WO2010055953A1 - Method for producing benzene compound having at least five methyl groups - Google Patents

Method for producing benzene compound having at least five methyl groups Download PDF

Info

Publication number
WO2010055953A1
WO2010055953A1 PCT/JP2009/069517 JP2009069517W WO2010055953A1 WO 2010055953 A1 WO2010055953 A1 WO 2010055953A1 JP 2009069517 W JP2009069517 W JP 2009069517W WO 2010055953 A1 WO2010055953 A1 WO 2010055953A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl groups
catalyst
benzene compound
reaction
methanol
Prior art date
Application number
PCT/JP2009/069517
Other languages
French (fr)
Japanese (ja)
Inventor
秀高 嶋津
Original Assignee
広栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 広栄化学工業株式会社 filed Critical 広栄化学工業株式会社
Publication of WO2010055953A1 publication Critical patent/WO2010055953A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • a benzene compound having at least 5 methyl groups is used, for example, as a reaction solvent when a polyvalent carboxylic acid and a polyvalent amine are subjected to a polycondensation reaction in the presence of arylboric acid to produce polyamide, polyimide or polyamideimide. It is known that It has also been reported that it is used as a neutral ligand constituting an organometallic compound that is a resistance increase inhibitor and a polymerization initiator for a lithium secondary battery.
  • this invention provides the manufacturing method as described in the following [1].
  • the catalyst uses beta zeolite as a catalyst component.
  • a method for producing a benzene compound having at least 5 methyl groups comprising: Further, the present invention provides the production methods described in [2] to [6] below as preferred embodiments relating to the production method described in [1].
  • a benzene compound having 1 to 3 methyl groups is represented by the general formula (1): (Wherein m represents an integer of 1 to 3), and a benzene compound having at least 5 methyl groups is represented by the general formula (2):
  • a benzene compound having at least 5 methyl groups can be obtained in high yield.
  • a benzene compound having at least 5 methyl groups can be obtained from methylbenzene and dimethylbenzene, which are available at low cost, in a higher yield than conventional methods. Therefore, the method of the present invention is useful.
  • a benzene compound having 1 to 3 methyl groups and a mixture thereof are used as the raw material of the present invention.
  • the benzene compound having 1 to 3 methyl groups the general formula (1): (Wherein m represents an integer of 1 to 3). Specific examples include methylbenzene, 1,2-dimethylbenzene, 1,3-dimethylbenzene, 1, 4-Dimethylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and mixtures thereof can be used.
  • methylbenzene, 1,2-dimethylbenzene, 1,4-dimethylbenzene and 1,2,4-trimethylbenzene are preferable.
  • methanol is used as a methylating agent.
  • the methanol used is 1 mole or more, preferably 2 to 30 moles, more preferably 4 to 15 moles per mole of the benzene compound having 1 to 3 methyl groups.
  • the catalyst used in the present invention is a catalyst containing beta zeolite as a catalyst component.
  • Beta zeolite is also known as zeolite beta, ⁇ -type zeolite and the like, and is a known synthetic crystalline aluminosilicate composed of three-dimensional oxygen 12-membered ring pores.
  • beta, zeolite, silica, diatomaceous earth, kaolin, bentonite, alumina and / or silica alumina and water as a slurry and spray-dry them to form spherical microbeads.
  • the beta zeolite shaped as described above is usually calcined. Firing is performed at 300 to 800 ° C. for several hours in air or nitrogen atmosphere. In the present invention, since the temperature of the catalyst is raised in the reaction tube, the calcination is not necessarily required.
  • the present invention is usually carried out by a gas phase reaction.
  • the solvent is not particularly limited as long as it is inert to the reaction, and any solvent can be used.
  • any solvent can be used.
  • aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane and undecane
  • halogenated aliphatic hydrocarbons such as dichloromethane and 1,2-dichloroethane
  • cyclic ethers such as tetrahydrofuran and dioxane, and the like are used. be able to. You may use these individually or in mixture of 2 or more types.
  • Example 2 The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 420 ° C. The results are shown in Table 1.
  • Example 3 The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was changed to 450 ° C. The results are shown in Table 1.
  • Example 4 The reaction was performed in the same manner as in Example 2 except that 1,4-dimethylbenzene (hereinafter abbreviated as 14-DMB) was used instead of 124-TMB.
  • 14-DMB 1,4-dimethylbenzene
  • the reaction product was absorbed in methylbenzene and then analyzed by gas chromatography.
  • Table 1 shows the average yield (calculated based on 12-DMB) for 2 hours from the start of the reaction.
  • Example 7 The reaction was performed in the same manner as in Example 6 except that methylbenzene (hereinafter abbreviated as MB) was used instead of 12-DMB. The results are shown in Table 1 (average yield is calculated based on MB).
  • Example 8 Preparation of catalyst B
  • 150 g of colloidal silica Colloidal silica (Nissan Chemical Industries, Snowtex) were mixed.
  • the obtained mixture was extruded and calcined at 500 ° C. to prepare catalyst B having a diameter of 1.5 mm.
  • reaction using catalyst B The reaction was performed in the same manner as in Example 1 except that the catalyst B was used instead of the catalyst A. The results are shown in Table 1.
  • Example 9 Preparation of catalyst E
  • the obtained solid was pulverized and classified to 10 to 16 mesh to prepare catalyst E.
  • Reaction using catalyst E A glass reaction tube with an inner diameter of 19 mm was packed with 16 ml of catalyst E, and carborundum was packed thereon to a length of 14 cm.
  • the reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. Table 1 shows the average yield (calculated on the basis of 14-DMB) for 6 hours from the start of the reaction.
  • the reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. Table 2 shows the average yield for 2 hours from the start of the reaction.
  • Comparative Example 2 Preparation of catalyst D 850 g of USY-type zeolite powder (manufactured by NE Chemcat Co., Ltd.) and 150 g of colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex) were mixed. The obtained mixture was extruded and then calcined at 500 ° C. to prepare catalyst D having a diameter of 1.5 mm. (Reaction using catalyst D) The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst D was used instead of the catalyst C. The results are shown in Table 2. Comparative Example 3 The reaction was performed in the same manner as in Comparative Example 2 except that 14-DMB was used instead of 124-TMB. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Provided is a method for producing a benzene compound having at least five methyl groups, wherein a benzene compound having one to three methyl groups is reacted with methanol in the presence of a catalyst comprising beta-zeolite as the catalytic component.  

