WO2010057731A1 - Verfahren zum erfassen eines sich einstellenden drehmomentes für einen hybridantrieb - Google Patents

Verfahren zum erfassen eines sich einstellenden drehmomentes für einen hybridantrieb Download PDF

Info

Publication number
WO2010057731A1
WO2010057731A1 PCT/EP2009/063589 EP2009063589W WO2010057731A1 WO 2010057731 A1 WO2010057731 A1 WO 2010057731A1 EP 2009063589 W EP2009063589 W EP 2009063589W WO 2010057731 A1 WO2010057731 A1 WO 2010057731A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
clutch
predetermined
drive unit
separating clutch
Prior art date
Application number
PCT/EP2009/063589
Other languages
English (en)
French (fr)
Inventor
Kazumasa Sakuta
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US13/130,667 priority Critical patent/US8671781B2/en
Publication of WO2010057731A1 publication Critical patent/WO2010057731A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • B60W2510/0225Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0275Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/022Clutch actuator position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to the field of disconnect couplings in hybrid vehicles.
  • a hybrid drive which has an internal combustion engine ICE, a clutch KO, an electric motor EM, a further clutch K2 and a transmission module TR.
  • the separating clutch KO is provided to separate the internal combustion engine ICE from the drive train or to reconnect with this.
  • the separating clutch KO is opened and the internal combustion engine ICE is switched off.
  • the internal combustion engine ICE can first be mechanically driven by means of the separating clutch KO, for example, to achieve a predetermined speed.
  • the separating clutch KO is operated in a slip state in which it is not completely closed.
  • the separating clutch KO is connected to the drive train on the side of the electric motor. Therefore, it is particularly important for the ride comfort to control the slip of the clutch KO exactly in the hybrid mode.
  • DE 105 40 921 A1 discloses in In this context, a system for controlling a servo clutch, in which the clutch control is optimized.
  • Fig. 2A shows a time course of a
  • FIG. 2B shows a time characteristic of a rotational speed of the electric motor
  • FIG. 2C shows a state curve P of the separating clutch KO, which can assume all states between an open and a fully closed state.
  • the state curve P of the separating clutch KO is determined by a course of the closing positions of the separating clutch KO.
  • the disconnect clutch KO is in a slip state when partially closed and in an open state when fully opened.
  • the torque of the electric motor is linearly increased to a resultant torque 201 and then ramped again.
  • the speed of the electric motor shown in Fig. 2B decreases due to an increasing clutch transmission torque, with decreasing torque, it increases again, however.
  • the disconnect clutch KO is slowly closed from an open state 203, and thus is in continuous slippage.
  • the separating clutch KO is closed until a position 205 has been reached, in which the resulting, adjusting torque 201 is established.
  • the electromotive torque is kept as constant as possible at the main drive shaft.
  • the speed of the electric motor is kept constant by a speed controller, for example at 500 rpm.
  • the disconnect clutch KO is slowly closed. It tries the
  • Speed controller to keep the speed of the electric motor, for example by generating an additional torque constant.
  • a position of the separating clutch KO is detected at the time 205, in which the electromotive torque has increased, for example, by 10 Nm. In this way, the so-called touch point of the separating clutch KO can be detected, in which the transmitted torque is 0 Nm.
  • a disadvantage of the method described above is that it may take about 3 to 10 seconds until the adjusting torque was detected when closing the clutch KO. This is due to the fact that the speed of the closing clutch KO must be lower than the reaction speed of the speed controller controlling the electric motor. As a result, the closing position of the separating clutch KO at the time 205 can be detected only in response to the torque which has been increased by the speed controller.
  • Another disadvantage is that the separating clutch KO, which is in the slip state over a relatively long period of time, has to withstand higher torques, which can damage it. For this reason, the learning range to be considered for the detection of the self-adjusting torque should have lower torques than these higher ones
  • Coupling KO transmitting torque is low, with a higher mechanical tolerance and thus to expect a lower closing accuracy of the clutch KO. For this reason, the method is carried out in a mechanically unstable region, so that the adjusting torque when closing the clutch KO can not be detected accurately. Disclosure of the invention
  • the invention is based on the finding that the torque which arises can be detected efficiently in a closed position of the separating clutch, if it is not closed slowly, but decidedly in a predetermined closing position, in which the separating clutch is in a slip state and only partially closed , is brought.
  • the self-adjusting torque can be, for example, the adjusting torque on the clutch or the self-adjusting clutch transmission torque.
  • the self-adjusting torque can also mechanical loss work, such as wear of the clutch plates, temperature rise and / or inertia u.a. include.
  • the self-adjusting torque can also be that torque with which the separating clutch loads a drive unit in the predetermined closing position.
  • the electromotive torque can be increased by a predetermined torque, whereby the resulting torque can be selectively and selectively detected.
  • the separating clutch is closed by the known methods for the entire detection period, for example, linear and thus exposed to heavier loads.
  • the separating clutch is less thermally and mechanically loaded, so that the clutch wear is reduced overall. Furthermore, a provision of the adjusting torque even at higher torques
  • Disconnect coupling possible whereby a higher detection accuracy is achieved. Furthermore, a characteristic can also be recorded at different levels of torque, which avoids the disadvantage that the characteristic calculation is possible only on the basis of measurements in the low torque range. According to the self-adjusting torque can be detected even at relatively low speeds, because the electric motor, in contrast to an internal combustion engine, also applies a high torque at lower speeds. Due to the lower mechanical clutch load, therefore, a lesser clutch wear and a lower clutch temperature are to be expected. In addition, the inventive concept is accurate because system influences such as noise are not included in the calculation.
  • the self-adjusting torque is detected at the separating clutch, in particular when the internal combustion engine is at a standstill and, in particular, at a speed-controlled electric motor which is constantly rotating, for example.
  • a predetermined torque for the governor is selected and changed based on the expected torque, for example, the decelerating clutch torque or the resulting clutch transmission torque, for example, from a look-up table, if the present torque at the
  • the invention relates to a method for detecting an adjusting torque for or in a hybrid drive, wherein the Hybrid drive a first drive unit, in particular an electric motor, and a second drive unit, in particular an internal combustion engine, wherein the drive units can be coupled by means of a separating clutch.
  • the separating clutch is transferred to a predetermined closing position, the torque of the first drive unit changed, and the adjusting torque detected at the predetermined closing position in response to the change of the torque of the first drive unit.
  • the first drive unit is operated before the transfer of the separating clutch in the predetermined closing position at a predetermined speed, and the torque of the first
  • the torque of the first drive unit is before the change of the torque of the first drive unit such that again sets a constant speed of the first drive unit, the torque of the first drive unit to a function of the predetermined
  • the method step of changing the torque of the first drive unit is thus accelerated such that a constant speed of the first drive unit sets again, since only a small, remaining torque deviation has to be compensated.
  • it is thus also detected whether the predetermined torque must be adapted due to the clutch wear.
  • the value of the predetermined torque is increased when, after a transfer of the separating clutch in the predetermined Closing position reduces the speed of the first drive unit.
  • the value of the predetermined torque is reduced if, after the transfer of the separating clutch to the predetermined closing position, the rotational speed of the first drive assembly increases.
  • a simple detection of the predetermined torque is performed.
  • the adjusting torque is an adjusting torque on the separating clutch or a self-adjusting clutch torque or adjusting torque of the first drive unit or the second drive unit or a torque with which the first or the second unit is loaded by the separating clutch.
  • the torque of the first drive unit is increased or decreased by a predetermined torque. This counteracts a reduction in the speed of the first drive unit in an advantageous manner.
  • the separating clutch is not completely closed in the predetermined closing position and operated in particular in a slip state.
