WO2010055914A1 - Polymer material having excellent oxygen permeability and antifouling property - Google Patents
Polymer material having excellent oxygen permeability and antifouling property Download PDFInfo
- Publication number
- WO2010055914A1 WO2010055914A1 PCT/JP2009/069369 JP2009069369W WO2010055914A1 WO 2010055914 A1 WO2010055914 A1 WO 2010055914A1 JP 2009069369 W JP2009069369 W JP 2009069369W WO 2010055914 A1 WO2010055914 A1 WO 2010055914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polymer
- polymer material
- side chain
- monomer unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0006—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
- C08F230/08—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
- C08F230/085—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon the monomer being a polymerisable silane, e.g. (meth)acryloyloxy trialkoxy silanes or vinyl trialkoxysilanes
Definitions
- the present invention relates to a polymer material excellent in oxygen permeability and stain resistance.
- Non-Patent Document 1 As materials used for soft contact lenses and the like, water-containing polymers are used, and recently disposable lenses are widely used. On the other hand, protein adsorption occurs in these materials, so even if they are used for day use, there is an effect on the ocular tissue. Especially, the significant decrease in oxygen permeability in the material may cause ocular hyperemia and tissue cell necrosis. It was a cause. Accordingly, there has been a demand for a polymer material that suppresses protein adsorption and has high oxygen permeability. On the other hand, in recent years, a silicone hydrogel material having high oxygen permeability has been used (see Non-Patent Document 1). However, there is a problem that protein adsorption occurs more because of the inherent hydrophobic properties of the silicone material.
- the problem to be solved by the present invention is to provide a polymer material that is excellent in oxygen permeability and excellent in stain resistance that suppresses protein adsorption and the like.
- the present inventor has intensively studied to solve the above problems. As a result, by modifying the silicone hydrogel using a specific phospholipid polymer or its monomer, the water lubricity is improved to reduce protein adsorption and irritation to the eye tissue, and the silicone hydrogel originally has The present inventors have found a polymer material that can maintain high oxygen permeability and completed the present invention.
- the present invention is as follows. (1) A polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
- a monomer unit having a side chain containing a phosphorylcholine group has the following general formula (1): [Wherein X represents a polymerizable atomic group in a polymerized state, R 1 represents a phenyl group which may have a single bond or a substituent, or —C (O) —, —C (O) O Represents a group represented by —, —O— or —S—, and i represents an integer of 1 or more. ] The thing which has a structure shown by these is mentioned.
- a monomer unit having a side chain containing a siloxane group has a group containing a siloxane group at the end of the side chain, specifically, the following general formula ( 3):
- R 2 represents a phenyl group which may have a single bond or a substituent, or —C (O) —, —C (O) O —, —O— or —S— represents a group
- R 3 represents a single bond, —CH (OH) —, —CH (OCH 2 OH) —, —CH (OCH 2 CH 2 OH) — or Represents a group represented by —CH—NH—CO—
- R 4 represents a single bond or a group represented by — (CH 2 ) m — or —O— (CH 2 ) m — (where m is 1 or
- R 5 represents a group represented by —CH 3 or —OSi (CH 3 ) 3 , j represents 0 or an integer of 1 or more, and k represents an integer of 0 or 1 or more. Represents. ] The thing which has a structure shown by these is mentioned.
- the polymer material of the present invention may be, for example, a gel.
- Specific examples of the polymer material of the present invention include the following polymer materials (a) and (b).
- a biosensor material comprising the polymer material of (b) above.
- the polymer material excellent also in the stain resistance which suppresses protein adsorption etc. can be provided.
- the polymer material of the present invention is extremely practical in that it can be effectively used for biological applications such as contact lenses and biosensors.
- the polymer material of the present invention is a polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
- the details of each of the monomer units and the polymer material containing them will be described.
- Monomer unit having a side chain containing a phosphorylcholine group The monomer unit is not limited as long as it has a side chain containing a phosphorylcholine group.
- the monomer unit has a structure represented by the following general formula (1): Preferred examples include monomer units.
- X is not limited as long as it represents a polymerized atomic group in a polymerized state.
- vinyl monomer residue, acetylene monomer residue, ester A monomer monomer residue, an amide monomer residue, an ether monomer residue, a urethane monomer residue, and the like are preferable.
- a vinyl monomer residue is more preferable.
- the vinyl monomer residue is not limited, but for example, a methacryloxy group, a methacrylamide group, an acryloxy group, an acrylamide group, a styryloxy group, and a styrylamide group in which the vinyl moiety is addition-polymerized are preferable.
- a methacryloxy group, a methacrylamide group, an acryloxy group and an acrylamide group are more preferable, a methacrylamide group and an acrylamide group are more preferable, and a methacrylamide group is particularly preferable.
- R 1 represents a phenyl group which may have a substituent or a group represented by —C (O) —, —C (O) O—, —O— or —S—.
- a group represented by —C (O) —, —C (O) O— or —O— more preferably a group represented by —C (O) O—.
- i represents an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 2 to 12, further preferably an integer of 2 to 4, and particularly preferably 2.
- specific examples of the structural unit containing X include, but are not limited to, 2-methacryloyloxyethyl phosphorylcholine (MPC), 2-acryloyloxyethyl phosphorylcholine, N- (2-methacrylamide) ethyl phosphorylcholine, Preferred examples include structural units derived from 4-methacryloyloxybutyl phosphorylcholine, 6-methacryloyloxyhexyl phosphorylcholine, 10-methacryloyloxydecylsylphosphorylcholine, ⁇ -methacryloyldioxyethylene phosphorylcholine, 4-styryloxybutylphosphorylcholine, and the like.
- MPC 2-methacryloyloxyethyl phosphorylcholine
- 2-acryloyloxyethyl phosphorylcholine N- (2-methacrylamide) ethyl phosphorylcholine
- Preferred examples include structural units derived from 4-methacryloyloxybuty
- 2-methacryloyloxyethyl phosphorylcholine a structural unit derived from 2-methacryloyloxyethyl phosphorylcholine is particularly preferable.
- This 2-methacryloyloxyethyl phosphorylcholine can be prepared by the method described in “Kazuhiko Ishihara, Tomoko Ueda, and Nobuo Nakabayashi, Polymer Journal, 22, 355-360 (1990)”, and other phosphorylcholine compounds.
- a compound (monomer compound) can also be easily prepared based on the method and a conventional method.
- monomer unit having the structure represented by the general formula (1) are not limited, but preferred examples include a monomer unit having a structure represented by the following general formula (2).
- the monomer unit is not limited as long as it has a side chain containing a siloxane group (Si-O-Si). Preferred are those having a group containing a siloxane group (Si—O—Si (CH 3 ) 3 or the like) at the end, and specifically, a monomer unit having a structure represented by the following general formula (3): Preferably mentioned.
- Y is not limited as long as it represents a polymerized atomic group in a polymerized state.
- vinyl monomer residue, acetylene monomer residue, ester A monomer monomer residue, an amide monomer residue, an ether monomer residue, a urethane monomer residue, and the like are preferable.
- a vinyl monomer residue is more preferable.
- the vinyl monomer residue is not limited, but for example, a methacryloxy group, a methacrylamide group, an acryloxy group, an acrylamide group, a styryloxy group, and a styrylamide group in which the vinyl moiety is addition-polymerized are preferable.
- a methacryloxy group, a methacrylamide group, an acryloxy group and an acrylamide group are more preferable, a methacrylamide group and an acrylamide group are more preferable, and a methacrylamide group is particularly preferable.
- R 2 is a single bond or a phenyl group which may have a substituent, or —C (O) —, —C (O) O—, —O— or —S—.
- R 3 is represented by a single bond or —CH (OH) —, —CH (OCH 2 OH) —, —CH (OCH 2 CH 2 OH) —, or —CH—NH—CO—. And represents a group represented by —CH (OH) —, —CH (OCH 2 CH 2 OH) — or —CH—NH—CO—.
- R 4 represents a single bond or a group represented by — (CH 2 ) m — or —O— (CH 2 ) m — (where m is an integer of 1 or more, preferably 1 to 12 An integer of 1 to 4, more preferably an integer of 1 to 4, more preferably 2 or 3.), preferably — (CH 2 ) 2 —, — (CH 2 ) 3 —, —O (CH 2 ) Groups represented by 2 -and -O (CH 2 ) 3- , more preferably groups represented by -O (CH 2 ) 2 -and -O (CH 2 ) 3- .
- R 5 represents a group represented by —CH 3 or —OSi (CH 3 ) 3 .
- j represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, preferably an integer of 1 to 12, more preferably an integer of 1 to 4, more preferably 1 or 2, Particularly preferably 1
- k represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, it is preferably an integer of 1 to 12, more preferably an integer of 1 to 4, and further preferably 1 or 2 Particularly preferably 1.
- the structural unit containing Y in formula (3) include, but are not limited to, bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate (SiMAA2), tris (trimethylsilyloxy) silylpropylglycerol methacrylate, 3-methacryloxy Structural units derived from -2- (2-hydroxyethoxy) propyloxy) propylbis (trimethylsiloxy) methylsilane and N-2-methacryloxyethyl-O- (methyl-bis-trimethylsiloxy-3-propyl) silylcarbamate Is preferred.
- a structural unit derived from bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate is particularly preferable.
- This bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate can be prepared, for example, by the method described in US Publication: US : 2005005444 A1, and other siloxane compounds (monomer compounds) can also be prepared by the method. And can be easily prepared based on conventional methods.
- monomer unit having the structure represented by the general formula (3) are not limited, but preferred examples include monomer units having the structures represented by the following general formulas (4) to (7), Among these, a monomer unit having a structure represented by the following general formula (4) (that is, a structural unit derived from bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate (SiMAA2)) is particularly preferable.
- a monomer unit having a structure represented by the following general formula (4) that is, a structural unit derived from bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate (SiMAA2) is particularly preferable.
- examples of the monomer unit having a side chain containing a siloxane group include those having a structure represented by the above general formula (3) (or general formulas (4) to (7)), such as bis-3-methacrylic acid.
- the structural unit derived from can be mentioned.
- the polymer material of the present invention comprises each of the above monomer units, but the structure of the polymer is not particularly limited.
- an interpenetrating network structure (IPN structure) type or a common material is used.
- a polymer (copolymer) type is preferred.
- the polymer material of the present invention is preferably a gel material.
- the polymer material of the present invention includes, for example, a polymer containing a monomer unit having a side chain containing a phosphorylcholine group and a polymer containing a monomer unit having a side chain containing a siloxane group. It may contain a polymer formed by forming an intrusion network structure (IPN structure).
- IPN structure means a network structure in which different polymer chains or cross-linked polymer networks penetrate each other and are entangled three-dimensionally, and the polymers that form the IPN structure are different from each other. It can be said that it is a mixture of polymer chains.
- a polymer formed with an IPN structure can be prepared by sequentially synthesizing different polymers one after another. Specifically, one monomer is polymerized to synthesize a first polymer, and then the other monomer is polymerized in the presence of the first polymer (for example, the first monomer in a solution of the other monomer). A polymer is formed by synthesizing a second polymer (by carrying out a polymerization reaction with one polymer immersed) to form an IPN structure in which the first polymer and the second polymer are intertwined with each other. Can do.
- the monomer having a side chain containing a phosphorylcholine group and the monomer having a side chain containing a siloxane group is used for the synthesis of the first polymer and the second polymer, respectively.
- a monomer having a side chain containing a siloxane group is first polymerized to synthesize a first polymer, and then a monomer having a side chain containing a phosphorylcholine group is polymerized in the presence of the polymer. It is preferable to synthesize the second polymer to obtain the polymer material of the present invention.
- each of these polymers in addition to the monomer unit, each of these polymers As long as the properties and effects of the polymer material (and thus the polymer material of the present invention) are not impaired, any other monomer unit may be included and is not particularly limited.
- the polymer formed with the IPN structure in addition to the respective polymers (first and second polymers), the characteristics and effects of the polymer formed with the IPN structure (and thus the polymer material of the present invention). Any other polymer may be included (mixed) as long as the above is not impaired, and is not particularly limited.
