WO2010055183A1 - Method for cell identification and quantification with gold nanoparticles through hydrogen ion reduction - Google Patents

Method for cell identification and quantification with gold nanoparticles through hydrogen ion reduction Download PDF

Info

Publication number
WO2010055183A1
WO2010055183A1 PCT/ES2009/070489 ES2009070489W WO2010055183A1 WO 2010055183 A1 WO2010055183 A1 WO 2010055183A1 ES 2009070489 W ES2009070489 W ES 2009070489W WO 2010055183 A1 WO2010055183 A1 WO 2010055183A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
identification
quantification
gold nanoparticles
disease
Prior art date
Application number
PCT/ES2009/070489
Other languages
Spanish (es)
French (fr)
Inventor
Arben MERKOÇI HYKA
Alfredo DE LA ESCOSURA MUÑIZ
Africa GONZÁLEZ FERNÁNDEZ
Belén DÍAZ FREITAS
Christian SÁNCHEZ ESPINEL
Original Assignee
Fundació Privada Institut Català De Nanotecnologia
Universidade De Vigo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Privada Institut Català De Nanotecnologia, Universidade De Vigo filed Critical Fundació Privada Institut Català De Nanotecnologia
Publication of WO2010055183A1 publication Critical patent/WO2010055183A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/28Separation by chemical exchange
    • B01D59/30Separation by chemical exchange by ion exchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • C12Q1/08Quantitative determination using multifield media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings

Definitions

  • the present invention relates to a method of cell identification, based on the use of gold nanoparticles conjugated to specific antibodies of the cell surface proteins and on the use of an electrocatalytic method for the detection of these nanoparticles, as well as its application in the diagnosis and / or prognosis of a disease.
  • biosensors for the identification of cells has been developed to monitor the morphological and photochemical changes of cells adhered to these sensors, using an electrical impedance detection system and the study of the cellular response to chemical substances. , such as the monitoring of the acidification of the medium in live cell cultures.
  • the immobilization of the cells on a surface is required.
  • This immobilization is carried out by adsorption, sandwich, trapping or covalent bonding techniques, among others. These techniques have the disadvantage that hinder the fixation of the cells on the surface of the transducer and its subsequent analysis.
  • the basic limitation of adsorption and passive entrapment techniques is the instability of the cells during their continued use. It has been shown that an increase in surface porosity favors this cell immobilization.
  • the nanoparticles can be used to induce this increase in porosity, forming non-toxic biomimetic interfaces or matrices between the cell and the surface of the electrochemical transducer.
  • the weak interaction between the nanoparticles and the surface of the cells provides an environment similar to a native system and allows greater freedom of orientation of the biomolecules.
  • These polymeric matrices are formed by nanoparticles and products with a good biocompatibility and high spicy gel capacity such as chitosan.
  • the detection of the presence of the cells is carried out by means of the correlation shown between the increase in the resistance of electron transfer and the concentration of the cells on the transducer surface.
  • AuNPs gold nanoparticles
  • these have electroactive properties that make electrochemical detection especially indicated, thus taking advantage of the intrinsic advantages of electrochemical techniques (such as differential pulse polarography, differential pulse voltammetry, voltammetry of square wave and potentiometry) such as its speed, simplicity and low cost.
  • electrochemical techniques such as differential pulse polarography, differential pulse voltammetry, voltammetry of square wave and potentiometry
  • this detection is carried out indirectly, dissolving them in a mixture of hydrobromic acid / bromine and subsequently detecting the resulting Au3 + solution.
  • direct detection methods have been developed, based on an electrochemical oxidation of AuNPs to Au 3+ (cf. Pumera et al., "Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode", Electrochimica Acta 2005, vol.
  • the researchers have found a method of identification and quantification of cells, based on the use of gold nanoparticles conjugated to specific antibodies of the surface proteins of the cells to be identified and on the use of an electrocatalytic method that measures the cathodic current generated in The evolution of hydrogen by reduction of the hydrogen ions of the medium, the reduction being catalyzed by the gold nanoparticles.
