WO2010055186A1 - Procedure for the production of transgenic plants presenting high antioxidant compound content, high antioxidant capacity and resistance to browning - Google Patents

Procedure for the production of transgenic plants presenting high antioxidant compound content, high antioxidant capacity and resistance to browning Download PDF

Info

Publication number
WO2010055186A1
WO2010055186A1 PCT/ES2009/070496 ES2009070496W WO2010055186A1 WO 2010055186 A1 WO2010055186 A1 WO 2010055186A1 ES 2009070496 W ES2009070496 W ES 2009070496W WO 2010055186 A1 WO2010055186 A1 WO 2010055186A1
Authority
WO
WIPO (PCT)
Prior art keywords
ugft
plants
antioxidant
polyphenols
antioxidant compounds
Prior art date
Application number
PCT/ES2009/070496
Other languages
Spanish (es)
French (fr)
Inventor
Francisco José MUÑOZ PÉREZ
Miren Edurne BAROJA FERNÁNDEZ
Francisco Javier Pozueta Romero
Original Assignee
Iden Biotechnology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iden Biotechnology, S.L. filed Critical Iden Biotechnology, S.L.
Publication of WO2010055186A1 publication Critical patent/WO2010055186A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)

Definitions

  • the present invention relates to a process for the production of transgenic plants that have a high antioxidant compound content, high antioxidant capacity and resistance to browning, as well as to the transgenic plants themselves. Therefore, the present invention can be encompassed within the field of engineering genetics, plant physiology, food technology and nutraceuticals
  • UDP-glucose D-fructose-2-glucosyl transferase is highly regulated and catalyzes the production of UDPGlucose (UDPG) and fructose from the sucrose and UDP (3-6)
  • UDPGlucosa is the glucose donor molecule for the transglycosylation reactions involved in the biosynthesis of ghcolipids, glycoproteins and cell wall polysaccharides such as cellulose and callose (1, 7-9) ( Figure 14)
  • UDPGlucose acts as a glucose donor for the glycosylation reactions of antioxidant substances such as polyphenols and carotenoids
  • the present invention describes for the first time the production of plants with (a) high content of UDPGlucose, (b) high content of polyphenols and carotenoids, (c) high antioxidant capacity and (d) low browning effect (browning effect) as a consequence of the UGFT activity producing UDPGlucosa.
  • the present invention relates to a process for the production of transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning, by increasing the UGFT activity producing UDPGlucose in plants. Furthermore, the present invention relates to the transgenic plants themselves characterized by said properties.
  • the technical effects shown in the present invention can be extrapolated to any type of organ of the plant such as: tubers, leaves, fruits and seeds, as well as to any type of plant such as: potato, tobacco, tomato, rice, barley, wheat and corn.
  • the results shown in the present invention were achieved, both by constitutively expressing UGFT under the control of the 35S promoter ( Figure 1 A, B and C), and by expressing UGFT under the control of a tuber-specific promoter (B33 promoter of the patatin gene ) ( Figure 2). It should be noted that the constitutive expression was particularly preferred since with this it was possible to analyze changes in the antioxidant activity in various organs of the plant such as leaves and tubers.
  • Transgenic plant plant whose genome has been modified by genetic engineering with the aim of achieving different biological characteristics and / or improved compared to those of the wild plant (WT).
  • Transformed plant cell they are plant cells that present a genetic alteration resulting from the introduction and expression of external genetic material in their genome.
  • Antioxidant compounds are substances capable of retarding or preventing the oxidation of other molecules. They are responsible for capturing the free radicals produced in the oxidation reactions of the metabolism. These compounds are widely used in the treatment of cerebrovascu- lar and neurodegenerative diseases, as well as dietary supplements, food preservatives, cosmetics and for the prevention of the degradation of rubber and gasoline.
  • the antioxidant compounds are selected among polyphenols and carotenoids.
  • Polyphenols are chemical substances present in plants and characterized by the presence of more than one phenol group (group -OH linked to an aromatic ring) per molecule. The presence of these phenolic rings confers the ability to act as antioxidants since they can pick up oxygen radicals.
  • Carotenoids are organic pigments that are found naturally in plants and other photosynthetic organisms. Most of the carotenoids are tetraterpenoids, composed of 40 carbon atoms formed by eight isoprenoid units and contain rings at one or both ends of the molecule. They can function as antioxidants, protecting against auto-oxidation.
  • Anthocyanins polyphenolic organic pigments that provide coloration to many plants and especially to many flowers. Its chemical structure consists of a flavial group formed by a benzopyran ring attached to a phenolic ring. They have antioxidant properties avoiding the production of free radicals.
  • the present invention refers to the over-expression of the UGFT enzyme, by way of example, when the production of UDPGlucose in the tubers of potato plants is greater than 710 mU / g (fresh weight) (FIG. 3).
  • this expression is directly related to a statistically significant value, higher than the values observed in WT plants grown under the same conditions and at the same time.
  • the present invention refers to "high content of total polyphenols", by way of illustration, when this is higher than 0.19 mg GAE / g (fresh weight) in the fleshy part of the tubers of the transgenic potato plants that express UGFT constitutively and superior to 0.52 mg GAE / g (fresh weight) in the skin of the tubers of the transgenic potato plants that express UGFT constitutively ( Figure 5 and 6).
  • the present invention refers to "high anthocyanin content", by way of illustration, when this is higher than 4.0 mg / g
  • the present invention refers to "high content of carotenoids" when it is higher, for example, of 1.0 ⁇ g / g fresh weight in tubers of transgenic potato plants that express UGFT constitutively ( Figure 8).
  • High antioxidant capacity as used in the present invention, this expression is directly related to a statistically significant value, higher than the values observed in WT plants grown under the same conditions and at the same time.
  • the present invention refers to "high antioxidant capacity", by way of illustration, when this is higher than 6.8 ⁇ mol Trolox eq / g fresh weight in the fleshy part of the tubers of transgenic potato plants that express UGFT constitutively ( Figure 9) and superior to 12.4 ⁇ mol Trolox eq / g fresh weight in the skin of the tubers of transgenic potato plants that express UGFT constitutively ( Figure 10).
  • Figure 1 Construction steps of the expression plasmid pBIN35S-UGFT-NOS.
  • FIG. 3 UGFT activity in tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of potato plants that express UGFT constitutively after integrating the 35S-UGFT-NOS construct into its genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • the activity is referred to in milliunits (mU) per gram of fresh weight (y axis).
  • the unit is defined as the amount of UGFT needed to produce a micromole of UDPGlucose per minute.
  • Figure 4 Content in UDPGlucose (nmol / g fresh weight) in tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • FIG. 5 Content of total polyphenols (in mg equivalents of gallic acid (GAE) / g fresh weight) in the fleshy part of tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of potato plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • GENE gallic acid
  • Figure 6 Content of total polyphenols (in mg GAE / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers of potato plants that constitutively express UGFT after integrating into their genome Ia 35S-UGFT-NOS construction after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • Figure 7 Content of total anthocyanins (in mg / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers potato plants that constitutively express UGFT after integrating the 35S construction into their genome -UGFT- NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • Figure 8 Content of total carotenoids (in ⁇ g equivalents of beta-carotene ( ⁇ CE) / g fresh weight) in tubers of wild potato plants or controls (WT) and potato plants that constitutively express UGFT after integrating the construction into their genome 35S-UGFT-NOS (by action of the Agrobacterium tumefaciens strain CECT: 5851).
  • Figure 9 Content of total carotenoids (in ⁇ g equivalents of beta-carotene ( ⁇ CE) / g fresh weight) in tubers of wild potato plants or controls (WT) and potato plants that constitutively express UGFT after integrating the construction into their genome 35S-UGFT-NOS (by action of the Agrobacterium tumefaciens strain CECT: 5851).
  • Antioxidant capacity (referred to ⁇ mol equivalent of Trolox / g fresh weight) in the fleshy part of tubers of wild potato plants or controls (WT) and in the fleshy part of tubers of potato plants constitutively expressing UGFT after integrating in its genome Ia construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • FIG. 10 Antioxidant capacity (referred to ⁇ mol equivalent of Trolox / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers of potato plants constitutively expressing UGFT after integrating into their genome Ia construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • Antioxidant capacity (referred to ⁇ mol equivalent of Trolox / g fresh weight) in leaves of wild potato plants or controls (WT) and potato plants constitutively expressing UGFT after integrating into their genome the construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT.5851.
  • FIG. 12 Polyphenol oxidase activity (in Units / g fresh weight) (A) in the fleshy part and (B) in the skin of tubers of wild potato plants or controls (WT) and in the fleshy part and in the skin of tubers of potato plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
  • Figure 13 Effect of browning on tubers of wild potato plants or controls (WT) and on tubers of potato plants constitutively expressing UGFT after mechanical cutting and exposure to air for 28 hours.
  • Figure 14 Proposed mechanisms for the conversion of sucrose into cell wall polysaccharides, glycoproteins and glycosylated polyphenols in plants.
  • UGFT has been expressed constitutively by the action of the 35S constitutive promoter of tobacco mosaic virus.
  • the 35S-UGFT-NOS construction was introduced into the genome of the potato (Solanum tuberosum) whose design is detailed below.
  • two specific primers corresponding to the 5 ' and 3 ' ends of the gene were created, whose sequences are SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • UGFTX a 2418 base pair DNA fragment, designated with UGFTX, was amplified by conventional PCR methods from a potato leaf cDNA library.
  • p35S-UGFT-NOS was digested sequentially with the enzymes Notl, T4 DNA polymerase and HindIII and was cloned into the binary plasmid pBIN20 ( Figure 1B) (23) that had previously been digested sequentially with the enzymes EcoRI, T4 DNA polymerase and Hindlll.
  • the plasmid thus obtained was designated pBIN35S-UGFT-NOS ( Figure 1C), which was introduced by electroporation in the A. tumefaciens strain suitable for transforming plants according to conventional protocols.
  • pBIN35S-UGFT-NOS was introduced by electroporation into A. tumefaciens with deposit number CECT 5851, which acted as transfer vector of the 35S-UGFT-NOS construct to the genome nuclear potato when used by conventional methods of genetic transformation of potatoes (24).
  • UGFT has been expressed specifically in the potato tuber by the action of the B33 promoter that governs the expression of a gene coding for the patatin (24).
  • the B33-UGFT construction was introduced into the potato genome (Solanum tuberosum), the design of which is detailed below.
  • primers SEQ ID NO: 4 and SEQ ID NO: 5 a DNA fragment of 2418 base pairs was amplified by PCR from the p35S-UGFT-NOS plasmid.
  • Such a PCR fragment was introduced into the pDONR / Zeo plasmid (Invitrogen) by a Gateway BP recombination reaction giving rise to the pDONR-UGFT construct, which was amplified in the host bacterium TOP 10.
  • the PCR was amplified by PCR.
  • B33 promoter of the patatin using the specific primers corresponding to the 5 ' and 3 ' ends of the promoter whose sequences are SEQ ID NO: 6 and SEQ ID NO: 7, respectively.
  • the PCR fragment obtained contains 1551 base pairs and was introduced into the plasmid pDONR / P4-P1 R (Invitrogen) by a recombination reaction Gateway BP giving rise to the construction pDONR-B33, which was amplified in the host bacterium TOP 10.
  • the B33 promoter and UGFT were transferred to the expression plasmid pKAN R4-R2 to produce plasmid pKAN-B33-UGFT (also designated pKAN-B33-SuSy).
  • the plasmid thus obtained was introduced by electroporation in the A. tumefaciens strain suitable for transforming plants according to conventional protocols.
  • B33-UGFT was introduced by electroporation into A. tumefaciens with the deposit number DSM 22756, which acted as transfer vector of the B33-UGFT construction to the potato nuclear genome at be used by conventional methods of genetic transformation of potato (24).
  • Controlled potato plants (WT) not transformed and lines 4, 5, 6 and 12 constitutively expressing UGFT were used as a result of the integration in their genome of the construction 35S-UGFT-NOS.
  • Transgenic potato plants with reduced UGFT activity were also used (21). The plants were cultivated between May and September
  • the powder resulting after the homogenization of the fleshy part and / or the skin of the tuber with liquid nitrogen was resuspended at 4 0 C in 100 mM HEPES (pH 7.5), 2 mM EDTA and 5 mM dithiothreitol (5 mL / gram powder).
  • the UGFT activity was measured as described in the literature (25). Briefly, the plant homogenate was incubated for 5 minutes at 37 0 C in 50 mM HEPES (pH 7.0), 1 mM MgCl 2, 15 mM KCI, 50 mM sucrose and 2 mM UDP. After stopping the reaction at 100 0 C the amount of UDPglucose produced was determined using an HPLC system Waters Associates' s adjusted to a Partisil SAX-10-column.
  • the UDPGlucose in the potato tuber powder obtained after homogenization with liquid nitrogen was extracted and measured as described in the literature (25). For this, 0.5 g of the frozen powder was resuspended in 0.4 ml_ of 1.4 M HCIO 4 , left at 4 0 C for 1 hour and centrifuged at 10,000 xg for 30 minutes. The supernatant was neutralized with K 2 CO 3 and centrifuged at 10,000 xg for 30 minutes. The UDPGlucose existing in the supernatant was measured using a Waters Associate ' s HPLC system fitted to a Partisil-10-SAX column. The total polyphenols existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the modified Folin-Ciocalteu method described in the literature (26).
  • the total carotenoids existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the method described in (27), measuring the absorbance of the organic extract at 450 nm using a calibration curve of ⁇ -carotene.
  • the total anthocyanins existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured using the pH-differential method (28).
  • the antioxidant capacity of the tuber powder obtained after homogenization in liquid nitrogen was measured using the TEAC (Trolox equivalent antioxidant capacity) method as described in the literature (29) using Trolox as standard and 2,2 ' -acinobis- ( 3-ethylbenzothiazolin-6-sulfonate (ABTS).
