グラフト重合樹脂等)等が挙げられる。これらの樹脂は、単独であるいは2種以上を組み合わせて用いることができる。 On the other hand, the silicon-free thermoplastic resin includes aromatic polyester resin, polyolefin resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and other saturated polyester resins. A monomer that does not contain a silicon-containing polymerizable unsaturated compound in the presence of a polycarbonate resin, a polyamide resin, an acrylic resin containing a structural unit derived from a (meth) acrylic acid ester compound, a fluorine resin, or a silicon-free rubber. Examples thereof include a silicon-free graft polymerization resin (diene graft polymerization resin, acrylic graft polymerization resin, etc.) obtained by polymerization. These resins can be used alone or in combination of two or more.
 上記含珪素芳香族ビニル系樹脂は、芳香族ビニル化合物に由来する構造単位を有する含珪素樹脂であり、以下に例示される。
[1]芳香族ビニル化合物と、含珪素重合性不飽和化合物とを含む単量体(以下、「単量体(m1)」という。)を重合して得られた含珪素共重合体
[2]珪素非含有ゴムの存在下、芳香族ビニル化合物と、含珪素重合性不飽和化合物とを含む単量体(以下、「単量体(m2)」という。)を重合して得られたグラフト重合樹脂(以下、「グラフト重合樹脂(g1)」という。)
[3]含珪素ゴムの存在下、芳香族ビニル化合物を含む単量体(以下、「単量体(m3)」という。)を重合して得られたグラフト重合樹脂(以下、「グラフト重合樹脂(g2)」という。)
 これらのうち、好ましくは態様[2]~[3]であり、特に好ましくは態様[3]である。
The silicon-containing aromatic vinyl resin is a silicon-containing resin having a structural unit derived from an aromatic vinyl compound, and is exemplified below.
[1] Silicon-containing copolymer [2] obtained by polymerizing a monomer (hereinafter referred to as “monomer (m1)”) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound. A graft obtained by polymerizing a monomer (hereinafter referred to as “monomer (m2)”) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber. Polymerized resin (hereinafter referred to as “graft polymerized resin (g1)”)
[3] Graft polymerization resin (hereinafter referred to as “graft polymerization resin”) obtained by polymerizing a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m3)”) in the presence of silicon-containing rubber. (G2) ".)
Of these, the embodiments [2] to [3] are preferred, and the embodiment [3] is particularly preferred.
 上記態様[1]の含珪素共重合体は、芳香族ビニル化合物と、含珪素重合性不飽和化合物とを含む単量体(m1)を重合して得られた重合体である。
 芳香族ビニル化合物は、少なくとも1つのビニル結合と、少なくとも1つの芳香族環とを有する化合物であれば、特に限定されない。その例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン、モノクロロスチレン、ジクロロスチレン、モノブロモスチレン、ジブロモスチレン、トリブロモスチレン、フルオロスチレン等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらの芳香族ビニル化合物のうち、スチレン及びα-メチルスチレンが好ましい。
The silicon-containing copolymer of the above embodiment [1] is a polymer obtained by polymerizing a monomer (m1) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound.
The aromatic vinyl compound is not particularly limited as long as it is a compound having at least one vinyl bond and at least one aromatic ring. Examples include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, β-methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyltoluene, vinylxylene, vinylnaphthalene, monochlorostyrene, dichloromethane. Examples thereof include styrene, monobromostyrene, dibromostyrene, tribromostyrene, and fluorostyrene. These compounds can be used alone or in combination of two or more. Of these aromatic vinyl compounds, styrene and α-methylstyrene are preferred.
 また、含珪素重合性不飽和化合物は、珪素原子を有し、少なくとも1つのビニル結合を有する化合物であれば、特に限定されず、例えば、下記一般式(1)で表される化合物等を用いることができる。
  RSi(OR           (1)
〔式中、Rは、少なくとも1つの炭素-炭素二重結合を有する炭素数1~20の有機基であり、Rは、互いに同一又は異なって、水素原子、脂肪族炭化水素基又は芳香族炭化水素基である。〕
 尚、炭素-炭素二重結合としては、ビニル基、アクリロイル基、メタクリロイル基、アリル基、ノルボルネニル基、シクロヘキセニル基等が挙げられる。
The silicon-containing polymerizable unsaturated compound is not particularly limited as long as it is a compound having a silicon atom and having at least one vinyl bond. For example, a compound represented by the following general formula (1) is used. be able to.
R 1 Si (OR 2 ) 3 (1)
[Wherein, R 1 is an organic group having 1 to 20 carbon atoms having at least one carbon-carbon double bond, and R 2 is the same or different from each other, and is a hydrogen atom, an aliphatic hydrocarbon group or an aromatic group. Group hydrocarbon group. ]
Examples of the carbon-carbon double bond include a vinyl group, an acryloyl group, a methacryloyl group, an allyl group, a norbornenyl group, and a cyclohexenyl group.
 上記一般式(1)で表される含珪素重合性不飽和化合物としては、ビニルトリアルコキシシラン化合物、3-メタクリロキシアルキルトリアルコキシシラン化合物、3-アクリロキシアルキルトリアルコキシシラン化合物、アリルトリアルコキシシラン化合物、ノルボルネニルトリアルコキシシラン化合物、シクロヘキセニルエチルトリアルコキシシラン化合物等が挙げられる。 Examples of the silicon-containing polymerizable unsaturated compound represented by the general formula (1) include vinyl trialkoxysilane compounds, 3-methacryloxyalkyltrialkoxysilane compounds, 3-acryloxyalkyltrialkoxysilane compounds, and allyltrialkoxysilanes. Compounds, norbornenyl trialkoxysilane compounds, cyclohexenylethyltrialkoxysilane compounds, and the like.
 上記ビニルトリアルコキシシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン等が挙げられる。
 上記3-メタクリロキシアルキルトリアルコキシシランとしては、3-メタクリロキシメチルトリメトキシシラン、3-メタクリロキシエチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシメチルトリエトキシシラン、3-メタクリロキシエチルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシメチルトリプロポキシシラン、3-メタクリロキシエチルトリプロポキシシラン、3-メタクリロキシプロピルトリプロポキシシラン、3-メタクリロキシプロピルトリブトキシシラン等が挙げられる。
 上記3-アクリロキシアルキルトリアルコキシシランとしては、3-アクリロキシメチルトリメトキシシラン、3-アクリロキシエチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシメチルトリエトキシシラン、3-アクリロキシエチルトリエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-アクリロキシメチルトリプロポキシシラン、3-アクリロキシエチルトリプロポキシシラン、3-アクリロキシプロピルトリプロポキシシラン、3-アクリロキシプロピルトリブトキシシラン等が挙げられる。
 上記アリルトリアルコキシシランとしては、アリルトリメトキシシラン、アリルトリエトキシシラン、アリルトリプロポキシシラン、アリルトリブトキシシラン等が挙げられる。
 上記ノルボルネニルトリアルコキシシランとしては、ノルボルネニルトリメトキシシラン、ノルボルネニルトリエトキシシラン、ノルボルネニルトリプロポキシシラン、ノルボルネニルトリブトキシシラン等が挙げられる。
 上記シクロヘキセニルエチルトリアルコキシシランとしては、シクロヘキセニルエチルトリメトキシシラン、シクロヘキセニルエチルトリエトキシシラン、シクロヘキセニルエチルトリプロポキシシラン、シクロヘキセニルエチルトリブトキシシラン等が挙げられる。
Examples of the vinyl trialkoxysilane compound include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, and vinyltributoxysilane.
Examples of the 3-methacryloxyalkyltrialkoxysilane include 3-methacryloxymethyltrimethoxysilane, 3-methacryloxyethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxymethyltriethoxysilane, Methacryloxyethyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxymethyltripropoxysilane, 3-methacryloxyethyltripropoxysilane, 3-methacryloxypropyltripropoxysilane, 3-methacryloxypropyltributoxy Silane etc. are mentioned.
Examples of the 3-acryloxyalkyltrialkoxysilane include 3-acryloxymethyltrimethoxysilane, 3-acryloxyethyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxymethyltriethoxysilane, 3- Acryloxyethyltriethoxysilane, 3-acryloxypropyltriethoxysilane, 3-acryloxymethyltripropoxysilane, 3-acryloxyethyltripropoxysilane, 3-acryloxypropyltripropoxysilane, 3-acryloxypropyltributoxy Silane etc. are mentioned.
Examples of the allyltrialkoxysilane include allyltrimethoxysilane, allyltriethoxysilane, allyltripropoxysilane, and allyltributoxysilane.
Examples of the norbornenyltrialkoxysilane include norbornenyltrimethoxysilane, norbornenyltriethoxysilane, norbornenyltripropoxysilane, norbornenyltributoxysilane, and the like.
Examples of the cyclohexenylethyltrialkoxysilane include cyclohexenylethyltrimethoxysilane, cyclohexenylethyltriethoxysilane, cyclohexenylethyltripropoxysilane, and cyclohexenylethyltributoxysilane.
 また、上記以外の他の含珪素重合性不飽和化合物としては、ジエトキシメチルビニルシラン、トリス(2-メトキシエトキシ)ビニルシラン、p-ビニルフェニルメチルジメトキシシラン、1-(m-ビニルフェニル)メチルジメチルイソプロポキシシラン、3-(p-ビニルフェノキシ)プロピルメチルジエトキシシラン、3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン、2-(m-ビニルフェニル)エチルメチルジメトキシシラン、2-(o-ビニルフェニル)エチルメチルジメトキシシラン、1-(p-ビニルフェニル)エチルメチルジメトキシシラン、1-(m-ビニルフェニル)エチルメチルジメトキシシラン、1-(o-ビニルフェニル)エチルメチルジメトキシシラン、1-(o-ビニルフェニル)-1,1,2-トリメチル-2,2-ジメトキシジシラン、1-(p-ビニルフェニル)-1,1-ジフェニル-3-エチル-3,3-ジエトキシジシロキサン、m-ビニルフェニル-[3-(トリエトキシシリル)プロピル]ジフェニルシラン、[3-(p-イソプロペニルベンゾイルアミノ)プロピル]フェニルジプロポキシシラン、N-3-(メタクリロキシ-2-ヒドロキシプロピル)-3-アミノプロピルトリエトキシシラン、メタクリロキシプロピルトリス(メトキシエトキシ)シラン、3-[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート、3-[トリス(ジメチルビニルシロキシ)]プロピルメタクリレート、3-(トリクロロシリル)プロピルメタクリレート、トリメチルシリルメタクリレート、トリス(トリメチルシロキシ)-3-メタクリロキシプロピルシラン、メタクリロキシプロピルメチルジエトキシシラン、アクリロキシトリメチルシラン、イタコン酸ビストリメチルシリル、(メタクリロキシメチル)ビス(トリメチルシロキシ)メチルシラン、2-(トリメチルシロキシ)エチルメタクリレ-ト、2-(アクリロキシエトキシ)トリメチルシラン、3-メタクリロキシプロピルビス(トリメチルシロキシ)メチルシラン、(3-アクリロキシプロピル)メチルビス(トリメチルシロキシ)シラン、(3-アクリロキシプロピル)ジメチルメトキシシラン、(3-アクリロキシプロピル)トリス(トリメチルシロキシ)シラン、トリクロロビニルシラン、アリルトリクロロシラン等が挙げられる。 Other silicon-containing polymerizable unsaturated compounds other than the above include diethoxymethylvinylsilane, tris (2-methoxyethoxy) vinylsilane, p-vinylphenylmethyldimethoxysilane, 1- (m-vinylphenyl) methyldimethyliso Propoxysilane, 3- (p-vinylphenoxy) propylmethyldiethoxysilane, 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane, 2- (m- Vinylphenyl) ethylmethyldimethoxysilane, 2- (o-vinylphenyl) ethylmethyldimethoxysilane, 1- (p-vinylphenyl) ethylmethyldimethoxysilane, 1- (m-vinylphenyl) ethylmethyldimethoxysilane, 1- ( o-Vinylphenyl) Rumethyldimethoxysilane, 1- (o-vinylphenyl) -1,1,2-trimethyl-2,2-dimethoxydisilane, 1- (p-vinylphenyl) -1,1-diphenyl-3-ethyl-3, 3-diethoxydisiloxane, m-vinylphenyl- [3- (triethoxysilyl) propyl] diphenylsilane, [3- (p-isopropenylbenzoylamino) propyl] phenyldipropoxysilane, N-3- (methacryloxy- 2-hydroxypropyl) -3-aminopropyltriethoxysilane, methacryloxypropyltris (methoxyethoxy) silane, 3- [tris (trimethylsiloxy) silyl] propyl methacrylate, 3- [tris (dimethylvinylsiloxy)] propyl methacrylate, 3- (Trichlorosilyl) propyl Tacrylate, trimethylsilyl methacrylate, tris (trimethylsiloxy) -3-methacryloxypropylsilane, methacryloxypropylmethyldiethoxysilane, acryloxytrimethylsilane, bistrimethylsilyl itaconate, (methacryloxymethyl) bis (trimethylsiloxy) methylsilane, 2- (Trimethylsiloxy) ethyl methacrylate, 2- (acryloxyethoxy) trimethylsilane, 3-methacryloxypropylbis (trimethylsiloxy) methylsilane, (3-acryloxypropyl) methylbis (trimethylsiloxy) silane, (3-acrylic Roxypropyl) dimethylmethoxysilane, (3-acryloxypropyl) tris (trimethylsiloxy) silane, trichlorovinylsilane, allyltrichloro Silane etc. are mentioned.
 上記含珪素重合性不飽和化合物は、単独であるいは2つ以上を組み合わせて用いることができる。 The above silicon-containing polymerizable unsaturated compounds can be used alone or in combination of two or more.
 上記態様[1]の含珪素共重合体を形成する単量体(m1)は、芳香族ビニル化合物と、含珪素重合性不飽和化合物とからなるものであってよいし、芳香族ビニル化合物と、含珪素重合性不飽和化合物と、他のビニル系化合物とからなるものであってもよい。他のビニル系化合物としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 The monomer (m1) forming the silicon-containing copolymer of the above embodiment [1] may be composed of an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound, and the aromatic vinyl compound and Further, it may be composed of a silicon-containing polymerizable unsaturated compound and another vinyl compound. Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. Compounds and the like. These can be used alone or in combination of two or more.
 他のビニル系化合物のうち、上記シアン化ビニル化合物としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-クロロ(メタ)アクリロニトリル等が挙げられる。これらのシアン化ビニル化合物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
 上記(メタ)アクリル酸エステル化合物としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等が挙げられる。これらの(メタ)アクリル酸エステル化合物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
Among the other vinyl compounds, examples of the vinyl cyanide compound include acrylonitrile, methacrylonitrile, ethacrylonitrile, α-chloro (meth) acrylonitrile and the like. These vinyl cyanide compounds may be used alone or in combination of two or more.
Examples of the (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, Examples include cyclohexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and the like. These (meth) acrylic acid ester compounds may be used alone or in combination of two or more.
 上記マレイミド系化合物としては、マレイミド、N-メチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらのマレイミド系化合物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。尚、マレイミド系化合物に由来する構造単位を導入する他の方法としては、例えば、無水マレイン酸を共重合し、その後イミド化する方法でもよい。
 上記不飽和酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの不飽和酸無水物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。
Examples of the maleimide compounds include maleimide, N-methylmaleimide, N-butylmaleimide, N-phenylmaleimide, N- (2-methylphenyl) maleimide, N-cyclohexylmaleimide and the like. These maleimide compounds may be used alone or in combination of two or more. In addition, as another method for introducing a structural unit derived from a maleimide compound, for example, a method of copolymerizing maleic anhydride and then imidizing may be used.
Examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These unsaturated acid anhydrides may be used alone or in combination of two or more.
 上記ヒドロキシル基含有不飽和化合物としては、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、ヒドロキシスチレン、N-(4-ヒドロキシフェニル)マレイミド、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸5-ヒドロキシペンチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸7-ヒドロキシヘプチル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸9-ヒドロキシノニル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸11-ヒドロキシウンデシル、(メタ)アクリル酸12-ヒドロキシドデシル等が挙げられる。これらのヒドロキシル基含有不飽和化合物は、単独で用いてよいし、2つ以上を組み合わせて用いてもよい。 Examples of the hydroxyl group-containing unsaturated compound include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, and 3-hydroxy- 2-methyl-1-propene, hydroxystyrene, N- (4-hydroxyphenyl) maleimide, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate , 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 5-hydroxypentyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate , 7-hydroxyheptyl (meth) acrylate, (meth) acrylic 8-hydroxy-octyl, (meth) acrylic acid 9-hydroxy-nonyl, (meth) acrylate, 12-hydroxylauryl (meth) acrylic acid 11-hydroxy-undecyl, and (meth) 12-hydroxy dodecyl acrylate. These hydroxyl group-containing unsaturated compounds may be used alone or in combination of two or more.
 上記アミノ基含有不飽和化合物としては、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸プロピルアミノエチル、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジエチルアミノメチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)エチル、(メタ)アクリル酸2-ジメチルアミノプロピル、(メタ)アクリル酸2-ジエチルアミノプロピル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸3-ジメチルアミノプロピル、(メタ)アクリル酸3-ジエチルアミノプロピル、(メタ)アクリル酸3-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸2-tert-ブチルアミノエチル、(メタ)アクリル酸フェニルアミノエチル、4-アミノスチレン、4-ジメチルアミノスチレン、N-ビニルジエチルアミン、N-アセチルビニルアミン、(メタ)アクリルアミン、N-メチル(メタ)アクリルアミン等が挙げられる。これらのアミノ基含有不飽和化合物は、単独であるいは2つ以上を組み合わせて用いることができる。 Examples of the amino group-containing unsaturated compound include aminoethyl (meth) acrylate, propylaminoethyl (meth) acrylate, dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, (meth) acrylic acid 2 -Dimethylaminoethyl, 2-diethylaminoethyl (meth) acrylate, 2- (di-n-propylamino) ethyl (meth) acrylate, 2-dimethylaminopropyl (meth) acrylate, 2- (meth) acrylic acid 2- Diethylaminopropyl, 2- (di-n-propylamino) propyl (meth) acrylate, 3-dimethylaminopropyl (meth) acrylate, 3-diethylaminopropyl (meth) acrylate, 3- (di) (meth) acrylate -N-propylamino) propyl, 2-tert- (meth) acrylic acid Butylaminoethyl, phenylaminoethyl (meth) acrylate, 4-aminostyrene, 4-dimethylaminostyrene, N-vinyldiethylamine, N-acetylvinylamine, (meth) acrylamine, N-methyl (meth) acrylamine, etc. Is mentioned. These amino group-containing unsaturated compounds can be used alone or in combination of two or more.
 上記アミド基含有不飽和化合物としては、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、3-ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。これらのアミド基含有不飽和化合物は、単独であるいは2つ以上を組み合わせて用いることができる。 Examples of the amide group-containing unsaturated compound include (meth) acrylamide, N-methylol (meth) acrylamide, 3-dimethylaminopropyl (meth) acrylamide and the like. These amide group-containing unsaturated compounds can be used alone or in combination of two or more.
 上記態様[1]の含珪素共重合体を構成する、含珪素重合性不飽和化合物に由来する構造単位の含有割合は、構造単位の全量に対して、好ましくは0.01~15質量%、より好ましくは0.1~10質量%である。上記割合であれば、この態様[1]の含珪素共重合体を含む第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れる。
 また、上記態様[1]の含珪素共重合体において、芳香族ビニル化合物に由来する構造単位、及び、含珪素重合性不飽和化合物に由来する構造単位の含有割合は、特に限定されないが、これらの合計量は、上記含珪素共重合体を構成する構造単位の全量に対して、好ましくは40~100質量%、より好ましくは60~90質量%である。上記割合であれば、この態様[1]の含珪素共重合体を含む第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れる。
The content ratio of the structural unit derived from the silicon-containing polymerizable unsaturated compound constituting the silicon-containing copolymer of the above embodiment [1] is preferably 0.01 to 15% by mass with respect to the total amount of the structural unit, More preferably, the content is 0.1 to 10% by mass. If it is the said ratio, the 1st resin layer containing the silicon-containing copolymer of this aspect [1], and the filler part containing an ethylene-vinyl acetate copolymer composition etc. which embeds a solar cell element. Excellent adhesion, heat resistance and weather resistance.
In the silicon-containing copolymer of the above embodiment [1], the content ratio of the structural unit derived from the aromatic vinyl compound and the structural unit derived from the silicon-containing polymerizable unsaturated compound is not particularly limited. The total amount of is preferably 40 to 100% by mass, more preferably 60 to 90% by mass, based on the total amount of the structural units constituting the silicon-containing copolymer. If it is the said ratio, the 1st resin layer containing the silicon-containing copolymer of this aspect [1], and the filler part containing an ethylene-vinyl acetate copolymer composition etc. which embeds a solar cell element. Excellent adhesion, heat resistance and weather resistance.
 上記態様[1]の含珪素共重合体の重量平均分子量(以下、「Mw」ともいう。)は、耐衝撃性、可撓性、成膜性、靭性等の観点から、好ましくは30,000~1,000,000、より好ましくは50,000~500,000である。上記Mwは、標準ポリスチレンを用いたGPCにより測定することができる。 The weight average molecular weight (hereinafter also referred to as “Mw”) of the silicon-containing copolymer of the above embodiment [1] is preferably 30,000 from the viewpoint of impact resistance, flexibility, film formability, toughness, and the like. To 1,000,000, more preferably 50,000 to 500,000. The Mw can be measured by GPC using standard polystyrene.
 上記態様[1]の含珪素共重合体は、重合開始剤の存在下、上記単量体を重合することにより製造される。重合方法は、溶液重合等、公知の方法が適用される。 The silicon-containing copolymer of the above embodiment [1] is produced by polymerizing the monomer in the presence of a polymerization initiator. As the polymerization method, a known method such as solution polymerization is applied.
 上記態様[2]のグラフト重合樹脂(g1)は、珪素非含有ゴムの存在下、芳香族ビニル化合物と、含珪素重合性不飽和化合物とを含む単量体(m2)を重合して得られたグラフト重合樹脂である。
 また、上記態様[3]のグラフト重合樹脂(g2)は、含珪素ゴムの存在下、芳香族ビニル化合物を含む単量体(m3)を重合して得られたグラフト重合樹脂である。
The graft polymerization resin (g1) of the above embodiment [2] is obtained by polymerizing a monomer (m2) containing an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber. Graft polymerization resin.
The graft polymerization resin (g2) of the above embodiment [3] is a graft polymerization resin obtained by polymerizing the monomer (m3) containing an aromatic vinyl compound in the presence of a silicon-containing rubber.
 上記態様[2]及び[3]において用いられる、珪素非含有ゴム及び含珪素ゴム(以下、併せて「ゴム成分」ともいう。)の構成成分は、以下に説明されるが、物理的性質(形状、大きさ、分子量等)は、特に限定されない。
 上記ゴム成分の形状は、特に限定されず、粒子状(球状、略球状)、直線状、曲線状等とすることができる。粒子状である場合、その体積平均粒子径は、好ましくは5~2,000nmであり、より好ましくは10~1,800nmであり、更に好ましくは50~1,500nmである。体積平均粒子径が上記の範囲にあれば、第1熱可塑性樹脂組成物の加工性及び得られる第1樹脂層の耐衝撃性等に優れる。尚、上記体積平均粒子径は、電子顕微鏡写真を用いた画像解析、レーザー回折法、光散乱法等により測定することができる。
The components of the non-silicon-containing rubber and silicon-containing rubber (hereinafter also referred to as “rubber component”) used in the above embodiments [2] and [3] will be described below. The shape, size, molecular weight, etc.) are not particularly limited.
The shape of the rubber component is not particularly limited, and may be particulate (spherical or substantially spherical), linear, curved, or the like. In the case of particles, the volume average particle diameter is preferably 5 to 2,000 nm, more preferably 10 to 1,800 nm, and further preferably 50 to 1,500 nm. If the volume average particle diameter is in the above range, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent. The volume average particle diameter can be measured by image analysis using an electron micrograph, a laser diffraction method, a light scattering method, or the like.
 上記珪素非含有ゴムとしては、アクリル系ゴム;ポリブタジエン、ポリイソプレン等の単独重合体、スチレン・ブタジエン系共重合体、スチレン・イソプレン系共重合体、天然ゴム等のジエン系ゴム;共役ジエン系化合物よりなる単位を含む(共)重合体を水素添加してなる重合体(但し、水素添加率は、通常、50%以上。);エチレン単位と、炭素数3以上のα-オレフィンからなる単位とを含むエチレン・α-オレフィン系共重合体ゴム;ウレタン系ゴム等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 Examples of the silicon-free rubber include acrylic rubbers; homopolymers such as polybutadiene and polyisoprene, styrene / butadiene copolymers, styrene / isoprene copolymers, and diene rubbers such as natural rubber; conjugated diene compounds. A polymer obtained by hydrogenating a (co) polymer containing units comprising the above (however, the hydrogenation rate is usually 50% or more); an ethylene unit and a unit comprising an α-olefin having 3 or more carbon atoms; And ethylene / α-olefin copolymer rubbers; urethane rubbers and the like. These can be used alone or in combination of two or more.
 上記アクリル系ゴムは、好ましくは、アルキル基の炭素数が2~8のアクリル酸アルキルエステル化合物に由来する構造単位を含む(共)重合体である。この構造単位の含有量は、構造単位の全量に対して、好ましくは80質量%以上、より好ましくは90質量%以上である。 The acrylic rubber is preferably a (co) polymer containing a structural unit derived from an alkyl acrylate ester compound having an alkyl group with 2 to 8 carbon atoms. The content of the structural unit is preferably 80% by mass or more, more preferably 90% by mass or more, with respect to the total amount of the structural unit.
 上記アクリル酸アルキルエステル化合物としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル等が挙げられる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、アクリル酸アルキルエステル化合物は、アクリル酸n-ブチル、アクリル酸イソブチル及びアクリル酸2-エチルヘキシルが好ましい。 Examples of the acrylic acid alkyl ester compound include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, and the like. These compounds can be used alone or in combination of two or more. Of these, acrylic acid alkyl ester compounds are preferably n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate.
 上記アクリル系ゴムが、他の単量体に由来する構造単位を含む場合、他の単量体としては、塩化ビニル、塩化ビニリデン、シアン化ビニル化合物、芳香族ビニル化合物、ビニルエステル化合物、メタクリル酸アルキルエステル化合物、カルボキシル基含有不飽和化合物、メトキシメチル(メタ)アクリレート、エトキシメチル(メタ)アクリレート、プロポキシメチル(メタ)アクリレート、ブトキシメチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、メトキシプロピル(メタ)アクリレート、エトキシプロピル(メタ)アクリレート、プロポキシプロピル(メタ)アクリレート、ブトキシプロピル(メタ)アクリレート、2-メトキシ-1-メチル-プロピル(メタ)アクリレート、2-プロポキシ-1-メチルプロピル(メタ)アクリレート、2-ブトキシ-1-メチルプロピル(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート等のアルコキシ基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、含フッ素不飽和化合物等の単官能性単量体;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のモノ又はポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート、ジアリルマレエート、ジアリルサクシネート、トリアリルトリアジン等のジ又はトリアリル化合物、アリル(メタ)アクリレート等のアリル化合物、1,3-ブタジエン等の共役ジエン化合物等の、2以上の不飽和結合を有する多官能性単量体等が挙げられる。本発明においては、他の単量体は、多官能性単量体を含むことが好ましい。即ち、上記アクリル系ゴムは、上記多官能性単量体に由来する構造単位を含む共重合体であることが好ましい。
 好ましいアクリル系ゴムを構成する、多官能性単量体に由来する構造単位の含有量は、低温衝撃性、可撓性等の観点から、構造単位の全量に対して、好ましくは0.01~10質量%、より好ましくは0.05~8質量%、更に好ましくは0.1~5質量%である。
When the acrylic rubber contains a structural unit derived from another monomer, the other monomer includes vinyl chloride, vinylidene chloride, vinyl cyanide compound, aromatic vinyl compound, vinyl ester compound, methacrylic acid. Alkyl ester compound, carboxyl group-containing unsaturated compound, methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, propoxymethyl (meth) acrylate, butoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) ) Acrylate, propoxyethyl (meth) acrylate, methoxypropyl (meth) acrylate, ethoxypropyl (meth) acrylate, propoxypropyl (meth) acrylate, butoxypropyl (meth) acrylate, 2-methoxy- Alkoxy group-containing unsaturation such as methyl-propyl (meth) acrylate, 2-propoxy-1-methylpropyl (meth) acrylate, 2-butoxy-1-methylpropyl (meth) acrylate, methoxytripropylene glycol (meth) acrylate Monofunctional monomers such as compounds, hydroxyl group-containing unsaturated compounds, fluorine-containing unsaturated compounds; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol Di- or triallyl such as mono- or polyethylene glycol di (meth) acrylate such as di (meth) acrylate, divinylbenzene, diallyl phthalate, diallyl maleate, diallyl succinate, triallyl triazine Compounds, allyl (meth) allyl compounds such as acrylates, such as conjugated diene compound, 1,3-butadiene, etc., a polyfunctional monomer or the like having two or more unsaturated bonds. In the present invention, the other monomer preferably contains a polyfunctional monomer. That is, the acrylic rubber is preferably a copolymer containing a structural unit derived from the polyfunctional monomer.