  • This method is advantageous because it allows the identification and quantification of cells by a rapid and sensitive method, as well as carrying out the diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease and its corresponding kits identification, diagnosis and / or prognosis quickly and accurately.
  • one aspect of the present invention is to provide a method of cell identification comprising: (a) Contacting an electrochemical transducer and the cells to be identified in an appropriate culture medium at a certain temperature and for the necessary time, to immobilize and grow the cells on the surface of the electrochemical transducer; (b) Contacting a suspension of gold nanoparticles with an antibody or combination of antibodies specific to the surface proteins of the cells to be identified; (c) Contact the immobilized cells on the surface of the electrochemical transducer with the gold nanoparticles 8 resulting from stage (b), at an appropriate temperature; (d) Apply a potential reducer for an appropriate time in an acidic medium, with which the reduction catalyzed by the gold nanoparticles 8 occurs, of the hydrogen ions of the medium to hydrogen; (e) Measure the cathodic current generated in the reduction of hydrogen ions; (f) Subtract the net value of the current generated by the electrochemical transducer without immobilized cells, from the value obtained in section (e) and correlate the difference in current intensity observed
  • This method of cell identification is based on the catalytic properties of gold nanoparticles for the generation of hydrogen from hydrogen ions.
  • Gold nanoparticles in an acidic medium at a suitable potential catalytically reduce hydrogen ions, generating hydrogen and an associated catalytic stream.
  • This current is measured chronoamperometrically. Chronoamperometry consists in subjecting a fixed potential to the working electrode and recording the current generated over time. For this, you can use any potentiostat-galvanostat that integrates a measurement and current recording system. Subsequently, the current intensity difference generated is correlated with the presence or absence of the cells of interest.
  • a potentiostat-galvanostat system allows electrochemical tests to be performed, providing a controlled potential difference and recording the current flowing through an electrochemical cell (Potentiostat mode) or providing a controlled current recording the potential difference in the cell terminals (mode Galvanostat).
  • the catalytic method of hydrogen generation catalyzed by metallic particles has been described above for the quantification of metal ions such as platinum (II) and gold (I) complexes.
  • metal ions such as platinum (II) and gold (I) complexes.
  • gold complexes have been used in the detection of specific DNA sequences (cf. M. D ⁇ az-González et al., "DNA hybridization biosensors using polylysine modified SPCEs", Biosensors and bioelectronics 2008, vol. 23 , pp. 1340-1346).
  • gold nanoparticles have also been used as part of immunocomplexes of magnetic particles with specific conjugated antibodies and have been quantified by direct electrochemical detection, applying the differential voltammetry technique pulse (cf. A.
  • Another advantage of the method of identification of cells of the invention is that it allows to reduce the analysis time considerably, even reaching values of 30 seconds. In this way, the diagnostic and / or prognostic methods of the invention can be carried out more quickly and efficiently. It has been observed that the net current (difference between the signal and the target) of catalysis is much more stable at short times when using the gold nanoparticles conjugated to specific antibodies of the invention with respect to the gold complexes described in the state of The technique for the purpose of generating current.
  • Another advantage of the cell identification method of the invention is that it allows discriminating cells that express certain surface proteins, such as HMy2 cells, in the presence of different percentages of cells that express other different surface proteins, such as PC-3 cells. 7.
  • the presence of PC-3 7 cells does not affect the analytical signal from the recognition of HMy2 cells 6.
  • This advantage could be used for the discrimination of tumor cells in biopsies where at least 4000 cells express a specific surface protein ( cf. FIG. 7 section B).
  • HMY and HMy-2 (6) have been used interchangeably and refer to the same cell.
  • PC3 and PC-3 (7) have also been used interchangeably and refer to the same cell.
  • a preferred embodiment is a cell identification and quantification method comprising: (a) carrying out the cell identification method of the present invention, and (b) quantifying the amount of cells by means of the following equation:
  • the immobilized cells are tumor cells and inflammatory cells.