  • the invention relates to a method for determining a closing position of a separating clutch, at which a predetermined torque is adjusted, wherein the closing position of the separating clutch in dependence of an inventively detected, adjusting torque, for example, an adjusting torque on the separating clutch or an adjusting itself Kupplungsübertragungsmomentes, is determined.
  • the inventive method for detecting the self-adjusting torque is repeated at another closing position of the separating clutch until the detected adjusting torque at this closing position with the Predetermined torque at the separating clutch matches.
  • a closing position is selected as the other closing position, in which a lower torque is established at the separating clutch, in which the clutch is thus further opened when the adjusting torque is greater than the predetermined torque at the separating clutch and / or as the another closed position selected a closed position in which sets on the clutch a larger torque, in which the clutch is thus further closed when the adjusting torque is smaller than the predetermined torque on the clutch.
  • the closing position can also be determined iteratively.
  • the invention further relates to a program-technically furnished device, in particular a control device, which is designed to execute a computer program for carrying out at least one of the inventive detection methods.
  • Fig. 1 a hybrid drive
  • Fig. 2 is a timing diagram of a method for detecting an adjusting torque
  • 3 is a time chart of a method for detecting an adjusting torque
  • Fig. 4 is a timing diagram of a method for detecting an adjusting torque
  • Fig. 5 is a timing diagram of a method for detecting an adjusting torque.
  • FIG. 3 shows a time diagram of a method for detecting an adjusting torque in a closed position of a separating clutch KO, which is illustrated for example in FIG. 1.
  • 3 a shows a time profile of a rotational speed of the electric motor
  • FIG. 3 c shows a time profile of a state P of the separating clutch KO, which can have an open state, a closed state and a slip state ,
  • the internal combustion engine ICE is switched off and the separating clutch KO is opened.
  • the separating clutch KO remains open until a point in time 301, while the electromotive torque is kept constant.
  • the transmission of the hybrid vehicle can be locked, for example in the park position.
  • the speed of the electric motor is kept constant by a speed controller, for example, at 500 rpm.
  • the separating clutch KO is at least partially closed and thereby transferred to a predetermined state 303, for example in a predetermined closed position, in which it is in slippage.
  • the torque of the electric motor is increased by a predetermined torque 305, ie by a pre-control torque.
  • a speed controller regulates depending on a speed difference, which is a difference between the expected and the current one Transmission torque of the clutch KO is conditional, the speed of the
  • Electric motor to a constant value.
  • a further torque 307 is generated, so that a resulting torque 309 is obtained, which is associated with a constant speed of the electric motor.
  • the rotational speed of the electric motor EM stabilizes, so that the present state of the disconnect clutch K0, i. the final closed position, and / or the increased electromotive torque can be detected. Based on this, the resulting torque can be detected.
  • the disconnect clutch KO is opened again, whereby its state 315 can be detected. Subsequently, the rotational speed of the electric motor increases and the electromotive torque decreases back to the value of the output torque.
  • the difference 316 between the self-adjusting torque and the output torque results in a learning torque range.
  • the method can be carried out at different closing positions. Thus, a characteristic of the self-adjusting torque can be detected at a plurality of closing positions of the separating clutch.
  • the speed controller of the electric motor EM is not able to compensate for a rapid torque change, as mentioned above, the speed controller, a torque by increasing the electromotive torque by the predetermined torque, which also as a
  • Pre-control torque (so-called feed forward torque) can be called generate.
  • the speed controller In the event that the adjusting torque is equal to the current clutch transmission torque, the speed controller must therefore make no more regulation.
  • proportional integral feedback elements PI
  • PI proportional integral feedback elements
  • their response speed is too slow to compensate for a speed change by a movement of the clutch KO. Therefore, exclusively proportional P-members are preferably used to control the rotational speed of the electric motor.
  • a state of the separating clutch KO for example, its closed position, in which sets a certain torque
  • the method can be performed as shown in Fig. 4.
  • Fig. 4a is a torque of the electric motor
  • Fig. 4b is a position P of
  • Disconnect coupling KO which is determined by their state or by the arrangement of the clutch discs, as a function of the time T shown.
  • a predetermined speed and an open clutch KO this is at least partially closed at time 401 and thereby converted into a slip state.
  • the torque of the electric motor EM is increased, wherein an adjusting torque, which may for example be higher than an expected torque 403 and differs, for example, by a difference torque 405 from the expected torque 403, can be detected.
  • the clutch is re-opened at time 407, whereby the electromotive torque decreases.
  • the separating clutch KO is closed again and thereby converted into a further slip state in which the torque transmitted by the separating clutch KO is lower by the differential torque 405 than the torque transmitted at the time 401.
  • Disconnect clutch is different by the difference 409.
  • the same time increases the torque of the electric motor and reaches, for example, the expected torque 403rd
  • the above-described process steps may be repeated until a predetermined slip state or a predetermined closing position of the separating clutch KO in which the resulting electromotive torque corresponds to the expected torque 403 has been established.
  • the position of the disconnect clutch KO is adjusted toward the open disconnect clutch KO if the detected torque is greater than the expected torque 403. If the detected torque is smaller than the expected torque 403, the position of the separating clutch KO is adjusted in the direction of its closed state, depending on the torque deviation.
  • the governor In the event that the expected clutch transmission torque is greater or less than the current clutch transmission torque, the governor is normally unable to maintain the speed of the electric motor EM constant because the motion of the disconnect clutch KO is faster than the speed controller response time. In this case, the expected
  • FIG. 5 a shows a time characteristic of the torque of the electric motor
  • FIG. 5 b shows a time characteristic of the predetermined torque
  • FIG. 5 c shows a time profile of the rotational speed of the electric motor
  • FIG. 5 d shows a state, i. a closed position of the clutch KO.
  • the separating clutch KO is at least partially closed at time 501 and thereby converted into a slip state.
  • the rotational speed of the electric motor decreases by a rotational speed difference represented by the arrow in FIG. 5c.
  • the speed controller tries to compensate for the speed.
  • the separating clutch KO is opened again and the torque of the electric motor EM is reduced by the predetermined torque.
  • Fig. 5b selected predetermined torque selected by which the torque of the electric motor is increased.
  • the separating clutch KO is closed again, shortly before a further predetermined torque, for example, higher than the previously used, predetermined torque is selected to increase the torque of the electric motor.
  • a further predetermined torque for example, higher than the previously used, predetermined torque is selected to increase the torque of the electric motor.
  • the speed of the electric motor also drops, but the reduction is lower than in the previous cycle.
  • the separating clutch KO is opened again and again in the predetermined slip state, ie in a predetermined closed position, transferred, with an example, even greater predetermined torque is selected to increase the torque of the electric motor.
  • This process is repeated in further phases 3 and 4 until a predetermined torque results, which can be assigned to the always the same predetermined slip state shown in FIG. 5d.
  • the pilot torque can be increased in response to a speed deviation, if the rotational speed of the electric motor EM is lower. In the event that the speed of the electric motor EM increases, depending on the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Erfassen eines sich einstellenden Drehmomentes füreinen Hybridantrieb, wobei der Hybridantrieb ein erstes Antriebsaggregat, insbesondere einen Elektromotor (EM), und ein zweites Antriebsaggregat, insbesondere einen Verbrennungsmotor (ICE), aufweist, wobei die Antriebsaggregate (EM, ICE) mittels einer Trennkupplung (KO) koppelbar sind, dadurch gekennzeichnet, dass die Trennkupplung (KO) in eine vorgegebene Schliessposition überführt wird, dass das Drehmoment des ersten Antriebsaggregates (EM) geändert wird,unddas das sich einstellende Drehmoment an der vorgegebenen Schliessposition in Abhängigkeit der Änderung des Drehmomentes des ersten Antriebsaggregates (EM) erfasst wird.

