WO2010058590A1 - Protein substance hydrolysis method, hydrolysis device, and hydrolytic product analysis device - Google Patents
Protein substance hydrolysis method, hydrolysis device, and hydrolytic product analysis device Download PDFInfo
- Publication number
- WO2010058590A1 WO2010058590A1 PCT/JP2009/006247 JP2009006247W WO2010058590A1 WO 2010058590 A1 WO2010058590 A1 WO 2010058590A1 JP 2009006247 W JP2009006247 W JP 2009006247W WO 2010058590 A1 WO2010058590 A1 WO 2010058590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- hydrolysis
- solid acid
- acid catalyst
- holding substrate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/12—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
Definitions
- the present invention relates to a protein hydrolysis method, a hydrolysis apparatus, and a protein hydrolyzate analysis apparatus.
- biopolymers such as proteins are organic or inorganic strong acids (hydrochloric acid, sulfuric acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, etc.) with addition of water or strong alkali ( Hydrolysis by mixing with sodium hydroxide, potassium hydroxide, etc.) is known to produce oligomers and monomers (peptides and amino acids in proteins, oligosaccharides and monosaccharides in polysaccharides) (non-patent literature) 1). Based on this finding, a number of protein hydrolysis methods using strong acid or strong alkaline aqueous solutions have also been developed.
- hydrolysis with a strong acid or strong alkaline aqueous solution has a problem that amino acids as degradation products are further degraded, and at present, a complete protein hydrolysis method has not been established.
- a hydrolysis method in which a constant boiling point hydrochloric acid (about 6N hydrochloric acid) is used and heated to 110 degrees C. for 20 to 72 hours in a test tube sealed under reduced pressure (non-patent document) 2)
- a modified method gas phase hydrolysis method in which constant boiling point hydrochloric acid is directly distilled in a sealed tube in order to prevent contamination from hydrochloric acid and handle a small amount of sample is the best. It is used.
- Patent Document 1 an apparatus was developed that automated the hydrolysis process using constant boiling hydrochloric acid and the derivatization process (prelabel PTC (phenylthiocarbamyl) amino acid derivatization method) (Patent Document 1).
- label PTC phenylthiocarbamyl amino acid derivatization method
- the present invention has been made in view of the above-mentioned problems, and its purpose is to apply a novel method for hydrolyzing proteins more easily than the method using conventional constant boiling hydrochloric acid, and to which the method is applied. And a hydrolyzate analyzer. Moreover, it is providing the hydrolysis method of the protein which can automate reaction as needed.
- the inventors of the present application have intensively studied a new hydrolysis method not using constant boiling hydrochloric acid.
- a protein can be hydrolyzed to an amino acid by heating in a state where a solid acid catalyst such as a cation exchange resin is in contact with the protein.
- the inventors of the present application have further studied diligently, and found that the catalytic activity of the solid acid catalyst is significantly derived by combining the protein holding substrate having a plurality of pores and the solid acid catalyst, The present invention has been completed.
- a solid acid catalyst is disposed on at least a part of the inner surface of the protein holding substrate having a plurality of pores.
- the protein is brought into contact with the solid acid catalyst, and the protein is hydrolyzed by heating in the presence of water.
- the catalytic activity of the solid acid catalyst with respect to the hydrolysis reaction of the protein is significantly extracted, and the protein can be hydrolyzed better than the case where the solid acid catalyst is used alone. There is an effect. As a result, it becomes possible to hydrolyze proteins more easily than the conventional method using constant boiling hydrochloric acid. Further, automation of the protein hydrolysis method becomes easier as compared with the conventional method.
- a protein hydrolyzing apparatus includes a sample supply means for supplying a solution containing a protein, and at least a part of inner surfaces of a plurality of pores of the protein holding substrate.
- Hydrolysis means comprising a composite substrate on which a solid acid catalyst is arranged, a flow path connecting the sample supply means and the hydrolysis means, and a heating means for heating the hydrolysis means It is said.
- an apparatus for analyzing a protein hydrolyzate according to the present invention further comprises an analysis means for analyzing a protein hydrolyzate after the hydrolysis means in the above hydrolysis apparatus. It is characterized by having.
- a novel protein hydrolysis using a solid acid catalyst can be provided. Furthermore, the hydrolysis apparatus which employ
- the method according to the present invention comprises contacting a protein with a solid acid catalyst in a state where a solid acid catalyst is disposed on at least a part of the inner surface of the protein holding substrate having a plurality of pores,
- the protein is hydrolyzed by heating in the presence.
- the inventors of the present application have already tried to hydrolyze proteins using a solid acid catalyst such as a strong cation exchange resin alone, but by adopting the method of the present invention, the hydrolysis of proteins It is believed that the catalytic activity of the solid acid catalyst for the reaction is significantly extracted.
- the protein can be hydrolyzed more satisfactorily as compared with the case where the solid acid catalyst is used alone (see also Examples and Comparative Examples described later).
- the method according to the present invention does not damage the hydrolysis apparatus as compared with the conventional hydrolysis method using constant boiling hydrochloric acid or the like. Further, it is easy to recover the solid acid catalyst and the protein-holding base material used for the hydrolysis reaction, and the environmental burden is reduced as compared with the conventional method.
- the “protein holding substrate” is not particularly limited as long as it is a substrate having a plurality of pores (that is, a porous substrate) and can be held by adsorbing or adhering proteins.
- the material is not particularly limited, but porous nitrocellulose carrier, porous nylon carrier, porous polyvinylidene difluoride (PVDF) carrier, porous silica carrier, porous polyethersulfone carrier, porous polycarbonate carrier, porous Polytetrafluoroethylene (PTFE) carrier, porous cellulose mixed ester carrier, or composite carrier composed of a plurality of these materials, etc., and hydrophobization treatment or hydrophilization treatment to improve protein retention Etc. may be given.
- PVDF porous polyvinylidene difluoride
- PTFE porous Polytetrafluoroethylene
- a porous polyvinylidene difluoride (PVDF) carrier is more preferable from the viewpoint of excellent protein retention and heat resistance.
- the amount of protein retained in the protein retaining substrate is not particularly limited, but the amount retained for bovine serum albumin (BSA) is preferably in the range of 50 ⁇ g / cm 2 to 250 ⁇ g / cm 2 , and is preferably 100 ⁇ g / cm 2. More preferably, it is in the range of 2 to 250 ⁇ g / cm 2 .
- the “protein retention amount” is measured by, for example, a radioisotope labeling method.
- the shape of the protein-holding substrate is not particularly limited, and examples thereof include a film shape, a rod shape, and a granular shape.
- the film thickness is not particularly limited, but is preferably in the range of 20 to 1000 ⁇ m, and more preferably in the range of 80 to 200 ⁇ m.
- the membrane-like protein holding substrate include a protein blotting membrane, an ultrafiltration membrane, and the like, and a plurality of membranes may be laminated.
- the average pore diameter of the pores possessed by the protein-holding substrate is not particularly limited, but for the majority of proteins, in order to retain the whole or a part of the protein in the pores, 0.01 ⁇ m to It is preferably in the range of 0.75 ⁇ m, and more preferably in the range of 0.05 ⁇ m to 0.6 ⁇ m.
- the “average pore diameter” can be measured by observation with an electron microscope.
- the protein-holding substrate is in the form of a membrane
- the “solid acid catalyst” is not particularly limited as long as it is a solid catalyst that can function as an acid, but from the viewpoint of hydrolysis efficiency, saturated carbonization such as a methanesulfonic acid group and a vinylsulfonic acid group.
- Hydrogen sulfonic acid group unsaturated hydrocarbon sulfonic acid group, halogenated saturated hydrocarbon sulfonic acid group such as difluoromethane sulfonic acid group, halogenated unsaturated hydrocarbon sulfonic acid group, (these hydrocarbon sulfonic acid groups are (Including cyclic hydrocarbon sulfonic acid groups) or sulfonic acid type cation exchangers including aromatic sulfonic acid groups such as toluene sulfonic acid groups; phenolic cation exchangers including picric acid groups; mono and dichloroacetic acid groups Halogenated acetic acid groups such as mono- and difluoroacetic acid groups, salicylic acid groups, nitrobenzoic acid groups, chlorobenzoic acid groups, phthalic acid groups, hemi Carboxylic acid type ion exchangers containing aromatic carboxylic acid groups such as littic acid groups and pyromellitic acid groups, pyruvic acid groups,
- the sulfonic acid type cation exchanger is an ion exchanger having a cation exchange capacity containing a sulfonic acid group (—SO 3 H) as described above, and a cation exchange resin containing a sulfonic acid group as a preferred embodiment.
- a sulfonic acid type cation exchanger has counter ions other than protons (-SO 3 X (X represents a counter ion)
- the sulfonic acid type cation exchanger is used after being replaced with a proton type.
- the cation exchange resin is not particularly limited, but for the purpose of rapidly hydrolyzing the protein described later at a relatively high temperature and quickly, a polytetrafluoroethylene having a sulfonic acid type ion exchange group having excellent heat resistance (introduced).
- a fluoroethylene (co) polymer is more preferred.
- An example of a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group is Nafion ((Nafion) registered trademark) as an example of a perfluorosulfonic acid / polytetrafluoroethylene copolymer.
- the term “(co) polymer” is a concept encompassing both a homopolymer obtained by polymerizing one kind of monomer and a copolymer obtained by polymerizing two or more kinds of monomers.
- a particularly suitable combination of “protein holding substrate” and “solid acid catalyst” includes, for example, PVDF and Nafion.
- the combination with the polytetrafluoroethylene (co) polymer which has a sulfonic acid type ion exchange group is mentioned.
- Nafion has long been known as a solid polymer electrolyte and has been used for various purposes as a state-of-the-art material, particularly a fuel cell material, due to its durability and chemical stability. Nafion is available in the form of membranes, powders, pellets, and suspensions, and there are reports on the properties of cast membranes using suspensions (“Densityensand Solubility of Nafion: Recast, Annealed, and Commercial Films ”, Zook, L. A., LeddyedJ., Anal. Chem.,. 68, 3793-37963-3 (1996)).
- Examples of protein mass spectrometry using matrix-assisted laser desorption / ionization (“Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry”, gorOgorzalek Loo, R. R., Mitchell, C ., Stevenson, T. I., Loo, J. A., Andrews, P. C., Int. J. Mass Spectrom. IonesProcesses, 169/170, 273-290 (1997))
- the Nafion membrane not a cast membrane but a composite membrane in which Nafion is developed on a PVDF membrane is produced.
- the present inventors were the first to use the above composite membrane for protein hydrolysis, 1) the hydrolysis can be performed at a relatively high temperature and quickly, and 2) the composite.
- the membrane By using the membrane, it is possible to realize an extremely excellent amount of recovered amino acid as compared with a Nafion cast membrane (see also Examples and Comparative Examples described later).
- hydrolysis can always be performed more rapidly even if a combination of a relatively solid heat-resistant "solid acid catalyst” and a "protein holding substrate” is arbitrarily selected. Is not limited. Indeed, the rate of hydrolysis reaction increases with increasing temperature. However, the higher the temperature, the greater the risk of unwanted side reactions between the proteins in the reaction system, degradation products (amino acids, etc.), the solid acid catalyst, and the protein holding substrate. May adversely affect quantity and composition. Therefore, in order to perform protein hydrolysis more rapidly, factors other than heat resistance in the combination of the “solid acid catalyst” and the “protein holding substrate” are also important.
- the solid acid catalyst may be attached to a part or the whole of the surface (surface other than the inner surface) of the protein holding substrate.
- the method of arranging the solid acid catalyst on the protein holding substrate is not particularly limited.
- 1) A solution obtained by dissolving or suspending the solid acid catalyst in an appropriate solvent is used for the protein holding substrate (coating, etc.).
- the method 1) or 2) is preferable from the viewpoint of easy and reliable operation.
- the amount of the solid acid catalyst arranged on the protein holding substrate is not particularly limited, but 0.1 mg per surface area calculated from the outer dimensions of the protein holding substrate on which the solid acid catalyst is arranged, excluding the inner surface. / Cm 2 to 100 mg / cm 2 is preferable, and 0.4 mg / cm 2 to 2 mg / cm 2 is more preferable.
- the protein is hydrolyzed by being brought into contact with the solid acid catalyst disposed on the protein holding substrate and heated in the presence of water.
- a method of bringing the protein into contact with the solid acid catalyst (A) the protein holding substrate and the solid acid catalyst are brought into contact with each other, and the solid acid catalyst is formed on at least a part of the inner surface of the pore of the protein holding substrate. Is obtained, and then the protein is brought into contact with the composite substrate, or (B) the protein holding substrate and the protein are brought into contact with each other to hold the protein on the protein holding substrate.
- the protein-holding substrate holding the protein and the solution containing the solid acid catalyst are brought into contact with each other, and the protein is placed in a state where the solid acid catalyst is arranged on at least a part of the inner surface of the pore. And a method of contacting with a solid acid catalyst.
- the present invention can be applied to the following applications.
- Affinity with existing formats such as a commercially available 96-well dot blot apparatus is high, and it is easy to process a large amount of samples (protein samples) in parallel by using them together.
- SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- the protein solution eluted from the gel after electrophoresis can be added, and after washing, heating can be performed from hydrolysis to amino acid recovery. Even if SDS or formic acid is added for protein elution, it is possible to suppress contamination from the environment that inhibits microanalysis as much as possible.
- the protein after gel electrophoresis is transferred from the gel to the protein holding substrate (membrane for blotting), and then the protein holding substrate And a method of bringing the solid acid catalyst into contact with each other.
- a protein sample to be subjected to hydrolysis is a mixture containing undesired proteins and other contaminants, a separation operation is performed by gel electrophoresis or the like before hydrolysis.
- the protein transferred from the gel after electrophoresis to the protein holding substrate can be directly hydrolyzed by acting a solid acid catalyst.
- a solution containing protein is filtered through an ultrafiltration membrane (protein holding base material) or the like, and then the ultrafiltration membrane and the solid acid catalyst are filtered.
- an ultrafiltration membrane protein holding base material
- the ultrafiltration membrane and the solid acid catalyst are filtered.
- a commercially available ultrafiltration membrane or a filter plate plate such as 96-hole or 384-hole with a PVDF membrane, it is possible to hydrolyze multiple samples.
- the “protein” to be hydrolyzed is not particularly limited in terms of its type, origin, size, etc., as long as it is formed by connecting a plurality of amino acids by peptide bonds. However, in general, a protein consisting of 100 or more and 2000 or less amino acid residues is preferred.
- protein hydrolysis refers to a reaction in which a peptide bond is hydrolyzed to a shorter protein (peptide) and / or a constituent amino acid in the presence of water.
- the reaction conditions for the hydrolysis are not particularly limited as long as the decomposition reaction proceeds and the solid acid catalyst and the protein-holding substrate are not substantially decomposed.
- the reaction temperature is preferably within a temperature range of 100 ° C. or higher and 220 ° C. or lower, and within a temperature range of 110 ° C. or higher and 160 ° C. or lower, as long as the solid acid catalyst and the protein holding substrate are not substantially decomposed. Is more preferable. Particularly preferred is a temperature range of 140 ° C. or higher and 160 ° C.
- the hydrolysis reaction time depends on the reaction temperature, but is preferably about 5 minutes to 1 week, more preferably within the range of 10 minutes to 24 hours. Particularly preferably, it is in the range of about 10 minutes to 2 hours.
- the amount ratio of the protein weight serving as the reaction substrate and the solid acid catalyst weight is not particularly limited as long as the reaction proceeds smoothly, but the protein amount and the solid acid catalyst amount are: It is preferably in the range of 1: 1000 to 1: 1.
- the use of the protein hydrolyzate obtained by the method according to the present invention is not particularly limited.
- it can also be used as a raw material for various industrial products including food additives and supplements, and can also be used for analysis of protein constituent amino acids.
- the protein hydrolysis apparatus includes: 1) a sample supply means for supplying a solution containing protein; 2) a hydrolysis means comprising a composite base material in which a solid acid catalyst is arranged on a protein holding base material; 3) a flow path connecting the sample supply means and the hydrolysis means, 4) a liquid feed means for feeding the washing liquid and an eluate for eluting the hydrolyzed product after hydrolysis, and 5) the hydrolysis means. Heating means for heating. Further, as necessary, 6) a hydrolyzate recovery unit and a flow path for connecting the hydrolysis unit and the recovery unit are provided on the downstream side of the hydrolysis unit.
- the sample supply means supplies a protein to be hydrolyzed to the hydrolysis means, and can be constituted by, for example, a known sample injector. Moreover, it is good also as a structure which supplies the sample containing protein automatically using a well-known autosampler.
- the above-mentioned hydrolysis means is means for executing the protein hydrolysis method according to the present invention, and specifically comprises a composite substrate in which a solid acid catalyst is arranged on a protein holding substrate.
- the hydrolysis means is preferably either a column packed with a granular composite substrate or a column in which a membrane-shaped composite substrate is arranged in a flow path. If the column is provided, the protein to be hydrolyzed supplied from the sample supply means is retained in the column, while the hydrolyzate can be recovered on the downstream side of the column. Therefore, the hydrolysis apparatus can be easily automated, and the hydrolysis product and undegraded protein can be separated relatively easily.
- the method for sending the hydrolyzate to the downstream side of the column is not particularly limited, and examples include a method of eluting the hydrolyzate by feeding an appropriate eluate to the column after the hydrolysis reaction.
- eluent basic buffer solution such as boric acid solution and triethylamine aqueous solution; high salt concentration solution such as sodium chloride (for example, concentration of 0.1M to 2M); acidic solution such as trifluoroacetic acid aqueous solution; etc. Any known eluate for protein hydrolysates can be used as appropriate.
- the above heating means is a means for heating the hydrolysis means to a desired temperature to promote the protein hydrolysis reaction, and can be constituted by, for example, a known electric furnace.
- recovery means is a means to collect
- the hydrolysis apparatus is preferably a closed system including the flow path in order to prevent contamination other than the hydrolysis target. Furthermore, it is preferable to provide a hydrolysis apparatus capable of automatic operation by providing a control means for automatically controlling the operation of each means described above.
- the apparatus for analyzing a protein hydrolyzate according to the present invention further comprises an analysis means for analyzing peptides and / or amino acids which are protein hydrolysates after the hydrolysis means in the hydrolysis apparatus. is there.
- an analysis means for analyzing peptides and / or amino acids which are protein hydrolysates after the hydrolysis means in the hydrolysis apparatus. is there.
- amino acids may be collected by a known fraction collector and analyzed separately after derivatization.