The content of the structural unit derived from the polyfunctional monomer constituting the preferred acrylic rubber is preferably from 0.01 to the total amount of the structural unit from the viewpoint of low-temperature impact properties, flexibility, and the like. It is 10% by mass, more preferably 0.05 to 8% by mass, and still more preferably 0.1 to 5% by mass.
 上記アクリル系ゴムのTgは、低温衝撃性、可撓性等の観点から、好ましくは-10℃以下である。 The Tg of the acrylic rubber is preferably −10 ° C. or lower from the viewpoint of low temperature impact property, flexibility, and the like.
 上記アクリル系ゴムを製造する方法としては、乳化重合等が挙げられる。この場合、乳化剤の種類及びその使用量、開始剤の種類及びその使用量、重合時間、重合温度、攪拌条件等の製造条件を選択することにより、上記体積平均粒子径等を調整することができる。また、上記体積平均粒子径(粒子径分布)の他の調整方法としては、異なる粒子径を有する上記アクリル系ゴムの2種以上をブレンドする方法でもよい。 Examples of the method for producing the acrylic rubber include emulsion polymerization. In this case, the volume average particle size and the like can be adjusted by selecting production conditions such as the type of emulsifier and the amount used, the type of initiator and the amount used, polymerization time, polymerization temperature, and stirring conditions. . Moreover, as another adjustment method of the said volume average particle diameter (particle diameter distribution), the method of blending 2 or more types of the said acrylic rubber which has a different particle diameter may be sufficient.
 上記含珪素ゴムとしては、含珪素重合性不飽和化合物と、ブタジエン等の共役ジエン化合物、エチレン、プロピレン等のα-オレフィン化合物及びアクリル酸アルキルエステル化合物から選ばれた少なくとも1種と、を含む単量体を共重合して得られたゴム(水添ゴムでもよい);1種又は2種以上のオルガノシロキサンの重縮合により得られたポリオルガノシロキサンからなるシリコーンゴム;オルガノシロキサンと、含珪素架橋剤(3又は4のアルコキシ基を有する飽和シラン化合物)とを用いて得られたゴム;オルガノシロキサンと、含珪素重合性不飽和化合物とを用いて得られたゴム;オルガノシロキサンと、含珪素架橋剤(3又は4のアルコキシ基を有する飽和シラン化合物)と、含珪素重合性不飽和化合物とを用いて得られたゴム;共役ジエン化合物と、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物等から選ばれた少なくとも1種の珪素非含有重合性不飽和化合物と、含珪素カップリング剤(アルキルジクロロシラン化合物、アルキルトリクロロシラン化合物、ジアルキルクロロシラン化合物、トリクロロシラン、テトラクロロシラン、テトラアルコキシシラン化合物等)とを用いて得られたゴム等が挙げられる。上記含珪素ゴムは、1種単独であるいは2種以上を組み合わせて用いることができる。また、上記含珪素ゴムのうちの2種以上を組み合わせた場合、並びに、上記含珪素ゴムの少なくとも1種と、他のゴムとを組み合わせた場合は、複合ゴムといわれることがあるが、この複合ゴムにおいては、複数のゴムが化学結合していてよいし、絡み合いを有してよいし、単なる共存物であってもよい。 Examples of the silicon-containing rubber include a silicon-containing polymerizable unsaturated compound and at least one selected from conjugated diene compounds such as butadiene, α-olefin compounds such as ethylene and propylene, and alkyl acrylate compounds. Rubber obtained by copolymerization of a monomer (hydrogenated rubber may be used); silicone rubber comprising polyorganosiloxane obtained by polycondensation of one or more organosiloxanes; organosiloxane and silicon-containing crosslink Obtained by using an agent (a saturated silane compound having 3 or 4 alkoxy groups); rubber obtained by using an organosiloxane and a silicon-containing polymerizable unsaturated compound; an organosiloxane and a silicon-containing crosslink Obtained using an agent (a saturated silane compound having 3 or 4 alkoxy groups) and a silicon-containing polymerizable unsaturated compound A conjugated diene compound, at least one silicon-free polymerizable unsaturated compound selected from an aromatic vinyl compound, a vinyl cyanide compound, a (meth) acrylic acid ester compound, and the like, and a silicon-containing coupling agent (alkyl And dichlorosilane compounds, alkyltrichlorosilane compounds, dialkylchlorosilane compounds, trichlorosilane, tetrachlorosilane, tetraalkoxysilane compounds, etc.). The silicon-containing rubber can be used singly or in combination of two or more. In addition, when two or more of the silicon-containing rubbers are combined, and when at least one of the silicon-containing rubbers is combined with another rubber, it may be referred to as a composite rubber. In rubber, a plurality of rubbers may be chemically bonded, may have entanglement, or may be a mere coexisting substance.
 上記含珪素ゴムとしては、含珪素重合性不飽和化合物と、アクリル酸アルキルエステル化合物とを含む単量体を共重合して得られたゴム(以下、「含珪素ゴム(s1)」という。)、オルガノシロキサンと、含珪素重合性不飽和化合物とを用いて得られたゴム(以下、「含珪素ゴム(s2)」という。)、オルガノシロキサンと、含珪素架橋剤(3又は4のアルコキシ基を有する飽和シラン化合物)と、含珪素重合性不飽和化合物とを用いて得られたゴム(以下、「含珪素ゴム(s3)」という。)、並びに、複合ゴム(以下、「含珪素ゴム(s4)」という。)が好ましい。 The silicon-containing rubber is a rubber obtained by copolymerizing a monomer containing a silicon-containing polymerizable unsaturated compound and an alkyl acrylate ester compound (hereinafter referred to as “silicon-containing rubber (s1)”). A rubber obtained by using an organosiloxane and a silicon-containing polymerizable unsaturated compound (hereinafter referred to as “silicon-containing rubber (s2)”), an organosiloxane, and a silicon-containing crosslinking agent (3 or 4 alkoxy groups). And a rubber obtained using a silicon-containing polymerizable unsaturated compound (hereinafter referred to as “silicon-containing rubber (s3)”) and a composite rubber (hereinafter referred to as “silicon-containing rubber ( s4) ") is preferred.
 上記含珪素ゴム(s1)の形成に用いる単量体のうち、含珪素重合性不飽和化合物は、上記態様[1]において例示した化合物を用いることができる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、含珪素重合性不飽和化合物は、p-ビニルフェニルメチルジメトキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン及び3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシランが好ましく、p-ビニルフェニルメチルジメトキシシランが特に好ましい。上記単量体100質量%に含まれる含珪素重合性不飽和化合物の含有量は、好ましくは0.01~15質量%、より好ましくは0.1~10質量%である。
 また、アクリル酸アルキルエステル化合物は、好ましくは、アルキル基の炭素数が2~8のアクリル酸アルキルエステルであり、上記アクリル系ゴムの形成に用いるアクリル酸アルキルエステル化合物において例示した化合物を用いることができる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、アクリル酸アルキルエステル化合物は、アクリル酸n-ブチル、アクリル酸イソブチル及びアクリル酸2-エチルヘキシルが好ましい。上記単量体100質量%に含まれるアクリル酸アルキルエステル化合物の含有量は、好ましくは85~99.99質量%、より好ましくは90~99.9質量%である。
Of the monomers used for the formation of the silicon-containing rubber (s1), the compounds exemplified in the above embodiment [1] can be used as the silicon-containing polymerizable unsaturated compound. These compounds can be used alone or in combination of two or more. Of these, the silicon-containing polymerizable unsaturated compounds are p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane and 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane. P-vinylphenylmethyldimethoxysilane is particularly preferred. The content of the silicon-containing polymerizable unsaturated compound contained in 100% by mass of the monomer is preferably 0.01 to 15% by mass, more preferably 0.1 to 10% by mass.
The acrylic acid alkyl ester compound is preferably an acrylic acid alkyl ester having an alkyl group having 2 to 8 carbon atoms, and the compounds exemplified in the acrylic acid alkyl ester compound used for forming the acrylic rubber may be used. it can. These compounds can be used alone or in combination of two or more. Of these, acrylic acid alkyl ester compounds are preferably n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate. The content of the alkyl acrylate ester compound contained in 100% by mass of the monomer is preferably 85 to 99.99% by mass, more preferably 90 to 99.9% by mass.
 上記含珪素ゴム(s1)の形成に用いる単量体は、含珪素重合性不飽和化合物と、アクリル酸アルキルエステル化合物とからなるものであってよいし、含珪素重合性不飽和化合物と、アクリル酸アルキルエステル化合物と、他の重合性化合物とからなるものであってもよい。他の重合性化合物としては、シアン化ビニル化合物、芳香族ビニル化合物、メタクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、アルコキシ基含有不飽和化合物、含フッ素不飽和化合物、2以上の不飽和結合を有する多官能性単量体等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 本発明においては、上記単量体が多官能性単量体を含むことが好ましく、上記アクリル系ゴムの形成に用いる多官能性単量体において例示した化合物を用いることができる。その使用量は、上記単量体100質量%に対して、好ましくは10質量%以下、より好ましくは5質量%以下である。
The monomer used for forming the silicon-containing rubber (s1) may be composed of a silicon-containing polymerizable unsaturated compound and an acrylic acid alkyl ester compound, or a silicon-containing polymerizable unsaturated compound and acrylic. It may consist of an acid alkyl ester compound and another polymerizable compound. Other polymerizable compounds include vinyl cyanide compounds, aromatic vinyl compounds, methacrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, and amide group-containing compounds. Examples thereof include unsaturated compounds, alkoxy group-containing unsaturated compounds, fluorine-containing unsaturated compounds, and polyfunctional monomers having two or more unsaturated bonds. These can be used alone or in combination of two or more.
In this invention, it is preferable that the said monomer contains a polyfunctional monomer, and the compound illustrated in the polyfunctional monomer used for formation of the said acrylic rubber can be used. The amount used is preferably 10% by mass or less, more preferably 5% by mass or less, with respect to 100% by mass of the monomer.
 上記含珪素ゴム(s1)のTgは、低温衝撃性、可撓性等の観点から、好ましくは-10℃以下である。 The Tg of the silicon-containing rubber (s1) is preferably −10 ° C. or less from the viewpoint of low temperature impact property, flexibility, and the like.
 上記含珪素ゴム(s2)は、オルガノシロキサンと、含珪素重合性不飽和化合物とを用いて得られたゴムであり、オルガノシロキサンセグメントと、他のセグメントとを含むポリオルガノシロキサン系ゴムである。
 また、上記含珪素ゴム(s3)は、オルガノシロキサンと、含珪素架橋剤(3又は4のアルコキシ基を有する飽和シラン化合物)と、含珪素重合性不飽和化合物とを用いて得られたゴムであり、オルガノシロキサンセグメントと、他のセグメントとを含むポリオルガノシロキサン系ゴムである。
 上記含珪素ゴム(s2)及び(s3)は、好ましくは、乳化重合でラテックスの状態で得られる、例えば、米国特許第2,891,920号明細書、同第3,294,725号明細書等に記載された方法により製造されたポリオルガノシロキサン系ゴムとすることができる。
The silicon-containing rubber (s2) is a rubber obtained by using an organosiloxane and a silicon-containing polymerizable unsaturated compound, and is a polyorganosiloxane rubber containing an organosiloxane segment and another segment.
The silicon-containing rubber (s3) is a rubber obtained by using organosiloxane, a silicon-containing crosslinking agent (a saturated silane compound having 3 or 4 alkoxy groups), and a silicon-containing polymerizable unsaturated compound. Yes, it is a polyorganosiloxane rubber containing an organosiloxane segment and other segments.
The silicon-containing rubbers (s2) and (s3) are preferably obtained in a latex state by emulsion polymerization, for example, US Pat. Nos. 2,891,920 and 3,294,725. The polyorganosiloxane rubber produced by the method described in the above.
 上記ポリオルガノシロキサン系ゴムは、例えば、ホモミキサー又は超音波混合機を使用し、アルキルベンゼンスルホン酸、アルキルスルホン酸等のスルホン酸系乳化剤の存在下に、オルガノシロキサンと水とを剪断混合し、その後、縮合する方法により得られたラテックスに含まれるシリコーンゴムであることが好ましい。アルキルベンゼンスルホン酸は、オルガノシロキサンの乳化剤として作用するとともに、重合開始剤としても作用するので好適である。この際、アルキルベンゼンスルホン酸金属塩、アルキルスルホン酸金属塩等を併用すると、グラフト重合樹脂を製造する際に、シリコーンゴムを安定に維持する効果があるので好ましい。尚、本発明においては、上記オルガノシロキサンの使用に際して、含珪素重合性不飽和化合物を併用しており、重合体末端が、ジメチルビニルシリル基、メチルフェニルビニルシリル基等で封止されていてもよい。また、上記ポリオルガノシロキサン系ゴムの末端は、例えば、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。 The polyorganosiloxane rubber is obtained by, for example, shear-mixing organosiloxane and water in the presence of a sulfonic acid-based emulsifier such as alkylbenzenesulfonic acid or alkylsulfonic acid using a homomixer or an ultrasonic mixer. The silicone rubber contained in the latex obtained by the condensation method is preferable. Alkylbenzenesulfonic acid is suitable because it acts as an emulsifier for organosiloxane and also as a polymerization initiator. In this case, it is preferable to use an alkylbenzene sulfonic acid metal salt, an alkyl sulfonic acid metal salt, or the like in combination because it has an effect of stably maintaining the silicone rubber when the graft polymerization resin is produced. In the present invention, when the organosiloxane is used, a silicon-containing polymerizable unsaturated compound is used in combination, and the polymer terminal may be sealed with a dimethylvinylsilyl group, a methylphenylvinylsilyl group, or the like. Good. Moreover, the terminal of the polyorganosiloxane rubber may be sealed with, for example, a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
 上記反応に用いるオルガノシロキサンは、例えば、下記一般式(2)で表される構造単位を有する化合物である。
  (RSiO(4-m)/2)     (2)
〔式中、Rは置換又は非置換の1価の炭化水素基であり、mは0~3の整数を示す。〕
 上記一般式(2)で表される化合物の構造は、直鎖状、分岐状又は環状であるが、上記化合物は、好ましくは環状構造を有するオルガノシロキサンである。このオルガノシロキサンが有するR、即ち、1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基;及び、これら炭化水素基における炭素原子に結合した水素原子の一部がハロゲン原子、シアノ基等で置換された基;並びにアルキル基の水素原子の少なくとも1個がメルカプト基で置換された基等が挙げられる。
The organosiloxane used in the above reaction is, for example, a compound having a structural unit represented by the following general formula (2).
(R m SiO (4-m) / 2 ) (2)
[Wherein, R represents a substituted or unsubstituted monovalent hydrocarbon group, and m represents an integer of 0 to 3. ]
The structure of the compound represented by the general formula (2) is linear, branched or cyclic, but the compound is preferably an organosiloxane having a cyclic structure. R which this organosiloxane has, that is, monovalent hydrocarbon group includes alkyl group such as methyl group, ethyl group, propyl group and butyl group; aryl group such as phenyl group and tolyl group; vinyl group, allyl group and the like And a group in which some of the hydrogen atoms bonded to carbon atoms in these hydrocarbon groups are substituted with halogen atoms, cyano groups, etc .; and at least one of the hydrogen atoms in the alkyl group is substituted with a mercapto group And the like.
 上記オルガノシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、トリメチルトリフェニルシクロトリシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン等の環状化合物の他に、直鎖状又は分岐状のオルガノシロキサンを用いることができる。これらは、単独であるいは2つ以上を組み合わせて用いることができる。
 尚、上記オルガノシロキサンは、予め縮合された、例えば、Mwが500~10,000程度のポリオルガノシロキサンであってもよい。また、オルガノシロキサンがポリオルガノシロキサンである場合、その分子鎖末端は、ヒドロキシル基、アルコキシ基、トリメチルシリル基、メチルジフェニルシリル基等で封止されていてもよい。
Examples of the organosiloxane include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, trimethyltriphenylcyclotrisiloxane, tetramethyltetraphenylcyclotetrasiloxane, and octaphenylcyclotetrasiloxane. In addition to a cyclic compound such as a linear or branched organosiloxane. These can be used alone or in combination of two or more.
The organosiloxane may be a polyorganosiloxane condensed in advance, for example, having an Mw of about 500 to 10,000. When the organosiloxane is a polyorganosiloxane, the molecular chain terminal may be sealed with a hydroxyl group, an alkoxy group, a trimethylsilyl group, a methyldiphenylsilyl group, or the like.
 また、上記反応に用いる含珪素重合性不飽和化合物は、上記態様[1]において例示した化合物を用いることができる。これらの化合物は、単独であるいは2つ以上を組み合わせて用いることができる。また、これらのうち、含珪素重合性不飽和化合物は、p-ビニルフェニルメチルジメトキシシラン、2-(p-ビニルフェニル)エチルメチルジメトキシシラン及び3-(p-ビニルベンゾイロキシ)プロピルメチルジメトキシシランが好ましく、p-ビニルフェニルメチルジメトキシシランが特に好ましい。 Further, as the silicon-containing polymerizable unsaturated compound used in the above reaction, the compounds exemplified in the above embodiment [1] can be used. These compounds can be used alone or in combination of two or more. Of these, the silicon-containing polymerizable unsaturated compounds are p-vinylphenylmethyldimethoxysilane, 2- (p-vinylphenyl) ethylmethyldimethoxysilane and 3- (p-vinylbenzoyloxy) propylmethyldimethoxysilane. P-vinylphenylmethyldimethoxysilane is particularly preferred.
 上記含珪素ゴム(s2)及び(s3)の製造に際して、上記オルガノシロキサンと、上記含珪素重合性不飽和化合物とを併用する場合、上記含珪素重合製不飽和化合物の使用量は、これらの合計量100質量%に対し、好ましくは0.01~15質量%、より好ましくは0.05~12質量%、更に好ましくは0.1~10質量%である。上記含珪素重合性不飽和化合物の使用量が多すぎると、得られる第1樹脂層の耐衝撃性及び耐候性が十分でない場合がある。 In the production of the silicon-containing rubbers (s2) and (s3), when the organosiloxane and the silicon-containing polymerizable unsaturated compound are used in combination, the amount of the silicon-containing polymerizable unsaturated compound used is the sum of these. The amount is preferably 0.01 to 15% by mass, more preferably 0.05 to 12% by mass, and still more preferably 0.1 to 10% by mass with respect to 100% by mass. If the amount of the silicon-containing polymerizable unsaturated compound used is too large, the resulting first resin layer may not have sufficient impact resistance and weather resistance.
 上記含珪素ゴム(s3)の製造に際して用いられる含珪素架橋剤としては、メチルトリメトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、エチルトリエトキシシラン等の3官能性架橋剤、テトラエトキシシラン等の4官能性架橋剤等が挙げられる。尚、これらの化合物を予め縮重合させてなる架橋性プレポリマーを使用してもよい。これらは、単独で用いてよいし、2つ以上を組み合わせて用いることができる。
 上記含珪素架橋剤を用いて得られた含珪素ゴム(s3)の存在下、芳香族ビニル化合物を含む単量体(m3)を重合して得られたグラフト重合樹脂を含む第1樹脂層は、耐衝撃性に特に優れる。
Examples of the silicon-containing crosslinking agent used in the production of the silicon-containing rubber (s3) include trifunctional crosslinking agents such as methyltrimethoxysilane, ethyltrimethoxysilane, phenyltrimethoxysilane, and ethyltriethoxysilane, and tetraethoxysilane. And a tetrafunctional cross-linking agent. A crosslinkable prepolymer obtained by condensation polymerization of these compounds in advance may be used. These may be used alone or in combination of two or more.
The first resin layer containing a graft polymerization resin obtained by polymerizing a monomer (m3) containing an aromatic vinyl compound in the presence of the silicon-containing rubber (s3) obtained using the silicon-containing crosslinking agent Especially excellent in impact resistance.
 上記含珪素ゴム(s3)の製造に際して用いられる含珪素架橋剤の使用量は、オルガノシロキサン、グラフト交叉剤(通常、含珪素重合性不飽和化合物である)及び含珪素架橋剤の合計量100質量%に対し、通常、10質量%以下、好ましくは5質量%以下、更に好ましくは0.01~5質量%である。上記含珪素架橋剤の使用量が、10質量%を超えると、得られるポリオルガノシロキサン系ゴムの柔軟性が損なわれ、得られる第1樹脂層の可撓性が低下する場合がある。 The amount of the silicon-containing crosslinking agent used in the production of the silicon-containing rubber (s3) is 100 mass of the total amount of the organosiloxane, the graft crossing agent (usually a silicon-containing polymerizable unsaturated compound) and the silicon-containing crosslinking agent. % Is usually 10% by mass or less, preferably 5% by mass or less, and more preferably 0.01 to 5% by mass. When the usage-amount of the said silicon-containing crosslinking agent exceeds 10 mass%, the softness | flexibility of the polyorganosiloxane type rubber obtained may be impaired, and the flexibility of the 1st resin layer obtained may fall.
 上記含珪素ゴム(s2)又は(s3)の製造に用いられる乳化剤の使用量は、オルガノシロキサン及び含珪素重合性不飽和化合物の合計量100質量部に対し、通常、0.1~5質量部、好ましくは0.3~3質量部である。
 上記含珪素ゴム(s2)又は(s3)の製造に用いられる水の使用量は、オルガノシロキサン及び含珪素重合性不飽和化合物の合計量100質量部に対し、通常、100~500質量部、好ましくは200~400質量部である。
 また、上記含珪素ゴム(s2)又は(s3)の製造の際の縮合温度は、通常、5℃~100℃である。
The amount of the emulsifier used in the production of the silicon-containing rubber (s2) or (s3) is usually 0.1 to 5 parts by mass with respect to 100 parts by mass of the total amount of the organosiloxane and the silicon-containing polymerizable unsaturated compound. The amount is preferably 0.3 to 3 parts by mass.
The amount of water used in the production of the silicon-containing rubber (s2) or (s3) is usually 100 to 500 parts by weight, preferably 100 parts by weight, based on the total amount of organosiloxane and silicon-containing polymerizable unsaturated compound. Is 200 to 400 parts by mass.
The condensation temperature in the production of the silicon-containing rubber (s2) or (s3) is usually 5 ° C. to 100 ° C.
 上記含珪素ゴム(s2)及び(s3)の体積平均粒子径は、通常、500nm以下、好ましくは400nm以下、より好ましくは50~400nmである。体積平均粒子径が500nm以下であれば、第1熱可塑性樹脂組成物の加工性及び得られる第1樹脂層の耐衝撃性等に優れる。一方、上記体積平均粒子径が500nmを超えると、第1樹脂層の光沢が低下する等、外観性が劣る傾向にある。
 尚、上記体積平均粒子径は、含珪素ゴム(s2)及び(s3)の製造時に用いる乳化剤及び水の使用量、オルガノシロキサンの添加方法、ホモミキサー又は超音波混合機を使用したときの分散の程度等によって、容易に制御することができる。
The volume average particle diameter of the silicon-containing rubbers (s2) and (s3) is usually 500 nm or less, preferably 400 nm or less, more preferably 50 to 400 nm. When the volume average particle diameter is 500 nm or less, the processability of the first thermoplastic resin composition and the impact resistance of the obtained first resin layer are excellent. On the other hand, when the volume average particle diameter exceeds 500 nm, the appearance of the first resin layer tends to be inferior, for example, the glossiness is lowered.
The volume average particle size is determined by the amount of emulsifier and water used in the production of the silicon-containing rubbers (s2) and (s3), the method of adding the organosiloxane, and the dispersion when using a homomixer or an ultrasonic mixer. It can be easily controlled depending on the degree.
 上記含珪素ゴム(s2)のTgは、低温衝撃性、可撓性等の観点から、好ましくは-150℃~-30℃である。
 上記含珪素ゴム(s3)のTgは、低温衝撃性、可撓性等の観点から、好ましくは-150℃~-30℃である。
The Tg of the silicon-containing rubber (s2) is preferably −150 ° C. to −30 ° C. from the viewpoint of low temperature impact property, flexibility, and the like.
The Tg of the silicon-containing rubber (s3) is preferably −150 ° C. to −30 ° C. from the viewpoint of low temperature impact property, flexibility, and the like.
 上記複合ゴム(s4)は、以下に例示される。これらの態様においては、上記のように、ゴムどうしが化学結合していてよいし、絡み合いを有してよいし、単なる共存物であってもよい。
(1)上記含珪素ゴム(s1)及び(s2)の組合せ
(2)上記含珪素ゴム(s1)及び(s3)の組合せ
(3)上記含珪素ゴム(s1)、(s2)及び(s3)の組合せ
(4)アクリル系ゴム及び上記含珪素ゴム(s2)の組合せ
(5)アクリル系ゴム及び上記含珪素ゴム(s3)の組合せ
(6)アクリル系ゴム、上記含珪素ゴム(s2)及び(s3)の組合せ
The composite rubber (s4) is exemplified below. In these embodiments, as described above, the rubbers may be chemically bonded, may have entanglement, or may be a mere coexisting substance.
(1) Combination of the silicon-containing rubbers (s1) and (s2) (2) Combination of the silicon-containing rubbers (s1) and (s3) (3) Silicone-containing rubbers (s1), (s2) and (s3) (4) Combination of acrylic rubber and silicon-containing rubber (s2) (5) Combination of acrylic rubber and silicon-containing rubber (s3) (6) Acrylic rubber, silicon-containing rubber (s2) and ( Combination of s3)
 上記態様(4)~(6)の複合ゴムは、例えば、特開平4-239010号公報に記載された方法により製造することができる。これらの態様の市販品としては、三菱レイヨン社製「メタブレンSX-006」(商品名)等が挙げられる。 The composite rubbers of the above aspects (4) to (6) can be produced, for example, by the method described in JP-A-4-239010. Examples of commercially available products in these embodiments include “Metablene SX-006” (trade name) manufactured by Mitsubishi Rayon Co., Ltd.
 尚、上記態様[2]及び[3]に係る上記グラフト重合樹脂(g1)及び(g2)は、一般に、ゴム強化樹脂といわれる樹脂であり、単量体がゴムの周辺で重合した結果、ゴムの、表面及び内部のうちの少なくとも表面にグラフト重合体部を有する樹脂である。 The graft polymerization resins (g1) and (g2) according to the above embodiments [2] and [3] are resins generally referred to as rubber-reinforced resins. As a result of the polymerization of the monomer around the rubber, the rubber The resin having a graft polymer portion on at least the surface and the inside.