Description

Beschreibung
Verfahren zum Erfassen eines sich einstellenden Drehmomentes für einen Hybridantrieb
Technisches Gebiet
Die vorliegende Erfindung betrifft das Gebiet der Trennkupplungen in Hybridfahrzeugen.
Stand der Technik
In Fig. 1 ist beispielhaft ein Hybridantrieb dargestellt, welcher einen Verbrennungsmotor ICE, eine Trennkupplung KO, einen Elektromotor EM, eine weitere Trennkupplung K2 und ein Übertragungsmodul TR aufweist. Die Trennkupplung KO ist vorgesehen, den Verbrennungsmotor ICE von dem Antriebsstrang zu trennen oder mit diesem wieder zu verbinden. So ist beispielsweise bei rein elektromotorischer Fahrt mit dem Elektromotor EM als Antriebsquelle die Trennkupplung KO geöffnet und der Verbrennungsmotor ICE abgeschaltet. Bei einem Übergang von einem elektromotorischen Antrieb zu einem Hybridantrieb, bei dem sowohl der Elektromotor EM als auch der Verbrennungsmotor ICE als Antriebsquellen verwendet werden, kann der Verbrennungsmotor ICE zunächst mittels der Trennkupplung KO mechanisch angetrieben werden, um beispielsweise eine vorgegebene Drehzahl zu erreichen. Dabei wird die Trennkupplung KO in einem Schlupfzustand betrieben, in dem sie nicht ganz geschlossen ist. Gleichzeitig ist die Trennkupplung KO auf der Seite des Elektromotors mit dem Antriebsstrang verbunden. Daher ist es insbesondere für den Fahrkomfort von entscheidender Bedeutung, den Schlupf der Trennkupplung KO in dem Hybridmodus genau zu steuern. Die DE 105 40 921 A1 offenbart in diesem Zusammenhang ein System zur Steuerung einer Servokupplung, bei dem die Kupplungssteuerung optimiert wird.
Das sich einstellende Drehmoment beim Schließen der in Fig. 1 dargestellten Trennkupplung KO kann beispielsweise mittels des in Fig. 2 dargestellten Verfahrens erfasst werden. Fig. 2A zeigt einen zeitlichen Verlauf eines
Drehmomentes M eines Elektromotors, Fig. 2B zeigt einen zeitlichen Verlauf einer Drehzahl des Elektromotors und Fig. 2C zeigt einen Zustandsverlauf P der Trennkupplung KO, welche alle Zustände zwischen einem geöffneten und einem vollständig geschlossenen Zustand annehmen kann. Der Zustandsverlauf P der Trennkupplung KO wird durch einen Verlauf der Schließpositionen der Trennkupplung KO bestimmt. So befindet sich die Trennkupplung KO beispielsweise in einem Schlupfzustand, wenn sie nur teilweise geschlossen ist, und in einem offenen Zustand, wenn sie vollständig geöffnet ist.
Wie in Fig. 2A dargestellt wird das Drehmoment des Elektromotors linear bis zu einem resultierenden Drehmoment 201 erhöht und anschließend rampenförmig wieder verringert. Bei der Erhöhung des Drehmomentes sinkt die in Fig. 2B abgebildete Drehzahl des Elektromotors aufgrund eines steigenden Kupplungsübertragungsmomentes, mit sinkendem Drehmoment steigt sie dagegen wieder an. Wie in Fig. 2C dargestellt wird die Trennkupplung KO ausgehend von einem offenen Zustand 203 langsam geschlossen und befindet sich daher in einem kontinuierlichen Schlupf. Die Trennkupplung KO wird solange geschlossen, bis eine Position 205 erreicht wurde, in welcher sich das resultierende, sich einstellende Drehmoment 201 einstellt.
Zum Erfassen des sich einstellenden Drehmomentes werden zunächst der Verbrennungsmotor ICE abgeschaltet und die Trennkupplung KO geöffnet, wobei das elektromotorische Drehmoment an der Hauptantriebsachse möglichst konstant gehalten wird. Die Drehzahl des Elektromotors wird durch einen Drehzahlregler beispielsweise bei 500 UPM konstant gehalten. Zum Zeitpunkt 207 wird die Trennkupplung KO langsam geschlossen. Dabei versucht der
Drehzahlregler, die Geschwindigkeit des Elektromotors beispielsweise durch die Erzeugung eines zusätzlichen Drehmomentes konstant zu halten. Zum Erfassen des sich einstellenden Drehmomentes wird zum Zeitpunkt 205 eine Position der Trennkupplung KO detektiert, bei der das elektromotorische Drehmoment sich beispielsweise um 10 Nm erhöht hat. Auf diese Weise kann auch der so genannte Berührpunkt der Trennkupplung KO erfasst werden, bei welchem das übertragene Drehmoment 0 Nm beträgt.
Nachteilig an dem vorstehend beschriebenen Verfahren ist jedoch, dass es etwa 3 bis 10 s dauern kann, bis das sich einstellende Drehmoment beim Schließen der der Trennkupplung KO erfasst wurde. Dies ist dadurch begründet, dass die Geschwindigkeit der schließenden Trennkupplung KO geringer sein muss als die Reaktionsgeschwindigkeit des den Elektromotor steuernden Drehzahlreglers. Infolgedessen kann die Schließposition der Trennkupplung KO zum Zeitpunkt 205 nur in Abhängigkeit des Drehmomentes, welches durch den Drehzahlregler erhöht wurde, detektiert werden. Nachteilig darüber hinaus ist, dass die sich über eine längere Zeitdauer in dem Schlupfzustand befindende Trennkupplung KO höhere Drehmomente aushalten muss, wodurch sie beschädigt werden kann. Aus diesem Grund sollte der zur Erfassung des sich einstellenden Drehmomentes zu betrachtende Lernbereich geringere Drehmomente als diese höheren
Drehmomente aufweisen, sodass das mittels der Trennkupplung KO übertragene Drehmoment üblicherweise geringer als 10 Nm ist. Somit ist es nicht möglich, zur Erfassung des sich einstellenden Drehmomentes der Trennkupplung KO höhere Drehzahlen und größere Drehmomentbereiche bei beispielsweise 50 Nm zu erfassen. Darüber hinaus ist in dem Bereich, in welchem das durch die
Trennkupplung KO übertragende Drehmoment gering ist, mit einer höheren mechanischen Toleranz und somit mit einer geringeren Schließgenauigkeit der Trennkupplung KO zu rechnen. Aus diesem Grund wird das Verfahren in einem mechanisch nicht stabilen Bereich ausgeführt, so dass das sich bei Schließen der Trennkupplung KO einstellende Drehmoment nicht genau erfasst werden kann. Offenbarung der Erfindung