- a specific example of the protein hydrolyzing apparatus / hydrolysate analyzing apparatus 21 is as follows: a cleaning liquid tank 1 for storing a cleaning liquid; an elution liquid tank for storing an elution liquid 2; Liquid feed pump (liquid feed means) 3 connected to the washing liquid tank 1 and the eluate liquid tank 2 through a flow path; any sample pipe 4 is selected from a plurality of sample pipes 4 each holding a different protein solution And an autosampler (sample supply means) 5 for supplying the protein solution to a hydrolysis column (hydrolysis means) 8 described later; a plurality of hydrolysis columns 8 connected to the autosampler 5 via a flow path; An electric furnace (heating means) 9 that houses a plurality of hydrolysis columns 8 and heats these hydrolysis columns 8; a decomposition product recovery unit (decomposition product recovery) connected to the hydrolysis column 8 through a flow path hand ) 10; a decomposition product analysis unit (analysis unit
- the plurality of hydrolysis columns 8 include a membrane-like composite base material in which a solid acid catalyst is disposed on at least a part of the inner surfaces of the plurality of pores of the protein holding base material on the flow path (examples described later) Equivalent to the Nafion-PVDF membrane).
- the plurality of hydrolysis columns 8 are connected to an autosampler 5 disposed on the front side, a degradation product recovery unit 10 disposed on the rear side, and a flow path switching valve (flow path switching means) 7.
- the degradation product analysis unit 11 is connected. Thereby, protein hydrolysis is performed while appropriately switching the hydrolysis column 8 to be used.
- the control unit 12 automatically controls the operations of the flow path switching valve 7, the decomposition product recovery unit 10, and the decomposition product analysis unit 11 via the liquid feed pump 3, the autosampler 5, and the valve controller 6.
- protein hydrolysis / hydrolysis product analysis using the hydrolysis apparatus / hydrolysis product analysis apparatus shown in FIG. 1 is performed as follows. (1) First, MilliQ water stored in the washing liquid tank 1 is passed through the entire apparatus to equilibrate the hydrolysis column 8. (2) Next, the protein solution in the sample tube 4 to be subjected to hydrolysis and the like is passed through the hydrolysis column 8 through the autosampler 5. As a result, the protein introduced into the hydrolysis column 8 is held on the composite substrate disposed in the column 8. (3) Next, MilliQ water stored in the washing solution tank 1 is passed through the hydrolysis column 8 for washing, and then the hydrolysis column 8 is heated by the electric furnace 9.
- maintained at the said composite base material is hydrolyzed to a peptide or an amino acid according to the method concerning this invention.
- heating by the electric furnace 9 is stopped, and after cooling, the eluate stored in the eluate tank 2 is passed through the hydrolysis column 8. Thereby, the peptide or amino acid which is a hydrolysis product elutes to the back
- the eluted peptide or amino acid is recovered by the degradation product recovery unit 10 and is used for applications such as analysis in the degradation product analysis unit 11. Alternatively, the eluted peptide or amino acid is directly subjected to analysis in the degradation product analysis unit 11 (that is, not via the degradation product recovery unit 10).
- the solid acid catalyst is a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group
- the protein holding substrate is Polyvinylidene difluoride is preferred.
- the hydrolysis of the protein is preferably performed within a temperature range of 100 ° C. or higher and 220 ° C. or lower.
- polytetrafluoroethylene (co) polymer having sulfonic acid type ion exchange groups and polyvinylidene difluoride is not only excellent in heat resistance but also excellent in the property of catalyzing protein hydrolysis reaction. ing. Therefore, according to the above method, for example, protein is rapidly and satisfactorily hydrolyzed at a high temperature of 100 ° C. or higher and 220 ° C. or lower, more preferably 110 ° C. or higher and 160 ° C. or lower. I can do it.
- the method for hydrolyzing a protein according to the present invention includes a composite group in which a protein holding substrate and a solid acid catalyst are brought into contact with each other, and the solid acid catalyst is arranged on at least a part of the inner surface of the pores of the protein holding substrate. It may include a step of obtaining a material and a step of bringing the protein into contact with the composite base material.
- the step (1) of bringing the protein holding base material into contact with the protein and holding the protein in the protein holding base material, and then the above protein holding holding the protein The substrate and the solution containing the solid acid catalyst are contacted, and the protein and the solid acid catalyst are contacted with the solid acid catalyst disposed on at least a part of the inner surface of the pores of the protein holding substrate.
- the step (1) may be a step of transferring the protein after gel electrophoresis from the gel to the protein holding substrate.
- the protein transferred from the gel after electrophoresis to the protein holding substrate can be directly hydrolyzed by acting a solid acid catalyst.
- the fluorescent derivatives of amino acids thus prepared were separated by HPLC. Separation by HPLC was performed by a gradient elution method using a reversed phase column and a buffer solution system containing an ion pair reagent. The following conditions were used to separate a standard amino acid mixture or protein hydrolyzate containing 17 amino acids and ammonium fluorescently derivatized by AQC.
- HPLC apparatus Agilent 1100 series (including vacuum degasser G1379A, binary pump G1312A, autosampler G1367A, column thermostat G1330B / G1316A, diode array detector G1315B, fluorescence detector G1321A)
- Column Inertsil ODS-3 (4.6 ⁇ 150 mm, 3 ⁇ m), manufactured by GL Sciences c)
- Mobile phase A: 95% 5 mM tetrabutylammonium bromide, 30 mM phosphate buffer (pH 7.3), 5% acetonitrile; B: 50% acetonitrile / 30 mM phosphate buffer (pH 7.3)
- Concentration gradient The mobile phase B concentration was changed to 2-7.3-72.3% between 0-3 and 40 minutes.
- the membrane was washed with water until the supernatant became neutral, and then the membrane was immersed in distilled water for 24 hours. Thereafter, it was sufficiently dried in a vacuum desiccator to obtain a Nafion membrane for hydrolysis.
- Example 1 Preparation of Nafion-PVDF membrane and hydrolysis of protein
- Creation of Nafion-PVDF membrane Polyvinylidene difluoride (PVDF) membrane (ProBlott PVDF membrane, Applied Biosystems 400994) is cut into a 5 mm square in a glove box with a scalpel, and the amount of Nafion suspension described in Reference Example 1 is 10 ⁇ l / cm 2 .
- the catalyst was dropped onto the PVDF membrane at a catalyst weight of about 0.4 mg / cm 2 . After drying, Nafion suspension was similarly dropped on the back surface of the PVDF membrane and dried again to obtain a Nafion-PVDF membrane (membrane of composite substrate) as a membrane for hydrolysis.
- the small test tube is taken out, 10 ⁇ l of acetonitrile is added to the small test tube to wet the membrane, 20 ⁇ l of 20 mM hydrochloric acid is added and stirred, and then 0.2 M borate buffer (pH 8.8) is added. 50 ⁇ l and 20 ⁇ l of AQC solution were added, and fluorescence derivatization was performed according to the method described in “(1) Amino acid analysis by fluorescence derivatization”, and amino acids were quantified.
- Table 1 shows the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis.
- the results of hydrolytic hydrolysis of the same amount of BSA aqueous solution at constant boiling hydrochloric acid are also shown in Table 1 (shown as “gas-phase” in the table).
- the constant-boiling-point hydrochloric acid gas phase hydrolysis was carried out as follows. Specifically, 5 ⁇ l of 0.2 ⁇ g / ⁇ l BSA aqueous solution was put into a 6 ⁇ 32 mm small test tube and dried. Next, this small test tube was put into a 25 ml screw mouth vial in which phenol crystal was added to 200 ⁇ l of constant boiling hydrochloric acid, and after deaeration using a Mininert Valve, it was sealed. And this vial was heated at 110 degreeC for 20 hours, and the hydrolysis of BSA was performed.
- Example 2 Rapid hydrolysis of various proteins using Nafion-PVDF membrane
- a 1 cm square Nafion-PVDF membrane was prepared in the same manner as in Example 1, and the membrane was cut into a 1 mm wide strip with a knife. After moistening with acetonitrile, 1 ⁇ l of 1 ⁇ g / ⁇ l of BSA aqueous solution, ovalbumin (OVA, Sigma A-5503) aqueous solution, or histone H3 (H3, Roche 1034758) aqueous solution was added to the membrane. Each was put in a small test tube of 32 mm.
- OVA ovalbumin
- H3 histone H3
- the small test tube was placed in a 25 ml screw-mouth vial in which phenol crystal was added to 200 ⁇ l of MilliQ water, and after deaeration using a Mininert Valve, the tube was sealed. This vial was heated at 150 ° C. for 2 hours to hydrolyze each protein.
- Tables 2 to 4 show, in order, the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) as a result of hydrolysis of BSA, OVA, and H3, and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)). ).
- the results of vapor-phase hydrolysis of the same amount of protein aqueous solution with constant boiling hydrochloric acid are also shown in Tables 2 to 4 (shown as “gas phase method” in the table).
- the constant-boiling-point hydrochloric acid gas phase hydrolysis was carried out as follows. That is, 1 ⁇ l of a 1 ⁇ g / ⁇ l BSA aqueous solution, an OVA aqueous solution, or an H3 aqueous solution was placed in a 6 ⁇ 32 mm small test tube and dried. Next, this small test tube was put into a 25 ml screw mouth vial in which phenol crystal was added to 200 ⁇ l of constant boiling hydrochloric acid, and after deaeration using a Mininert Valve, it was sealed. And this vial was heated at 110 degreeC for 20 hours, and each protein was hydrolyzed.
- the hydrolysis method of the present invention is compared with the hydrolysis method by the gas phase method, the total amount of recovered amino acids is 96% of the gas phase method for BSA, 74% for OVA, and 77% for H3. It was. Also, the recovered amino acid amount (%) was almost the same as the gas phase method, and very good results were obtained.
- a Nafion-PVDF membrane (a pore having a size sufficient for protein and pores) coated with Nafion with heat resistance and acidic residue on a porous PVDF membrane with heat resistance and excellent protein retention It was possible to hydrolyze it into an amino acid that is a component of protein by sealing and heating the protein aqueous solution and the acid aqueous solution. Furthermore, it is possible to recover an amino acid equivalent to the amino acid obtained at the conventional hydrolysis time of 110 ° C. for 20 hours in a short time of 2 hours at 150 ° C., and the throughput is dramatically improved.
- Example 3 Hydrolysis on electroblotted membrane
- a standard molecular weight marker (GE Healthcare Bioscience, LMW Marker Kit, 17-0446-01) containing 0.87 ⁇ g of BSA was applied to a polyacrylamide gel, and BSA gel electrophoresis was performed. After SDS-PAGE, electroblotting was performed on a PVDF membrane (ProBlott PVDF membrane, Applied Biosystems 400994). This membrane was stained with Coomassie blue, and the detected BSA band was cut out. Next, a Nafion suspension was applied to the PVDF membrane corresponding to this band and dried. As a result, the surface of the PVDF membrane and the inner surface of the pores were in a state where Nafion was added.
- a Nafion-PVDF membrane prepared by the same method as in Example 1 was cut into the same size as the cut out band, and 1 ⁇ l of 1 ⁇ g / ⁇ l BSA aqueous solution was added thereto.
- Table 5 shows the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis.
- “blotted PVDF-Nafion” is the result when Nafion is applied to the electroblotted PVDF membrane, which is almost the same as the result using the Nafion-PVDF membrane according to Example 1. I understand.
- Example 4 Hydrolysis by incorporating a Nafion-PVDF membrane into a column
- a Nafion-PVDF membrane coated with BSA was prepared by adding 2 ⁇ l (10 ⁇ g in terms of BSA) of 5 ⁇ g / ⁇ l BSA aqueous solution to the Nafion-PVDF membrane. Then, a precolumn filter assembly A-318 manufactured by Upchurch Scientific was attached with the Nafion-PVDF membrane sandwiched between frit A-700 and frit A-701, and a precolumn was assembled.
- Example 5 Hydrolysis by incorporating a Nafion-PVDF membrane into a column (automatic protein introduction)]
- a frit made only of PEEK material is created by combining the outer frame of Frit A-100 made by Upchurch Scientific and the filter part of A-702, and a Nafion-PVDF membrane sandwiched between the created frit is a pre-column filter A precolumn was assembled by attaching to assembly A-318.
- acetonitrile is introduced into the precolumn to wet the membrane, then 5 ⁇ l of 2 ⁇ g / ⁇ l BSA aqueous solution (10 ⁇ g in BSA amount) is automatically introduced using an autosampler, and MilliQ water is added at 0.05 ml / min. The solution was passed for 10 minutes. This precolumn was heated at 150 ° C. for 2 hours to hydrolyze BSA on the Nafion-PVDF membrane. Extraction of the hydrolyzate from the Nafion-PVDF membrane is performed by the following two methods (a) and (b), and the obtained amino acid is fluorescent according to the method described in the above “(1) Amino acid analysis by fluorescent derivatization”.
- (b) corresponds to an embodiment in which all steps (column pretreatment, sample injection, washing, heating, elution, and recovery) are automated.
- the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) is shown as a result of hydrolysis.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
With the objective of providing a protein substance hydrolysis method, a hydrolysis device, and a hydrolytic product analysis device which are simple, fast, and can be automated, disclosed is a protein substance hydrolysis method to hydrolyze the protein substance whereby a protein substance is brought into contact with a solid acid catalyst, with the solid acid catalyst being arranged on a protein substance holding base which has multiple fine pores, and is heated in the presence of water. In addition, the protein substance hydrolysis device/hydrolytic product analysis device (21) is equipped with: an auto sampler (5) that supplies a solution which includes a protein substance; hydrolysis columns (8) used in the execution of the hydrolysis method; a flow path that connects the auto sampler (5) and the hydrolysis columns (8); an electric oven (9) that heats the hydrolysis columns (8); and a hydrolysis product analysis unit (11).
Description
本発明は、タンパク質の加水分解方法、加水分解装置、及びタンパク質の加水分解産物の分析装置に関するものである。
The present invention relates to a protein hydrolysis method, a hydrolysis apparatus, and a protein hydrolyzate analysis apparatus.
タンパク質の加水分解産物であるペプチドやアミノ酸を分析することで、当該タンパク質の重要な性質であるアミノ酸組成並びにタンパク質量、及びアミノ酸の翻訳後修飾等について情報が得られる。
By analyzing peptides and amino acids that are protein hydrolysates, information on amino acid composition, protein amount, post-translational modification of amino acids, and the like, which are important properties of the protein, can be obtained.
タンパク質を加水分解する方法として、例えば、酵素を触媒として用いた加水分解方法が数多く開発されている。しかし、酵素による分解は基質特異性があり、完全にアミノ酸まで分解できないため、当該方法は用途が限定されるという問題を有する。
As a method for hydrolyzing proteins, for example, many hydrolysis methods using an enzyme as a catalyst have been developed. However, since enzymatic degradation has substrate specificity and cannot completely degrade amino acids, this method has a problem that its application is limited.
また、一般に、タンパク質などの生体高分子は、加熱下で、水を加えた有機または無機の強酸(塩酸、硫酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタンスルホン酸など)、或いは強アルカリ(水酸化ナトリウム、水酸化カリウムなど)と混合することで加水分解され、オリゴマーやモノマー(タンパク質においてはペプチドやアミノ酸、多糖においてはオリゴ糖、単糖)を生じることが知られている(非特許文献1)。この知見に基づき、強酸または強アルカリ水溶液を用いたタンパク質の加水分解方法もまた数多く開発されている。
In general, biopolymers such as proteins are organic or inorganic strong acids (hydrochloric acid, sulfuric acid, trifluoroacetic acid, p-toluenesulfonic acid, methanesulfonic acid, etc.) with addition of water or strong alkali ( Hydrolysis by mixing with sodium hydroxide, potassium hydroxide, etc.) is known to produce oligomers and monomers (peptides and amino acids in proteins, oligosaccharides and monosaccharides in polysaccharides) (non-patent literature) 1). Based on this finding, a number of protein hydrolysis methods using strong acid or strong alkaline aqueous solutions have also been developed.
上記の強酸または強アルカリ水溶液による加水分解は、分解産物であるアミノ酸が更に分解されてしまうという問題を有しており、現時点で、タンパク質の完全な加水分解方法が確立されているわけではない。しかし、これらの方法の中では、(1)減圧封管した試験管内で、定沸点塩酸(約6N塩酸)を用いて、20時間から72時間、110度に加熱する加水分解方法(非特許文献2)、及び、(2)塩酸からの汚染物質の混入を防ぎ、微量試料を扱うために、定沸点塩酸を封管試験管内で直接蒸留する変法(気相加水分解法)が、最もよく用いられている。
The above-mentioned hydrolysis with a strong acid or strong alkaline aqueous solution has a problem that amino acids as degradation products are further degraded, and at present, a complete protein hydrolysis method has not been established. However, among these methods, (1) a hydrolysis method in which a constant boiling point hydrochloric acid (about 6N hydrochloric acid) is used and heated to 110 degrees C. for 20 to 72 hours in a test tube sealed under reduced pressure (non-patent document) 2) And (2) A modified method (gas phase hydrolysis method) in which constant boiling point hydrochloric acid is directly distilled in a sealed tube in order to prevent contamination from hydrochloric acid and handle a small amount of sample is the best. It is used.
ところで、上記(1)(2)の方法は、操作が煩雑で熟練した技術が必要であり、特に、タンパク質の微量分析では、人の操作に際して混入するタンパク質が分析結果に与える影響が大きくなる。そのため、より簡便な操作を実現し、かつ操作中のタンパク質の混入を防止する目的で、当該方法を自動化する試みもなされている。
By the way, the methods (1) and (2) described above require complicated and skilled techniques, and in particular, in the microanalysis of proteins, the influence of proteins mixed during human operations on the analysis results becomes large. For this reason, attempts have been made to automate the method for the purpose of realizing a simpler operation and preventing protein contamination during the operation.
例えば、上記試みの一例として、定沸点塩酸を用いた加水分解工程、及び誘導体化工程(プレラベルPTC(フェニルチオカルバミル)アミノ酸誘導体化法)まで自動化した装置が開発された(特許文献1)。しかし、当該装置では、塩酸によるバルブの腐食が原因の故障が報告されている。
For example, as an example of the above attempt, an apparatus was developed that automated the hydrolysis process using constant boiling hydrochloric acid and the derivatization process (prelabel PTC (phenylthiocarbamyl) amino acid derivatization method) (Patent Document 1). However, in this apparatus, a failure due to corrosion of the valve by hydrochloric acid has been reported.
すなわち、上記従来の定沸点塩酸を用いたタンパク質の加水分解方法では、1)タンパク質の加水分解産物であるアミノ酸が酸化によりさらに分解され易く、減圧封管などの極めて煩雑な操作が必要となること、2)装置の自動化に不向きであること、等の問題を有する。
That is, in the above conventional protein hydrolysis method using constant boiling hydrochloric acid, 1) the amino acid that is a protein hydrolyzate is more easily decomposed by oxidation, and a very complicated operation such as a vacuum sealed tube is required. 2) There are problems such as being unsuitable for automation of the apparatus.
本願発明は、上記の問題点に鑑みてなされたものであり、その目的は、従来の定沸点塩酸を用いた方法と比較してより簡便にタンパク質を加水分解する新規な方法、当該方法が適用された加水分解装置、及び加水分解産物の分析装置を提供することにある。また、必要に応じて反応を自動化可能なタンパク質の加水分解方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to apply a novel method for hydrolyzing proteins more easily than the method using conventional constant boiling hydrochloric acid, and to which the method is applied. And a hydrolyzate analyzer. Moreover, it is providing the hydrolysis method of the protein which can automate reaction as needed.