Description

少なくとも5個のメチル基を有するベンゼン化合物の製造方法Method for producing benzene compound having at least 5 methyl groups
 本発明は、少なくとも5個のメチル基を有するベンゼン化合物の製造方法に関するものである。 The present invention relates to a method for producing a benzene compound having at least 5 methyl groups.
 少なくとも5個のメチル基を有するベンゼン化合物は、例えば、多価カルボン酸と多価アミンを、アリールホウ酸の存在下に重縮合反応させてポリアミド、ポリイミド又はポリアミドイミドを製造する際の反応溶媒として用いられることが知られている。また、リチウム二次電池用の抵抗上昇抑制剤及び重合開始剤である有機金属化合物を構成する中性配位子として用いられることも報告されている。
 従来、気相反応での少なくとも5個のメチル基を有するベンゼン化合物の製造方法としては、プロトンタイプのモルデナイト型ゼオライト触媒の存在下、ジメチルベンゼン又は1,2,4−トリメチルベンゼンにメタノールを気相で反応させることにより、ペンタメチルベンゼンを製造する方法が知られている。なお、この方法で、ペンタメチルベンゼンがさらにメチル化されたヘキサメチルベンゼンが得られていない旨が示されている。
 しかし、上記方法では、生成物中のペンタメチルベンゼンの組成(モル%)が1.2~4.3%と極めて低いため、少なくとも5個のメチル基を有するベンゼン化合物の工業的製造方法として満足できるものでない。
A benzene compound having at least 5 methyl groups is used, for example, as a reaction solvent when a polyvalent carboxylic acid and a polyvalent amine are subjected to a polycondensation reaction in the presence of arylboric acid to produce polyamide, polyimide or polyamideimide. It is known that It has also been reported that it is used as a neutral ligand constituting an organometallic compound that is a resistance increase inhibitor and a polymerization initiator for a lithium secondary battery.
Conventionally, as a method for producing a benzene compound having at least 5 methyl groups in a gas phase reaction, methanol is vapor-phased into dimethylbenzene or 1,2,4-trimethylbenzene in the presence of a proton type mordenite zeolite catalyst. There is known a method for producing pentamethylbenzene by reacting with. This method shows that hexamethylbenzene obtained by further methylating pentamethylbenzene has not been obtained.
However, in the above method, the composition (mol%) of pentamethylbenzene in the product is as extremely low as 1.2 to 4.3%, which is satisfactory as an industrial production method of a benzene compound having at least 5 methyl groups. It is not possible.
国際公開WO00/53662号公報International Publication WO00 / 53662 特開2003−31263号公報Japanese Patent Laid-Open No. 2003-31263 特開2007−291355号公報JP 2007-291355 A
 本発明は、上記の問題点を解決するために行われたものであって、メチル基を1~3個有するベンゼン化合物とメタノールを原料として用い、少なくとも5個のメチル基を有するベンゼン化合物を高収率で得る方法を提供することを課題とする。 The present invention has been made in order to solve the above-mentioned problems. A benzene compound having 1 to 3 methyl groups and methanol are used as raw materials, and a benzene compound having at least 5 methyl groups is highly enriched. It is an object of the present invention to provide a method obtained in a yield.
 本発明者は、かかる事情に鑑み鋭意検討した結果、ベータゼオライトを触媒成分とする触媒の存在下、メチル基を1~3個有するベンゼン化合物にメタノールを反応させると、少なくとも5個のメチル基を有するベンゼン化合物が高収率で得られることを見出し、本発明を完成するに至った。
 即ち、本発明は、以下の[1]に記載の製造方法を提供するものである。
[1] 触媒の存在下、1個~3個のメチル基を有するベンゼン化合物とメタノールを反応させて少なくとも5個のメチル基を有するベンゼン化合物を製造する方法において、触媒が触媒成分としてベータゼオライトを含有することを特徴とする、少なくとも5個のメチル基を有するベンゼン化合物の製造方法。
 また、本発明は、前記[1]に記載の製造方法に係る好適な実施態様として、以下[2]~[6]に記載の製造方法を提供するものである。
[2] 1個~3個のメチル基を有するベンゼン化合物が、一般式(1):
Figure JPOXMLDOC01-appb-I000003
(式中、mは1~3の整数を示す。)で表されるベンゼン誘導体であり、少なくとも5個のメチル基を有するベンゼン化合物が、一般式(2):
Figure JPOXMLDOC01-appb-I000004
(式中、nは、5又は6を示す。)で表されるベンゼン誘導体である請求項1に記載の方法。
[3] ベータゼオライトがプロトンタイプである請求項1に記載の方法。
[4] ベータゼオライト中のSi/Al原子比が8以上である請求項1に記載の方法。
[5] メタノールの使用量がメチル基を1~3個有するベンゼン化合物1モルに対して4~15モルである請求項1に記載の方法。
[6] 反応温度が300~500℃である請求項1に記載の方法。
As a result of intensive studies in view of such circumstances, the present inventors have found that when methanol is reacted with a benzene compound having 1 to 3 methyl groups in the presence of a catalyst having beta zeolite as a catalyst component, at least 5 methyl groups are obtained. It has been found that a benzene compound having a high yield can be obtained, and the present invention has been completed.
That is, this invention provides the manufacturing method as described in the following [1].
[1] In a method for producing a benzene compound having at least 5 methyl groups by reacting a benzene compound having 1 to 3 methyl groups with methanol in the presence of a catalyst, the catalyst uses beta zeolite as a catalyst component. A method for producing a benzene compound having at least 5 methyl groups, comprising:
Further, the present invention provides the production methods described in [2] to [6] below as preferred embodiments relating to the production method described in [1].
[2] A benzene compound having 1 to 3 methyl groups is represented by the general formula (1):