  • the polyphenol oxidase activity of the tuber powder obtained after homogenization in liquid nitrogen was measured according to the method described in (30).
  • the first object of the present invention refers to a process for the production of transgenic plants with a high content of antioxidant compounds, high antioxidant capacity and resistance to browning, in relation to the phenotype of the wild plant (WT), which comprises the transformation of the wild plant (WT) with an expression vector that over-expresses the UGFT enzyme.
  • the method is characterized in that the antioxidant compounds are preferably selected from among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • the method of the invention is characterized in that the expression vectors used for the transformation of the plants are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefaciens DSM 22756, which comprise the plasmids pBIN35S-UGFT-NOS and pKAN-B33 -UGFT respectively.
  • Another object of the present invention relates to the use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relationship to the phenotype of the wild plant.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • a further object of the present invention relates to the use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for the production of transformed plant cells which have a high content of antioxidant compounds and a high antioxidant capacity in relation to the untransformed cells
  • the antioxidant compounds are preferably selected from polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • a further object of the present invention refers to the expression vector Agrobacterium tumefaciens DSM 22756, characterized in that it comprises the plasmid pKAN-B33-UGFT that over-expresses the UGFT enzyme, as well as its use for the production of transformed plant cells that have high content in antioxidant compounds and high antioxidant capacity in relation to untransformed cells.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • the expression vector Agrobacterium tumefaciens DSM 22756 is used for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relation to the phenotype of the wild plant.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • Another object of the present invention relates to the transgenic plant transformed with an expression vector that over-expresses the UGFT enzyme, characterized by having a high content of antioxidant compounds, high antioxidant capacity and resistance to browning with respect to the non-transformed wild plant.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • the transgenic plant is characterized in that the expression vectors used are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefacien DSM 22756, comprising the plasmids pBIN35S-UGFT-NOS and pKAN-B33-UGFT, respectively .
  • the transgenic plant is characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
  • Another object of the present invention relates to plant cells transformed with an expression vector that over-expresses the UGFT enzyme, characterized by having a high content of antioxidant compounds and high antioxidant capacity compared to untransformed cells.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • the plant cell is characterized in that the expression vectors used are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefacien DSM 22756, which comprise the plasmids pBIN35S-UGFT-NOS and pKAN-B33-UGFT, respectively.
  • the plant cell is characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
  • Another object of the present invention refers to the use of the transgenic plants, mentioned above for obtaining high concentrations of UDPGlucosa and high levels of antioxidant compounds.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
  • the last object of the present invention refers to the use of the transformed plant cells, mentioned above, for obtaining high concentrations of UDPGlucose and high levels of antioxidant compounds.
  • the antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. DEPOSIT OF MICROORGANISMS ACCORDING TO THE BUDAPEST TREATY
  • the microorganisms used in the present invention were deposited in the Spanish Type Culture Collection (CECT), located in the Research Building of the University of Valencia, Burjassot Campus, Burjassot 46100 (Valencia, Spain) with deposit number CECT 5851 and in the "German National Resource Center for Biological Material", located in the DMSZ, Mascheroder Weg 1 b D-38124 (Braunschweig, Germany) with deposit number DSM 22756.
  • CECT Spanish Type Culture Collection
  • Example 1 Process for obtaining transgenic potato plants with a high content of antioxidants, high antioxidant capacity and resistance to browning as a consequence of the increase of the UGFT activity producing UDPGlucosa
  • UGFT has been expressed constitutively by the action of the 35S constitutive promoter of tobacco mosaic virus.
  • the 35S-UGFT-NOS construction was introduced into the genome of the potato (Solanum tuberosum) whose design is detailed below.
  • UGFTX The nucleotide sequence of UGFTX is SEQ ID NO: 3 which is different from UGFTX (access number in GenBank U24087).
  • the introduction of UGFT in pDONR / Zeo and the subsequent recombination with pDONR-B33 gave rise to the production of the plasmid pKAN-B33-UGFT, whose restriction map and way of obtaining it is represented in Figure 2.
  • p35S-UGFT-NOS was digested sequentially with the enzymes Notl, T4 DNA polymerase and HindIII and was cloned into the binary plasmid pBIN20 ( Figure 1B) (23) that had previously been digested sequentially with the enzymes EcoRI, T4 DNA polymerase and Hindlll.
  • the plasmid thus obtained was designated pBIN35S-UGFT-NOS ( Figure 1C), which was introduced by electroporation in the A.
  • tumefaciens strain suitable for transforming plants according to conventional protocols for example, for the production of transgenic potato plants that overexpress constitutively UGFT, pBIN35S-UGFT-NOS was introduced by electroporation into A. tumefaciens with deposit number CECT 5851, which acted as transfer vector of the construction 35S-UGFT-NOS to the nuclear potato genome when used by conventional methods of genetic transformation of potatoes (24).
  • pKAN-B33-UGFT was introduced by electroporation into A. tumefaciens with the deposit number DSM 22756, which acted as vector of transfer of the B33-UGFT construct to the nuclear genome of the potato.
  • Example 2 Cultivation and processing of transgenic potato plants with high content of antioxidants, high antioxidant capacity and resistance to browning as a consequence of the increase of the UGFT activity producing UDPGlucosa
  • Controlled potato plants (WT) not transformed and lines 4, 5, 6 and 12 constitutively expressing UGFT were used as a result of the integration in their genome of the construction 35S-UGFT-NOS.
  • Transgenic potato plants were also used reduced UGFT activity (21).
  • the plants were cultivated between May and September of 2006 and of 2007 in a plot of the term 25 of Sartaguda (Navarra, Spain).
  • the plants were randomly distributed in plots of 50 square meters, making use of 30 plants per line.
  • the separation between lanes was 90 cm.
  • the separation between plant and plant of the same lane was 35 cm.
  • Leaves and tubers were collected. From the collected tubers, those that had an approximate weight of 100 grams were selected and cylinders were obtained that crossed the entire tubercle using a cylindrical steel perforator (2 cm in diameter). Such cylinders were frozen in liquid nitrogen and pulverized using a mortar.
  • Example 3 Measurement of the UGFT activity and the concentration of UDPGlucose in tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to potato plants not transformed.
  • the powder resulting after the homogenization of the leaf and the fleshy part and / or the skin of the tuber with liquid nitrogen was resuspended at 4 0 C in 100 mM HEPES (pH 7.5), 2 mM EDTA and 5 mM dithiothreitol (5 mL / gram powder).
  • the UGFT activity was measured as described in the literature (25). Briefly, the plant homogenate was incubated for 5 minutes at 37 0 C in 50 mM HEPES (pH 7.0), 1 mM MgCl 2, 15 mM KCI, 50 mM sucrose and 2 mM UDP.
  • the UGFT activity in the tubers of any of the plants that express UGFT constitutively is 1.5-2 times higher than that existing in the same organ of a control plant (WT) grown under the same conditions and at the same time.
  • the tubers of the anti-UGFT plants showed an activity 3-4 times lower than that observed in tubers of the WT plants grown under the same conditions and at the same time.
  • the tubers of plants that constitutively express UGFT accumulate levels of UDPGlucosa (135-160 nmol / g fresh weight) significantly higher than those observed in tubers of WT plants (95-105 nmol / g fresh weight) ( Figure 4) grown under the same conditions and at the same time.
  • potato tubers of UGFT antisense plants accumulate levels of UDPGlucose (15-30 nmol / g fresh weight) significantly lower than those observed in tubers of WT plants grown under the same conditions and at the same time.
  • Example 4 Measurement of the concentration of total polyphenols, total carotenoids and anthocyanins in the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
  • the total polyphenols existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the modified Folin-Ciocalteu method described in the literature (26).
  • the fleshy part of the tubers of plants that express UGFT constitutively accumulate levels of polyphenols (0.2-0.25 mg GAE / g fresh weight) significantly higher than those observed in tubers of WT plants (0.17-0.19 GAE / g fresh weight), grown in the same conditions and at the same time ( Figure 5).
  • the fleshy part of potato tubers of UGFT antisense plants accumulate polyphenol levels (0.14-0.15 nmol / g fresh weight) significantly lower than those observed in tubers of WT plants grown under the same conditions and in the same conditions. moment.
  • the content of total polyphenols present in the fleshy part of the tubers of potato plants that express UGFT constitutively is 25-35% higher than in the tubers of WT plants, and 45% higher than in the tubers of the UGFT antisense plants.
  • the skin of the tubers of plants that express UGFT constitutively accumulates levels of polyphenols (0.58-0.72 mg GAE / g fresh weight) significantly higher than those observed in the skin of tubers of WT plants (0.48-0.52 mg GAE / g fresh weight) ( Figure 6) grown under the same conditions and at the same time.
  • the total carotenoids existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the method described in (27), measuring the absorbance of the organic extract at 450 nm using a calibration curve of ⁇ -carotene.
  • the total anthocyanins existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured using the pH-differential method (28).
  • the skin of the tubers of plants that express UGFT constitutively accumulates levels of anthocyanins (4.1-5.5 mg / g fresh weight) higher than those observed in the skin of tubers of WT plants (3.8-4.0 mg / g fresh weight) ( Figure 7) grown under the same conditions and at the same time.
  • tubers of plants that express UGFT constitutively accumulate levels of carotenoids (1.1-1.6 ⁇ g ⁇ CE / g fresh weight) significantly higher than those observed in tubers of WT plants (0.8-1.0 ⁇ g ⁇ CE / g fresh weight) ( Figure 8) grown in the same conditions and at the same time.
  • Example 5 Measurement of the antioxidant capacity in leaves and tubers (fleshy part and skin) of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
  • the antioxidant capacity of the leaf and tuber powder (fleshy part and skin) obtained after homogenization in liquid nitrogen was measured using the TEAC (Trolox equivalent antioxidant capacity) method as described in the literature (29) using Trolox as standard and 2 , 2 '-acino-bis- (3-ethyl-6-sulfonate (ABTS).
  • Polyphenols and carotenoids are the major determinants of the antioxidant capacity of cells.
  • the increase in the content of polyphenols and carotenoids induced by the ectopic expression of enzymes involved in the biosynthesis of these compounds leads to the increase of the antioxidant activity in tubers of potato plants.
  • the constitutive expression of UGFT in potato plants by the procedure described in the present invention led to an increase of between 20-30% of the total antioxidant activity in the tubers of the same.
  • This result is due to the higher content of polyphenols and carotenoids presented by said plants and not to the increase of other antioxidant compounds, such as ascorbic acid, since the concentration of said acid in the tubers of plants that constitutively express UGFT remains unchanged. in relation to the concentration present in the WT plants.
  • Example 6 Measurement of the polyphenol oxidase activity in the fleshy part and in the skin of the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
  • the polyphenol oxidase activity of the tuber powder obtained after homogenization in liquid nitrogen was measured according to the method described in (30).
  • the polyphenol oxidase activity of the fleshy part of potato tubers that express UGFT in a constitutive manner is normal when compared with the one existing in tubers of WT plants grown under the same conditions and at the same time ( Figure 12A).
  • the polyphenol oxidase activity of the skin of potato tubers that express UGFT constitutively has a tendency to be lower than that observed in the tubers of WT plants grown under the same conditions and at the same time (Figure 12B).
  • Example 7 Measurement of the resistance to browning in the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed WT plants.
  • tubers of plants that overexpress UGFT are more resistant to the browning effect than the tubers of WT plants grown under the same conditions and at the same time, after suffering mechanical damage and exposure to air (Figure 13). This fact is due, at least in part, to the high content of total polyphenols and carotenoids present in the plants that express UGFT and not to the decrease in the activity of polyphenol oxidase, since the maximum polyphenol oxidase activity in tubers of plants that express constitutively UGFT was normal compared to the tubers of the WT plants.
  • Plant Physiol. Biochem. 40, 907-911 7. Kleczkowski, LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37, 1507-1515 25 8. Buckeridge, MS, Vergara, CE. , Carpita, N. C (1999). The mechanism of synthesis of a mixed-linkage (1 - 3), (1 - 4) ⁇ -D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120, 1105-1116 9. Neckelmann, G. and Orellana, A.
  • CM Ghislain, M., Bertin, P., Oufir, M., Herrera, MR, Hoffmann, L., Hausman, J- F., Larondelle, Y., Evers, D. (2007) Andean potato cultivars (Solanum tuberosum L) as a source of antioxidant and mineral micronutrients. J. Agrie. Food Chem. 55, 366-378 20. Vogt, T. and Jones, P. (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386 21. Zrenner, R., Salanoubat, M., Willmitzer, L., Sonnewald, U.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention protects the procedure for the production of transgenic plants together with the plants themselves presenting a high antioxidant compound content (such as polyphenols and carotenoids), high antioxidant capacity and resistance to browning through an increase in UDP-glucose:d-fructose-2-glucosyltransferase (UGFT) activity producing UDPGlucose in plants. In this invention it is demonstrated that UGFT is involved in the production of an important pool of UDPGlucose necessary for the production of highly stable glycosylated forms of polyphenols and carotenoids having high antioxidant capacity.