本願発明者等は上記課題を解決するために、定沸点塩酸を用いない新たな加水分解法について鋭意検討をおこなった。その結果、本願発明に先立ち、陽イオン交換樹脂などの固体酸触媒とタンパク質とを接触させた状態で加熱すれば、当該タンパク質をアミノ酸に加水分解できることを初めて見出した。本願発明者等は、さらに鋭意検討を行い、複数の細孔を有するタンパク質保持基材と、固体酸触媒とを複合することにより、当該固体酸触媒の触媒活性が有意に引き出されることを見出し、本願発明を完成させるに至った。
In order to solve the above-mentioned problems, the inventors of the present application have intensively studied a new hydrolysis method not using constant boiling hydrochloric acid. As a result, prior to the present invention, it was found for the first time that a protein can be hydrolyzed to an amino acid by heating in a state where a solid acid catalyst such as a cation exchange resin is in contact with the protein. The inventors of the present application have further studied diligently, and found that the catalytic activity of the solid acid catalyst is significantly derived by combining the protein holding substrate having a plurality of pores and the solid acid catalyst, The present invention has been completed.
すなわち、本発明に係るタンパク質の加水分解方法は、上記の課題を解決するために、複数の細孔を有するタンパク質保持基材の、当該細孔の内表面の少なくとも一部に固体酸触媒を配した状態でタンパク質を当該固体酸触媒に接触させ、水の存在下加熱することにより当該タンパク質を加水分解することを特徴としている。
That is, in the protein hydrolysis method according to the present invention, in order to solve the above-mentioned problem, a solid acid catalyst is disposed on at least a part of the inner surface of the protein holding substrate having a plurality of pores. In this state, the protein is brought into contact with the solid acid catalyst, and the protein is hydrolyzed by heating in the presence of water.
上記の方法によれば、タンパク質の加水分解反応に対する固体酸触媒の触媒活性が有意に引き出され、固体酸触媒を単独で用いる場合と比較して、より良好にタンパク質を加水分解することができるという効果を奏する。その結果、従来の定沸点塩酸を用いた方法等と比較してより簡便にタンパク質を加水分解することが可能になる。また、従来の方法と比較して、タンパク質の加水分解方法の自動化がより容易になる。
According to the above method, the catalytic activity of the solid acid catalyst with respect to the hydrolysis reaction of the protein is significantly extracted, and the protein can be hydrolyzed better than the case where the solid acid catalyst is used alone. There is an effect. As a result, it becomes possible to hydrolyze proteins more easily than the conventional method using constant boiling hydrochloric acid. Further, automation of the protein hydrolysis method becomes easier as compared with the conventional method.
本発明に係るタンパク質の加水分解装置は、上記の課題を解決するために、タンパク質を含む溶液を供給する試料供給手段と、タンパク質保持基材が有する複数の細孔の内表面の少なくとも一部に固体酸触媒が配された複合基材を備えた加水分解手段と、上記試料供給手段と加水分解手段とを連結する流路と、上記加水分解手段を加熱する加熱手段と、を備えることを特徴としている。
In order to solve the above problems, a protein hydrolyzing apparatus according to the present invention includes a sample supply means for supplying a solution containing a protein, and at least a part of inner surfaces of a plurality of pores of the protein holding substrate. Hydrolysis means comprising a composite substrate on which a solid acid catalyst is arranged, a flow path connecting the sample supply means and the hydrolysis means, and a heating means for heating the hydrolysis means It is said.
また、本発明に係るタンパク質の加水分解産物の分析装置は、上記の課題を解決するために、上記の加水分解装置における加水分解手段の後段に、さらに、タンパク質の加水分解産物を分析する分析手段を備えることを特徴としている。
In addition, in order to solve the above problems, an apparatus for analyzing a protein hydrolyzate according to the present invention further comprises an analysis means for analyzing a protein hydrolyzate after the hydrolysis means in the above hydrolysis apparatus. It is characterized by having.
本発明によれば、固体酸触媒を用いたタンパク質の加水分解として新規なものを提供することができる。さらに、当該加水分解方法を採用した加水分解装置、及び加水分解産物の分析装置を提供することができる。
According to the present invention, a novel protein hydrolysis using a solid acid catalyst can be provided. Furthermore, the hydrolysis apparatus which employ | adopted the said hydrolysis method, and the analysis apparatus of a hydrolysis product can be provided.
以下、本発明の実施形態について、詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
〔本発明に係るタンパク質の加水分解方法の概要〕
本発明に係る方法は、複数の細孔を有するタンパク質保持基材の、当該細孔の内表面の少なくとも一部に固体酸触媒を配した状態でタンパク質を当該固体酸触媒に接触させ、水の存在下加熱することにより当該タンパク質を加水分解するものである。本願発明者らは、既に、強陽イオン交換樹脂等の固体酸触媒を単独で用いてタンパク質の加水分解を行う試みをなしていたが、本発明の方法を採用することで、タンパク質の加水分解反応に対する固体酸触媒の触媒活性が有意に引き出されると考えられる。その結果、本発明に係る方法では、固体酸触媒を単独で用いる場合と比較して、さらに良好にタンパク質を加水分解することができる(後述する実施例・比較例も参照のこと)。 [Summary of protein hydrolysis method according to the present invention]
The method according to the present invention comprises contacting a protein with a solid acid catalyst in a state where a solid acid catalyst is disposed on at least a part of the inner surface of the protein holding substrate having a plurality of pores, The protein is hydrolyzed by heating in the presence. The inventors of the present application have already tried to hydrolyze proteins using a solid acid catalyst such as a strong cation exchange resin alone, but by adopting the method of the present invention, the hydrolysis of proteins It is believed that the catalytic activity of the solid acid catalyst for the reaction is significantly extracted. As a result, in the method according to the present invention, the protein can be hydrolyzed more satisfactorily as compared with the case where the solid acid catalyst is used alone (see also Examples and Comparative Examples described later).
本発明に係る方法は、複数の細孔を有するタンパク質保持基材の、当該細孔の内表面の少なくとも一部に固体酸触媒を配した状態でタンパク質を当該固体酸触媒に接触させ、水の存在下加熱することにより当該タンパク質を加水分解するものである。本願発明者らは、既に、強陽イオン交換樹脂等の固体酸触媒を単独で用いてタンパク質の加水分解を行う試みをなしていたが、本発明の方法を採用することで、タンパク質の加水分解反応に対する固体酸触媒の触媒活性が有意に引き出されると考えられる。その結果、本発明に係る方法では、固体酸触媒を単独で用いる場合と比較して、さらに良好にタンパク質を加水分解することができる(後述する実施例・比較例も参照のこと)。 [Summary of protein hydrolysis method according to the present invention]
The method according to the present invention comprises contacting a protein with a solid acid catalyst in a state where a solid acid catalyst is disposed on at least a part of the inner surface of the protein holding substrate having a plurality of pores, The protein is hydrolyzed by heating in the presence. The inventors of the present application have already tried to hydrolyze proteins using a solid acid catalyst such as a strong cation exchange resin alone, but by adopting the method of the present invention, the hydrolysis of proteins It is believed that the catalytic activity of the solid acid catalyst for the reaction is significantly extracted. As a result, in the method according to the present invention, the protein can be hydrolyzed more satisfactorily as compared with the case where the solid acid catalyst is used alone (see also Examples and Comparative Examples described later).
加えて、本発明に係る方法は、定沸点塩酸等を用いた従来の加水分解方法と比較して、加水分解装置に損傷を与えることがない。また、加水分解反応に用いる固体酸触媒及びタンパク質保持基材の回収が容易であり、従来の方法と比較して環境負荷もより少なくなる。
In addition, the method according to the present invention does not damage the hydrolysis apparatus as compared with the conventional hydrolysis method using constant boiling hydrochloric acid or the like. Further, it is easy to recover the solid acid catalyst and the protein-holding base material used for the hydrolysis reaction, and the environmental burden is reduced as compared with the conventional method.
本発明において「タンパク質保持基材」は、複数の細孔を有する基材(すなわち多孔質基材)であって、タンパク質を吸着、又は付着等することにより保持できるものであれば特に限定されない。その材質は、特に限定されないが、多孔質ニトロセルロース担体、多孔質ナイロン担体、多孔質ポリビニリデンジフルオライド(PVDF)担体、多孔質シリカ担体、多孔質ポリエーテルスルホン担体、多孔質ポリカーボネート担体、多孔質ポリテトラフルオロエチレン(PTFE)担体、多孔質セルロース混合エステル担体、又はこれら材質の複数種からなる複合担体、等が挙げられ、タンパク質の保持量を向上させるために疎水化処理、又は親水化処理等の処理が施されていてもよい。中でも、タンパク質の保持力に優れ、かつ耐熱性に優れるという観点からは、多孔質ポリビニリデンジフルオライド(PVDF)担体がより好ましい。なお、タンパク質保持基材におけるタンパク質の保持量は、特に限定されないが、ウシ血清アルブミン(BSA)の保持量として、50μg/cm2~250μg/cm2の範囲内であることが好ましく、100μg/cm2~250μg/cm2の範囲内であることがより好ましい。ここで、「タンパク質保持量」は、例えば、放射性同位体ラベル法により測定される。
In the present invention, the “protein holding substrate” is not particularly limited as long as it is a substrate having a plurality of pores (that is, a porous substrate) and can be held by adsorbing or adhering proteins. The material is not particularly limited, but porous nitrocellulose carrier, porous nylon carrier, porous polyvinylidene difluoride (PVDF) carrier, porous silica carrier, porous polyethersulfone carrier, porous polycarbonate carrier, porous Polytetrafluoroethylene (PTFE) carrier, porous cellulose mixed ester carrier, or composite carrier composed of a plurality of these materials, etc., and hydrophobization treatment or hydrophilization treatment to improve protein retention Etc. may be given. Among these, a porous polyvinylidene difluoride (PVDF) carrier is more preferable from the viewpoint of excellent protein retention and heat resistance. The amount of protein retained in the protein retaining substrate is not particularly limited, but the amount retained for bovine serum albumin (BSA) is preferably in the range of 50 μg / cm 2 to 250 μg / cm 2 , and is preferably 100 μg / cm 2. More preferably, it is in the range of 2 to 250 μg / cm 2 . Here, the “protein retention amount” is measured by, for example, a radioisotope labeling method.
タンパク質保持基材の形状は、特に限定されず、例えば、膜状、ロッド状、粒状、などである。膜状の場合、その膜厚は特に限定されないが、20~1000μmの範囲内であることが好ましく、80~200μmの範囲内であることがより好ましい。なお、膜状のタンパク質保持基材として、タンパク質ブロット用の膜、限外ろ過膜、等が例示され、複数の膜を積層膜化したものであってもよい。
The shape of the protein-holding substrate is not particularly limited, and examples thereof include a film shape, a rod shape, and a granular shape. In the case of a film, the film thickness is not particularly limited, but is preferably in the range of 20 to 1000 μm, and more preferably in the range of 80 to 200 μm. Examples of the membrane-like protein holding substrate include a protein blotting membrane, an ultrafiltration membrane, and the like, and a plurality of membranes may be laminated.
タンパク質保持基材が有する細孔の平均細孔径は、特に限定されないが、大多数のタンパク質を対象として、当該タンパク質の全体又はその一部領域を細孔内に保持するために、0.01μm~0.75μmの範囲内であることが好ましく、0.05μm~0.6μmの範囲内であることがより好ましい。なお、「平均細孔径」は電子顕微鏡観察により測定することができる。
The average pore diameter of the pores possessed by the protein-holding substrate is not particularly limited, but for the majority of proteins, in order to retain the whole or a part of the protein in the pores, 0.01 μm to It is preferably in the range of 0.75 μm, and more preferably in the range of 0.05 μm to 0.6 μm. The “average pore diameter” can be measured by observation with an electron microscope.
また、タンパク質保持基材が膜状の場合、上記細孔の少なくとも一部は、膜の一方面から他方面に貫通する貫通孔であることが好ましい。貫通孔を有すれば、タンパク質保持基材の膜の一方面側からタンパク質を含む溶液を供給して加水分解を行い、アミノ酸等の加水分解産物を膜の他方面側から回収できる。
In addition, when the protein-holding substrate is in the form of a membrane, it is preferable that at least a part of the pores is a through-hole penetrating from one side of the membrane to the other side. If it has a through-hole, it can hydrolyze by supplying the solution containing a protein from the one side of the membrane of the protein holding substrate, and a hydrolyzate such as an amino acid can be recovered from the other side of the membrane.
本発明において「固体酸触媒」は、酸として機能しうる固体触媒であれば特に限定されるものではないが、加水分解効率の観点から、メタンスルホン酸基、ビニルスルホン酸基のような飽和炭化水素スルホン酸基、不飽和炭化水素スルホン酸基、ジフルオロメタンスルホン酸のようなハロゲン化飽和炭化水素スルホン酸基、ハロゲン化不飽和炭化水素スルホン酸基、(これらの炭化水素スルホン酸基には複素環炭化水素スルホン酸基も含む)、或いはトルエンスルホン酸基等の芳香族スルホン酸基を含むスルホン酸型陽イオン交換体;ピクリン酸基などを含むフェノール型陽イオン交換体;モノ、ジクロロ酢酸基、モノ、ジフルオロ酢酸基などのハロゲン化酢酸基、サリチル酸基、ニトロ安息香酸基、クロロ安息香酸基、フタル酸基、ヘミメリット酸基、ピロメリット酸基などの芳香族カルボン酸基、ピルビン酸基、アセトピルビン酸基、マロン酸基、アコニット酸基等のカルボン酸基を含むカルボン酸型イオン交換体;含フッ素または塩素スルフィン酸基、トルエンスルフィン酸基、ニトロベンゼンスルフィン酸基、ハロゲン化ベンゼンスルフィン酸基、ベンゼンスルフィン酸基等を含むスルフィン酸型イオン交換体;含フッ素または塩素スルフェン酸基を含むスルフェン酸型イオン交換体;飽和炭化水素リン酸基、不飽和炭化水素リン酸基、ハロゲン化飽和炭化水素リン酸基、ハロゲン化不飽和炭化水素リン酸基、(これらの炭化水素リン酸基には複素環炭化水素リン酸基も含む)、グリセロリン酸基、ヘキソースリン酸基、芳香族リン酸基、芳香族アリルリン酸基、アリルリン酸基およびハロゲン化アリルリン酸基などのリン酸基を含むリン酸型陽イオン交換体;からなる群から選ばれる少なくとも一種類であることが好ましい。固体酸触媒は、一種のみ用いてもよく、又は二種以上を組合わせて使用することもできる。
In the present invention, the “solid acid catalyst” is not particularly limited as long as it is a solid catalyst that can function as an acid, but from the viewpoint of hydrolysis efficiency, saturated carbonization such as a methanesulfonic acid group and a vinylsulfonic acid group. Hydrogen sulfonic acid group, unsaturated hydrocarbon sulfonic acid group, halogenated saturated hydrocarbon sulfonic acid group such as difluoromethane sulfonic acid group, halogenated unsaturated hydrocarbon sulfonic acid group, (these hydrocarbon sulfonic acid groups are (Including cyclic hydrocarbon sulfonic acid groups) or sulfonic acid type cation exchangers including aromatic sulfonic acid groups such as toluene sulfonic acid groups; phenolic cation exchangers including picric acid groups; mono and dichloroacetic acid groups Halogenated acetic acid groups such as mono- and difluoroacetic acid groups, salicylic acid groups, nitrobenzoic acid groups, chlorobenzoic acid groups, phthalic acid groups, hemi Carboxylic acid type ion exchangers containing aromatic carboxylic acid groups such as littic acid groups and pyromellitic acid groups, pyruvic acid groups, acetopyruvic acid groups, malonic acid groups and aconitic acid groups; fluorine-containing or chlorine Sulfinic acid type ion exchangers containing sulfinic acid groups, toluene sulfinic acid groups, nitrobenzene sulfinic acid groups, halogenated benzene sulfinic acid groups, benzene sulfinic acid groups, etc .; sulfenic acid type ion exchangers containing fluorine-containing or chlorine sulfenic acid groups A saturated hydrocarbon phosphoric acid group, an unsaturated hydrocarbon phosphoric acid group, a halogenated saturated hydrocarbon phosphoric acid group, a halogenated unsaturated hydrocarbon phosphoric acid group, (these hydrocarbon phosphoric acid groups include heterocyclic hydrocarbon phosphorus Acid group), glycerophosphate group, hexose phosphate group, aromatic phosphate group, aromatic allyl phosphate group, allyl Is preferably at least one selected from the group consisting of; phosphoric acid type cation exchanger containing a phosphate group such as phospho groups and halogenated Arirurin groups. One kind of solid acid catalyst may be used, or two or more kinds may be used in combination.
上記スルホン酸型陽イオン交換体とは、上記の通りスルホン酸基(-SO3H)を含む陽イオン交換能を有するイオン交換体であり、好ましい形態として、スルホン酸基を含む陽イオン交換樹脂を挙げることができる。スルホン酸型陽イオン交換体は、例えば、プロトン以外のカウンターイオンを有する(-SO3X(Xはカウンターイオンを表す))場合、プロトン型に置換した後に使用する。上記陽イオン交換樹脂としては、特に限定されないが、後述するタンパク質の加水分解を比較的高温かつ迅速に行う目的では、耐熱性に優れたスルホン酸型イオン交換基を有する(導入された)ポリテトラフルオロエチレン(共)重合体がより好ましい。なお、スルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体の一例として、パーフルオロスルホン酸/ポリテトラフルオロエチレン共重合体の一例たるナフィオン((Nafion)登録商標)等が挙げられる。なお、本発明において「(共)重合体」とは、一種のモノマーを重合してなる単独重合体、及び二種以上のモノマーを重合してなる共重合体の何れも包含する概念である。
The sulfonic acid type cation exchanger is an ion exchanger having a cation exchange capacity containing a sulfonic acid group (—SO 3 H) as described above, and a cation exchange resin containing a sulfonic acid group as a preferred embodiment. Can be mentioned. For example, when the sulfonic acid type cation exchanger has counter ions other than protons (-SO 3 X (X represents a counter ion)), the sulfonic acid type cation exchanger is used after being replaced with a proton type. The cation exchange resin is not particularly limited, but for the purpose of rapidly hydrolyzing the protein described later at a relatively high temperature and quickly, a polytetrafluoroethylene having a sulfonic acid type ion exchange group having excellent heat resistance (introduced). A fluoroethylene (co) polymer is more preferred. An example of a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group is Nafion ((Nafion) registered trademark) as an example of a perfluorosulfonic acid / polytetrafluoroethylene copolymer. . In the present invention, the term “(co) polymer” is a concept encompassing both a homopolymer obtained by polymerizing one kind of monomer and a copolymer obtained by polymerizing two or more kinds of monomers.
さらに、タンパク質の加水分解を比較的高温かつ迅速に行う目的では、特に好適な「タンパク質保持基材」と「固体酸触媒」との組合わせとして、具体的には例えば、PVDFと、ナフィオン等のスルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体との組合わせが挙げられる。
Furthermore, for the purpose of rapidly hydrolyzing proteins at a relatively high temperature, a particularly suitable combination of “protein holding substrate” and “solid acid catalyst” includes, for example, PVDF and Nafion. The combination with the polytetrafluoroethylene (co) polymer which has a sulfonic acid type ion exchange group is mentioned.