Figure JPOXMLDOC01-appb-I000003
(Wherein m represents an integer of 1 to 3), and a benzene compound having at least 5 methyl groups is represented by the general formula (2):
Figure JPOXMLDOC01-appb-I000004
The method according to claim 1, wherein n is a benzene derivative represented by the formula:
[3] The method according to claim 1, wherein the beta zeolite is a proton type.
[4] The method according to claim 1, wherein the beta zeolite has an Si / Al atomic ratio of 8 or more.
[5] The method according to claim 1, wherein the amount of methanol used is 4 to 15 moles per mole of the benzene compound having 1 to 3 methyl groups.
[6] The process according to claim 1, wherein the reaction temperature is 300 to 500 ° C.
 本発明によれば、少なくとも5個のメチル基を有するベンゼン化合物を高収率で得ることができる。また、本発明によれば、安価に入手できるメチルベンゼン及びジメチルベンゼンから従来法に比べて高い収率で、少なくとも5個のメチル基を有するベンゼン化合物を得ることができる。したがって、本発明の方法は有用である。 According to the present invention, a benzene compound having at least 5 methyl groups can be obtained in high yield. In addition, according to the present invention, a benzene compound having at least 5 methyl groups can be obtained from methylbenzene and dimethylbenzene, which are available at low cost, in a higher yield than conventional methods. Therefore, the method of the present invention is useful.
 以下、本発明を詳細に説明する。
 本発明の原料としては、1個~3個のメチル基を有するベンゼン化合物及びこれらの混合物が用いられる。1個~3個のメチル基を有するベンゼン化合物としては、一般式(1):
Figure JPOXMLDOC01-appb-I000005
(式中、mは1~3の整数を示す。)で表されるベンゼン誘導体が挙げられ、具体的には、例えばメチルベンゼン、1,2−ジメチルベンゼン、1,3−ジメチルベンゼン、1,4−ジメチルベンゼン、1,2,3−トリメチルベンゼン、1,2,4−トリメチルベンゼン、1,3,5−トリメチルベンゼン及びこれらの混合物を用いることができる。それらの中でも、メチルベンゼン、1,2−ジメチルベンゼン、1,4−ジメチルベンゼン及び1,2,4−トリメチルベンゼンが好ましい。
 本発明は、メタノールをメチル化剤として用いるものである。用いられるメタノールは、1個~3個のメチル基を有するベンゼン化合物1モルに対して1モル以上、好ましくは2~30モル、より好ましくは4~15モルである。
 本発明に用いられる触媒は、ベータゼオライトを触媒成分として含有する触媒である。ベータゼオライトは、ゼオライトベータ、β形ゼオライトなどともいい、3次元の酸素12員環細孔からなる既知の合成結晶性アルミノ珪酸塩である。ベータゼオライトは、米国特許第3,308,069号明細書、特開平5−201722号公報、特開平7−247114号公報などに記載された方法によって製造することができる。
 ベータゼオライト中のSi/Al原子比は、少なくとも8以上であり、好ましくは12以上である。
 上述の公知方法に従って製造したベータゼオライトは、通常、ナトリウムイオンなどのアルカリ金属イオンタイプであり、このタイプのものを本発明で用いられる触媒の触媒成分として使用できる。本発明で用いられる触媒成分として好ましいものは、このアルカリ金属イオンを公知の方法によってイオン交換されて得られるアンモニウムイオンタイプ又はプロトンタイプであり、特にプロトンタイプが好ましい。
 触媒は、成形体にして反応器に充填されて使用される。成形体は、ベータゼオライトのみ、または、ベータゼオライトをバインダー(例えば、シリカ、珪藻土、カオリン、ベントナイト、アルミナ、シリカアルミナ、セルロースなど)と混練して打錠機で円柱状や円筒状に成形し、あるいは、ベータゼオライトに上記バインダー及び水、ポリビニルアルコールまたは酢酸ビニルを加えて混練し、押出機で成形して得ることができる。また、流動床用触媒としては、ベータゼオライトに、シリカ、珪藻土、カオリン、ベントナイト、アルミナ及び/あるいはシリカアルミナと水を加えてスラリーとして、これを噴霧乾燥し球状のマイクロビーズとしたものが好適である。
 上記のように成形されたベータゼオライトは、通常、焼成される。焼成は、大気中あるいは窒素雰囲気中、300~800℃で数時間行われる。なお、本発明において、触媒は、反応管中で昇温されるため、必ずしも前記焼成は必要でない。
 本発明は、通常、気相反応で行われる。その反応は、通常、300~600℃の範囲の温度、好ましくは300~500℃の範囲で、常圧下又は加圧下で行われる。気相反応の反応方式は、特に制限されず、固定床、流動床又は移動床で行われ、バッチ式、連続式のいずれの方式も採用することができる。
 気相反応の空間速度は、通常、LHSV(液空間速度)で0.05~2.0(g/cc−触媒・h)であり、好ましくは0.1~1.0(g/cc−触媒・h)である。
 本発明は、溶剤の存在下又は不存在下に行われる。溶剤としては、反応に不活性なものであれば特に限定されることなく、任意のものを用いることができる。具体的には、例えばヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカンなどの脂肪族炭化水素、ジクロロメタン、1,2−ジクロロエタンなどのハロゲン化脂肪族炭化水素、テトラヒドロフラン、ジオキサンなどの環状エーテルなどを用いることができる。これらは、単独又は2種以上を混合して用いてもよい。
 反応終了後、反応ガスを溶剤に吸収させるなどの適宜手段にて生成物を捕集した後、蒸留、晶析などの通常の手段によって、目的物である少なくとも5個のメチル基を有するベンゼン化合物を得ることができる。
 生成物として得られる少なくとも5個のメチル基を有するベンゼン化合物としては、原料が一般式(1)で表されるベンゼン誘導体生成物であるときには、一般式(2):
Figure JPOXMLDOC01-appb-I000006
(式中、nは、5又は6を示す。)で表されるベンゼン誘導体が挙げられる。具体的な化合物としては、ペンタメチルベンゼン及びヘキサメチルベンゼンである。
Hereinafter, the present invention will be described in detail.
As the raw material of the present invention, a benzene compound having 1 to 3 methyl groups and a mixture thereof are used. As the benzene compound having 1 to 3 methyl groups, the general formula (1):
Figure JPOXMLDOC01-appb-I000005
(Wherein m represents an integer of 1 to 3). Specific examples include methylbenzene, 1,2-dimethylbenzene, 1,3-dimethylbenzene, 1, 4-Dimethylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and mixtures thereof can be used. Among these, methylbenzene, 1,2-dimethylbenzene, 1,4-dimethylbenzene and 1,2,4-trimethylbenzene are preferable.
In the present invention, methanol is used as a methylating agent. The methanol used is 1 mole or more, preferably 2 to 30 moles, more preferably 4 to 15 moles per mole of the benzene compound having 1 to 3 methyl groups.