 上記態様[2]におけるグラフト重合樹脂(g1)の形成に用いられる珪素非含有ゴムとしては、アクリル系ゴム、ジエン系ゴム等が挙げられるが、アクリル系ゴムが好ましい。 Examples of the silicon-free rubber used for forming the graft polymerization resin (g1) in the above embodiment [2] include acrylic rubber and diene rubber, and acrylic rubber is preferable.
 上記グラフト重合樹脂(g1)の形成に用いられる単量体(m2)に含まれる芳香族ビニル化合物及び含珪素重合性不飽和化合物は、上記態様[1]において例示した化合物を用いることができる。上記単量体(m2)に含まれる芳香族ビニル化合物及び含珪素重合性不飽和化合物の割合は、これらの合計を100質量%とした場合に、それぞれ、好ましくは85~99.99質量%及び0.01~15質量%、より好ましくは90~99.95質量%及び0.05~10質量%である。 As the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) used for forming the graft polymerization resin (g1), the compounds exemplified in the above embodiment [1] can be used. The proportions of the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) are preferably 85 to 99.99% by mass when the total of these is 100% by mass and 0.01 to 15% by mass, more preferably 90 to 99.95% by mass and 0.05 to 10% by mass.
 上記単量体(m2)は、芳香族ビニル化合物と、含珪素重合性不飽和化合物とからなるものであってよいし、芳香族ビニル化合物と、含珪素重合性不飽和化合物と、他のビニル系化合物とからなるものであってもよい。後者の場合、上記単量体(m2)に含まれる芳香族ビニル化合物及び含珪素重合性不飽和化合物の合計量の割合は、通常、60質量%以上である。他のビニル系化合物としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 The monomer (m2) may be composed of an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound, an aromatic vinyl compound, a silicon-containing polymerizable unsaturated compound, and another vinyl. It may consist of a system compound. In the latter case, the ratio of the total amount of the aromatic vinyl compound and the silicon-containing polymerizable unsaturated compound contained in the monomer (m2) is usually 60% by mass or more. Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. A compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like. These can be used alone or in combination of two or more.
 上記グラフト重合樹脂(g1)は、上記珪素非含有ゴムの存在下に、上記単量体(m2)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。
 上記グラフト重合樹脂(g1)の製造に際して用いられる上記珪素非含有ゴム及び上記単量体(m2)の使用量の割合は、上記珪素非含有ゴム100質量部に対して、上記単量体(m2)が、好ましくは25~400質量部、より好ましくは40~300質量部である。
The graft polymerization resin (g1) is produced by polymerizing the monomer (m2) in the presence of the silicon-free rubber, but the production method is not particularly limited. , Emulsion polymerization, solution polymerization, bulk polymerization and the like can be applied.
The proportions of the used amounts of the non-silicon-containing rubber and the monomer (m2) used in the production of the graft polymerization resin (g1) are as follows. ) Is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
 また、上記態様[3]のグラフト重合樹脂(g2)の形成に用いられる単量体(m3)は、芳香族ビニル化合物のみからなるものであってよいし、芳香族ビニル化合物と、含珪素重合性不飽和化合物を除く他のビニル系化合物とからなるものであってもよい。後者の場合、上記単量体(m3)に含まれる芳香族ビニル化合物の割合は、好ましくは20質量%以上100質量%未満、より好ましくは40~90質量%である。他のビニル系化合物としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 In addition, the monomer (m3) used for forming the graft polymerization resin (g2) of the above embodiment [3] may be composed only of an aromatic vinyl compound, or an aromatic vinyl compound and silicon-containing polymerization. It may consist of other vinyl compounds excluding the unsaturated organic compounds. In the latter case, the proportion of the aromatic vinyl compound contained in the monomer (m3) is preferably 20% by mass or more and less than 100% by mass, more preferably 40 to 90% by mass. Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. A compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like. These can be used alone or in combination of two or more.
 上記グラフト重合樹脂(g2)は、上記含珪素ゴムの存在下に、上記単量体(m3)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。
 上記グラフト重合樹脂(g2)の製造に際して用いられる上記含珪素ゴム及び上記単量体(m3)の使用量の割合は、上記含珪素ゴム100質量部に対して、上記単量体(m3)が、好ましくは25~400質量部、より好ましくは40~300質量部である。
The graft polymerization resin (g2) is produced by polymerizing the monomer (m3) in the presence of the silicon-containing rubber, but the production method is not particularly limited. Emulsion polymerization, solution polymerization, bulk polymerization and the like can be applied.
The amount of the silicon-containing rubber and the monomer (m3) used in the production of the graft polymerization resin (g2) is such that the monomer (m3) is based on 100 parts by mass of the silicon-containing rubber. The amount is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
 本発明においては、上記含珪素芳香族ビニル系樹脂は、他の熱可塑性樹脂と組み合わせてもよい。他の熱可塑性樹脂は、分子中に珪素原子を含み且つ芳香族ビニル化合物に由来する構造単位を含まない樹脂、分子中に珪素原子を含まず且つ芳香族ビニル化合物に由来する構造単位を含む樹脂、及び、分子中に珪素原子を含まず且つ芳香族ビニル化合物に由来する構造単位を含まない樹脂が挙げられる。 In the present invention, the above silicon-containing aromatic vinyl resin may be combined with other thermoplastic resins. Another thermoplastic resin is a resin that contains a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound, and a resin that contains no silicon atom in the molecule and contains a structural unit derived from an aromatic vinyl compound And a resin that does not contain a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound.
 分子中に珪素原子を含み且つ芳香族ビニル化合物に由来する構造単位を含まない樹脂としては、含珪素ゴムの存在下、芳香族ビニル化合物を含まない単量体(以下、「単量体(m4)」という。)を重合して得られたグラフト重合樹脂(以下、「グラフト重合樹脂(g3)」という。)、含珪素アクリル系樹脂、含珪素ポリオレフィン系樹脂、含珪素ポリ塩化ビニル系樹脂、含珪素ポリ塩化ビニリデン系樹脂、含珪素飽和ポリエステル系樹脂、含珪素ポリカーボネート系樹脂、含珪素ポリアミド系樹脂、含珪素フッ素系樹脂、珪素樹脂等が挙げられる。 As a resin that contains a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound, a resin that does not contain an aromatic vinyl compound in the presence of a silicon-containing rubber (hereinafter referred to as “monomer (m4 ) ”)), A graft polymer resin (hereinafter referred to as“ graft polymer resin (g3) ”), a silicon-containing acrylic resin, a silicon-containing polyolefin resin, a silicon-containing polyvinyl chloride resin, Examples thereof include silicon-containing polyvinylidene chloride resins, silicon-containing saturated polyester resins, silicon-containing polycarbonate resins, silicon-containing polyamide resins, silicon-containing fluorine resins, and silicon resins.
 分子中に珪素原子を含まず且つ芳香族ビニル化合物に由来する構造単位を含む樹脂としては、芳香族ビニル化合物を含む単量体(以下、「単量体(m5)」という。)を重合して得られた芳香族ビニル(共)重合体、及び、珪素非含有ゴムの存在下、芳香族ビニル化合物を含む単量体(以下、「単量体(m6)」という。)を重合して得られた珪素非含有グラフト重合樹脂(以下、「グラフト重合樹脂(g4)」という。)が挙げられる。 As a resin containing a structural unit that does not contain a silicon atom in the molecule and is derived from an aromatic vinyl compound, a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m5)”) is polymerized. The monomer (hereinafter referred to as “monomer (m6)”) containing an aromatic vinyl compound is polymerized in the presence of the aromatic vinyl (co) polymer obtained and the silicon-free rubber. Examples thereof include a non-silicon-containing graft polymerization resin (hereinafter referred to as “graft polymerization resin (g4)”).
 また、分子中に珪素原子を含まず且つ芳香族ビニル化合物に由来する構造単位を含まない樹脂としては、ポリオレフィン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、(メタ)アクリル酸エステル化合物に由来する構造単位を含むアクリル樹脂、フッ素樹脂や、珪素非含有ゴムの存在下、芳香族ビニル化合物、含珪素重合性不飽和化合物を含まない単量体(以下、「単量体(m7)」という。)を重合して得られた珪素非含有グラフト重合樹脂(以下、「グラフト重合樹脂(g5)」という。)等が挙げられる。このグラフト重合樹脂(g5)としては、ジエン系グラフト重合樹脂、アクリル系グラフト重合樹脂等が挙げられる。 Examples of the resin that does not contain a silicon atom in the molecule and does not contain a structural unit derived from an aromatic vinyl compound include polyolefin resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene. Saturated polyester resins such as terephthalate and polyethylene naphthalate, polycarbonate resins, polyamide resins, acrylic resins containing structural units derived from (meth) acrylic acid ester compounds, fluororesins, and aromatic vinyl compounds in the presence of silicon-free rubber , A silicon-free graft polymerization resin (hereinafter referred to as “graft polymerization resin (g5)” obtained by polymerizing a monomer containing no silicon-containing polymerizable unsaturated compound (hereinafter referred to as “monomer (m7)”). ) "Etc.). Examples of the graft polymerization resin (g5) include diene graft polymerization resins and acrylic graft polymerization resins.
 上記第1熱可塑性樹脂組成物が、樹脂成分として、含珪素芳香族ビニル系樹脂と、他の熱可塑性樹脂とからなる場合、含珪素芳香族ビニル系樹脂及びグラフト重合樹脂(g4)の組み合わせ、含珪素芳香族ビニル系樹脂及びグラフト重合樹脂(g5)の組み合わせ、等とすることができる。 When the first thermoplastic resin composition is composed of a silicon-containing aromatic vinyl resin and another thermoplastic resin as a resin component, a combination of a silicon-containing aromatic vinyl resin and a graft polymerization resin (g4), A combination of a silicon-containing aromatic vinyl resin and a graft polymerization resin (g5) can be used.
 上記含珪素熱可塑性樹脂としては、上記のように、含珪素芳香族ビニル系樹脂以外の樹脂であってもよく、その具体例は、上記グラフト重合樹脂(g3)のほか、芳香族ビニル化合物を含まない重合性不飽和化合物と、含珪素重合性不飽和化合物とを含む単量体を重合して得られた含珪素共重合体等が挙げられる。
 これらの樹脂は、上記態様[1]~[3]の樹脂成分、芳香族ビニル化合物を含む単量体(以下、「単量体(m5)」という。)を重合して得られた芳香族ビニル(共)重合体、上記グラフト重合樹脂(g4)等の、芳香族ビニル化合物に由来する構造単位を有する樹脂と組み合わせて用いることができ、その場合には、形成される第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れる。
As described above, the silicon-containing thermoplastic resin may be a resin other than the silicon-containing aromatic vinyl resin, and specific examples thereof include an aromatic vinyl compound in addition to the graft polymerization resin (g3). Examples thereof include a silicon-containing copolymer obtained by polymerizing a monomer containing a polymerizable unsaturated compound not included and a silicon-containing polymerizable unsaturated compound.
These resins are aromatic compounds obtained by polymerizing the resin component of the above embodiments [1] to [3] and a monomer containing an aromatic vinyl compound (hereinafter referred to as “monomer (m5)”). It can be used in combination with a resin having a structural unit derived from an aromatic vinyl compound, such as a vinyl (co) polymer and the above graft polymerization resin (g4). It is excellent in adhesiveness, heat resistance and weather resistance with a filler part containing an ethylene / vinyl acetate copolymer composition and the like embedding a solar cell element.
 上記第1熱可塑性樹脂組成物に含まれる樹脂成分が、グラフト重合樹脂(g3)と、単量体(m5)を重合して得られた芳香族ビニル(共)重合体、及び、グラフト重合樹脂(g4)から選ばれた少なくとも1種とを組み合わせてなる樹脂である場合(以下、態様[4]という。)について、説明する。
 即ち、上記態様[4]は、以下に例示される。
(4-1)グラフト重合樹脂(g3)と、芳香族ビニル(共)重合体とからなる樹脂
(4-2)グラフト重合樹脂(g3)と、珪素非含有グラフト重合樹脂(g4)とからなる樹脂
(4-3)グラフト重合樹脂(g3)と、珪素非含有グラフト重合樹脂(g4)と、芳香族ビニル(共)重合体とからなる樹脂
The resin component contained in the first thermoplastic resin composition is an aromatic vinyl (co) polymer obtained by polymerizing a graft polymerization resin (g3) and a monomer (m5), and a graft polymerization resin. A case where the resin is a combination of at least one selected from (g4) (hereinafter referred to as “aspect [4]”) will be described.
That is, the above aspect [4] is exemplified below.
(4-1) A resin comprising a graft polymerization resin (g3) and an aromatic vinyl (co) polymer (4-2) A graft polymerization resin (g3) and a silicon-free graft polymerization resin (g4) Resin (4-3) A resin comprising a graft polymerization resin (g3), a silicon-free graft polymerization resin (g4), and an aromatic vinyl (co) polymer
 上記グラフト重合樹脂(g3)の形成に用いる含珪素ゴムとしては、上記含珪素ゴム(s1)~(s4)が好ましい。
 また、上記グラフト重合樹脂(g3)の形成に用いる単量体(m4)としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等から選ばれた少なくとも1種の化合物が用いられる。
As the silicon-containing rubber used for forming the graft polymerized resin (g3), the silicon-containing rubbers (s1) to (s4) are preferable.
Moreover, as a monomer (m4) used for formation of the graft polymerization resin (g3), a vinyl cyanide compound, a (meth) acrylic acid ester compound, a maleimide compound, an unsaturated acid anhydride, a hydroxyl group-containing unsaturated compound At least one compound selected from a compound, an amino group-containing unsaturated compound, an amide group-containing unsaturated compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like is used.
 上記グラフト重合樹脂(g3)は、上記含珪素ゴムの存在下に、上記単量体(m4)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。
 上記グラフト重合樹脂(g3)の製造に際して用いられる上記含珪素ゴム及び上記単量体(m4)の使用量の割合は、上記含珪素ゴム100質量部に対して、上記単量体(m4)が、好ましくは25~400質量部、より好ましくは40~300質量部である。
The graft polymerization resin (g3) is produced by polymerizing the monomer (m4) in the presence of the silicon-containing rubber, but the production method is not particularly limited. Emulsion polymerization, solution polymerization, bulk polymerization and the like can be applied.
The amount of the silicon-containing rubber and the monomer (m4) used in the production of the graft polymerization resin (g3) is such that the monomer (m4) is based on 100 parts by mass of the silicon-containing rubber. The amount is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
 上記芳香族ビニル(共)重合体の形成に用いられる単量体(m5)は、芳香族ビニル化合物のみからなるものであってよいし、芳香族ビニル化合物と、含珪素重合性不飽和化合物を除く他のビニル系化合物とからなるものであってもよい。後者の場合、上記単量体(m5)に含まれる芳香族ビニル化合物の割合は、好ましくは20質量%以上100質量%未満、より好ましくは40~90質量%である。他のビニル系化合物としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、これらのうち、シアン化ビニル化合物が好ましい。 The monomer (m5) used for the formation of the aromatic vinyl (co) polymer may be composed only of an aromatic vinyl compound, or an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound. It may consist of other vinyl compounds. In the latter case, the proportion of the aromatic vinyl compound contained in the monomer (m5) is preferably 20% by mass or more and less than 100% by mass, more preferably 40 to 90% by mass. Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. A compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like. These can be used alone or in combination of two or more. Of these, vinyl cyanide compounds are preferred.
 上記芳香族ビニル(共)重合体は、上記単量体(m5)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。 The aromatic vinyl (co) polymer is produced by polymerizing the monomer (m5), but the production method is not particularly limited. For example, emulsion polymerization, solution polymerization, bulk Polymerization or the like can be applied.
 上記珪素非含有グラフト重合樹脂(g4)の形成に用いる珪素非含有ゴムとしては、アクリル系ゴム、ジエン系ゴム等が挙げられるが、アクリル系ゴムが好ましい。 Examples of the silicon-free rubber used for forming the silicon-free graft polymerization resin (g4) include acrylic rubber and diene rubber, and acrylic rubber is preferable.
 上記珪素非含有グラフト重合樹脂(g4)の形成に用いる単量体(m6)は、芳香族ビニル化合物のみからなるものであってよいし、芳香族ビニル化合物と、含珪素重合性不飽和化合物を除く他のビニル系化合物とからなるものであってもよい。後者の場合、上記単量体(m6)に含まれる芳香族ビニル化合物の割合は、好ましくは20質量%以上100質量%未満、より好ましくは40~90質量%である。他のビニル系化合物としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。 The monomer (m6) used for forming the silicon-free graft polymerization resin (g4) may be composed of only an aromatic vinyl compound, or an aromatic vinyl compound and a silicon-containing polymerizable unsaturated compound. It may consist of other vinyl compounds. In the latter case, the ratio of the aromatic vinyl compound contained in the monomer (m6) is preferably 20% by mass or more and less than 100% by mass, more preferably 40 to 90% by mass. Other vinyl compounds include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds. A compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like. These can be used alone or in combination of two or more.
 上記珪素非含有グラフト重合樹脂(g4)は、上記珪素非含有ゴムの存在下に、上記単量体(m6)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。
 上記珪素非含有グラフト重合樹脂(g4)の製造に際して用いられる上記珪素非含有ゴム及び上記単量体(m6)の使用量の割合は、上記珪素非含有ゴム100質量部に対して、上記単量体(m6)が、好ましくは25~400質量部、より好ましくは40~300質量部である。
The silicon-free graft polymerized resin (g4) is produced by polymerizing the monomer (m6) in the presence of the silicon-free rubber, but the production method is particularly limited. For example, emulsion polymerization, solution polymerization, bulk polymerization, and the like can be applied.
The amount of the silicon-free rubber and the monomer (m6) used in the production of the silicon-free graft polymerization resin (g4) is as follows. The body (m6) is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
 上記態様[4]において、上記態様(4-1)である場合、グラフト重合樹脂(g3)及び芳香族ビニル(共)重合体の含有割合は、特に限定されないが、グラフト重合樹脂(g3)の形成に用いた含珪素ゴムの含有割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。含珪素ゴムの含有割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above embodiment [4], in the case of the above embodiment (4-1), the content ratios of the graft polymerization resin (g3) and the aromatic vinyl (co) polymer are not particularly limited, but the graft polymerization resin (g3) The content ratio of the silicon-containing rubber used for the formation is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, based on the entire resin component. When the content ratio of the silicon-containing rubber is in the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[4]において、上記態様(4-2)である場合、グラフト重合樹脂(g3)及び珪素非含有グラフト重合樹脂(g4)の含有割合は、特に限定されないが、グラフト重合樹脂(g3)の形成に用いた含珪素ゴム、及び、珪素非含有グラフト重合樹脂(g4)の形成に用いた珪素非含有ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [4], in the case of the above aspect (4-2), the content ratio of the graft polymerization resin (g3) and the silicon-free graft polymerization resin (g4) is not particularly limited, but the graft polymerization resin (g3) The ratio of the total content of the silicon-containing rubber used for forming the silicon-free rubber and the silicon-free rubber used for forming the silicon-free graft polymerized resin (g4) is preferably 3 to 40 based on the entire resin component. The mass is selected to be 5% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[4]において、上記態様(4-3)である場合、グラフト重合樹脂(g3)、珪素非含有グラフト重合樹脂(g4)及び芳香族ビニル(共)重合体の含有割合は、特に限定されないが、グラフト重合樹脂(g3)の形成に用いた含珪素ゴム、及び、珪素非含有グラフト重合樹脂(g4)の形成に用いた珪素非含有ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [4], in the case of the above aspect (4-3), the content ratios of the graft polymerization resin (g3), the silicon-free graft polymerization resin (g4) and the aromatic vinyl (co) polymer are particularly limited. Although the ratio of the total content of the silicon-containing rubber used for the formation of the graft polymerization resin (g3) and the silicon-free rubber used for the formation of the silicon-free graft polymerization resin (g4) is not Is preferably 3 to 40% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
 また、上記第1熱可塑性樹脂組成物に含まれる樹脂成分が、グラフト重合樹脂(g4)と、含珪素芳香族ビニル系樹脂である上記態様[1]~[3]から選ばれた樹脂とを組み合わせてなる樹脂である場合(以下、態様[5]という。)について、説明する。
 即ち、上記態様[5]は、以下に例示される。
(5-1)珪素非含有グラフト重合樹脂(g4)と、上記態様[1]の含珪素共重合体とからなる樹脂
(5-2)珪素非含有グラフト重合樹脂(g4)と、上記態様[2]の樹脂、即ち、グラフト重合樹脂(g1)とからなる樹脂
(5-3)珪素非含有グラフト重合樹脂(g4)と、上記態様[3]の樹脂、即ち、グラフト重合樹脂(g2)とからなる樹脂
The resin component contained in the first thermoplastic resin composition is a graft polymerization resin (g4) and a resin selected from the above embodiments [1] to [3], which is a silicon-containing aromatic vinyl resin. A case where the resins are combined (hereinafter referred to as “aspect [5]”) will be described.
That is, the above aspect [5] is exemplified below.
(5-1) A resin comprising the silicon-free graft polymerization resin (g4) and the silicon-containing copolymer of the above embodiment [1] (5-2) a silicon-free graft polymerization resin (g4) and the above embodiment [ 2], that is, a resin comprising the graft polymerization resin (g1) (5-3) a silicon-free graft polymerization resin (g4), and the resin of the above embodiment [3], ie, the graft polymerization resin (g2). Resin consisting of
 上記態様[5]において、上記態様(5-1)である場合、珪素非含有グラフト重合樹脂(g4)及び上記態様[1]の含珪素共重合体の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g4)の形成に用いた珪素非含有ゴムの含有割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。珪素非含有ゴムの含有割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above embodiment [5], in the case of the above embodiment (5-1), the content ratios of the silicon-free graft polymerization resin (g4) and the silicon-containing copolymer of the above embodiment [1] are not particularly limited. The content ratio of the non-silicon-containing rubber used for forming the non-containing graft polymerization resin (g4) is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, based on the entire resin component. Selected. When the content ratio of the non-silicon-containing rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[5]において、上記態様(5-2)である場合、珪素非含有グラフト重合樹脂(g4)及びグラフト重合樹脂(g1)の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g4)の形成に用いた珪素非含有ゴム、及び、グラフト重合樹脂(g1)の形成に用いた珪素非含有ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [5], in the case of the above aspect (5-2), the content ratios of the silicon-free graft polymerization resin (g4) and the graft polymerization resin (g1) are not particularly limited. The ratio of the total content of the silicon-free rubber used for forming (g4) and the silicon-free rubber used for forming the graft polymerization resin (g1) is preferably 3 to It is selected to be 40% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[5]において、上記態様(5-3)である場合、珪素非含有グラフト重合樹脂(g4)及びグラフト重合樹脂(g2)の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g4)の形成に用いた珪素非含有ゴム、及び、グラフト重合樹脂(g2)の形成に用いた含珪素ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [5], in the case of the above aspect (5-3), the content ratios of the silicon-free graft polymerization resin (g4) and the graft polymerization resin (g2) are not particularly limited. The ratio of the total content of the silicon-free rubber used for the formation of (g4) and the silicon-containing rubber used for the formation of the graft polymerization resin (g2) is preferably 3 to 40 with respect to the entire resin component. The mass is selected to be 5% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
 更に、上記第1熱可塑性樹脂組成物に含まれる樹脂成分が、珪素非含有ゴムの存在下、芳香族ビニル化合物、含珪素重合性不飽和化合物を含まない単量体(m7)を重合して得られた珪素非含有グラフト重合樹脂(g5)と、含珪素芳香族ビニル系樹脂である上記態様[1]~[5]から選ばれた樹脂とを組み合わせてなる樹脂である場合(以下、態様[6]という。)について、説明する。
 即ち、上記態様[6]は、以下に例示される。
(6-1)珪素非含有グラフト重合樹脂(g5)と、上記態様[1]の含珪素共重合体とからなる樹脂
(6-2)珪素非含有グラフト重合樹脂(g5)と、上記態様[2]の樹脂、即ち、グラフト重合樹脂(g1)とからなる樹脂
(6-3)珪素非含有グラフト重合樹脂(g5)と、上記態様[3]の樹脂、即ち、グラフト重合樹脂(g2)とからなる樹脂
(6-4)珪素非含有グラフト重合樹脂(g5)と、上記態様[4]の樹脂とからなる樹脂
(6-5)珪素非含有グラフト重合樹脂(g5)と、上記態様[5]の樹脂とからなる樹脂
Further, the resin component contained in the first thermoplastic resin composition polymerizes a monomer (m7) that does not contain an aromatic vinyl compound or a silicon-containing polymerizable unsaturated compound in the presence of a silicon-free rubber. When the obtained resin is a combination of the non-silicon-containing graft polymerization resin (g5) and a resin selected from the above embodiments [1] to [5] which is a silicon-containing aromatic vinyl resin (hereinafter referred to as an embodiment). [6]) will be described.
That is, the above aspect [6] is exemplified below.
(6-1) A resin comprising the silicon-free graft polymerization resin (g5) and the silicon-containing copolymer of the above-mentioned embodiment [1] (6-2) a silicon-free graft polymerization resin (g5) and the above-mentioned embodiment [ 2], that is, a resin comprising a graft polymerization resin (g1) (6-3) a silicon-free graft polymerization resin (g5), and a resin of the above embodiment [3], ie, a graft polymerization resin (g2). A resin (6-4) containing no silicon-containing graft polymerization resin (g5) and a resin (6-5) containing no silicon-containing graft polymerization resin (g5) and the above embodiment [5]. A resin comprising
 上記珪素非含有グラフト重合樹脂(g5)の形成に用いる珪素非含有ゴムとしては、アクリル系ゴム、ジエン系ゴム等が挙げられるが、アクリル系ゴムが好ましい。 Examples of the silicon-free rubber used for forming the silicon-free graft polymerization resin (g5) include acrylic rubber and diene rubber, and acrylic rubber is preferable.
 上記珪素非含有グラフト重合樹脂(g5)の形成に用いる単量体(m7)としては、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、マレイミド系化合物、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、エポキシ基含有不飽和化合物、オキサゾリン基含有不飽和化合物等から選ばれた少なくとも1種の化合物が用いられる。 Examples of the monomer (m7) used for forming the silicon-free graft polymerization resin (g5) include vinyl cyanide compounds, (meth) acrylic acid ester compounds, maleimide compounds, unsaturated acid anhydrides, hydroxyl group-containing compounds. At least one compound selected from a saturated compound, an amino group-containing unsaturated compound, an amide group-containing unsaturated compound, an epoxy group-containing unsaturated compound, an oxazoline group-containing unsaturated compound, and the like is used.
 上記珪素非含有グラフト重合樹脂(g5)は、上記珪素非含有ゴムの存在下に、上記単量体(m7)を重合することにより製造されたものであるが、その製造方法は、特に限定されず、例えば、乳化重合、溶液重合、塊状重合等を適用することができる。
 上記珪素非含有グラフト重合樹脂(g5)の製造に際して用いられる上記珪素非含有ゴム及び上記単量体(m7)の使用量の割合は、上記珪素非含有ゴム100質量部に対して、上記単量体(m7)が、好ましくは25~400質量部、より好ましくは40~300質量部である。
The silicon-free graft polymerization resin (g5) is produced by polymerizing the monomer (m7) in the presence of the silicon-free rubber, but its production method is particularly limited. For example, emulsion polymerization, solution polymerization, bulk polymerization, and the like can be applied.
The amount of the silicon-free rubber and the monomer (m7) used in the production of the silicon-free graft polymerization resin (g5) is such that the amount of the single monomer is 100 parts by mass of the silicon-free rubber. The body (m7) is preferably 25 to 400 parts by mass, more preferably 40 to 300 parts by mass.