Description

PROCEDIMIENTO PARA LA PRODUCCIÓN DE PLANTAS TRANSGÉNICAS QUE PROCEDURE FOR THE PRODUCTION OF TRANSGENIC PLANTS THAT
PRESENTAN ALTO CONTENIDO EN COMPUESTOS ANTIOXIDANTES, ALTAPRESENT HIGH CONTENT IN ANTIOXIDANT COMPOUNDS, HIGH
CAPACIDAD ANTIOXIDANTE Y RESISTENCIA AL EMPARDECIMIENTO.ANTIOXIDANT CAPACITY AND RESISTANCE TO PRESERVE.
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a un procedimiento para Ia producción de plantas transgénicas que presentan alto contenido en compuesto antioxidantes alta capacidad antioxidante y resistencia al empardecimiento, así como a las propias plantas transgénicas Por Io tanto Ia presente invención puede englobarse dentro del campo de Ia ingeniería genética, Ia fisiología vegetal, Ia tecnología de los alimentos y Ia nutracéuticaThe present invention relates to a process for the production of transgenic plants that have a high antioxidant compound content, high antioxidant capacity and resistance to browning, as well as to the transgenic plants themselves. Therefore, the present invention can be encompassed within the field of engineering genetics, plant physiology, food technology and nutraceuticals
ESTADO DE LA TÉCNICASTATE OF THE ART
La UDP-glucosa D-fructosa-2-glucosιl transferasa (UGFT) está altamente regulada y cataliza Ia producción de UDPGlucosa (UDPG)y fructosa a partir de Ia sacarosa y UDP (3-6) UDPGlucosa es Ia molécula donadora de glucosa para las reacciones de transglicosilación implicadas en Ia biosíntesis de ghcolípidos, glicoproteínas y polisacáπdos de pared celular tales como celulosa y callosa (1 ,7-9) (Figura 14) Además ensayos llevados a cabo m vitro han demostrado que el UDPGlucosa actúa como donador de glucosa para las reacciones de glicosilaciόn de sustancias antioxidantes tales como polifenoles y carotenoides Estas reacciones son determinantes para Ia estabilidad, conjugación con otras moléculas y prevención de Ia oxidación de los polifenoles que dan lugar al empardecimiento ( browning effect") de las hortalizas (10) Polifenoles y carotenoides son los responsables de Ia coloración de flores frutos y hojas senescentes, y además, protegen a Ia planta contra agentes microbianos y contra enzimas degradadores de pared celular (11 ) Además, estos compuestos poseen actividad antioxidante y anti-inflamatoπa y son conocidos por sus propiedades contra el cáncer y el acumulo de colesterol en sangre (12-15) Órganos tales como los tubérculos de patata se caracterizan por acumular grandes cantidades de polifenoles y carotenoides (16-18), y constituyen una fuente importante de sustancias antioxidantes en las dietas de numerosas sociedades (19)The UDP-glucose D-fructose-2-glucosyl transferase (UGFT) is highly regulated and catalyzes the production of UDPGlucose (UDPG) and fructose from the sucrose and UDP (3-6) UDPGlucosa is the glucose donor molecule for the transglycosylation reactions involved in the biosynthesis of ghcolipids, glycoproteins and cell wall polysaccharides such as cellulose and callose (1, 7-9) (Figure 14) In addition, tests carried out in vitro have shown that UDPGlucose acts as a glucose donor for the glycosylation reactions of antioxidant substances such as polyphenols and carotenoids These reactions are determinants for stability, conjugation with other molecules and prevention of the oxidation of polyphenols that give rise to the browning effect of vegetables (10) Polyphenols and carotenoids are responsible for the coloring of flowers and senescent leaves, and also protect the plant against microbial agents and against cell wall degrading enzymes (11) In addition, these compounds possess antioxidant and anti-inflammatory activity and are known for their properties against cancer and the accumulation of cholesterol in blood (12-15) Organs such as potato tubers characterized by accumulating large amounts of polyphenols and carotenoids (16-18), and constitute an important source of antioxidant substances in the diets of many societies (19)
Las reacciones de glicosilación de polifenoles a partir de UDPGlucosa tienen lugar en el citosol (20) A pesar de que UGFT es una fuente importante de UDPGlucosa citosólico y de que ésta es importante en Ia producción y estabilidad de sustancias antioxidantes m vitro,The glycosylation reactions of polyphenols from UDPGlucosa take place in the cytosol (20) Although UGFT is an important source of cytosolic UDPGlucosa and that this is important in the production and stability of antioxidant substances m vitro,
HOJA DE SUSTITUCIÓN (REGLA 26) hasta la fecha no existen evidencias en que se describa que el incremento en Ia actividad UGFT productora de UDPGlucosa esté implicado en Ia producción y acumulo de sustancias antioxidantes in vivo. Tampoco existen evidencias experimentales, ni trabajos científicos que sugieran Ia implicación de Ia actividad UGFT productora de UDPGlucosa, en Ia producción de sustancias antioxidantes en Ia célula. Tampoco existen evidencias en las que se altere los niveles intracelulares de UDPGlucosa como estrategia para alterar los niveles de sustancias antioxidantes in vivo. En este sentido, Ia presente invención describe por primera vez Ia producción de plantas con (a) elevado contenido en UDPGlucosa, (b) alto contenido en polifenoles y carotenoides, (c) elevada capacidad antioxidante y (d) bajo empardecimiento (browning effect) como consecuencia de Ia actividad UGFT productora de UDPGlucosa.SUBSTITUTE SHEET (RULE 26) to date there is no evidence that it is described that the increase in UDPGlucose producing UGFT activity is involved in the production and accumulation of antioxidant substances in vivo. There is also no experimental evidence, nor scientific works that suggest the implication of the UGFT activity producing UDPGlucosa, in the production of antioxidant substances in the cell. There is also no evidence in which the intracellular levels of UDPGlucosa are altered as a strategy to alter the levels of antioxidant substances in vivo. In this sense, the present invention describes for the first time the production of plants with (a) high content of UDPGlucose, (b) high content of polyphenols and carotenoids, (c) high antioxidant capacity and (d) low browning effect (browning effect) as a consequence of the UGFT activity producing UDPGlucosa.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Breve descripción de Ia invenciónBrief description of the invention
La presente invención se refiere a un procedimiento para Ia producción de plantas transgénicas que presentan alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento, mediante el incremento de Ia actividad UGFT productora de UDPGlucosa en plantas. Además Ia presente invención se refiere a las propias plantas transgénicas caracterizadas por dichas propiedades.The present invention relates to a process for the production of transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning, by increasing the UGFT activity producing UDPGlucose in plants. Furthermore, the present invention relates to the transgenic plants themselves characterized by said properties.
Los efectos técnicos mostrados en Ia presente invención son extrapolables a cualquier tipo de órgano de Ia planta tal como: tubérculos, hojas, frutos y semillas, así como a cualquier tipo de planta como por ejemplo: patata, tabaco, tomate, arroz, cebada, trigo y maíz. Los resultados mostrados en Ia presente incención fueron conseguidos, tanto expresando constitutivamente UGFT bajo el control del promotor 35S (Figura 1 A, B y C), como expresando UGFT bajo el control de un promotor específico de tubérculo (promotor B33 del gen de Ia patatina) (Figura 2). Cabe decir que Ia expresión constitutiva fue particularmente preferida ya que con ello se pudo analizar cambios en Ia actividad antioxidante en diversos órganos de Ia planta tales como hojas y tubérculos. Los resultados mostrados en Ia presente invención fueron conseguidos tras sobre-expresar cualquier isoforma y secuencia de UGFT (siendo particularmente preferida Ia variante UGFTX (SEQ ID NO:3)). Es decir, cualquier promotor expresable en plantas que produzca Ia sobre-expresión de UGFT, así como cualquier isoforma de UGFT con actividad productora de UDPGlucosa, estarían comprendidos en Ia presente invención. A efectos de Ia presente invención, se hacen constar los siguientes términos:The technical effects shown in the present invention can be extrapolated to any type of organ of the plant such as: tubers, leaves, fruits and seeds, as well as to any type of plant such as: potato, tobacco, tomato, rice, barley, wheat and corn. The results shown in the present invention were achieved, both by constitutively expressing UGFT under the control of the 35S promoter (Figure 1 A, B and C), and by expressing UGFT under the control of a tuber-specific promoter (B33 promoter of the patatin gene ) (Figure 2). It should be noted that the constitutive expression was particularly preferred since with this it was possible to analyze changes in the antioxidant activity in various organs of the plant such as leaves and tubers. The results shown in the present invention were obtained after over-expressing any isoform and UGFT sequence (UGFTX variant (SEQ ID NO: 3)) being particularly preferred. That is, any promoter expressible in plants that produces the over-expression of UGFT, as well as any isoform of UGFT with activity producing UDPGlucosa, would be included in the present invention. For the purposes of the present invention, the following terms are stated:
• Planta transqénica: planta cuyo genoma ha sido modificado mediante ingeniería genética con el objetivo de conseguir características biológicas diferentes y/o mejoradas respecto a las de Ia planta silvestre (WT). • Célula vegetal transformada: son células vegetales que presentan una alteración genética resultado de Ia introducción y expresión de material genético externo en su genoma.• Transgenic plant: plant whose genome has been modified by genetic engineering with the aim of achieving different biological characteristics and / or improved compared to those of the wild plant (WT). • Transformed plant cell: they are plant cells that present a genetic alteration resulting from the introduction and expression of external genetic material in their genome.
• Compuestos antioxidantes: Son sustancias capaces de retardar o prevenir Ia oxidación de otras moléculas. Se encargan de capturar los radicales libres producidos en las reacciones de oxidación propias del metabolismo. Estos compuestos son muy utilizados en el tratamiento de enfermedades cerebrovascu lares y neurodegenerativas, además de cómo suplementos dietéticos, conservantes de alimentos, cosméticos y para Ia prevención de Ia degradación del caucho y Ia gasolina. En Ia presente invención los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.• Antioxidant compounds: These are substances capable of retarding or preventing the oxidation of other molecules. They are responsible for capturing the free radicals produced in the oxidation reactions of the metabolism. These compounds are widely used in the treatment of cerebrovascu- lar and neurodegenerative diseases, as well as dietary supplements, food preservatives, cosmetics and for the prevention of the degradation of rubber and gasoline. In the present invention, the antioxidant compounds are selected among polyphenols and carotenoids.
• Polifenoles: son sustancias químicas presentes en las plantas y caracterizadas por Ia presencia de más de un grupo fenol (grupo -OH unido a un anillo aromático) por molécula. La presencia de estos anillos fenólicos Ie confiere Ia capacidad de actuar como antioxidantes ya que pueden captar radicales de oxigeno. • Carotenoides: son pigmentos orgánicos que se encuentran de forma natural en plantas y otros organismos fotosíntéticos. La mayoría de los carotenoides son tetraterpenoides, compuestos de 40 átomos de carbono formados por ocho unidades isoprenoides y contienen anillos a uno o ambos extremos de Ia molécula. Pueden funcionar como antioxidantes, protegiendo frente a Ia auto-oxidación. • Antocianos: son pigmentos orgánicos polifenólicos que proporcionan coloración a muchas plantas y en especial a muchas flores. Su estructura química consiste en un grupo flavilo formado por un anillo benzopirano unido a un anillo fenólico. Tienen propiedades antioxidantes evitando Ia producción de radicales libres.• Polyphenols: are chemical substances present in plants and characterized by the presence of more than one phenol group (group -OH linked to an aromatic ring) per molecule. The presence of these phenolic rings confers the ability to act as antioxidants since they can pick up oxygen radicals. • Carotenoids: are organic pigments that are found naturally in plants and other photosynthetic organisms. Most of the carotenoids are tetraterpenoids, composed of 40 carbon atoms formed by eight isoprenoid units and contain rings at one or both ends of the molecule. They can function as antioxidants, protecting against auto-oxidation. • Anthocyanins: polyphenolic organic pigments that provide coloration to many plants and especially to many flowers. Its chemical structure consists of a flavial group formed by a benzopyran ring attached to a phenolic ring. They have antioxidant properties avoiding the production of free radicals.
• Sobre-expresión de Ia enzima UGFT productora de UDPGlucosa: se entiende por sobre-expresión de Ia enzima UGFT productora de UDPGlucosa cuando Ia actividad total de dicha enzima es significativamente superior a Ia existente en plantas silvestres o controles (WT) cultivadas en las mismas condiciones y en el mismo momento. A modo ilustrativo en Ia Figura 3 se observa que Ia actividad UGFT productora de UDPGlucosa en los tubérculos de las plantas de patata control (WT) es de 590-710 mili unidades (mU)/g (peso fresco), mientras que Ia actividad UGFT productora de UDPGlucosa en los tubérculos de plantas de patata que expresan constitutivamente UGFT es de 730-1300 mU/g peso fresco. Por Io tanto Ia presente invención, se refiere a Ia sobre-expresión de Ia enzima UGFT, a modo de ejemplo, cuando Ia producción de UDPGlucosa en los tubérculos de las plantas de patata es mayor a 710 mU/g (peso fresco) (Figura 3). • Alto contenido en UDPGlucosa: según se utiliza en Ia presente invención, esta expresión está directamente referida a un valor estadísticamente significativo, superior a los valores observados en las plantas WT cultivadas en las mismas condiciones y en el mismo momento. A modo ilustrativo, en Ia Figura 4 se oberva que el contenido medio en UDPGlucosa en los tubérculos de las plantas de patata controles es de 95-105 nmol/g (peso fresco), mientras que los tubérculos de plantas de patata transgénicas que expresan UGFT constitutivamente acumulan 135-160 nmol/g (peso fresco) de UDPGlucosa. Por Io tanto, Ia presente invención se refiere a "alto contenido en UDPGlucosa", a modo de ejemplo, cuando éste es superior a 105 nmol/g (peso fresco) (Figura 4). • Alto contenido en polifenoles totales, antocianos y carotenoides: según se utiliza en• Over-expression of the UDPGlucosa producing UGFT enzyme: it is understood that the UDPGlucose producing UGFT enzyme is over-expression when the total activity of said enzyme is significantly higher than that existing in wild plants or controls (WT) grown in them conditions and at the same time. By way of illustration in Figure 3 it is observed that the UGFT activity producing UDPGlucose in the tubers of the control potato plants (WT) is 590-710 milli units (mU) / g (fresh weight), while the UGFT activity Producer of UDPGlucose in the tubers of potato plants that express constitutively UGFT is 730-1300 mU / g fresh weight. Therefore, the present invention refers to the over-expression of the UGFT enzyme, by way of example, when the production of UDPGlucose in the tubers of potato plants is greater than 710 mU / g (fresh weight) (FIG. 3). • High content in UDPGlucosa: as used in the present invention, this expression is directly related to a statistically significant value, higher than the values observed in WT plants grown under the same conditions and at the same time. By way of illustration, in Figure 4 it is observed that the average content in UDPGlucosa in the tubers of the potato plants controls is 95-105 nmol / g (fresh weight), while the tubers of transgenic potato plants that express UGFT constitutively they accumulate 135-160 nmol / g (fresh weight) of UDPGlucosa. Therefore, the present invention refers to "high content in UDPGlucosa", by way of example, when this is higher than 105 nmol / g (fresh weight) (Figure 4). • High content of total polyphenols, anthocyanins and carotenoids: as used in
Ia presente invención, esta expresión está directamente referida a un valor estadísticamente significativo, superior a los valores observados en las plantas WT cultivadas en las mismas condiciones y en el mismo momento. Así, Ia presente invención se refiere a "alto contenido en polifenoles totales", a modo ilustrativo, cuando este es superior a 0.19 mg GAE/g (peso fresco) en Ia parte carnosa de los tubérculos de las plantas de patata transgénicas que expresan UGFT constitutivamente y superior a 0.52 mg GAE/g (peso fresco) en Ia piel de los tubérculos de las plantas de patata transgénicas que expresan UGFT constitutivamente (Figura 5 y 6). Análogamente, Ia presente invención se refiere a "alto contenido en antocianos", a modo ilustrativo, cuando éste es superior a 4.0 mg/gThe present invention, this expression is directly referred to a statistically significant value, higher than the values observed in WT plants grown under the same conditions and at the same time. Thus, the present invention refers to "high content of total polyphenols", by way of illustration, when this is higher than 0.19 mg GAE / g (fresh weight) in the fleshy part of the tubers of the transgenic potato plants that express UGFT constitutively and superior to 0.52 mg GAE / g (fresh weight) in the skin of the tubers of the transgenic potato plants that express UGFT constitutively (Figure 5 and 6). Analogously, the present invention refers to "high anthocyanin content", by way of illustration, when this is higher than 4.0 mg / g