Die Erfindung basiert auf der Erkenntnis, dass das sich einstellende Drehmoment in einer Schließposition der Trennkupplung effizient erfasst werden kann, wenn diese nicht langsam geschlossen, sondern dezidiert in eine vorgegebene Schließposition, in welcher sich die Trennkupplung insbesondere in einem Schlupfzustand befindet und nur teilweise geschlossen ist, gebracht wird. Das sich einstellende Drehmoment kann beispielsweise das sich an der Trennkupplung einstellende Drehmoment oder das sich einstellende Kupplungsübertragungsmoment sein. Das sich einstellende Drehmoment kann ferner auch mechanische Verlustarbeit, beispielsweise Verschleiß der Kupplungsscheiben, Temperaturanstieg und/oder Massenträgheiten u.a. umfassen. Das sich einstellende Drehmoment kann ferner dasjenige Drehmoment sein, mit dem die Trennkupplung in der vorgegebenen Schließposition ein Antriebsaggregat belastet.
In Abhängigkeit von der vorgegeneben Schließposition kann das elektromotorische Drehmoment um ein vorgegebenes Drehmoment erhöht werden, wodurch das sich einstellende Drehmoment gezielt und punktuell erfasst werden kann. Darüber hinaus ist es möglich, während des Erfassungsprozesses nach jedem Schließen der Trennkupplung diese wieder zu öffnen, so dass die Zeit, in der sich die Trennkupplung in einem Schlupfzustand befindet, verkürzt wird. Im Unterschied hierzu wird die Trennkupplung nach den bekannten Verfahren für die gesamte Erfassungsdauer beispielsweise linear geschlossen und dadurch stärkeren Belastungen ausgesetzt.
Vorteilhaft ist ferner, dass eine kürzere Zeitspanne für die erneute Bestimmung des sich einstellenden Drehmomentes benötigt wird. Darüber hinaus wird die Trennkupplung weniger thermisch und mechanisch belastet, sodass der Kupplungsverschleiß insgesamt reduziert wird. Ferner ist eine Bestimmung des sich einstellenden Drehmomentes auch bei höheren Drehmomenten der
Trennkupplung möglich, wodurch eine höhere Erfassungsgenauigkeit erzielt wird. Des Weiteren kann eine Kennlinie auch bei unterschiedlich hohen Drehmomenten aufgenommen werden, wodurch der Nachteil vermieden wird, dass die Kennlinienberechnung nur anhand von Messungen im niedrigen Drehmomentbereich möglich ist. Erfindungsgemäß kann das sich einstellende Drehmoment auch bei vergleichsweise geringen Drehzahlen erfasst werden, weil der Elektromotor im Gegensatz zu einem Verbrennungsmotor auch bei geringeren Drehzahlen ein hohes Drehmoment aufbringt. Aufgrund der geringeren mechanischen Kupplungsbelastung sind daher auch ein geringerer Kupplungsverschleiß und eine geringerer Kupplungstemperatur zu erwarten. Darüber hinaus ist das erfindungsgemäße Konzept genau, weil Systemeinflüsse wie beispielsweise Rauschen in die Berechnung nicht eingehen.
Vorteilhaft wird das sich einstellende Drehmoment an der Trennkupplung insbesondere bei stillstehendem Verbrennungsmotor und insbesondere bei beispielsweise konstant drehendem, drehzahlgeregeltem Elektromotor erfasst.
Zur Erfassung des sich einstellenden Drehmomentes in einer Schließposition der Trennkupplung wird diese bevorzugt in einen Schlupfzustand überführt, wobei ein geregeltes Drehmoment des Elektromotors beobachtet wird. Erfindungsgemäß wird ein vorgegebenes Drehmoment für den Drehzahlregler auf der Basis des erwarteten bzw. sich einstellenden Drehmoments, beispielsweise des sich einstellenden Drehmoments an der Trennkupplung oder des sich einstellenden Kupplungsübertragungsmoments, beispielsweise aus einer Look-Up-Tabelle ausgewählt und geändert, falls sich das gegenwärtige Drehmoment an der
Trennkupplung von dem bei der jeweiligen Schließposition an der Trennkupplung erwarteten Drehmoment unterscheidet.
Gemäß einem Aspekt betrifft die Erfindung ein Verfahren zum Erfassen eines sich einstellenden Drehmomentes für einen oder in einem Hybridantrieb, wobei der Hybridantrieb ein erstes Antriebsaggregat, insbesondere einen Elektromotor, und ein zweites Antriebsaggregat, insbesondere einen Verbrennungsmotor, aufweist, wobei die Antriebsaggregate mittels einer Trennkupplung koppelbar sind. Verfahrensgemäß wird die Trennkupplung in eine vorgegebene Schließposition überführt, das Drehmoment des ersten Antriebsaggregates geändert, und das sich einstellende Drehmoment an der vorgegebenen Schließposition in Abhängigkeit der Änderung des Drehmomentes des ersten Antriebsaggregates erfasst.
Gemäß einer Ausführungsform wird das erste Antriebsaggregat vor dem Überführen der Trennkupplung in die vorgegebene Schließposition mit einer vorgegebenen Drehzahl betrieben, und das Drehmoment des ersten
Antriebsaggregates wird nach dem Überführen der Trennkupplung in die vorgegebene Schließposition so geändert, dass sich eine konstante Drehzahl des ersten Antriebsaggregates einstellt. Dadurch kann in vorteilhafter weise das zur Sicherstellung konstanter Drehzahl des ersten Antriebsaggregates zusätzlich aufzubringende Drehmoment erfasst werden.
Gemäß einer Weiterbildung der Erfindung wird vor der Änderung des Drehmomentes des ersten Antriebsaggregates derart, dass sich wieder eine konstante Drehzahl des ersten Antriebsaggregates einstellt, das Drehmoment des ersten Antriebsaggregates um ein in Abhängigkeit der vorgegebenen
Schließposition vorgegebenes Drehmoment erhöht. Vorteilhaft wird dadurch der Verfahrensschritt der Änderung des Drehmomentes des ersten Antriebsaggregates derart, dass sich wieder eine konstante Drehzahl des ersten Antriebsaggregates einstellt, beschleunigt, da nur noch eine geringe, verbleibende Drehmomentabweichung ausgeregelt werden muss. Vorteilhaft wird somit auch erfasst, ob das vorgegebene Drehmoment aufgrund des Kupplungsverschleißes adaptiert werden muss.
Gemäß einer Ausführungsform wird der Wert des vorgegebenen Drehmomentes erhöht, wenn sich nach einem Überführen der Trennkupplung in die vorgegebene Schließposition die Drehzahl des ersten Antriebsaggregates reduziert. Der Wert des vorgegebenen Drehmomentes wird verringert, wenn sich nach dem Überführen der Trennkupplung in die vorgegebene Schließposition die Drehzahl des ersten Antriebsaggregates erhöht. In vorteilhafter Weise wird somit eine einfache Erfassung des vorgegebenen Drehmomentes durchgeführt.
Gemäß einer Ausführungsform ist das sich einstellende Drehmoment ein sich einstellendes Drehmoment an der Trennkupplung oder ein sich einstellendes Kupplungsübertragungsmoment oder ein sich einstellendes Drehmoment des ersten Antriebsaggregats oder des zweiten Antriebsaggregats oder ein Drehmoment, mit dem das erste oder das zweite Aggregat durch die Trennkupplung belastet wird.