  • the correlation between the number of cells and the value of the registered signal has a linear relationship in the range of 10,000 to 200,000 cells, with a correlation coefficient of 0.9955 and a detection limit of 4000 cells (cf. FIG. 7 section TO).
  • this method allows the immobilization and growth of cells on the surface of the electrochemical transducer, which also increases the sensitivity and favors the reduction of the analysis time.
  • a transducer is a device capable of transforming or converting a certain type of energy, into a different one of output.
  • an electrochemical transducer is the device that measures chemical properties of substances such as pH and oxidation potentials by electrochemical means.
  • the electrochemical transducer used for cell identification is a screen-printed carbon electrode (SPCE) (cf. FIG. 1 and FIG. 8 A).
  • the immobilization of cells on the surface of this transducer is carried out at a suitable temperature, preferably at 37 0 C.
  • the step (a) of the cell identification method of the present invention is carried out in an atmosphere comprising a carbon dioxide content of 5%.
  • the incubation of the gold nanoparticle with the antibody specific antibodies or combination of surface proteins corresponding to step (b) of the identification method of the invention is performed at 25 0 C, preferably for about 20 minutes.
  • one way of increasing the sensitivity of the method consists in the amplification of the analytical signal recorded by carrying out an indirect immunoassay, using secondary antibodies.
  • secondary antibodies are conjugated to the gold nanoparticles and subsequently contacted with a solution of cells to be identified conjugated with specific primary antibodies against membrane proteins.
  • the amplification in the analytical signal is due to the fact that to each primary antibody that binds to the cell surface proteins, a large number of secondary antibodies labeled with nanoparticle will be bound.
  • Another way to increase the sensitivity and selectivity of the method is by blocking or saturating the surface of the nanoparticle that is free of antibody.
  • different techniques can be used, such as increasing the concentration of the same specific antibodies or fragments thereof in step (b) or adding proteins capable of binding unspecifically to the free surface of the nanoparticles.
  • the gold nanoparticles 8 resulting from step (b), are contacted with a substance capable of saturating the surface of the antibody-free nanoparticle, such as bovine serum albumin (BSA) or casein.
  • BSA bovine serum albumin
  • BSA is used at a temperature of 25 0 C for 20 minutes.
  • the incubation of the cells immobilized on the surface of the electrochemical transducer with specific antibody or combination of antibodies conjugated with gold nanoparticle Ia 8 and with BSA is performed at 37 0 C for 30 minutes.
  • the pH of the acidic medium of step (d) of the cell identification method is equal to or less than 5.
  • the pH is equal to or less than 3.
  • the acidic medium is reached by adding an acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid.
  • the acid is hydrochloric acid.
  • the sample to be identified is subjected to a reducing potential between -0.6 v and -1.4 v.
  • a pretreatment potential of +1.35 v is applied for 1 minute after stage (c).
  • the reduction potential applied is -1 v and the application time 30 seconds.
  • the cathodic current generated in stage (d) is measured chronoamperometrically.
  • the method comprises at a later stage comparing this current generated by cells presenting the surface proteins conjugated with the nanoparticle, such as, for example, HMy2 (HLA-DR +) 6 cells as illustrated in example 7, with the current generated by The addition of a solution of 1 M hydrochloric acid to a blank without immobilized cells or to a blank of immobilized cells that do not express the surface protein conjugated with the gold nanoparticle such as PC-3 cells 7.
  • the latter are cells of the line Tumor of prostate cancer that do not express the surface protein DR.
  • the difference in intensity observed can be quickly correlated with the presence or absence of gold nanoparticles 8 conjugated with anti-DR mAb and BSA linked with the surface protein of the cells to be identified HMy2 (HLA - DR +) 6 (cf. FIG. 2).
  • the cells are selected from tumor cells and inflammatory cells that express specific proteins on the surface of the cell.
  • tumor cells Preferably tumor cells.
  • the tumor cells are of the HMy2 6 tumor line that expresses HLA-DR molecules on the surface.
  • Another aspect of the present invention is the use of the method of identification of cells for diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease, where the antibody or combination of antibodies specific to stage (b) recognize specific markers of the disease to be identified.