- the mixing ratio with P 1 ) is not limited.
- the monomer in the solution The concentration of P 1 is preferably 0.5 to 3.0 mol / L, more preferably 1.0 to 2.5 mol / L, still more preferably 1.5 to 2.0 mol / L.
- the content ratio of the polymer P 1 with respect to the whole IPN structure type polymer is not limited, but is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, and still more preferably 20 to 40% by weight. % By weight.
- the weight average molecular weights of the polymer S 1 and the polymer P 1 can be set as appropriate.
- the polymer material of the present invention may include, for example, a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
- the copolymer type polymer can be prepared by polymerizing a monomer component containing each monomer under desired reaction conditions.
- the copolymer type polymer includes any other monomer unit in addition to the above monomer units as long as the characteristics and effects of the polymer (and thus the polymer material of the present invention) are not impaired. There is no particular limitation.
- the weight average molecular weight of the copolymer type polymer can be appropriately set.
- the reaction composition and various reaction conditions can be appropriately set based on conventional methods.
- any of various crosslinking agents and polymerization initiators can be used as appropriate.
- the crosslinking agent include, but are not limited to, triethylene glycol dimethacrylate (TEGDMA) and ethylene glycol dimethacrylate.
- the polymerization initiator include, but are not limited to, photopolymerization initiators such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) in addition to azobisisobutylnitrile and benzoyl peroxide.
- DMPA 2,2-dimethoxy-2-phenylacetophenone
- the start of the polymerization reaction of the monomer component can be controlled by irradiation with ultraviolet rays (UV light) or the like.
- the solvent used in the polymerization reaction of the monomer component is not limited, and examples thereof include isopropyl alcohol, ethanol, methanol, propanol and butanol, and a mixed solvent of these with water. .
- the polymer material of the present invention may have any other configuration as long as the characteristics and effects of the polymer material of the present invention are not impaired. It may contain ingredients and is not limited.
- the polymer material of the present invention is preferably used for, for example, soft contact lens materials, materials for various medical devices such as biosensors, biochips, artificial organs, oxygen-enriched membranes and cell storage devices, and intraocular lenses. Can do.
- the polymer material containing the above-mentioned IPN structure type polymer retains high optical transparency in addition to excellent oxygen permeability and stain resistance, and the surface is not subjected to plasma treatment or the like.
- a polymer material including a copolymer type polymer is useful as a material for a device such as a biosensor among the applications described above.
- Sample 1-1 SiMAA2 2.29 mL, MPC 0.24 g, TEGDMA 54 ⁇ L, DMPA 62 mg were dissolved in isopropyl alcohol to adjust the total volume to 4 mL. The solution was sandwiched between PET plates and UV irradiated at 25 ° C. for 30 minutes to prepare a copolymer gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 1-1). Sample 1-2, 1-3, 1-4: The sample 1-1 was prepared in the same manner as the sample 1-1 except that the composition was changed as shown in Table 1 below.
- Samples 1-1, 1-2, 1-3, and 1-4 are represented as follows.
- the notation of “SiMAA2” only in the drawings of the present application means a polymer gel (homopolymer) of SiMAA2 prepared without using an MPC monomer.
- Sample 2-1 In 5.19 mL of SiMAA2, 46 ⁇ L of TEGDMA and 50 mg of DMPA were dissolved, the solution was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare a SiMAA2 gel.
- the obtained SiMAA2 gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried.
- MPC 2.95 g, TEGDMA 67 ⁇ L and DMPA 77 mg were dissolved in isopropyl alcohol to adjust the total volume to 10 mL.
- the SiMAA2 gel prepared in this monomer solution was immersed at 25 ° C. overnight. A fully swollen SiMAA2 gel was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare an IPN gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 2-1).
- Samples 2-2, 2-3 and 2-4 The sample 2-1 was prepared in the same manner as the sample 2-1, except that the composition was changed as shown in Table 2 below.
- Samples 2-1, 2-2, 2-3, and 2-4 are represented as follows.
- ⁇ Protein adsorption test> Using each sample prepared in Examples 1 and 2, a protein adsorption test was performed as follows. Each sample swollen with PBS was immersed in an albumin 4.5 mg / mL PBS solution, rinsed, and then subjected to ultrasonic irradiation for 20 minutes in a 1 wt% sodium dodecyl sulfate solution. The supernatant protein concentration was determined by microBCA (registered trademark). ) And determined by quantification. The adsorption conditions were 37.0 ° C. and 15 minutes. The number of samples (n) of each sample was measured as 3, and the average value was calculated. For comparison, the same measurement was performed for a SiMAA2 polymer gel (homopolymer) and a commercially available ACUVUE OASYS (registered trademark). The above results are shown in FIG.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Eyeglasses (AREA)
Abstract
A polymer material having excellent oxygen permeability and excellent antifouling property which suppresses protein adsorption or the like. The polymer material is characterized by containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
Description
本発明は、酸素透過性及び耐汚れ性に優れたポリマー材料に関する。
The present invention relates to a polymer material excellent in oxygen permeability and stain resistance.
ソフトコンタクトレンズ等に利用される素材としては、含水性ポリマーが使用され、最近ではディスポーザブル型レンズが多く利用されている。一方、これらの素材にはタンパク質吸着が生じるため、たとえデイユースとして用いても、眼組織への影響があり、特に当該素材における酸素透過性の著しい低下が、眼の充血や組織細胞の壊死などを引き起こす原因となっていた。従って、タンパク質吸着を抑制し、酸素透過性の高いポリマー素材が求められていた。これに対し、近年、高い酸素透過性を有するシリコーンハイドロゲル素材が利用されている(非特許文献1参照)。
しかしながら、シリコーン素材が本来的に有する疎水的性質のために、タンパク質吸着がより生じてしまうという問題があった。 As materials used for soft contact lenses and the like, water-containing polymers are used, and recently disposable lenses are widely used. On the other hand, protein adsorption occurs in these materials, so even if they are used for day use, there is an effect on the ocular tissue. Especially, the significant decrease in oxygen permeability in the material may cause ocular hyperemia and tissue cell necrosis. It was a cause. Accordingly, there has been a demand for a polymer material that suppresses protein adsorption and has high oxygen permeability. On the other hand, in recent years, a silicone hydrogel material having high oxygen permeability has been used (see Non-Patent Document 1).
However, there is a problem that protein adsorption occurs more because of the inherent hydrophobic properties of the silicone material.
しかしながら、シリコーン素材が本来的に有する疎水的性質のために、タンパク質吸着がより生じてしまうという問題があった。 As materials used for soft contact lenses and the like, water-containing polymers are used, and recently disposable lenses are widely used. On the other hand, protein adsorption occurs in these materials, so even if they are used for day use, there is an effect on the ocular tissue. Especially, the significant decrease in oxygen permeability in the material may cause ocular hyperemia and tissue cell necrosis. It was a cause. Accordingly, there has been a demand for a polymer material that suppresses protein adsorption and has high oxygen permeability. On the other hand, in recent years, a silicone hydrogel material having high oxygen permeability has been used (see Non-Patent Document 1).
However, there is a problem that protein adsorption occurs more because of the inherent hydrophobic properties of the silicone material.
そこで、本発明が解決しようとする課題は、酸素透過性に優れるとともに、タンパク質吸着等を抑制する耐汚れ性にも優れたポリマー材料を提供することにある。
Therefore, the problem to be solved by the present invention is to provide a polymer material that is excellent in oxygen permeability and excellent in stain resistance that suppresses protein adsorption and the like.
本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、特定のリン脂質ポリマー又はそのモノマーを利用してシリコーンハイドロゲルを修飾することにより、水潤滑性を高めてタンパク質吸着抑制と眼組織への刺激を低下させるとともに、シリコーンハイドロゲルが本来有する高い酸素透過性を維持することができるポリマー素材を見出し、本発明を完成した。
The present inventor has intensively studied to solve the above problems. As a result, by modifying the silicone hydrogel using a specific phospholipid polymer or its monomer, the water lubricity is improved to reduce protein adsorption and irritation to the eye tissue, and the silicone hydrogel originally has The present inventors have found a polymer material that can maintain high oxygen permeability and completed the present invention.
すなわち、本発明は以下の通りである。
(1)ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有する、ポリマー材料。 That is, the present invention is as follows.
(1) A polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
(1)ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有する、ポリマー材料。 That is, the present invention is as follows.
(1) A polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
本発明のポリマー材料としては、例えば、ホスホリルコリン基を含む側鎖を有するモノマーユニットが、下記一般式(1):
〔式中、Xは、重合した状態の重合性原子団を表し、R1は、単結合あるいは置換基を有していてもよいフェニル基又は-C(O)-、-C(O)O-、-O-若しくは-S-で示される基を表し、iは1以上の整数を表す。〕
で示される構造を有するものが挙げられる。 As the polymer material of the present invention, for example, a monomer unit having a side chain containing a phosphorylcholine group has the following general formula (1):
[Wherein X represents a polymerizable atomic group in a polymerized state, R 1 represents a phenyl group which may have a single bond or a substituent, or —C (O) —, —C (O) O Represents a group represented by —, —O— or —S—, and i represents an integer of 1 or more. ]
The thing which has a structure shown by these is mentioned.
で示される構造を有するものが挙げられる。 As the polymer material of the present invention, for example, a monomer unit having a side chain containing a phosphorylcholine group has the following general formula (1):
The thing which has a structure shown by these is mentioned.
また、本発明のポリマー材料としては、例えば、シロキサン基を含む側鎖を有するモノマーユニットが、当該側鎖の末端に、シロキサン基を含有する基を有するもの、具体的には、下記一般式(3):
〔式中、Yは、重合した状態の重合性原子団を表し、R2は、単結合あるいは置換基を有していてもよいフェニル基又は-C(O)-、-C(O)O-、-O-若しくは-S-で示される基を表し、R3は、単結合あるいは-CH(OH)-、-CH(OCH2OH)-、-CH(OCH2CH2OH)-又は-CH-NH-CO-で示される基を表し、R4は、単結合あるいは-(CH2)m-又は-O-(CH2)m-で示される基(ここで、mは1以上の整数を表す。)を表し、R5は、-CH3又は-OSi(CH3)3で示される基を表し、jは0又は1以上の整数を表し、kは0又は1以上の整数を表す。〕
で示される構造を有するものが挙げられる。 In addition, as the polymer material of the present invention, for example, a monomer unit having a side chain containing a siloxane group has a group containing a siloxane group at the end of the side chain, specifically, the following general formula ( 3):
[Wherein Y represents a polymerizable atomic group in a polymerized state, R 2 represents a phenyl group which may have a single bond or a substituent, or —C (O) —, —C (O) O —, —O— or —S— represents a group, and R 3 represents a single bond, —CH (OH) —, —CH (OCH 2 OH) —, —CH (OCH 2 CH 2 OH) — or Represents a group represented by —CH—NH—CO—, and R 4 represents a single bond or a group represented by — (CH 2 ) m — or —O— (CH 2 ) m — (where m is 1 or more). R 5 represents a group represented by —CH 3 or —OSi (CH 3 ) 3 , j represents 0 or an integer of 1 or more, and k represents an integer of 0 or 1 or more. Represents. ]
The thing which has a structure shown by these is mentioned.
で示される構造を有するものが挙げられる。 In addition, as the polymer material of the present invention, for example, a monomer unit having a side chain containing a siloxane group has a group containing a siloxane group at the end of the side chain, specifically, the following general formula ( 3):
The thing which has a structure shown by these is mentioned.
ここで、上記一般式(1)で示される構造を有するモノマーユニットとしては、例えば、下記一般式(2):
で示される構造を有するものが挙げられる。
Here, as the monomer unit having the structure represented by the general formula (1), for example, the following general formula (2):
The thing which has a structure shown by these is mentioned.
また、上記一般式(3)で示される構造を有するモノマーユニットとしては、例えば、下記一般式(4):
で示される構造を有するものが挙げられる。
Moreover, as a monomer unit which has a structure shown by the said General formula (3), following General formula (4):
The thing which has a structure shown by these is mentioned.