 上記態様[6]において、上記態様(6-1)である場合、珪素非含有グラフト重合樹脂(g5)及び上記態様[1]の含珪素共重合体の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g5)の形成に用いた珪素非含有ゴムの含有割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。珪素非含有ゴムの含有割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [6], in the case of the above aspect (6-1), the content ratios of the silicon-free graft polymerization resin (g5) and the silicon-containing copolymer of the above aspect [1] are not particularly limited. The content ratio of the non-silicon-containing rubber used for forming the non-containing graft polymerization resin (g5) is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, based on the entire resin component. Selected. When the content ratio of the non-silicon-containing rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[6]において、上記態様(6-2)である場合、珪素非含有グラフト重合樹脂(g5)及びグラフト重合樹脂(g1)の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g5)の形成に用いた珪素非含有ゴム、及び、グラフト重合樹脂(g1)の形成に用いた珪素非含有ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。珪素非含有ゴムの合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [6], in the case of the above aspect (6-2), the content ratios of the non-silicon-containing graft polymerization resin (g5) and the graft polymerization resin (g1) are not particularly limited. The total content of the non-silicon-containing rubber used for forming (g5) and the non-silicon-containing rubber used for forming the graft polymerization resin (g1) is preferably 3 to It is selected to be 40% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the silicon-free rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[6]において、上記態様(6-3)である場合、珪素非含有グラフト重合樹脂(g5)及びグラフト重合樹脂(g2)の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g5)の形成に用いた珪素非含有ゴム、及び、グラフト重合樹脂(g2)の形成に用いた含珪素ゴムの合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。珪素非含有ゴム及び含珪素ゴムの合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above aspect [6], in the case of the above aspect (6-3), the content ratio of the silicon-free graft polymerization resin (g5) and the graft polymerization resin (g2) is not particularly limited. The ratio of the total content of the silicon-free rubber used for the formation of (g5) and the silicon-containing rubber used for the formation of the graft polymerization resin (g2) is preferably 3 to 40 with respect to the entire resin component. The mass is selected to be 5% by mass, more preferably 5 to 30% by mass. When the ratio of the total content of the silicon-free rubber and the silicon-containing rubber is within the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[6]において、上記態様(6-4)である場合、珪素非含有グラフト重合樹脂(g5)及び上記態様[4]の樹脂の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g5)の形成に用いた珪素非含有ゴム、及び、上記態様[4]の樹脂に含まれるゴム成分の合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above embodiment [6], in the case of the above embodiment (6-4), the content ratio of the silicon-free graft polymerization resin (g5) and the resin of the above embodiment [4] is not particularly limited, but silicon-free graft polymerization The ratio of the total content of the non-silicon-containing rubber used for forming the resin (g5) and the rubber component contained in the resin of the above aspect [4] is preferably 3 to 40 mass with respect to the entire resin component. %, More preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is in the above range, the resulting first resin layer is excellent in impact resistance.
 上記態様[6]において、上記態様(6-5)である場合、珪素非含有グラフト重合樹脂(g5)及び上記態様[5]の樹脂の含有割合は、特に限定されないが、珪素非含有グラフト重合樹脂(g5)の形成に用いた珪素非含有ゴム、及び、上記態様[5]の樹脂に含まれるゴム成分の合計含有量の割合が、樹脂成分の全体に対して、好ましくは3~40質量%、より好ましくは5~30質量%となるように選択される。ゴム成分の合計含有量の割合が、上記範囲にあると、得られる第1樹脂層の耐衝撃性に優れる。 In the above embodiment [6], in the case of the above embodiment (6-5), the content ratio of the silicon-free graft polymerization resin (g5) and the resin of the above embodiment [5] is not particularly limited, but silicon-free graft polymerization is not limited. The proportion of the total content of the non-silicon-containing rubber used for forming the resin (g5) and the rubber component contained in the resin of the above embodiment [5] is preferably 3 to 40 mass with respect to the entire resin component. %, More preferably 5 to 30% by mass. When the ratio of the total content of the rubber components is within the above range, the resulting first resin layer is excellent in impact resistance.
 上記グラフト重合樹脂(g1)~(g5)の製造方法は、上記のように、公知の方法を適用することができるが、以下に、乳化重合による製造方法を説明する。
 乳化重合においては、ゴム成分、単量体(単量体(m2)、(m3)、(m4)、(m6)及び(m7)を意味する)の他、通常、重合開始剤、連鎖移動剤(分子量調節剤)、乳化剤、水等が用いられる。
As the production method of the graft polymerization resins (g1) to (g5), a known method can be applied as described above, and a production method by emulsion polymerization will be described below.
In emulsion polymerization, in addition to rubber components and monomers (meaning monomers (m2), (m3), (m4), (m6) and (m7)), usually polymerization initiators and chain transfer agents (Molecular weight regulator), emulsifier, water and the like are used.
 上記重合開始剤としては、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物と、含糖ピロリン酸処方、スルホキシレート処方等の還元剤とを組み合わせたレドックス系開始剤;過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキサイド(BPO)、ラウロイルパーオキサイド、tert-ブチルパーオキシラウレイト、tert-ブチルパーオキシモノカーボネート等の過酸化物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。また、上記重合開始剤の使用量は、上記単量体全量に対し、通常、0.1~1.5質量%である。
 尚、上記重合開始剤は、反応系に一括して、又は、連続的に添加することができる。
As the polymerization initiator, a redox in which an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide and the like, and a reducing agent such as a sugar-containing pyrophosphate formulation and a sulfoxylate formulation are combined. System initiators; persulfates such as potassium persulfate; peroxides such as benzoyl peroxide (BPO), lauroyl peroxide, tert-butyl peroxylaurate, and tert-butyl peroxymonocarbonate. These can be used alone or in combination of two or more. The amount of the polymerization initiator used is usually 0.1 to 1.5% by mass with respect to the total amount of the monomers.
The polymerization initiator can be added to the reaction system all at once or continuously.
 上記連鎖移動剤としては、オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ヘキシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、tert-テトラデシルメルカプタン等のメルカプタン類;ターピノーレン類、α-メチルスチレンのダイマー等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記連鎖移動剤の使用量は、上記単量体全量に対し、通常、0.05~2.0質量%である。
 尚、上記連鎖移動剤は、反応系に一括して、又は、連続的に添加することができる。
Examples of the chain transfer agent include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexyl mercaptan, n-hexadecyl mercaptan, n-tetradecyl mercaptan, tert-tetradecyl mercaptan; and α-methylstyrene dimer. These can be used alone or in combination of two or more. The amount of the chain transfer agent used is usually 0.05 to 2.0% by mass with respect to the total amount of the monomers.
The chain transfer agent can be added to the reaction system all at once or continuously.
 上記乳化剤としては、アニオン系界面活性剤及びノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウム等の脂肪族スルホン酸塩;高級脂肪族カルボン酸塩、脂肪族リン酸塩等が挙げられる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、アルキルエーテル型化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記乳化剤の使用量は、上記単量体全量に対し、通常、0.3~5.0質量%である。 Examples of the emulsifier include anionic surfactants and nonionic surfactants. Anionic surfactants include higher alcohol sulfates; alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate; aliphatic sulfonates such as sodium lauryl sulfate; higher aliphatic carboxylates, aliphatic phosphates, etc. Is mentioned. Examples of nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds. These can be used alone or in combination of two or more. The amount of the emulsifier used is usually 0.3 to 5.0% by mass with respect to the total amount of the monomers.
 乳化重合は、単量体、重合開始剤等の種類に応じた温度条件等で行うことができる。この乳化重合により得られたラテックスは、通常、凝固剤により凝固させ、樹脂成分を粉末状とし、その後、これを水洗、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸等の有機酸等が用いられる。 Emulsion polymerization can be performed under temperature conditions depending on the type of monomer, polymerization initiator, and the like. The latex obtained by this emulsion polymerization is usually purified by coagulating with a coagulant to make the resin component powdery, and then washing and drying. Examples of the coagulant include inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid.
 上記グラフト重合樹脂(g1)~(g5)におけるグラフト率は、好ましくは20~170%であり、より好ましくは30~170%、更に好ましくは40~150%である。このグラフト率が低すぎると、第1熱可塑性樹脂組成物を用いて得られる第1樹脂層の可撓性が十分でない場合がある。一方、グラフト率が高すぎると、第1熱可塑性樹脂組成物の粘度が高くなり、薄肉化が困難になる場合がある。 The graft ratio in the graft polymerization resins (g1) to (g5) is preferably 20 to 170%, more preferably 30 to 170%, and further preferably 40 to 150%. If this graft ratio is too low, the flexibility of the first resin layer obtained using the first thermoplastic resin composition may not be sufficient. On the other hand, if the graft ratio is too high, the viscosity of the first thermoplastic resin composition becomes high, and it may be difficult to reduce the thickness.
 グラフト率は、下記式により求めることができる。
  グラフト率(質量%)={(S-T)/T}×100
 上記式において、Sは、1グラムのグラフト重合樹脂をアセトン(ゴム成分がアクリル系ゴムを含む場合、アセトニトリル)20ミリリットルに投入し、25℃で、振とう機により2時間振とうした後、5℃で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分と可溶分とを分離して得られる不溶分の質量(グラム)であり、Tは、1グラムのグラフト重合樹脂に含まれるゴム成分の質量(グラム)である。このゴム成分の質量は、重合処方及び重合転化率から算出する方法、赤外線吸収スペクトル(IR)により求める方法等により得ることができる。
The graft ratio can be determined by the following formula.
Graft ratio (mass%) = {(ST) / T} × 100
In the above formula, S is obtained by adding 1 gram of graft polymerization resin to 20 ml of acetone (acetonitrile when the rubber component includes acrylic rubber), shaking at 25 ° C. for 2 hours with a shaker, The mass (gram) of insoluble matter obtained by centrifuging at 60 ° C. for 60 minutes with a centrifuge (rotation speed: 23,000 rpm) to separate the insoluble matter and the soluble matter, and T is 1 gram It is the mass (gram) of the rubber component contained in the graft polymerization resin. The mass of the rubber component can be obtained by a method of calculating from a polymerization prescription and a polymerization conversion rate, a method of obtaining from an infrared absorption spectrum (IR), and the like.
 上記グラフト率は、例えば、グラフト重合樹脂の製造時に用いる重合開始剤の種類及びその使用量、連鎖移動剤の種類及びその使用量、単量体の添加方法及び添加時間、重合温度等を、適宜、選択することにより調整することができる。 The graft ratio is determined by appropriately determining, for example, the type and amount of polymerization initiator used in the production of the graft polymerization resin, the type and amount of chain transfer agent, the monomer addition method and addition time, the polymerization temperature, etc. , Can be adjusted by selecting.
 上記グラフト重合樹脂のアセトン可溶分(ゴム成分がアクリル系ゴムを含む場合、アセトニトリル可溶分)の極限粘度[η](メチルエチルケトン中、30℃)は、好ましくは0.1~2.5dl/g、より好ましくは0.2~1.5dl/g、更に好ましくは0.25~1.2dl/gである。極限粘度がこの範囲内であると、第1熱可塑性樹脂組成物の加工性に優れ、肉厚精度の高い第1樹脂層を形成することができる。 The intrinsic viscosity [η] (in methyl ethyl ketone, 30 ° C.) of the acetone-soluble component of the graft polymerization resin (when the rubber component contains acrylic rubber, acetonitrile-soluble component) is preferably 0.1 to 2.5 dl / g, more preferably 0.2 to 1.5 dl / g, still more preferably 0.25 to 1.2 dl / g. When the intrinsic viscosity is within this range, it is possible to form a first resin layer that is excellent in processability of the first thermoplastic resin composition and has high thickness accuracy.
 ここで、極限粘度[η]は、以下の要領で求めることができる。
 上記グラフト重合樹脂におけるグラフト率を求める際に、遠心分離後に回収されたアセトン可溶分(ゴム質重合体がアクリル系ゴムを含む場合、アセトニトリル可溶分)をメチルエチルケトンに溶解させ、濃度の異なるものを5点調製し、ウベローデ粘度管を用いて、30℃で各濃度の還元粘度を測定し、極限粘度[η]が求められる。
Here, the intrinsic viscosity [η] can be obtained in the following manner.
When determining the graft ratio in the above graft polymerization resin, acetone-soluble matter recovered after centrifugation (if the rubbery polymer contains acrylic rubber, acetonitrile-soluble matter) is dissolved in methyl ethyl ketone and the concentration is different. Are prepared, and the reduced viscosity at each concentration is measured at 30 ° C. using an Ubbelohde viscometer to determine the intrinsic viscosity [η].
 上記極限粘度[η]は、上記グラフト重合樹脂を製造する際に用いる、重合開始剤、連鎖移動剤、乳化剤、溶剤等の種類や量、更には重合時間、重合温度等を調整することにより、容易に制御することができる。 The intrinsic viscosity [η] is used when producing the graft polymerization resin, by adjusting the type and amount of polymerization initiator, chain transfer agent, emulsifier, solvent, etc., and further adjusting the polymerization time, polymerization temperature, etc. It can be controlled easily.
 上記第1樹脂層における、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性が特に優れたものとするために、上記含珪素熱可塑性樹脂に由来する含珪素構造単位の含有量は、上記第1熱可塑性樹脂組成物に含まれる樹脂成分(熱可塑性樹脂)を構成する構造単位の全量に対して、好ましくは0.05~20質量%、より好ましくは0.07~15質量%、更に好ましくは0.1~10質量%である。上記含珪素構造単位の含有量が多すぎると、外観性が低下する場合がある。尚、上記含珪素構造単位とは、含珪素重合性不飽和化合物に由来する単位、及び、オルガノシロキサンに由来する単位を意味する。 In order to make the first resin layer particularly excellent in adhesiveness with a filler part including an ethylene / vinyl acetate copolymer composition that embeds a solar cell element, the silicon-containing thermoplastic resin is used. The content of the silicon-containing structural unit derived from is preferably 0.05 to 20% by mass with respect to the total amount of the structural unit constituting the resin component (thermoplastic resin) contained in the first thermoplastic resin composition. More preferably, the content is 0.07 to 15% by mass, and still more preferably 0.1 to 10% by mass. When there is too much content of the said silicon-containing structural unit, an external appearance property may fall. The silicon-containing structural unit means a unit derived from a silicon-containing polymerizable unsaturated compound and a unit derived from an organosiloxane.
 上記第1樹脂層が耐熱性に特に優れたものとするために、上記第1熱可塑性樹脂組成物に含まれる樹脂成分(熱可塑性樹脂)は、マレイミド系化合物に由来する構造単位(以下、「構造単位(u1)」という。)を含むことが好ましい。この構造単位(u1)は、どの樹脂成分に由来するものであってもよい。即ち、上記含珪素熱可塑性樹脂が構造単位(u1)を含んでよいし、他の樹脂成分がこの構造単位(u1)を含んでもよい。
 上記構造単位(u1)の含有量は、上記観点から、上記第1熱可塑性樹脂組成物に含まれる樹脂成分(熱可塑性樹脂)を構成する構造単位の全量に対して、好ましくは1~45質量%、より好ましくは5~40質量%、更に好ましくは10~35質量%である。上記構造単位(u1)の含有量が多すぎると、第1樹脂層の可撓性が低下する場合がある。
In order to make the first resin layer particularly excellent in heat resistance, the resin component (thermoplastic resin) contained in the first thermoplastic resin composition is a structural unit derived from a maleimide compound (hereinafter referred to as “ The structural unit (u1) ”is preferably included. This structural unit (u1) may be derived from any resin component. That is, the silicon-containing thermoplastic resin may contain the structural unit (u1), and other resin components may contain the structural unit (u1).
From the above viewpoint, the content of the structural unit (u1) is preferably 1 to 45 masses with respect to the total amount of the structural units constituting the resin component (thermoplastic resin) contained in the first thermoplastic resin composition. %, More preferably 5 to 40% by mass, still more preferably 10 to 35% by mass. When there is too much content of the said structural unit (u1), the flexibility of a 1st resin layer may fall.
 上記構造単位(u1)を有する樹脂成分は、好ましくは、芳香族ビニル化合物に由来する構造単位と、シアン化ビニル化合物に由来する構造単位と、構造単位(u1)とからなる共重合体である。各構造単位の含有割合は、特に限定されない。この共重合体としては、アクリロニトリル・スチレン・N-フェニルマレイミド共重合体等が挙げられる。 The resin component having the structural unit (u1) is preferably a copolymer comprising a structural unit derived from an aromatic vinyl compound, a structural unit derived from a vinyl cyanide compound, and a structural unit (u1). . The content ratio of each structural unit is not particularly limited. Examples of this copolymer include acrylonitrile / styrene / N-phenylmaleimide copolymer.
 上記第1樹脂層の形成に用いる第1熱可塑性樹脂組成物に配合される添加剤としては、酸化防止剤、紫外線吸収剤、老化防止剤、着色剤、蛍光増白剤、耐候剤、充填剤、帯電防止剤、難燃剤、防曇剤、抗菌剤、防かび剤、防汚剤、粘着付与剤等が挙げられる。 Additives blended in the first thermoplastic resin composition used to form the first resin layer include antioxidants, ultraviolet absorbers, anti-aging agents, colorants, fluorescent whitening agents, weathering agents, and fillers. , Antistatic agents, flame retardants, antifogging agents, antibacterial agents, fungicides, antifouling agents, tackifiers and the like.
 上記酸化防止剤としては、ヒンダードアミン系化合物、ハイドロキノン系化合物、ヒンダードフェノール系化合物、含硫黄化合物、含リン化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記酸化防止剤の含有量は、上記含珪素熱可塑性樹脂を含む熱可塑性樹脂の全量100質量部に対して、好ましくは0.05~10質量部である。
Examples of the antioxidant include hindered amine compounds, hydroquinone compounds, hindered phenol compounds, sulfur-containing compounds, and phosphorus-containing compounds. These can be used alone or in combination of two or more.
The content of the antioxidant is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
 上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記紫外線吸収剤の含有量は、上記含珪素熱可塑性樹脂を含む熱可塑性樹脂の全量100質量部に対して、好ましくは0.05~10質量部である。
Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, and triazine compounds. These can be used alone or in combination of two or more.
The content of the ultraviolet absorber is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
 上記老化防止剤としては、ナフチルアミン系化合物、ジフェニルアミン系化合物、p-フェニレンジアミン系化合物、キノリン系化合物、ヒドロキノン誘導体系化合物、モノフェノール系化合物、ビスフェノール系化合物、トリスフェノール系化合物、ポリフェノール系化合物、チオビスフェノール系化合物、ヒンダードフェノール系化合物、亜リン酸エステル系化合物、イミダゾール系化合物、ジチオカルバミン酸ニッケル塩系化合物、リン酸系化合物等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記老化防止剤の含有量は、上記含珪素熱可塑性樹脂を含む熱可塑性樹脂の全量100質量部に対して、好ましくは0.05~10質量部である。
Examples of the anti-aging agent include naphthylamine compounds, diphenylamine compounds, p-phenylenediamine compounds, quinoline compounds, hydroquinone derivative compounds, monophenol compounds, bisphenol compounds, trisphenol compounds, polyphenol compounds, thiols. Examples thereof include bisphenol compounds, hindered phenol compounds, phosphite compounds, imidazole compounds, nickel dithiocarbamate salts, phosphoric compounds, and the like. These can be used alone or in combination of two or more.
The content of the anti-aging agent is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
 上記可塑剤としては、ジメチルフタレート、ジエチルフタレート、ジブチルフタレート、ジイソブチルフタレート、ジオクチルフタレート、ブチルオクチルフタレート、ジ-(2-エチルヘキシル)フタレート、ジイソオクチルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ジメチルアジペート、ジイソブチルアジペート、ジ-(2-エチルヘキシル)アジペート、ジイソオクチルアジペート、ジイソデシルアジペート、オクチルデシルアジペート、ジ-(2-エチルヘキシル)アゼレート、ジイソオクチルアゼレート、ジイソブチルアゼレート、ジブチルセバケート、ジ-(2-エチルヘキシル)セバケート、ジイソオクチルセバケート等の脂肪酸エステル類;トリメリット酸イソデシルエステル、トリメリット酸オクチルエステル、トリメリット酸n-オクチルエステル、トリメリット酸イソノニルエステル等のトリメリット酸エステル類;ジ-(2-エチルヘキシル)フマレート、ジエチレングリコールモノオレート、グリセリルモノリシノレート、トリラウリルホスフェート、トリステアリルホスフェート、トリ-(2-エチルヘキシル)ホスフェート、エポキシ化大豆油等が挙げられる。これらは、1種単独であるいは2種以上を組み合わせて用いることができる。
 上記可塑剤の含有量は、上記含珪素熱可塑性樹脂を含む熱可塑性樹脂の全量100質量部に対して、好ましくは0.05~10質量部である。
Examples of the plasticizer include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, diisobutyl phthalate, dioctyl phthalate, butyl octyl phthalate, di- (2-ethylhexyl) phthalate, diisooctyl phthalate, and diisodecyl phthalate; dimethyl adipate , Diisobutyl adipate, di- (2-ethylhexyl) adipate, diisooctyl adipate, diisodecyl adipate, octyl decyl adipate, di- (2-ethylhexyl) azelate, diisooctyl azelate, diisobutyl azelate, dibutyl sebacate, di- Fatty acid esters such as (2-ethylhexyl) sebacate and diisooctyl sebacate; trimellitic acid isodecyl ester, trimellitic acid octyl Esters, trimellitic acid esters such as trimellitic acid n-octyl ester, trimellitic acid isononyl ester; di- (2-ethylhexyl) fumarate, diethylene glycol monooleate, glyceryl monoricinoleate, trilauryl phosphate, tristearyl phosphate, Examples include tri- (2-ethylhexyl) phosphate, epoxidized soybean oil and the like. These can be used alone or in combination of two or more.
The content of the plasticizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the total amount of the thermoplastic resin including the silicon-containing thermoplastic resin.
 上記第1樹脂層の形成に用いる第1熱可塑性樹脂組成物は、含珪素熱可塑性樹脂等の原料成分を、ヘンシェルミキサー等で混合した後、溶融混練することにより調製することができる。溶融混練に用いる装置としては、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、連続ニーダー等が挙げられる。 The first thermoplastic resin composition used for forming the first resin layer can be prepared by mixing raw material components such as a silicon-containing thermoplastic resin with a Henschel mixer and then melt-kneading. Examples of the apparatus used for melt kneading include a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, and a continuous kneader.
 本発明の太陽電池用裏面保護フィルムが、図1に示すような単層型フィルム1Aである場合、このフィルム1Aの製造方法は、特に限定されず、押出法(インフレーションフィルム成形法、Tダイキャストフィルム成形法)、カレンダー成形法、プレス成形法等の方法が挙げられる。 When the back surface protective film for solar cells of the present invention is a single-layer film 1A as shown in FIG. 1, the production method of this film 1A is not particularly limited, and is an extrusion method (inflation film molding method, T-die casting). Film forming method), calender forming method, press forming method and the like.
 本発明の太陽電池用裏面保護フィルムは、上記含珪素熱可塑性樹脂を含む第1樹脂層を備えることから、第1樹脂層側の表面に、太陽電池素子を包埋する充填材部と接着させるための接着層を設けることなく、この第1樹脂層と、太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性に優れる。また、この第1樹脂層が上記構成を有することから、本発明の太陽電池用裏面保護フィルムが積層型フィルムである場合に、第1樹脂層と、この第1樹脂層に面する他の樹脂層等との接着性にも優れる。 Since the back surface protective film for a solar cell according to the present invention includes the first resin layer containing the silicon-containing thermoplastic resin, the surface of the first resin layer is bonded to the filler portion for embedding the solar cell element. Therefore, it is excellent in adhesiveness between the first resin layer and a filler part containing an ethylene / vinyl acetate copolymer composition or the like that embeds the solar cell element without providing an adhesive layer. Moreover, since this 1st resin layer has the said structure, when the back surface protection film for solar cells of this invention is a laminated | multilayer film, 1st resin layer and other resin which faces this 1st resin layer Excellent adhesion to layers.
 本発明の太陽電池用裏面保護フィルムの厚さは、好ましくは10~1,000μmである。厚さの下限は、好ましくは15μm、より好ましくは20μm、更に好ましくは25μmである。また、厚さの上限は、好ましくは950μm、より好ましくは900μm、更に好ましくは850μmである。 The thickness of the back protective film for solar cells of the present invention is preferably 10 to 1,000 μm. The lower limit of the thickness is preferably 15 μm, more preferably 20 μm, and still more preferably 25 μm. The upper limit of the thickness is preferably 950 μm, more preferably 900 μm, and still more preferably 850 μm.
 本発明の太陽電池用裏面保護フィルムが、単層型フィルム(第1樹脂層のみ)である場合、その厚さの下限は、上記充填材部との接着性の観点から、好ましくは10μm、より好ましくは15μm、更に好ましくは20μmである。また、厚さの上限は、通常、1,000μm、好ましくは800μm、より好ましくは600μm、更に好ましくは500μmである。 When the back surface protective film for solar cells of the present invention is a single layer type film (only the first resin layer), the lower limit of the thickness is preferably 10 μm from the viewpoint of adhesiveness with the filler part. The thickness is preferably 15 μm, more preferably 20 μm. The upper limit of the thickness is usually 1,000 μm, preferably 800 μm, more preferably 600 μm, and still more preferably 500 μm.
 本発明の太陽電池用裏面保護フィルムは、上記のように、第1樹脂層のみからなるフィルム、即ち、単層型フィルムであってよいし(図1参照)、第1樹脂層11と、この第1樹脂層11に接合された他の層15とからなる積層型フィルムであってもよい(図2及び図3参照)。 As described above, the back surface protective film for a solar cell of the present invention may be a film composed of only the first resin layer, that is, a single-layer film (see FIG. 1), the first resin layer 11, It may be a laminated film composed of another layer 15 bonded to the first resin layer 11 (see FIGS. 2 and 3).
 上記他の層15は、目的、用途等に応じて、耐加水分解性、耐水性(防湿性)、光反射性及び難燃性の少なくとも1つの作用を付与する層等とすることができる。そして、この他の層15は、単一層であってよいし、2以上の層からなるものであってもよい。
 上記他の層15の構成材料は、樹脂組成物(熱可塑性樹脂組成物又は硬化樹脂組成物)、無機化合物、金属等とすることができる。
 積層型フィルムを表す図2のフィルム1Bは、第1樹脂層11と、この第1樹脂層11に接合された他の層15とを備える。この図2において、他の層15は、他の樹脂層を表している。
 また、図3のフィルム1Cは、他の層15が、金属層151及び樹脂層153からなり、第1樹脂層11、金属層151及び樹脂層153が、順次、接合されたフィルムである。
The other layer 15 may be a layer that imparts at least one action of hydrolysis resistance, water resistance (moisture resistance), light reflectivity, and flame retardancy, depending on the purpose and application. The other layer 15 may be a single layer or may be composed of two or more layers.
The constituent material of the other layer 15 may be a resin composition (thermoplastic resin composition or cured resin composition), an inorganic compound, a metal, or the like.
A film 1 </ b> B in FIG. 2 that represents a laminated film includes a first resin layer 11 and another layer 15 bonded to the first resin layer 11. In FIG. 2, the other layer 15 represents another resin layer.
3 is a film in which the other layer 15 includes a metal layer 151 and a resin layer 153, and the first resin layer 11, the metal layer 151, and the resin layer 153 are sequentially joined.