ナフィオンは固体高分子電解質として古くから知られ、その耐久性と化学的安定性から最先端材料、特に燃料電池材料として様々な用途に用いられている。ナフィオンは、膜状に加工されたものや、粉末やペレット、懸濁液などが入手可能であり、懸濁液を用いたキャスト膜の物性に関する報告もなされている(“Density and Solubility of Nafion: Recast, Annealed, and Commercial Films”, Zook, L. A., Leddy J., Anal. Chem., 68, 3793-3796 (1996))。またマトリックス支援レーザー脱離イオン化法(MALDI)を用いたタンパク質の質量分析の研究例(“Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry”, Ogorzalek Loo, R. R., Mitchell, C., Stevenson, T. I., Loo, J. A., Andrews, P. C., Int. J. Mass Spectrom. Ion Processes, 169/170, 273-290 (1997))では、様々な膜からのイオン化が研究されており、ナフィオン膜についてはキャスト膜ではなく、PVDF膜上にナフィオンを展開した複合膜を作製している。
Nafion has long been known as a solid polymer electrolyte and has been used for various purposes as a state-of-the-art material, particularly a fuel cell material, due to its durability and chemical stability. Nafion is available in the form of membranes, powders, pellets, and suspensions, and there are reports on the properties of cast membranes using suspensions (“Densityensand Solubility of Nafion: Recast, Annealed, and Commercial Films ”, Zook, L. A., LeddyedJ., Anal. Chem.,. 68, 3793-37963-3 (1996)). Also, examples of protein mass spectrometry using matrix-assisted laser desorption / ionization (MALDI) (“Diffusive transfer to membranes as an effective interface between gel electrophoresis and mass spectrometry”, gorOgorzalek Loo, R. R., Mitchell, C ., Stevenson, T. I., Loo, J. A., Andrews, P. C., Int. J. Mass Spectrom. IonesProcesses, 169/170, 273-290 (1997)) As for the Nafion membrane, not a cast membrane but a composite membrane in which Nafion is developed on a PVDF membrane is produced.
しかしながら、上記の複合膜をタンパク質の加水分解用途に用いたのは、本願発明者らがはじめてであり、1)当該加水分解を比較的高温かつ迅速に行うことができ、さらに、2)当該複合膜を用いることで、ナフィオンのキャスト膜と比較して、極めて優れた回収アミノ酸量を実現することができる、という効果を奏する(後述する実施例・比較例も参照)。
However, the present inventors were the first to use the above composite membrane for protein hydrolysis, 1) the hydrolysis can be performed at a relatively high temperature and quickly, and 2) the composite. By using the membrane, it is possible to realize an extremely excellent amount of recovered amino acid as compared with a Nafion cast membrane (see also Examples and Comparative Examples described later).
なお、いうまでもないが、比較的耐熱性を有する「固体酸触媒」と「タンパク質保持基材」との組合わせを任意に選択しても、必ずしも加水分解をより迅速に行うことが出来るとは限らない。確かに、加水分解の反応速度は温度が上昇するにつれて速くなる。しかし、温度が上昇するほど、反応系内のタンパク質、分解産物(アミノ酸等)、固体酸触媒、及びタンパク質保持基材との間で、不所望な副反応が生じる虞も高まり、分解産物の回収量や組成に悪影響を及ぼしうる。したがって、タンパク質の加水分解をより迅速に行うためには、「固体酸触媒」及び「タンパク質保持基材」の組合わせにおける耐熱性以外の要素も重要である。本願発明者らは、試行錯誤の結果、PVDFと、ナフィオン等のスルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体との組合わせが、タンパク質の加水分解をより迅速に行うに非常に適していることを見出した。
Needless to say, hydrolysis can always be performed more rapidly even if a combination of a relatively solid heat-resistant "solid acid catalyst" and a "protein holding substrate" is arbitrarily selected. Is not limited. Indeed, the rate of hydrolysis reaction increases with increasing temperature. However, the higher the temperature, the greater the risk of unwanted side reactions between the proteins in the reaction system, degradation products (amino acids, etc.), the solid acid catalyst, and the protein holding substrate. May adversely affect quantity and composition. Therefore, in order to perform protein hydrolysis more rapidly, factors other than heat resistance in the combination of the “solid acid catalyst” and the “protein holding substrate” are also important. As a result of trial and error, the present inventors have found that a combination of PVDF and a polytetrafluoroethylene (co) polymer having a sulfonic acid-type ion exchange group such as Nafion can hydrolyze proteins more rapidly. I found it very suitable.
本発明において「タンパク質保持基材の、当該細孔の内表面の少なくとも一部に固体酸触媒を配する」とは、少なくともタンパク質保持基材が有する細孔の内表面の一部又は全体に固体酸触媒が付されていること(表面に浸潤している状態も含む)、より好ましくは、当該内表面の一部又は全体が固体酸触媒にて被覆されていることを指す。なお、上記細孔の内表面に固体酸触媒が配されている限りにおいて、タンパク質保持基材の表面(内表面以外の表面)の一部又は全体にも固体酸触媒が付されていてよい。
In the present invention, “the solid acid catalyst is arranged on at least a part of the inner surface of the pore of the protein-holding substrate” means that at least a part or the whole of the inner surface of the pore of the protein-holding substrate is solid. It means that an acid catalyst is attached (including a state infiltrating the surface), and more preferably, a part or the whole of the inner surface is coated with a solid acid catalyst. In addition, as long as the solid acid catalyst is arranged on the inner surface of the pore, the solid acid catalyst may be attached to a part or the whole of the surface (surface other than the inner surface) of the protein holding substrate.
なお、タンパク質保持基材に固体酸触媒を配する方法は特に限定されないが、例えば、1)固体酸触媒を適当な溶媒に溶解又は懸濁した溶液を、タンパク質保持基材に供する(塗布等)、2)当該溶液中にタンパク質保持基材を浸漬する、3)タンパク質保持基材に固体酸触媒を蒸着する、等の方法が挙げられる。これら例示の中では、操作が容易かつ確実であるとの観点から、1)又は2)の方法が好ましい。
In addition, the method of arranging the solid acid catalyst on the protein holding substrate is not particularly limited. For example, 1) A solution obtained by dissolving or suspending the solid acid catalyst in an appropriate solvent is used for the protein holding substrate (coating, etc.). 2) A method for immersing the protein-holding substrate in the solution, and 3) evaporating a solid acid catalyst on the protein-holding substrate. Among these examples, the method 1) or 2) is preferable from the viewpoint of easy and reliable operation.
タンパク質保持基材に配される固体酸触媒の量は特に限定されないが、当該固体酸触媒が配されるタンパク質保持基材の、内表面を除く、外寸法から算出される表面積あたり、0.1mg/cm2~100mg/cm2の範囲内であることが好ましく、0.4mg/cm2~2mg/cm2の範囲内であることがより好ましい。
The amount of the solid acid catalyst arranged on the protein holding substrate is not particularly limited, but 0.1 mg per surface area calculated from the outer dimensions of the protein holding substrate on which the solid acid catalyst is arranged, excluding the inner surface. / Cm 2 to 100 mg / cm 2 is preferable, and 0.4 mg / cm 2 to 2 mg / cm 2 is more preferable.
本発明では、タンパク質は、上記タンパク質保持基材に配された固体酸触媒に接触させて、水の存在下加熱して加水分解される。ここで、タンパク質を固体酸触媒に接触させる方法として、(A)タンパク質保持基材と固体酸触媒とを接触させて、タンパク質保持基材が有する細孔の内表面の少なくとも一部に固体酸触媒が配された複合基材を得て、次いで、当該複合基材にタンパク質を接触させる方法、或いは、(B)タンパク質保持基材とタンパク質とを接触させて、当該タンパク質保持基材にタンパク質を保持させ、次いで、タンパク質を保持した上記タンパク質保持基材と、上記固体酸触媒を含む溶液とを接触させて、上記細孔の内表面の少なくとも一部に固体酸触媒を配した状態で当該タンパク質を固体酸触媒に接触させる方法、が挙げられる。
In the present invention, the protein is hydrolyzed by being brought into contact with the solid acid catalyst disposed on the protein holding substrate and heated in the presence of water. Here, as a method of bringing the protein into contact with the solid acid catalyst, (A) the protein holding substrate and the solid acid catalyst are brought into contact with each other, and the solid acid catalyst is formed on at least a part of the inner surface of the pore of the protein holding substrate. Is obtained, and then the protein is brought into contact with the composite substrate, or (B) the protein holding substrate and the protein are brought into contact with each other to hold the protein on the protein holding substrate. Next, the protein-holding substrate holding the protein and the solution containing the solid acid catalyst are brought into contact with each other, and the protein is placed in a state where the solid acid catalyst is arranged on at least a part of the inner surface of the pore. And a method of contacting with a solid acid catalyst.
ここで、上記(A)の方法で「複合基材」として膜状のものを用いれば、例えば、本発明を以下の用途に応用することができる。(1)この複合基材はカラムに組み込むことが可能なため、自動加水分解装置を用いたタンパク質の自動加水分解が可能となる。(2)市販の96穴ドットブロット装置などの既存フォーマットと親和性が高く、それらと併用することにより、多量のサンプル(タンパク質試料)を並行処理することが容易となる。(3)通常、タンパク質の分離には各種クロマトグラフィーの他に、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)が比較的分離能が良いため多用される。しかし、アミノ酸組成分析を行う場合、分析対象のタンパク質を含むゲルを直接加水分解しアミノ酸を得る方法では多量のアンモニアが発生するなどし、その後の分析に支障をきたす。また、SDSやギ酸を用いてタンパク質を溶出しても、加水分解を妨害する物質を除去するのは難しい。そこで、従来は、ゲルからブロッティング用の膜(タンパク質保持基材)に電気的に転写し、染色およびバックグラウンドの脱染色をしてタンパク質のバンドを確認し、切り抜き、洗浄し加水分解するという方法をとっている。しかし、このような煩雑な操作が増えるほど、操作する人間からの汚染が分析を邪魔する危険性が増す。一方、本発明に従い、膜状の上記複合基材を組み込んだカラムを用いれば、電気泳動後のゲルから溶出したタンパク質溶液を添加し、洗浄後に、加熱することで加水分解からアミノ酸回収まで行えるため、タンパク質溶出のためにSDSやギ酸を加えたとしても微量分析を阻害する環境からの汚染を極力抑えることが可能となる。
Here, if a film-like substrate is used as the “composite substrate” by the method (A), for example, the present invention can be applied to the following applications. (1) Since this composite substrate can be incorporated into a column, automatic protein hydrolysis using an automatic hydrolysis apparatus becomes possible. (2) Affinity with existing formats such as a commercially available 96-well dot blot apparatus is high, and it is easy to process a large amount of samples (protein samples) in parallel by using them together. (3) Usually, in addition to various types of chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is frequently used for protein separation because of its relatively good resolution. However, when amino acid composition analysis is performed, a method of directly hydrolyzing a gel containing a protein to be analyzed to obtain an amino acid generates a large amount of ammonia, which hinders subsequent analysis. Moreover, even if the protein is eluted using SDS or formic acid, it is difficult to remove substances that interfere with hydrolysis. Therefore, the conventional method is to electrically transfer the gel to a blotting membrane (protein holding substrate), stain and remove the background, check the protein band, cut out, wash and hydrolyze. Have taken. However, the more complicated such operations, the greater the risk that contamination from the operating human will interfere with the analysis. On the other hand, if a column incorporating the membrane-like composite base material is used according to the present invention, the protein solution eluted from the gel after electrophoresis can be added, and after washing, heating can be performed from hydrolysis to amino acid recovery. Even if SDS or formic acid is added for protein elution, it is possible to suppress contamination from the environment that inhibits microanalysis as much as possible.
また、上記(B)の方法の具体例として、特に限定されないが、ゲル電気泳動後のタンパク質を、当該ゲルから上記タンパク質保持基材(ブロッティング用の膜)に転写し、次いで、タンパク質保持基材と固体酸触媒とを接触させる方法が挙げられる。通常、加水分解に供されるタンパク質試料は、目的外のタンパク質その他の夾雑物を含む混合物であるから、加水分解前に、ゲル電気泳動などにより分離操作がなされる。上記(B)の方法によれば、電気泳動後のゲルからタンパク質保持基材に転写されたタンパク質に対して、直接、固体酸触媒を作用させて加水分解を行うことができる。
In addition, as a specific example of the method (B), although not particularly limited, the protein after gel electrophoresis is transferred from the gel to the protein holding substrate (membrane for blotting), and then the protein holding substrate And a method of bringing the solid acid catalyst into contact with each other. Usually, since a protein sample to be subjected to hydrolysis is a mixture containing undesired proteins and other contaminants, a separation operation is performed by gel electrophoresis or the like before hydrolysis. According to the method (B), the protein transferred from the gel after electrophoresis to the protein holding substrate can be directly hydrolyzed by acting a solid acid catalyst.
さらに、上記(B)の方法の他の具体例として、特に限定されないが、限外ろ過膜(タンパク質保持基材)などでタンパク質を含む溶液をろ過し、次いで、限外ろ過膜と固体酸触媒とを接触させる方法が挙げられる。市販の限外ろ過膜またはPVDF膜を付した96穴もしくは384穴などのフィルタープレートプレートを用いることで、多検体の加水分解処理が可能になる。
Furthermore, as another specific example of the method (B), although not particularly limited, a solution containing protein is filtered through an ultrafiltration membrane (protein holding base material) or the like, and then the ultrafiltration membrane and the solid acid catalyst are filtered. Can be mentioned. By using a commercially available ultrafiltration membrane or a filter plate plate such as 96-hole or 384-hole with a PVDF membrane, it is possible to hydrolyze multiple samples.
本発明において、加水分解の対象となる「タンパク質」とは、複数のアミノ酸がペプチド結合により連結してなるものであれば、その種類、由来、大きさ等は、特に限定されない。ただし、一般的には、100以上で2000以下のアミノ酸残基からなるタンパク質が好ましい。
In the present invention, the “protein” to be hydrolyzed is not particularly limited in terms of its type, origin, size, etc., as long as it is formed by connecting a plurality of amino acids by peptide bonds. However, in general, a protein consisting of 100 or more and 2000 or less amino acid residues is preferred.
本発明において、「タンパク質の加水分解」とは、水の存在下、ペプチド結合が加水分解されて、より短いタンパク質(ペプチド)及び/又は構成アミノ酸、に分解される反応を指す。当該加水分解の反応条件は、分解反応が進行し、かつ、固体酸触媒及びタンパク質保持基材の分解が実質的に起らない限りにおいて特に限定されない。反応温度は、固体酸触媒及びタンパク質保持基材の分解が実質的に起らない限りにおいて、100℃以上で220℃以下の温度範囲内が好ましく、110℃以上でかつ160℃以下の温度範囲内がより好ましい。特に好ましくは140℃以上でかつ160℃以下の温度範囲である。なお、PVDFと、スルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体との組合わせは、ここで例示した温度範囲内において特筆すべき加水分解能の劣化などを起こさない。
In the present invention, “protein hydrolysis” refers to a reaction in which a peptide bond is hydrolyzed to a shorter protein (peptide) and / or a constituent amino acid in the presence of water. The reaction conditions for the hydrolysis are not particularly limited as long as the decomposition reaction proceeds and the solid acid catalyst and the protein-holding substrate are not substantially decomposed. The reaction temperature is preferably within a temperature range of 100 ° C. or higher and 220 ° C. or lower, and within a temperature range of 110 ° C. or higher and 160 ° C. or lower, as long as the solid acid catalyst and the protein holding substrate are not substantially decomposed. Is more preferable. Particularly preferred is a temperature range of 140 ° C. or higher and 160 ° C. or lower. Note that the combination of PVDF and a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group does not cause a remarkable deterioration in hydrolytic resolution within the temperature range exemplified here.
また、加水分解の反応時間は反応温度に依存するが、5分~1週間程度が好ましく、10分~24時間の範囲内がより好ましい。特に好ましくは10分~2時間程度の範囲内である。
The hydrolysis reaction time depends on the reaction temperature, but is preferably about 5 minutes to 1 week, more preferably within the range of 10 minutes to 24 hours. Particularly preferably, it is in the range of about 10 minutes to 2 hours.
さらに、本発明に係る加水分解反応において、反応の基質となるタンパク質重量と固体酸触媒重量との量比は反応が円滑に進む限りにおいて特に限定されないが、タンパク質量と固体酸触媒量とが、1:1000~1:1の範囲内であることが好ましい。
Furthermore, in the hydrolysis reaction according to the present invention, the amount ratio of the protein weight serving as the reaction substrate and the solid acid catalyst weight is not particularly limited as long as the reaction proceeds smoothly, but the protein amount and the solid acid catalyst amount are: It is preferably in the range of 1: 1000 to 1: 1.
なお、本発明に係る方法で得られたタンパク質の加水分解産物の用途は、特に限定されない。例えば、食品添加物やサプリメント等を含む各種工業製品の原材料として用いることもでき、また、タンパク質の構成アミノ酸分析の用途に供することもできる。
The use of the protein hydrolyzate obtained by the method according to the present invention is not particularly limited. For example, it can also be used as a raw material for various industrial products including food additives and supplements, and can also be used for analysis of protein constituent amino acids.
〔タンパク質の加水分解装置、及び加水分解産物の分析装置〕
本発明に係るタンパク質の加水分解装置は、1)タンパク質を含む溶液を供給する試料供給手段と、2)タンパク質保持基材に固体酸触媒が配された複合基材を備えた加水分解手段と、3)上記試料供給手段と加水分解手段とを連結する流路と、4)洗浄液および加水分解後の加水分解産物を溶出する溶出液を送液する送液手段と、5)上記加水分解手段を加熱する加熱手段と、を備える。さらに、必要に応じて、6)加水分解手段の後段側に、加水分解産物の回収手段、及び加水分解手段と当該回収手段とを連結する流路、を備える。 [Protein hydrolysis apparatus and hydrolysis product analysis apparatus]
The protein hydrolysis apparatus according to the present invention includes: 1) a sample supply means for supplying a solution containing protein; 2) a hydrolysis means comprising a composite base material in which a solid acid catalyst is arranged on a protein holding base material; 3) a flow path connecting the sample supply means and the hydrolysis means, 4) a liquid feed means for feeding the washing liquid and an eluate for eluting the hydrolyzed product after hydrolysis, and 5) the hydrolysis means. Heating means for heating. Further, as necessary, 6) a hydrolyzate recovery unit and a flow path for connecting the hydrolysis unit and the recovery unit are provided on the downstream side of the hydrolysis unit.