(peso fresco) en Ia piel de los tubérculos de plantas de patata transgénicas que expresan UGFT constitutivamente (Figura 7). Por otro lado Ia presente invención se refiere a "alto contenido en carotenoides" cuando éste es superior, a modo ilustrativo, de 1.0 μg/g peso fresco en tubérculos de plantas de patata transgénicas que expresan UGFT constitutivamente (Figura 8).(fresh weight) in the skin of the tubers of transgenic potato plants that express UGFT constitutively (Figure 7). On the other hand, the present invention refers to "high content of carotenoids" when it is higher, for example, of 1.0 μg / g fresh weight in tubers of transgenic potato plants that express UGFT constitutively (Figure 8).
• Alta capacidad antioxidante: según se utiliza en Ia presente invención, esta expresión está directamente referida a un valor estadísticamente significativo, superior a los valores observados en las plantas WT cultivadas en las mismas condiciones y en el mismo momento. Así, Ia presente invención se refiere a "alta capacidad antioxidante", a modo ilustrativo, cuando ésta es superior a 6.8 μmol Trolox eq/ g peso fresco en Ia parte carnosa de los tubérculos de plantas de patata transgénicias que expresan UGFT constitutivamente (Figura 9) y superior a 12.4 μmol Trolox eq/g peso fresco en Ia piel de los tubérculos de plantas de patata transgénicas que expresan UGFT constitutivamente (Figura 10).• High antioxidant capacity: as used in the present invention, this expression is directly related to a statistically significant value, higher than the values observed in WT plants grown under the same conditions and at the same time. Thus, the present invention refers to "high antioxidant capacity", by way of illustration, when this is higher than 6.8 μmol Trolox eq / g fresh weight in the fleshy part of the tubers of transgenic potato plants that express UGFT constitutively (Figure 9) and superior to 12.4 μmol Trolox eq / g fresh weight in the skin of the tubers of transgenic potato plants that express UGFT constitutively (Figure 10).
Descripción de las figurasDescription of the figures
Figura 1. Etapas de construcción del plásmido de expresión pBIN35S-UGFT-NOS.Figure 1. Construction steps of the expression plasmid pBIN35S-UGFT-NOS.
Figura 2. Etapas de construcción del plásmido de expresión pKAN-B33-UGFT.Figure 2. Construction steps of the expression plasmid pKAN-B33-UGFT.
Figura 3. Actividad UGFT en tubérculos de plantas de patata silvestres o controles (WT), en tubérculos de plantas de patata transformadas con un vector antisentido de UGFT (anti- UGFT) (21 ) y en tubérculos de plantas de patata que expresan UGFT constitutivamente tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacteríum tumefaciens CECT:5851. La actividad está referida en miliunidades (mU) por gramo de peso fresco (eje y). La unidad se define como Ia cantidad de UGFT necesaria para producir un micromol de UDPGlucosa por minuto.Figure 3. UGFT activity in tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of potato plants that express UGFT constitutively after integrating the 35S-UGFT-NOS construct into its genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851. The activity is referred to in milliunits (mU) per gram of fresh weight (y axis). The unit is defined as the amount of UGFT needed to produce a micromole of UDPGlucose per minute.
Figura 4. Contenido en UDPGlucosa (nmol/g peso fresco) en tubérculos de plantas de patata silvestres o controles (WT), en tubérculos de plantas de patata transformados con un vector antisentido de UGFT (anti-UGFT) (21 ) y en tubérculos de plantas que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacteríum tumefaciens CECT:5851.Figure 4. Content in UDPGlucose (nmol / g fresh weight) in tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 5. Contenido de polifenoles totales (en mg equivalentes de ácido gálico (GAE)/g peso fresco) en Ia parte carnosa de tubérculos de plantas de patata silvestres o controles (WT), en tubérculos de plantas de patata transformadas con un vector antisentido de UGFT (anti- UGFT) (21 ) y en tubérculos de plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacteríum tumefaciens CECT:5851.Figure 5. Content of total polyphenols (in mg equivalents of gallic acid (GAE) / g fresh weight) in the fleshy part of tubers of wild potato plants or controls (WT), in tubers of potato plants transformed with an antisense vector of UGFT (anti-UGFT) (21) and in tubers of potato plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 6. Contenido de polifenoles totales (en mg GAE/g peso fresco) en piel de tubérculos de plantas de patata silvestres o controles (WT) y en Ia piel de tubérculos de plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacteríum tumefaciens CECT:5851.Figure 6. Content of total polyphenols (in mg GAE / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers of potato plants that constitutively express UGFT after integrating into their genome Ia 35S-UGFT-NOS construction after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 7. Contenido de antocianos totales (en mg/ g peso fresco) en piel de tubérculos de plantas de patata silvestres o controles (WT) y en Ia piel de tubérculos plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT- NOS después de haber sido transformadas con el vector de expresión Agrobacterium tumefaciens CECT:5851.Figure 7. Content of total anthocyanins (in mg / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers potato plants that constitutively express UGFT after integrating the 35S construction into their genome -UGFT- NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 8. Contenido de carotenoides totales (en μg equivalentes de beta-caroteno (βCE)/g peso fresco) en tubérculos de plantas de patata silvestres o controles (WT) y plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS (por acción de Ia cepa de Agrobacterium tumefaciens CECT:5851 ). Figura 9. Capacidad antioxidante (referido a μmol equivalente de Trolox/g peso fresco) en Ia parte carnosa de tubérculos de plantas de patata silvestres o controles (WT) y en Ia parte carnosa de tubérculos de plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacterium tumefaciens CECT:5851.Figure 8. Content of total carotenoids (in μg equivalents of beta-carotene (βCE) / g fresh weight) in tubers of wild potato plants or controls (WT) and potato plants that constitutively express UGFT after integrating the construction into their genome 35S-UGFT-NOS (by action of the Agrobacterium tumefaciens strain CECT: 5851). Figure 9. Antioxidant capacity (referred to μmol equivalent of Trolox / g fresh weight) in the fleshy part of tubers of wild potato plants or controls (WT) and in the fleshy part of tubers of potato plants constitutively expressing UGFT after integrating in its genome Ia construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 10. Capacidad antioxidante (referido a μmol equivalente de Trolox/g peso fresco) en Ia piel de tubérculos de plantas de patata silvestres o controles (WT) y en Ia piel de tubérculos de plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacterium tumefaciens CECT:5851.Figure 10. Antioxidant capacity (referred to μmol equivalent of Trolox / g fresh weight) in the skin of tubers of wild potato plants or controls (WT) and in the skin of tubers of potato plants constitutively expressing UGFT after integrating into their genome Ia construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851.
Figura 11. Capacidad antioxidante (referido a μmol equivalente de Trolox/g peso fresco) en hojas de plantas de patata silvestres o controles (WT) y en plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacterium tumefaciens CECT.5851.Figure 11. Antioxidant capacity (referred to μmol equivalent of Trolox / g fresh weight) in leaves of wild potato plants or controls (WT) and potato plants constitutively expressing UGFT after integrating into their genome the construction 35S-UGFT-NOS after having been transformed with the expression vector Agrobacterium tumefaciens CECT.5851.
Figura 12. Actividad polifenol oxidasa (en Unidades/g peso fresco) (A) en Ia parte carnosa y (B) en Ia piel de tubérculos de plantas de patata silvestres o controles (WT) y en Ia parte carnosa y en Ia piel de tubérculos de plantas de patata que expresan constitutivamente UGFT tras integrar en su genoma Ia construcción 35S-UGFT-NOS después de haber sido transformadas con el vector de expresión Agrobacterium tumefaciens CECT:5851. Figura 13. Efecto de empardecimiento en tubérculos de plantas de patata silvestres o controles (WT) y en tubérculos de plantas de patata que expresan constitutivamente UGFT tras corte mecánico y exposición al aire durante 28 horas.Figure 12. Polyphenol oxidase activity (in Units / g fresh weight) (A) in the fleshy part and (B) in the skin of tubers of wild potato plants or controls (WT) and in the fleshy part and in the skin of tubers of potato plants that constitutively express UGFT after integrating the 35S-UGFT-NOS construct into their genome after having been transformed with the expression vector Agrobacterium tumefaciens CECT: 5851. Figure 13. Effect of browning on tubers of wild potato plants or controls (WT) and on tubers of potato plants constitutively expressing UGFT after mechanical cutting and exposure to air for 28 hours.
Figura 14. Mecanismos propuestos de conversión de Ia sacarosa en polisacáridos de pared celular, glicoproteínas y polifenoles glicosilados en plantas.Figure 14. Proposed mechanisms for the conversion of sucrose into cell wall polysaccharides, glycoproteins and glycosylated polyphenols in plants.
Descripción detallada de Ia invenciónDetailed description of the invention
Obtención de plantas transqénicas de patata que sobre-expresan UGFT constitutivamenteObtaining transgenic potato plants that overexpress constitutively UGFT
HOJA DE SUSTITUCIÓN (REGLA 26) En Ia presente invención UGFT ha sido expresada constitutivamente por Ia acción del promotor constitutivo 35S del virus del mosaico del tabaco. Para ello, se introdujo en el genoma de Ia patata (Solanum tuberosum) Ia construcción 35S-UGFT-NOS cuyo diseño se detalla a continuación. Conocida Ia secuencia nucleotídica que codifica para Ia isoforma UGFT4 de UGFT silvestre de patata (22) se crearon dos cebadores específicos correspondientes a los extremos 5' y 3' del gen, cuyas secuencias son SEQ ID NO: 1 y SEQ ID NO: 2, respectivamente. Haciendo uso de estos cebadores se amplificó por métodos convencionales de PCR un fragmento de DNA de 2418 pares de bases, designado con UGFTX, a partir de una genoteca de cDNA de hoja de patata. Tal fragmento de PCR se introdujo en el plásmido pSK Bluescript (Stratagene) dando lugar a Ia construcción pUGFT, Ia cual fue amplificada en Ia bacteria hospedadora XL1 Blue. La secuencia nucleotídica de UGFTX es SEQ ID NO: 3. La introducción secuencial en pUGFT del promotor 35S y del terminador NOS en las regiones 5' y 3' de UGFTX, dio lugar a Ia producción del plásmido p35S-UGFT-NOS cuyo mapa de restricción se representa en Ia Figura 1A.SUBSTITUTE SHEET (RULE 26) In the present invention UGFT has been expressed constitutively by the action of the 35S constitutive promoter of tobacco mosaic virus. To do this, the 35S-UGFT-NOS construction was introduced into the genome of the potato (Solanum tuberosum) whose design is detailed below. Once the nucleotide sequence coding for the UGFT4 isoform of wild potato UGFT (22) was known, two specific primers corresponding to the 5 ' and 3 ' ends of the gene were created, whose sequences are SEQ ID NO: 1 and SEQ ID NO: 2, respectively. Using these primers, a 2418 base pair DNA fragment, designated with UGFTX, was amplified by conventional PCR methods from a potato leaf cDNA library. Such a PCR fragment was introduced in the plasmid pSK Bluescript (Stratagene) giving rise to the pUGFT construction, which was amplified in the host bacterium XL1 Blue. The nucleotide sequence of UGFTX is SEQ ID NO: 3. The sequential introduction in pUGFT of the 35S promoter and the NOS terminator in the 5 ' and 3 ' regions of UGFTX, gave rise to the production of the plasmid p35S-UGFT-NOS whose map of Restriction is represented in Figure 1A.
Para poder transferir esta construcción al genoma de las plantas vía Agrobacterium tumefaciens, es preciso que previamente sea clonada en un plásmido binario. Para ello, p35S-UGFT-NOS fue digerido secuencialmente con los enzimas Notl, T4 DNA polimerasa y Hindlll y se clonó dentro del plásmido binario pBIN20 (Figura 1B) (23) que previamente había sido digerido secuencialmente con los enzimas EcoRI, T4 DNA polimerasa y Hindlll. El plásmido así obtenido se designó con el nombre de pBIN35S-UGFT-NOS (Figura 1C), el cual se introdujo por electroporación en Ia cepa de A. tumefaciens adecuada para transformar plantas según protocolos convencionales. Así por ejemplo, para Ia producción de plantas transgénicas de patata pBIN35S-UGFT-NOS se introdujo por electroporación en A. tumefaciens con el n° de depósito CECT 5851 , que actuó como vector de transferencia de Ia construcción 35S-UGFT-NOS al genoma nuclear de patata al ser utilizada mediante métodos convencionales de transformación genética de patata (24).In order to transfer this construction to the plant genome via Agrobacterium tumefaciens, it must first be cloned in a binary plasmid. For this, p35S-UGFT-NOS was digested sequentially with the enzymes Notl, T4 DNA polymerase and HindIII and was cloned into the binary plasmid pBIN20 (Figure 1B) (23) that had previously been digested sequentially with the enzymes EcoRI, T4 DNA polymerase and Hindlll. The plasmid thus obtained was designated pBIN35S-UGFT-NOS (Figure 1C), which was introduced by electroporation in the A. tumefaciens strain suitable for transforming plants according to conventional protocols. For example, for the production of transgenic potato plants pBIN35S-UGFT-NOS was introduced by electroporation into A. tumefaciens with deposit number CECT 5851, which acted as transfer vector of the 35S-UGFT-NOS construct to the genome nuclear potato when used by conventional methods of genetic transformation of potatoes (24).
Obtención de plantas transqénicas de patata que sobre-expresan UGFT en los tubérculosObtaining transgenic potato plants that overexpress UGFT in tubers
En Ia presente invención UGFT ha sido expresada específicamente en el tubérculo de patata por Ia acción del promotor B33 que gobierna Ia expresión de un gen que codifica para Ia patatina (24). Para ello, se introdujo en el genoma de Ia patata (Solanum tuberosum) Ia construcción B33-UGFT cuyo diseño se detalla a continuación. Haciendo uso de los cebadores SEQ ID NO: 4 y SEQ ID NO: 5 se amplificó por PCR un fragmento de DNA de 2418 pares de bases a partir del plásmido p35S-UGFT-NOS. Tal fragmento de PCR se introdujo en el plásmido pDONR/Zeo (Invitrogen) mediante una reacción de recombinación Gateway BP dando lugar a Ia construcción pDONR-UGFT, Ia cual fue amplificada en Ia bacteria hospedadora TOP 10. Por otro lado se amplificó mediante PCR el promotor B33 de Ia patatina utilizando los cebadores específicos correspondientes a los extremos 5' y 3 ' del promotor cuyas secuencias son SEQ ID NO: 6 y SEQ I D NO: 7, respectivamente. El fragmento de PCR obtenido contiene 1551 pares de bases y se introdujo en el plásmido pDONR/P4-P1 R (Invitrogen) mediante una reacción de recombinación Gateway BP dando lugar a Ia construcción pDONR-B33, Ia cual fue amplificada en Ia bacteria hospedadora TOP 10. Mediante una reacción de recombinación Gateway LR se transfirió el promotor B33 y UGFT al plásmido de expresión pKAN R4-R2 para producir el plásmido pKAN-B33-UGFT (también designado pKAN-B33-SuSy). El plásmido así obtenido se introdujo por electroporación en Ia cepa de A. tumefaciens adecuada para transformar plantas según protocolos convencionales. Así por ejemplo, para Ia producción de plantas transgénicas de patata B33-UGFT se introdujo por electroporación en A. tumefaciens con el n° de depósito DSM 22756, que actuó como vector de transferencia de Ia construcción B33- UGFT al genoma nuclear de patata al ser utilizada mediante métodos convencionales de transformación genética de patata (24).In the present invention UGFT has been expressed specifically in the potato tuber by the action of the B33 promoter that governs the expression of a gene coding for the patatin (24). For this, the B33-UGFT construction was introduced into the potato genome (Solanum tuberosum), the design of which is detailed below. Using primers SEQ ID NO: 4 and SEQ ID NO: 5, a DNA fragment of 2418 base pairs was amplified by PCR from the p35S-UGFT-NOS plasmid. Such a PCR fragment was introduced into the pDONR / Zeo plasmid (Invitrogen) by a Gateway BP recombination reaction giving rise to the pDONR-UGFT construct, which was amplified in the host bacterium TOP 10. On the other hand, the PCR was amplified by PCR. B33 promoter of the patatin using the specific primers corresponding to the 5 ' and 3 ' ends of the promoter whose sequences are SEQ ID NO: 6 and SEQ ID NO: 7, respectively. The PCR fragment obtained contains 1551 base pairs and was introduced into the plasmid pDONR / P4-P1 R (Invitrogen) by a recombination reaction Gateway BP giving rise to the construction pDONR-B33, which was amplified in the host bacterium TOP 10. Using a Gateway LR recombination reaction, the B33 promoter and UGFT were transferred to the expression plasmid pKAN R4-R2 to produce plasmid pKAN-B33-UGFT (also designated pKAN-B33-SuSy). The plasmid thus obtained was introduced by electroporation in the A. tumefaciens strain suitable for transforming plants according to conventional protocols. For example, for the production of transgenic potato plants B33-UGFT was introduced by electroporation into A. tumefaciens with the deposit number DSM 22756, which acted as transfer vector of the B33-UGFT construction to the potato nuclear genome at be used by conventional methods of genetic transformation of potato (24).
Cultivo, procesamiento y estimación de las características de plantas transqénicas de patata con niveles alterados de UGFTCultivation, processing and estimation of the characteristics of transgenic potato plants with altered levels of UGFT