本発明のポリマー材料は、例えば、ゲル状のものであってもよい。
本発明のポリマー材料としては、具体的には、下記(a)及び(b)等のポリマー材料が挙げられる。
(a)ホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマーと、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーとが、相互侵入網目構造を形成してなるポリマーを含むポリマー材料。
(b)ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有するコポリマーを含むポリマー材料。 The polymer material of the present invention may be, for example, a gel.
Specific examples of the polymer material of the present invention include the following polymer materials (a) and (b).
(a) a polymer material containing a polymer in which a polymer containing a monomer unit having a side chain containing a phosphorylcholine group and a polymer containing a monomer unit having a side chain containing a siloxane group form an interpenetrating network structure .
(b) A polymer material including a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
本発明のポリマー材料としては、具体的には、下記(a)及び(b)等のポリマー材料が挙げられる。
(a)ホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマーと、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーとが、相互侵入網目構造を形成してなるポリマーを含むポリマー材料。
(b)ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有するコポリマーを含むポリマー材料。 The polymer material of the present invention may be, for example, a gel.
Specific examples of the polymer material of the present invention include the following polymer materials (a) and (b).
(a) a polymer material containing a polymer in which a polymer containing a monomer unit having a side chain containing a phosphorylcholine group and a polymer containing a monomer unit having a side chain containing a siloxane group form an interpenetrating network structure .
(b) A polymer material including a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
(2)上記(a)のポリマー材料を含む、コンタクトレンズ用素材。
(3)上記(b)のポリマー材料を含む、バイオセンサー用素材。 (2) A contact lens material containing the polymer material (a).
(3) A biosensor material comprising the polymer material of (b) above.
(3)上記(b)のポリマー材料を含む、バイオセンサー用素材。 (2) A contact lens material containing the polymer material (a).
(3) A biosensor material comprising the polymer material of (b) above.
本発明によれば、酸素透過性に優れるとともに、タンパク質吸着等を抑制する耐汚れ性にも優れたポリマー材料を提供することができる。
本発明のポリマー材料は、コンタクトレンズやバイオセンサーなどの、生体適用用途に有効に用いることができる点で極めて実用性の高いものである。 ADVANTAGE OF THE INVENTION According to this invention, while being excellent in oxygen permeability, the polymer material excellent also in the stain resistance which suppresses protein adsorption etc. can be provided.
The polymer material of the present invention is extremely practical in that it can be effectively used for biological applications such as contact lenses and biosensors.
本発明のポリマー材料は、コンタクトレンズやバイオセンサーなどの、生体適用用途に有効に用いることができる点で極めて実用性の高いものである。 ADVANTAGE OF THE INVENTION According to this invention, while being excellent in oxygen permeability, the polymer material excellent also in the stain resistance which suppresses protein adsorption etc. can be provided.
The polymer material of the present invention is extremely practical in that it can be effectively used for biological applications such as contact lenses and biosensors.
以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
なお、本明細書は、本願優先権主張の基礎となる特願2008-292337号明細書(2008年11月14日出願)の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。 Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
In addition, this specification includes the whole of Japanese Patent Application No. 2008-292337 (filed on November 14, 2008), which is the basis for claiming priority of the present application. In addition, all publications cited in the present specification, for example, prior art documents, and publications, patent publications and other patent documents are incorporated herein by reference.
なお、本明細書は、本願優先権主張の基礎となる特願2008-292337号明細書(2008年11月14日出願)の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。 Hereinafter, the present invention will be described in detail. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
In addition, this specification includes the whole of Japanese Patent Application No. 2008-292337 (filed on November 14, 2008), which is the basis for claiming priority of the present application. In addition, all publications cited in the present specification, for example, prior art documents, and publications, patent publications and other patent documents are incorporated herein by reference.
本発明のポリマー材料は、前述の通り、ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有する、ポリマー材料である。以下、上記各モノマーユニット及びそれらを含有するポリマー材料の詳細について説明する。
As described above, the polymer material of the present invention is a polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group. Hereinafter, the details of each of the monomer units and the polymer material containing them will be described.
(1)ホスホリルコリン基を含む側鎖を有するモノマーユニット
当該モノマーユニットは、ホスホリルコリン基を含む側鎖を有するものであればよく、限定はされないが、例えば、下記一般式(1)で示される構造を有するモノマーユニットが好ましく挙げられる。
(1) Monomer unit having a side chain containing a phosphorylcholine group The monomer unit is not limited as long as it has a side chain containing a phosphorylcholine group. For example, the monomer unit has a structure represented by the following general formula (1): Preferred examples include monomer units.
当該モノマーユニットは、ホスホリルコリン基を含む側鎖を有するものであればよく、限定はされないが、例えば、下記一般式(1)で示される構造を有するモノマーユニットが好ましく挙げられる。
式(1)中、Xは、重合した状態の重合性原子団を表すものであればよく、限定はされないが、具体的には、例えば、ビニル系モノマー残基、アセチレン系モノマー残基、エステル系モノマー残基、アミド系モノマー残基、エーテル系モノマー残基及びウレタン系モノマー残基等が好ましく、これらの中でも、ビニル系モノマー残基がより好ましい。ビニル系モノマー残基としては、限定はされないが、例えば、ビニル部分が付加重合している状態のメタクリルオキシ基、メタクリルアミド基、アクリルオキシ基、アクリルアミド基、スチリルオキシ基及びスチリルアミド基等が好ましく、これらの中でも、メタクリルオキシ基、メタクリルアミド基、アクリルオキシ基及びアクリルアミド基がより好ましく、さらに好ましくはメタクリルアミド基及びアクリルアミド基であり、特に好ましくはメタクリルアミド基である。
In formula (1), X is not limited as long as it represents a polymerized atomic group in a polymerized state. Specifically, for example, vinyl monomer residue, acetylene monomer residue, ester A monomer monomer residue, an amide monomer residue, an ether monomer residue, a urethane monomer residue, and the like are preferable. Among these, a vinyl monomer residue is more preferable. The vinyl monomer residue is not limited, but for example, a methacryloxy group, a methacrylamide group, an acryloxy group, an acrylamide group, a styryloxy group, and a styrylamide group in which the vinyl moiety is addition-polymerized are preferable. Among these, a methacryloxy group, a methacrylamide group, an acryloxy group and an acrylamide group are more preferable, a methacrylamide group and an acrylamide group are more preferable, and a methacrylamide group is particularly preferable.
式(1)中、R1は、置換基を有していてもよいフェニル基又は-C(O)-、-C(O)O-、-O-若しくは-S-で示される基を表し、好ましくは、-C(O)-、-C(O)O-又は-O-で示される基、より好ましくは-C(O)O-で示される基である。
式(1)中、iは、1以上の整数を表し、好ましくは2以上の整数、より好ましくは2~12の整数、さらに好ましくは2~4の整数、特に好ましくは2である。 In the formula (1), R 1 represents a phenyl group which may have a substituent or a group represented by —C (O) —, —C (O) O—, —O— or —S—. Preferably a group represented by —C (O) —, —C (O) O— or —O—, more preferably a group represented by —C (O) O—.
In the formula (1), i represents an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 2 to 12, further preferably an integer of 2 to 4, and particularly preferably 2.
式(1)中、iは、1以上の整数を表し、好ましくは2以上の整数、より好ましくは2~12の整数、さらに好ましくは2~4の整数、特に好ましくは2である。 In the formula (1), R 1 represents a phenyl group which may have a substituent or a group represented by —C (O) —, —C (O) O—, —O— or —S—. Preferably a group represented by —C (O) —, —C (O) O— or —O—, more preferably a group represented by —C (O) O—.
In the formula (1), i represents an integer of 1 or more, preferably an integer of 2 or more, more preferably an integer of 2 to 12, further preferably an integer of 2 to 4, and particularly preferably 2.
式(1)中、Xを含む構造単位の具体例としては、限定はされないが、2-メタクリロイルオキシエチルホスホリルコリン(MPC)、2-アクリロイルオキシエチルホスホリルコリン、N-(2-メタクリルアミド)エチルホスホリルコリン、4-メタクリロイルオキシブチルホスホリルコリン、6-メタクリロイルオキシヘキシルホスホリルコリン、10-メタクリロイルオキシデシルシルホスホリルコリン、ω-メタクリロイルジオキシエチレンホスホリルコリン及び4-スチリルオキシブチルホスホリルコリン等に由来する構造単位が好ましく挙げられる。これらの中でも、2-メタクリロイルオキシエチルホスホリルコリンに由来する構造単位が特に好ましい。この2-メタクリロイルオキシエチルホスホリルコリンは、“Kazuhiko Ishihara, Tomoko Ueda, and Nobuo Nakabayashi, Polymer Journal, 22, 355-360 (1990)”に記載の方法等により調製することができ、また、その他のホスホリルコリン系化合物(モノマー化合物)についても、当該方法及び常法に基づいて容易に調製できる。
In the formula (1), specific examples of the structural unit containing X include, but are not limited to, 2-methacryloyloxyethyl phosphorylcholine (MPC), 2-acryloyloxyethyl phosphorylcholine, N- (2-methacrylamide) ethyl phosphorylcholine, Preferred examples include structural units derived from 4-methacryloyloxybutyl phosphorylcholine, 6-methacryloyloxyhexyl phosphorylcholine, 10-methacryloyloxydecylsylphosphorylcholine, ω-methacryloyldioxyethylene phosphorylcholine, 4-styryloxybutylphosphorylcholine, and the like. Among these, a structural unit derived from 2-methacryloyloxyethyl phosphorylcholine is particularly preferable. This 2-methacryloyloxyethyl phosphorylcholine can be prepared by the method described in “Kazuhiko Ishihara, Tomoko Ueda, and Nobuo Nakabayashi, Polymer Journal, 22, 355-360 (1990)”, and other phosphorylcholine compounds. A compound (monomer compound) can also be easily prepared based on the method and a conventional method.
上記一般式(1)で示される構造を有するモノマーユニットの具体例としては、限定はされないが、例えば、下記一般式(2)で示される構造を有するモノマーユニットが好ましく挙げられる。
Specific examples of the monomer unit having the structure represented by the general formula (1) are not limited, but preferred examples include a monomer unit having a structure represented by the following general formula (2).
(2)シロキサン基を含む側鎖を有するモノマーユニット
当該モノマーユニットは、シロキサン基(Si-O-Si)を含む側鎖を有するものであればよく、限定はされないが、例えば、当該側鎖の末端に、シロキサン基を含有する基(Si-O-Si(CH3)3等)を有するものが好ましく挙げられ、具体的には、下記一般式(3)で示される構造を有するモノマーユニットが好ましく挙げられる。
(2) Monomer unit having a side chain containing a siloxane group The monomer unit is not limited as long as it has a side chain containing a siloxane group (Si-O-Si). Preferred are those having a group containing a siloxane group (Si—O—Si (CH 3 ) 3 or the like) at the end, and specifically, a monomer unit having a structure represented by the following general formula (3): Preferably mentioned.
当該モノマーユニットは、シロキサン基(Si-O-Si)を含む側鎖を有するものであればよく、限定はされないが、例えば、当該側鎖の末端に、シロキサン基を含有する基(Si-O-Si(CH3)3等)を有するものが好ましく挙げられ、具体的には、下記一般式(3)で示される構造を有するモノマーユニットが好ましく挙げられる。
式(3)中、Yは、重合した状態の重合性原子団を表すものであればよく、限定はされないが、具体的には、例えば、ビニル系モノマー残基、アセチレン系モノマー残基、エステル系モノマー残基、アミド系モノマー残基、エーテル系モノマー残基及びウレタン系モノマー残基等が好ましく、これらの中でも、ビニル系モノマー残基がより好ましい。ビニル系モノマー残基としては、限定はされないが、例えば、ビニル部分が付加重合している状態のメタクリルオキシ基、メタクリルアミド基、アクリルオキシ基、アクリルアミド基、スチリルオキシ基及びスチリルアミド基等が好ましく、これらの中でも、メタクリルオキシ基、メタクリルアミド基、アクリルオキシ基及びアクリルアミド基がより好ましく、さらに好ましくはメタクリルアミド基及びアクリルアミド基であり、特に好ましくはメタクリルアミド基である。
In formula (3), Y is not limited as long as it represents a polymerized atomic group in a polymerized state. Specifically, for example, vinyl monomer residue, acetylene monomer residue, ester A monomer monomer residue, an amide monomer residue, an ether monomer residue, a urethane monomer residue, and the like are preferable. Among these, a vinyl monomer residue is more preferable. The vinyl monomer residue is not limited, but for example, a methacryloxy group, a methacrylamide group, an acryloxy group, an acrylamide group, a styryloxy group, and a styrylamide group in which the vinyl moiety is addition-polymerized are preferable. Among these, a methacryloxy group, a methacrylamide group, an acryloxy group and an acrylamide group are more preferable, a methacrylamide group and an acrylamide group are more preferable, and a methacrylamide group is particularly preferable.