  • a preferred embodiment is the use of the method of identification and quantification of cells for diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease, where the antibody or combination of antibodies specific to stage (b) recognize specific markers of the disease to be identified.
  • the specific markers are substances produced by the cells to be identified or induced by the host in the presence of a disease that allow to establish the diagnosis or prognosis of a disease, monitor or verify the effectiveness of a treatment.
  • the markers used must be expressed on the surface of the cell.
  • the cells to be identified are selected from tumor cells and inflammatory cells that express the specific markers of the disease on the surface of the cell. Preferably, they are tumor cells.
  • Another aspect of the present invention is a kit for identification of cells, diagnosis and / or prognosis of a disease in isolated samples of a patient, where the means necessary for the identification of cells comprise gold nanoparticles conjugated with the antibody or combination of antibodies 8.
  • the kit further comprises an electrochemical transducer.
  • the electrochemical transducer is an SPCE.
  • gold nanoparticles are conjugated with an antibody or combination of antibodies specific to the surface protein of the cell to be identified.
  • antibody is meant an entire antibody, including without limitation a chimeric, humanized, recombinant, transgenic, grafted and single chain antibody, and the like, or any fusion protein, conjugate, fragment, or derivatives thereof containing one or more domains that selectively bind to specific surface proteins. He The term “antibody” also includes an entire immunoglobulin molecule, a monoclonal antibody, or an immunologically effective fragment of any of these.
  • an antibody fragment is meant an Fv, a disulfide attached to fragments of Fv, scFv, Fab, F (ab '), or F (ab') 2, which are well known in the state of the art.
  • a fragment of an antibody represents any part thereof with a suitable size and a conformation to bind to surface proteins.
  • Fv is meant a variable fragment of an antibody.
  • scFv means a variable single chain variable fragment that corresponds to half of a Fab where only the part that provides the specificity is present. The scFv is obtained by the union of the variable part of the heavy and light chains of an antibody.
  • Fab means a fragment of an antibody and antigen binding.
  • F (ab ') means the antibody fragment obtained by the digestion of an entire antibody with the enzyme pepsin and by the term “F (ab') 2" means the antibody fragment obtained by the digestion of an entire antibody with the enzyme papa ⁇ na.
  • the method of identification and quantification of gold nanoparticles is also considered part of the invention, comprising: (a) Contacting a mixture of gold nanoparticles in an acid medium, with the surface of an electrochemical transducer; (b) Apply a reducing potential for an appropriate time, whereby the reduction catalyzed by the gold nanoparticles of the hydrogen ions of the medium to hydrogen occurs; (c) Measure the cathodic current generated in the reduction of hydrogen ions; (d) Subtract the net value of the current generated by the electrochemical transducer in an acidic medium, from the value obtained in section (c) and correlate the difference in current intensity observed with the presence or absence of gold nanoparticles present in the medium and / or with the concentration of gold nanoparticles present in the medium.
  • An advantage of this gold nanoparticle identification and quantification procedure is that the catalytic effect of gold on the nanoparticles is observed at less negative potentials and is presented in a more constant and reproducible, that when gold complexes are used. This entails a shorter analysis time to achieve a stabilization of the signal and, on the other hand, prevents damage to the electrode.
  • the generated anodic current is of greater measure depending on the concentration of gold nanoparticles (cf. FIG. 6).
  • the intensity of the current recorded by chronoamperometry during the electroreduction stage of hydrogen ions at a fixed potential, that is -1.0 v, can be correlated with the presence (cf.
  • the increase in the recorded catalytic current is proportional to the increase in gold nanoparticle concentrations.
  • a similar catalytic response is observed, (cf. FIG 6B, right).
  • the cathodic current generated in step (c) of the gold nanoparticle identification method is measured at 200 seconds.
  • the absolute value of the current generated at 200 seconds is selected as an analytical signal for the quantification of the gold nanoparticles 8.
  • the quantity of sample to be quantified that is deposited on the surface of the electrochemical transducer is 25 ⁇ l.