Se utilizaron plantas de patata control (WT) no transformadas y las líneas 4, 5, 6 y 12 que expresan UGFT constitutivamente como resultado de Ia integración en su genoma de Ia construcción 35S-UGFT-NOS. También fueron utilizadas plantas transgénicas de patata con reducida actividad UGFT (21 ). Las plantas fueron cultivadas entre Mayo y Septiembre deControlled potato plants (WT) not transformed and lines 4, 5, 6 and 12 constitutively expressing UGFT were used as a result of the integration in their genome of the construction 35S-UGFT-NOS. Transgenic potato plants with reduced UGFT activity were also used (21). The plants were cultivated between May and September
2006 y de 2007 en una parcela del término 25 de Sartaguda (Navarra, España). Las plantas fueron distribuidas al azar en parcelas de 50 metros cuadrados, haciendo uso de 30 plantas por línea. La separación entre carriles fue de 90 cm. La separación entre planta y planta de un mismo carril fue de 35 cm. Se recolectaron los tubérculos, se seleccionaron aquéllos de un peso aproximado de 100 gramos y se obtuvieron cilindros que atravesaban todo el tubérculo haciendo uso de un perforador de acero cilindrico (2 cm de diámetro). Tales cilindros fueron congelados en nitrógeno líquido y pulverizados haciendo uso de un mortero. Para Ia medición de Ia actividad UGFT, el polvo resultante tras Ia homogeneización de Ia parte carnosa y/o Ia piel del tubérculo con nitrógeno líquido fue resuspendido a 40C en 100 mM HEPES (pH 7.5), 2 mM EDTA y 5 mM dithiothreitol (5 mL/gramo polvo). Tras dializar los extractos, Ia actividad UGFT fue medida según se describe en Ia literatura (25). Brevemente, el homogeneizado vegetal fue incubado durante 5 minutos a 370C en 50 mM HEPES (pH 7.0), 1 mM MgCI2, 15 mM KCI, 50 mM sacarosa y 2 mM UDP. Tras detener Ia reacción a 1000C se determinó Ia cantidad de UDPGlucosa producida haciendo uso de un sistema de HPLC Waters Associate's ajustado a una columna Partisil-10-SAX.2006 and 2007 in a plot of the term 25 of Sartaguda (Navarra, Spain). The plants were randomly distributed in plots of 50 square meters, making use of 30 plants per line. The separation between lanes was 90 cm. The separation between plant and plant of the same lane was 35 cm. The tubers were collected, those weighing approximately 100 grams were selected and cylinders were obtained that crossed the entire tuber using a cylindrical steel perforator (2 cm in diameter). Such cylinders were frozen in liquid nitrogen and pulverized using a mortar. For the measurement of the UGFT activity, the powder resulting after the homogenization of the fleshy part and / or the skin of the tuber with liquid nitrogen was resuspended at 4 0 C in 100 mM HEPES (pH 7.5), 2 mM EDTA and 5 mM dithiothreitol (5 mL / gram powder). After dialyzing the extracts, the UGFT activity was measured as described in the literature (25). Briefly, the plant homogenate was incubated for 5 minutes at 37 0 C in 50 mM HEPES (pH 7.0), 1 mM MgCl 2, 15 mM KCI, 50 mM sucrose and 2 mM UDP. After stopping the reaction at 100 0 C the amount of UDPglucose produced was determined using an HPLC system Waters Associates' s adjusted to a Partisil SAX-10-column.
El UDPGlucosa existente en el polvo de tubérculo de patata obtenido tras Ia homogeneización con nitrógeno líquido se extrajo y se midió según se describe en Ia literatura (25). Para ello, 0.5 g del polvo congelado se resuspendió en 0.4 ml_ de 1.4 M HCIO4, se dejó a 40C durante 1 hora y se centrifugó a 10.000 x g durante 30 minutos. El sobrenadante se neutralizó con K2CO3 y se centrifugó a 10.000 x g durante 30 minutos. El UDPGlucosa existente en el sobrenadante se midió haciendo uso de un sistema de HPLC Waters Associate's ajustado a una columna Partisil-10-SAX. Los polifenoles totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron esencialmente haciendo uso del método modificado de Folin-Ciocalteu descrito en Ia literatura (26).The UDPGlucose in the potato tuber powder obtained after homogenization with liquid nitrogen was extracted and measured as described in the literature (25). For this, 0.5 g of the frozen powder was resuspended in 0.4 ml_ of 1.4 M HCIO 4 , left at 4 0 C for 1 hour and centrifuged at 10,000 xg for 30 minutes. The supernatant was neutralized with K 2 CO 3 and centrifuged at 10,000 xg for 30 minutes. The UDPGlucose existing in the supernatant was measured using a Waters Associate ' s HPLC system fitted to a Partisil-10-SAX column. The total polyphenols existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the modified Folin-Ciocalteu method described in the literature (26).
Los carotenoides totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron esencialmente haciendo uso del método descrito en (27), midiendo Ia absorbancia del extracto orgánico a 450 nm usando una curva de calibrado de β-caroteno.The total carotenoids existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the method described in (27), measuring the absorbance of the organic extract at 450 nm using a calibration curve of β-carotene.
Los antocianos totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron haciendo uso del método pH-diferencial (28). La capacidad antioxidante del polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se midió haciendo uso del método TEAC (Trolox equivalent antioxidant capacity) según se describe en Ia literatura (29) utilizando Trolox como patrón y 2,2'-acino- bis-(3-etilbenzotiazolin-6-sulfonato (ABTS).The total anthocyanins existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured using the pH-differential method (28). The antioxidant capacity of the tuber powder obtained after homogenization in liquid nitrogen was measured using the TEAC (Trolox equivalent antioxidant capacity) method as described in the literature (29) using Trolox as standard and 2,2 ' -acinobis- ( 3-ethylbenzothiazolin-6-sulfonate (ABTS).
La actividad polifenol oxidasa del polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se midió según el método descrito en (30).The polyphenol oxidase activity of the tuber powder obtained after homogenization in liquid nitrogen was measured according to the method described in (30).
Así el primer objeto de Ia presente invención se refiere a un procedimiento para Ia obtención de plantas transgénicas con alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento, en relación al fenotipo de Ia planta silvestre (WT), que comprende Ia transformación de Ia planta silvestre (WT) con un vector de expresión que sobre-expresa Ia enzima UGFT. En una realización preferida de Ia presente invención el procedimiento se caracteriza porque los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT.Thus, the first object of the present invention refers to a process for the production of transgenic plants with a high content of antioxidant compounds, high antioxidant capacity and resistance to browning, in relation to the phenotype of the wild plant (WT), which comprises the transformation of the wild plant (WT) with an expression vector that over-expresses the UGFT enzyme. In a preferred embodiment of the present invention the method is characterized in that the antioxidant compounds are preferably selected from among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
En otra realización preferida el procedimiento de Ia invención se caracteriza porque los vectores de expresión utilizados para Ia tranformación de las plantas se seleccionan preferentemente entre Agrobacteríum tumefaciens CECT 5851 y Agrobacterium tumefaciens DSM 22756, que comprenden los plásmidos pBIN35S-UGFT-NOS y pKAN-B33-UGFT respectivamente.In another preferred embodiment, the method of the invention is characterized in that the expression vectors used for the transformation of the plants are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefaciens DSM 22756, which comprise the plasmids pBIN35S-UGFT-NOS and pKAN-B33 -UGFT respectively.
Otro objeto de Ia presente invención se refiere al uso del vector de expresión Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS para Ia obtención de plantas transgénicas que presentan un alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento en relación al fenotipo de Ia planta silvestre. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT. Un objeto adicional de Ia presente invención se refiere al uso del vector de expresión Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS para Ia obtención de células vegetales transformadas que presentan alto contenido en compuestos antioxidantes y alta capacidad antioxidante en relación con las células sin transformar. Como se ha mencionado anteriormente, los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT.Another object of the present invention relates to the use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relationship to the phenotype of the wild plant. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. A further object of the present invention relates to the use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for the production of transformed plant cells which have a high content of antioxidant compounds and a high antioxidant capacity in relation to the untransformed cells As mentioned above, the antioxidant compounds are preferably selected from polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
Un objeto más de Ia presente invención se refiere al vector de expresión Agrobacterium tumefaciens DSM 22756 caracterizado por comprender el plásmido pKAN-B33-UGFT que sobre-expresa Ia enzima UGFT, así como a su uso para Ia obtención de células vegetales transformadas que presentan alto contenido en compuestos antioxidantes y alta capacidad antioxidante en relación con las células sin transformar. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT. En otra realización preferida de Ia invención, el vector de expresión Agrobacterium tumefaciens DSM 22756 se utiliza para Ia obtención de plantas transgénicas que presentan un alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento en relación al fenotipo de Ia planta silvestre. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT. Otro objeto de Ia presente invención se refiere a Ia planta transgénica transformada con un vector de expresión que sobre-expresa Ia enzima UGFT, caracterizada por presentar alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento respecto a Ia planta silvestre no transformada. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre- expresión de Ia UGFT.A further object of the present invention refers to the expression vector Agrobacterium tumefaciens DSM 22756, characterized in that it comprises the plasmid pKAN-B33-UGFT that over-expresses the UGFT enzyme, as well as its use for the production of transformed plant cells that have high content in antioxidant compounds and high antioxidant capacity in relation to untransformed cells. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. In another preferred embodiment of the invention, the expression vector Agrobacterium tumefaciens DSM 22756 is used for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relation to the phenotype of the wild plant. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. Another object of the present invention relates to the transgenic plant transformed with an expression vector that over-expresses the UGFT enzyme, characterized by having a high content of antioxidant compounds, high antioxidant capacity and resistance to browning with respect to the non-transformed wild plant. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
En una realización preferida de Ia invención, Ia planta transgénica se caracteriza porque los vectores de expresión utilizados se seleccionan preferentemente entre Agrobacterium tumefaciens CECT 5851 y Agrobacterium tumefacien DSM 22756, que comprenden los plásmidos pBIN35S-UGFT-NOS y pKAN-B33-UGFT, respectivamente. En otra realización preferida de Ia invención, Ia planta transgénica se caracteriza porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maíz y cebada. Otro objeto de Ia presente invención se refiere a las células vegetales transformadas con un vector de expresión que sobre-expresa Ia enzima UGFT, caracterizada por presentar alto contenido en compuestos antioxidantes y alta capacidad antioxidante respecto a las células sin transformar. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT. En una realización preferida, Ia célula vegetal se caracteriza porque los vectores de expresión utilizados se seleccionan preferentemente entre Agrobacterium tumefaciens CECT 5851 y Agrobacterium tumefacien DSM 22756, que comprenden los plásmidos pBIN35S- UGFT-NOS y pKAN-B33-UGFT, respectivamente. En otra realización preferida, Ia célula vegetal se caracteriza porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maiz y cebada.In a preferred embodiment of the invention, the transgenic plant is characterized in that the expression vectors used are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefacien DSM 22756, comprising the plasmids pBIN35S-UGFT-NOS and pKAN-B33-UGFT, respectively . In another preferred embodiment of the invention, the transgenic plant is characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley. Another object of the present invention relates to plant cells transformed with an expression vector that over-expresses the UGFT enzyme, characterized by having a high content of antioxidant compounds and high antioxidant capacity compared to untransformed cells. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. In a preferred embodiment, the plant cell is characterized in that the expression vectors used are preferably selected from Agrobacterium tumefaciens CECT 5851 and Agrobacterium tumefacien DSM 22756, which comprise the plasmids pBIN35S-UGFT-NOS and pKAN-B33-UGFT, respectively. In another preferred embodiment, the plant cell is characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
Además otro objeto de Ia presente invención se refiere al uso de las plantas transgénicas, mencionadas anteriormente para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT.In addition another object of the present invention refers to the use of the transgenic plants, mentioned above for obtaining high concentrations of UDPGlucosa and high levels of antioxidant compounds. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT.
El último objeto de Ia presente invención se refiere al uso de las células vegetales transformadas, mencionadas anteriormente, para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes. Los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides, sin excluir Ia posibilidad de que otras sustancias antioxidantes se hayan visto afectadas por Ia sobre-expresión de Ia UGFT. DEPÓSITO DE MICROORGANISMOS SEGÚN EL TRATADO DE BUDAPESTThe last object of the present invention refers to the use of the transformed plant cells, mentioned above, for obtaining high concentrations of UDPGlucose and high levels of antioxidant compounds. The antioxidant compounds are preferably selected among polyphenols and carotenoids, without excluding the possibility that other antioxidant substances have been affected by the over-expression of the UGFT. DEPOSIT OF MICROORGANISMS ACCORDING TO THE BUDAPEST TREATY
Los microorganismos utilizados en Ia presente invención fueron depositados en Ia Colección Española de Cultivos Tipo (CECT), sita en el Edificio de Investigación de Ia Universidad de Valencia, Campus Burjassot, Burjassot 46100 (Valencia, España) con n° de depósito CECT 5851 y en el "Germán National Resource Centre for Biological Material", sito en el DMSZ, Mascheroder Weg 1 b D-38124 (Braunschweig, Alemania) con n° de depósito DSM 22756.The microorganisms used in the present invention were deposited in the Spanish Type Culture Collection (CECT), located in the Research Building of the University of Valencia, Burjassot Campus, Burjassot 46100 (Valencia, Spain) with deposit number CECT 5851 and in the "German National Resource Center for Biological Material", located in the DMSZ, Mascheroder Weg 1 b D-38124 (Braunschweig, Germany) with deposit number DSM 22756.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓNEXAMPLES OF EMBODIMENT OF THE INVENTION
Se describen a continuación ejemplos en los que se muestra detalladamente el procedimiento para Ia obtención de las plantas transgénicas de patata con alto contenido en sustancias antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento, como consecuencia del incremento de Ia actividad UGFT productora de UDPGlucosa, así como los valores obtenidos para cada una de las susod ichas características en las plantas transgénicas respecto a los obtenidos en plantas de patata no transformadas. Los ejemplos que se exponen a continuación tienen el objetivo de ilustrar Ia invención sin limitar el alcance de Ia misma.Examples are described below in which the procedure for obtaining transgenic potato plants with a high content of antioxidants, high antioxidant capacity and resistance to browning is shown in detail, as a consequence of the increase of the UGFT activity producing UDPGlucosa, as well as as the values obtained for each of the aforementioned characteristics in the transgenic plants with respect to those obtained in non-transformed potato plants. The examples set forth below are intended to illustrate the invention without limiting the scope thereof.
Ejemplo 1. Procedimiento de obtención de plantas transgénicas de patata con alto contenido en sustancias antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento como consecuencia del incremento de Ia actividad UGFT productora de UDPGlucosaExample 1. Process for obtaining transgenic potato plants with a high content of antioxidants, high antioxidant capacity and resistance to browning as a consequence of the increase of the UGFT activity producing UDPGlucosa
En Ia presente invención UGFT ha sido expresada constitutivamente por Ia acción del promotor constitutivo 35S del virus del mosaico del tabaco. Para ello, se introdujo en el genoma de Ia patata (Solanum tuberosum) Ia construcción 35S-UGFT-NOS cuyo diseño se detalla a continuación.In the present invention UGFT has been expressed constitutively by the action of the 35S constitutive promoter of tobacco mosaic virus. To do this, the 35S-UGFT-NOS construction was introduced into the genome of the potato (Solanum tuberosum) whose design is detailed below.