Gemäß einer Ausführungsform wird das Drehmoment des ersten Antriebsaggregates um ein vorgegebenes Drehmoment erhöht oder verringert. Dadurch wird in vorteilhafter Weise auch einer Absenkung der Drehzahl des ersten Antriebsaggregats entgegengewirkt.
Gemäß einer Ausführungsform wird die Trennkupplung in der vorgegebenen Schließposition nicht vollständig geschlossen und insbesondere in einem Schlupfzustand betrieben.
Gemäß einem Aspekt betrifft die Erfindung ein Verfahren zum Bestimmen einer Schließposition einer Trennkupplung, an der sich ein vorgegebenes Drehmoment einstellt, wobei die Schließposition der Trennkupplung in Abhängigkeit eines erfindungsgemäß erfassten, sich einstellenden Drehmomentes, beispielsweise eines sich einstellenden Drehmomentes an der Trennkupplung oder eines sich einstellenden Kupplungsübertragungsmomentes, bestimmt wird. Bevorzugt wird das erfindungsgemäße Verfahren zum Erfassen des sich einstellenden Drehmomentes an einer anderen Schließposition der Trennkupplung wiederholt, bis das erfasste sich einstellende Drehmoment an dieser Schließposition mit dem vorgegebenen Drehmoment an der Trennkupplung übereinstimmt. Insbesondere wird dabei als die andere Schließposition eine Schließposition gewählt, in der sich an der Trennkupplung ein geringeres Drehmoment einstellt, in der die Kupplung also weiter geöffnet ist, wenn das sich einstellende Drehmoment größer als das vorgegebene Drehmoment an der Trennkupplung ist und/oder als die andere Schließposition eine Schließposition gewählt, in der sich an der Trennkupplung ein größeres Drehmoment einstellt, in der die Kupplung also weiter geschlossen ist, wenn das sich einstellende Drehmoment kleiner als das vorgegebene Drehmoment an der Trennkupplung ist. Auf diese Weise kann die Schließposition auch iterativ bestimmt werden.
Die Erfindung betrifft ferner eine programmtechnisch eingerichtete Vorrichtung, insbesondere ein Steuergerät, die ausgebildet ist, ein Computerprogramm zum Ausführen zumindest eines der erfindungsgemäßen Verfahren zum Erfassen auszuführen.
Zeichnungen
Weitere Ausführungsbeispiele werden anhand der beiliegenden Zeichnungen erläutert. Es zeigen:
Fig. 1 einen Hybridantrieb;
Fig. 2 ein Zeitdiagramm eines Verfahrens zum Erfassen eines sich einstellenden Drehmomentes;
Fig. 3 ein Zeitdiagramm eines Verfahrens zum Erfassen eines sich einstellenden Drehmomentes;
Fig. 4 ein Zeitdiagramm eines Verfahrens zum Erfassen eines sich einstellenden Drehmomentes; und Fig. 5 ein Zeitdiagramm eines Verfahrens zum Erfassen eines sich einstellenden Drehmomentes.
Beschreibung der Ausführungsformen
Fig. 3 zeigt ein Zeitdiagramm eines Verfahrens zum Erfassen eines sich einstellenden Drehmomentes in einer Schließposition einer beispielsweise in Fig. 1 dargestellten Trennkupplung KO. Dabei zeigen Fig. 3a einen zeitlichen Verlauf eines elektromotorisch erzeugten Drehmomentes, Fig. 3b einen zeitlichen Verlauf einer Drehzahl des Elektromotors und Fig. 3c einen zeitlichen Verlauf eines Zustandes P der Trennkupplung KO, welche einen offenen Zustand, einen geschlossenen Zustand und einen Schlupfzustand aufweisen kann.
Zum Ausführen des Verfahrens werden der Verbrennungsmotor ICE abgeschaltet und die Trennkupplung KO geöffnet. Die Trennkupplung KO bleibt bis zu einem Zeitpunkt 301 geöffnet, während das elektromotorische Drehmoment konstant gehalten wird. Dabei kann das Getriebe des Hybridfahrzeugs beispielsweise in der Park-Stellung arretiert werden. Ferner wird die Drehzahl des Elektromotors durch einen Drehzahlregler beispielsweise bei 500 UPM konstant gehalten. Zum Zeitpunkt 301 wird die Trennkupplung KO zumindest teilweise geschlossen und dadurch in einen vorgegebenen Zustand 303, beispielsweise in eine vorgegebene Schließposition, überführt, in welchem sie sich im Schlupf befindet. Dabei wird das Drehmoment des Elektromotors um ein vorgegebenes Drehmoment 305, d.h. um ein Vorsteuermoment, erhöht. Durch dieses Vorsteuermoment, das der vorgegebenen Position 303 der Trennkupplung KO zugeordnet ist, wird ein elektromotorisches Drehmoment erreicht, das, wie in Fig. 3b dargestellt, aufgrund eines erhöhten Kupplungsübertragungsmomentes zu einer Absenkung der Drehzahl des Elektromotors führen kann. Um die Drehzahl konstant zu halten, regelt ein Drehzahlregler in Abhängigkeit von einem Drehzahlunterschied, welcher durch einen Unterschied zwischen dem erwarteten und dem gegenwärtigen Übertragungsmoment der Trennkupplung KO bedingt ist, die Drehzahl des
Elektromotors auf einen konstanten Wert. Hierzu wird ein weiteres Drehmoment 307 erzeugt, so dass ein resultierendes Drehmoment 309 erhalten wird, welches mit einer konstanten Drehzahl des Elektromotors zusammenhängt.
Bei Erreichen des resultierenden Drehmoments 309 zum Zeitpunkt 311 stabilisiert sich die Drehzahl des Elektromotors EM, so dass der gegenwärtige Zustand der Trennkupplung KO, d.h. deren endgültige Schließposition, und/oder das erhöhte elektromotorische Drehmoment, detektiert werden können. Hierauf basierend kann das sich einstellende Drehmoment erfasst werden.
Zum Zeitpunkt 313 wird die Trennkupplung KO wieder geöffnet, wobei deren Zustand 315 erfasst werden kann. Anschließend erhöht sich die Drehzahl des Elektromotors und das elektromotorische Drehmoment sinkt auf den Wert des Ausgangsdrehmoments zurück. Die Differenz 316 zwischen dem sich einstellendem Drehmoment und dem Ausgangsdrehmoment ergibt dabei einen Lern-Drehmomentbereich. Zur Erfassung des sich einstellenden Drehmomentes, insbesondere zur Erfassung eines Kupplungsübertragungsmomentes, kann das Verfahren an unterschiedlichen Schließpositionen durchgeführt werden. Somit kann eine Kennlinie des sich einstellenden Drehmomentes an mehreren Schließpositionen der Trennkupplung erfasst werden.
Für den Fall, dass der Drehzahlregler des Elektromotors EM nicht in der Lage ist, einen schnellen Momentenwechsel auszugleichen, kann, wie vorstehend erwähnt, der Drehzahlregler ein Drehmoment durch eine Erhöhung des elektromotorischen Drehmomentes um das vorgegebene Drehmoment, das auch als ein