 本発明の太陽電池用裏面保護フィルムが、図2及び図3に示すような積層型フィルム1Bである場合、第1樹脂層11及び他の層15の厚さは、それぞれ、好ましくは5~600μm及び5~800μm、より好ましくは10~500μm及び8~700μmである。 When the back surface protective film for solar cells of the present invention is a laminated film 1B as shown in FIGS. 2 and 3, the thicknesses of the first resin layer 11 and the other layer 15 are preferably 5 to 600 μm, respectively. And 5 to 800 μm, more preferably 10 to 500 μm and 8 to 700 μm.
 本発明の太陽電池用裏面保護フィルムは、以下に例示される。
(1)波長400~1,400nmの光を、太陽電池用裏面保護フィルムにおける第1樹脂層の表面に放射した場合、上記光に対する反射率が50%以上であるフィルム(以下、「本発明のフィルム(I)」という。)
(2)波長800~1,400nmの光に対する透過率が60%以上であり、且つ、波長400~700nmの光に対する吸収率が60%以上である第1樹脂層を有するフィルム(以下、「本発明のフィルム(II)」という。)
The back surface protective film for solar cells of this invention is illustrated below.
(1) When light having a wavelength of 400 to 1,400 nm is radiated to the surface of the first resin layer in the solar cell back surface protective film, a film having a reflectance of 50% or more with respect to the light (hereinafter referred to as “the present invention”). ("Film (I)")
(2) A film having a first resin layer having a transmittance of 60% or more for light having a wavelength of 800 to 1,400 nm and an absorbance of 60% or more for light having a wavelength of 400 to 700 nm (hereinafter referred to as “this” Invented film (II) ")
 本発明のフィルム(I)において、波長400~1,400nmの光に対する反射率は、本発明の太陽電池用裏面保護フィルム(厚さ10~1,000μm)の第1樹脂層の表面に上記光を放射して測定されるものである。上記反射率は、50%以上であり、好ましくは60%以上、より好ましくは70%以上である。この反射率が高いほど、上記光を、充填材部に配された太陽電池素子の方へ反射させることができ、光電変換効率を向上させることができる。
 本発明において、「波長400~1,400nmの光に対する反射率が50%以上である」とは、400nmから1,400nmまでの波長域における光の反射率を、400nm又は1,400nmから20nm毎に測定し、各反射率を用いて算出される平均値が50%以上であることを意味し、上記波長域における光の反射率が全て50%以上であることを要求するものではない。
In the film (I) of the present invention, the reflectance with respect to light having a wavelength of 400 to 1,400 nm is such that the above light is applied to the surface of the first resin layer of the back protective film for solar cells (thickness 10 to 1,000 μm) of the present invention. Is measured by radiating. The reflectance is 50% or more, preferably 60% or more, more preferably 70% or more. The higher the reflectance, the more the light can be reflected toward the solar cell element disposed in the filler portion, and the photoelectric conversion efficiency can be improved.
In the present invention, “the reflectance with respect to light having a wavelength of 400 to 1,400 nm is 50% or more” means that the reflectance of light in the wavelength range from 400 nm to 1,400 nm is 400 nm or every 1,400 nm to 20 nm. Means that the average value calculated using each reflectance is 50% or more, and does not require that all the reflectances of light in the above-mentioned wavelength region are 50% or more.
 本発明のフィルム(I)において、第1樹脂層を構成するフィルムのみ(厚さ5~1,000μm)に、波長400~1,400nmの光を放射した場合、この光に対する反射率は、好ましくは50%以上であり、より好ましくは60%以上、更に好ましくは70%以上である。 In the film (I) of the present invention, when light having a wavelength of 400 to 1,400 nm is emitted only to the film constituting the first resin layer (thickness of 5 to 1,000 μm), the reflectance with respect to this light is preferably Is 50% or more, more preferably 60% or more, still more preferably 70% or more.
 本発明のフィルム(I)において、波長400~1,400nmの光に対する反射率を50%以上とするために、上記第1樹脂層の表面のL値(明度)が60以上であることが好ましい。
 従って、上記性質を満足させる第1樹脂層を構成する第1熱可塑性樹脂組成物は、含珪素熱可塑性樹脂と、白色系着色剤とを含む熱可塑性樹脂組成物であることが好ましい。
In the film (I) of the present invention, the L value (brightness) of the surface of the first resin layer is preferably 60 or more so that the reflectance for light with a wavelength of 400 to 1,400 nm is 50% or more. .
Therefore, the first thermoplastic resin composition constituting the first resin layer that satisfies the above properties is preferably a thermoplastic resin composition containing a silicon-containing thermoplastic resin and a white colorant.
 上記白色系着色剤としては、酸化チタン、酸化亜鉛、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、アルミナ、シリカ、2PbCO・Pb(OH)、[ZnS+BaSO]、タルク、石膏等が挙げられる。これらのうち、酸化チタンが好ましい。また、これらは、1種単独であるいは2種以上を組み合わせて用いることができる。上記第1熱可塑性樹脂組成物における白色系着色剤の含有割合は、上記光に対する反射性の観点から、上記含珪素熱可塑性樹脂を含む樹脂成分(熱可塑性樹脂)の全量100質量部に対して、好ましくは1~45質量部、より好ましくは3~40質量部、更に好ましくは5~30質量部である。この白色系着色剤の含有量が多すぎると、本発明のフィルム(I)の可撓性が低下する場合がある。
 尚、本発明のフィルム(I)の第1樹脂層の表面における、上記光に対する反射率を50%未満にまで低下させるものでなければ、目的、用途等に応じて、更に他の着色剤を用いることができる。他の着色剤を用いる場合、その含有割合は、上記含珪素熱可塑性樹脂を含む樹脂成分(熱可塑性樹脂)の全量100質量部に対して、通常、5質量部以下である。
Examples of the white colorant include titanium oxide, zinc oxide, calcium carbonate, barium sulfate, calcium sulfate, alumina, silica, 2PbCO 3 .Pb (OH) 2 , [ZnS + BaSO 4 ], talc, and gypsum. Of these, titanium oxide is preferred. Moreover, these can be used individually by 1 type or in combination of 2 or more types. The content ratio of the white colorant in the first thermoplastic resin composition is based on 100 parts by mass of the total amount of the resin component (thermoplastic resin) including the silicon-containing thermoplastic resin from the viewpoint of reflectivity to the light. The amount is preferably 1 to 45 parts by mass, more preferably 3 to 40 parts by mass, and still more preferably 5 to 30 parts by mass. When there is too much content of this white type coloring agent, the flexibility of the film (I) of this invention may fall.
In addition, if it does not reduce the reflectance with respect to the said light to the surface of the 1st resin layer of the film (I) of this invention to less than 50%, according to the objective, a use, etc., further another colorant is added. Can be used. When using other colorants, the content is usually 5 parts by mass or less with respect to 100 parts by mass of the total amount of the resin component (thermoplastic resin) including the silicon-containing thermoplastic resin.
 尚、本発明においては、図2に示すような、第1樹脂層11と他の層15とを備える積層型フィルム1Bであって、上記第1樹脂層11を構成するフィルムのみにおける上記光の反射率が50%未満である場合(第1樹脂層が白色系着色剤等を含まない場合等)、他の層15の構成材料を選択することによって、第1樹脂層の表面における波長400~1,400nmの光に対する反射率が50%以上である本発明のフィルム(I)とすることができ、これにより、光電変換効率を向上させることができる。 In the present invention, as shown in FIG. 2, a laminated film 1 </ b> B including a first resin layer 11 and another layer 15, and the light of only the film constituting the first resin layer 11. When the reflectance is less than 50% (when the first resin layer does not contain a white colorant or the like), by selecting the constituent material of the other layer 15, the wavelength 400 to 400 on the surface of the first resin layer is selected. It can be set as the film (I) of this invention whose reflectance with respect to 1,400 nm light is 50% or more, and, thereby, a photoelectric conversion efficiency can be improved.
 本発明のフィルム(I)が、単層型フィルムである場合、及び、積層型フィルムである場合、のいずれにおいても、第1樹脂層の表面において、光電変換に関与する光の反射性が優れるので、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルムの方へ漏れたときに、第1樹脂層から太陽光を反射させ、その反射光を太陽電池素子の裏面に供給して、光電変換に利用し、発電効率を向上させることができる。 In any case where the film (I) of the present invention is a monolayer film or a laminated film, the surface of the first resin layer has excellent reflectivity for light involved in photoelectric conversion. Therefore, when sunlight leaks from the gap between adjacent solar cell elements toward the back surface protective film for solar cell, the sunlight is reflected from the first resin layer, and the reflected light is reflected on the back surface of the solar cell element. It can be supplied and used for photoelectric conversion to improve power generation efficiency.
 一方、本発明のフィルム(II)において、波長800~1,400nmの光に対する透過率、及び、波長400~700nmの光に対する吸収率は、第1樹脂層の表面に、即ち、厚さ10~1,000μmの単層型フィルム(第1樹脂層のみ)の表面、又は、積層型フィルムにおける第1樹脂層を構成するフィルム(厚さ5~1,000μm)のみに、各光を放射して測定されるものである。
 上記透過率は、60%以上であり、好ましくは65%以上、より好ましくは70%以上である。この透過率が高いほど、第1樹脂層において、波長800~1,400nmの光による蓄熱が抑制されるので、この第1樹脂層に接着する充填材部の蓄熱も抑制される。そして、このフィルム(II)を用いて形成される太陽電池モジュールの蓄熱が抑制され、発電効率を向上させることができる。
 本発明において、「波長800~1,400nmの光に対する透過率が60%以上」とは、第1樹脂層を構成するフィルムを用いて、800nmから1,400nmまでの波長域における光の透過率を、800nm又は1,400nmから20nm毎に測定し、各透過率を用いて算出される平均値が60%以上であることを意味し、上記波長域における光の透過率が全て60%以上であることを要求するものではない。
On the other hand, in the film (II) of the present invention, the transmittance with respect to light with a wavelength of 800 to 1,400 nm and the absorption with respect to light with a wavelength of 400 to 700 nm are on the surface of the first resin layer, that is, with a thickness of 10 to Each light is emitted only to the surface of a 1,000 μm single layer film (only the first resin layer) or to the film (thickness 5 to 1,000 μm) constituting the first resin layer in the laminated film. It is to be measured.
The transmittance is 60% or more, preferably 65% or more, and more preferably 70% or more. As the transmittance is higher, heat storage by light having a wavelength of 800 to 1,400 nm is suppressed in the first resin layer, so that heat storage of the filler portion bonded to the first resin layer is also suppressed. And the thermal storage of the solar cell module formed using this film (II) is suppressed, and electric power generation efficiency can be improved.
In the present invention, “the transmittance with respect to light having a wavelength of 800 to 1,400 nm is 60% or more” means that the transmittance of light in the wavelength region from 800 nm to 1,400 nm using the film constituting the first resin layer. Is measured every 800 nm or from 1,400 nm to 20 nm, and the average value calculated using each transmittance is 60% or more, and the light transmittance in the above wavelength range is all 60% or more. It is not required to be.
 また、本発明のフィルム(II)において、上記第1樹脂層を構成するフィルムの上記光の吸収率は、60%以上であり、好ましくは70%以上、より好ましくは80%以上である。この吸収率が高いほど、第1樹脂層を構成するフィルムの明度が低下し、暗色系の第1樹脂層が形成されることとなる。即ち、この第1樹脂層により、暗色系の太陽電池用裏面保護フィルムが形成されることとなる。これにより、太陽電池を、家屋の屋根等に配設したとき、外観性に優れる。
 本発明において、「波長400~700nmの光に対する透過率が60%以上」とは、第1樹脂層を構成するフィルムを用いて、400nmから700nmまでの波長域における光の吸収率を、400nm又は700nmから20nm毎に測定し、各吸収率を用いて算出される平均値が60%以上であることを意味し、上記波長域における光の吸収率が全て60%以上であることを要求するものではない。
In the film (II) of the present invention, the light absorptance of the film constituting the first resin layer is 60% or more, preferably 70% or more, more preferably 80% or more. The higher the absorptance, the lower the brightness of the film constituting the first resin layer, and the dark first resin layer is formed. That is, this first resin layer forms a dark-colored solar cell back surface protective film. Thereby, when a solar cell is arrange | positioned on the roof etc. of a house, it is excellent in external appearance property.
In the present invention, “the transmittance with respect to light having a wavelength of 400 to 700 nm is 60% or more” means that the light absorptance in the wavelength region from 400 nm to 700 nm using the film constituting the first resin layer is 400 nm or Measured every 700 nm to 20 nm, meaning that the average value calculated using each absorptivity is 60% or more, and requires that all the absorptances of light in the above wavelength range are 60% or more is not.
 本発明のフィルム(II)では、第1樹脂層を構成するフィルムにおける、波長800~1,400nmの光に対する透過率を60%以上、且つ、波長400~700nmの光に対する吸収率を60%以上とするために、上記第1樹脂層を構成するフィルムは、可視光線を吸収し、赤外線を透過させる性質を有することが好ましい。
 従って、上記性質を満足させる第1樹脂層を構成する第1熱可塑性樹脂組成物は、含珪素熱可塑性樹脂と、可視光線を吸収し、赤外線を透過させる性質を有する着色剤(以下、「赤外線透過性着色剤」という。)とを含む組成物であることが好ましい。
In the film (II) of the present invention, in the film constituting the first resin layer, the transmittance for light with a wavelength of 800 to 1,400 nm is 60% or more, and the absorptance for light with a wavelength of 400 to 700 nm is 60% or more. Therefore, the film constituting the first resin layer preferably has a property of absorbing visible light and transmitting infrared light.
Accordingly, the first thermoplastic resin composition constituting the first resin layer satisfying the above properties includes a silicon-containing thermoplastic resin and a colorant having a property of absorbing visible light and transmitting infrared light (hereinafter referred to as “infrared rays”). It is preferable that the composition contains a “transparent colorant”.
 上記赤外線透過性着色剤は、通常、白色以外の有色を呈しており、好ましくは黒色、褐色、濃青色、深緑色等の暗色系である。暗色系の赤外線透過性着色剤を用いることにより、第1樹脂層と充填材部との接着性を損なうことなく、優れた暗色系外観を有する太陽電池モジュールを与えることができる。 The infrared transmissive colorant usually has a color other than white, and is preferably a dark color such as black, brown, dark blue, or dark green. By using a dark-colored infrared transmissive colorant, a solar cell module having an excellent dark-colored appearance can be provided without impairing the adhesion between the first resin layer and the filler part.
 上記赤外線透過性着色剤としては、ペリレン系顔料等が挙げられる。このペリレン系顔料としては、下記一般式(3)~(5)で表される化合物等を用いることができる。
Figure JPOXMLDOC01-appb-C000001
〔式中、R及びRは、互いに同一又は異なって、ブチル基、フェニルエチル基、メトキシエチル基又は4-メトキシフェニルメチル基である。〕
Figure JPOXMLDOC01-appb-C000002
〔式中、R及びRは、互いに同一又は異なって、フェニレン基、3-メトキシフェニレン基、4-メトキシフェニレン基、4-エトキシフェニレン基、炭素数1~3のアルキルフェニレン基、ヒドロキシフェニレン基、4,6-ジメチルフェニレン基、3,5-ジメチルフェニレン基、3-クロロフェニレン基、4-クロロフェニレン基、5-クロロフェニレン基、3-ブロモフェニレン基、4-ブロモフェニレン基、5-ブロモフェニレン基、3-フルオロフェニレン基、4-フルオロフェニレン基、5-フルオロフェニレン基、ナフチレン基、ナフタレンジイル基、ピリジレン基、2,3-ピリジンジイル基、3,4-ピリジンジイル基、4-メチル-2,3-ピリジンジイル基、5-メチル-2,3-ピリジンジイル基、6-メチル-2,3-ピリジンジイル基、5-メチル-3,4-ピリジンジイル基、4-メトキシ-2,3-ピリジンジイル基又は4-クロロ-2,3-ピリジンジイル基である。〕
Figure JPOXMLDOC01-appb-C000003
〔式中、R及びRは、互いに同一又は異なって、フェニレン基、3-メトキシフェニレン基、4-メトキシフェニレン基、4-エトキシフェニレン基、炭素数1~3のアルキルフェニレン基、ヒドロキシフェニレン基、4,6-ジメチルフェニレン基、3,5-ジメチルフェニレン基、3-クロロフェニレン基、4-クロロフェニレン基、5-クロロフェニレン基、3-ブロモフェニレン基、4-ブロモフェニレン基、5-ブロモフェニレン基、3-フルオロフェニレン基、4-フルオロフェニレン基、5-フルオロフェニレン基、ナフチレン基、ナフタレンジイル基、ピリジレン基、2,3-ピリジンジイル基、3,4-ピリジンジイル基、4-メチル-2,3-ピリジンジイル基、5-メチル-2,3-ピリジンジイル基、6-メチル-2,3-ピリジンジイル基、5-メチル-3,4-ピリジンジイル基、4-メトキシ-2,3-ピリジンジイル基又は4-クロロ-2,3-ピリジンジイル基である。〕
Examples of the infrared transmissive colorant include perylene pigments. As the perylene pigment, compounds represented by the following general formulas (3) to (5) can be used.
Figure JPOXMLDOC01-appb-C000001
[Wherein, R 5 and R 6 are the same or different from each other, and are a butyl group, a phenylethyl group, a methoxyethyl group, or a 4-methoxyphenylmethyl group. ]
Figure JPOXMLDOC01-appb-C000002
[In the formula, R 7 and R 8 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group. Group, 4,6-dimethylphenylene group, 3,5-dimethylphenylene group, 3-chlorophenylene group, 4-chlorophenylene group, 5-chlorophenylene group, 3-bromophenylene group, 4-bromophenylene group, 5- Bromophenylene group, 3-fluorophenylene group, 4-fluorophenylene group, 5-fluorophenylene group, naphthylene group, naphthalenediyl group, pyridylene group, 2,3-pyridinediyl group, 3,4-pyridinediyl group, 4- Methyl-2,3-pyridinediyl group, 5-methyl-2,3-pyridinediyl group, 6-methyl Le-2,3-pyridinediyl group, 5-methyl-3,4-pyridinediyl group, 4-methoxy-2,3-pyridinediyl group, or a 4-chloro-2,3-pyridinediyl group. ]
Figure JPOXMLDOC01-appb-C000003
[In the formula, R 7 and R 8 are the same or different from each other, and include a phenylene group, a 3-methoxyphenylene group, a 4-methoxyphenylene group, a 4-ethoxyphenylene group, an alkylphenylene group having 1 to 3 carbon atoms, and a hydroxyphenylene group. Group, 4,6-dimethylphenylene group, 3,5-dimethylphenylene group, 3-chlorophenylene group, 4-chlorophenylene group, 5-chlorophenylene group, 3-bromophenylene group, 4-bromophenylene group, 5- Bromophenylene group, 3-fluorophenylene group, 4-fluorophenylene group, 5-fluorophenylene group, naphthylene group, naphthalenediyl group, pyridylene group, 2,3-pyridinediyl group, 3,4-pyridinediyl group, 4- Methyl-2,3-pyridinediyl group, 5-methyl-2,3-pyridinediyl group, 6-methyl Le-2,3-pyridinediyl group, 5-methyl-3,4-pyridinediyl group, 4-methoxy-2,3-pyridinediyl group, or a 4-chloro-2,3-pyridinediyl group. ]
 また、上記ペリレン系顔料としては、「Paliogen Black S 0084」、「Paliogen Black L 0086」、「Lumogen Black FK4280」、「Lumogen Black FK4281」(以上、いずれもBASF社製商品名)等の市販品を用いることができる。
 上記赤外線透過性着色剤は、単独であるいは2つ以上を組み合わせて用いることができる。
In addition, as the perylene-based pigment, commercially available products such as “Paligen Black S 0084”, “Palogen Black L 0086”, “Lumogen Black FK4280”, “Lumogen Black FK4281” (all of which are trade names manufactured by BASF) are used. Can be used.
The infrared transmissive colorant can be used alone or in combination of two or more.
 上記第1熱可塑性樹脂組成物における赤外線透過性着色剤の含有割合は、上記各光に対する透過性及び吸収性の観点から、上記含珪素熱可塑性樹脂を含む樹脂成分(熱可塑性樹脂)の全量100質量部に対して、好ましくは5質量部以下、より好ましくは0.1~5質量部である。
 尚、本発明のフィルム(II)に含まれる第1樹脂層を構成する第1熱可塑性樹脂組成物は、上記透過性及び吸収性を低下させるものでなければ、目的、用途等に応じて、他の着色剤を含むことができる。例えば、赤外線透過性着色剤以外の着色剤として、黄色系顔料、青色系顔料等を用い、下記のような組合せにより、種々の外観を有する太陽電池モジュールとすることができる。
[1]黒色系赤外線透過性着色剤及び黄色系顔料の組合せによる褐色着色
[2]黒色系赤外線透過性着色剤及び青色系顔料の組合せによる濃青色着色
 他の着色剤を用いる場合、上記第1熱可塑性樹脂組成物における含有割合は、上記赤外線透過性着色剤100質量部に対して、通常、200質量部以下、好ましくは0.01~100質量部である。
The content ratio of the infrared transmitting colorant in the first thermoplastic resin composition is 100 in terms of the total amount of the resin component (thermoplastic resin) containing the silicon-containing thermoplastic resin from the viewpoints of the transmittance and absorbability with respect to each light. The amount is preferably 5 parts by mass or less, more preferably 0.1 to 5 parts by mass with respect to parts by mass.
In addition, the 1st thermoplastic resin composition which comprises the 1st resin layer contained in the film (II) of this invention is according to the objective, a use, etc., unless the said permeability and absorptivity are reduced. Other colorants can be included. For example, a solar cell module having various appearances can be obtained by using a yellow pigment, a blue pigment, or the like as a colorant other than the infrared-transmitting colorant and using the following combinations.
[1] Brown coloration by combination of black-based infrared transmitting colorant and yellow pigment [2] Dark blue coloration by combination of black-based infrared transmitting colorant and blue pigment When other colorant is used, The content in the thermoplastic resin composition is usually 200 parts by mass or less, preferably 0.01 to 100 parts by mass with respect to 100 parts by mass of the infrared transmitting colorant.
 尚、暗色系の着色剤としては、カーボンブラックが知られている。このカーボンブラックは、赤外線領域の波長の光を吸収するため、太陽光が、隣り合う太陽電池素子の隙間から、本発明のフィルム(II)の方へ漏れたときに、フィルムの温度が上昇しやすく、太陽電池素子を含む充填材部の温度を上昇させることがあり、発電効率を低下させる場合があるが、上記赤外線透過性着色剤を用いることにより、発電効率を低下させることなく、意匠性及び耐久性にも優れる。 Carbon black is known as a dark colorant. Since this carbon black absorbs light having a wavelength in the infrared region, the temperature of the film rises when sunlight leaks from the gap between adjacent solar cell elements toward the film (II) of the present invention. It is easy to increase the temperature of the filler part including the solar cell element, and may reduce the power generation efficiency, but by using the infrared transmissive colorant, the design property is not reduced without reducing the power generation efficiency. And excellent durability.
 本発明のフィルム(II)が、単層型フィルム、即ち、第1樹脂層からなるフィルム1A(図1参照)である場合、太陽光が、隣り合う太陽電池素子の隙間から、太陽電池用裏面保護フィルムの方へ漏れたときに、第1樹脂層において、上記波長800~1,400nmの光が透過し、この光による蓄熱が抑制されるので、この第1樹脂層に接着する充填材部の蓄熱が抑制される。そして、このフィルム(II)を用いて形成される太陽電池モジュールにおける蓄熱も抑制され、発電効率の低下を抑制することができる。従って、このフィルム(II)を、別途、光反射性を有する部材と組み合わせて太陽電池モジュールとすることにより、隣り合う太陽電池素子の隙間から漏れて第1樹脂層を透過した一部の太陽光を上記部材から反射させ、その反射光を、第1樹脂層を透過させつつ、太陽電池素子の裏面に供給して、光電変換に利用し、発電効率を向上させることができる。
 また、本発明のフィルム(II)が、図2に示すような、積層型フィルム、即ち、第1樹脂層11と、他の層15とを備えるフィルム1Bである場合、他の層15に、例えば、光反射性を付与することにより、隣り合う太陽電池素子の隙間から漏れて第1樹脂層を透過した一部の太陽光を上記部材から反射させ、その反射光を、第1樹脂層を透過させつつ、太陽電池素子の裏面に供給して、光電変換に利用し、発電効率を向上させることができる。
When the film (II) of the present invention is a single-layer film, that is, a film 1A (see FIG. 1) composed of a first resin layer, sunlight is reflected from the gap between adjacent solar cell elements to the back surface for solar cells. When leaking toward the protective film, the light having the wavelength of 800 to 1,400 nm is transmitted through the first resin layer, and heat storage due to this light is suppressed, so that the filler portion that adheres to the first resin layer Heat storage is suppressed. And the heat storage in the solar cell module formed using this film (II) is also suppressed, and the fall of power generation efficiency can be suppressed. Therefore, when this film (II) is separately combined with a member having light reflectivity to form a solar cell module, a part of sunlight leaked from the gap between adjacent solar cell elements and transmitted through the first resin layer. Can be reflected from the member, and the reflected light can be supplied to the back surface of the solar cell element while being transmitted through the first resin layer, and used for photoelectric conversion to improve power generation efficiency.
In addition, when the film (II) of the present invention is a laminated film as shown in FIG. 2, that is, a film 1 </ b> B including the first resin layer 11 and another layer 15, For example, by providing light reflectivity, part of sunlight leaking from the gap between adjacent solar cell elements and transmitted through the first resin layer is reflected from the member, and the reflected light is reflected from the first resin layer. While being transmitted, it can be supplied to the back surface of the solar cell element and used for photoelectric conversion to improve power generation efficiency.
 本発明のフィルム(II)が積層型フィルムである場合、第1樹脂層において、波長800~1,400nmの光に対する透過率が60%以上であり、波長400~700nmの光に対する吸収率が60%以上であり、且つ、波長800~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける第1樹脂層の表面に放射した場合、この光に対する反射率が50%以上であることが好ましい。この構成を備えることにより、暗色系外観を有し外観性に優れ、太陽光がフィルムに当たった際に、フィルムをはじめとする構成部材の変形を抑制し、発電効率を改良することができる。
 このようなフィルム(II)とするためには、他の層が樹脂層であり、この樹脂層が白色樹脂層であることが好ましい。そして、この白色樹脂層を構成する組成物が、白色系着色剤を含むことが好ましい。この組成物が熱可塑性樹脂組成物又は硬化樹脂組成物であって、これらの樹脂組成物が白色系着色剤を含有する組成物である場合、樹脂の種類、白色系着色剤の種類及びその含有量は、特に限定されない。
When the film (II) of the present invention is a laminated film, the first resin layer has a transmittance of 60% or more for light with a wavelength of 800 to 1,400 nm and an absorptance for light with a wavelength of 400 to 700 nm of 60%. %, And when light having a wavelength of 800 to 1,400 nm is radiated to the surface of the first resin layer in the solar cell back surface protective film, the reflectance to this light is preferably 50% or more. . By providing this configuration, it has a dark color appearance and is excellent in appearance, and when sunlight hits the film, deformation of the constituent members including the film can be suppressed and power generation efficiency can be improved.
In order to obtain such a film (II), the other layer is preferably a resin layer, and this resin layer is preferably a white resin layer. And it is preferable that the composition which comprises this white resin layer contains a white colorant. When this composition is a thermoplastic resin composition or a cured resin composition, and these resin compositions are compositions containing a white colorant, the type of resin, the type of white colorant, and the content thereof The amount is not particularly limited.
 本発明の太陽電池用裏面保護フィルムが、第1樹脂層と、他の層とを備える積層型フィルムである場合、生産性、可撓性、作業性、反射性等の光特性等の観点から、他の層は、熱可塑性樹脂(以下、「第2熱可塑性樹脂」という。)を含有する熱可塑性樹脂組成物(以下、「第2熱可塑性樹脂組成物」という。)からなる樹脂層を含むことが好ましい。 When the back surface protective film for solar cells of the present invention is a laminated film including the first resin layer and other layers, from the viewpoint of optical properties such as productivity, flexibility, workability, and reflectivity. The other layer is a resin layer made of a thermoplastic resin composition (hereinafter referred to as “second thermoplastic resin composition”) containing a thermoplastic resin (hereinafter referred to as “second thermoplastic resin”). It is preferable to include.