式(3)中、R2は、単結合あるいは置換基を有していてもよいフェニル基又は-C(O)-、-C(O)O-、-O-若しくは-S-で示される基を表し、好ましくは、-C(O)-、-C(O)O-又は-O-で示される基、より好ましくは-C(O)O-で示される基である。
In the formula (3), R 2 is a single bond or a phenyl group which may have a substituent, or —C (O) —, —C (O) O—, —O— or —S—. Represents a group, preferably a group represented by —C (O) —, —C (O) O— or —O—, more preferably a group represented by —C (O) O—.
式(3)中、R3は、単結合あるいは-CH(OH)-、-CH(OCH2OH)-、-CH(OCH2CH2OH)-又は-CH-NH-CO-で示される基を表し、好ましくは、-CH(OH)-、-CH(OCH2CH2OH)-又は-CH-NH-CO-で示される基である。
In the formula (3), R 3 is represented by a single bond or —CH (OH) —, —CH (OCH 2 OH) —, —CH (OCH 2 CH 2 OH) —, or —CH—NH—CO—. And represents a group represented by —CH (OH) —, —CH (OCH 2 CH 2 OH) — or —CH—NH—CO—.
式(3)中、R4は、単結合あるいは-(CH2)m-又は-O-(CH2)m-で示される基(ここで、mは1以上の整数、好ましくは1~12の整数、より好ましくは1~4の整数、さらに好ましくは2又は3を表す。)を表し、好ましくは、-(CH2)2-、-(CH2)3-、-O(CH2)2-及び-O(CH2)3-で示される基、より好ましくは、-O(CH2)2-及び-O(CH2)3-で示される基である。
In the formula (3), R 4 represents a single bond or a group represented by — (CH 2 ) m — or —O— (CH 2 ) m — (where m is an integer of 1 or more, preferably 1 to 12 An integer of 1 to 4, more preferably an integer of 1 to 4, more preferably 2 or 3.), preferably — (CH 2 ) 2 —, — (CH 2 ) 3 —, —O (CH 2 ) Groups represented by 2 -and -O (CH 2 ) 3- , more preferably groups represented by -O (CH 2 ) 2 -and -O (CH 2 ) 3- .
式(3)中、R5は、-CH3又は-OSi(CH3)3で示される基を表す。
式(3)中、jは、0又は1以上の整数を表し、1以上の整数の場合は、好ましくは1~12の整数、より好ましくは1~4の整数、さらに好ましくは1又は2、特に好ましくは1であり、kは、0又は1以上の整数を表し、1以上の整数の場合は、好ましくは1~12の整数、より好ましくは1~4の整数、さらに好ましくは1又は2、特に好ましくは1である。 In formula (3), R 5 represents a group represented by —CH 3 or —OSi (CH 3 ) 3 .
In the formula (3), j represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, preferably an integer of 1 to 12, more preferably an integer of 1 to 4, more preferably 1 or 2, Particularly preferably 1, k represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, it is preferably an integer of 1 to 12, more preferably an integer of 1 to 4, and further preferably 1 or 2 Particularly preferably 1.
式(3)中、jは、0又は1以上の整数を表し、1以上の整数の場合は、好ましくは1~12の整数、より好ましくは1~4の整数、さらに好ましくは1又は2、特に好ましくは1であり、kは、0又は1以上の整数を表し、1以上の整数の場合は、好ましくは1~12の整数、より好ましくは1~4の整数、さらに好ましくは1又は2、特に好ましくは1である。 In formula (3), R 5 represents a group represented by —CH 3 or —OSi (CH 3 ) 3 .
In the formula (3), j represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, preferably an integer of 1 to 12, more preferably an integer of 1 to 4, more preferably 1 or 2, Particularly preferably 1, k represents 0 or an integer of 1 or more, and in the case of an integer of 1 or more, it is preferably an integer of 1 to 12, more preferably an integer of 1 to 4, and further preferably 1 or 2 Particularly preferably 1.
式(3)中、Yを含む構造単位の具体例としては、限定はされないが、ビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレート(SiMAA2)、トリス(トリメチルシリルオキシ)シリルプロピルグリセロールメタクリレート、3-メタクリルオキシ-2-(2-ヒドロキシエトキシ)プロピルオキシ)プロピルビス(トリメチルシロキシ)メチルシラン及びN-2-メタクリルオキシエチル-O-(メチル-ビス-トリメチルシロキシ-3-プロピル)シリルカルバメート等に由来する構造単位が好ましく挙げられる。これらの中でも、ビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレートに由来する構造単位が特に好ましい。このビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレートは、例えば、米国公開公報:US 2005005444 A1に記載の方法等により調製することができ、また、その他のシロキサン系化合物(モノマー化合物)についても、当該方法及び常法に基づいて容易に調製できる。
Specific examples of the structural unit containing Y in formula (3) include, but are not limited to, bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate (SiMAA2), tris (trimethylsilyloxy) silylpropylglycerol methacrylate, 3-methacryloxy Structural units derived from -2- (2-hydroxyethoxy) propyloxy) propylbis (trimethylsiloxy) methylsilane and N-2-methacryloxyethyl-O- (methyl-bis-trimethylsiloxy-3-propyl) silylcarbamate Is preferred. Among these, a structural unit derived from bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate is particularly preferable. This bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate can be prepared, for example, by the method described in US Publication: US : 2005005444 A1, and other siloxane compounds (monomer compounds) can also be prepared by the method. And can be easily prepared based on conventional methods.
上記一般式(3)で示される構造を有するモノマーユニットの具体例としては、限定はされないが、例えば、下記一般式(4)~(7)で示される構造を有するモノマーユニットが好ましく挙げられ、なかでも下記一般式(4)で示される構造を有するモノマーユニット(すなわち、ビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレート(SiMAA2)に由来する構造単位)が特に好ましい。
Specific examples of the monomer unit having the structure represented by the general formula (3) are not limited, but preferred examples include monomer units having the structures represented by the following general formulas (4) to (7), Among these, a monomer unit having a structure represented by the following general formula (4) (that is, a structural unit derived from bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate (SiMAA2)) is particularly preferable.
また、シロキサン基を含む側鎖を有するモノマーユニットとしては、上記一般式(3)(又は一般式(4)~(7))に示される構造のもの以外にも、例えば、ビス-3-メタクリルオキシ-2-ヒドロキシプロピルオキシプロピルポリジメチルシロキサン、及びN,N,N',N'-テトラキス(3-メタクリルオキシ-2-ヒドロキシプロピル)-α,ω-ビス-3-アミノプロピル-ポリジメチルシロキサンに由来する構造単位を挙げることができる。
Further, examples of the monomer unit having a side chain containing a siloxane group include those having a structure represented by the above general formula (3) (or general formulas (4) to (7)), such as bis-3-methacrylic acid. Oxy-2-hydroxypropyloxypropyl polydimethylsiloxane and N, N, N ', N'-tetrakis (3-methacryloxy-2-hydroxypropyl) -α, ω-bis-3-aminopropyl-polydimethylsiloxane The structural unit derived from can be mentioned.
(3)ポリマー材料
本発明のポリマー材料は、上記各モノマーユニットを含んでなるものであるが、そのポリマーの構造は、特に限定はされず、例えば、相互侵入網目構造(IPN構造)型や共重合(コポリマー)型のもの等が好ましく挙げられる。ここで、本発明のポリマー材料としては、ゲル状のものが好ましく挙げられる。 (3) Polymer material The polymer material of the present invention comprises each of the above monomer units, but the structure of the polymer is not particularly limited. For example, an interpenetrating network structure (IPN structure) type or a common material is used. A polymer (copolymer) type is preferred. Here, the polymer material of the present invention is preferably a gel material.
本発明のポリマー材料は、上記各モノマーユニットを含んでなるものであるが、そのポリマーの構造は、特に限定はされず、例えば、相互侵入網目構造(IPN構造)型や共重合(コポリマー)型のもの等が好ましく挙げられる。ここで、本発明のポリマー材料としては、ゲル状のものが好ましく挙げられる。 (3) Polymer material The polymer material of the present invention comprises each of the above monomer units, but the structure of the polymer is not particularly limited. For example, an interpenetrating network structure (IPN structure) type or a common material is used. A polymer (copolymer) type is preferred. Here, the polymer material of the present invention is preferably a gel material.
3-1)IPN構造型
本発明のポリマー材料は、例えば、ホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマーと、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーとが、相互侵入網目構造(IPN構造)を形成してなるポリマーを含むものであってもよい。
ここで、IPN構造とは、互いに異なる高分子鎖や架橋高分子網目が相互に侵入して三次元的に絡み合った網目構造のことを意味し、IPN構造を形成してなるポリマーは、互いに異なるポリマー鎖の混合物であるということができる。 3-1) IPN structure type The polymer material of the present invention includes, for example, a polymer containing a monomer unit having a side chain containing a phosphorylcholine group and a polymer containing a monomer unit having a side chain containing a siloxane group. It may contain a polymer formed by forming an intrusion network structure (IPN structure).
Here, the IPN structure means a network structure in which different polymer chains or cross-linked polymer networks penetrate each other and are entangled three-dimensionally, and the polymers that form the IPN structure are different from each other. It can be said that it is a mixture of polymer chains.
本発明のポリマー材料は、例えば、ホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマーと、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーとが、相互侵入網目構造(IPN構造)を形成してなるポリマーを含むものであってもよい。
ここで、IPN構造とは、互いに異なる高分子鎖や架橋高分子網目が相互に侵入して三次元的に絡み合った網目構造のことを意味し、IPN構造を形成してなるポリマーは、互いに異なるポリマー鎖の混合物であるということができる。 3-1) IPN structure type The polymer material of the present invention includes, for example, a polymer containing a monomer unit having a side chain containing a phosphorylcholine group and a polymer containing a monomer unit having a side chain containing a siloxane group. It may contain a polymer formed by forming an intrusion network structure (IPN structure).
Here, the IPN structure means a network structure in which different polymer chains or cross-linked polymer networks penetrate each other and are entangled three-dimensionally, and the polymers that form the IPN structure are different from each other. It can be said that it is a mixture of polymer chains.
IPN構造を形成してなるポリマーは、互いに異なるポリマーを順次別々に合成することにより調製することができる。具体的には、一方のモノマーを重合させて第一のポリマーを合成し、次いで、他方のモノマーを当該第一のポリマーの存在下で重合させて(例えば、他方のモノマーの溶液中に当該第一のポリマーを浸漬させた状態で重合反応を行う)第二のポリマーを合成することにより、第一のポリマーと第二のポリマーとが互いに絡み合ったIPN構造を形成してなるポリマーを調製することができる。
本発明においては、ホスホリルコリン基を含む側鎖を有するモノマーと、シロキサン基を含む側鎖を有するモノマーとのいずれのモノマーを、それぞれ第一のポリマー及び第二のポリマーの合成に用いるかは、限定はされないが、例えば、先にシロキサン基を含む側鎖を有するモノマーを重合させて第一のポリマーを合成し、次いで、当該ポリマーの存在下でホスホリルコリン基を含む側鎖を有するモノマーを重合させて第二のポリマーを合成することにより、本発明のポリマー材料とすることが好ましい。 A polymer formed with an IPN structure can be prepared by sequentially synthesizing different polymers one after another. Specifically, one monomer is polymerized to synthesize a first polymer, and then the other monomer is polymerized in the presence of the first polymer (for example, the first monomer in a solution of the other monomer). A polymer is formed by synthesizing a second polymer (by carrying out a polymerization reaction with one polymer immersed) to form an IPN structure in which the first polymer and the second polymer are intertwined with each other. Can do.