本発明に係るタンパク質の加水分解装置は、1)タンパク質を含む溶液を供給する試料供給手段と、2)タンパク質保持基材に固体酸触媒が配された複合基材を備えた加水分解手段と、3)上記試料供給手段と加水分解手段とを連結する流路と、4)洗浄液および加水分解後の加水分解産物を溶出する溶出液を送液する送液手段と、5)上記加水分解手段を加熱する加熱手段と、を備える。さらに、必要に応じて、6)加水分解手段の後段側に、加水分解産物の回収手段、及び加水分解手段と当該回収手段とを連結する流路、を備える。 [Protein hydrolysis apparatus and hydrolysis product analysis apparatus]
The protein hydrolysis apparatus according to the present invention includes: 1) a sample supply means for supplying a solution containing protein; 2) a hydrolysis means comprising a composite base material in which a solid acid catalyst is arranged on a protein holding base material; 3) a flow path connecting the sample supply means and the hydrolysis means, 4) a liquid feed means for feeding the washing liquid and an eluate for eluting the hydrolyzed product after hydrolysis, and 5) the hydrolysis means. Heating means for heating. Further, as necessary, 6) a hydrolyzate recovery unit and a flow path for connecting the hydrolysis unit and the recovery unit are provided on the downstream side of the hydrolysis unit.
上記試料供給手段は、加水分解の対象となるタンパク質を加水分解手段に供給するものであり、例えば、公知のサンプルインジェクター等で構成することができる。また、公知のオートサンプラーを用いて、タンパク質を含むサンプルを自動供給する構成としてもよい。
The sample supply means supplies a protein to be hydrolyzed to the hydrolysis means, and can be constituted by, for example, a known sample injector. Moreover, it is good also as a structure which supplies the sample containing protein automatically using a well-known autosampler.
上記の加水分解手段は、本発明に係るタンパク質の加水分解方法を実行する手段であり、具体的には、タンパク質保持基材に固体酸触媒が配された複合基材を備えてなる。特に限定されないが、加水分解手段は、粒状の複合基材を充填したカラム、又は膜状の複合基材が流路に配されたカラム、の何れかであることが好ましい。当該カラムを備えれば、試料供給手段から供された、加水分解の対象となるタンパク質がカラムに保持される一方で、加水分解産物はカラムの下流側にて回収可能となる。よって、加水分解装置の自動化が行いやすく、また加水分解産物と未分解のタンパク質との分離が比較的容易となる。
The above-mentioned hydrolysis means is means for executing the protein hydrolysis method according to the present invention, and specifically comprises a composite substrate in which a solid acid catalyst is arranged on a protein holding substrate. Although not particularly limited, the hydrolysis means is preferably either a column packed with a granular composite substrate or a column in which a membrane-shaped composite substrate is arranged in a flow path. If the column is provided, the protein to be hydrolyzed supplied from the sample supply means is retained in the column, while the hydrolyzate can be recovered on the downstream side of the column. Therefore, the hydrolysis apparatus can be easily automated, and the hydrolysis product and undegraded protein can be separated relatively easily.
なお、上記カラムの下流側に加水分解産物を送り出す方法は特に限定されないが、加水分解反応後に、例えば、適当な溶出液を当該カラムに送液して加水分解産物を溶出する方法等が挙げられる。なお、溶出液としては、ホウ酸溶液、トリエチルアミン水溶液等の塩基性緩衝溶液;塩化ナトリウム等の高塩濃度溶液(例えば、0.1M~2Mの濃度);トリフルオロ酢酸水溶液等の酸性溶液;等、タンパク質の加水分解産物用の溶出液として知られたものを適宜利用することができる。
The method for sending the hydrolyzate to the downstream side of the column is not particularly limited, and examples include a method of eluting the hydrolyzate by feeding an appropriate eluate to the column after the hydrolysis reaction. . In addition, as eluent, basic buffer solution such as boric acid solution and triethylamine aqueous solution; high salt concentration solution such as sodium chloride (for example, concentration of 0.1M to 2M); acidic solution such as trifluoroacetic acid aqueous solution; etc. Any known eluate for protein hydrolysates can be used as appropriate.
上記の加熱手段は、加水分解手段を所望の温度に加熱して、タンパク質の加水分解反応を促進するための手段であり、例えば、公知の電気炉等で構成することができる。また、上記の回収手段は、タンパク質の加水分解産物(アミノ酸等)を回収する手段であり、加水分解手段の後段側に設けられる。
The above heating means is a means for heating the hydrolysis means to a desired temperature to promote the protein hydrolysis reaction, and can be constituted by, for example, a known electric furnace. Moreover, said collection | recovery means is a means to collect | recover protein hydrolysates (amino acid etc.), and is provided in the back | latter stage side of a hydrolysis means.
また、特に限定されないが、加水分解装置は、加水分解対象物以外の混入を防止するため、流路も含めて閉鎖系であることが好ましい。さらに、上記の各手段の動作を自動制御する制御手段を設けて、自動運転が可能な加水分解装置とすることが好ましい。
Although not particularly limited, the hydrolysis apparatus is preferably a closed system including the flow path in order to prevent contamination other than the hydrolysis target. Furthermore, it is preferable to provide a hydrolysis apparatus capable of automatic operation by providing a control means for automatically controlling the operation of each means described above.
本発明に係るタンパク質の加水分解産物の分析装置は、上記の加水分解装置における加水分解手段の後段に、タンパク質の加水分解産物であるペプチド及び/又はアミノ酸を分析する分析手段をさらに備えたものである。なお、分析手段には、公知のペプチド及び/又はアミノ酸分析装置を用いればよい。また、公知のフラクションコレクターによってアミノ酸を回収し、誘導体化後、別途分析してもよい。
The apparatus for analyzing a protein hydrolyzate according to the present invention further comprises an analysis means for analyzing peptides and / or amino acids which are protein hydrolysates after the hydrolysis means in the hydrolysis apparatus. is there. In addition, what is necessary is just to use a well-known peptide and / or amino acid analyzer for an analysis means. In addition, amino acids may be collected by a known fraction collector and analyzed separately after derivatization.
ここで、本発明に係るタンパク質の加水分解装置/加水分解産物の分析装置21の具体的な一例は、図1に示すように、洗浄液を貯蔵する洗浄液槽1;溶出液を貯蔵する溶出液槽2;流路を介して洗浄液槽1及び溶出液槽2に接続された送液ポンプ(送液手段)3;それぞれが異なるタンパク質溶液を保持する複数のサンプル管4から任意のサンプル管4を選択し、当該タンパク質溶液を後述の加水分解用カラム(加水分解手段)8に供給するオートサンプラー(試料供給手段)5;オートサンプラー5と流路を介して連結された複数の加水分解用カラム8;複数の加水分解用カラム8を収容し、これら加水分解用カラム8を加熱する電気炉(加熱手段)9;加水分解用カラム8と流路を介して連結された分解産物回収部(分解産物回収手段)10;加水分解用カラム8と流路を介して連結された分解産物分析部(分析手段)11;および、装置全体の動作制御を行う制御部(制御手段)12;を備えて構成される。
Here, as shown in FIG. 1, a specific example of the protein hydrolyzing apparatus / hydrolysate analyzing apparatus 21 according to the present invention is as follows: a cleaning liquid tank 1 for storing a cleaning liquid; an elution liquid tank for storing an elution liquid 2; Liquid feed pump (liquid feed means) 3 connected to the washing liquid tank 1 and the eluate liquid tank 2 through a flow path; any sample pipe 4 is selected from a plurality of sample pipes 4 each holding a different protein solution And an autosampler (sample supply means) 5 for supplying the protein solution to a hydrolysis column (hydrolysis means) 8 described later; a plurality of hydrolysis columns 8 connected to the autosampler 5 via a flow path; An electric furnace (heating means) 9 that houses a plurality of hydrolysis columns 8 and heats these hydrolysis columns 8; a decomposition product recovery unit (decomposition product recovery) connected to the hydrolysis column 8 through a flow path hand ) 10; a decomposition product analysis unit (analysis unit) 11 connected to the hydrolysis column 8 through a flow path; and a control unit (control unit) 12 for controlling the operation of the entire apparatus. .
複数の加水分解用カラム8は、その流路上に、タンパク質保持基材が有する複数の細孔の内表面の少なくとも一部に固体酸触媒が配された膜状の複合基材(後述する実施例のNafion-PVDF膜に相当)が設けられている。また、複数の加水分解用カラム8は、流路切り替えバルブ(流路切り替え手段)7を介して、その前段側に配されたオートサンプラー5、その後段側に配された分解産物回収部10及び分解産物分析部11、に連結されている。これにより、使用する加水分解用カラム8を適宜切り替えながら、タンパク質の加水分解を行う。
The plurality of hydrolysis columns 8 include a membrane-like composite base material in which a solid acid catalyst is disposed on at least a part of the inner surfaces of the plurality of pores of the protein holding base material on the flow path (examples described later) Equivalent to the Nafion-PVDF membrane). The plurality of hydrolysis columns 8 are connected to an autosampler 5 disposed on the front side, a degradation product recovery unit 10 disposed on the rear side, and a flow path switching valve (flow path switching means) 7. The degradation product analysis unit 11 is connected. Thereby, protein hydrolysis is performed while appropriately switching the hydrolysis column 8 to be used.
また、制御部12は、送液ポンプ3、オートサンプラー5、バルブコントローラ6を介して流路切り替えバルブ7、分解産物回収部10、及び分解産物分析部11の動作をそれぞれ自動的に制御する。
The control unit 12 automatically controls the operations of the flow path switching valve 7, the decomposition product recovery unit 10, and the decomposition product analysis unit 11 via the liquid feed pump 3, the autosampler 5, and the valve controller 6.
図1に示す加水分解装置/加水分解産物の分析装置を用いたタンパク質の加水分解/加水分解産物の分析は、例えば、次のように行う。
(1)まず、洗浄液槽1に貯蔵したMilliQ水を装置全体に通液し、加水分解用カラム8を平衡化する。
(2)次いで、オートサンプラー5を介して、加水分解等の対象となるサンプル管4中のタンパク質溶液を加水分解用カラム8に通液する。これにより、加水分解用カラム8に導入されたタンパク質は、当該カラム8内に配された複合基材に保持される。
(3)次いで、洗浄液槽1に貯蔵したMilliQ水を加水分解用カラム8に通液して洗浄した後、電気炉9により加水分解用カラム8を加熱する。これにより、上記複合基材に保持されたタンパク質が、本発明にかかる方法に従いペプチド又はアミノ酸まで加水分解される。
(4)次いで、電気炉9による加熱を停止し、放冷した後、溶出液槽2中に貯蔵された溶出液を加水分解用カラム8に通液する。これにより、加水分解産物であるペプチド又はアミノ酸が、当該加水分解用カラム8の後段側に溶出する。
(5)次いで、溶出したペプチド又はアミノ酸は、分解産物回収部10にて回収され、分解産物分析部11での分析などの用途に供される。或いは、溶出したペプチド又はアミノ酸は、直接(すなわち分解産物回収部10を介さずに)、分解産物分析部11での分析に供される。 For example, protein hydrolysis / hydrolysis product analysis using the hydrolysis apparatus / hydrolysis product analysis apparatus shown in FIG. 1 is performed as follows.
(1) First, MilliQ water stored in thewashing liquid tank 1 is passed through the entire apparatus to equilibrate the hydrolysis column 8.
(2) Next, the protein solution in the sample tube 4 to be subjected to hydrolysis and the like is passed through thehydrolysis column 8 through the autosampler 5. As a result, the protein introduced into the hydrolysis column 8 is held on the composite substrate disposed in the column 8.
(3) Next, MilliQ water stored in thewashing solution tank 1 is passed through the hydrolysis column 8 for washing, and then the hydrolysis column 8 is heated by the electric furnace 9. Thereby, the protein hold | maintained at the said composite base material is hydrolyzed to a peptide or an amino acid according to the method concerning this invention.
(4) Next, heating by theelectric furnace 9 is stopped, and after cooling, the eluate stored in the eluate tank 2 is passed through the hydrolysis column 8. Thereby, the peptide or amino acid which is a hydrolysis product elutes to the back | latter stage side of the said column 8 for hydrolysis.
(5) Next, the eluted peptide or amino acid is recovered by the degradationproduct recovery unit 10 and is used for applications such as analysis in the degradation product analysis unit 11. Alternatively, the eluted peptide or amino acid is directly subjected to analysis in the degradation product analysis unit 11 (that is, not via the degradation product recovery unit 10).
(1)まず、洗浄液槽1に貯蔵したMilliQ水を装置全体に通液し、加水分解用カラム8を平衡化する。
(2)次いで、オートサンプラー5を介して、加水分解等の対象となるサンプル管4中のタンパク質溶液を加水分解用カラム8に通液する。これにより、加水分解用カラム8に導入されたタンパク質は、当該カラム8内に配された複合基材に保持される。
(3)次いで、洗浄液槽1に貯蔵したMilliQ水を加水分解用カラム8に通液して洗浄した後、電気炉9により加水分解用カラム8を加熱する。これにより、上記複合基材に保持されたタンパク質が、本発明にかかる方法に従いペプチド又はアミノ酸まで加水分解される。
(4)次いで、電気炉9による加熱を停止し、放冷した後、溶出液槽2中に貯蔵された溶出液を加水分解用カラム8に通液する。これにより、加水分解産物であるペプチド又はアミノ酸が、当該加水分解用カラム8の後段側に溶出する。
(5)次いで、溶出したペプチド又はアミノ酸は、分解産物回収部10にて回収され、分解産物分析部11での分析などの用途に供される。或いは、溶出したペプチド又はアミノ酸は、直接(すなわち分解産物回収部10を介さずに)、分解産物分析部11での分析に供される。 For example, protein hydrolysis / hydrolysis product analysis using the hydrolysis apparatus / hydrolysis product analysis apparatus shown in FIG. 1 is performed as follows.
(1) First, MilliQ water stored in the
(2) Next, the protein solution in the sample tube 4 to be subjected to hydrolysis and the like is passed through the
(3) Next, MilliQ water stored in the
(4) Next, heating by the
(5) Next, the eluted peptide or amino acid is recovered by the degradation
以上説明のように、本発明に係るタンパク質の加水分解方法は、上記固体酸触媒はスルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体であり、かつ、上記タンパク質保持基材はポリビニリデンジフルオライドであることが好ましい。さらに、この場合、タンパク質の加水分解は、100℃以上でかつ220℃以下の温度範囲内で行われることが好ましい。
As described above, in the protein hydrolysis method according to the present invention, the solid acid catalyst is a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group, and the protein holding substrate is Polyvinylidene difluoride is preferred. Further, in this case, the hydrolysis of the protein is preferably performed within a temperature range of 100 ° C. or higher and 220 ° C. or lower.
スルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体と、ポリビニリデンジフルオライドとの組合わせは、耐熱性に優れるだけではなく、タンパク質の加水分解反応を触媒する特性にも優れている。したがって、上記の方法によれば、例えば、100℃以上でかつ220℃以下、より好ましくは110℃以上でかつ160℃以下の温度範囲内という高温下で、タンパク質の加水分解を迅速かつ良好に行うことが出来る。
The combination of polytetrafluoroethylene (co) polymer having sulfonic acid type ion exchange groups and polyvinylidene difluoride is not only excellent in heat resistance but also excellent in the property of catalyzing protein hydrolysis reaction. ing. Therefore, according to the above method, for example, protein is rapidly and satisfactorily hydrolyzed at a high temperature of 100 ° C. or higher and 220 ° C. or lower, more preferably 110 ° C. or higher and 160 ° C. or lower. I can do it.
本発明に係るタンパク質の加水分解方法は、タンパク質保持基材と固体酸触媒とを接触させて、タンパク質保持基材が有する細孔の内表面の少なくとも一部に固体酸触媒が配された複合基材を得る工程と、次いで、上記複合基材にタンパク質を接触させる工程とを含むものであってもよい。
The method for hydrolyzing a protein according to the present invention includes a composite group in which a protein holding substrate and a solid acid catalyst are brought into contact with each other, and the solid acid catalyst is arranged on at least a part of the inner surface of the pores of the protein holding substrate. It may include a step of obtaining a material and a step of bringing the protein into contact with the composite base material.
或いは、本発明に係るタンパク質の加水分解方法は、タンパク質保持基材とタンパク質とを接触させて、当該タンパク質保持基材にタンパク質を保持させる工程(1)と、次いで、タンパク質を保持した上記タンパク質保持基材と、上記固体酸触媒を含む溶液とを接触させて、タンパク質保持基材が有する細孔の内表面の少なくとも一部に固体酸触媒を配した状態で当該タンパク質と固体酸触媒とを接触させる工程(2)とを含むものであってもよい。さらに、この場合、上記工程(1)は、ゲル電気泳動後のタンパク質を、当該ゲルから上記タンパク質保持基材に転写する工程であってもよい。
Alternatively, in the method for hydrolyzing a protein according to the present invention, the step (1) of bringing the protein holding base material into contact with the protein and holding the protein in the protein holding base material, and then the above protein holding holding the protein The substrate and the solution containing the solid acid catalyst are contacted, and the protein and the solid acid catalyst are contacted with the solid acid catalyst disposed on at least a part of the inner surface of the pores of the protein holding substrate. Step (2) to be performed. Further, in this case, the step (1) may be a step of transferring the protein after gel electrophoresis from the gel to the protein holding substrate.
上記の方法によれば、例えば、電気泳動後のゲルからタンパク質保持基材に転写されたタンパク質に対して、直接、固体酸触媒を作用させて加水分解を行うことができる。
According to the above method, for example, the protein transferred from the gel after electrophoresis to the protein holding substrate can be directly hydrolyzed by acting a solid acid catalyst.
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope indicated in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
次に、実施例及び比較例により本発明を具体的に説明するが、本発明はこれに限定されない。はじめに、実施例及び比較例にて用いた「蛍光誘導体化によるアミノ酸分析」の方法について、以下に説明する。
Next, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited thereto. First, the method of “amino acid analysis by fluorescence derivatization” used in Examples and Comparative Examples will be described below.
(1)蛍光誘導体化によるアミノ酸分析
6-アミノキノリル-N-ヒドロキシスクシンイミジルカルバメート(AQC)の合成、およびAQCを用いたアミノ酸の蛍光誘導体化(プレラベル化)は公知文献(S.A. Cohenら,Anal. Biochem. 211. p279-287(1993))の記載に従って行った。 (1) Amino acid analysis by fluorescent derivatization Synthesis of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and fluorescent derivatization (prelabeling) of amino acids using AQC are well-known (SA Cohen et al., Anal) Biochem. 211. p279-287 (1993)).
6-アミノキノリル-N-ヒドロキシスクシンイミジルカルバメート(AQC)の合成、およびAQCを用いたアミノ酸の蛍光誘導体化(プレラベル化)は公知文献(S.A. Cohenら,Anal. Biochem. 211. p279-287(1993))の記載に従って行った。 (1) Amino acid analysis by fluorescent derivatization Synthesis of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and fluorescent derivatization (prelabeling) of amino acids using AQC are well-known (SA Cohen et al., Anal) Biochem. 211. p279-287 (1993)).