 上記第2熱可塑性樹脂は、熱可塑性を有する樹脂であれば、特に限定されず、上記第1熱可塑性樹脂の説明にて例示した熱可塑性樹脂を用いることができ、1種単独であるいは2種以上を組み合わせて用いることができる。本発明において、第2熱可塑性樹脂としては、ゴム質重合体の存在下に、芳香族ビニル化合物を含む単量体を重合して得られた共重合樹脂、又は、この共重合樹脂と、ゴム質重合体の非存在下に、芳香族ビニル化合物を含む単量体を重合して得られた芳香族ビニル系(共)重合体との混合物、からなるゴム強化芳香族ビニル系樹脂、ポリエステル系樹脂及びオレフィン系樹脂が好ましい。上記第2熱可塑性樹脂がゴム強化芳香族ビニル系樹脂を含む場合には、耐加水分解性、寸法安定性、耐衝撃性等に優れる。 The second thermoplastic resin is not particularly limited as long as it is a resin having thermoplasticity, and the thermoplastic resins exemplified in the description of the first thermoplastic resin can be used, one kind alone or two kinds. A combination of the above can be used. In the present invention, the second thermoplastic resin may be a copolymer resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a rubbery polymer, or the copolymer resin and rubber. A rubber-reinforced aromatic vinyl resin comprising a mixture with an aromatic vinyl (co) polymer obtained by polymerizing a monomer containing an aromatic vinyl compound in the absence of a porous polymer, polyester Resins and olefin resins are preferred. When the second thermoplastic resin contains a rubber-reinforced aromatic vinyl resin, it is excellent in hydrolysis resistance, dimensional stability, impact resistance, and the like.
 上記第2熱可塑性樹脂組成物は、第2熱可塑性樹脂のみからなる組成物であってよいし、第2熱可塑性樹脂と、添加剤とを含有する組成物であってもよい。添加剤の含有割合は、上記第1熱可塑性樹脂組成物の場合と同様とすることができる。 The second thermoplastic resin composition may be a composition composed only of the second thermoplastic resin, or may be a composition containing the second thermoplastic resin and an additive. The content of the additive can be the same as in the case of the first thermoplastic resin composition.
 本発明の太陽電池用裏面保護フィルムが、図2に示すような積層型フィルム1Bである場合、このフィルム1Bの製造方法は、他の層15の構成材料によって選択され、特に限定されないが、構成材料が熱可塑性樹脂組成物である場合には、共押出法(Tダイキャストフィルム成形法等)、熱融着法、ドライラミネーション法等の方法が挙げられ、硬化樹脂組成物、無機化合物、金属等である場合には、熱融着法、蒸着法、スパッタリング法等の方法が挙げられる。また、第1熱可塑性樹脂組成物を用いて得られたフィルムと、他の層15を構成することとなるフィルム等とを、ポリウレタン系樹脂組成物、エポキシ樹脂組成物、アクリル系樹脂組成物等の接着剤等により接合してもよい。
 他の層15を構成することとなるフィルムとしては、ポリエステル系樹脂を含む熱可塑性樹脂組成物からなるフィルム(以下、「ポリエステルフィルム」という。)、後述する水蒸気バリア層形成用フィルム等が挙げられる。ポリエステルフィルムとしては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム等が挙げられる。他の層15は、市販品を用いて形成されたものとすることができ、例えば、帝人デュポン社製「Melinex238」(商品名)、SKC社製「SR55」(商品名)、東レ社製「ルミラーX10P」、「ルミラーZV10」、「ルミラーX10S」、「ルミラーE20」(以上、商品名)等が挙げられる。他の層15がポリエステルフィルムを用いて形成された場合、耐傷性に優れた太陽電池用裏面保護フィルムとすることができる。
When the back surface protective film for solar cells of the present invention is a laminated film 1B as shown in FIG. 2, the manufacturing method of this film 1B is selected by the constituent materials of the other layers 15 and is not particularly limited. When the material is a thermoplastic resin composition, methods such as a co-extrusion method (T-die cast film molding method, etc.), a thermal fusion method, a dry lamination method, etc. can be mentioned, and a cured resin composition, an inorganic compound, a metal And the like, examples thereof include a heat fusion method, a vapor deposition method, and a sputtering method. In addition, a film obtained using the first thermoplastic resin composition and a film that constitutes the other layer 15 may be a polyurethane resin composition, an epoxy resin composition, an acrylic resin composition, or the like. You may join by the adhesive agent of this.
Examples of the film constituting the other layer 15 include a film made of a thermoplastic resin composition containing a polyester resin (hereinafter referred to as “polyester film”), a film for forming a water vapor barrier layer described later, and the like. . Examples of the polyester film include a polyethylene terephthalate film, a polyethylene naphthalate film, and a polybutylene terephthalate film. The other layer 15 may be formed using a commercially available product. For example, “Melinex 238” (trade name) manufactured by Teijin DuPont, “SR55” (trade name) manufactured by SKC, “Toray” Lumirror X10P, Lumirror ZV10, Lumirror X10S, Lumirror E20 (above, trade name) and the like. When the other layer 15 is formed using a polyester film, it can be set as the back surface protective film for solar cells excellent in scratch resistance.
 本発明の太陽電池用裏面保護フィルムが積層型フィルムである場合、他の層15が水蒸気バリア層を含むものとすることができる。他の層15が、水蒸気バリア層のみからなるものとすることができ、更には、水蒸気バリア層及び他の樹脂層からなるものとすることもできる。
 上記水蒸気バリア層を備える太陽電池用裏面保護フィルム1Cは、図3に例示され、第1樹脂層11と、金属層151及び樹脂層153からなる水蒸気バリア層15とを、備え、第1樹脂層11及び金属層151が接合している。
When the back surface protective film for solar cells of the present invention is a laminated film, the other layer 15 can include a water vapor barrier layer. The other layer 15 can consist of only a water vapor | steam barrier layer, and also can consist of a water vapor | steam barrier layer and another resin layer.
The solar cell back surface protective film 1 </ b> C including the water vapor barrier layer is exemplified in FIG. 3, and includes a first resin layer 11, a water vapor barrier layer 15 including a metal layer 151 and a resin layer 153, and a first resin layer. 11 and the metal layer 151 are joined.
 上記水蒸気バリア層は、JIS K7129に準じて、温度40℃及び湿度90%RHの条件で測定した透湿度(「水蒸気透湿度」ともいう。)が、好ましくは3g/(m・day)以下、より好ましくは1g/(m・day)以下、更に好ましくは0.7g/(m・day)以下である性能を有する層である。
 上記水蒸気バリア層は、好ましくは、電気絶縁性を有する材料からなる層である。
The water vapor barrier layer has a water vapor transmission rate (also referred to as “water vapor water vapor transmission rate”) measured under conditions of a temperature of 40 ° C. and a humidity of 90% RH in accordance with JIS K7129, preferably 3 g / (m 2 · day) or less. More preferably, the layer has a performance of 1 g / (m 2 · day) or less, and further preferably 0.7 g / (m 2 · day) or less.
The water vapor barrier layer is preferably a layer made of an electrically insulating material.
 上記水蒸気バリア層は、1種の材料からなる単層構造又は多層構造であってよいし、2種以上の材料からなる単層構造又は多層構造であってもよい。本発明においては、その表面に金属及び/又は金属酸化物からなる膜が形成されてなる蒸着フィルムが、水蒸気バリア層形成用材料として用いられて、水蒸気バリア層が形成されたことが好ましい。金属及び金属酸化物は、いずれも、単一物質であってよいし、2種以上であってもよい。
 上記水蒸気バリア層形成用材料は、金属及び/又は金属酸化物からなる膜が、上層側樹脂層と、下層側樹脂層の間に配された3層型フィルムであってもよい。
The water vapor barrier layer may have a single layer structure or a multilayer structure made of one kind of material, or may have a single layer structure or a multilayer structure made of two or more kinds of materials. In the present invention, it is preferable that a vapor barrier layer is formed by using a vapor deposition film in which a film made of a metal and / or a metal oxide is formed on the surface as a material for forming a vapor barrier layer. Both the metal and the metal oxide may be a single substance or two or more kinds.
The water vapor barrier layer forming material may be a three-layer film in which a film made of a metal and / or a metal oxide is disposed between an upper resin layer and a lower resin layer.
 上記金属としては、アルミニウム等が挙げられる。
 また、上記金属酸化物としては、ケイ素、アルミニウム、マグネシウム、カルシウム、カリウム、スズ、ナトリウム、ホウ素、チタン、鉛、ジルコニウム、イットリウム等の元素の酸化物が挙げられる。これらのうち、水蒸気バリア性の観点から、酸化珪素、酸化アルミニウム等が特に好ましい。
 上記金属及び/又は金属酸化物からなる膜は、メッキ、真空蒸着、イオンプレーティング、スパッタリング、プラズマCVD、マイクロウェーブCVD等の方法により形成されたものとすることができる。これらのうちの2つ以上の方法を組み合わせてもよい。
Examples of the metal include aluminum.
Examples of the metal oxide include oxides of elements such as silicon, aluminum, magnesium, calcium, potassium, tin, sodium, boron, titanium, lead, zirconium, and yttrium. Of these, silicon oxide, aluminum oxide, and the like are particularly preferable from the viewpoint of water vapor barrier properties.
The film made of the metal and / or metal oxide may be formed by a method such as plating, vacuum deposition, ion plating, sputtering, plasma CVD, or microwave CVD. Two or more of these methods may be combined.
 上記蒸着フィルムにおける樹脂層としては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート等のポリエステルフィルム;ポリエチレン、ポリプロピレン等のポリオレフィンフィルム;ポリ塩化ビニリデンフィルム、ポリ塩化ビニルフィルム、フッ素樹脂フィルム、ポリスルホンフィルム、ポリスチレンフィルム、ポリアミドフィルム、ポリカーボネートフィルム、ポリアクリロニトリルフィルム、ポリイミドフィルム等が挙げられる。この樹脂膜の厚さは、好ましくは5~50μm、より好ましくは8~20μmである。 Examples of the resin layer in the vapor deposition film include polyester films such as polyethylene terephthalate film and polyethylene naphthalate; polyolefin films such as polyethylene and polypropylene; polyvinylidene chloride film, polyvinyl chloride film, fluororesin film, polysulfone film, polystyrene film, polyamide Examples thereof include a film, a polycarbonate film, a polyacrylonitrile film, and a polyimide film. The thickness of this resin film is preferably 5 to 50 μm, more preferably 8 to 20 μm.
 上記水蒸気バリア層は、市販品を用いて形成されたものとすることができる。例えば、三菱樹脂社製「テックバリアAX」、凸版印刷社製「GXフィルム」、東洋紡社製「エコシアールVE500」(以上、商品名)等のフィルム又はシートを、水蒸気バリア層形成用材料として用いることができる。 The water vapor barrier layer may be formed using a commercially available product. For example, a film or sheet such as “Tech Barrier AX” manufactured by Mitsubishi Plastics, “GX Film” manufactured by Toppan Printing Co., Ltd., “Ecosia VE500” manufactured by Toyobo Co., Ltd. Can do.
 上記第1樹脂層に面する水蒸気バリア層の配置は、特に限定されない。水蒸気バリア層形成用材料として蒸着フィルムを用いた場合、金属及び/又は金属酸化物からなる膜が、第1樹脂層に接合されていてよいし、蒸着膜が外側(表面側)にあってもよい。 The arrangement of the water vapor barrier layer facing the first resin layer is not particularly limited. When a vapor deposition film is used as the water vapor barrier layer forming material, a film made of a metal and / or a metal oxide may be bonded to the first resin layer, or the vapor deposition film may be on the outside (surface side). Good.
 上記水蒸気バリア層の厚さは、好ましくは5~300μm、より好ましくは8~250μm、更に好ましくは10~200μmである。上記水蒸気バリア層が薄すぎると、水蒸気バリア性が不十分になる場合があり、厚すぎると、本発明の太陽電池用裏面保護フィルムとしての柔軟性が不十分でない場合がある。 The thickness of the water vapor barrier layer is preferably 5 to 300 μm, more preferably 8 to 250 μm, and still more preferably 10 to 200 μm. If the water vapor barrier layer is too thin, the water vapor barrier property may be insufficient. If it is too thick, the flexibility as the back surface protective film for solar cell of the present invention may not be sufficient.
 上記他の層が水蒸気バリア層である積層型フィルムの製造方法は、以下に例示される。
(1)第1熱可塑性樹脂組成物を用いて、上記のようにして単層型フィルムを作製した後、この単層型フィルムの表面と、水蒸気バリア層形成用フィルムと、を熱融着又はドライラミネーション若しくは接着剤により接合する方法
(2)第1熱可塑性樹脂組成物を用いて、上記のようにして単層型フィルムを作製した後、この単層型フィルムの表面に、金属及び/又は金属酸化物からなる膜を形成する方法
(3)第1熱可塑性樹脂組成物を用いて、上記のようにして単層型フィルムを作製した後、この単層型フィルムの表面に、金属及び/又は金属酸化物からなる膜を形成し、次いで、この膜と、熱可塑性樹脂組成物を用いてなる他のフィルムとを、熱融着又はドライラミネーション若しくは接着剤により接合する方法
A method for producing a laminated film in which the other layer is a water vapor barrier layer is exemplified below.
(1) After producing a single layer type film as described above using the first thermoplastic resin composition, the surface of the single layer type film and the film for forming a water vapor barrier layer are thermally fused or Method of joining by dry lamination or adhesive (2) After producing a single layer type film as described above using the first thermoplastic resin composition, a metal and / or on the surface of the single layer type film Method for Forming Film Consisting of Metal Oxide (3) After producing a single layer type film as described above using the first thermoplastic resin composition, a metal and / or on the surface of this single layer type film Alternatively, a method of forming a film made of a metal oxide, and then bonding the film to another film using the thermoplastic resin composition by heat fusion, dry lamination, or an adhesive.
 本発明の太陽電池モジュールは、上記本発明の太陽電池用裏面保護フィルムを備えることを特徴とする。本発明の太陽電池モジュールの概略図は、図4に示される。
 図4の太陽電池モジュール2は、太陽光の受光面側(図面で上側)から、表面側透明保護部材21、表面側封止膜(表面側充填材部)23、太陽電池素子25、裏面側封止膜(裏面側充填材部)27、及び上記本発明の太陽電池用裏面保護フィルム1が、この順で配設されたものとすることができる。
The solar cell module of the present invention is provided with the solar cell back surface protective film of the present invention. A schematic diagram of the solar cell module of the present invention is shown in FIG.
The solar cell module 2 in FIG. 4 includes a surface-side transparent protective member 21, a surface-side sealing film (surface-side filler) 23, a solar cell element 25, and a back surface side from the sunlight receiving surface side (upper side in the drawing). The sealing film (back surface side filler portion) 27 and the solar cell back surface protective film 1 of the present invention may be disposed in this order.
 上記表面側透明保護部材21としては、水蒸気バリア性に優れた材料からなるものが好ましく、通常、ガラス、樹脂等からなる透明基板が使用される。尚、ガラスは、透明性及び耐候性に優れるが、耐衝撃性が十分ではなく、重いため、家屋の屋根に載せる太陽電池とする場合には、耐候性の透明樹脂を用いることが好ましい。透明樹脂としては、フッ素系樹脂等が挙げられる。
 上記表面側透明保護部材21の厚さは、ガラスを使用した場合は、通常、1~5mm程度であり、透明樹脂を使用した場合は、通常、0.1~5mm程度である。
As the said surface side transparent protection member 21, what consists of a material excellent in water vapor | steam barrier property is preferable, and the transparent substrate which consists of glass, resin, etc. is used normally. In addition, although glass is excellent in transparency and weather resistance, since impact resistance is not sufficient and heavy, when using as a solar cell mounted on the roof of a house, it is preferable to use a weather resistant transparent resin. Examples of the transparent resin include a fluorine-based resin.
The thickness of the surface side transparent protective member 21 is usually about 1 to 5 mm when glass is used, and is usually about 0.1 to 5 mm when transparent resin is used.
 上記太陽電池素子25は、太陽光の受光により発電機能を有するものである。このような太陽電池素子としては、光起電力としての機能を有するものであれば、特に限定されることなく、公知のものを用いることができる。例えば、単結晶シリコン型太陽電池素子、多結晶シリコン型太陽電池素子等の結晶シリコン太陽電池素子;シングル結合型若しくはタンデム構造型等からなるアモルファスシリコン太陽電池素子;ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池素子;カドミウムテルル(CdTe)や銅インジウムセレナイド(CuInSe)等のII-VI族化合物半導体太陽電池素子等が挙げられる。これらのうち、結晶シリコン太陽電池素子が好ましく、多結晶シリコン型太陽電池素子が特に好ましい。尚、薄膜多結晶性シリコン太陽電池素子、薄膜微結晶性シリコン太陽電池素子、薄膜結晶シリコン太陽電池素子とアモルファスシリコン太陽電池素子とのハイブリッド素子等を用いることができる。 The solar cell element 25 has a power generation function by receiving sunlight. As such a solar cell element, if it has a function as a photovoltaic power, it will not be specifically limited, A well-known thing can be used. For example, a crystalline silicon solar cell element such as a single crystal silicon type solar cell element or a polycrystalline silicon type solar cell element; an amorphous silicon solar cell element composed of a single bond type or a tandem structure type; gallium arsenide (GaAs) or indium phosphorus ( III-V compound semiconductor solar cell elements such as InP); II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe) and copper indium selenide (CuInSe 2 ). Of these, a crystalline silicon solar cell element is preferable, and a polycrystalline silicon solar cell element is particularly preferable. A thin film polycrystalline silicon solar cell element, a thin film microcrystalline silicon solar cell element, a hybrid element of a thin film crystalline silicon solar cell element and an amorphous silicon solar cell element, or the like can be used.
 図3において、図示していないが、上記太陽電池素子25は、通常、配線電極及び取り出し電極を備える。配線電極は、太陽光の受光により、複数の太陽電池素子において生じた電子を集める作用を有するものであり、例えば、表面側封止膜(表面側充填材部)21側の太陽電池素子と、裏面側封止膜(裏面側充填材部)27側の太陽電池素子とを連結するように接続される。また、取り出し電極は、上記配線電極等により集められた電子を電流として取り出す作用を有するものである。 Although not shown in FIG. 3, the solar cell element 25 usually includes a wiring electrode and a take-out electrode. The wiring electrode has an action of collecting electrons generated in the plurality of solar cell elements by receiving sunlight, for example, a solar cell element on the surface side sealing film (surface side filler part) 21 side, It connects so that the solar cell element by the side of the back surface side sealing film (back surface side filler material part) 27 side may be connected. The take-out electrode has an action of taking out electrons collected by the wiring electrode or the like as a current.
 上記表面側封止膜(表面側充填材部)21及び上記裏面側封止膜(裏面側充填材部)27(以下、これらを併せて「封止膜」という。)は、通常、互いに同一又は異なる封止膜形成材料を用いて、予め、シート状又はフィルム状の封止膜とした後、上記表面側透明保護部材21及び太陽電池用裏面保護フィルム1の間において、太陽電池素子25等を熱圧着して形成される。
 各封止膜(充填材部)の厚さは、通常、100μm~4mm程度、好ましくは200μm~3mm程度、より好ましくは300μm~2mm程度である。厚さが薄すぎると、太陽電池素子25が損傷する場合があり、一方、厚さが厚すぎると、製造コストが高くなり好ましくない。
The front-side sealing film (front-side filler part) 21 and the back-side sealing film (back-side filler part) 27 (hereinafter collectively referred to as “sealing film”) are usually the same as each other. Alternatively, after using a different sealing film forming material to form a sheet-shaped or film-shaped sealing film in advance, between the surface-side transparent protective member 21 and the solar cell back surface protective film 1, the solar cell element 25, etc. Formed by thermocompression bonding.
The thickness of each sealing film (filler part) is usually about 100 μm to 4 mm, preferably about 200 μm to 3 mm, more preferably about 300 μm to 2 mm. If the thickness is too thin, the solar cell element 25 may be damaged. On the other hand, if the thickness is too thick, the manufacturing cost increases, which is not preferable.
 上記封止膜形成材料は、通常、樹脂組成物又はゴム組成物である。組成物に含有される樹脂としては、オレフィン系樹脂、エポキシ樹脂、ポリビニルブチラール樹脂等が挙げられる。また、ゴムとしては、シリコーンゴム、水添共役ジエン系ゴム等が挙げられる。これらのうち、オレフィン系樹脂及び水添共役ジエン系ゴムが好ましい。 The sealing film forming material is usually a resin composition or a rubber composition. Examples of the resin contained in the composition include an olefin resin, an epoxy resin, and a polyvinyl butyral resin. Examples of the rubber include silicone rubber and hydrogenated conjugated diene rubber. Of these, olefin resins and hydrogenated conjugated diene rubbers are preferred.
 オレフィン系樹脂としては、エチレン、プロピレン、ブタジエン、イソプレン等のオレフィン、又は、ジオレフィンを重合して得られた重合体等のほか、エチレンと、酢酸ビニル、アクリル酸エステル等の他のモノマーとの共重合体、アイオノマー等を用いることができる。具体例としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、エチレン・塩化ビニル共重合体、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸エステル共重合体、エチレン・ビニルアルコール共重合体、塩素化ポリエチレン、塩素化ポリプロピレン等が挙げられる。これらのうち、エチレン・酢酸ビニル共重合体及びエチレン・(メタ)アクリル酸エステル共重合体が好ましく、エチレン・酢酸ビニル共重合体が特に好ましい。 Examples of olefin resins include olefins such as ethylene, propylene, butadiene, and isoprene, or polymers obtained by polymerizing diolefins, and ethylene and other monomers such as vinyl acetate and acrylate esters. Copolymers, ionomers and the like can be used. Specific examples include polyethylene, polypropylene, polymethylpentene, ethylene / vinyl chloride copolymer, ethylene / vinyl acetate copolymer, ethylene / (meth) acrylic acid ester copolymer, ethylene / vinyl alcohol copolymer, chlorine. Examples thereof include chlorinated polyethylene and chlorinated polypropylene. Among these, an ethylene / vinyl acetate copolymer and an ethylene / (meth) acrylic acid ester copolymer are preferable, and an ethylene / vinyl acetate copolymer is particularly preferable.
 また、水添共役ジエン系ゴムとしては、水添スチレン・ブタジエンゴム、スチレン・エチレンブチレン・オレフィン結晶ブロックポリマー、オレフィン結晶・エチレンブチレン・オレフィン結晶ブロックポリマー、スチレン・エチレンブチレン・スチレンブロックポリマー等が挙げられる。好ましくは、下記の構造を有する共役ジエンブロック共重合体の水素添加物、即ち、芳香族ビニル化合物単位を含む重合体ブロックA;1,2-ビニル結合含量が25モル%を超える共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックB;1,2-ビニル結合含量が25モル%以下の共役ジエン系化合物単位を含む重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックC;並びに芳香族ビニル化合物単位及び共役ジエン系化合物単位を含む共重合体の二重結合部分を80モル%以上水素添加してなる重合体ブロックD、から選ばれた少なくとも2種を有するブロック共重合体である。 Examples of hydrogenated conjugated diene rubber include hydrogenated styrene / butadiene rubber, styrene / ethylene butylene / olefin crystal block polymer, olefin crystal / ethylene butylene / olefin crystal block polymer, styrene / ethylene butylene / styrene block polymer, and the like. It is done. Preferably, a hydrogenated conjugated diene block copolymer having the following structure, that is, a polymer block A containing an aromatic vinyl compound unit; a conjugated diene compound having a 1,2-vinyl bond content exceeding 25 mol% Polymer block B obtained by hydrogenating at least 80 mol% of a double bond portion of a polymer containing units; Polymer double containing a conjugated diene compound unit having a 1,2-vinyl bond content of 25 mol% or less Polymer block C obtained by hydrogenating 80 mol% or more of the bonded portion; and a polymer block C obtained by hydrogenating 80 mol% or more of the double bond portion of the copolymer containing the aromatic vinyl compound unit and the conjugated diene compound unit. It is a block copolymer having at least two selected from the combined block D.
 上記封止膜形成材料は、必要に応じて、架橋剤、架橋助剤、シランカップリング剤、紫外線吸収剤、ヒンダードフェノール系やホスファイト系の酸化防止剤、ヒンダードアミン系の光安定剤、光拡散剤、難燃剤、変色防止剤等の添加剤を含有することができる。
 上記のように、表面側封止膜(表面側充填材部)23を形成する材料と、裏面側封止膜(裏面側充填材部)27を形成する材料は、同一であっても異なってもよいが、接着性の点から同じであることが好ましい。
The sealing film-forming material may contain a crosslinking agent, a crosslinking aid, a silane coupling agent, an ultraviolet absorber, a hindered phenol-based or phosphite-based antioxidant, a hindered amine-based light stabilizer, a light as necessary. Additives such as diffusing agents, flame retardants, and anti-discoloring agents can be contained.
As described above, the material for forming the front surface side sealing film (front surface side filler portion) 23 and the material for forming the back surface side sealing film (back surface side filler portion) 27 are the same or different. However, the same is preferable from the viewpoint of adhesiveness.
 本発明の太陽電池モジュールは、例えば、表面側透明保護部材、表面側封止膜、太陽電池素子、裏面側封止膜及び上記本発明の太陽電池用裏面保護フィルムを、この順に配置した後、これらを一体として、真空吸引しながら加熱圧着する、ラミネーション法等により製造することができる。
 このラミネーション法におけるラミネート温度は、上記本発明の太陽電池用裏面保護フィルムの接着性の観点から、通常、100℃~250℃程度である。また、ラミネート時間は、通常、3~30分程度である。
The solar cell module of the present invention, for example, after arranging the surface side transparent protective member, the surface side sealing film, the solar cell element, the back surface side sealing film and the solar cell back surface protective film of the present invention in this order, These can be manufactured as one body by a lamination method or the like in which heat pressure bonding is performed while vacuum suction is performed.
The lamination temperature in this lamination method is usually about 100 ° C. to 250 ° C. from the viewpoint of adhesion of the solar cell back surface protective film of the present invention. The laminating time is usually about 3 to 30 minutes.
 以下に、実施例を挙げ、本発明を更に詳細に説明するが、本発明の主旨を超えない限り、本発明はかかる実施例に限定されるものではない。尚、下記において、部及び%は、特に断らない限り、質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to such examples as long as the gist of the present invention is not exceeded. In the following, “part” and “%” are based on mass unless otherwise specified.
1.評価方法
 各種評価項目の測定方法を以下に示す。
1-1.熱可塑性樹脂中のゴム含有量
 各樹脂層を構成する熱可塑性樹脂組成物を製造するための原料仕込み時の組成から、各樹脂層における熱可塑性樹脂の全量に対する、全てのゴム成分の合計割合を計算した。
1-2.N-フェニルマレイミド単位量及び含珪素構造単位量
 各樹脂層を構成する熱可塑性樹脂組成物を製造するための原料仕込み時の組成から算出した。
1-3.ガラス転移温度(Tg)
 JIS K 7121に準拠して、TA Instruments社製示差走査熱量計「DSC2910」(型式名)により測定した。
1. Evaluation method Measurement methods for various evaluation items are shown below.
1-1. Rubber content in thermoplastic resin From the composition at the time of raw material preparation for producing the thermoplastic resin composition constituting each resin layer, the total ratio of all rubber components to the total amount of thermoplastic resin in each resin layer Calculated.