In the present invention, which of the monomer having a side chain containing a phosphorylcholine group and the monomer having a side chain containing a siloxane group is used for the synthesis of the first polymer and the second polymer, respectively, is limited. Although not, for example, a monomer having a side chain containing a siloxane group is first polymerized to synthesize a first polymer, and then a monomer having a side chain containing a phosphorylcholine group is polymerized in the presence of the polymer. It is preferable to synthesize the second polymer to obtain the polymer material of the present invention.
本発明においては、ホスホリルコリン基を含む側鎖を有するモノマーと、シロキサン基を含む側鎖を有するモノマーとのいずれのモノマーを、それぞれ第一のポリマー及び第二のポリマーの合成に用いるかは、限定はされないが、例えば、先にシロキサン基を含む側鎖を有するモノマーを重合させて第一のポリマーを合成し、次いで、当該ポリマーの存在下でホスホリルコリン基を含む側鎖を有するモノマーを重合させて第二のポリマーを合成することにより、本発明のポリマー材料とすることが好ましい。 A polymer formed with an IPN structure can be prepared by sequentially synthesizing different polymers one after another. Specifically, one monomer is polymerized to synthesize a first polymer, and then the other monomer is polymerized in the presence of the first polymer (for example, the first monomer in a solution of the other monomer). A polymer is formed by synthesizing a second polymer (by carrying out a polymerization reaction with one polymer immersed) to form an IPN structure in which the first polymer and the second polymer are intertwined with each other. Can do.
In the present invention, which of the monomer having a side chain containing a phosphorylcholine group and the monomer having a side chain containing a siloxane group is used for the synthesis of the first polymer and the second polymer, respectively, is limited. Although not, for example, a monomer having a side chain containing a siloxane group is first polymerized to synthesize a first polymer, and then a monomer having a side chain containing a phosphorylcholine group is polymerized in the presence of the polymer. It is preferable to synthesize the second polymer to obtain the polymer material of the present invention.
なお、上記のホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマー、及び、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーの各々においては、当該モノマーユニット以外に、これら各々のポリマー(ひいては本発明のポリマー材料)の特性や効果が損なわれない範囲において、任意の他のモノマーユニットを含むものであってもよく、特に限定はされない。また、IPN構造を形成してなるポリマーにおいては、上記各々のポリマー(第一及び第二のポリマー)以外に、当該IPN構造を形成してなるポリマー(ひいては本発明のポリマー材料)の特性や効果が損なわれない範囲において、任意の他のポリマーを含む(混合する)ものであってもよく、特に限定はされない。
In addition, in each of the polymer containing a monomer unit having a side chain containing a phosphorylcholine group and the polymer containing a monomer unit having a side chain containing a siloxane group, in addition to the monomer unit, each of these polymers As long as the properties and effects of the polymer material (and thus the polymer material of the present invention) are not impaired, any other monomer unit may be included and is not particularly limited. In addition, in the polymer formed with the IPN structure, in addition to the respective polymers (first and second polymers), the characteristics and effects of the polymer formed with the IPN structure (and thus the polymer material of the present invention). Any other polymer may be included (mixed) as long as the above is not impaired, and is not particularly limited.
当該IPN構造型のポリマー中、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマー(ポリマーS1)と、ホスホリルコリン基を含む側鎖を有するモノマー(モノマーP1)ユニットを含有するポリマー(ポリマーP1)との混合比は、限定はされないが、例えば、予め合成したポリマーS1をモノマーP1の溶液中に浸漬させてポリマーP1を合成する手順をとる場合は、当該溶液中のモノマーP1の濃度が、0.5~3.0mol/Lであることが好ましく、より好ましくは1.0~2.5mol/L、さらに好ましくは1.5~2.0mol/Lである。また、当該IPN構造型のポリマー全体に対する上記ポリマーP1の含有割合は、限定はされないが、5~70重量%であることが好ましく、より好ましくは10~50重量%、さらに好ましくは20~40重量%である。
当該IPN構造型のポリマーにおいて、上記ポリマーS1及びポリマーP1の重量平均分子量については、適宜設定することができる。 Among the polymers of the IPN structure type, a polymer (polymer S 1 ) containing a monomer unit having a side chain containing a siloxane group and a polymer (polymer) containing a monomer (monomer P 1 ) unit having a side chain containing a phosphorylcholine group The mixing ratio with P 1 ) is not limited. For example, when the procedure for synthesizing the polymer P 1 by immersing the polymer S 1 synthesized in advance in the solution of the monomer P 1 is used, the monomer in the solution The concentration of P 1 is preferably 0.5 to 3.0 mol / L, more preferably 1.0 to 2.5 mol / L, still more preferably 1.5 to 2.0 mol / L. The content ratio of the polymer P 1 with respect to the whole IPN structure type polymer is not limited, but is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, and still more preferably 20 to 40% by weight. % By weight.
In the IPN structure type polymer, the weight average molecular weights of the polymer S 1 and the polymer P 1 can be set as appropriate.
当該IPN構造型のポリマーにおいて、上記ポリマーS1及びポリマーP1の重量平均分子量については、適宜設定することができる。 Among the polymers of the IPN structure type, a polymer (polymer S 1 ) containing a monomer unit having a side chain containing a siloxane group and a polymer (polymer) containing a monomer (monomer P 1 ) unit having a side chain containing a phosphorylcholine group The mixing ratio with P 1 ) is not limited. For example, when the procedure for synthesizing the polymer P 1 by immersing the polymer S 1 synthesized in advance in the solution of the monomer P 1 is used, the monomer in the solution The concentration of P 1 is preferably 0.5 to 3.0 mol / L, more preferably 1.0 to 2.5 mol / L, still more preferably 1.5 to 2.0 mol / L. The content ratio of the polymer P 1 with respect to the whole IPN structure type polymer is not limited, but is preferably 5 to 70% by weight, more preferably 10 to 50% by weight, and still more preferably 20 to 40% by weight. % By weight.
In the IPN structure type polymer, the weight average molecular weights of the polymer S 1 and the polymer P 1 can be set as appropriate.
3-2)コポリマー型
本発明のポリマー材料は、例えば、ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有するコポリマーを含むものであってもよい。
コポリマー型のポリマーは、各モノマーを含むモノマー成分を、所望の反応条件により重合させることで調製することができる。
なお、当該コポリマー型のポリマーにおいては、上記各モノマーユニット以外に、当該ポリマー(ひいては本発明のポリマー材料)の特性や効果が損なわれない範囲において、任意の他のモノマーユニットを含むものであってもよく、特に限定はされない。 3-2) Copolymer type The polymer material of the present invention may include, for example, a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group. .
The copolymer type polymer can be prepared by polymerizing a monomer component containing each monomer under desired reaction conditions.
In addition, the copolymer type polymer includes any other monomer unit in addition to the above monomer units as long as the characteristics and effects of the polymer (and thus the polymer material of the present invention) are not impaired. There is no particular limitation.
本発明のポリマー材料は、例えば、ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有するコポリマーを含むものであってもよい。
コポリマー型のポリマーは、各モノマーを含むモノマー成分を、所望の反応条件により重合させることで調製することができる。
なお、当該コポリマー型のポリマーにおいては、上記各モノマーユニット以外に、当該ポリマー(ひいては本発明のポリマー材料)の特性や効果が損なわれない範囲において、任意の他のモノマーユニットを含むものであってもよく、特に限定はされない。 3-2) Copolymer type The polymer material of the present invention may include, for example, a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group. .
The copolymer type polymer can be prepared by polymerizing a monomer component containing each monomer under desired reaction conditions.
In addition, the copolymer type polymer includes any other monomer unit in addition to the above monomer units as long as the characteristics and effects of the polymer (and thus the polymer material of the present invention) are not impaired. There is no particular limitation.
当該コポリマー型のポリマー中、シロキサン基を含む側鎖を有するモノマーユニット(以下、S2)と、ホスホリルコリン基を含む側鎖を有するモノマーユニット(以下、P2)とのモル比(S2/P2)は、限定はされないが、例えば、10/90~90/10であることが好ましく、より好ましくは60/40~90/10、さらに好ましくは60/40~70/30である。
当該コポリマー型のポリマーの重量平均分子量については、適宜設定することができる。 In the copolymer type polymer, the molar ratio (S 2 / P) of a monomer unit having a side chain containing a siloxane group (hereinafter, S 2 ) and a monomer unit having a side chain containing a phosphorylcholine group (hereinafter, P 2 ). 2 ) is not limited, but is preferably, for example, 10/90 to 90/10, more preferably 60/40 to 90/10, still more preferably 60/40 to 70/30.
The weight average molecular weight of the copolymer type polymer can be appropriately set.
当該コポリマー型のポリマーの重量平均分子量については、適宜設定することができる。 In the copolymer type polymer, the molar ratio (S 2 / P) of a monomer unit having a side chain containing a siloxane group (hereinafter, S 2 ) and a monomer unit having a side chain containing a phosphorylcholine group (hereinafter, P 2 ). 2 ) is not limited, but is preferably, for example, 10/90 to 90/10, more preferably 60/40 to 90/10, still more preferably 60/40 to 70/30.
The weight average molecular weight of the copolymer type polymer can be appropriately set.
3-3)ポリマー合成
上述したIPN構造型及びコポリマー型のポリマー合成反応おいて、反応組成及び各種反応条件については、常法に基づき、適宜設定することができる。例えば、モノマー成分の重合反応においては、任意の各種架橋剤及び重合開始剤等を適宜用いることができる。
架橋剤としては、限定はされないが、例えば、トリエチレングリコールジメタクリレート(TEGDMA)及びエチレングリコールジメタクリレート等が挙げられる。
重合開始剤としては、限定はされないが、例えば、アゾビスイソブチルニトリル及び過酸化ベンゾイル等のほか、2,2-ジメトキシ-2-フェニルアセトフェノン(DMPA)等の光重合開始剤が挙げられる。光重合開始剤を用いる場合は、紫外線(UV光)等の照射によりモノマー成分の重合反応の開始を制御できる。 3-3) Polymer Synthesis In the above-described IPN structure type and copolymer type polymer synthesis reactions, the reaction composition and various reaction conditions can be appropriately set based on conventional methods. For example, in the polymerization reaction of the monomer component, any of various crosslinking agents and polymerization initiators can be used as appropriate.
Examples of the crosslinking agent include, but are not limited to, triethylene glycol dimethacrylate (TEGDMA) and ethylene glycol dimethacrylate.
Examples of the polymerization initiator include, but are not limited to, photopolymerization initiators such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) in addition to azobisisobutylnitrile and benzoyl peroxide. In the case of using a photopolymerization initiator, the start of the polymerization reaction of the monomer component can be controlled by irradiation with ultraviolet rays (UV light) or the like.
上述したIPN構造型及びコポリマー型のポリマー合成反応おいて、反応組成及び各種反応条件については、常法に基づき、適宜設定することができる。例えば、モノマー成分の重合反応においては、任意の各種架橋剤及び重合開始剤等を適宜用いることができる。
架橋剤としては、限定はされないが、例えば、トリエチレングリコールジメタクリレート(TEGDMA)及びエチレングリコールジメタクリレート等が挙げられる。
重合開始剤としては、限定はされないが、例えば、アゾビスイソブチルニトリル及び過酸化ベンゾイル等のほか、2,2-ジメトキシ-2-フェニルアセトフェノン(DMPA)等の光重合開始剤が挙げられる。光重合開始剤を用いる場合は、紫外線(UV光)等の照射によりモノマー成分の重合反応の開始を制御できる。 3-3) Polymer Synthesis In the above-described IPN structure type and copolymer type polymer synthesis reactions, the reaction composition and various reaction conditions can be appropriately set based on conventional methods. For example, in the polymerization reaction of the monomer component, any of various crosslinking agents and polymerization initiators can be used as appropriate.