Vorsteuermoment (so genanntes Feed Forward Moment) bezeichnet werden kann, erzeugen. Für den Fall, dass das sich einstellende Drehmoment gleich dem gegenwärtigen Kupplungsübertragungsmoment ist, muss der Drehzahlregler daher keine Regelung mehr vornehmen. Zur Regelung der Drehzahl des Elektromotors EM können zwar Proportionalintegral-Rückkopplungsglieder (PI) eingesetzt werden. Deren Antwortgeschwindigkeit ist jedoch zu langsam, um eine Drehzahländerung durch eine Bewegung der Trennkupplung KO auszugleichen. Bevorzugt werden daher ausschließlich proportionale P-Glieder zur Steuerung der Drehzahl des Elektromotors eingesetzt.
Zur Erfassung eines Zustandes der Trennkupplung KO, beispielsweise deren Schließposition, bei der sich ein bestimmtes Drehmoment einstellt, kann das Verfahren wie in Fig. 4 dargestellt durchgeführt werden. In Fig. 4a ist ein Drehmoment des Elektromotors und in Fig. 4b ist eine Position P der
Trennkupplung KO, welche durch deren Zustand bzw. durch die Anordnung der Kupplungsscheiben bestimmt ist, in Abhängigkeit von der Zeit T dargestellt. Beginnend mit einer vorgegebenen Drehzahl und einer offenen Trennkupplung KO wird diese zum Zeitpunkt 401 zumindest teilweise geschlossen und dadurch in einen Schlupfzustand überführt. Bevorzugt gleichzeitig wird das Drehmoment des Elektromotors EM erhöht, wobei ein sich einstellendes Drehmoment, das beispielsweise höher als ein erwartetes Drehmoment 403 sein kann und sich beispielsweise um ein Differenzdrehmoment 405 von dem erwarteten Drehmoment 403 unterscheidet, detektiert werden kann. Nach Ablauf eines vorgegebenen Zeitintervalls wird die Kupplung zum Zeitpunkt 407 wieder geöffnet, wodurch das elektromotorische Drehmoment absinkt. Anschließend wird die Trennkupplung KO wieder geschlossen und dadurch in einen weiteren Schlupfzustand überführt, in welchem das durch die Trennkupplung KO übertragene Drehmoment um das Differenzdrehmoment 405 geringer als das zum Zeitpunkt 401 übertragene Drehmoment ist. Die Schließposition der
Trennkupplung unterscheidet sich dabei um den Differenzbetrag 409. Bevorzugt gleichzeitig erhöht sich das Drehmoment des Elektromotors und erreicht beispielsweise das erwartete Drehmoment 403. Die vorstehend beschriebenen Ablaufschritte können wiederholt werden, bis ein vorgegebener Schlupfzustand bzw. eine vorgegebene Schließposition der Trennkupplung KO, in dem bzw. der das resultierende elektromotorische Drehmoment dem erwarteten Drehmoment 403 entspricht, sich eingestellt hat. Somit wird in Abhängigkeit von einer Drehmomentabweichung die Position der Trennkupplung KO in Richtung der offenen Trennkupplung KO eingestellt, falls das detektierte Drehmoment größer als das erwartete Drehmoment 403 ist. Ist das detektierte Drehmoment kleiner als das erwartete Drehmoment 403, so wird in Abhängigkeit von der Drehmomentabweichung die Position der Trennkupplung KO in Richtung ihres geschlossenen Zustandes eingestellt.
Für den Fall, dass das erwartete Kupplungsübertragungsmoment größer oder kleiner als das gegenwärtige Kupplungsübertragungsmoment ist, ist der Drehzahlregler normalerweise nicht in der Lage, die Drehzahl des Elektromotors EM konstant zu halten, weil die Bewegung der Trennkupplung KO schneller als die Reaktionszeit des Drehzahlreglers ist. In diesem Fall kann das erwartete
Drehmoment und somit das vorgegebene Drehmoment, um das das Drehmoment bei Vorliegen eines vorgegebenen Schlupfzustandes der Trennkupplung KO erhöht oder reduziert werden soll, wie in Fig. 5 dargestellt eingestellt werden. Dabei zeigen Fig. 5a einen zeitlichen Verlauf des Drehmomentes des Elektromotors, Fig. 5b einen zeitlichen Verlauf des vorgegebenen Drehmomentes, Fig. 5c einen zeitlichen Verlauf der Drehzahl des Elektromotors und Fig. 5d einen Zustand, d.h. einer Schließposition der Trennkupplung KO.
Ausgehend von einem vorgegebenen elektromotorischen Drehmoment, einem offenen Kupplungszustand und einer vorgegebenen Drehzahl des Elektromotors EM wird zum Zeitpunkt 501 die Trennkupplung KO zumindest teilweise geschlossen und dadurch in einen Schlupfzustand überführt. Wie in Fig. 5c dargestellt sinkt dabei die Drehzahl des Elektromotors um eine in Fig. 5c durch den Pfeil dargestellte Drehzahldifferenz. Um diesem Absinken vorzubeugen, wird gemäß Fig. 5b zu einem Zeitpunkt, der vor dem Zeitpunkt 501 liegt, ein in Fig. 5b dargestelltes vorgegebenes Drehmoment ausgewählt, um das das Drehmoment des Elektromotors erhöht wird. Der Drehzahlregler versucht dabei, die Drehzahl auszugleichen. Anschließend wird die Trennkupplung KO wieder geöffnet und das Drehmoment des Elektromotors EM um das vorgegebene Drehmoment verringert. Wie in Fig. 5c dargestellt steigt dadurch die Drehzahl des Elektromotors EM an. Anschließend wird in einer zweiten Phase die Trennkupplung KO wieder geschlossen, wobei kurz zuvor ein weiteres vorgegebenes Drehmoment, das beispielsweise höher als das zuvor verwendete, vorgegebene Drehmoment ist, ausgewählt wird, um das Drehmoment des Elektromotors zu erhöhen. Wie in Fig. 5c dargestellt sinkt die Drehzahl des Elektromotors dabei ebenfalls ab, die Absenkung ist jedoch geringer als in dem vorhergehenden Zyklus. In einem anschließenden Zyklus wird die Trennkupplung KO wieder geöffnet und erneut in den vorgegebenen Schlupfzustand, d.h. in eine vorgegebene Schließposition, überführt, wobei ein beispielsweise noch größeres vorgegebenes Drehmoment ausgewählt wird, um das Drehmoment des Elektromotors zu erhöhen. Dieses Verfahren wird in weiteren Phasen 3 und 4 solange wiederholt, bis sich ein vorgegebenes Drehmoment ergibt, das dem in Fig. 5d dargestellten stets gleichen vorgegebenen Schlupfzustand zugeordnet werden kann. Somit kann das Vorsteuermoment in Abhängigkeit von einer Drehzahlabweichung erhöht werden, falls die Drehzahl des Elektromotors EM geringer wird. Für den Fall, dass sich die Drehzahl des Elektromotors EM erhöht, kann in Abhängigkeit von der
Drehzahlabweichung das zusätzliche Vorsteuermoment reduziert werden. Diese Verfahrensschritte können solange wiederholt werden, bis sich ein stabiler Zustand mit einer konstanten Drehzahl des Elektromotors eingestellt hat.