1-2. N-Phenylmaleimide unit amount and silicon-containing structural unit amount It was calculated from the composition at the time of charging the raw materials for producing the thermoplastic resin composition constituting each resin layer.
1-3. Glass transition temperature (Tg)
Based on JIS K 7121, it was measured with a differential scanning calorimeter “DSC2910” (model name) manufactured by TA Instruments.
1-4.剥離強度
 太陽電池用裏面保護フィルムを短冊状(長さ200mm、幅15mm、厚さは表に記載)に裁断し、2枚の評価用フィルムを得た。エチレン・酢酸ビニル共重合体からなる長さ100mm、幅15mm及び厚さ400μmのフィルム「ウルトラパール」(商品名、サンビック社製)を、2枚の評価用フィルムの間に配置し、積層状態でラミネーターに入れた。その後、ラミネーターの上部及び下部を真空状態にし、150℃で5分間予熱した。次いで、上部を大気圧に戻して15分間プレスし、剥離強度測定用試料を得た。
 得られた剥離強度測定用試料において、評価用フィルムが、EVAフィルムと接着していない部分からT字剥離することにより、剥離強度を測定した。また、剥離状態を評価した。剥離状態は、EVAフィルムが破壊している場合を「○」、EVAフィルム及び評価用フィルム部分の界面で破壊している場合を「×」とした。
1-4. Peel strength The back protective film for solar cells was cut into strips (length 200 mm, width 15 mm, thickness described in the table) to obtain two evaluation films. A film “Ultra Pearl” (trade name, manufactured by Sanvic Co., Ltd.) having a length of 100 mm, a width of 15 mm and a thickness of 400 μm made of an ethylene / vinyl acetate copolymer is placed between two evaluation films and in a laminated state. I put it in the laminator. Thereafter, the upper and lower portions of the laminator were evacuated and preheated at 150 ° C. for 5 minutes. Next, the upper part was returned to atmospheric pressure and pressed for 15 minutes to obtain a sample for measuring peel strength.
In the obtained peel strength measurement sample, the peel strength was measured by peeling the T-shape from the portion where the evaluation film was not adhered to the EVA film. Moreover, the peeling state was evaluated. The peeled state was evaluated as “◯” when the EVA film was broken, and “X” when broken at the interface between the EVA film and the evaluation film part.
1-5.L値
 太陽電池用裏面保護フィルム(50mm×50mm、厚さは表に記載)を測定試料とし、東洋精機製作所社製分光光度計「TCS-II」(型式名)を用いて、太陽電池用裏面保護フィルムにおける第1樹脂層表面のL値を測定した。
1-5. L value Back surface protection film for solar cells (50 mm x 50 mm, thickness is listed in the table), using a spectrophotometer "TCS-II" (model name) manufactured by Toyo Seiki Seisakusho Co., Ltd. L value of the 1st resin layer surface in a protective film was measured.
1-6.波長400~1,400nmの光に対する反射率(%)
 太陽電池用裏面保護フィルム(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、反射率を測定した。即ち、測定試料の第1樹脂層表面に、光を放射し、400nmから1,400nmまでの波長域における反射率を、20nm毎に測定し、これらの平均値を算出した。
1-6. Reflectance (%) for light with a wavelength of 400 to 1,400 nm
Using a back protection film for solar cells (50 mm x 50 mm, thickness shown in the table) as a measurement sample, reflectivity was measured with an ultraviolet-visible near-infrared spectrophotometer "V-670" (model name) manufactured by JASCO Corporation did. That is, light was emitted to the surface of the first resin layer of the measurement sample, the reflectance in the wavelength region from 400 nm to 1,400 nm was measured every 20 nm, and the average value thereof was calculated.
1-7.波長800~1,400nmの光に対する透過率(%)
 赤外線透過性着色剤(ペリレン系黒色顔料)を含む第1熱可塑性樹脂組成物を用いて得られた第1樹脂層用フィルム(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、透過率を測定した。即ち、測定試料に、光を放射し、800nmから1,400nmまでの波長域における透過率を、20nm毎に測定し、これらの平均値を算出した。
1-7. Transmittance (%) for light with a wavelength of 800 to 1,400 nm
A first resin layer film (50 mm × 50 mm, thickness is listed in the table) obtained using a first thermoplastic resin composition containing an infrared transmitting colorant (perylene-based black pigment) is used as a measurement sample. The transmittance was measured with an ultraviolet-visible near-infrared spectrophotometer “V-670” (model name) manufactured by Bunko Co., Ltd. That is, light was emitted to the measurement sample, the transmittance in the wavelength region from 800 nm to 1,400 nm was measured every 20 nm, and the average value thereof was calculated.
1-8.波長400~700nmの光に対する吸収率(%)
 赤外線透過性着色剤(ペリレン系黒色顔料)を含む第1熱可塑性樹脂組成物を用いて得られた第1樹脂層用フィルム(50mm×50mm、厚さは表に記載)を測定試料とし、日本分光社製紫外可視近赤外分光光度計「V-670」(型式名)により、透過率及び反射率を測定した。即ち、測定試料に、光を放射し、400nmから700nmまでの波長域における透過率及び反射率を、20nm毎に測定し、これらの平均値を算出した。吸収率は、透過率の平均値及び反射率の平均値を用いて、下記式により算出した。
  吸収率(%)=100-{透過率(%)+反射率(%)}
1-8. Absorptivity (%) for light of wavelength 400-700nm
A first resin layer film (50 mm × 50 mm, thickness shown in the table) obtained using the first thermoplastic resin composition containing an infrared transmitting colorant (perylene-based black pigment) is used as a measurement sample. Transmittance and reflectance were measured with a spectrophotometer “V-670” (model name). That is, light was emitted to the measurement sample, the transmittance and reflectance in the wavelength range from 400 nm to 700 nm were measured every 20 nm, and the average value thereof was calculated. The absorptance was calculated by the following formula using the average value of transmittance and the average value of reflectance.
Absorptivity (%) = 100− {Transmittance (%) + Reflectance (%)}
1-9.引張強度保持率(湿熱老化試験)
 所定の大きさの太陽電池用裏面保護フィルムを、下記曝露試験に供し、曝露前後の引張強度をJIS K7127に準じて測定して、その比を算出した。
Figure JPOXMLDOC01-appb-M000004
<曝露試験>
 太陽電池用裏面保護フィルムを短冊状(長さ200mm、幅15mm)に裁断し、温度85℃及び湿度85%RHの条件下、2,000時間放置した。
1-9. Tensile strength retention (wet heat aging test)
The solar cell back surface protective film of a predetermined size was subjected to the following exposure test, and the tensile strength before and after exposure was measured according to JIS K7127, and the ratio was calculated.
Figure JPOXMLDOC01-appb-M000004
<Exposure test>
The back protective film for solar cells was cut into strips (length: 200 mm, width: 15 mm) and left for 2,000 hours under conditions of a temperature of 85 ° C. and a humidity of 85% RH.
1-10.寸法安定性
 所定の大きさの太陽電池用裏面保護フィルムを、下記加熱試験に供し、加熱前後の標線の長さを測定し、下記式に基づいて、寸法変化率を算出した。
Figure JPOXMLDOC01-appb-M000005
 算出値から、寸法安定性を、下記基準により判定した。
○:寸法変化率が1%未満である
△:寸法変化率が1%以上2%未満である
×:寸法変化率が2%以上である
<加熱試験>
 太陽電池用裏面保護フィルムを正方形状(120mm×120mm)に裁断し、中央部に100mm×100mmの正方形の標線を引いた。このフィルムを、温度120℃の恒温槽に30分間放置した後、取り出して放冷した。
1-10. Dimensional stability The back surface protective film for a solar cell having a predetermined size was subjected to the following heating test, the length of the marked line before and after heating was measured, and the dimensional change rate was calculated based on the following formula.
Figure JPOXMLDOC01-appb-M000005
From the calculated value, the dimensional stability was determined according to the following criteria.
○: Dimensional change rate is less than 1% Δ: Dimensional change rate is 1% or more and less than 2% ×: Dimensional change rate is 2% or more <Heating test>
The back surface protective film for solar cells was cut into a square shape (120 mm × 120 mm), and a square marked line of 100 mm × 100 mm was drawn at the center. The film was left in a constant temperature bath at a temperature of 120 ° C. for 30 minutes, then taken out and allowed to cool.
1-11.光電変換効率向上率
 温度25℃±2℃、及び、湿度50±5%RHに調整された室において、ペクセル・テクノロジーズ社製Solar Simulator「PEC-11」(型式名)を用いて、予め、セル単体の光電変換効率を測定した1/4多結晶シリコンセルの表面に、厚さ3mmのガラスを、裏面に、太陽電池用裏面保護フィルムを配置して、シリコンセルを挟み、ガラス及び太陽電池用裏面保護フィルムの間にEVAを導入してシリコンセルを封止し太陽電池モジュールを作製した。その後、温度の影響を低減させるために、光を照射後すぐに光電変換効率を測定した。得られた光電変換効率と、セル単体の光電変換効率とを用いて、光電変換効率向上率を求めた。
 光電変換効率向上率(%)={(モジュールの光電変換効率-セル単体の光電変換効率)÷(セル単体の光電変換効率)}×100
1-11. Photoelectric conversion efficiency improvement rate In a room adjusted to a temperature of 25 ° C. ± 2 ° C. and a humidity of 50 ± 5% RH, a cell is previously prepared using Peccell Technologies' Solar Simulator “PEC-11” (model name). A glass cell with a thickness of 3 mm is placed on the surface of a ¼ polycrystalline silicon cell whose photoelectric conversion efficiency is measured, and a back surface protective film for a solar cell is placed on the back surface. The silicon cell is sandwiched between the glass and the solar cell. EVA was introduced between the back surface protective films to seal the silicon cells, thereby producing solar cell modules. Then, in order to reduce the influence of temperature, the photoelectric conversion efficiency was measured immediately after the light irradiation. The photoelectric conversion efficiency improvement rate was calculated | required using the obtained photoelectric conversion efficiency and the photoelectric conversion efficiency of the cell single-piece | unit.
Photoelectric conversion efficiency improvement rate (%) = {(Photoelectric conversion efficiency of module−Photoelectric conversion efficiency of single cell) ÷ (Photoelectric conversion efficiency of single cell)} × 100
1-12.水蒸気バリア性
 温度40℃、及び、湿度90%RHの条件下、MOCON社製水蒸気透過率測定装置「PERMATRAN W3/31」(型式名)を用いて、JIS K7129Bに準じて、水蒸気透湿度を測定した。尚、透過面として、第1樹脂層ではない側の表面を水蒸気側に配置した。
1-12. Water vapor barrier property Under the conditions of a temperature of 40 ° C. and a humidity of 90% RH, the water vapor permeability is measured according to JIS K7129B using a water vapor permeability measuring device “PERMATRAN W3 / 31” (model name) manufactured by MOCON. did. In addition, the surface of the side which is not the 1st resin layer was arrange | positioned as a permeation | transmission surface at the water vapor | steam side.
1-13.耐傷性
 太陽電池用裏面保護フィルムにおける第1樹脂層ではない側の表面を、東測精密工業株式会社製往復動摩擦試験機を用いて、綿帆布かなきん3号、垂直荷重500gで500往復摩擦させた。その後の表面を目視で観察し、下記基準で判定した。
○:傷が観察されなかった
△:傷がわずかに観察された
×:傷が明確に観察された
1-13. Scratch resistance The surface of the back surface protective film for solar cells that is not the first resin layer is subjected to 500 reciprocal frictions using a reciprocating friction tester manufactured by Tohken Seimitsu Kogyo Co., Ltd. under a vertical load of 500 g. It was. The subsequent surface was visually observed and judged according to the following criteria.
○: No scratch was observed Δ: Scratch was slightly observed ×: Scratch was clearly observed
2.太陽電池用裏面保護フィルムの製造原料
 熱可塑性樹脂組成物の調製等に用いた原料成分を以下に示す。
2. Production raw materials for the back surface protective film for solar cells The raw material components used for the preparation of the thermoplastic resin composition are shown below.
2-1.グラフト重合樹脂(A-1)
 p-ビニルフェニルメチルジメトキシシラン1.3部及びオクタメチルシクロテトラシロキサン98.7部を混合し、これを、ドデシルベンゼンスルホン酸2.0部を溶解した蒸留水300部中に入れ、ホモジナイザーにより3分間攪拌して乳化分散させた。この乳化分散液を、コンデンサー、窒素導入口及び攪拌機を備えたセパラブルフラスコに移し、攪拌しながら、90℃で6時間加熱した。次いで、5℃で24時間保持し、縮合を完結させ、ポリオルガノシロキサン系ゴム(含珪素ゴム)を含むラテックスを得た。縮合率は93%であった。その後、このラテックスを、炭酸ナトリウム水溶液を用いてpH7に中和した。得られたポリオルガノシロキサン系ゴムの体積平均粒子径は300nmであった。
 次に、攪拌機を備えた内容積7リットルのガラス製フラスコに、イオン交換水100部、オレイン酸カリウム1.5部、水酸化カリウム0.01部、tert-ドデシルメルカプタン0.1部、上記ポリオルガノシロキサン系ゴム40部を含む、pH7に調製されたラテックス、スチレン15部及びアクリロニトリル5部からなるバッチ重合成分を加え、攪拌しながら昇温した。温度が45℃に達した時点で、エチレンジアミン四酢酸ナトリウム0.1部、硫酸第1鉄0.003部、ホルムアルデヒドナトリウムスルホキシラート・二水塩0.2部及びイオン交換水15部よりなる活性剤水溶液、並びにジイソプロピルベンゼンハイドロパーオキサイド0.1部を添加し、1時間重合を行った。
 その後、上記反応系に、イオン交換水50部、オレイン酸カリウム1部、水酸化カリウム0.02部、tert-ドデシルメルカプタン0.1部、ジイソプロピルベンゼンハイドロパーオキサイド0.2部、スチレン30部及びアクリロニトリル10部よりなるインクレメント重合成分を、3時間に渡って連続的に添加し、重合を続けた。添加終了後、更に攪拌を継続した。1時間後、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加し、重合を終了し、グラフト重合樹脂(A-1)を含むラテックスを得た。次いで、上記ラテックスに、硫酸1.5部を加えて、樹脂成分を90℃で凝固させ、その後、樹脂成分の水洗、脱水及び乾燥を行って、粉末状のグラフト重合樹脂(A-1)を得た。ガラス転移温度(Tg)は108℃、グラフト率は84%、極限粘度[η](メチルエチルケトン中、30℃)は0.60dl/gであった。
2-1. Graft polymerization resin (A-1)
1.3 parts of p-vinylphenylmethyldimethoxysilane and 98.7 parts of octamethylcyclotetrasiloxane are mixed, and this is put into 300 parts of distilled water in which 2.0 parts of dodecylbenzenesulfonic acid is dissolved, and 3 parts by a homogenizer. The mixture was stirred and dispersed for emulsification. This emulsified dispersion was transferred to a separable flask equipped with a condenser, a nitrogen inlet and a stirrer, and heated at 90 ° C. for 6 hours while stirring. Subsequently, it was kept at 5 ° C. for 24 hours to complete the condensation, and a latex containing a polyorganosiloxane rubber (silicon-containing rubber) was obtained. The condensation rate was 93%. Thereafter, the latex was neutralized to pH 7 using an aqueous sodium carbonate solution. The obtained polyorganosiloxane rubber had a volume average particle size of 300 nm.
Next, a glass flask equipped with a stirrer and having an internal volume of 7 liters was charged with 100 parts of ion exchange water, 1.5 parts of potassium oleate, 0.01 parts of potassium hydroxide, 0.1 part of tert-dodecyl mercaptan, A batch polymerization component consisting of latex prepared at pH 7 containing 15 parts of organosiloxane rubber, 15 parts of styrene and 5 parts of acrylonitrile was added, and the temperature was raised while stirring. When the temperature reaches 45 ° C., the activity comprises 0.1 part of sodium ethylenediaminetetraacetate, 0.003 part of ferrous sulfate, 0.2 part of sodium formaldehyde sulfoxylate dihydrate and 15 parts of ion-exchanged water. Aqueous agent aqueous solution and 0.1 part of diisopropylbenzene hydroperoxide were added and polymerization was carried out for 1 hour.
Thereafter, 50 parts of ion-exchanged water, 1 part of potassium oleate, 0.02 part of potassium hydroxide, 0.1 part of tert-dodecyl mercaptan, 0.2 part of diisopropylbenzene hydroperoxide, 30 parts of styrene and An incremental polymerization component consisting of 10 parts of acrylonitrile was added continuously over 3 hours to continue the polymerization. After completion of the addition, stirring was further continued. After 1 hour, 0.2 part of 2,2′-methylenebis (4-ethyl-6-tert-butylphenol) was added to complete the polymerization, and a latex containing the graft polymerization resin (A-1) was obtained. Next, 1.5 parts of sulfuric acid is added to the latex to coagulate the resin component at 90 ° C., and then the resin component is washed with water, dehydrated and dried to obtain a powdered graft polymerization resin (A-1). Obtained. The glass transition temperature (Tg) was 108 ° C., the graft ratio was 84%, and the intrinsic viscosity [η] (in methyl ethyl ketone, 30 ° C.) was 0.60 dl / g.
2-2.グラフト重合樹脂(A-2)
 アクリル酸n-ブチル99部及びアリルメタアクリレート1部を乳化重合して得られた、体積平均粒子径100nmのアクリルゴム(ゲル含率90%)50部を含む固形分濃度40%のラテックスを収容した反応器に、ドデシルベンゼンスルホン酸ナトリウム1部及びイオン交換水150部を加えて希釈した。その後、反応器内を窒素ガスで置換し、エチレンジアミン四酢酸二ナトリウム0.02部、硫酸第一鉄0.005部及びホルムアルデヒドスルホキシル酸ナトリウム0.3部を加え、撹枠しながら60℃まで昇温した。
 一方、別途準備した容器において、スチレン37.5部及びアクリロニトリル12.5部の混合物50部に、ターピノーレン1.0部及びクメンハイドロパーオキサイド0.2部を溶解させ、その後、容器内を窒素ガスで置換し、単量体組成物を得た。
 次いで、上記単量体組成物を、5時間かけて、一定流量で上記反応器に添加しながら70℃で重合を行い、グラフト重合樹脂(A-2)を含むラテックスを得た。このラテックスに、硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、樹脂成分の水洗、脱水及び乾燥を行って、粉末状のグラフト重合樹脂(A-2)を得た。ガラス転移温度(Tg)は108℃、グラフト率は93%、極限粘度[η](メチルエチルケトン中、30℃)は0.30dl/gであった。
2-2. Graft polymerization resin (A-2)
Accommodates latex with a solid content concentration of 40% containing 50 parts of acrylic rubber (gel content 90%) with a volume average particle diameter of 100 nm, obtained by emulsion polymerization of 99 parts of n-butyl acrylate and 1 part of allyl methacrylate. 1 part of sodium dodecylbenzenesulfonate and 150 parts of ion-exchanged water were added to the reactor and diluted. Thereafter, the inside of the reactor was replaced with nitrogen gas, and 0.02 part of disodium ethylenediaminetetraacetate, 0.005 part of ferrous sulfate and 0.3 part of sodium formaldehydesulfoxylate were added, and the mixture was stirred up to 60 ° C. The temperature rose.
On the other hand, in a separately prepared container, 1.0 part of terpinolene and 0.2 part of cumene hydroperoxide were dissolved in 50 parts of a mixture of 37.5 parts of styrene and 12.5 parts of acrylonitrile. To obtain a monomer composition.
Next, the monomer composition was polymerized at 70 ° C. over 5 hours while being added to the reactor at a constant flow rate to obtain a latex containing a graft polymerization resin (A-2). Magnesium sulfate was added to this latex to coagulate the resin component. Thereafter, the resin component was washed with water, dehydrated and dried to obtain a powdered graft polymerization resin (A-2). The glass transition temperature (Tg) was 108 ° C., the graft ratio was 93%, and the intrinsic viscosity [η] (in methyl ethyl ketone, 30 ° C.) was 0.30 dl / g.
2-3.グラフト重合樹脂(A-3)
 アクリル酸n-ブチル97.5部、アリルメタアクリレート1部及びビニルメトキシシラン1.5部を乳化重合して得られた、体積平均粒子径100nmのアクリル系ゴム(ゲル含率90%)50部を含む固形分濃度40%のラテックスを収容した反応器に、ドデシルベンゼンスルホン酸ナトリウム1部及びイオン交換水150部を加えて希釈した。その後、反応器内を窒素ガスで置換し、エチレンジアミン四酢酸二ナトリウム0.02部、硫酸第一鉄0.005部及びホルムアルデヒドスルホキシル酸ナトリウム0.3部を加え、撹枠しながら60℃まで昇温した。
 一方、別途準備した容器において、スチレン37.5部及びアクリロニトリル12.5部の混合物50部に、ターピノーレン1.0部及びクメンハイドロパーオキサイド0.2部を溶解させ、その後、容器内を窒素ガスで置換し、単量体組成物を得た。
 次いで、上記単量体組成物を、5時間かけて、一定流量で上記反応器に添加しながら70℃で重合を行い、グラフト重合樹脂(A-3)を含むラテックスを得た。このラテックスに、硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、樹脂成分の水洗、脱水及び乾燥を行って、粉末状のグラフト重合樹脂(A-3)を得た。ガラス転移温度(Tg)は108℃、グラフト率は93%、極限粘度[η](メチルエチルケトン中、30℃)は0.30dl/gであった。
2-3. Graft polymerization resin (A-3)
50 parts of acrylic rubber (gel content 90%) obtained by emulsion polymerization of 97.5 parts of n-butyl acrylate, 1 part of allyl methacrylate and 1.5 parts of vinylmethoxysilane 1 part of sodium dodecylbenzenesulfonate and 150 parts of ion-exchanged water were added to a reactor containing a latex containing 40% solid content and diluted. Thereafter, the inside of the reactor was replaced with nitrogen gas, and 0.02 part of disodium ethylenediaminetetraacetate, 0.005 part of ferrous sulfate and 0.3 part of sodium formaldehydesulfoxylate were added, and the mixture was stirred up to 60 ° C. The temperature rose.
On the other hand, in a separately prepared container, 1.0 part of terpinolene and 0.2 part of cumene hydroperoxide were dissolved in 50 parts of a mixture of 37.5 parts of styrene and 12.5 parts of acrylonitrile. To obtain a monomer composition.
Next, the monomer composition was polymerized at 70 ° C. over 5 hours while being added to the reactor at a constant flow rate to obtain a latex containing the graft polymerization resin (A-3). Magnesium sulfate was added to this latex to coagulate the resin component. Thereafter, the resin component was washed with water, dehydrated and dried to obtain a powdered graft polymerization resin (A-3). The glass transition temperature (Tg) was 108 ° C., the graft ratio was 93%, and the intrinsic viscosity [η] (in methyl ethyl ketone, 30 ° C.) was 0.30 dl / g.
2-4.グラフト重合樹脂(A-4)
 撹拌機を備えたガラス製反応容器に、イオン交換水75部、ロジン酸カリウム0.5部、tert-ドデシルメルカプタン0.1部、体積平均粒子径270nmのポリブタジエンゴム(ゲル含率:90%)32部を含む固形分濃度57%のラテックス、体積平均粒子径550nmのスチレン・ブタジエン共重合体(スチレン単位量25%、ゲル含率50%)8部を含む固形分濃度68%のラテックス、スチレン15部及びアクリロニトリル5部を入れ、窒素気流中、攪拌しながら昇温した。内温が45℃に達した時点で、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部及びブドウ糖0.2部をイオン交換水20部に溶解した水溶液を加えた。その後、クメンハイドロパーオキサイド0.07部を加え、70℃で重合を開始し、1時間重合させた。
 その後、イオン交換水50部、ロジン酸カリウム0.7部、スチレン30部、アクリロニトリル10部、tert-ドデシルメルカプタン0.05部及びクメンハイドロパーオキサイド0.01部を3時間かけて連続的に添加し、重合を継続した。1時間重合させた後、2,2’-メチレン-ビス(4-エチレン-6-tert-ブチルフェノール)0.2部を添加し、重合を完結させ、ラテックスを得た。
 次いで、このラテックスに硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗及び乾燥することにより、グラフト重合樹脂(A-4)を得た。グラフト率は72%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。また、ガラス転移温度(Tg)は、108℃であった。
2-4. Graft polymerization resin (A-4)
In a glass reaction vessel equipped with a stirrer, 75 parts of ion-exchanged water, 0.5 parts of potassium rosinate, 0.1 part of tert-dodecyl mercaptan, volume average particle size of 270 nm polybutadiene rubber (gel content: 90%) Latex having a solid content concentration of 57% containing 32 parts, Styrene-butadiene copolymer having a volume average particle size of 550 nm (styrene unit content 25%, gel content 50%) Latex having a solid content concentration of 68%, styrene 15 parts and 5 parts of acrylonitrile were put, and it heated up, stirring in nitrogen stream. When the internal temperature reached 45 ° C., an aqueous solution in which 0.2 parts of sodium pyrophosphate, 0.01 parts of ferrous sulfate heptahydrate and 0.2 parts of glucose were dissolved in 20 parts of ion-exchanged water was added. . Thereafter, 0.07 part of cumene hydroperoxide was added, polymerization was started at 70 ° C., and polymerization was performed for 1 hour.
Thereafter, 50 parts of ion-exchanged water, 0.7 part of potassium rosinate, 30 parts of styrene, 10 parts of acrylonitrile, 0.05 part of tert-dodecyl mercaptan and 0.01 part of cumene hydroperoxide are continuously added over 3 hours. The polymerization was continued. After the polymerization for 1 hour, 0.2 part of 2,2′-methylene-bis (4-ethylene-6-tert-butylphenol) was added to complete the polymerization to obtain a latex.
Next, magnesium sulfate was added to the latex to coagulate the resin component. Thereafter, the graft polymerization resin (A-4) was obtained by washing with water and drying. The graft ratio was 72%, and the intrinsic viscosity [η] of the acetone-soluble component was 0.47 dl / g. The glass transition temperature (Tg) was 108 ° C.
2-5.アクリロニトリル・スチレン共重合体
 テクノポリマー社製AS樹脂「SAN-H」(商品名)を用いた。ガラス転移温度(Tg)は、108℃である。
2-5. Acrylonitrile / styrene copolymer AS resin “SAN-H” (trade name) manufactured by Technopolymer Co., Ltd. was used. The glass transition temperature (Tg) is 108 ° C.
2-6.アクリロニトリル・スチレン・N-フェニルマレイミド共重合体
 日本触媒社製アクリロニトリル・スチレン・N-フェニルマレイミド共重合体「ポリイミレックス PAS1460」(商品名)を用いた。N-フェニルマレイミド単位量は40%、スチレン単位量は51%、GPCによるポリスチレン換算のMwは120,000である。ガラス転移温度(Tg)は、173℃である。
2-6. Acrylonitrile / styrene / N-phenylmaleimide copolymer Acrylonitrile / styrene / N-phenylmaleimide copolymer “Polyimilex PAS1460” (trade name) manufactured by Nippon Shokubai Co., Ltd. was used. The amount of N-phenylmaleimide units is 40%, the amount of styrene units is 51%, and the Mw in terms of polystyrene by GPC is 120,000. The glass transition temperature (Tg) is 173 ° C.
2-7.白色系着色剤
 石原産業社製酸化チタン「タイペークCR-50-2」(商品名)を用いた。平均一次粒子径は0.25μmである。
2-7. White colorant Titanium oxide “Taipeku CR-50-2” (trade name) manufactured by Ishihara Sangyo Co., Ltd. was used. The average primary particle size is 0.25 μm.
2-8.赤外線透過性着色剤
 BASF社製ペリレン系黒色顔料「Lumogen BLACK FK4280」(商品名)を用いた。
2-8. Infrared transmitting colorant A perylene-based black pigment “Lumogen BLACK FK4280” (trade name) manufactured by BASF was used.