The catalyst used in the present invention is a catalyst containing beta zeolite as a catalyst component. Beta zeolite is also known as zeolite beta, β-type zeolite and the like, and is a known synthetic crystalline aluminosilicate composed of three-dimensional oxygen 12-membered ring pores. Beta zeolite can be produced by the methods described in US Pat. No. 3,308,069, JP-A-5-201722, JP-A-7-247114, and the like.
The Si / Al atomic ratio in the beta zeolite is at least 8 or more, preferably 12 or more.
The beta zeolite produced according to the above-mentioned known method is usually an alkali metal ion type such as sodium ion, and this type can be used as a catalyst component of the catalyst used in the present invention. What is preferable as a catalyst component used in the present invention is an ammonium ion type or proton type obtained by ion-exchange of this alkali metal ion by a known method, and a proton type is particularly preferable.
The catalyst is used in the form of a compact and filled in a reactor. The molded body is only beta zeolite, or beta zeolite is kneaded with a binder (for example, silica, diatomaceous earth, kaolin, bentonite, alumina, silica alumina, cellulose, etc.) and molded into a cylindrical or cylindrical shape with a tableting machine, Alternatively, it can be obtained by adding the above binder and water, polyvinyl alcohol or vinyl acetate to beta zeolite, kneading and molding with an extruder. Further, as the fluidized bed catalyst, it is preferable to add beta, zeolite, silica, diatomaceous earth, kaolin, bentonite, alumina and / or silica alumina and water as a slurry and spray-dry them to form spherical microbeads. is there.
The beta zeolite shaped as described above is usually calcined. Firing is performed at 300 to 800 ° C. for several hours in air or nitrogen atmosphere. In the present invention, since the temperature of the catalyst is raised in the reaction tube, the calcination is not necessarily required.
The present invention is usually carried out by a gas phase reaction. The reaction is usually carried out at a temperature in the range of 300 to 600 ° C., preferably in the range of 300 to 500 ° C., at normal pressure or under pressure. The reaction method of the gas phase reaction is not particularly limited, and the reaction is performed in a fixed bed, a fluidized bed or a moving bed, and any of a batch method and a continuous method can be adopted.
The space velocity of the gas phase reaction is usually 0.05 to 2.0 (g / cc-catalyst · h) in terms of LHSV (liquid space velocity), preferably 0.1 to 1.0 (g / cc-). Catalyst h).
The present invention is carried out in the presence or absence of a solvent. The solvent is not particularly limited as long as it is inert to the reaction, and any solvent can be used. Specifically, for example, aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane and undecane, halogenated aliphatic hydrocarbons such as dichloromethane and 1,2-dichloroethane, cyclic ethers such as tetrahydrofuran and dioxane, and the like are used. be able to. You may use these individually or in mixture of 2 or more types.
After completion of the reaction, the product is collected by an appropriate means such as absorption of the reaction gas in a solvent, and then the benzene compound having at least 5 methyl groups, which is the target product, by ordinary means such as distillation and crystallization Can be obtained.
As a benzene compound having at least 5 methyl groups obtained as a product, when the raw material is a benzene derivative product represented by the general formula (1), the general formula (2):
Figure JPOXMLDOC01-appb-I000006
(Wherein n represents 5 or 6). Specific compounds are pentamethylbenzene and hexamethylbenzene.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明が実施例により限定されるものでないことは言うまでもない。なお、実施例中のガスクロマトグラフィーによる分析は、以下の条件で行った。
ガスクロマトグラフィー分析条件
ガスクロマトグラフィー:島津製作所製GC−2010
カラム:J&B社製DB−17、30m、内径0.25mm、膜厚0.25μm
温度:50℃(2分ホールド)→(昇温10℃/分)→70℃(ホールド10分)→(昇温15℃/分)→240℃(ホールド10分)
スプリット比:100
サンプル:1μL
検出器温度:250℃
注入部温度:250℃
検出器:FID
キャリア:ヘリウム
 実施例1
(触媒Aの調製)
 850gのプロトンタイプのベータゼオライトのパウダー(東ソー株式会社製、HSZ940HOA、Si/Al原子比=20)と150gのコロイダルシリカ(日産化学工業株式会社製、スノーテックス)を混合した。得られた混合物を押出成形後、500℃で焼成して、直径3mmの触媒Aを調製した。
(触媒Aを用いた反応)
 内径19mmのガラス反応管に、触媒Aを16ml詰め、その上にカーボランダムを14cmの長さに詰めた。この反応管を400℃に昇温して、上部から窒素を30ml/min、1,2,4−トリメチルベンゼン(以下124−TMBと略記)とメタノールの混合物(混合モル比、124−TMB:メタノール=1:7)をLHSV=0.5g/cc−触媒・hで流した。反応生成物は、メチルベンゼンに吸収させた後、ガスクロマトグラフィーで分析した。反応開始から2時間の平均収率は、ペンタメチルベンゼン(以下PMBと略記)28.2%、ヘキサメチルベンゼン(以下HMBと略記)16.4%であった(124−TMBを基準として平均収率を算出)。