Claims

Ansprüche
1. Verfahren zum Erfassen eines sich einstellenden Drehmomentes für einen Hybridantrieb, wobei der Hybridantrieb ein erstes Antriebsaggregat, insbesondere einen Elektromotor, und ein zweites Antriebsaggregat, insbesondere einen Verbrennungsmotor, aufweist, wobei die Antriebsaggregate mittels einer Trennkupplung (KO) koppelbar sind, dadurch gekennzeichnet, dass
• die Trennkupplung (KO) in eine vorgegebene Schließposition überführt wird;
• das Drehmoment des ersten Antriebsaggregates geändert wird; und • das sich einstellende Drehmoment an der vorgegebenen
Schließposition in Abhängigkeit der Änderung des Drehmomentes des ersten Antriebsaggregates erfasst wird.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass • das erste Antriebsaggregat vor dem Überführen der Trennkupplung
(KO) in die vorgegebene Schließposition mit einer vorgegebenen Drehzahl betrieben wird; und
• das Drehmoment des ersten Antriebsaggregates, nach dem Überführen der Trennkupplung (KO) in die vorgegebene Schließposition so geändert wird, dass sich eine konstante Drehzahl des ersten Antriebsaggregates einstellt.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass
• vor der Änderung des Drehmomentes des ersten Antriebsaggregates derart, dass sich wieder eine konstante Drehzahl des ersten Antriebsaggregates einstellt; und
• das Drehmoment des ersten Antriebsaggregates um ein, in Abhängigkeit der vorgegebenen Schließposition vorgegebenes Drehmoment erhöht wird.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Wert des vorgegebenen Drehmomentes erhöht wird, wenn sich nach dem Überführen der Trennkupplung (KO) in die vorgegebene Schließposition die Drehzahl des ersten Antriebsaggregates reduziert, und dass der Wert des vorgegebenen Drehmomentes verringert wird, wenn sich nach dem Überführen der Trennkupplung (KO) in die vorgegebene Schließposition die Drehzahl des ersten Antriebsaggregates erhöht.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das sich einstellende Drehmoment ein sich einstellendes Drehmoment an der Trennkupplung (KO) oder ein Kupplungsübertragungsmoment oder ein sich einstellendes Drehmoment des ersten Antriebsaggregats oder des zweiten Antriebsaggregats ist.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Drehmoment des ersten Antriebsaggregates um ein vorgegebenes Drehmoment erhöht oder verringert wird.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Trennkupplung (KO) in der vorgegebenen Schließposition nicht vollständig geschlossen wird, insbesondere in einem Schlupfzustand betrieben wird.
8. Verfahren zum Bestimmen einer Schließposition einer Trennkupplung (KO), an der sich ein vorgegebenes Drehmoment an der Trennkupplung (KO) einstellt, wobei die Schließposition der Trennkupplung (KO) in Abhängigkeit des nach einem der vorstehenden Ansprüche erfassten sich einstellenden Drehmomentes bestimmt wird, dadurch gekennzeichnet, dass das Verfahren nach einem der vorstehenden Ansprüche an einer anderen Schließposition der Trennkupplung (KO) wiederholt wird, bis das erfasste sich einstellende Drehmoment an dieser Schließposition mit dem vorgegebenen Drehmoment an der Trennkupplung (KO) übereinstimmt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als die andere Schließposition eine Schließposition gewählt wird, in der sich an der Trennkupplung (KO) ein geringeres Drehmoment einstellt, wenn das sich einstellende Drehmoment größer als das vorgegebene Drehmoment an der Trennkupplung (KO) ist und/oder als die andere Schließposition eine Schließposition gewählt wird, in der sich an der Trennkupplung (KO) ein größeres Drehmoment einstellt, wenn das sich einstellende Drehmoment kleiner als das vorgegebene Drehmoment an der Trennkupplung (KO) ist.
10. Programmtechnisch eingerichtete Vorrichtung, insbesondere ein Steuergerät, die ausgebildet ist, ein Computerprogramm zum Ausführen eines der Verfahren gemäß einem der Ansprüche 1 bis 9 auszuführen.
PCT/EP2009/063589 2008-11-24 2009-10-16 Verfahren zum erfassen eines sich einstellenden drehmomentes für einen hybridantrieb WO2010057731A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/130,667 US8671781B2 (en) 2008-11-24 2009-10-16 Method for detecting a developing torque for a hybrid drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008044016.7 2008-11-24
DE102008044016A DE102008044016A1 (de) 2008-11-24 2008-11-24 Verfahren zum Erfassen eines sich einstellenden Drehmomentes für einen Hybridantrieb

Publications (1)

Publication Number Publication Date
WO2010057731A1 true WO2010057731A1 (de) 2010-05-27

Family

ID=41718487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063589 WO2010057731A1 (de) 2008-11-24 2009-10-16 Verfahren zum erfassen eines sich einstellenden drehmomentes für einen hybridantrieb

Country Status (3)

Country Link
US (1) US8671781B2 (de)
DE (1) DE102008044016A1 (de)
WO (1) WO2010057731A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9827969B2 (en) * 2013-12-12 2017-11-28 Ford Global Technologies, Llc Controlling powertrain torque in a hybrid vehicle
US10703215B2 (en) 2014-10-20 2020-07-07 Ford Global Technologies, Llc Hybrid powertrain speed control
US10414244B2 (en) * 2015-07-08 2019-09-17 Denso Corporation Refrigeration system, and in-vehicle refrigeration system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090109A1 (en) * 2004-03-24 2005-09-29 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for drive apparatus of hybrid vehicle
DE202005019996U1 (de) * 2004-12-28 2006-03-02 Ford Global Technologies, LLC, Dearborn Fahrzeug und Vorrichtung zur Steuerung des Verbrennungsmotorstarts in einem Fahrzeug
DE102006048358A1 (de) * 2006-10-12 2008-04-17 Robert Bosch Gmbh Verfahren für die Steuerung eines Hybridantriebs
DE102006048355A1 (de) * 2006-10-12 2008-04-17 Robert Bosch Gmbh Verfahren zum Betreiben einer Hybridantriebsvorrichtung mit einem Drehmomentwandler