Examples of the crosslinking agent include, but are not limited to, triethylene glycol dimethacrylate (TEGDMA) and ethylene glycol dimethacrylate.
Examples of the polymerization initiator include, but are not limited to, photopolymerization initiators such as 2,2-dimethoxy-2-phenylacetophenone (DMPA) in addition to azobisisobutylnitrile and benzoyl peroxide. In the case of using a photopolymerization initiator, the start of the polymerization reaction of the monomer component can be controlled by irradiation with ultraviolet rays (UV light) or the like.
また、モノマー成分の重合反応に用いる溶媒(モノマー溶液に用いる溶媒)としては、限定はされないが、例えば、イソプロピルアルコール、エタノール、メタノール、プロパノール及びブタノール、並びにこれらと水との混合溶媒等が挙げられる。
The solvent used in the polymerization reaction of the monomer component (the solvent used in the monomer solution) is not limited, and examples thereof include isopropyl alcohol, ethanol, methanol, propanol and butanol, and a mixed solvent of these with water. .
3-4)ポリマー材料及びその用途
本発明のポリマー材料は、上述したIPN構造型又はコポリマー型のポリマー以外に、本発明のポリマー材料の特性や効果が損なわれない範囲において、任意の他の構成成分を含むものであってもよく、限定はされない。
本発明のポリマー材料は、例えば、ソフトコンタクトレンズ素材、並びにバイオセンサー、バイオチップ、人工臓器、酸素富加膜及び細胞保存器具等の各種医療用等のデバイスの素材、眼内レンズ等に好ましく用いることができる。
特に、上述したIPN構造型のポリマーを含むポリマー材料は、優れた酸素透過性及び耐汚れ性に加えて、高い光学的透明性を保持するものであり、また表面はプラズマ処理等がない状態でも十分な親水性(ぬれ性)を有するものであるため、ソフトコンタクトレンズ素材の用途に好適である。
また、コポリマー型のポリマーを含むポリマー材料は、上述した用途の中でも、バイオセンサー等のデバイス用素材として有用である。 3-4) Polymer material and use thereof In addition to the above-mentioned IPN structure type or copolymer type polymer, the polymer material of the present invention may have any other configuration as long as the characteristics and effects of the polymer material of the present invention are not impaired. It may contain ingredients and is not limited.
The polymer material of the present invention is preferably used for, for example, soft contact lens materials, materials for various medical devices such as biosensors, biochips, artificial organs, oxygen-enriched membranes and cell storage devices, and intraocular lenses. Can do.
In particular, the polymer material containing the above-mentioned IPN structure type polymer retains high optical transparency in addition to excellent oxygen permeability and stain resistance, and the surface is not subjected to plasma treatment or the like. Since it has sufficient hydrophilicity (wetting property), it is suitable for the use of a soft contact lens material.
In addition, a polymer material including a copolymer type polymer is useful as a material for a device such as a biosensor among the applications described above.
本発明のポリマー材料は、上述したIPN構造型又はコポリマー型のポリマー以外に、本発明のポリマー材料の特性や効果が損なわれない範囲において、任意の他の構成成分を含むものであってもよく、限定はされない。
本発明のポリマー材料は、例えば、ソフトコンタクトレンズ素材、並びにバイオセンサー、バイオチップ、人工臓器、酸素富加膜及び細胞保存器具等の各種医療用等のデバイスの素材、眼内レンズ等に好ましく用いることができる。
特に、上述したIPN構造型のポリマーを含むポリマー材料は、優れた酸素透過性及び耐汚れ性に加えて、高い光学的透明性を保持するものであり、また表面はプラズマ処理等がない状態でも十分な親水性(ぬれ性)を有するものであるため、ソフトコンタクトレンズ素材の用途に好適である。
また、コポリマー型のポリマーを含むポリマー材料は、上述した用途の中でも、バイオセンサー等のデバイス用素材として有用である。 3-4) Polymer material and use thereof In addition to the above-mentioned IPN structure type or copolymer type polymer, the polymer material of the present invention may have any other configuration as long as the characteristics and effects of the polymer material of the present invention are not impaired. It may contain ingredients and is not limited.
The polymer material of the present invention is preferably used for, for example, soft contact lens materials, materials for various medical devices such as biosensors, biochips, artificial organs, oxygen-enriched membranes and cell storage devices, and intraocular lenses. Can do.
In particular, the polymer material containing the above-mentioned IPN structure type polymer retains high optical transparency in addition to excellent oxygen permeability and stain resistance, and the surface is not subjected to plasma treatment or the like. Since it has sufficient hydrophilicity (wetting property), it is suitable for the use of a soft contact lens material.
In addition, a polymer material including a copolymer type polymer is useful as a material for a device such as a biosensor among the applications described above.
以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例によって何ら限定されるものではない。
なお、本実施例において、以下の略称はそれぞれ以下の化合物名を意味するものとする。
SiMAA2:ビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレート
MPC:2-メタクリロイルオキシエチルホスホリルコリン
TEGDMA:トリエチレングリコールジメタクリレート
DMPA:2,2-ジメトキシ-2-フェニルアセトフェノン Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In the examples, the following abbreviations mean the following compound names, respectively.
SiMAA2: bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate MPC: 2-methacryloyloxyethyl phosphorylcholine TEGDMA: triethylene glycol dimethacrylate DMPA: 2,2-dimethoxy-2-phenylacetophenone
なお、本実施例において、以下の略称はそれぞれ以下の化合物名を意味するものとする。
SiMAA2:ビス(トリメチルシリルオキシ)メチルシリルプロピルグリセロールメタクリレート
MPC:2-メタクリロイルオキシエチルホスホリルコリン
TEGDMA:トリエチレングリコールジメタクリレート
DMPA:2,2-ジメトキシ-2-フェニルアセトフェノン Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In the examples, the following abbreviations mean the following compound names, respectively.
SiMAA2: bis (trimethylsilyloxy) methylsilylpropylglycerol methacrylate MPC: 2-methacryloyloxyethyl phosphorylcholine TEGDMA: triethylene glycol dimethacrylate DMPA: 2,2-dimethoxy-2-phenylacetophenone
<共重合ゲル(コポリマー型)の調製>
サンプル1-1:
SiMAA2 2.29mL、MPC 0.24g、TEGDMA 54μL、DMPA 62mgをイソプロピルアルコールで溶解させ、全量を4mLに調整した。溶液をPET板の間に挟み、25℃で30分間UV照射し共重合ゲルを作製した。得られたゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた(サンプル1-1)。
サンプル1-2、1-3、1-4:
上記サンプル1-1を調製したときの組成を下記表1のように変えた以外は、サンプル1-1と同様の方法で調製した。 <Preparation of copolymer gel (copolymer type)>
Sample 1-1:
SiMAA2 2.29 mL, MPC 0.24 g, TEGDMA 54 μL, DMPA 62 mg were dissolved in isopropyl alcohol to adjust the total volume to 4 mL. The solution was sandwiched between PET plates and UV irradiated at 25 ° C. for 30 minutes to prepare a copolymer gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 1-1).
Sample 1-2, 1-3, 1-4:
The sample 1-1 was prepared in the same manner as the sample 1-1 except that the composition was changed as shown in Table 1 below.
サンプル1-1:
SiMAA2 2.29mL、MPC 0.24g、TEGDMA 54μL、DMPA 62mgをイソプロピルアルコールで溶解させ、全量を4mLに調整した。溶液をPET板の間に挟み、25℃で30分間UV照射し共重合ゲルを作製した。得られたゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた(サンプル1-1)。
サンプル1-2、1-3、1-4:
上記サンプル1-1を調製したときの組成を下記表1のように変えた以外は、サンプル1-1と同様の方法で調製した。 <Preparation of copolymer gel (copolymer type)>
Sample 1-1:
SiMAA2 2.29 mL, MPC 0.24 g, TEGDMA 54 μL, DMPA 62 mg were dissolved in isopropyl alcohol to adjust the total volume to 4 mL. The solution was sandwiched between PET plates and UV irradiated at 25 ° C. for 30 minutes to prepare a copolymer gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 1-1).
Sample 1-2, 1-3, 1-4:
The sample 1-1 was prepared in the same manner as the sample 1-1 except that the composition was changed as shown in Table 1 below.
各種物性の測定(実施例3~7)においては、各々のサンプルを純水で十分に膨潤させて使用した。
In the measurement of various physical properties (Examples 3 to 7), each sample was used after sufficiently swollen with pure water.
なお、本願図面においては、サンプル1-1、1-2、1-3及び1-4は、それぞれ以下のように表記した。
サンプル1-1: SiMAA2-co-MPC(10)
サンプル1-2: SiMAA2-co-MPC(20)
サンプル1-3: SiMAA2-co-MPC(30)
サンプル1-4: SiMAA2-co-MPC(40)
また、本願図面中「SiMAA2」のみの表記は、MPCモノマーを使用せずに調製したSiMAA2の重合ゲル(ホモポリマー)を意味する。 In the drawings of the present application, Samples 1-1, 1-2, 1-3, and 1-4 are represented as follows.
Sample 1-1: SiMAA2-co-MPC (10)
Sample 1-2: SiMAA2-co-MPC (20)
Sample 1-3: SiMAA2-co-MPC (30)
Sample 1-4: SiMAA2-co-MPC (40)
In addition, the notation of “SiMAA2” only in the drawings of the present application means a polymer gel (homopolymer) of SiMAA2 prepared without using an MPC monomer.
サンプル1-1: SiMAA2-co-MPC(10)
サンプル1-2: SiMAA2-co-MPC(20)
サンプル1-3: SiMAA2-co-MPC(30)
サンプル1-4: SiMAA2-co-MPC(40)
また、本願図面中「SiMAA2」のみの表記は、MPCモノマーを使用せずに調製したSiMAA2の重合ゲル(ホモポリマー)を意味する。 In the drawings of the present application, Samples 1-1, 1-2, 1-3, and 1-4 are represented as follows.
Sample 1-1: SiMAA2-co-MPC (10)
Sample 1-2: SiMAA2-co-MPC (20)
Sample 1-3: SiMAA2-co-MPC (30)
Sample 1-4: SiMAA2-co-MPC (40)
In addition, the notation of “SiMAA2” only in the drawings of the present application means a polymer gel (homopolymer) of SiMAA2 prepared without using an MPC monomer.
<IPNゲル(IPN構造型)の調製>
サンプル2-1:
SiMAA2 5.19mLにTEGDMA 46μL、DMPA 50mgを溶解させ、溶液をPET板の間に挟み、25℃で30分間UV照射しSiMAA2ゲルを作製した。得られたSiMAA2ゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた。MPC 2.95g、TEGDMA 67μL、DMPA 77mgをイソプロピルアルコールに溶解させ、全量を10mLに調整した。このモノマー溶液に作製したSiMAA2ゲルを一晩25℃で浸漬させた。十分に膨潤したSiMAA2ゲルをPET板の間に挟み、25℃で30分間UV照射しIPNゲルを作製した。得られたゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた(サンプル2-1)。 <Preparation of IPN gel (IPN structure type)>
Sample 2-1:
In 5.19 mL of SiMAA2, 46 μL of TEGDMA and 50 mg of DMPA were dissolved, the solution was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare a SiMAA2 gel. The obtained SiMAA2 gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried. MPC 2.95 g, TEGDMA 67 μL and DMPA 77 mg were dissolved in isopropyl alcohol to adjust the total volume to 10 mL. The SiMAA2 gel prepared in this monomer solution was immersed at 25 ° C. overnight. A fully swollen SiMAA2 gel was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare an IPN gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 2-1).