 実施例2
 反応温度を420℃にした以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
 実施例3
 反応温度を450℃にした以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
 実施例4
 124−TMBの代わりに、1,4−ジメチルベンゼン(以下14−DMBと略記)を使用した以外は、実施例2と同様にして反応を行った。その結果を表1に示す(14−DMBを基準として平均収率を算出)。
 実施例5
 混合モル比を14−DMB:メタノール=1:10とした以外は、実施例4と同様にして反応を行った。その結果を表1に示す。
 実施例6
 内径19mmのガラス反応管に、触媒Aを16ml詰め、その上にカーボランダムを14cmの長さに詰めた。この反応管を450℃に昇温して、上部から窒素を30ml/min、1,2−ジメチルベンゼン(以下12−DMBと略記)とメタノールの混合物(混合モル比、12−DMB:メタノール=1:15)をLHSV=0.5g/cc−触媒・hで流した。反応生成物は、メチルベンゼンに吸収させた後、ガスクロマトグラフィーで分析した。反応開始から2時間の平均収率(12−DMBを基準として算出)を表1に示す。
 実施例7
 12−DMBの代わりにメチルベンゼン(以下MBと略記)を使用した以外は、実施例6と同様にして反応を行った。その結果を表1に示す(MBを基準として平均収率を算出)。
 実施例8
(触媒Bの調製)
 850gのプロトンタイプのベータゼオライトのパウダー(ズードケミー触媒株式会社製、H−BEA−25、Si/Al原子比=12)と150gのコロイダルシリカ(日産化学工業株式会社製、スノーテックス)を混合した。得られた混合物を押出成形後、500℃で焼成して、直径1.5mmの触媒Bを調製した。
(触媒Bを用いた反応)
 触媒Aの代わりに触媒Bを用いた以外は、実施例1と同様にして反応を行った。その結果を表1に示す。
 実施例9
(触媒Eの調製)
 プロトンタイプのベータゼオライトのパウダー(東ソー株式会社製、HSZ940HOA、Si/Al原子比=20)を圧力60MPaでプレスした。得られた固形物を解砕後、10~16メッシュに分級して触媒Eを調製した。
(触媒Eを用いた反応)
 内径19mmのガラス反応管に、触媒Eを16ml詰め、その上にカーボランダムを14cmの長さに詰めた。この反応管を425℃に昇温して、上部から窒素を30ml/min、14−DMBとメタノールの混合物(混合モル比、14−DMB:メタノール=1:7)をLHSV=0.5g/cc−触媒・hで流した。反応生成物は、メチルベンゼンに吸収させた後、ガスクロマトグラフィーで分析した。反応開始から6時間の平均収率(14−DMBを基準として算出)を表1に示す。
Figure JPOXMLDOC01-appb-T000007
 比較例1
(触媒Cの調製)
 850gのプロトンタイプのモルデナイト型ゼオライトパウダー(ズードケミー触媒株式会社製、H−MOR20、Si/Al原子比=10)と150gのコロイダルシリカ(日産化学工業株式会社製、スノーテックス)を混合した。得られた混合物を押出成形後、500℃で焼成して、直径1.5mmの触媒Cを調製した。
(触媒Cを用いた反応)
 内径19mmのガラス反応管に、触媒Cを16ml詰め、その上にカーボランダムを14cmの長さに詰めた。この反応管を400℃に昇温して、上部から窒素を30ml/min、124−TMBとメタノールの混合物(混合モル比、124−TMB:メタノール=1:7)をLHSV=0.5g/cc−触媒・hで流した。反応生成物は、メチルベンゼンに吸収させた後、ガスクロマトグラフィーで分析した。反応開始から2時間の平均収率を表2に示す。
 比較例2
(触媒Dの調製)
 850gのUSY型ゼオライトパウダー(エヌ・イー ケムキャット株式会社製)と150gのコロイダルシリカ(日産化学工業株式会社製、スノーテックス)を混合した。得られた混合物を押出成形後、500℃で焼成して、直径1.5mmの触媒Dを調製した。
(触媒Dを用いた反応)
 触媒Cの代わりに触媒Dを使用した以外は、比較例1と同様にして反応を行った。その結果を表2に示す。
 比較例3
 124−TMBの代わりに14−DMBを使用した以外は、比較例2と同様にして反応を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, it cannot be overemphasized that this invention is not what is limited by an Example. In addition, the analysis by the gas chromatography in an Example was performed on condition of the following.
Gas chromatography analysis conditions Gas chromatography: Shimadzu GC-2010
Column: DB-17 manufactured by J & B, 30 m, inner diameter 0.25 mm, film thickness 0.25 μm
Temperature: 50 ° C. (hold for 2 minutes) → (temperature rise 10 ° C./min)→70° C. (hold 10 minutes) → (temperature rise 15 ° C./min)→240° C. (hold 10 minutes)
Split ratio: 100
Sample: 1 μL
Detector temperature: 250 ° C
Injection part temperature: 250 ° C
Detector: FID
Carrier: helium Example 1
(Preparation of catalyst A)
850 g of proton type beta zeolite powder (manufactured by Tosoh Corporation, HSZ940HOA, Si / Al atomic ratio = 20) and 150 g of colloidal silica (Nissan Chemical Industries, Snowtex) were mixed. The obtained mixture was extruded and then calcined at 500 ° C. to prepare catalyst A having a diameter of 3 mm.
(Reaction using catalyst A)
A glass reaction tube having an inner diameter of 19 mm was packed with 16 ml of Catalyst A, and carborundum was packed thereon to a length of 14 cm. The temperature of the reaction tube was raised to 400 ° C., and nitrogen was added from the top at 30 ml / min, 1,2,4-trimethylbenzene (hereinafter abbreviated as 124-TMB) and methanol (mixing molar ratio, 124-TMB: methanol). = 1: 7) was passed at LHSV = 0.5 g / cc-catalyst · h. The reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. The average yield over 2 hours from the start of the reaction was 28.2% pentamethylbenzene (hereinafter abbreviated as PMB) and 16.4% hexamethylbenzene (hereinafter abbreviated as HMB) (average yield based on 124-TMB). Rate).
Example 2
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was 420 ° C. The results are shown in Table 1.
Example 3
The reaction was conducted in the same manner as in Example 1 except that the reaction temperature was changed to 450 ° C. The results are shown in Table 1.
Example 4
The reaction was performed in the same manner as in Example 2 except that 1,4-dimethylbenzene (hereinafter abbreviated as 14-DMB) was used instead of 124-TMB. The results are shown in Table 1 (average yield is calculated based on 14-DMB).
Example 5