Conocida Ia secuencia nucleotídica que codifica para Ia isoforma UGFT4 de UGFT silvestre de patata (22) se crearon dos cebadores específicos correspondientes a los extremos 5' y 3' del gen, cuyas secuencias son SEQ ID NO: 1 y SEQ ID NO: 2, respectivamente. Haciendo uso de estos cebadores se amplificó por métodos convencionales de PCR un fragmento de DNA de 2418 pares de bases, designado con UGFTX, a partir de una genoteca de cDNA de hoja de patata. Tal frag mento de PCR se introdujo en el plásmido pSK Bluescript (Stratagene) dando lugar a Ia construcción pUGFT, Ia cual fue amplificada en Ia bacteria hospedadora XL1 Blue. La secuencia nucleotídica de UGFTX es SEQ ID NO: 3 que es diferente a UGFTX (número de acceso en GenBank U24087). La introducción secuencial en pUGFT del promotor 35S y del terminador NOS en las regiones 5' y 3' de UGFTX, dio lugar a Ia producción del plásmido p35S-UGFT-NOS cuyo mapa de restricción se representa en Ia Figura 1A. Por otro lado, Ia introducción de UGFT en pDONR/Zeo y Ia posterior recombinación con pDONR-B33 dio lugar a Ia producción del plásmido pKAN-B33-UGFT, cuyo mapa de restricción y modo de obtención se representa en Ia Figura 2.Once the nucleotide sequence coding for the UGFT4 isoform of wild potato UGFT (22) was known, two specific primers corresponding to the 5 ' and 3 ' ends of the gene were created, whose sequences are SEQ ID NO: 1 and SEQ ID NO: 2, respectively. Using these primers, a 2418 base pair DNA fragment, designated with UGFTX, was amplified by conventional PCR methods from a DNA cDNA library. potato leaf. Such a fragment of PCR was introduced in the plasmid pSK Bluescript (Stratagene) giving rise to the pUGFT construction, which was amplified in the host bacterium XL1 Blue. The nucleotide sequence of UGFTX is SEQ ID NO: 3 which is different from UGFTX (access number in GenBank U24087). The sequential introduction in pUGFT of the 35S promoter and the NOS terminator in the 5 ' and 3 ' regions of UGFTX, gave rise to the production of the p35S-UGFT-NOS plasmid whose restriction map is shown in Figure 1A. On the other hand, the introduction of UGFT in pDONR / Zeo and the subsequent recombination with pDONR-B33 gave rise to the production of the plasmid pKAN-B33-UGFT, whose restriction map and way of obtaining it is represented in Figure 2.
Para poder transferir Ia construcción 35S-UGFT-NOS al genoma de las plantas vía Agrobacterium tumefaciens, es preciso que previamente sea clonada en un plásmido binario. Para ello, p35S-UGFT-NOS fue digerido secuencialmente con los enzimas Notl, T4 DNA polimerasa y Hindlll y se clonó dentro del plásmido binario pBIN20 (Figura 1B) (23) que previamente había sido digerido secuencialmente con los enzimas EcoRI, T4 DNA polimerasa y Hindlll. El plásmido así obtenido se designó con el nombre de pBIN35S-UGFT- NOS (Figura 1C), el cual se introdujo por electroporación en Ia cepa de A. tumefaciens adecuada para transformar plantas según protocolos convencionales. Así por ejemplo, para Ia producción de plantas transgénicas de patata que sobre-expresen UGFT constitutivamente, pBIN35S-UGFT-NOS se introdujo por electroporación en A. tumefaciens con el n° de depósito CECT 5851 , que actuó como vector de transferencia de Ia construcción 35S-UGFT-NOS al genoma nuclear de patata al ser utilizada mediante métodos convencionales de transformación genética de patata (24). Por otro lado, para Ia producción de plantas transgénicas de patata q ue sobre-expresen UGFT exclusivamente en los tubérculos, pKAN-B33-UGFT se introdujo por electroporación en A. tumefaciens con el n° de depósito DSM 22756, que actuó como vector de transferencia de Ia construcción B33-UGFT al genoma nuclear de Ia patata.In order to transfer the 35S-UGFT-NOS construct to the plant genome via Agrobacterium tumefaciens, it must first be cloned in a binary plasmid. For this, p35S-UGFT-NOS was digested sequentially with the enzymes Notl, T4 DNA polymerase and HindIII and was cloned into the binary plasmid pBIN20 (Figure 1B) (23) that had previously been digested sequentially with the enzymes EcoRI, T4 DNA polymerase and Hindlll. The plasmid thus obtained was designated pBIN35S-UGFT-NOS (Figure 1C), which was introduced by electroporation in the A. tumefaciens strain suitable for transforming plants according to conventional protocols. For example, for the production of transgenic potato plants that overexpress constitutively UGFT, pBIN35S-UGFT-NOS was introduced by electroporation into A. tumefaciens with deposit number CECT 5851, which acted as transfer vector of the construction 35S-UGFT-NOS to the nuclear potato genome when used by conventional methods of genetic transformation of potatoes (24). On the other hand, for the production of transgenic potato plants that over-express UGFT exclusively in the tubers, pKAN-B33-UGFT was introduced by electroporation into A. tumefaciens with the deposit number DSM 22756, which acted as vector of transfer of the B33-UGFT construct to the nuclear genome of the potato.
Ejemplo 2. Cultivo y procesamiento de las plantas transgénicas de patata con alto contenido en sustancias antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento como consecuencia del incremento de Ia actividad UGFT productora de UDPGlucosaExample 2. Cultivation and processing of transgenic potato plants with high content of antioxidants, high antioxidant capacity and resistance to browning as a consequence of the increase of the UGFT activity producing UDPGlucosa
Se utilizaron plantas de patata control (WT) no transformadas y las líneas 4, 5, 6 y 12 que expresan UGFT constitutivamente como resultado de Ia integración en su genoma de Ia construcción 35S-UGFT-NOS. También fueron utilizadas plantas transgénicas de patata con reducida actividad UGFT (21 ). Las plantas fueron cultivadas entre Mayo y Septiembre de 2006 y de 2007 en una parcela del término 25 de Sartaguda (Navarra, España). Las plantas fueron distribuidas al azar en parcelas de 50 metros cuadrados, haciendo uso de 30 plantas por línea. La separación entre carriles fue de 90 cm. La separación entre planta y planta de un mismo carril fue de 35 cm. Se recolectaron hojas y tubérculos. De los tubérculos recolectados se seleccionaron aquellos que tenían un peso aproximado de 100 gramos y se obtuvieron cilindros que atravesaban todo el tubérculo haciendo uso de un perforador de acero cilindrico (2 cm de diámetro). Tales cilindros fueron congelados en nitrógeno líquido y pulverizados haciendo uso de un mortero.Controlled potato plants (WT) not transformed and lines 4, 5, 6 and 12 constitutively expressing UGFT were used as a result of the integration in their genome of the construction 35S-UGFT-NOS. Transgenic potato plants were also used reduced UGFT activity (21). The plants were cultivated between May and September of 2006 and of 2007 in a plot of the term 25 of Sartaguda (Navarra, Spain). The plants were randomly distributed in plots of 50 square meters, making use of 30 plants per line. The separation between lanes was 90 cm. The separation between plant and plant of the same lane was 35 cm. Leaves and tubers were collected. From the collected tubers, those that had an approximate weight of 100 grams were selected and cylinders were obtained that crossed the entire tubercle using a cylindrical steel perforator (2 cm in diameter). Such cylinders were frozen in liquid nitrogen and pulverized using a mortar.
Ejemplo 3. Medida de Ia actividad UGFT y de Ia concentración de UDPGlucosa en tubérculos de plantas transgénicas de patata con alta actividad UGFT productora de UDPGlucosa respecto a plantas de patata no transformadas.Example 3. Measurement of the UGFT activity and the concentration of UDPGlucose in tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to potato plants not transformed.
Para Ia medición de Ia actividad UGFT, el polvo resultante tras Ia homogeneización de Ia hoja y de Ia parte carnosa y/o Ia piel del tubérculo con nitrógeno líquido fue resuspendido a 40C en 100 mM HEPES (pH 7.5), 2 mM EDTA y 5 mM dithiothreitol (5 mL/gramo polvo). Tras dializar los extractos, Ia actividad UGFT fue medida según se describe en Ia literatura (25). Brevemente, el homogeneizado vegetal fue incubado durante 5 minutos a 370C en 50 mM HEPES (pH 7.0), 1 mM MgCI2, 15 mM KCI, 50 mM sacarosa y 2 mM UDP. Tras detener Ia reacción a 1000C se determinó Ia cantidad de UDPGlucosa producida haciendo uso de un sistema de HPLC Waters Associate's ajustado a una columna Partisil-10-SAX. Es importante destacar que Ia concentración estimada de UDPglucosa citosólica en tubérculos de patata (WT) es de 0.8 mM, pero el rango de los valores de Km para Ia UDPglucosa de muchas enzimas tipo polifenol glicosiltransferasas oscilan entre 1 y 7 mM. Por Io tanto, se infiere que:For the measurement of the UGFT activity, the powder resulting after the homogenization of the leaf and the fleshy part and / or the skin of the tuber with liquid nitrogen was resuspended at 4 0 C in 100 mM HEPES (pH 7.5), 2 mM EDTA and 5 mM dithiothreitol (5 mL / gram powder). After dialyzing the extracts, the UGFT activity was measured as described in the literature (25). Briefly, the plant homogenate was incubated for 5 minutes at 37 0 C in 50 mM HEPES (pH 7.0), 1 mM MgCl 2, 15 mM KCI, 50 mM sucrose and 2 mM UDP. After stopping the reaction at 100 0 C the amount of UDPglucose produced was determined using an HPLC system Waters Associates' s adjusted to a Partisil SAX-10-column. It is important to note that the estimated concentration of cytosolic UDPglucose in potato tubers (WT) is 0.8 mM, but the range of Km values for the UDPglucose of many polyphenol glycosyltransferase-type enzymes range between 1 and 7 mM. Therefore, it is inferred that:
(a) UDPglucosa citosólica es un sustrato limitante para muchas polifenol glicosiltransferasas y(a) Cytosolic UDPglucose is a limiting substrate for many polyphenol glycosyltransferases and
(b) Ia alteración de los niveles citosólicos de UDPglucosa puede ejercer un impacto en Ia acumulación y glicosilación de polifenoles y carotenoides.(b) The alteration of the cytosolic levels of UDPglucose can exert an impact on the accumulation and glycosylation of polyphenols and carotenoids.
Tal y como se ilustra en Ia Figura 3, Ia actividad UGFT en los tubérculos de cualquiera de las plantas que expresan UGFT constitutivamente es 1.5-2 veces superior a Ia existente en el mismo órgano de una planta control (WT) cultivada en las mismas condiciones y en el mismo momento. Por el contrario, los tubérculos de las plantas anti-UGFT mostraron una actividad 3-4 veces inferior a Ia observada en tubérculos de las plantas WT cultivadas en las mismas condiciones y en el mismo momento. Los tubérculos de plantas que expresan constitutivamente UGFT acumulan niveles de UDPGlucosa (135-160 nmol/g peso fresco) significativamente superiores a los observados en tubérculos de plantas WT (95-105 nmol/g peso fresco) (Figura 4) cultivados en las mismas condiciones y en el mismo momento. Por el contrario, los tubérculos de patata de plantas antisentido de UGFT acumulan niveles de UDPGlucosa (15-30 nmol/g peso fresco) significativamente inferiores a los observados en tubérculos de plantas WT cultivadas en las mismas condiciones y en el mismo momento.As illustrated in Figure 3, the UGFT activity in the tubers of any of the plants that express UGFT constitutively is 1.5-2 times higher than that existing in the same organ of a control plant (WT) grown under the same conditions and at the same time. On the contrary, the tubers of the anti-UGFT plants showed an activity 3-4 times lower than that observed in tubers of the WT plants grown under the same conditions and at the same time. The tubers of plants that constitutively express UGFT accumulate levels of UDPGlucosa (135-160 nmol / g fresh weight) significantly higher than those observed in tubers of WT plants (95-105 nmol / g fresh weight) (Figure 4) grown under the same conditions and at the same time. In contrast, potato tubers of UGFT antisense plants accumulate levels of UDPGlucose (15-30 nmol / g fresh weight) significantly lower than those observed in tubers of WT plants grown under the same conditions and at the same time.
Ejemplo 4. Medida de Ia concentración de polifenoles totales, carotenoides totales y antocianos en los tubérculos de plantas transgénicas de patata con alta actividad UGFT productora de UDPGlucosa respecto a plantas silvestres no transformadas.Example 4. Measurement of the concentration of total polyphenols, total carotenoids and anthocyanins in the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
Los polifenoles totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron esencialmente haciendo uso del método modificado de Folin-Ciocalteu descrito en Ia literatura (26). La parte carnosa de los tubérculos de plantas que expresan UGFT constitutivamente acumulan niveles de polifenoles (0.2-0.25 mg GAE/g peso fresco) significativamente superiores a los observados en tubérculos de plantas WT (0.17-0.19 GAE/g peso fresco), cultivadas en las mismas condiciones y en el mismo momento (Figura 5). Por el contrario, Ia parte carnosa de los tubérculos de patata de plantas antisentido de UGFT acumulan niveles de polifenoles (0.14-0.15 nmol/g peso fresco) significativamente inferiores a los observados en tubérculos de plantas WT cultivadas en las mismas condiciones y en el mismo momento. Por Io tanto, el contenido de polifenoles totales presentes en Ia parte carnosa de los tubérculos de plantas de patata que expresan UGFT constitutivamente es de un 25-35% mayor que en los tubérculos de las plantas WT, y de un 45% mayor que en los tubérculos de las plantas antisentido de UGFT. La piel de los tubérculos de plantas que expresan UGFT constitutivamente acumula niveles de polifenoles (0.58-0.72 mg GAE/g peso fresco) significativamente superiores a los observados en Ia piel de tubérculos de plantas WT (0.48-0.52 mg GAE/g peso fresco) (Figura 6) cultivadas en las mismas condiciones y en el mismo momento. Los carotenoides totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron esencialmente haciendo uso del método descrito en (27), midiendo Ia absorbancia del extracto orgánico a 450 nm usando una curva de calibrado de β-caroteno.The total polyphenols existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the modified Folin-Ciocalteu method described in the literature (26). The fleshy part of the tubers of plants that express UGFT constitutively accumulate levels of polyphenols (0.2-0.25 mg GAE / g fresh weight) significantly higher than those observed in tubers of WT plants (0.17-0.19 GAE / g fresh weight), grown in the same conditions and at the same time (Figure 5). On the contrary, the fleshy part of potato tubers of UGFT antisense plants accumulate polyphenol levels (0.14-0.15 nmol / g fresh weight) significantly lower than those observed in tubers of WT plants grown under the same conditions and in the same conditions. moment. Therefore, the content of total polyphenols present in the fleshy part of the tubers of potato plants that express UGFT constitutively is 25-35% higher than in the tubers of WT plants, and 45% higher than in the tubers of the UGFT antisense plants. The skin of the tubers of plants that express UGFT constitutively accumulates levels of polyphenols (0.58-0.72 mg GAE / g fresh weight) significantly higher than those observed in the skin of tubers of WT plants (0.48-0.52 mg GAE / g fresh weight) (Figure 6) grown under the same conditions and at the same time. The total carotenoids existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured essentially using the method described in (27), measuring the absorbance of the organic extract at 450 nm using a calibration curve of β-carotene.
Los antocianos totales existentes en el polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se extrajeron y se midieron haciendo uso del método pH-diferencial (28). La piel de los tubérculos de plantas que expresan UGFT constitutivamente acumula niveles de antocianos (4.1-5.5 mg/g peso fresco) superiores a los observados en Ia piel de tubérculos de plantas WT (3.8-4.0 mg/g peso fresco) (Figura 7) cultivadas en las mismas condiciones y en el mismo momento.The total anthocyanins existing in the tuber powder obtained after homogenization in liquid nitrogen were extracted and measured using the pH-differential method (28). The skin of the tubers of plants that express UGFT constitutively accumulates levels of anthocyanins (4.1-5.5 mg / g fresh weight) higher than those observed in the skin of tubers of WT plants (3.8-4.0 mg / g fresh weight) (Figure 7) grown under the same conditions and at the same time.
Los tubérculos de plantas que expresan UGFT constitutivamente acumulan niveles de carotenoides (1.1-1.6 μg βCE/g peso fresco) significativamente superiores a los observados en tubérculos de plantas WT (0.8-1.0 μg βCE/g peso fresco) (Figura 8) cultivadas en las mismas condiciones y en el mismo momento.The tubers of plants that express UGFT constitutively accumulate levels of carotenoids (1.1-1.6 μg βCE / g fresh weight) significantly higher than those observed in tubers of WT plants (0.8-1.0 μg βCE / g fresh weight) (Figure 8) grown in the same conditions and at the same time.
Ejemplo 5. Medida de Ia capacidad antioxidante en hojas y tubérculos ( parte carnosa y piel) de plantas transgénicas de patata con alta actividad UGFT productora de UDPGlucosa respecto a plantas silvestres no transformadas.Example 5. Measurement of the antioxidant capacity in leaves and tubers (fleshy part and skin) of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
La capacidad antioxidante del polvo de hojas y de tubérculo (parte carnosa y piel) obtenidos tras homogeneización en nitrógeno líquido se midió haciendo uso del método TEAC (Trolox equivalent antioxidant capacity) según se describe en Ia literatura (29) utilizando Trolox como patrón y 2,2'-acino-bis-(3-etilbenzotiazolin-6-sulfonato (ABTS).The antioxidant capacity of the leaf and tuber powder (fleshy part and skin) obtained after homogenization in liquid nitrogen was measured using the TEAC (Trolox equivalent antioxidant capacity) method as described in the literature (29) using Trolox as standard and 2 , 2 '-acino-bis- (3-ethyl-6-sulfonate (ABTS).