このように調製したアミノ酸の蛍光誘導体をHPLCにより分離した。HPLCによる分離は、逆相カラムを用い、イオンペア試薬を含む緩衝溶液系を用いた濃度勾配溶出法により実施した。下記条件を用いて、AQCにより蛍光誘導体化した17種のアミノ酸およびアンモニウムを含有する標準アミノ酸混合物またはタンパク質の加水分解産物を分離した。
<条件>
a)HPLC装置:Agilent社の1100シリーズ(真空デガッサーG1379A、バイナリーポンプG1312A、オートサンプラーG1367A、カラム恒温槽G1330B/G1316A、ダイオードアレイ検出器G1315B、蛍光検出器G1321Aを含む)
b)カラム: Inertsil ODS-3(4.6×150mm,3μm)、GLサイエンス社製
c)移動相:A:95 % 5mM テトラブチルアンモニウムブロミド、30mM リン酸緩衝液(pH 7.3), 5 % アセトニトリル;B : 50 % アセトニトリル / 30mM リン酸緩衝液(pH 7.3)
d)濃度勾配: 0-3-40分の間に移動相B濃度を2-7.3-72.3 %に変えた。
e)流速:0.5ml 毎分
f)温度:40℃
g)蛍光励起波長(Ex)、およびモニター波長(Em):Ex=250nm、Em=395nm
標準アミノ酸溶液として、ピアス社製のAmino Acid Standard H(2.5μmol/ml)から調製した10pmol/μlの溶液を用いた。その標準アミノ酸溶液5μl(50pmol)をAQCにより蛍光誘導体化し、1/10量を注入した時の分析値をもとにタンパク質の加水分解産物の定量を行った。 The fluorescent derivatives of amino acids thus prepared were separated by HPLC. Separation by HPLC was performed by a gradient elution method using a reversed phase column and a buffer solution system containing an ion pair reagent. The following conditions were used to separate a standard amino acid mixture or protein hydrolyzate containing 17 amino acids and ammonium fluorescently derivatized by AQC.
<Conditions>
a) HPLC apparatus: Agilent 1100 series (including vacuum degasser G1379A, binary pump G1312A, autosampler G1367A, column thermostat G1330B / G1316A, diode array detector G1315B, fluorescence detector G1321A)
b) Column: Inertsil ODS-3 (4.6 × 150 mm, 3 μm), manufactured by GL Sciences
c) Mobile phase: A: 95% 5 mM tetrabutylammonium bromide, 30 mM phosphate buffer (pH 7.3), 5% acetonitrile; B: 50% acetonitrile / 30 mM phosphate buffer (pH 7.3)
d) Concentration gradient: The mobile phase B concentration was changed to 2-7.3-72.3% between 0-3 and 40 minutes.
e) Flow rate: 0.5ml per minute f) Temperature: 40 ° C
g) Fluorescence excitation wavelength (Ex) and monitor wavelength (Em): Ex = 250nm, Em = 395nm
A 10 pmol / μl solution prepared from Pierce Amino Acid Standard H (2.5 μmol / ml) was used as the standard amino acid solution. 5 μl (50 pmol) of the standard amino acid solution was fluorescently derivatized with AQC, and the protein hydrolyzate was quantified based on the analysis value when 1/10 volume was injected.
<条件>
a)HPLC装置:Agilent社の1100シリーズ(真空デガッサーG1379A、バイナリーポンプG1312A、オートサンプラーG1367A、カラム恒温槽G1330B/G1316A、ダイオードアレイ検出器G1315B、蛍光検出器G1321Aを含む)
b)カラム: Inertsil ODS-3(4.6×150mm,3μm)、GLサイエンス社製
c)移動相:A:95 % 5mM テトラブチルアンモニウムブロミド、30mM リン酸緩衝液(pH 7.3), 5 % アセトニトリル;B : 50 % アセトニトリル / 30mM リン酸緩衝液(pH 7.3)
d)濃度勾配: 0-3-40分の間に移動相B濃度を2-7.3-72.3 %に変えた。
e)流速:0.5ml 毎分
f)温度:40℃
g)蛍光励起波長(Ex)、およびモニター波長(Em):Ex=250nm、Em=395nm
標準アミノ酸溶液として、ピアス社製のAmino Acid Standard H(2.5μmol/ml)から調製した10pmol/μlの溶液を用いた。その標準アミノ酸溶液5μl(50pmol)をAQCにより蛍光誘導体化し、1/10量を注入した時の分析値をもとにタンパク質の加水分解産物の定量を行った。 The fluorescent derivatives of amino acids thus prepared were separated by HPLC. Separation by HPLC was performed by a gradient elution method using a reversed phase column and a buffer solution system containing an ion pair reagent. The following conditions were used to separate a standard amino acid mixture or protein hydrolyzate containing 17 amino acids and ammonium fluorescently derivatized by AQC.
<Conditions>
a) HPLC apparatus: Agilent 1100 series (including vacuum degasser G1379A, binary pump G1312A, autosampler G1367A, column thermostat G1330B / G1316A, diode array detector G1315B, fluorescence detector G1321A)
b) Column: Inertsil ODS-3 (4.6 × 150 mm, 3 μm), manufactured by GL Sciences
c) Mobile phase: A: 95% 5 mM tetrabutylammonium bromide, 30 mM phosphate buffer (pH 7.3), 5% acetonitrile; B: 50% acetonitrile / 30 mM phosphate buffer (pH 7.3)
d) Concentration gradient: The mobile phase B concentration was changed to 2-7.3-72.3% between 0-3 and 40 minutes.
e) Flow rate: 0.5ml per minute f) Temperature: 40 ° C
g) Fluorescence excitation wavelength (Ex) and monitor wavelength (Em): Ex = 250nm, Em = 395nm
A 10 pmol / μl solution prepared from Pierce Amino Acid Standard H (2.5 μmol / ml) was used as the standard amino acid solution. 5 μl (50 pmol) of the standard amino acid solution was fluorescently derivatized with AQC, and the protein hydrolyzate was quantified based on the analysis value when 1/10 volume was injected.
〔参考例1:ナフィオン膜の作成〕
約1mlの5wt% Nafion resin solution in IPA(イソプロパノール)-water mixture (15-20% water, Aldrich 274704)(以下、「ナフィオン懸濁液」と称する)をウェインボート上に展開し、ドラフト内で乾燥させた。その後、シリカゲルを入れた真空デシケーター中で2日間放置した。得られた膜をウェインボートからはがしとり、マッフル炉中、140℃で1時間加熱(アニール)後、放冷し、10ml程度の濃硝酸に浸した。24時間後、上清が中性になるまで膜を水洗した後、当該膜を24時間蒸留水に浸け置いた。その後、真空デシケーター中で十分に乾燥し、加水分解用のナフィオン膜とした。 [Reference Example 1: Preparation of Nafion membrane]
About 1 ml of 5 wt% Nafion resin solution in IPA (isopropanol) -water mixture (15-20% water, Aldrich 274704) (hereinafter referred to as “Nafion suspension”) is developed on a Weinboat and dried in a draft I let you. Thereafter, it was left in a vacuum desiccator containing silica gel for 2 days. The obtained film was peeled off from the Weinboat, heated in a muffle furnace at 140 ° C. for 1 hour (annealed), allowed to cool, and immersed in about 10 ml of concentrated nitric acid. After 24 hours, the membrane was washed with water until the supernatant became neutral, and then the membrane was immersed in distilled water for 24 hours. Thereafter, it was sufficiently dried in a vacuum desiccator to obtain a Nafion membrane for hydrolysis.
約1mlの5wt% Nafion resin solution in IPA(イソプロパノール)-water mixture (15-20% water, Aldrich 274704)(以下、「ナフィオン懸濁液」と称する)をウェインボート上に展開し、ドラフト内で乾燥させた。その後、シリカゲルを入れた真空デシケーター中で2日間放置した。得られた膜をウェインボートからはがしとり、マッフル炉中、140℃で1時間加熱(アニール)後、放冷し、10ml程度の濃硝酸に浸した。24時間後、上清が中性になるまで膜を水洗した後、当該膜を24時間蒸留水に浸け置いた。その後、真空デシケーター中で十分に乾燥し、加水分解用のナフィオン膜とした。 [Reference Example 1: Preparation of Nafion membrane]
About 1 ml of 5 wt% Nafion resin solution in IPA (isopropanol) -water mixture (15-20% water, Aldrich 274704) (hereinafter referred to as “Nafion suspension”) is developed on a Weinboat and dried in a draft I let you. Thereafter, it was left in a vacuum desiccator containing silica gel for 2 days. The obtained film was peeled off from the Weinboat, heated in a muffle furnace at 140 ° C. for 1 hour (annealed), allowed to cool, and immersed in about 10 ml of concentrated nitric acid. After 24 hours, the membrane was washed with water until the supernatant became neutral, and then the membrane was immersed in distilled water for 24 hours. Thereafter, it was sufficiently dried in a vacuum desiccator to obtain a Nafion membrane for hydrolysis.
〔実施例1:Nafion-PVDF膜の作成、及びタンパク質の加水分解〕
(Nafion-PVDF膜の作成)
ポリビニリデンジフルオライド(PVDF)膜(ProBlott PVDFメンブレン、アプライドバイオシステムズ社400994)をグローブボックス内で5mm角程度にメスで切り、参考例1に記載のナフィオン懸濁液を10μl/cm2の量(触媒重量として約0.4mg/cm2)でPVDF膜に滴下した。乾燥後、PVDF膜の裏面にも同様にナフィオン懸濁液を滴下し、再度乾燥させて加水分解用膜のNafion-PVDF膜(複合基材の膜)を得た。 [Example 1: Preparation of Nafion-PVDF membrane and hydrolysis of protein]
(Creation of Nafion-PVDF membrane)
Polyvinylidene difluoride (PVDF) membrane (ProBlott PVDF membrane, Applied Biosystems 400994) is cut into a 5 mm square in a glove box with a scalpel, and the amount of Nafion suspension described in Reference Example 1 is 10 μl / cm 2 . The catalyst was dropped onto the PVDF membrane at a catalyst weight of about 0.4 mg / cm 2 . After drying, Nafion suspension was similarly dropped on the back surface of the PVDF membrane and dried again to obtain a Nafion-PVDF membrane (membrane of composite substrate) as a membrane for hydrolysis.
(Nafion-PVDF膜の作成)
ポリビニリデンジフルオライド(PVDF)膜(ProBlott PVDFメンブレン、アプライドバイオシステムズ社400994)をグローブボックス内で5mm角程度にメスで切り、参考例1に記載のナフィオン懸濁液を10μl/cm2の量(触媒重量として約0.4mg/cm2)でPVDF膜に滴下した。乾燥後、PVDF膜の裏面にも同様にナフィオン懸濁液を滴下し、再度乾燥させて加水分解用膜のNafion-PVDF膜(複合基材の膜)を得た。 [Example 1: Preparation of Nafion-PVDF membrane and hydrolysis of protein]
(Creation of Nafion-PVDF membrane)
Polyvinylidene difluoride (PVDF) membrane (ProBlott PVDF membrane, Applied Biosystems 400994) is cut into a 5 mm square in a glove box with a scalpel, and the amount of Nafion suspension described in Reference Example 1 is 10 μl / cm 2 . The catalyst was dropped onto the PVDF membrane at a catalyst weight of about 0.4 mg / cm 2 . After drying, Nafion suspension was similarly dropped on the back surface of the PVDF membrane and dried again to obtain a Nafion-PVDF membrane (membrane of composite substrate) as a membrane for hydrolysis.
(Nafion-PVDF膜を用いたタンパク質の加水分解)
得られたNafion-PVDF膜をアセトニトリルで湿らせた後、当該膜に、0.2μg/μl牛血清アルブミン(BSA、Sigma製A-7638)水溶液5μlを添加した。この膜を6×32mmの小試験管に入れ、MilliQ水を10μl加えた。この小試験管を25mlねじ口バイアルにいれ、MilliQ水を25μl加えた後密栓した。このバイアルを110℃で20時間加熱し、BSAの加水分解を行った。バイアルを放冷後、小試験管をとりだし、小試験管に10μlのアセトニトリルを加えて膜を湿らし、20μlの20mM塩酸を加えて撹拌後、0.2Mホウ酸緩衝液(pH8.8)を50μl、AQC溶液を20μl加え、上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。 (Protein hydrolysis using Nafion-PVDF membrane)
After the obtained Nafion-PVDF membrane was moistened with acetonitrile, 5 μl of 0.2 μg / μl bovine serum albumin (BSA, Sigma A-7638) aqueous solution was added to the membrane. The membrane was placed in a 6 × 32 mm small test tube and 10 μl of MilliQ water was added. The small test tube was placed in a 25 ml screw-cap vial, 25 μl of MilliQ water was added, and the tube was sealed. This vial was heated at 110 ° C. for 20 hours to hydrolyze BSA. After the vial is allowed to cool, the small test tube is taken out, 10 μl of acetonitrile is added to the small test tube to wet the membrane, 20 μl of 20 mM hydrochloric acid is added and stirred, and then 0.2 M borate buffer (pH 8.8) is added. 50 μl and 20 μl of AQC solution were added, and fluorescence derivatization was performed according to the method described in “(1) Amino acid analysis by fluorescence derivatization”, and amino acids were quantified.
得られたNafion-PVDF膜をアセトニトリルで湿らせた後、当該膜に、0.2μg/μl牛血清アルブミン(BSA、Sigma製A-7638)水溶液5μlを添加した。この膜を6×32mmの小試験管に入れ、MilliQ水を10μl加えた。この小試験管を25mlねじ口バイアルにいれ、MilliQ水を25μl加えた後密栓した。このバイアルを110℃で20時間加熱し、BSAの加水分解を行った。バイアルを放冷後、小試験管をとりだし、小試験管に10μlのアセトニトリルを加えて膜を湿らし、20μlの20mM塩酸を加えて撹拌後、0.2Mホウ酸緩衝液(pH8.8)を50μl、AQC溶液を20μl加え、上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。 (Protein hydrolysis using Nafion-PVDF membrane)
After the obtained Nafion-PVDF membrane was moistened with acetonitrile, 5 μl of 0.2 μg / μl bovine serum albumin (BSA, Sigma A-7638) aqueous solution was added to the membrane. The membrane was placed in a 6 × 32 mm small test tube and 10 μl of MilliQ water was added. The small test tube was placed in a 25 ml screw-cap vial, 25 μl of MilliQ water was added, and the tube was sealed. This vial was heated at 110 ° C. for 20 hours to hydrolyze BSA. After the vial is allowed to cool, the small test tube is taken out, 10 μl of acetonitrile is added to the small test tube to wet the membrane, 20 μl of 20 mM hydrochloric acid is added and stirred, and then 0.2 M borate buffer (pH 8.8) is added. 50 μl and 20 μl of AQC solution were added, and fluorescence derivatization was performed according to the method described in “(1) Amino acid analysis by fluorescence derivatization”, and amino acids were quantified.
表1に、加水分解の結果として、回収アミノ酸総量(回収アミノ酸量(pmol))、及び、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。なお、参考として、同量のBSA水溶液を定沸点塩酸気相加水分解した結果も、表1に併せて示す(表中、「gas-phase」として示す)。
Table 1 shows the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis. For reference, the results of hydrolytic hydrolysis of the same amount of BSA aqueous solution at constant boiling hydrochloric acid are also shown in Table 1 (shown as “gas-phase” in the table).
ここで、定沸点塩酸気相加水分解は、次のように行った。すなわち、0.2μg/μlのBSA水溶液を6×32mmの小試験管に5μl入れ乾固した。次いで、この小試験管を、定沸点塩酸200μlにフェノール結晶を加えた25mlねじ口バイアルにいれ、MininertValveを用いて脱気後密栓した。そして、このバイアルを110℃で20時間加熱し、BSAの加水分解を行った。次いで、気相加水分解後の小試験管に20μlの20mM塩酸を加えて撹拌後、0.2Mホウ酸緩衝液(pH8.8)を60μl、AQC溶液20μlを加え、上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
Here, the constant-boiling-point hydrochloric acid gas phase hydrolysis was carried out as follows. Specifically, 5 μl of 0.2 μg / μl BSA aqueous solution was put into a 6 × 32 mm small test tube and dried. Next, this small test tube was put into a 25 ml screw mouth vial in which phenol crystal was added to 200 μl of constant boiling hydrochloric acid, and after deaeration using a Mininert Valve, it was sealed. And this vial was heated at 110 degreeC for 20 hours, and the hydrolysis of BSA was performed. Next, 20 μl of 20 mM hydrochloric acid was added to the small test tube after the gas phase hydrolysis, and after stirring, 60 μl of 0.2 M borate buffer (pH 8.8) and 20 μl of the AQC solution were added. According to the method shown in “Amino acid analysis by derivatization”, fluorescent derivatization was performed, and amino acids were determined.
〔比較例1:ナフィオン膜を用いたタンパク質の加水分解〕
Nafion-PVDF膜に代えて、参考例1で得たナフィオン膜をグローブボックス内で5mm角程度にメスで切ったものを用いた以外は、上記実施例1に記載の方法に従いBSAの加水分解、及びアミノ酸の定量を行った。表1に、回収アミノ酸総量(回収アミノ酸量(pmol))、及び、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Comparative Example 1: Protein hydrolysis using Nafion membrane]
Instead of the Nafion-PVDF membrane, hydrolysis of BSA was carried out according to the method described in Example 1 above, except that the Nafion membrane obtained in Reference Example 1 was cut in a glove box with a knife to about 5 mm square. And amino acid quantification. Table 1 shows the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)).
Nafion-PVDF膜に代えて、参考例1で得たナフィオン膜をグローブボックス内で5mm角程度にメスで切ったものを用いた以外は、上記実施例1に記載の方法に従いBSAの加水分解、及びアミノ酸の定量を行った。表1に、回収アミノ酸総量(回収アミノ酸量(pmol))、及び、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Comparative Example 1: Protein hydrolysis using Nafion membrane]
Instead of the Nafion-PVDF membrane, hydrolysis of BSA was carried out according to the method described in Example 1 above, except that the Nafion membrane obtained in Reference Example 1 was cut in a glove box with a knife to about 5 mm square. And amino acid quantification. Table 1 shows the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)).
表1に示すように、本発明の加水分解法を気相法による加水分解法と比較すると、回収アミノ酸総量についてほぼ同等の結果が得られた。一方、ナフィオン膜を用いた場合には回収アミノ酸総量の低下が見られた(比較例1)。このことから、ナフィオンとPVDFとを複合したNafion-PVDF膜では、タンパク質の加水分解反応に対するナフィオンの触媒活性が有意に引き出されたことが判る。なお、回収アミノ酸量(%)は、Nafion-PVDF膜を用いた場合と気相法とでほぼ一致し、非常に良好な結果が得られた。
As shown in Table 1, when the hydrolysis method of the present invention was compared with the hydrolysis method by the gas phase method, almost the same results were obtained with respect to the total amount of recovered amino acids. On the other hand, when the Nafion membrane was used, the total amount of recovered amino acids was reduced (Comparative Example 1). From this, it can be seen that the Nafion-PVDF membrane in which Nafion and PVDF are combined significantly extracts the catalytic activity of Nafion for the protein hydrolysis reaction. The recovered amino acid amount (%) was almost the same between the case where the Nafion-PVDF membrane was used and the gas phase method, and a very good result was obtained.