The reaction was performed in the same manner as in Example 4 except that the mixing molar ratio was 14-DMB: methanol = 1: 10. The results are shown in Table 1.
Example 6
A glass reaction tube having an inner diameter of 19 mm was packed with 16 ml of Catalyst A, and carborundum was packed thereon to a length of 14 cm. The temperature of the reaction tube was raised to 450 ° C., nitrogen was 30 ml / min from the top, a mixture of 1,2-dimethylbenzene (hereinafter abbreviated as 12-DMB) and methanol (mixing molar ratio, 12-DMB: methanol = 1). 15) was flowed at LHSV = 0.5 g / cc-catalyst · h. The reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. Table 1 shows the average yield (calculated based on 12-DMB) for 2 hours from the start of the reaction.
Example 7
The reaction was performed in the same manner as in Example 6 except that methylbenzene (hereinafter abbreviated as MB) was used instead of 12-DMB. The results are shown in Table 1 (average yield is calculated based on MB).
Example 8
(Preparation of catalyst B)
850 g of proton type beta zeolite powder (Zude Chemie Catalysts, H-BEA-25, Si / Al atomic ratio = 12) and 150 g of colloidal silica (Nissan Chemical Industries, Snowtex) were mixed. The obtained mixture was extruded and calcined at 500 ° C. to prepare catalyst B having a diameter of 1.5 mm.
(Reaction using catalyst B)
The reaction was performed in the same manner as in Example 1 except that the catalyst B was used instead of the catalyst A. The results are shown in Table 1.
Example 9
(Preparation of catalyst E)
Proton type beta zeolite powder (manufactured by Tosoh Corporation, HSZ940HOA, Si / Al atomic ratio = 20) was pressed at a pressure of 60 MPa. The obtained solid was pulverized and classified to 10 to 16 mesh to prepare catalyst E.
(Reaction using catalyst E)
A glass reaction tube with an inner diameter of 19 mm was packed with 16 ml of catalyst E, and carborundum was packed thereon to a length of 14 cm. The temperature of the reaction tube was raised to 425 ° C., and nitrogen was 30 ml / min from the top, and a mixture of 14-DMB and methanol (mixing molar ratio, 14-DMB: methanol = 1: 7) was LHSV = 0.5 g / cc. -Flowed with catalyst h. The reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. Table 1 shows the average yield (calculated on the basis of 14-DMB) for 6 hours from the start of the reaction.
Figure JPOXMLDOC01-appb-T000007
Comparative Example 1
(Preparation of catalyst C)
850 g of proton type mordenite type zeolite powder (manufactured by Zude Chemie Catalyst Co., Ltd., H-MOR20, Si / Al atomic ratio = 10) and 150 g of colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex) were mixed. The obtained mixture was extruded and then calcined at 500 ° C. to prepare catalyst C having a diameter of 1.5 mm.
(Reaction using catalyst C)
A glass reaction tube having an inner diameter of 19 mm was packed with 16 ml of catalyst C, and carborundum was packed thereon to a length of 14 cm. The temperature of the reaction tube was raised to 400 ° C., nitrogen from the top was 30 ml / min, and a mixture of 124-TMB and methanol (mixing molar ratio, 124-TMB: methanol = 1: 7) was LHSV = 0.5 g / cc. -Flowed with catalyst h. The reaction product was absorbed in methylbenzene and then analyzed by gas chromatography. Table 2 shows the average yield for 2 hours from the start of the reaction.
Comparative Example 2
(Preparation of catalyst D)
850 g of USY-type zeolite powder (manufactured by NE Chemcat Co., Ltd.) and 150 g of colloidal silica (manufactured by Nissan Chemical Industries, Ltd., Snowtex) were mixed. The obtained mixture was extruded and then calcined at 500 ° C. to prepare catalyst D having a diameter of 1.5 mm.
(Reaction using catalyst D)
The reaction was performed in the same manner as in Comparative Example 1 except that the catalyst D was used instead of the catalyst C. The results are shown in Table 2.
Comparative Example 3
The reaction was performed in the same manner as in Comparative Example 2 except that 14-DMB was used instead of 124-TMB. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、安価に入手できる1個~3個のメチル基を有するベンゼン化合物及びメタノールから少なくとも5個のメチル基を有するベンゼン化合物を高収率で得ることができるため、本発明の方法は有用である。 According to the present invention, a benzene compound having 1 to 3 methyl groups and a benzene compound having at least 5 methyl groups can be obtained in high yield from methanol which can be obtained at low cost. Is useful.