La parte carnosa de los tubérculos de plantas que expresan UGFT constitutivamente poseen valores de capacidad antioxidante (7.6-9.0 μmol equivalente de Trolox/g peso fresco) significativamente superiores a los observados en Ia parte carnosa de tubérculos de plantas WT (6.5-6.8 μmol equivalente de Trolox/g peso fresco) cultivadas en las mismas condiciones y en el mismo momento (Figura 9).The fleshy part of the tubers of plants that express UGFT constitutively have values of antioxidant capacity (7.6-9.0 μmol of Trolox / g fresh weight) significantly higher than those observed in the fleshy part of tubers of WT plants (6.5-6.8 μmol equivalent) of Trolox / g fresh weight) grown under the same conditions and at the same time (Figure 9).
La piel de los tubérculos de plantas que expresan UGFT de manera constitutiva poseen valores de capacidad antioxidante (14.2-16.2 μmol equivalente de Trolox/g peso fresco) significativamente superiores a los observados en Ia piel de tubérculos de plantas WT (12.0- 12.4 μmol equivalente de Trolox/g peso fresco) cultivadas en las mismas condiciones y en el mismo momento (Figura 10).The skin of the tubers of plants that express UGFT constitutively have values of antioxidant capacity (14.2-16.2 μmol equivalent of Trolox / g fresh weight) significantly higher than those observed in the skin of tubers of WT plants (12.0- 12.4 μmol equivalent) of Trolox / g fresh weight) grown under the same conditions and at the same time (Figure 10).
Las hojas de plantas que expresan UGFT de manera constitutiva poseen valores de capacidad antioxidante (75-100 μmol equivalente de Trolox/g peso fresco) significativamente superiores a los observados en las hojas de plantas WT (40-50 μmol equivalente de Trolox/g peso fresco) cultivadas en las mismas condiciones y en el mismo momento (Figura 11).The leaves of plants that express UGFT constitutively have values of antioxidant capacity (75-100 μmol equivalent of Trolox / g fresh weight) significantly higher than those observed in the leaves of WT plants (40-50 μmol of Trolox equivalent / g weight fresh) grown under the same conditions and at the same time (Figure 11).
Los polifenoles y los carotenoides son los mayores determinantes de Ia capacidad antioxidante de las células. El incremento en el contenido de polifenoles y carotenoides inducido por Ia expresión ectópica de enzimas implicadas en Ia biosíntesis de estos compuestos conduce al incremento de Ia actividad antioxidante en tubérculos de plantas de patata. En este sentido, Ia expresión constitutiva de UGFT en plantas de patata mediante el procedimiento descrito en Ia presente invención, condujo a un incremento de entre el 20-30% de la actividad antioxidante total en los tubérculos de las mismas. Este resultado es debido al mayor contenido en polifenoles y carotenoides presentado por dichas plantas y no al incremento de otros compuestos antioxidantes, como son el ácido ascórbico, ya que Ia concentración de dicho ácido en los tubérculos de plantas que expresan constitutivamente UGFT, permanece sin cambios en relación a Ia concentración presente en las plantas WT.Polyphenols and carotenoids are the major determinants of the antioxidant capacity of cells. The increase in the content of polyphenols and carotenoids induced by the ectopic expression of enzymes involved in the biosynthesis of these compounds leads to the increase of the antioxidant activity in tubers of potato plants. In this sense, the constitutive expression of UGFT in potato plants by the procedure described in the present invention, led to an increase of between 20-30% of the total antioxidant activity in the tubers of the same. This result is due to the higher content of polyphenols and carotenoids presented by said plants and not to the increase of other antioxidant compounds, such as ascorbic acid, since the concentration of said acid in the tubers of plants that constitutively express UGFT remains unchanged. in relation to the concentration present in the WT plants.
Ejemplo 6. Medida de Ia actividad polifenol oxidasa en Ia parte carnosa y en Ia piel de los tubérculos de plantas transgénicas de patata con alta actividad UGFT productora de UDPGlucosa respecto a plantas silvestres no transformadas.Example 6. Measurement of the polyphenol oxidase activity in the fleshy part and in the skin of the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed wild plants.
La actividad polifenol oxidasa del polvo de tubérculo obtenido tras homogeneización en nitrógeno líquido se midió según el método descrito en (30). La actividad polifenol oxidasa de Ia parte carnosa de los tubérculos de patata que expresan UGFT de manera constitutiva es normal al compararse con Ia existente en tubérculos de plantas WT cultivadas en las mismas condiciones y en el mismo momento (Figura 12A). La actividad polifenol oxidasa de Ia piel de los tubérculos de patata que expresan UGFT de manera constitutiva tiene una tendencia a ser inferior a Ia observada en los tubérculos de plantas WT cultivadas en las mismas condiciones y en el mismo momento (Figura 12B).The polyphenol oxidase activity of the tuber powder obtained after homogenization in liquid nitrogen was measured according to the method described in (30). The polyphenol oxidase activity of the fleshy part of potato tubers that express UGFT in a constitutive manner is normal when compared with the one existing in tubers of WT plants grown under the same conditions and at the same time (Figure 12A). The polyphenol oxidase activity of the skin of potato tubers that express UGFT constitutively has a tendency to be lower than that observed in the tubers of WT plants grown under the same conditions and at the same time (Figure 12B).
Ejemplo 7. Medida de Ia resistencia al empardecimiento en los tubérculos de plantas transgénicas de patata con alta actividad UGFT productora de UDPGlucosa respecto a plantas WT no transformadas.Example 7. Measurement of the resistance to browning in the tubers of transgenic potato plants with high UGFT activity producing UDPGlucose with respect to non-transformed WT plants.
Los tubérculos de plantas que sobre-expresan UGFT son más resistentes al efecto de empardecimiento ("browning effect") que los tubérculos de plantas WT cultivadas en las mismas condiciones y en el mismo momento, tras sufrir un daño mecánico y exposición al aire (Figura 13). Este hecho se debe, al menos en parte, al alto contenido en polifenoles totales y carotenoides presente en las plantas que expresan UGFT y no a Ia disminución de Ia actividad polifenol oxidasa, ya que Ia máxima actividad polifenol oxidasa en tubérculos de plantas que expresan constitutivamente UGFT fue normal comparándola con los tubérculos de las plantas WT. Todos estos datos indican que el incremento en Ia actividad UGFT determina los niveles intracelu lares de sustancias (principalmente polifenoles y carotenoides glicosilados estables) que presentan una alta capacidad antioxidante, mediante Ia provisión de un gran pool de UDPglucosa a las enzimas glicosilantes. BIBLIOGRAFÍAThe tubers of plants that overexpress UGFT are more resistant to the browning effect than the tubers of WT plants grown under the same conditions and at the same time, after suffering mechanical damage and exposure to air (Figure 13). This fact is due, at least in part, to the high content of total polyphenols and carotenoids present in the plants that express UGFT and not to the decrease in the activity of polyphenol oxidase, since the maximum polyphenol oxidase activity in tubers of plants that express constitutively UGFT was normal compared to the tubers of the WT plants. All these data indicate that the increase in UGFT activity determines the intracellular levels of substances (mainly polyphenols and stable glycosylated carotenoids) that have a high antioxidant capacity, by providing a large pool of UDPglucose to the glycosylating enzymes. BIBLIOGRAPHY
1. Amor, Y., Haigler, CH. , Johnson, S., Wainscott, M., Delmer, DP. (1995) A membrane- associated form of sucrose synthase and its potential role in synthesis of cellulose and1. Love, Y., Haigler, CH. , Johnson, S., Wainscott, M., Delmer, DP. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and
5 callóse in plants. Proc. Nati. Acad. Sci. USA 92, 9353-93575 fell in in plants. Proc. Nati Acad. Sci. USA 92, 9353-9357
2. Herbers, K., Sonnewald, U. (1998) Molecular determinants of sink strength. Curr. Opin. Plant Biol. 1 , 207-2162. Herbers, K., Sonnewald, U. (1998) Molecular determinants of sink strength. Curr. Opin. Plant Biol. 1, 207-216
3. Nakai, T., Konishi, T., Zhang, X.-Q., Chollet, R., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Mori, H., Sakai, F., Hayashi, T. (1998) An increase in apparent affinity for sucrose of3. Nakai, T., Konishi, T., Zhang, X.-Q., Chollet, R., Tonouchi, N., Tsuchida, T., Yoshinaga, F., Mori, H., Sakai, F., Hayashi, T. (1998) An increase in apparent affinity for sucrose of
10 mung bean sucrose synthase is caused by in vitro phosphorylation or directed mtagenesis of Ser11. Plant CeII Physiol. 39, 1337-134110 mung bean sucrose synthase is caused by in vitro phosphorylation or directed mtagenesis of Ser 11 . Plant CeII Physiol. 39, 1337-1341
4. Déjardin, A., Sokolov, L. N., Kleczkowski, L. A. (1999) Sugar/osmoticum levéis modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344, 503-5094. Déjardin, A., Sokolov, L. N., Kleczkowski, L. A. (1999) Sugar / osmoticum levéis modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344, 503-509
15 5. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M.,15 5. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M.,
Furuhashi, H., Mujin, T., Takaiwa, F., Wu, C, Tada, Y., Satozawa, T., Sakamoto, M.,Furuhashi, H., Mujin, T., Takaiwa, F., Wu, C, Tada, Y., Satozawa, T., Sakamoto, M.,
Shimada, H. (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant CeII 14, 619-628 20 6. Ciereszko, I., Kleczkowski, L. A. (2002) Glucose and mannose regúlate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms.Shimada, H. (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant CeII 14, 619-628 20 6. Ciereszko, I., Kleczkowski, L.A. (2002) Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms.
Plant Physiol. Biochem. 40, 907-911 7. Kleczkowski, L.A. (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37, 1507-1515 25 8. Buckeridge, M. S., Vergara, CE. , Carpita, N. C (1999). The mechanism of synthesis of a mixed-linkage (1 - 3), (1 - 4) β-D-glucan in maize. Evidence for múltiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120, 1105-1116 9. Neckelmann, G. and Orellana, A. (1998) Metabolism of uridine 5'-diphosphate-glucose in golgi vesicles from pea stems. Plant Physiol. 117, 1007-1014 30 10. Regev-Shosshani, G., Shoseyov, O., Bilkis, I., Kerem, Z. (2003) Glycosylation of resveratrol protects it from enzymatic oxidation. Biochem. J. 374, 157-163 11. Lorenc-Kukula, K., Jafra, S., Oszmianski, J., Szopa, J. (2005) Ectopic expression of anthocyanin 5-O-glucosyltransferase in potato tuber causes increased resitance to bacteria. J. Agrie. Food Chem. 53, 272-281 35 12. Yang, CS., Landau, J. M., Huang, M.T., Newmark, H. L. (2001 ) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21 , 381-406 13. Gachón, C. M. M., Langlois-Meurinne, M. and Saindrenan, P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542-549Plant Physiol. Biochem. 40, 907-911 7. Kleczkowski, LA (1994) Glucose activation and metabolism through UDP-glucose pyrophosphorylase in plants. Phytochemistry 37, 1507-1515 25 8. Buckeridge, MS, Vergara, CE. , Carpita, N. C (1999). The mechanism of synthesis of a mixed-linkage (1 - 3), (1 - 4) β-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol. 120, 1105-1116 9. Neckelmann, G. and Orellana, A. (1998) Metabolism of uridine 5 '-diphosphate-glucose in golgi vesicles from pea stems. Plant Physiol. 117, 1007-1014 30 10. Regev-Shosshani, G., Shoseyov, O., Bilkis, I., Kerem, Z. (2003) Glycosylation of resveratrol protects it from enzymatic oxidation. Biochem. J. 374, 157-163 11. Lorenc-Kukula, K., Jafra, S., Oszmianski, J., Szopa, J. (2005) Ectopic expression of anthocyanin 5-O-glucosyltransferase in potato tuber causes increased resitance to bacteria . J. Agrie. Food Chem. 53, 272-281. 35 12. Yang, CS., Landau, JM, Huang, MT, Newmark, HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 21, 381-406 13. Gachón, CMM, Langlois-Meurinne, M. and Saindrenan, P. (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10, 542-549
14. Friedman, M. (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J. Agrie. Food Chem. 45, 1523-154014. Friedman, M. (1997) Chemistry, biochemistry, and dietary role of potato polyphenols. A review. J. Agrie. Food Chem. 45, 1523-1540
15. Robert, L., Narcy, A., Rock, E., Demigne, C, Mazur, A. and Rémésy, C. (2006) Entire potato consumption improves lipid metabolism and antioxidant status in cholesterol-fed rat. Eur. J. Nutr. 45, 267-27415. Robert, L., Narcy, A., Rock, E., Demigne, C, Mazur, A. and Rémésy, C. (2006) Whole potato improvement lipid metabolism and antioxidant status in cholesterol-fed rat. Eur. J. Nutr. 45, 267-274
16. Al-Saikhan, M. S., Howard, L. R., Miller, J. C. (1995) Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L). J. Food Sci. 60, 341-34316. Al-Saikhan, M.S., Howard, L.R., Miller, J.C. (1995) Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L). J. Food Sci. 60, 341-343
17. Lewis, C, Walker, J., Lancaster, J. and Sutton, K. (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L J. Sci. Food Agrie. 77, 45-5717. Lewis, C, Walker, J., Lancaster, J. and Sutton, K. (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Colored cultivars of Solanum tuberosum L. J. Sci. Food Agrie. 77, 45-57
18. Morris, W. L., Ducreux, L., Griffiths, D., Stewart, D., Davies, H.V., Taylor, M. (2004) Carotenogenesis during tuber development and storage in potato. J. Exp. Bot. 399, 975-18. Morris, W.L., Ducreux, L., Griffiths, D., Stewart, D., Davies, H.V., Taylor, M. (2004) Carotenogenesis during tuber development and storage in potato. J. Exp. Bot. 399, 975-
982982
19. Andre, C. M., Ghislain, M., Bertin, P., Oufir, M., Herrera, M. R., Hoffmann, L., Hausman, J- F., Larondelle, Y., Evers, D. (2007) Andean potato cultivars (Solanum tuberosum L) as a source of antioxidant and mineral micronutrients. J. Agrie. Food Chem. 55, 366-378 20. Vogt, T. and Jones, P. (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386 21. Zrenner, R., Salanoubat, M., Willmitzer, L., Sonnewald, U. (1995) Evidence for the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L) Plant J. 7, 97-107 22. Fu, H., Park, W. D. (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant CeII 7, 1369-138519. Andre, CM, Ghislain, M., Bertin, P., Oufir, M., Herrera, MR, Hoffmann, L., Hausman, J- F., Larondelle, Y., Evers, D. (2007) Andean potato cultivars (Solanum tuberosum L) as a source of antioxidant and mineral micronutrients. J. Agrie. Food Chem. 55, 366-378 20. Vogt, T. and Jones, P. (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 380-386 21. Zrenner, R., Salanoubat, M., Willmitzer, L., Sonnewald, U. (1995) Evidence for the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L) Plant J. 7, 97-107 22. Fu, H., Park, WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant CeII 7, 1369-1385
23. Hennegan, K.P., Danna, KJ. (1998) pBIN20: An improved binary vector for Agrobacterium-mediated transformation. Plant Mol. Biol. Rep. 16, 129-13123. Hennegan, K.P., Danna, KJ. (1998) pBIN20: An improved binary vector for Agrobacterium-mediated transformation. Plant Mol. Biol. Rep. 16, 129-131
24. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. Willmitzer, L. (1989) Both developmental and metabolic signáis actívate the promoter of a class I patatin gene. EMBO J. 8, 23-2924. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J. Willmitzer, L. (1989) Both developmental and metabolic signáis actívate the promoter of a class I patatin gene. EMBO J. 8, 23-29
25. Muñoz, F. J., Baroja-Fernández, E., Morán-Zorzano, M. T., Viale, A.M., Etxeberria, E., Alonso-Casajús, N., Pozueta-Romero, J. (2005) Sucrose synthase controls the intracellular levéis of ADPglucose linked to transitory starch biosynthesis in source leaves. Plant CeII Physiol. 46, 1366-1376 26. Georgé, S., Brat, P., Alter, P., Amito, MJ. (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agrie. Food Chem. 53, 1370-137325. Muñoz, FJ, Baroja-Fernández, E., Morán-Zorzano, MT, Viale, AM, Etxeberria, E., Alonso-Casajus, N., Pozueta-Romero, J. (2005) Sucrose synthase controls the intracellular levéis of ADPglucose linked to transitory starch biosynthesis in source leaves. Plant CeII Physiol. 46, 1366-1376 26. Georgé, S., Brat, P., Alter, P., Amito, MJ. (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J. Agrie. Food Chem. 53, 1370-1373
27. Diretto, G., Al-Babili, S., Tabaza, R., Papacchioli, V., Beyer, P., Giuliano, G. (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of bacterial mini-pathway. Píos ONE, 4:e350, april 200727. Diretto, G., Al-Babili, S., Tabaza, R., Papacchioli, V., Beyer, P., Giuliano, G. (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of bacterial mini -pathway. Píos ONE, 4: e350, april 2007
28. Teow, C.C., Truong, V., McFeeters, R.F., Thompson, R.L., Pecota, K.V., Yencho, G.G. (2007) Antioxidant activities, phonolic and β-carotene contents of sweet potato genotypes with varying flesh colours" Food Chem. 103, 829-83828. Teow, C.C., Truong, V., McFeeters, R.F., Thompson, R.L., Pecota, K.V., Yencho, G.G. (2007) Antioxidant activities, phonolic and β-carotene contents of sweet potato genotypes with varying flesh colors "Food Chem. 103, 829-838
29. Stratil, P., Klejdus, B., Kuban, V. (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables-Evaluation of spectrophotometric methods. J. Agrie. Food Chem. 54, 607-61629. Stratil, P., Klejdus, B., Kuban, V. (2006) Determination of total content of phenolic compounds and their antioxidant activity in vegetables-Evaluation of spectrophotometric methods. J. Agrie. Food Chem. 54, 607-616
30. Thygesen, P.W., Dry, I. B, Robinson, S. P. (1995) Polyphenol oxidase in potato. Plant Physiol. 109, 525-531 30. Thygesen, P. W., Dry, I. B, Robinson, S. P. (1995) Polyphenol oxidase in potato. Plant Physiol. 109, 525-531