〔実施例2:Nafion-PVDF膜を用いた種々のタンパク質の迅速加水分解〕
実施例1と同様の方法で1cm角のNafion-PVDF膜を作成し、当該膜をメスで1mm幅の短冊状に切った。これをアセトニトリルで湿らせた後、当該膜に、1μg/μlのBSA水溶液、オブアルブミン(OVA, Sigma製A-5503)水溶液、又はヒストンH3(H3, Roche製 1034758)水溶液を1μl添加し、6×32mmの小試験管にそれぞれ入れた。この小試験管をMilliQ水200μlにフェノール結晶を加えた25mlネジ口バイアルにいれ、MininertValveを用いて脱気後密栓した。このバイアルを150℃で2時間加熱し、各タンパク質の加水分解を行った。 [Example 2: Rapid hydrolysis of various proteins using Nafion-PVDF membrane]
A 1 cm square Nafion-PVDF membrane was prepared in the same manner as in Example 1, and the membrane was cut into a 1 mm wide strip with a knife. After moistening with acetonitrile, 1 μl of 1 μg / μl of BSA aqueous solution, ovalbumin (OVA, Sigma A-5503) aqueous solution, or histone H3 (H3, Roche 1034758) aqueous solution was added to the membrane. Each was put in a small test tube of 32 mm. The small test tube was placed in a 25 ml screw-mouth vial in which phenol crystal was added to 200 μl of MilliQ water, and after deaeration using a Mininert Valve, the tube was sealed. This vial was heated at 150 ° C. for 2 hours to hydrolyze each protein.
実施例1と同様の方法で1cm角のNafion-PVDF膜を作成し、当該膜をメスで1mm幅の短冊状に切った。これをアセトニトリルで湿らせた後、当該膜に、1μg/μlのBSA水溶液、オブアルブミン(OVA, Sigma製A-5503)水溶液、又はヒストンH3(H3, Roche製 1034758)水溶液を1μl添加し、6×32mmの小試験管にそれぞれ入れた。この小試験管をMilliQ水200μlにフェノール結晶を加えた25mlネジ口バイアルにいれ、MininertValveを用いて脱気後密栓した。このバイアルを150℃で2時間加熱し、各タンパク質の加水分解を行った。 [Example 2: Rapid hydrolysis of various proteins using Nafion-PVDF membrane]
A 1 cm square Nafion-PVDF membrane was prepared in the same manner as in Example 1, and the membrane was cut into a 1 mm wide strip with a knife. After moistening with acetonitrile, 1 μl of 1 μg / μl of BSA aqueous solution, ovalbumin (OVA, Sigma A-5503) aqueous solution, or histone H3 (H3, Roche 1034758) aqueous solution was added to the membrane. Each was put in a small test tube of 32 mm. The small test tube was placed in a 25 ml screw-mouth vial in which phenol crystal was added to 200 μl of MilliQ water, and after deaeration using a Mininert Valve, the tube was sealed. This vial was heated at 150 ° C. for 2 hours to hydrolyze each protein.
次いで、加水分解後の小試験管それぞれに10μlのアセトニトリルを加えて膜を湿らし、20μlの20mM塩酸を加えて撹拌後、0.2Mホウ酸緩衝液(pH8.8)を50μl、AQC溶液20μlを加え、上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
Next, 10 μl of acetonitrile is added to each small test tube after hydrolysis, the membrane is moistened, 20 μl of 20 mM hydrochloric acid is added and stirred, 50 μl of 0.2 M borate buffer (pH 8.8), and 20 μl of AQC solution are added. And derivatized with fluorescence according to the method described in “(1) Amino acid analysis by fluorescence derivatization”, and amino acids were quantified.
表2~4に、順に、BSA、OVA、H3を加水分解した結果としての、回収アミノ酸総量(回収アミノ酸量(pmol))、及び、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。なお、参考として、同量のタンパク質水溶液を定沸点塩酸気相加水分解した結果も、表2~4に併せて示す(表中、「気相法」として示す)。
Tables 2 to 4 show, in order, the total amount of recovered amino acids (the amount of recovered amino acids (pmol)) as a result of hydrolysis of BSA, OVA, and H3, and the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)). ). For reference, the results of vapor-phase hydrolysis of the same amount of protein aqueous solution with constant boiling hydrochloric acid are also shown in Tables 2 to 4 (shown as “gas phase method” in the table).
ここで、定沸点塩酸気相加水分解は、次のように行った。すなわち、1μg/μlのBSA水溶液、OVA水溶液、又はH3水溶液を6×32mmの小試験管に1μl入れ乾固した。次いで、この小試験管を定沸点塩酸200μlにフェノール結晶を加えた25mlねじ口バイアルにいれ、MininertValveを用いて脱気後密栓した。そして、このバイアルを110℃で20時間加熱し、各タンパク質の加水分解を行った。次いで、気相加水分解後の小試験管に20μlの20mM塩酸を加えて撹拌後、0.2Mホウ酸緩衝液(pH8.8)を60μl、AQC溶液20μlを加え、上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
Here, the constant-boiling-point hydrochloric acid gas phase hydrolysis was carried out as follows. That is, 1 μl of a 1 μg / μl BSA aqueous solution, an OVA aqueous solution, or an H3 aqueous solution was placed in a 6 × 32 mm small test tube and dried. Next, this small test tube was put into a 25 ml screw mouth vial in which phenol crystal was added to 200 μl of constant boiling hydrochloric acid, and after deaeration using a Mininert Valve, it was sealed. And this vial was heated at 110 degreeC for 20 hours, and each protein was hydrolyzed. Next, 20 μl of 20 mM hydrochloric acid was added to the small test tube after the gas phase hydrolysis, and after stirring, 60 μl of 0.2 M borate buffer (pH 8.8) and 20 μl of the AQC solution were added. According to the method shown in “Amino acid analysis by derivatization”, fluorescent derivatization was performed, and amino acids were determined.
本発明の加水分解法を気相法による加水分解法と比較すると、回収アミノ酸総量について、BSAでは気相法の96%、OVAでは74%、H3では77%と、非常に良好な結果が得られた。また、回収アミノ酸量(%)も気相法とほぼ一致し、非常に良好な結果が得られた。
When the hydrolysis method of the present invention is compared with the hydrolysis method by the gas phase method, the total amount of recovered amino acids is 96% of the gas phase method for BSA, 74% for OVA, and 77% for H3. It was. Also, the recovered amino acid amount (%) was almost the same as the gas phase method, and very good results were obtained.
すなわち、耐熱性がありタンパク質保持力に優れた多孔性のPVDF膜に、耐熱性があり酸性残基をもつナフィオンを塗布したNafion-PVDF膜(タンパク質にとって十分な大きさの細孔(ポア)と酸点とを併せ持つ)とタンパク質水溶液とを封管し加熱することで、タンパク質の構成要素であるアミノ酸に加水分解することができた。さらに、従来の110℃で20時間という加水分解時間で得られるアミノ酸と同等量のアミノ酸を、150℃で2時間という短時間で回収することが可能となり、スループットが飛躍的に向上した。
That is, a Nafion-PVDF membrane (a pore having a size sufficient for protein and pores) coated with Nafion with heat resistance and acidic residue on a porous PVDF membrane with heat resistance and excellent protein retention It was possible to hydrolyze it into an amino acid that is a component of protein by sealing and heating the protein aqueous solution and the acid aqueous solution. Furthermore, it is possible to recover an amino acid equivalent to the amino acid obtained at the conventional hydrolysis time of 110 ° C. for 20 hours in a short time of 2 hours at 150 ° C., and the throughput is dramatically improved.
〔実施例3:エレクトロブロットした膜上での加水分解〕
0.87μg相当のBSAを含む標準分子量マーカー(GEヘルスケア バイオサイエンス社、LMW Marker Kit, 17-0446-01)を、ポリアクリルアミドゲルにアプライし、BSAのゲル電気泳動を行った。SDS-PAGE後、PVDF膜(ProBlott PVDFメンブレン、アプライドバイオシステムズ社400994)にエレクトロブロッティングした。この膜をクマシーブルー染色し、検出されたBSAのバンドを切り抜いた。次いで、このバンドに対応したPVDF膜にNafion懸濁液を塗布し乾燥させた。これにより、PVDF膜の表面及びその細孔の内表面にNafionが付された状態とした。また、参考のため、実施例1と同様の方法で作成したNafion-PVDF膜を、切り抜いた上記バンドと同等の大きさに切り、そこに1μg/μlのBSA水溶液を1μl添加した。 [Example 3: Hydrolysis on electroblotted membrane]
A standard molecular weight marker (GE Healthcare Bioscience, LMW Marker Kit, 17-0446-01) containing 0.87 μg of BSA was applied to a polyacrylamide gel, and BSA gel electrophoresis was performed. After SDS-PAGE, electroblotting was performed on a PVDF membrane (ProBlott PVDF membrane, Applied Biosystems 400994). This membrane was stained with Coomassie blue, and the detected BSA band was cut out. Next, a Nafion suspension was applied to the PVDF membrane corresponding to this band and dried. As a result, the surface of the PVDF membrane and the inner surface of the pores were in a state where Nafion was added. For reference, a Nafion-PVDF membrane prepared by the same method as in Example 1 was cut into the same size as the cut out band, and 1 μl of 1 μg / μl BSA aqueous solution was added thereto.
0.87μg相当のBSAを含む標準分子量マーカー(GEヘルスケア バイオサイエンス社、LMW Marker Kit, 17-0446-01)を、ポリアクリルアミドゲルにアプライし、BSAのゲル電気泳動を行った。SDS-PAGE後、PVDF膜(ProBlott PVDFメンブレン、アプライドバイオシステムズ社400994)にエレクトロブロッティングした。この膜をクマシーブルー染色し、検出されたBSAのバンドを切り抜いた。次いで、このバンドに対応したPVDF膜にNafion懸濁液を塗布し乾燥させた。これにより、PVDF膜の表面及びその細孔の内表面にNafionが付された状態とした。また、参考のため、実施例1と同様の方法で作成したNafion-PVDF膜を、切り抜いた上記バンドと同等の大きさに切り、そこに1μg/μlのBSA水溶液を1μl添加した。 [Example 3: Hydrolysis on electroblotted membrane]
A standard molecular weight marker (GE Healthcare Bioscience, LMW Marker Kit, 17-0446-01) containing 0.87 μg of BSA was applied to a polyacrylamide gel, and BSA gel electrophoresis was performed. After SDS-PAGE, electroblotting was performed on a PVDF membrane (ProBlott PVDF membrane, Applied Biosystems 400994). This membrane was stained with Coomassie blue, and the detected BSA band was cut out. Next, a Nafion suspension was applied to the PVDF membrane corresponding to this band and dried. As a result, the surface of the PVDF membrane and the inner surface of the pores were in a state where Nafion was added. For reference, a Nafion-PVDF membrane prepared by the same method as in Example 1 was cut into the same size as the cut out band, and 1 μl of 1 μg / μl BSA aqueous solution was added thereto.
次いで、これらをそれぞれ6×32mmの小試験管に入れ、MilliQ水200μlにフェノール結晶を加えた25mlネジ口バイアルにいれ、MininertValveを用いて脱気後密栓した。このバイアルを150℃で2時間加熱し、BSAの加水分解を行った。バイアルを放冷後、小試験管をとりだし、小試験管に10μlのアセトニトリルを加えて膜を湿らし、20μlの20mM塩酸を加え撹拌後、0.2Mホウ酸緩衝液(pH8.8)を50μl、AQC溶液を20μl加え、得られたアミノ酸を上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
Next, these were placed in small test tubes each having a size of 6 × 32 mm, placed in a 25 ml screw mouth vial in which phenol crystal was added to 200 μl of MilliQ water, and after deaeration using a MininertValve, they were sealed. This vial was heated at 150 ° C. for 2 hours to hydrolyze BSA. After allowing the vial to cool, take out the small test tube, add 10 μl of acetonitrile to the small test tube to wet the membrane, add 20 μl of 20 mM hydrochloric acid and stir, and then add 50 μl of 0.2 M borate buffer (pH 8.8). Then, 20 μl of AQC solution was added, and the resulting amino acid was fluorescently derivatized according to the method described in “(1) Amino acid analysis by fluorescent derivatization”, and the amino acid was quantified.
表5に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。表中、「blotted PVDF-Nafion」と示すのがエレクトロブロッティングしたPVDF膜にナフィオンを塗布した場合の結果であり、実施例1に準じたNafion-PVDF膜を用いた結果とほぼ同等であることが判る。
Table 5 shows the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis. In the table, “blotted PVDF-Nafion” is the result when Nafion is applied to the electroblotted PVDF membrane, which is almost the same as the result using the Nafion-PVDF membrane according to Example 1. I understand.
〔実施例4:Nafion-PVDF膜をカラムに組み込んでの加水分解〕
Nafion-PVDF膜に、5μg/μlのBSA水溶液を2μl(BSA量で10μg)添加して、BSAが塗布されたNafion-PVDF膜を用意した。そして、Upchurch Scientific社製プレカラムフィルターアセンブリーA-318に、フリットA-700とフリットA-701との間に上記Nafion-PVDF膜を挟み込んだものを取り付けてプレカラムを組み立てた。プレカラムにMilliQ水を0.2ml/minで1分間通液した後、PEEK製エンドプラグ(東ソー0017791)でプレカラムの両端を密栓した。このプレカラムを150℃で2時間加熱し、Nafion-PVDF膜上のBSAを加水分解した。Nafion-PVDF膜からの加水分解産物の抽出は、下記(a)(b)の2通りの方法で行い、得られたアミノ酸を上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
(a)プレカラムからNafion-PVDF膜を取り出し、アセトニトリルで湿らせた後、0.2Mのホウ酸緩衝液で加水分解産物を抽出する。表6に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。
(b)プレカラムに0.2Mのホウ酸緩衝液を0.05ml/minの流速で通液し、フラクションコレクターで1min/tubeで加水分解産物を回収する。表7に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Example 4: Hydrolysis by incorporating a Nafion-PVDF membrane into a column]
A Nafion-PVDF membrane coated with BSA was prepared by adding 2 µl (10 µg in terms of BSA) of 5 µg / µl BSA aqueous solution to the Nafion-PVDF membrane. Then, a precolumn filter assembly A-318 manufactured by Upchurch Scientific was attached with the Nafion-PVDF membrane sandwiched between frit A-700 and frit A-701, and a precolumn was assembled. After MilliQ water was passed through the precolumn at 0.2 ml / min for 1 minute, both ends of the precolumn were sealed with PEEK end plugs (Tosoh 0017791). This precolumn was heated at 150 ° C. for 2 hours to hydrolyze BSA on the Nafion-PVDF membrane. Extraction of the hydrolyzate from the Nafion-PVDF membrane is performed by the following two methods (a) and (b), and the obtained amino acid is fluorescent according to the method described in the above “(1) Amino acid analysis by fluorescent derivatization”. Derivatization and quantification of amino acids.
(A) The Nafion-PVDF membrane is taken out from the precolumn, moistened with acetonitrile, and then the hydrolyzate is extracted with 0.2 M borate buffer. Table 6 shows the ratio of each amino acid to the total recovered amino acid amount (recovered amino acid amount (%)) as a result of hydrolysis.
(B) A 0.2 M borate buffer solution is passed through the precolumn at a flow rate of 0.05 ml / min, and the hydrolyzate is recovered at 1 min / tube with a fraction collector. Table 7 shows the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis.
Nafion-PVDF膜に、5μg/μlのBSA水溶液を2μl(BSA量で10μg)添加して、BSAが塗布されたNafion-PVDF膜を用意した。そして、Upchurch Scientific社製プレカラムフィルターアセンブリーA-318に、フリットA-700とフリットA-701との間に上記Nafion-PVDF膜を挟み込んだものを取り付けてプレカラムを組み立てた。プレカラムにMilliQ水を0.2ml/minで1分間通液した後、PEEK製エンドプラグ(東ソー0017791)でプレカラムの両端を密栓した。このプレカラムを150℃で2時間加熱し、Nafion-PVDF膜上のBSAを加水分解した。Nafion-PVDF膜からの加水分解産物の抽出は、下記(a)(b)の2通りの方法で行い、得られたアミノ酸を上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
(a)プレカラムからNafion-PVDF膜を取り出し、アセトニトリルで湿らせた後、0.2Mのホウ酸緩衝液で加水分解産物を抽出する。表6に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。
(b)プレカラムに0.2Mのホウ酸緩衝液を0.05ml/minの流速で通液し、フラクションコレクターで1min/tubeで加水分解産物を回収する。表7に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Example 4: Hydrolysis by incorporating a Nafion-PVDF membrane into a column]
A Nafion-PVDF membrane coated with BSA was prepared by adding 2 µl (10 µg in terms of BSA) of 5 µg / µl BSA aqueous solution to the Nafion-PVDF membrane. Then, a precolumn filter assembly A-318 manufactured by Upchurch Scientific was attached with the Nafion-PVDF membrane sandwiched between frit A-700 and frit A-701, and a precolumn was assembled. After MilliQ water was passed through the precolumn at 0.2 ml / min for 1 minute, both ends of the precolumn were sealed with PEEK end plugs (Tosoh 0017791). This precolumn was heated at 150 ° C. for 2 hours to hydrolyze BSA on the Nafion-PVDF membrane. Extraction of the hydrolyzate from the Nafion-PVDF membrane is performed by the following two methods (a) and (b), and the obtained amino acid is fluorescent according to the method described in the above “(1) Amino acid analysis by fluorescent derivatization”. Derivatization and quantification of amino acids.
(A) The Nafion-PVDF membrane is taken out from the precolumn, moistened with acetonitrile, and then the hydrolyzate is extracted with 0.2 M borate buffer. Table 6 shows the ratio of each amino acid to the total recovered amino acid amount (recovered amino acid amount (%)) as a result of hydrolysis.
(B) A 0.2 M borate buffer solution is passed through the precolumn at a flow rate of 0.05 ml / min, and the hydrolyzate is recovered at 1 min / tube with a fraction collector. Table 7 shows the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) as a result of hydrolysis.
表6及び7に示すように、Nafion-PVDF膜をカラムに組み込んだ場合もBSAが加水分解されていることが判る。なお、一部のアミノ酸の回収アミノ酸量(%)では、理論値から外れているものが見受けられるが、これは、BSAが加水分解なされていないことを示すものではない。すなわち、カラムの設計、分解産物たるアミノ酸の溶出条件等を最適化することにより、より理論値に近い回収アミノ酸量(%)を実現できると考えられる。
As shown in Tables 6 and 7, it can be seen that BSA was hydrolyzed even when a Nafion-PVDF membrane was incorporated in the column. In addition, some recovered amino acid amounts (%) of some amino acids are out of the theoretical value, but this does not indicate that BSA is not hydrolyzed. That is, it is considered that the recovered amino acid amount (%) closer to the theoretical value can be realized by optimizing column design, elution conditions of amino acids as degradation products, and the like.