Claims (6)

  1.  触媒の存在下、1個~3個のメチル基を有するベンゼン化合物とメタノールを反応させて少なくとも5個のメチル基を有するベンゼン化合物を製造する方法において、触媒が触媒成分としてベータゼオライトを含有することを特徴とする、少なくとも5個のメチル基を有するベンゼン化合物の製造方法。 In the process for producing a benzene compound having at least 5 methyl groups by reacting a benzene compound having 1 to 3 methyl groups with methanol in the presence of a catalyst, the catalyst contains beta zeolite as a catalyst component. A process for producing a benzene compound having at least 5 methyl groups.
  2.  1個~3個のメチル基を有するベンゼン化合物が、一般式(1):
    Figure JPOXMLDOC01-appb-I000001
    (式中、mは1~3の整数を示す。)で表されるベンゼン誘導体であり、少なくとも5個のメチル基を有するベンゼン化合物が、一般式(2):
    Figure JPOXMLDOC01-appb-I000002
    (式中、nは、5又は6を示す。)で表されるベンゼン誘導体である請求項1に記載の方法。
    A benzene compound having 1 to 3 methyl groups is represented by the general formula (1):
    Figure JPOXMLDOC01-appb-I000001
    (Wherein m represents an integer of 1 to 3), and a benzene compound having at least 5 methyl groups is represented by the general formula (2):
    Figure JPOXMLDOC01-appb-I000002
    The method according to claim 1, wherein n is a benzene derivative represented by the formula:
  3.  ベータゼオライトがプロトンタイプである請求項1に記載の方法。 The method according to claim 1, wherein the beta zeolite is a proton type.
  4.  ベータゼオライト中のSi/Al原子比が8以上である請求項1に記載の方法。 The method according to claim 1, wherein the Si / Al atomic ratio in the beta zeolite is 8 or more.
  5.  メタノールの使用量がメチル基を1~3個有するベンゼン化合物1モルに対して4~15モルである請求項1に記載の方法。 The method according to claim 1, wherein the amount of methanol used is 4 to 15 mol per 1 mol of benzene compound having 1 to 3 methyl groups.
  6.  反応温度が300~500℃である請求項1に記載の方法。 The method according to claim 1, wherein the reaction temperature is 300 to 500 ° C.
PCT/JP2009/069517 2008-11-13 2009-11-11 Method for producing benzene compound having at least five methyl groups WO2010055953A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008291187 2008-11-13
JP2008-291187 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055953A1 true WO2010055953A1 (en) 2010-05-20