Claims

REIVINDICACIONES
1 . Procedimiento para Ia obtención de plantas transgénicas con alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento, en relación al fenotipo de Ia planta silvestre, que comprende Ia transformación de Ia planta silvestre con un vector de expresión que sobre-expresa Ia enzima UGFT.one . Process for obtaining transgenic plants with high content of antioxidant compounds, high antioxidant capacity and resistance to browning, in relation to the phenotype of the wild plant, which comprises the transformation of the wild plant with an expression vector that over-expresses the enzyme UGFT.
2. Procedimiento según Ia reivindicación 1 , caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.2. Process according to claim 1, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
3. Procedimiento, según cualquiera de las reivindicaciones 1 o 2, caracterizado porque el vector de expresión es Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS.3. Method according to any of claims 1 or 2, characterized in that the expression vector is Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS.
4. Uso del vector de expresión Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS para Ia obtención de plantas transgénicas que presentan un alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento en relación al fenotipo de Ia planta silvestre.4. Use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relation to the phenotype of the wild plant .
5. Uso, según Ia reivindicación 4, caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.5. Use, according to claim 4, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
6. Uso del vector de expresión Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS para Ia obtención de células vegetales transformadas que presentan alto contenido en compuestos antioxidantes y alta capacidad antioxidante en relación con las células sin transformar.6. Use of the expression vector Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS for the production of transformed plant cells that have a high content of antioxidant compounds and high antioxidant capacity in relation to untransformed cells.
7. Uso según Ia reivindicación 6, caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.7. Use according to claim 6, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
8. Planta transgénica, transformada con un vector de expresión que sobre-expresa Ia enzima UGFT, caracterizada por presentar alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento respecto a Ia planta silvestre no transformada. Transgenic plant, transformed with an expression vector that over-expresses the UGFT enzyme, characterized by high content of antioxidant compounds, high antioxidant capacity and resistance to browning compared to the non-transformed wild plant.
9. Planta transgénica, según Ia reivindicación 8, caracterizada porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.9. Transgenic plant, according to claim 8, characterized in that the antioxidant compounds are selected from polyphenols and carotenoids.
10. Planta transgénica, según cualquiera de las reivindicaciones 8 o 9, caracterizada porque el vector de expresión es Agrobacterium tumefaciens CECT 5851 que comprende el plásmidoTransgenic plant, according to any of claims 8 or 9, characterized in that the expression vector is Agrobacterium tumefaciens CECT 5851 comprising the plasmid
PBIN35S-UGFT-NOS.PBIN35S-UGFT-NOS.
11. Planta transgénica, según cualquiera de las reivindicaciones 8 a 10, caracterizada porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maíz y cebada.Transgenic plant, according to any of claims 8 to 10, characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
12. Célula vegetal transformada con un vector de expresión que sobre-expresa Ia enzima UGFT, caracterizada por presentar alto contenido en compuestos antioxidantes y alta capacidad antioxidante respecto a las células sin transformar.12. Plant cell transformed with an expression vector that over-expresses the UGFT enzyme, characterized by having a high content of antioxidant compounds and high antioxidant capacity compared to untransformed cells.
13. Célula vegetal transformada, según Ia reivindicación 12, caracterizada porque los compuestos atioxidantes se seleccionan entre polifenoles y carotenoides.13. Transformed plant cell according to claim 12, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
14. Célula vegetal transformada, según cualquiera de las reivindicaciones 12 o 13, caracterizada porque el vector de expresión es Agrobacterium tumefaciens CECT 5851 que comprende el plásmido pBIN35S-UGFT-NOS.14. Transformed plant cell according to any of claims 12 or 13, characterized in that the expression vector is Agrobacterium tumefaciens CECT 5851 comprising the plasmid pBIN35S-UGFT-NOS.
15. Célula vegetal transformada según cualquiera de las reivindicaciones 12 a 14, caracterizada porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maiz y cebada15. Transformed plant cell according to any of claims 12 to 14, characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley
16. Uso de las plantas transgénicas, de cualquiera de las reivindicaciones 8 a 11 , para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes.16. Use of the transgenic plants of any of claims 8 to 11, for obtaining high concentrations of UDPGlucosa and high levels of antioxidant compounds.
17. Uso según Ia reivindicación 16 caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.17. Use according to claim 16, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
18. Uso de las células vegetales transformadas, de cualquiera de las reivindicaciones 12 a 15, para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes. 18. Use of the transformed plant cells of any of claims 12 to 15 for obtaining high concentrations of UDPGlucose and high levels of antioxidant compounds.
19. Uso según Ia reivindicación 18, caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.19. Use according to claim 18, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
20. Procedimiento, según cualquiera de las reivindicaciones 1 o 2, caracterizado porque el vector de expresión es Agrobacteríum tumefaciens DSM22756 que comprende el plásmido pKAN-B33-UGFT.20. Method according to any of claims 1 or 2, characterized in that the expression vector is Agrobacterium tumefaciens DSM22756 comprising the plasmid pKAN-B33-UGFT.
21. Vector de expresión Agrobacteríum tumefaciens DSM 22756 caracterizado por comprender el plásmido pKAN-B33-UGFT.21. Expression vector Agrobacterium tumefaciens DSM 22756 characterized by comprising the plasmid pKAN-B33-UGFT.
22. Uso del vector de expresión, según Ia reivindicación 8, para Ia obtención de células vegetales transformadas que presentan alto contenido en compuestos antioxidantes y alta capacidad antioxidante en relación con las células sin transformar.22. Use of the expression vector, according to claim 8, for obtaining transformed plant cells that have a high content of antioxidant compounds and a high antioxidant capacity in relation to the untransformed cells.
23. Uso del vector de expresión, según Ia reivindicación 8, para Ia obtención de plantas transgénicas que presentan un alto contenido en compuestos antioxidantes, alta capacidad antioxidante y resistencia al empardecimiento en relación al fenotipo de Ia planta silvestre.23. Use of the expression vector, according to claim 8, for obtaining transgenic plants that have a high content of antioxidant compounds, high antioxidant capacity and resistance to browning in relation to the phenotype of the wild plant.
24. Uso, según Ia reivindicación 10, caracterizado porque los compuestos antioxidantes se seleccionan preferentemente entre polifenoles y carotenoides.24. Use according to claim 10, characterized in that the antioxidant compounds are preferably selected from polyphenols and carotenoids.
25. Planta transgénica, según cualquiera de las reivindicaciones 8 o 9, caracterizada porque el vector de expresión es Agrobacteríum tumefaciens DSM 22756 que comprende el plásmido pKAN-B33-UGFT.25. A transgenic plant according to any of claims 8 or 9, characterized in that the expression vector is Agrobacterium tumefaciens DSM 22756 comprising the plasmid pKAN-B33-UGFT.
26. Planta transgénica, según cualquiera de las reivindicaciones 8 a 10, caracterizada porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maíz y cebada.26. A transgenic plant according to any of claims 8 to 10, characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
27. Célula vegetal transformada, según cualquiera de las reivindicaciones 12 o 13, caracterizada porque el vector de expresión es Agrobacteríum tumefaciens DSM 22756 que comprende el plásmido pKAN-B33-UGFT. 27. Transformed plant cell according to any of claims 12 or 13, characterized in that the expression vector is Agrobacterium tumefaciens DSM 22756 comprising the plasmid pKAN-B33-UGFT.
28. Célula vegetal transformada según cualquiera de las reivindicaciones 12 a 14, caracterizada porque se selecciona entre cualquiera de las siguientes especies: patata, arroz, tomate, maiz y cebada.28. Transformed plant cell according to any of claims 12 to 14, characterized in that it is selected from any of the following species: potato, rice, tomato, corn and barley.
29. Uso de las plantas transgénicas, de cualquiera de las reivindicaciones 25 o26, para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes.29. Use of the transgenic plants of any of claims 25 or 26, for obtaining high concentrations of UDPGlucose and high levels of antioxidant compounds.
30. Uso según Ia reivindicación 29 caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides.30. Use according to claim 29, characterized in that the antioxidant compounds are selected among polyphenols and carotenoids.
31. Uso de las células vegetales transformadas, de cualquiera de las reivindicaciones 27 o 28, para Ia obtención de altas concentraciones de UDPGlucosa y altos niveles de compuestos antioxidantes.31. Use of the transformed plant cells of any of claims 27 or 28 for obtaining high concentrations of UDPGlucose and high levels of antioxidant compounds.
32. Uso según Ia reivindicación 31 , caracterizado porque los compuestos antioxidantes se seleccionan entre polifenoles y carotenoides. 32. Use according to claim 31, characterized in that the antioxidant compounds are selected from polyphenols and carotenoids.
PCT/ES2009/070496 2008-11-13 2009-11-11 Procedure for the production of transgenic plants presenting high antioxidant compound content, high antioxidant capacity and resistance to browning WO2010055186A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200803245 2008-11-13
ES200803245A ES2339094B1 (en) 2008-11-13 2008-11-13 PROCEDURE FOR THE PRODUCTION OF TRANSGENIC PLANTS THAT PRESENT HIGH CONTENT IN ANTIOXIDANT COMPOUNDS, HIGH ANTIOXIDANT CAPACITY AND RESISTANCE TO EMPARDECIMIENTO.

Publications (1)

Publication Number Publication Date
WO2010055186A1 true WO2010055186A1 (en) 2010-05-20

Family

ID=42126179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070496 WO2010055186A1 (en) 2008-11-13 2009-11-11 Procedure for the production of transgenic plants presenting high antioxidant compound content, high antioxidant capacity and resistance to browning

Country Status (2)

Country Link
ES (1) ES2339094B1 (en)
WO (1) WO2010055186A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006862A1 (en) * 1996-08-09 1998-02-19 Calgene Llc Methods for producing carotenoid compounds and speciality oils in plant seeds
WO2005075649A1 (en) * 2004-02-05 2005-08-18 Universidad Publica De Navarra Method of producing recombinant sucrose synthase, use thereof in the production of sucrose-determination kits, method of producing adpglucose and method of obtaining transgenic plants having leaves and reserve organs which accumulate a high concentration of adpglucose and starch
WO2007045063A2 (en) * 2005-10-21 2007-04-26 Alellyx S. A. Polynucleotides, dna constructs and methods for the alteration of plant cellulose content
WO2008021574A2 (en) * 2006-08-18 2008-02-21 Ceres, Inc. Modulating plant carotenoid levels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006862A1 (en) * 1996-08-09 1998-02-19 Calgene Llc Methods for producing carotenoid compounds and speciality oils in plant seeds
WO2005075649A1 (en) * 2004-02-05 2005-08-18 Universidad Publica De Navarra Method of producing recombinant sucrose synthase, use thereof in the production of sucrose-determination kits, method of producing adpglucose and method of obtaining transgenic plants having leaves and reserve organs which accumulate a high concentration of adpglucose and starch
WO2007045063A2 (en) * 2005-10-21 2007-04-26 Alellyx S. A. Polynucleotides, dna constructs and methods for the alteration of plant cellulose content
WO2008021574A2 (en) * 2006-08-18 2008-02-21 Ceres, Inc. Modulating plant carotenoid levels

Also Published As

Publication number Publication date
ES2339094B1 (en) 2011-03-18
ES2339094A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
Liu et al. Regulation, evolution, and functionality of flavonoids in cereal crops
Meng et al. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato
Kim et al. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato
Kang et al. Suppression of the β-carotene hydroxylase gene increases β-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants
Sun et al. Biochemical and molecular characterization of a flavonoid 3-O-glycosyltransferase responsible for anthocyanins and flavonols biosynthesis in Freesia hybrida
CA2537065C (en) Method for producing rose with altered petal colors
Salvatierra et al. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene
Meng et al. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress
Zhang et al. Anthocyanin accumulation and molecular analysis of correlated genes in purple kohlrabi (Brassica oleracea var. gongylodes L.)
Li et al. Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves
Qian et al. The red sport of ‘Zaosu’pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter
Xi et al. Seed‐specific overexpression of antioxidant genes in Arabidopsis enhances oxidative stress tolerance during germination and early seedling growth
CA2585767C (en) A method of adding aromatic acyl groups to sugars at both the 3' and 5 positions of anthocyanins
Ebisawa et al. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.)
Lorenc-Kukuła et al. Engineering flax with the GT family 1 Solanum sogarandinum glycosyltransferase SsGT1 confers increased resistance to Fusarium infection
Mierziak et al. Crossbreeding of transgenic flax plants overproducing flavonoids and glucosyltransferase results in progeny with improved antifungal and antioxidative properties
ES2301234T3 (en) PROCEDURE AND COMPOSITIONS TO MODULATE FLAVONOID CONTENT.
JPH10501978A (en) Trehalose-producing transgenic plant
Shi et al. Proanthocyanidin synthesis in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits
Wu et al. Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco
Flores-Ortiz et al. Differential role of the two ζ-carotene desaturase paralogs in carrot (Daucus carota): ZDS1 is a functional gene essential for plant development and carotenoid synthesis
Lim et al. Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production
ES2385533T3 (en) Genetic sequences that have methyltransferase activity and uses thereof
Li et al. Function analysis of anthocyanidin synthase from Morus alba L. by expression in bacteria and tobacco
Sun et al. Effect of water stress on yield and nutrition quality of tomato plant overexpressing StAPX

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825794

Country of ref document: EP

Kind code of ref document: A1