サンプル2-1:
SiMAA2 5.19mLにTEGDMA 46μL、DMPA 50mgを溶解させ、溶液をPET板の間に挟み、25℃で30分間UV照射しSiMAA2ゲルを作製した。得られたSiMAA2ゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた。MPC 2.95g、TEGDMA 67μL、DMPA 77mgをイソプロピルアルコールに溶解させ、全量を10mLに調整した。このモノマー溶液に作製したSiMAA2ゲルを一晩25℃で浸漬させた。十分に膨潤したSiMAA2ゲルをPET板の間に挟み、25℃で30分間UV照射しIPNゲルを作製した。得られたゲルはイソプロピルアルコールと純水の混合溶媒800mL (50%/50% v/v)中で一晩浸漬させ未反応物を除去し、乾燥させた(サンプル2-1)。 <Preparation of IPN gel (IPN structure type)>
Sample 2-1:
In 5.19 mL of SiMAA2, 46 μL of TEGDMA and 50 mg of DMPA were dissolved, the solution was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare a SiMAA2 gel. The obtained SiMAA2 gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried. MPC 2.95 g, TEGDMA 67 μL and DMPA 77 mg were dissolved in isopropyl alcohol to adjust the total volume to 10 mL. The SiMAA2 gel prepared in this monomer solution was immersed at 25 ° C. overnight. A fully swollen SiMAA2 gel was sandwiched between PET plates, and UV irradiation was performed at 25 ° C. for 30 minutes to prepare an IPN gel. The obtained gel was immersed in 800 mL (50% / 50% v / v) of a mixed solvent of isopropyl alcohol and pure water overnight to remove unreacted substances and dried (Sample 2-1).
サンプル2-2、2-3及び2-4:
上記サンプル2-1を調製したときの組成を下記表2のように変えた以外は、サンプル2-1と同様の方法で調製した。 Samples 2-2, 2-3 and 2-4:
The sample 2-1 was prepared in the same manner as the sample 2-1, except that the composition was changed as shown in Table 2 below.
上記サンプル2-1を調製したときの組成を下記表2のように変えた以外は、サンプル2-1と同様の方法で調製した。 Samples 2-2, 2-3 and 2-4:
The sample 2-1 was prepared in the same manner as the sample 2-1, except that the composition was changed as shown in Table 2 below.
各種物性の測定(実施例3~7)においては、各々のサンプルを純水で十分に膨潤させて使用した。
In the measurement of various physical properties (Examples 3 to 7), each sample was used after sufficiently swollen with pure water.
なお、本願図面においては、サンプル2-1、2-2、2-3及び2-4は、それぞれ以下のように表記した。
サンプル2-1: SiMAA2-ipn-MPC(1.0M)
サンプル2-2: SiMAA2-ipn-MPC(1.5M)
サンプル2-3: SiMAA2-ipn-MPC(2.0M)
サンプル2-4: SiMAA2-ipn-MPC(2.5M) In the drawings of the present application, Samples 2-1, 2-2, 2-3, and 2-4 are represented as follows.
Sample 2-1: SiMAA2-ipn-MPC (1.0M)
Sample 2-2: SiMAA2-ipn-MPC (1.5M)
Sample 2-3: SiMAA2-ipn-MPC (2.0M)
Sample 2-4: SiMAA2-ipn-MPC (2.5M)
サンプル2-1: SiMAA2-ipn-MPC(1.0M)
サンプル2-2: SiMAA2-ipn-MPC(1.5M)
サンプル2-3: SiMAA2-ipn-MPC(2.0M)
サンプル2-4: SiMAA2-ipn-MPC(2.5M) In the drawings of the present application, Samples 2-1, 2-2, 2-3, and 2-4 are represented as follows.
Sample 2-1: SiMAA2-ipn-MPC (1.0M)
Sample 2-2: SiMAA2-ipn-MPC (1.5M)
Sample 2-3: SiMAA2-ipn-MPC (2.0M)
Sample 2-4: SiMAA2-ipn-MPC (2.5M)
<平衡含水率と表面接触角の評価>
実施例1及び2で調製した各サンプルを用いて、以下のように、平衡含水率及び表面接触角の評価を行った。
平衡含水率(EWC)は、乾燥状態でのゲルの重量Wdryと純水での膨潤状態での重量Wswellとを測定し、以下の式を用いて算出した。
<Evaluation of equilibrium moisture content and surface contact angle>
Using each sample prepared in Examples 1 and 2, the equilibrium water content and surface contact angle were evaluated as follows.
The equilibrium water content (EWC) was calculated using the following equation by measuring the weight W dry of the gel in a dry state and the weight W swell in a swollen state with pure water.
実施例1及び2で調製した各サンプルを用いて、以下のように、平衡含水率及び表面接触角の評価を行った。
平衡含水率(EWC)は、乾燥状態でのゲルの重量Wdryと純水での膨潤状態での重量Wswellとを測定し、以下の式を用いて算出した。
Using each sample prepared in Examples 1 and 2, the equilibrium water content and surface contact angle were evaluated as follows.
The equilibrium water content (EWC) was calculated using the following equation by measuring the weight W dry of the gel in a dry state and the weight W swell in a swollen state with pure water.
表面接触角(SCA)は、captive bubble法(図6参照)により純水中での静的接触角を測定した。
EWC及びSCAのいずれの測定も、各サンプルのサンプル数(n)は1で、各サンプル当たり5回ずつ測定して、その平均値を算出した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)についても同様に測定した。
以上の結果を図1に示した。 As the surface contact angle (SCA), the static contact angle in pure water was measured by the captive bubble method (see FIG. 6).
In each measurement of EWC and SCA, the number of samples (n) of each sample was 1, and the average value was calculated by measuring five times for each sample. For comparison, the same measurement was performed for SiMAA2 polymer gel (homopolymer).
The above results are shown in FIG.
EWC及びSCAのいずれの測定も、各サンプルのサンプル数(n)は1で、各サンプル当たり5回ずつ測定して、その平均値を算出した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)についても同様に測定した。
以上の結果を図1に示した。 As the surface contact angle (SCA), the static contact angle in pure water was measured by the captive bubble method (see FIG. 6).
In each measurement of EWC and SCA, the number of samples (n) of each sample was 1, and the average value was calculated by measuring five times for each sample. For comparison, the same measurement was performed for SiMAA2 polymer gel (homopolymer).
The above results are shown in FIG.
<光学的透明性の評価>
実施例1及び2で調製した各サンプルを用いて、以下のように、光学的透明性の評価を行った。
純水で平衡膨潤させた各サンプルを、スライドガラスではさみ、紫外分光計で300~700nmの波長領域での透過率を測定した。各サンプルは膨潤率の違いにより厚みが異なるため、Lambertの式により厚さ100μmでの透過率に換算した。また、比較のため、市販のOnedayACUVUE(登録商標)についても同様に測定した。
以上の結果を図2に示した。 <Evaluation of optical transparency>
Using each sample prepared in Examples 1 and 2, optical transparency was evaluated as follows.
Each sample which was equilibrated and swollen with pure water was sandwiched between glass slides, and the transmittance in the wavelength region of 300 to 700 nm was measured with an ultraviolet spectrometer. Since each sample had a different thickness due to a difference in swelling rate, it was converted to a transmittance at a thickness of 100 μm by the Lambert equation. For comparison, the same measurement was performed for commercially available Oneday ACUVUE (registered trademark).
The above results are shown in FIG.
実施例1及び2で調製した各サンプルを用いて、以下のように、光学的透明性の評価を行った。
純水で平衡膨潤させた各サンプルを、スライドガラスではさみ、紫外分光計で300~700nmの波長領域での透過率を測定した。各サンプルは膨潤率の違いにより厚みが異なるため、Lambertの式により厚さ100μmでの透過率に換算した。また、比較のため、市販のOnedayACUVUE(登録商標)についても同様に測定した。
以上の結果を図2に示した。 <Evaluation of optical transparency>
Using each sample prepared in Examples 1 and 2, optical transparency was evaluated as follows.
Each sample which was equilibrated and swollen with pure water was sandwiched between glass slides, and the transmittance in the wavelength region of 300 to 700 nm was measured with an ultraviolet spectrometer. Since each sample had a different thickness due to a difference in swelling rate, it was converted to a transmittance at a thickness of 100 μm by the Lambert equation. For comparison, the same measurement was performed for commercially available Oneday ACUVUE (registered trademark).
The above results are shown in FIG.
<圧縮特性の評価>
実施例1及び2で調製した各サンプルを用いて、以下のように、圧縮特性の評価を行った。
純水で膨潤させた各サンプルを、圧縮試験(サンプル t=5mm, 治具 φ=12mm, 試験速度1mm/min, n=8)にかけ、その強度及びヤング率(歪み=10~60%で計算)を測定した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、及び市販のACUVUE OASYS(登録商標)についても同様に測定した。
以上の結果を図3に示した。 <Evaluation of compression characteristics>
Using each sample prepared in Examples 1 and 2, the compression characteristics were evaluated as follows.
Each sample swollen with pure water is subjected to a compression test (sample t = 5mm, jig φ = 12mm, test speed 1mm / min, n = 8), and its strength and Young's modulus (strain = 10-60%) ) Was measured. For comparison, the same measurement was performed for a SiMAA2 polymer gel (homopolymer) and a commercially available ACUVUE OASYS (registered trademark).
The above results are shown in FIG.
実施例1及び2で調製した各サンプルを用いて、以下のように、圧縮特性の評価を行った。
純水で膨潤させた各サンプルを、圧縮試験(サンプル t=5mm, 治具 φ=12mm, 試験速度1mm/min, n=8)にかけ、その強度及びヤング率(歪み=10~60%で計算)を測定した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、及び市販のACUVUE OASYS(登録商標)についても同様に測定した。
以上の結果を図3に示した。 <Evaluation of compression characteristics>
Using each sample prepared in Examples 1 and 2, the compression characteristics were evaluated as follows.
Each sample swollen with pure water is subjected to a compression test (sample t = 5mm, jig φ = 12mm, test speed 1mm / min, n = 8), and its strength and Young's modulus (strain = 10-60%) ) Was measured. For comparison, the same measurement was performed for a SiMAA2 polymer gel (homopolymer) and a commercially available ACUVUE OASYS (registered trademark).
The above results are shown in FIG.
<酸素透過性の評価>
実施例1及び2で調製した各サンプルを用いて、以下のように、酸素透過性の評価を行った。
電極式測定法により、各サンプルの溶存酸素の膜透過性を測定した。各サンプル(ゲル)を境界として白金電極側に電解液(0.5M KClaq.)、外側に酸素を含む純水を接触させ、各サンプルを透過してきた酸素を電流変化によって測定した。測定値は、一般に、レンズの酸素透過性評価に用いられるDk値(barrer)を用いた。Dk値が大きいほど、酸素透過性に優れることを示す。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、市販のハイドロゲル(hydrogel)、及び市販のシリコンハイドロゲル(silicone hydrogel)についても同様に測定した。
以上の結果を図4に示した。 <Evaluation of oxygen permeability>
Using each sample prepared in Examples 1 and 2, oxygen permeability was evaluated as follows.
The membrane permeability of dissolved oxygen of each sample was measured by an electrode type measurement method. With each sample (gel) as a boundary, an electrolytic solution (0.5M KClaq.) Was brought into contact with the platinum electrode side, and pure water containing oxygen was contacted on the outside, and oxygen permeated through each sample was measured by a change in current. As a measurement value, a Dk value (barrer) generally used for evaluating oxygen permeability of a lens was used. It shows that it is excellent in oxygen permeability, so that Dk value is large. For comparison, the same measurement was performed for SiMAA2 polymer gel (homopolymer), commercially available hydrogel, and commercially available silicon hydrogel.
The above results are shown in FIG.
実施例1及び2で調製した各サンプルを用いて、以下のように、酸素透過性の評価を行った。
電極式測定法により、各サンプルの溶存酸素の膜透過性を測定した。各サンプル(ゲル)を境界として白金電極側に電解液(0.5M KClaq.)、外側に酸素を含む純水を接触させ、各サンプルを透過してきた酸素を電流変化によって測定した。測定値は、一般に、レンズの酸素透過性評価に用いられるDk値(barrer)を用いた。Dk値が大きいほど、酸素透過性に優れることを示す。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、市販のハイドロゲル(hydrogel)、及び市販のシリコンハイドロゲル(silicone hydrogel)についても同様に測定した。
以上の結果を図4に示した。 <Evaluation of oxygen permeability>
Using each sample prepared in Examples 1 and 2, oxygen permeability was evaluated as follows.