Family

ID=42170080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069517 WO2010055953A1 (en) 2008-11-13 2009-11-11 Method for producing benzene compound having at least five methyl groups

Country Status (2)

Country Link
JP (1) JP5512237B2 (en)
WO (1) WO2010055953A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583717A (en) * 1978-12-14 1980-06-24 Mobil Oil Alkylation of aromatic hydrocarbon compound
JPH03287549A (en) * 1990-04-02 1991-12-18 Mitsui Petrochem Ind Ltd Preparation of hexamethylbenzene
JPH05294852A (en) * 1992-04-17 1993-11-09 Japan Energy Corp Production of hexamethylbenzene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5583717A (en) * 1978-12-14 1980-06-24 Mobil Oil Alkylation of aromatic hydrocarbon compound
JPH03287549A (en) * 1990-04-02 1991-12-18 Mitsui Petrochem Ind Ltd Preparation of hexamethylbenzene
JPH05294852A (en) * 1992-04-17 1993-11-09 Japan Energy Corp Production of hexamethylbenzene

Also Published As

Publication number Publication date
JP2010138167A (en) 2010-06-24
JP5512237B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
RU2518086C2 (en) Method of carbonylation with application of mordenite catalyst, applied on inorganic oxides
RU2658005C2 (en) Carbonylation method
KR20140127265A (en) Process for the production of acetic acid and dimethyl ether
CN109803921B (en) Method for producing oligomeric silane
CN109890782A (en) Produce the single-stage process of butadiene
JP7123955B2 (en) Method for preparing unsaturated alcohol
JP2016513060A (en) Dehydration-hydrolysis process and catalyst therefor
CN106607073B (en) Methylbenzene methanol side chain alkylation prepares ethylbenzene phenylethylene catalyst and application thereof
KR101742360B1 (en) Bismuth molybdate catalyst having zeolite coating layer, preparation method thereof and method of preparing 1,3-butadiene using the same
JP2008502637A (en) Method for continuously synthesizing methylamines
JP6091310B2 (en) Method for producing butadiene
CN108097286B (en) Catalyst for preparing acrylic acid and methyl acrylate
WO2018079484A1 (en) Method for producing oligosilane and device for producing oligosilane
CN101172228A (en) Catalyzer for propylene glycol aether preparation with epoxypropane
JP5512237B2 (en) Method for producing benzene compound having at least 5 methyl groups
KR20210035232A (en) Alcohol production method and alcohol production catalyst
KR101945215B1 (en) Preparation method of oligosilane
JP5720256B2 (en) Amide group reduction catalyst and process for producing aminomethyl compound using the catalyst
RU2490064C2 (en) Catalysts and method of olifin hydroamination
RU2455066C1 (en) Fischer-tropsch synthesis catalyst and preparation method thereof
JP2014084314A (en) Process for producing benzene compound having at least 5 methyl groups
JP6208679B2 (en) Method for producing 2- (ethylamino) ethanol
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
CN101172227A (en) Catalyzer for glycol ether preparation with oxirane
CN106607072B (en) The catalyst and application thereof of ethylbenzene and styrene is prepared for methylbenzene methanol side chain alkylation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826197

Country of ref document: EP

Kind code of ref document: A1