2-9.黄色着色剤
 BASF社製キノフタロン系黄色顔料「Paliotol Yellow K0961HD」(商品名)を用いた。
2-9. Yellow colorant A quinophthalone yellow pigment “Pariotol Yellow K0961HD” (trade name) manufactured by BASF was used.
 他の層を形成するフィルムとして、下記の水蒸気バリア層形成用フィルム及びポリエステルフィルムを用いた。 As the film for forming the other layers, the following water vapor barrier layer forming film and polyester film were used.
2-10.水蒸気バリア層形成用フィルム(R-1)
 三菱樹脂社製透明蒸着フィルム「テックバリアAX」(商品名)を用いた。PETフィルムの片面にシリカ蒸着膜を有する透明フィルムであり、厚さは12μm、水蒸気透湿度(JIS K7129)は0.15g/(m・day)である。
2-11.水蒸気バリア層形成用フィルム(R-2)
 東洋紡社製無機2元蒸着バリアフィルム「エコシアールVE500」(商品名)を用いた。PETフィルムの片面に(シリカ/アルミナ)の蒸着を施した透明フィルムであり、厚さは12μm、水蒸気透湿度は0.5g/(m・day)である。
2-10. Water vapor barrier layer forming film (R-1)
A transparent vapor deposition film “Tech Barrier AX” (trade name) manufactured by Mitsubishi Plastics, Inc. was used. It is a transparent film having a silica vapor deposition film on one side of a PET film, and has a thickness of 12 μm and a water vapor transmission rate (JIS K7129) of 0.15 g / (m 2 · day).
2-11. Water vapor barrier layer forming film (R-2)
An inorganic binary vapor barrier film “Ecosia VE500” (trade name) manufactured by Toyobo Co., Ltd. was used. It is a transparent film obtained by vapor-depositing (silica / alumina) on one side of a PET film, and has a thickness of 12 μm and a water vapor permeability of 0.5 g / (m 2 · day).
2-12.樹脂層形成用フィルム(F-1)
 東レ社製半透明PETフィルム「ルミラーX10S」(商品名)を用いた。厚さは50μmである。
2-13.樹脂層形成用フィルム(F-2)
 帝人デュポン社製乳白色PETフィルム「Melinex238」(商品名)を用いた。厚さは75μmである。
2-12. Resin layer forming film (F-1)
A translucent PET film “Lumirror X10S” (trade name) manufactured by Toray Industries, Inc. was used. The thickness is 50 μm.
2-13. Resin layer forming film (F-2)
A milk white PET film “Melinex 238” (trade name) manufactured by Teijin DuPont was used. The thickness is 75 μm.
3.太陽電池用裏面保護フィルムの製造及び評価
3-1.単層型太陽電池用裏面保護フィルムの製造及び評価
  実施例1-1
 グラフト重合樹脂(A-1)40部と、アクリロニトリル・スチレン共重合体20部と、アクリロニトリル・スチレン・N-フェニルマレイミド共重合体40部と、白色系着色剤20部とを、ブラベンダーを用いて250℃で混練し、第1熱可塑性樹脂組成物を得た。その後、Tダイを用いて、厚さ35μmの単層型太陽電池用裏面保護フィルムを得た。この太陽電池用裏面保護フィルムについて、各種評価を行った。その結果を表1に示す。
3. 3. Production and evaluation of back surface protective film for solar cell 3-1. Production and evaluation of back surface protective film for single-layer solar cell Example 1-1
Using Brabender, 40 parts of graft polymerization resin (A-1), 20 parts of acrylonitrile / styrene copolymer, 40 parts of acrylonitrile / styrene / N-phenylmaleimide copolymer and 20 parts of white colorant Were kneaded at 250 ° C. to obtain a first thermoplastic resin composition. Then, the back surface protective film for single layer type solar cells of thickness 35micrometer was obtained using T die. Various evaluation was performed about this back surface protective film for solar cells. The results are shown in Table 1.
  実施例1-2~1-5及び比較例1-1~1-2
 表1に記載の成分を所定の割合で用いた以外は、実施例1-1と同様にして、単層型太陽電池用裏面保護フィルムを得た。この太陽電池用裏面保護フィルムについて、各種評価を行った。その結果を表1に併記した。
Examples 1-2 to 1-5 and Comparative Examples 1-1 to 1-2
A back protective film for a single-layer solar cell was obtained in the same manner as in Example 1-1 except that the components listed in Table 1 were used at a predetermined ratio. Various evaluation was performed about this back surface protective film for solar cells. The results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1から明らかなように、含珪素熱可塑性樹脂を含有しない熱可塑性樹脂組成物を用いた比較例1-1及び1-2による太陽電池用裏面保護フィルムは、エチレン・酢酸ビニル共重合体からなるフィルムとの接着において、剥離強度が12~15Nと低く、接着性が十分ではなかった。
 一方、含珪素熱可塑性樹脂を含む第1熱可塑性樹脂組成物を用いた実施例1-1~1-5による太陽電池用裏面保護フィルムは、剥離強度が61~77Nと高く、接着性に優れていた。
As is apparent from Table 1, the back protective films for solar cells according to Comparative Examples 1-1 and 1-2 using a thermoplastic resin composition not containing a silicon-containing thermoplastic resin were made of an ethylene / vinyl acetate copolymer. In the adhesion to the film, the peel strength was as low as 12 to 15 N, and the adhesion was not sufficient.
On the other hand, the back surface protective films for solar cells according to Examples 1-1 to 1-5 using the first thermoplastic resin composition containing the silicon-containing thermoplastic resin have a high peel strength of 61 to 77 N and excellent adhesion. It was.
3-2.2層型太陽電池用裏面保護フィルムの製造及び評価
  実施例2-1
 表2に記載の、第1樹脂層及び第2樹脂層を形成するための各原料成分を、二軸押出機(型式名「TEX44」、日本製鋼所製)を用いて、バレル温度270℃で溶融混練し、第1樹脂組成物及び第2樹脂組成物の、2種のペレットを得た。
 次に、ダイ幅1,400mm及びリップ間隔1.5mmのTダイを有し、スクリュー径65mmの押出機2機を備える多層フィルム成形機を用い、各押出機に、第1樹脂組成物及び第2樹脂組成物を供給した。そして、Tダイから、溶融温度270℃で溶融樹脂を吐出させ、2層型軟質フィルムとした。その後、この2層型軟質フィルムを、エアーナイフにより、表面温度が95℃に制御されたキャストロールに面密着させつつ、冷却固化させ、厚さ70μmの積層型太陽電池用裏面保護フィルム(白-白型)を得た。尚、第1樹脂層及び第2樹脂層の厚さは、表2に記載の通りである。フィルムの厚さは、シックネスゲージ(型式名「ID-C1112C」、ミツトヨ社製)を用い、フィルムの製造開始から1時間経過後のフィルムを切り取り、フィルム幅方向の中心、及び、中心より両端に向けて、10mm間隔で厚さを測定し(n=107)、その平均値とした。フィルムの端部から20mmの範囲にある測定点の値は、上記平均値の計算から除去した。
 この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。
3-2.2 Production and Evaluation of Back Surface Protection Film for Layer Type Solar Cell Example 2-1
Each raw material component for forming the 1st resin layer and the 2nd resin layer of Table 2 was used at a barrel temperature of 270 ° C. using a twin screw extruder (model name “TEX44”, manufactured by Nippon Steel). By melt-kneading, two kinds of pellets of the first resin composition and the second resin composition were obtained.
Next, a multilayer film molding machine having two extruders having a die width of 1,400 mm and a lip interval of 1.5 mm and two screw diameters of 65 mm is used. Two resin compositions were supplied. Then, the molten resin was discharged from the T die at a melting temperature of 270 ° C. to obtain a two-layer soft film. After that, this two-layer soft film was cooled and solidified while being in surface contact with a cast roll whose surface temperature was controlled to 95 ° C. with an air knife, and a back surface protective film for laminated solar cells (white-white) having a thickness of 70 μm. White type) was obtained. The thicknesses of the first resin layer and the second resin layer are as shown in Table 2. The thickness of the film was determined by using a thickness gauge (model name “ID-C1112C”, manufactured by Mitutoyo Co., Ltd.), cutting the film after 1 hour from the start of film production, and at the center in the film width direction and at both ends from the center. Then, the thickness was measured at intervals of 10 mm (n = 107), and the average value was obtained. Measurement point values in the range of 20 mm from the edge of the film were removed from the average calculation.
Various evaluations were performed on the solar cell back surface protective film, and the results are also shown in Table 2.
  実施例2-2~2-5
 表2に記載の、第1樹脂組成物及び第2樹脂組成物を形成するための原料成分を用いて、第1樹脂組成物及び第2樹脂組成物を製造した後、実施例2-1と同様にして、積層型太陽電池用裏面保護フィルム(白-白型)を得た。そして、これらの太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表2に併記した。
Examples 2-2 to 2-5
After producing the first resin composition and the second resin composition using the raw material components for forming the first resin composition and the second resin composition described in Table 2, Example 2-1 and Similarly, a back surface protective film (white-white type) for a laminated solar cell was obtained. And about these back surface protection films for solar cells, various evaluation was performed and the result was written together in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
  実施例2-6~2-10
 表3に記載の、第1樹脂組成物及び第2樹脂組成物を形成するための原料成分を用いて、第1樹脂組成物及び第2樹脂組成物を製造した後、実施例2-1と同様にして、積層型太陽電池用裏面保護フィルム(黒-白型)を得た。そして、これらの太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表3に併記した。
Examples 2-6 to 2-10
After producing the first resin composition and the second resin composition using the raw material components for forming the first resin composition and the second resin composition described in Table 3, Example 2-1 and Similarly, a back surface protective film for a laminated solar cell (black-white type) was obtained. And about these back surface protective films for solar cells, various evaluation was performed and the result was written together in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
  実施例2-11
 表4に記載の第1樹脂組成物を形成するための原料成分を、ブラベンダーを用いて250℃で混練し、第1樹脂組成物を得た。その後、Tダイを用いて、この第1樹脂組成物からなる軟質フィルムを得た(厚さ150μm)。
 次に、上記軟質フィルムの表面に、樹脂層形成用フィルム(F-1)を、ポリウレタン系の接着剤を用いて接着させ、積層型の太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表4に併記した。
Example 2-11
The raw material component for forming the 1st resin composition of Table 4 was knead | mixed at 250 degreeC using the Brabender, and the 1st resin composition was obtained. Then, the soft film which consists of this 1st resin composition was obtained using T die (150 micrometers in thickness).
Next, the resin layer forming film (F-1) was adhered to the surface of the soft film using a polyurethane-based adhesive to obtain a laminated solar cell back surface protective film. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 4.
  実施例2-12
 表4に記載の第1樹脂組成物と、樹脂層形成用フィルム(F-2)とを用いて、実施例2-11と同様にして、積層型の太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表4に併記した。
Example 2-12
Using the first resin composition shown in Table 4 and the resin layer forming film (F-2), a laminated solar cell back surface protective film was obtained in the same manner as in Example 2-11. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
  実施例2-13~2-14
 表5に記載の第1樹脂組成物と、樹脂層形成用フィルム(F-1)又は(F-2)とを用いて、実施例2-11と同様にして、積層型の太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表5に併記した。
Examples 2-13 to 2-14
Using the first resin composition shown in Table 5 and the resin layer forming film (F-1) or (F-2), the back surface of the laminated solar cell in the same manner as in Example 2-11 A protective film was obtained. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
3-3.水蒸気バリア層を有する太陽電池用裏面保護フィルムの製造及び評価
  実施例3-1
 表6に記載の第1樹脂層を形成するための原料成分を、ブラベンダーを用いて250℃で混練し、第1樹脂組成物を得た。その後、Tダイを用いて、この第1樹脂組成物からなる軟質フィルムを得た(厚さ120μm)。
 次に、上記軟質フィルムの表面に、表6に記載の水蒸気バリア層形成用フィルム(R-1)を、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させ、水蒸気バリア層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表6に併記した。
3-3. Production and Evaluation of Back Protective Film for Solar Cell Having Water Vapor Barrier Layer Example 3-1
The raw material component for forming the 1st resin layer of Table 6 was knead | mixed at 250 degreeC using the Brabender, and the 1st resin composition was obtained. Then, the soft film which consists of this 1st resin composition was obtained using T-die (120 micrometers in thickness).
Next, the water vapor barrier layer forming film (R-1) described in Table 6 is adhered to the surface of the soft film using a polyurethane-based adhesive so that the vapor deposition film becomes the outer surface, A solar cell back surface protective film having a water vapor barrier layer was obtained. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 6.
  実施例3-2
 表6に記載の第1樹脂組成物を用い、実施例3-1と同様にして、軟質フィルムを得た後、表6に記載の水蒸気バリア層形成用フィルムを、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させ、水蒸気バリア層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表6に併記した。
Example 3-2
Using the first resin composition described in Table 6, a flexible film was obtained in the same manner as in Example 3-1, and then the water vapor barrier layer forming film described in Table 6 was deposited on the outer surface. Thus, it was made to adhere using a polyurethane-based adhesive to obtain a back surface protective film for solar cells having a water vapor barrier layer. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 6.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
  実施例3-3~3-4
 表7に記載の第1樹脂組成物を用い、実施例3-1と同様にして、軟質フィルムを得た後、表7に記載の水蒸気バリア層形成用フィルムを、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させ、水蒸気バリア層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表7に併記した。
Examples 3-3 to 3-4
Using the first resin composition described in Table 7, a soft film was obtained in the same manner as in Example 3-1, and then the water vapor barrier layer forming film described in Table 7 was used as the outer surface of the vapor deposition film. Thus, it was made to adhere using a polyurethane-based adhesive to obtain a back surface protective film for solar cells having a water vapor barrier layer. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
  実施例3-5
 表8に記載の、第1樹脂組成物を形成するための原料成分を、ブラベンダーを用いて250℃で混練し、第1樹脂組成物を得た。その後、Tダイを用いて、この第1樹脂組成物からなる軟質フィルムを得た(厚さ170μm)。
 次に、上記軟質フィルムの表面に、表8に記載の水蒸気バリア層形成用フィルム(R-1)を、蒸着膜が外表面となるようにして、ポリウレタン系の接着剤を用いて接着させた。更に、水蒸気バリア層における蒸着膜の表面に、表8に記載の樹脂層形成用フィルム(F-1)をポリウレタン系の接着剤を用いて接着させ、水蒸気バリア層及び第2樹脂層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表8に併記した。
Example 3-5
The raw material components for forming the first resin composition shown in Table 8 were kneaded at 250 ° C. using a Brabender to obtain a first resin composition. Then, the soft film which consists of this 1st resin composition was obtained using the T die (thickness 170 micrometers).
Next, the water vapor barrier layer-forming film (R-1) shown in Table 8 was adhered to the surface of the soft film using a polyurethane-based adhesive so that the deposited film was the outer surface. . Furthermore, the resin layer forming film (F-1) described in Table 8 is adhered to the surface of the vapor deposition film in the water vapor barrier layer using a polyurethane-based adhesive, and the solar cell having the water vapor barrier layer and the second resin layer is obtained. A battery back surface protective film was obtained. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 8.
  実施例3-6
 表8に示した材料を用い、実施例3-5と同様にして、第1樹脂層、水蒸気バリア層及び第2樹脂層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表8に併記した。
Example 3-6
Using the materials shown in Table 8, a solar cell back surface protective film having a first resin layer, a water vapor barrier layer, and a second resin layer was obtained in the same manner as in Example 3-5. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 8.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
  実施例3-7~3-8
 表9に示した材料を用い、実施例3-5と同様にして、第1樹脂層、水蒸気バリア層及び第2樹脂層を有する太陽電池用裏面保護フィルムを得た。そして、この太陽電池用裏面保護フィルムについて、各種評価を行い、その結果を表9に併記した。
Examples 3-7 to 3-8
Using the materials shown in Table 9, a back protective film for a solar cell having a first resin layer, a water vapor barrier layer, and a second resin layer was obtained in the same manner as in Example 3-5. And about this solar cell back surface protective film, various evaluation was performed and the result was written together in Table 9. FIG.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明の太陽電池用裏面保護フィルムは、その樹脂層(第1樹脂層)において、太陽電池モジュールを構成する太陽電池素子を包埋する、エチレン・酢酸ビニル共重合体組成物等を含む充填材部との接着性、耐熱性及び耐候性に優れており、また、フィルム全体として、光反射性あるいは意匠性に優れており、家屋の屋根等に用いられる太陽電池を構成する太陽電池モジュールはもちろんのこと、柔軟性を有する太陽電池モジュールにおける裏面保護用部材として有用である。 The back surface protective film for solar cells of the present invention includes a filler containing an ethylene / vinyl acetate copolymer composition or the like that embeds a solar cell element constituting a solar cell module in the resin layer (first resin layer). It is excellent in adhesiveness to parts, heat resistance and weather resistance, and as a whole film, it is excellent in light reflectivity or design, and of course a solar cell module constituting a solar cell used for a roof of a house This is useful as a member for protecting the back surface of a flexible solar cell module.
1、1A、1B及び1C:太陽電池用裏面保護フィルム
11:第1樹脂層
15:他の層(他の樹脂層、水蒸気バリア層等)
151:金属層
153:樹脂層
2:太陽電池モジュール
21:表面側透明保護部材
23:表面側封止膜
25:太陽電池素子
27:裏面側封止膜
1, 1A, 1B and 1C: Back surface protection film for solar cell 11: First resin layer 15: Other layers (other resin layers, water vapor barrier layers, etc.)
151: Metal layer 153: Resin layer 2: Solar cell module 21: Front side transparent protective member 23: Front side sealing film 25: Solar cell element 27: Back side sealing film

Claims (10)

  1.  含珪素熱可塑性樹脂を含む樹脂層を備えることを特徴とする太陽電池用裏面保護フィルム。 A back protective film for solar cells, comprising a resin layer containing a silicon-containing thermoplastic resin.
  2.  波長400~1,400nmの光を、上記太陽電池用裏面保護フィルムにおける上記樹脂層の表面に放射した場合、該光に対する反射率が50%以上である請求項1に記載の太陽電池用裏面保護フィルム。 The solar cell back surface protection according to claim 1, wherein when light having a wavelength of 400 to 1,400 nm is radiated to the surface of the resin layer in the solar cell back surface protective film, the reflectance to the light is 50% or more. the film.
  3.  上記樹脂層が、更に、白色系着色剤を含む請求項1又は2に記載の太陽電池用裏面保護フィルム。 The back protective film for solar cells according to claim 1 or 2, wherein the resin layer further contains a white colorant.
  4.  上記樹脂層において、波長800~1,400nmの光に対する透過率が60%以上であり、且つ、波長400~700nmの光に対する吸収率が60%以上である請求項1に記載の太陽電池用裏面保護フィルム。 2. The back surface for a solar cell according to claim 1, wherein the resin layer has a transmittance of 60% or more for light having a wavelength of 800 to 1,400 nm and an absorbance of 60% or more for light having a wavelength of 400 to 700 nm. Protective film.
  5.  上記樹脂層が、更に、赤外線透過性着色剤を含む請求項1又は4に記載の太陽電池用裏面保護フィルム。 The solar cell back surface protective film according to claim 1, wherein the resin layer further contains an infrared transmitting colorant.
  6.  上記含珪素熱可塑性樹脂が、含珪素ゴムの存在下、芳香族ビニル化合物を含む単量体を重合して得られたグラフト重合樹脂を含む請求項1乃至5のいずれかに記載の太陽電池用裏面保護フィルム。 6. The solar cell according to claim 1, wherein the silicon-containing thermoplastic resin includes a graft polymerization resin obtained by polymerizing a monomer containing an aromatic vinyl compound in the presence of a silicon-containing rubber. Back protection film.
  7.  更に、上記樹脂層に接合された他の樹脂層を備える請求項1乃至6のいずれかに記載の太陽電池用裏面保護フィルム。 Furthermore, the back surface protective film for solar cells in any one of Claim 1 thru | or 6 provided with the other resin layer joined to the said resin layer.
  8.  上記他の樹脂層が白色樹脂層である請求項7に記載の太陽電池用裏面保護フィルム。 The back surface protective film for a solar cell according to claim 7, wherein the other resin layer is a white resin layer.
  9.  厚さが10~1,000μmである請求項1乃至8のいずれかに記載の太陽電池用裏面保護フィルム。 The back surface protective film for solar cells according to any one of claims 1 to 8, wherein the thickness is 10 to 1,000 µm.
  10.  請求項1乃至9のいずれかに記載の太陽電池用裏面保護フィルムを備えることを特徴とする太陽電池モジュール。 A solar cell module comprising the solar cell back surface protective film according to any one of claims 1 to 9.
PCT/JP2009/068708 2008-11-21 2009-10-30 Backside protective sheet for solar cell and solar cell module provided with same WO2010058695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008298640 2008-11-21
JP2008-298640 2008-11-21

Publications (1)

Publication Number Publication Date
WO2010058695A1 true WO2010058695A1 (en) 2010-05-27

Family

ID=42198134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068708 WO2010058695A1 (en) 2008-11-21 2009-10-30 Backside protective sheet for solar cell and solar cell module provided with same

Country Status (2)

Country Link
JP (3) JP2010153801A (en)
WO (1) WO2010058695A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734468B1 (en) * 2010-09-13 2011-07-27 日本発條株式会社 Substrate for solar cell module and method for producing the same
JP4734480B2 (en) * 2009-07-15 2011-07-27 日本発條株式会社 Back protection sheet for solar cell and method for producing the same
WO2012096217A1 (en) * 2011-01-14 2012-07-19 日本発條株式会社 Solar-cell back-side protective sheet
WO2012096218A1 (en) * 2011-01-14 2012-07-19 日本発條株式会社 Solar-cell back-side protective sheet
JP2018062662A (en) * 2017-11-28 2018-04-19 株式会社有沢製作所 Coloring photosensitive resin composition
TWI726562B (en) * 2019-12-31 2021-05-01 財團法人工業技術研究院 Solar cell modules
CN115397914A (en) * 2021-01-22 2022-11-25 株式会社Lg化学 Thermoplastic resin composition, method for producing same, and molded article comprising same
US11695089B2 (en) 2019-12-31 2023-07-04 Industrial Technology Research Institute Solar cell modules

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978519B2 (en) * 2011-09-02 2016-08-24 東京尽陽株式会社 Solar cell backsheet and solar cell module
KR102149011B1 (en) * 2016-11-30 2020-08-27 주식회사 엘지화학 Thermoplastic resin composition, method for preparing the same and molded article manufactured therefrom
JP2020141145A (en) * 2020-05-18 2020-09-03 大日本印刷株式会社 Protective sheet for solar cell module and solar cell module using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100788A (en) * 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd Back sheet for solar battery cover material, and solar battery module using the same
JP2007035694A (en) * 2005-07-22 2007-02-08 Daikin Ind Ltd Backsheet for solar cell
JP2007103813A (en) * 2005-10-07 2007-04-19 Techno Polymer Co Ltd Back sheet for solar cell
JP2007129014A (en) * 2005-11-02 2007-05-24 Dainippon Printing Co Ltd Reverse-surface protection sheet for solar cell module, and solar cell module
JP2007128943A (en) * 2005-11-01 2007-05-24 Toray Ind Inc Back sheet for solar cell, and solar cell module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296389B2 (en) * 2008-01-29 2013-09-25 テクノポリマー株式会社 Infrared reflective laminate
JP2010212381A (en) * 2009-03-09 2010-09-24 Dainippon Printing Co Ltd Heat-ray shielding member for solar cell module, and solar cell module using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100788A (en) * 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd Back sheet for solar battery cover material, and solar battery module using the same
JP2007035694A (en) * 2005-07-22 2007-02-08 Daikin Ind Ltd Backsheet for solar cell
JP2007103813A (en) * 2005-10-07 2007-04-19 Techno Polymer Co Ltd Back sheet for solar cell
JP2007128943A (en) * 2005-11-01 2007-05-24 Toray Ind Inc Back sheet for solar cell, and solar cell module
JP2007129014A (en) * 2005-11-02 2007-05-24 Dainippon Printing Co Ltd Reverse-surface protection sheet for solar cell module, and solar cell module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734480B2 (en) * 2009-07-15 2011-07-27 日本発條株式会社 Back protection sheet for solar cell and method for producing the same
JPWO2011007700A1 (en) * 2009-07-15 2012-12-27 日本発條株式会社 Back protection sheet for solar cell and method for producing the same
JP4734468B1 (en) * 2010-09-13 2011-07-27 日本発條株式会社 Substrate for solar cell module and method for producing the same
JP2012060089A (en) * 2010-09-13 2012-03-22 Nhk Spring Co Ltd Substrate for solar cell module and manufacturing method therefor
WO2012036046A1 (en) * 2010-09-13 2012-03-22 日本発條株式会社 Base material for solar cell module and method for producing same
WO2012096217A1 (en) * 2011-01-14 2012-07-19 日本発條株式会社 Solar-cell back-side protective sheet
WO2012096218A1 (en) * 2011-01-14 2012-07-19 日本発條株式会社 Solar-cell back-side protective sheet
JP2018062662A (en) * 2017-11-28 2018-04-19 株式会社有沢製作所 Coloring photosensitive resin composition
TWI726562B (en) * 2019-12-31 2021-05-01 財團法人工業技術研究院 Solar cell modules
US11695089B2 (en) 2019-12-31 2023-07-04 Industrial Technology Research Institute Solar cell modules
CN115397914A (en) * 2021-01-22 2022-11-25 株式会社Lg化学 Thermoplastic resin composition, method for producing same, and molded article comprising same
JP7473669B2 (en) 2021-01-22 2024-04-23 エルジー・ケム・リミテッド Thermoplastic resin composition, its method of manufacture and molded article containing same

Also Published As

Publication number Publication date
JP2013051442A (en) 2013-03-14
JP2010153801A (en) 2010-07-08
JP2013082927A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2010058695A1 (en) Backside protective sheet for solar cell and solar cell module provided with same
WO2010087085A1 (en) Back sheet for solar battery, and solar battery module comprising same
WO2010071032A1 (en) Solar cell backsheet and solar cell module provided with same
WO2010038875A1 (en) Solar cell back surface protective film, and solar cell module provided with same
WO2010087452A1 (en) Multilayer body
JP5276052B2 (en) Solar cell back surface protective film, method for producing the same, and solar cell module
JP5276049B2 (en) Solar cell back surface protective film, method for producing the same, and solar cell module
JP5173911B2 (en) Laminated sheet and solar cell module including the same
JP2010109349A (en) Solar cell backside protective film, and solar cell module with the same
JP5570831B2 (en) Laminated body
JP2010199552A (en) Solar cell backsheet and solar cell module provided with same
JP5385640B2 (en) Laminated sheet and solar cell module including the same
JP2010177386A (en) Backsheet for solar cell
WO2010087086A1 (en) Back sheet for solar battery, and solar battery module comprising same
JP2013058798A (en) Back surface protective film for solar cell and solar cell module including the same
JP2010177384A (en) Backsheet for solar cell
JP2010199551A (en) Solar cell backsheet and solar cell module provided with the same
JP2010109348A (en) Solar cell backside protective film, and solar cell module with the same
JP2010234573A (en) Laminated sheet and solar cell module having the same
JP2013201385A (en) Backside protective film for solar battery, and solar battery module
JP2012160725A (en) Backside protective film for solar cell and solar cell module
JP2012174930A (en) Backside protective film for solar battery, and solar battery module
JP2010177385A (en) Backsheet for solar cell
JP2013201383A (en) Backside protective film for solar battery, and solar battery module
JP2010208157A (en) Laminated sheet and solar cell module including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827476

Country of ref document: EP

Kind code of ref document: A1