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540921A1 (de) 1995-11-03 1997-05-07 Bosch Gmbh Robert System zur Steuerung einer Servokupplung
DE10319880A1 (de) * 2003-05-03 2004-11-18 Daimlerchrysler Ag Antriebsstrang mit einer Brennkraftmaschine und zwei elektrischen Antriebsaggregaten
DE102006008640A1 (de) * 2006-02-24 2007-08-30 Robert Bosch Gmbh Hybridantrieb mit einem Direktstart unterstützender Trennkupplung
DE102006040638A1 (de) * 2006-08-30 2008-03-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Hybridantriebs
JP2009160951A (ja) * 2007-11-28 2009-07-23 Toyota Motor Corp 車両用駆動装置の制御装置
DE102007062796A1 (de) * 2007-12-27 2009-07-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Hybridantriebsvorrichtung
DE102008002666B4 (de) * 2008-06-26 2017-08-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors eines Hybridantriebsstranges
DE102008000579A1 (de) * 2008-03-10 2009-09-17 Robert Bosch Gmbh Verfahren und Anordnung zur Ansteuerung eines Fahrzeuges mit Hybridantrieb
DE102008002691A1 (de) * 2008-06-26 2009-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit Hybridantrieb
DE102008032320A1 (de) * 2008-07-09 2010-01-14 Magna Steyr Fahrzeugtechnik Ag & Co Kg Hybridantriebsstrang für ein Kraftfahrzeug
DE102008040400A1 (de) * 2008-07-15 2010-01-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb eines Hybridantriebs eines Fahrzeuges
DE102008040498A1 (de) * 2008-07-17 2010-01-21 Zf Friedrichshafen Ag Hybridantriebsstrang eines Kraftfahrzeugs
DE102008040692A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
DE102008042395A1 (de) * 2008-09-26 2010-05-20 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Hybridantriebsvorrichtung zum Starten einer Brennkraftmaschine
DE102008043159A1 (de) * 2008-10-24 2010-04-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Anfahren eines Hybridfahrzeuges
DE102008043945A1 (de) * 2008-11-20 2010-05-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hybridantriebes für ein Fahrzeug
DE102008054704A1 (de) * 2008-12-16 2010-06-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeuges
DE102009014007B4 (de) * 2009-03-19 2019-07-18 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Hybridantriebsvorrichtung
DE102009027001A1 (de) * 2009-06-17 2010-12-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung des Beginns einer Startphase eines Verbrennungsmotors in einem Hybridfahrzeug
DE102009030135A1 (de) * 2009-06-24 2010-12-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hybridantriebsstrang
DE102009047052A1 (de) * 2009-11-24 2011-05-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Hybridfahrzeuges
DE102009055062A1 (de) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Verfahren und Vorrichtung zur Plausibilisierung eines von einer elektrischen Maschine aufgebrachten Antriebsmomentes in einem Hybridantrieb eines Kraftfahrzeuges
DE102010003442A1 (de) * 2010-03-30 2011-10-06 Zf Friedrichshafen Ag Hybridantriebsanordnung
DE102010043591A1 (de) * 2010-11-09 2012-05-10 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090109A1 (en) * 2004-03-24 2005-09-29 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for drive apparatus of hybrid vehicle
DE202005019996U1 (de) * 2004-12-28 2006-03-02 Ford Global Technologies, LLC, Dearborn Fahrzeug und Vorrichtung zur Steuerung des Verbrennungsmotorstarts in einem Fahrzeug
DE102006048358A1 (de) * 2006-10-12 2008-04-17 Robert Bosch Gmbh Verfahren für die Steuerung eines Hybridantriebs
DE102006048355A1 (de) * 2006-10-12 2008-04-17 Robert Bosch Gmbh Verfahren zum Betreiben einer Hybridantriebsvorrichtung mit einem Drehmomentwandler

Also Published As

Publication number Publication date
US20120031201A1 (en) 2012-02-09
US8671781B2 (en) 2014-03-18
DE102008044016A1 (de) 2010-05-27

Similar Documents

Publication Publication Date Title
EP2325512B1 (de) Verfahren zur Kisspointadaption
EP2212578B1 (de) Verfahren zur kisspointadaption
EP2144800B1 (de) Verfahren und vorrichtung zur kompensation eines übertragungsmoments einer trenn- oder hybrid-kupplung eines hybridantriebs
EP2268522B1 (de) Schlupfbetrieb einer kupplung bei hybridantriebsvorrichtungen
EP2057052B1 (de) Ansteuervorrichtung und verfahren zum ansteuern eines hybridantriebs
AT515103B1 (de) Verfahren zum starten einer brennkraftmaschine
DE102019204294B4 (de) Verfahren zum Steuern einer Klauenkupplung sowie Anordnung, aufweisend ein Getriebe und einen Zahnradaktuator
DE102010046138B4 (de) Einstellverfahren für Hybrid-DKG
DE102013226611A1 (de) Verfahren zum Betreiben einer Hybridantriebsvorrichtung
WO2010057731A1 (de) Verfahren zum erfassen eines sich einstellenden drehmomentes für einen hybridantrieb
WO2013124121A1 (de) Verfahren zur steuerung einer reibungskupplung
EP3063032B1 (de) Verfahren zum betreiben einer hybridantriebseinrichtung sowie entsprechende hybridantriebseinrichtung
EP3263382A2 (de) Verfahren zum betreiben einer antriebseinrichtung sowie entsprechende antriebseinrichtung
DE112021007759T5 (de) Gangschaltsteuerverfahren für ein Hybridantriebssystem sowie Hybridantriebssystem
EP3235677B1 (de) Verfahren zur lagegeberlosen regelung eines elektroantriebs
DE102018119273A1 (de) Verfahren zum Wiederstart eines Antriebselements in einem Antriebsstrang
DE102023203342B3 (de) Verfahren zur Steuerung eines Betriebs einer Getriebevorrichtung eines Kraftfahrzeugs
DE102023207175B3 (de) Verfahren zur Bestimmung eines Synchronisierungspunktes eines Koppelvorgangs einer Klauenkupplung
EP1567782A2 (de) Verfahren zur ermittlung des tastpunkts einer automatisierten kupplung und vorrichtung hierzu
DE102007047785A1 (de) Verfahren zum Betreiben eines Parallelhybridantriebsstranges eines Fahrzeuges
WO2010034599A2 (de) Verfahren und vorrichtung zur ansteuerung einer trennkupplung eines hybridfahrzeuges
DE102015204542A1 (de) Verfahren und Anordnung zum Betreiben eines Antriebsstrangs
DE102022208791A1 (de) Verfahren und Steuergerät zum Betreiben eines Antriebsstrangs eines Fahrzeugs
DE102015207312A1 (de) Verfahren und Steuerungseinrichtung zum Betreiben eines Antriebsstrangs
DE102022206573A1 (de) Antriebsstrang

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13130667

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09737411

Country of ref document: EP

Kind code of ref document: A1