〔実施例5:Nafion-PVDF膜をカラムに組み込んでの加水分解(自動でタンパク質導入)〕
Upchurch Scientific社製フリットA-100の外枠とA-702のフィルター部分とを組み合わせPEEK素材のみで形成したフリットを作成し、作成したフリットの間にNafion-PVDF膜を挟み込んだものを、プレカラムフィルターアセンブリーA-318に取り付けてプレカラムを組み立てた。プレカラムに、まず、アセトニトリルを導入し膜を湿らせ、次いで2μg/μlのBSA水溶液を5μl(BSA量で10μg)、オートサンプラーを用いて自動で導入した後、MilliQ水を0.05ml/minで10分間通液した。このプレカラムを150℃で2時間加熱し、Nafion-PVDF膜上のBSAを加水分解した。Nafion-PVDF膜からの加水分解産物の抽出は、下記(a)(b)の2通りの方法で行い、得られたアミノ酸を上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
(a)プレカラムからNafion-PVDF膜を取り出し、アセトニトリルで湿らせた後、0.2Mのホウ酸緩衝液で加水分解産物を抽出する。表8中の「BSA手動溶出」の項目に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。
(b)プレカラムに0.2Mのホウ酸緩衝液を0.05ml/minの流速で通液し、フラクションコレクターで1min/tubeで加水分解産物を回収する。すなわち、(b)は、全工程(カラム前処理、試料注入、洗浄、加熱、溶出、回収)を自動化した実施例に相当する。表8中の「BSA自動溶出」の項目に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Example 5: Hydrolysis by incorporating a Nafion-PVDF membrane into a column (automatic protein introduction)]
A frit made only of PEEK material is created by combining the outer frame of Frit A-100 made by Upchurch Scientific and the filter part of A-702, and a Nafion-PVDF membrane sandwiched between the created frit is a pre-column filter A precolumn was assembled by attaching to assembly A-318. First, acetonitrile is introduced into the precolumn to wet the membrane, then 5 μl of 2 μg / μl BSA aqueous solution (10 μg in BSA amount) is automatically introduced using an autosampler, and MilliQ water is added at 0.05 ml / min. The solution was passed for 10 minutes. This precolumn was heated at 150 ° C. for 2 hours to hydrolyze BSA on the Nafion-PVDF membrane. Extraction of the hydrolyzate from the Nafion-PVDF membrane is performed by the following two methods (a) and (b), and the obtained amino acid is fluorescent according to the method described in the above “(1) Amino acid analysis by fluorescent derivatization”. Derivatization and quantification of amino acids.
(A) The Nafion-PVDF membrane is taken out from the precolumn, moistened with acetonitrile, and then the hydrolyzate is extracted with 0.2 M borate buffer. The ratio of each amino acid to the total amount of recovered amino acids (recovered amino acid amount (%)) is shown in the item “BSA manual elution” in Table 8 as a result of hydrolysis.
(B) A 0.2 M borate buffer solution is passed through the precolumn at a flow rate of 0.05 ml / min, and the hydrolyzate is recovered at 1 min / tube with a fraction collector. That is, (b) corresponds to an embodiment in which all steps (column pretreatment, sample injection, washing, heating, elution, and recovery) are automated. In the item of “BSA automatic elution” in Table 8, the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) is shown as a result of hydrolysis.
Upchurch Scientific社製フリットA-100の外枠とA-702のフィルター部分とを組み合わせPEEK素材のみで形成したフリットを作成し、作成したフリットの間にNafion-PVDF膜を挟み込んだものを、プレカラムフィルターアセンブリーA-318に取り付けてプレカラムを組み立てた。プレカラムに、まず、アセトニトリルを導入し膜を湿らせ、次いで2μg/μlのBSA水溶液を5μl(BSA量で10μg)、オートサンプラーを用いて自動で導入した後、MilliQ水を0.05ml/minで10分間通液した。このプレカラムを150℃で2時間加熱し、Nafion-PVDF膜上のBSAを加水分解した。Nafion-PVDF膜からの加水分解産物の抽出は、下記(a)(b)の2通りの方法で行い、得られたアミノ酸を上記「(1)蛍光誘導体化によるアミノ酸分析」に示す方法に従い蛍光誘導体化し、アミノ酸を定量した。
(a)プレカラムからNafion-PVDF膜を取り出し、アセトニトリルで湿らせた後、0.2Mのホウ酸緩衝液で加水分解産物を抽出する。表8中の「BSA手動溶出」の項目に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。
(b)プレカラムに0.2Mのホウ酸緩衝液を0.05ml/minの流速で通液し、フラクションコレクターで1min/tubeで加水分解産物を回収する。すなわち、(b)は、全工程(カラム前処理、試料注入、洗浄、加熱、溶出、回収)を自動化した実施例に相当する。表8中の「BSA自動溶出」の項目に、加水分解の結果として、回収アミノ酸総量に対する各アミノ酸の割合(回収アミノ酸量(%))を示す。 [Example 5: Hydrolysis by incorporating a Nafion-PVDF membrane into a column (automatic protein introduction)]
A frit made only of PEEK material is created by combining the outer frame of Frit A-100 made by Upchurch Scientific and the filter part of A-702, and a Nafion-PVDF membrane sandwiched between the created frit is a pre-column filter A precolumn was assembled by attaching to assembly A-318. First, acetonitrile is introduced into the precolumn to wet the membrane, then 5 μl of 2 μg / μl BSA aqueous solution (10 μg in BSA amount) is automatically introduced using an autosampler, and MilliQ water is added at 0.05 ml / min. The solution was passed for 10 minutes. This precolumn was heated at 150 ° C. for 2 hours to hydrolyze BSA on the Nafion-PVDF membrane. Extraction of the hydrolyzate from the Nafion-PVDF membrane is performed by the following two methods (a) and (b), and the obtained amino acid is fluorescent according to the method described in the above “(1) Amino acid analysis by fluorescent derivatization”. Derivatization and quantification of amino acids.
(A) The Nafion-PVDF membrane is taken out from the precolumn, moistened with acetonitrile, and then the hydrolyzate is extracted with 0.2 M borate buffer. The ratio of each amino acid to the total amount of recovered amino acids (recovered amino acid amount (%)) is shown in the item “BSA manual elution” in Table 8 as a result of hydrolysis.
(B) A 0.2 M borate buffer solution is passed through the precolumn at a flow rate of 0.05 ml / min, and the hydrolyzate is recovered at 1 min / tube with a fraction collector. That is, (b) corresponds to an embodiment in which all steps (column pretreatment, sample injection, washing, heating, elution, and recovery) are automated. In the item of “BSA automatic elution” in Table 8, the ratio of each amino acid to the total amount of recovered amino acids (the amount of recovered amino acids (%)) is shown as a result of hydrolysis.
表8に示すように、Nafion-PVDF膜をカラムに組み込み、自動でBSAを導入した場合もBSAが加水分解されていることが判る。なお、一部のアミノ酸の回収アミノ酸量(%)では、理論値から外れているものが見受けられるが、これは、BSAが加水分解なされていないことを示すものではない。すなわち、カラムの設計、分解産物たるアミノ酸の溶出条件等を最適化することにより、より理論値に近い回収アミノ酸量(%)を実現できると考えられる。
As shown in Table 8, it can be seen that BSA is hydrolyzed even when Nafion-PVDF membrane is incorporated in the column and BSA is automatically introduced. In addition, some recovered amino acid amounts (%) of some amino acids are out of the theoretical value, but this does not indicate that BSA is not hydrolyzed. That is, it is considered that the recovered amino acid amount (%) closer to the theoretical value can be realized by optimizing column design, elution conditions of amino acids as degradation products, and the like.
本発明によれば、従来法と比較して、より簡便、迅速、かつ自動化が可能なタンパク質の加水分解方法、加水分解装置、及び加水分解産物の分析装置を提供することができる。
According to the present invention, it is possible to provide a protein hydrolysis method, hydrolysis apparatus, and hydrolysis product analysis apparatus that are simpler, faster, and more automated than conventional methods.
5 オートサンプラー(試料供給手段)
8 加水分解用カラム(加水分解手段)
9 電気炉(加熱手段)
11 分解産物分析部(分析手段)
21 加水分解装置/加水分解産物の分析装置 5 Autosampler (sample supply means)
8 Column for hydrolysis (hydrolysis means)
9 Electric furnace (heating means)
11 Decomposition product analysis section (analysis means)
21 Hydrolysis equipment / hydrolysis product analysis equipment
8 加水分解用カラム(加水分解手段)
9 電気炉(加熱手段)
11 分解産物分析部(分析手段)
21 加水分解装置/加水分解産物の分析装置 5 Autosampler (sample supply means)
8 Column for hydrolysis (hydrolysis means)
9 Electric furnace (heating means)
11 Decomposition product analysis section (analysis means)
21 Hydrolysis equipment / hydrolysis product analysis equipment
Claims (8)
- 複数の細孔を有するタンパク質保持基材の、当該細孔の内表面の少なくとも一部に固体酸触媒を配した状態でタンパク質を当該固体酸触媒に接触させ、水の存在下加熱することにより当該タンパク質を加水分解することを特徴とするタンパク質の加水分解方法。 By contacting the protein with the solid acid catalyst in a state where the solid acid catalyst is disposed on at least a part of the inner surface of the pore of the protein holding substrate having a plurality of pores, and heating in the presence of water, the protein is retained. A method for hydrolyzing a protein, comprising hydrolyzing the protein.
- 上記固体酸触媒はスルホン酸型イオン交換基を有するポリテトラフルオロエチレン(共)重合体であり、かつ、上記タンパク質保持基材はポリビニリデンジフルオライドであることを特徴とする、請求項1に記載のタンパク質の加水分解方法。 The solid acid catalyst is a polytetrafluoroethylene (co) polymer having a sulfonic acid type ion exchange group, and the protein-holding substrate is polyvinylidene difluoride according to claim 1, A method for hydrolyzing the protein described.
- 上記タンパク質の加水分解は、100℃以上でかつ220℃以下の温度範囲内で行われることを特徴とする、請求項2に記載のタンパク質の加水分解方法。 The method for hydrolyzing a protein according to claim 2, wherein the protein is hydrolyzed within a temperature range of 100 ° C or higher and 220 ° C or lower.
- 上記タンパク質保持基材と固体酸触媒とを接触させて、上記細孔の内表面の少なくとも一部に当該固体酸触媒が配された複合基材を得る工程と、
次いで、上記複合基材にタンパク質を接触させる工程とを含むことを特徴とする、請求項1から3の何れか1項に記載のタンパク質の加水分解方法。 Contacting the protein-holding substrate with a solid acid catalyst to obtain a composite substrate in which the solid acid catalyst is disposed on at least a part of the inner surface of the pore;
The method for hydrolyzing a protein according to any one of claims 1 to 3, further comprising a step of bringing the protein into contact with the composite substrate. - 上記タンパク質保持基材と上記タンパク質とを接触させて、当該タンパク質保持基材にタンパク質を保持させる工程(1)と、
次いで、タンパク質を保持した上記タンパク質保持基材と、上記固体酸触媒を含む溶液とを接触させて、上記細孔の内表面の少なくとも一部に固体酸触媒を配した状態で当該タンパク質と固体酸触媒とを接触させる工程(2)とを含む、請求項1から3の何れか1項に記載のタンパク質の加水分解方法。 A step (1) of bringing the protein holding substrate and the protein into contact with each other and allowing the protein holding substrate to hold the protein;
Next, the protein-holding base material holding the protein and the solution containing the solid acid catalyst are brought into contact with each other, and the protein and the solid acid are placed in a state where the solid acid catalyst is disposed on at least a part of the inner surface of the pore. The method for hydrolyzing a protein according to any one of claims 1 to 3, comprising a step (2) of contacting the catalyst. - 上記工程(1)は、ゲル電気泳動後のタンパク質を、当該ゲルから上記タンパク質保持基材に転写する工程である、請求項5に記載のタンパク質の加水分解方法。 The method for hydrolyzing a protein according to claim 5, wherein the step (1) is a step of transferring the protein after gel electrophoresis from the gel to the protein holding substrate.
- タンパク質を含む溶液を供給する試料供給手段と、
タンパク質保持基材が有する複数の細孔の内表面の少なくとも一部に固体酸触媒が配された複合基材を備えた加水分解手段と、
上記試料供給手段と加水分解手段とを連結する流路と、
上記加水分解手段を加熱する加熱手段と、を備えることを特徴とするタンパク質の加水分解装置。 Sample supply means for supplying a solution containing protein;
A hydrolysis means comprising a composite substrate in which a solid acid catalyst is disposed on at least a part of the inner surfaces of the plurality of pores of the protein-holding substrate;
A flow path connecting the sample supply means and the hydrolysis means;
And a heating means for heating the hydrolysis means. - タンパク質を含む溶液を供給する試料供給手段と、
タンパク質保持基材が有する複数の細孔の内表面の少なくとも一部に固体酸触媒が配された複合基材を備えた加水分解手段と、
上記試料供給手段と加水分解手段とを連結する流路と、
上記加水分解手段を加熱する加熱手段と、
上記加水分解手段の後段に、タンパク質の加水分解産物を分析する分析手段を備えることを特徴とするタンパク質の加水分解産物の分析装置。 Sample supply means for supplying a solution containing protein;
A hydrolysis means comprising a composite substrate in which a solid acid catalyst is disposed on at least a part of the inner surfaces of the plurality of pores of the protein-holding substrate;
A flow path connecting the sample supply means and the hydrolysis means;
Heating means for heating the hydrolysis means;
An apparatus for analyzing a protein hydrolyzate, comprising an analysis unit for analyzing a protein hydrolyzate after the hydrolysis unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010539152A JP5633809B2 (en) | 2008-11-19 | 2009-11-19 | Protein hydrolysis method, hydrolysis apparatus, and hydrolysis product analysis apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008296025 | 2008-11-19 | ||
JP2008-296025 | 2008-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058590A1 true WO2010058590A1 (en) | 2010-05-27 |
Family
ID=42198033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006247 WO2010058590A1 (en) | 2008-11-19 | 2009-11-19 | Protein substance hydrolysis method, hydrolysis device, and hydrolytic product analysis device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5633809B2 (en) |
WO (1) | WO2010058590A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016514166A (en) * | 2013-03-14 | 2016-05-19 | ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド | Amino acids generated according to the mechanocatalytic hydrolysis process of proteins |
CN106061991A (en) * | 2013-12-25 | 2016-10-26 | 株式会社海月研究所 | Continuous production method for decomposition product from water-insoluble macromolecular compound |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005035641A1 (en) * | 2003-09-12 | 2005-04-21 | 3M Innovative Properties Company | Microporous pvdf films and method of manufacturing |
JP2009120511A (en) * | 2007-11-13 | 2009-06-04 | Institute Of Physical & Chemical Research | Method and apparatus for hydrolyzing protein, and, method and apparatus for analyzing protein |
-
2009
- 2009-11-19 WO PCT/JP2009/006247 patent/WO2010058590A1/en active Application Filing
- 2009-11-19 JP JP2010539152A patent/JP5633809B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005035641A1 (en) * | 2003-09-12 | 2005-04-21 | 3M Innovative Properties Company | Microporous pvdf films and method of manufacturing |
JP2009120511A (en) * | 2007-11-13 | 2009-06-04 | Institute Of Physical & Chemical Research | Method and apparatus for hydrolyzing protein, and, method and apparatus for analyzing protein |
Non-Patent Citations (2)
Title |
---|
AKIKO MASUDA ET AL.: "Tanpakushitsu kara Amino Acid e: Atarashii Koso Kasui Bunkaiho no Kaihatsu", ANNUAL MEETING OF THE PROTEIN SCIENCE SOCIETY OF JAPAN PROGRAM-YOSHISHU, vol. 8TH, 23 May 2008 (2008-05-23), pages 71 * |
AKIKO MASUDA ET AL.: "Tanpakushitsu Kasui Bunkai no Tameno Shinki Kotaisan Shokubai no Kento", JOURNAL OF JAPANESE BIOCHEMICAL SOCIETY, 25 September 2009 (2009-09-25), pages 4T15A-7 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016514166A (en) * | 2013-03-14 | 2016-05-19 | ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド | Amino acids generated according to the mechanocatalytic hydrolysis process of proteins |
EP2971043A4 (en) * | 2013-03-14 | 2016-10-26 | Univ Central Florida Res Found | Amino acids produced according to a process of mechanocatalytic hydrolysis of proteins |
CN106061991A (en) * | 2013-12-25 | 2016-10-26 | 株式会社海月研究所 | Continuous production method for decomposition product from water-insoluble macromolecular compound |
Also Published As
Publication number | Publication date |
---|---|
JP5633809B2 (en) | 2014-12-03 |
JPWO2010058590A1 (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cooper et al. | Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry | |
US7799548B2 (en) | Method of stripping genetically tagged biomolecules from porous solid ion exchange wafer | |
Beardsley et al. | Optimization of guanidination procedures for MALDI mass mapping | |
Jeon et al. | High-throughput purification and quality assurance of Arabidopsis thaliana proteins for eukaryotic structural genomics | |
Qiao et al. | A nanoporous reactor for efficient proteolysis | |
Adams et al. | Ultramicro GC determination of amino acids using glass open tubular columns and a nitrogen-selective detector | |
Djozan et al. | Anodized zinc wire as a solid-phase microextraction fiber | |
Seyedsayamdost et al. | Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation | |
EP0970224A1 (en) | Recombinant haloaliphatic dehalogenases | |
Kim et al. | Nanobiocatalysis for protein digestion in proteomic analysis | |
JP5076878B2 (en) | Method for analyzing glycoprotein sugar chains | |
JP5633809B2 (en) | Protein hydrolysis method, hydrolysis apparatus, and hydrolysis product analysis apparatus | |
CN109331798A (en) | A kind of preparation method of solid phase microextraction material | |
Shangguan et al. | Investigation of bi-enzymatic reactor based on hybrid monolith with nanoparticles embedded and its proteolytic characteristics | |
JP5273766B2 (en) | Protein hydrolysis method and apparatus, and protein analysis method and apparatus | |
Wang et al. | Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone‐ion exchange chromatography | |
Petry et al. | Proteomic methods applied to the analysis of immobilized biocatalysts | |
Miyauchi et al. | Determination of urea in serum based on the combination of an enzymatic reaction with immobilized urease and ion chromatographic analysis | |
CN114749221A (en) | Proteomics sample pretreatment device and preparation method and application thereof | |
Wang et al. | Intensive Protein Digestion Using Cross‐Linked Trypsin Aggregates in Proteomics Analysis | |
Phelps et al. | Technology for regenerable biosensor probes based on enzyme-cellulose binding domain conjugates | |
Aitken | Structural determination of covalently modified peptides by combined mass spectrometry and gas-phase microsequencing | |
Yamaguchi et al. | Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease‐immobilized microreactors | |
Furneaux | O-phosphoserine as a hydrolysis product and amino acid analysis of shells of new laid eggs of the house cricket, Acheta domesticus L | |
Simental‐Martínez et al. | A novel process for the recovery of superoxide dismutase from yeast exploiting electroextraction coupled to direct sorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827371 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010539152 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09827371 Country of ref document: EP Kind code of ref document: A1 |