The membrane permeability of dissolved oxygen of each sample was measured by an electrode type measurement method. With each sample (gel) as a boundary, an electrolytic solution (0.5M KClaq.) Was brought into contact with the platinum electrode side, and pure water containing oxygen was contacted on the outside, and oxygen permeated through each sample was measured by a change in current. As a measurement value, a Dk value (barrer) generally used for evaluating oxygen permeability of a lens was used. It shows that it is excellent in oxygen permeability, so that Dk value is large. For comparison, the same measurement was performed for SiMAA2 polymer gel (homopolymer), commercially available hydrogel, and commercially available silicon hydrogel.
The above results are shown in FIG.
<タンパク質吸着試験>
実施例1及び2で調製した各サンプルを用いて、以下のように、タンパク質吸着試験を行った。
PBSで膨潤させた各サンプルを、アルブミン 4.5mg/mL PBS溶液中に浸漬し、リンス後、硫酸ドデシルナトリウム 1wt% PBS溶液中で20分間超音波照射し、上澄みのタンパク質濃度を、microBCA(登録商標)により定量することで測定した。吸着条件は、37.0℃、15分間で行った。各サンプルのサンプル数(n)は3として測定し、その平均値を算出した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、及び市販のACUVUE OASYS(登録商標)についても同様に測定した。
以上の結果を図5に示した。 <Protein adsorption test>
Using each sample prepared in Examples 1 and 2, a protein adsorption test was performed as follows.
Each sample swollen with PBS was immersed in an albumin 4.5 mg / mL PBS solution, rinsed, and then subjected to ultrasonic irradiation for 20 minutes in a 1 wt% sodium dodecyl sulfate solution. The supernatant protein concentration was determined by microBCA (registered trademark). ) And determined by quantification. The adsorption conditions were 37.0 ° C. and 15 minutes. The number of samples (n) of each sample was measured as 3, and the average value was calculated. For comparison, the same measurement was performed for a SiMAA2 polymer gel (homopolymer) and a commercially available ACUVUE OASYS (registered trademark).
The above results are shown in FIG.
実施例1及び2で調製した各サンプルを用いて、以下のように、タンパク質吸着試験を行った。
PBSで膨潤させた各サンプルを、アルブミン 4.5mg/mL PBS溶液中に浸漬し、リンス後、硫酸ドデシルナトリウム 1wt% PBS溶液中で20分間超音波照射し、上澄みのタンパク質濃度を、microBCA(登録商標)により定量することで測定した。吸着条件は、37.0℃、15分間で行った。各サンプルのサンプル数(n)は3として測定し、その平均値を算出した。また、比較のため、SiMAA2の重合ゲル(ホモポリマー)、及び市販のACUVUE OASYS(登録商標)についても同様に測定した。
以上の結果を図5に示した。 <Protein adsorption test>
Using each sample prepared in Examples 1 and 2, a protein adsorption test was performed as follows.
Each sample swollen with PBS was immersed in an albumin 4.5 mg / mL PBS solution, rinsed, and then subjected to ultrasonic irradiation for 20 minutes in a 1 wt% sodium dodecyl sulfate solution. The supernatant protein concentration was determined by microBCA (registered trademark). ) And determined by quantification. The adsorption conditions were 37.0 ° C. and 15 minutes. The number of samples (n) of each sample was measured as 3, and the average value was calculated. For comparison, the same measurement was performed for a SiMAA2 polymer gel (homopolymer) and a commercially available ACUVUE OASYS (registered trademark).
The above results are shown in FIG.
Claims (11)
- ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有する、ポリマー材料。 A polymer material containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
- ホスホリルコリン基を含む側鎖を有するモノマーユニットが、下記一般式(1):
で示される構造を有するものである、請求項1記載のポリマー材料。 A monomer unit having a side chain containing a phosphorylcholine group has the following general formula (1):
The polymer material according to claim 1, which has a structure represented by: - シロキサン基を含む側鎖を有するモノマーユニットが、当該側鎖の末端に、シロキサン基を含有する基を有するものである、請求項1~3のいずれか1項に記載のポリマー材料。 The polymer material according to any one of claims 1 to 3, wherein the monomer unit having a side chain containing a siloxane group has a group containing a siloxane group at the end of the side chain.
- シロキサン基を含む側鎖を有するモノマーユニットが、下記一般式(3):
で示される構造を有するものである、請求項1~4のいずれか1項に記載のポリマー材料。 A monomer unit having a side chain containing a siloxane group has the following general formula (3):
The polymer material according to any one of claims 1 to 4, which has a structure represented by: - ゲル状のものである、請求項1~6記載のポリマー材料。 The polymer material according to claims 1 to 6, which is a gel.
- ホスホリルコリン基を含む側鎖を有するモノマーユニットを含有するポリマーと、シロキサン基を含む側鎖を有するモノマーユニットを含有するポリマーとが、相互侵入網目構造を形成してなるポリマーを含む、請求項1~7のいずれか1項に記載のポリマー材料。 The polymer containing a monomer unit having a side chain containing a phosphorylcholine group and the polymer containing a monomer unit having a side chain containing a siloxane group include a polymer formed by forming an interpenetrating network structure. 8. The polymer material according to any one of 7 above.
- ホスホリルコリン基を含む側鎖を有するモノマーユニットと、シロキサン基を含む側鎖を有するモノマーユニットとを含有するコポリマーを含む、請求項1~7のいずれか1項に記載のポリマー材料。 The polymer material according to any one of claims 1 to 7, comprising a copolymer containing a monomer unit having a side chain containing a phosphorylcholine group and a monomer unit having a side chain containing a siloxane group.
- 請求項8記載のポリマー材料を含む、コンタクトレンズ用素材。 A contact lens material comprising the polymer material according to claim 8.
- 請求項9記載のポリマー材料を含む、バイオセンサー用素材。 A biosensor material comprising the polymer material according to claim 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010537816A JPWO2010055914A1 (en) | 2008-11-14 | 2009-11-13 | Polymer material with excellent oxygen permeability and dirt resistance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-292337 | 2008-11-14 | ||
JP2008292337 | 2008-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010055914A1 true WO2010055914A1 (en) | 2010-05-20 |
Family
ID=42170044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069369 WO2010055914A1 (en) | 2008-11-14 | 2009-11-13 | Polymer material having excellent oxygen permeability and antifouling property |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010055914A1 (en) |
WO (1) | WO2010055914A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011246666A (en) * | 2010-05-31 | 2011-12-08 | Nof Corp | Phosphoryl choline group-containing (meth)acrylate |
US20130059926A1 (en) * | 2011-09-01 | 2013-03-07 | Michael Driver | Methods for producing biocompatible materials |
US8980972B2 (en) | 2011-11-10 | 2015-03-17 | Vertellus Specialties Inc. | Polymerisable material |
US9006305B2 (en) | 2011-09-01 | 2015-04-14 | Vertellus Specialties Inc. | Biocompatible material |
WO2016163435A1 (en) * | 2015-04-07 | 2016-10-13 | 国立大学法人東京大学 | Surface treatment agent and surface treatment method |
US20190023891A1 (en) * | 2017-07-18 | 2019-01-24 | Novartis Ag | Phosphorylcholine-containing poly(meth)acrylamide-based copolymers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09296019A (en) * | 1996-05-08 | 1997-11-18 | Nof Corp | Block copolymer and medical material |
JP2007155387A (en) * | 2005-12-01 | 2007-06-21 | Sumitomo Bakelite Co Ltd | Biochip and its use method |
JP2007197513A (en) * | 2006-01-24 | 2007-08-09 | Nof Corp | Transparent liquid composition and polymer |
JP2007314723A (en) * | 2006-05-29 | 2007-12-06 | Nof Corp | Additive for use in surface segregation plastic, and use thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4233251B2 (en) * | 2001-11-02 | 2009-03-04 | 一彦 石原 | Method for solubilizing poorly water-soluble compounds with a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate |
-
2009
- 2009-11-13 WO PCT/JP2009/069369 patent/WO2010055914A1/en active Application Filing
- 2009-11-13 JP JP2010537816A patent/JPWO2010055914A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09296019A (en) * | 1996-05-08 | 1997-11-18 | Nof Corp | Block copolymer and medical material |
JP2007155387A (en) * | 2005-12-01 | 2007-06-21 | Sumitomo Bakelite Co Ltd | Biochip and its use method |
JP2007197513A (en) * | 2006-01-24 | 2007-08-09 | Nof Corp | Transparent liquid composition and polymer |
JP2007314723A (en) * | 2006-05-29 | 2007-12-06 | Nof Corp | Additive for use in surface segregation plastic, and use thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011246666A (en) * | 2010-05-31 | 2011-12-08 | Nof Corp | Phosphoryl choline group-containing (meth)acrylate |
US20130059926A1 (en) * | 2011-09-01 | 2013-03-07 | Michael Driver | Methods for producing biocompatible materials |
US8980956B2 (en) * | 2011-09-01 | 2015-03-17 | Vertellus Specialities Inc. | Methods for producing biocompatible materials |
US9006305B2 (en) | 2011-09-01 | 2015-04-14 | Vertellus Specialties Inc. | Biocompatible material |
US8980972B2 (en) | 2011-11-10 | 2015-03-17 | Vertellus Specialties Inc. | Polymerisable material |
WO2016163435A1 (en) * | 2015-04-07 | 2016-10-13 | 国立大学法人東京大学 | Surface treatment agent and surface treatment method |
JP2016199620A (en) * | 2015-04-07 | 2016-12-01 | 国立大学法人 東京大学 | Surface treatment agent and surface treatment method |
US20190023891A1 (en) * | 2017-07-18 | 2019-01-24 | Novartis Ag | Phosphorylcholine-containing poly(meth)acrylamide-based copolymers |
US10676608B2 (en) * | 2017-07-18 | 2020-06-09 | Alcon Inc. | Phosphorylcholine-containing poly(meth)acrylamide-based copolymers |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010055914A1 (en) | 2012-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102371794B1 (en) | Polymer Compositions Containing Grafted Polymer Networks and Methods of Making and Using the Same | |
KR102452750B1 (en) | Triblock prepolymers and their use in silicone hydrogels | |
WO2010055914A1 (en) | Polymer material having excellent oxygen permeability and antifouling property | |
CN101542321B (en) | Contact lens | |
DE60103621T2 (en) | NETWORKABLE OR POLYMERIZABLE PREPOLYMERS | |
AU2009299415B2 (en) | Hydrophilic silicone monomers, process for their preparation and thin films containing the same | |
AU2019213690B2 (en) | Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use | |
TWI813663B (en) | Phosphocholine-containing polysiloxane monomer | |
US20050176911A1 (en) | (Meth)acrylamide monomers containing hydroxy and silicone functionalities | |
KR20150023484A (en) | Polymers and nanogel materials and methods for making and using the same | |
RU2606127C2 (en) | Macro initiator, containing hydrophobic segment | |
US10160854B1 (en) | Hydrogel materials | |
TW202104296A (en) | Monomer composition for contact lenses, polymer for contact lenses and method for producing same, and contact lens and method for producing same | |
RU2648073C2 (en) | Silicone-containing contact lenses with reduced amount of silicone on the surface | |
WO2021132161A1 (en) | Phosphorylcholine group-containing polysiloxane monomer | |
JP6857784B2 (en) | Polymer material | |
Wang et al. | UV-curing of simultaneous interpenetrating network silicone hydrogels with hydrophilic surface | |
JP6974633B2 (en) | Polymer material | |
TW202233638A (en) | Monomer composition for contact lens, polymer for contact lens, and contact lens and method for manufacturing same | |
JPH04252210A (en) | Fluorine-containing methacrylate, its polymer and material for water-containing soft contact lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09826160 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010537816 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09826160 Country of ref document: EP Kind code of ref document: A1 |