  • the electrochemical transducer used in step (a) of the gold nanoparticle identification and quantification method is a screen-printed carbon electrode.
  • the applied reduction potential is between -0.6 v and -1.4 v and in a particular embodiment, this potential is -1 v and the application time 30 seconds.
  • the pH of the acidic medium of stage (d) of the cell identification method is equal to or less than 5.
  • the pH is equal to or less than 3.
  • the acidic medium is reached by the addition of an acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid.
  • the acid is hydrochloric acid.
  • the method of identification and quantification of gold nanoparticles also comprises applying a pretreatment potential after carrying out step (a).
  • this potential is +1.35 v and is applied for 1 minute.
  • the cathodic current generated in stage (c) is measured chronoamperometrically.
  • Figure 1 represents an SPCE, used as an electrochemical transducer comprising three electrodes: 1 the silver reference electrode, 2 the 4 mm diameter carbon working electrode for a maximum sample volume of 50 ⁇ l and 3 the auxiliary electrode .
  • the insulating layer 4 and the electrical contacts 5 are also represented.
  • Figure 2 represents in section A an example of the method of identification of HMY 6 cells using PC3 7 cells as blank and nanoparticles 8 conjugated to the mouse anti-human monoclonal antibody (anti-DR mAb) and BSA.
  • Section B shows the chronoamperograms obtained by applying a potential of -1.40 v for 5 minutes by adding 50 ⁇ l of a 1 M HCI solution, where 9 represents a SPCE target with hydrochloric acid.
  • the chronoamperogram units are represented below: t is time, s is seconds, i is current intensity and ⁇ A are microampehos.
  • Figure 3 represents an example of a cyclic voltamperogram recorded from +1.35 v to -1.40 a scanning speed of 50 mv / s, after adding 50 ⁇ l of a 1 M HCI solution directly on the SPCE surface (white curve IQ) or on the nanoparticle sample 8 conjugated with anti-DR mAb (curve H) and BSA.
  • the voltamperogram units are represented below: E is potential, v is volts, i is current intensity and ⁇ A is microamps.
  • Figure 4 depicts microscope images of human tumor cell lines B HMY 6 and human prostate tumor cell lines PC3 7 growing in chamber (top) or in petri dish (bottom).
  • Figure 5 depicts photographs of the incubation system using 8-well chamber plate (A, B and C) or Petri dish (D).
  • Figure 6 shows in section A left examples of cyclic voltamperograms recorded from +1.35 v to -1.40 a scanning speed of 50 mv / s, after the addition of a solution of 1 M HCI on the surface of the SPCE (curve) blank a) or on increasing concentrations of nanoparticles 8 on the surface of the SPCE (concentration of nanoparticles of 0.96pM in curve b; 4.8 pM in curve c; 24 pM in curve d; 12OpM in curve e; 60OpM in curve f and 3nM in curve g).
  • sections A and B of the right the recorded chronoamperograms are applied applying a potential of -1.0Ov for 5 minutes on the surface of the SPCE (section A right curve a '), increasing concentrations of a nanoparticle solution (section A right curves b'-g ') and in a nanoparticle solution conjugated with specific anti-DR mAb antibodies (section B right curve b ').
  • E is potential
  • v are volts
  • i current intensity
  • ⁇ A microamps
  • t time
  • s are seconds
  • pM picomoles
  • nM nanomoles.
  • Figure 7 section A represents the effect on electrocatalytic signals of the number of cells expressing the HLA DR surface protein, after incubation with nanoparticles conjugated with specific anti-DR mAb antibodies ( ⁇ DR).
  • Section B represents electrocatalytic signals obtained with HMy2 cells 6 after incubation with gold nanoparticles conjugated with specific anti-DR mAb antibodies ( ⁇ DR) in the presence of PC-3 cells 7 at different percentages, where the percentage of 100% corresponds to 200,000 cells
  • the units are represented below: c is current, ⁇ A is microamps, BL is the target and in number of cells.
  • Figure 8 represents in section A the sheet with 45 SPCEs obtained after manufacturing with the screen printing machine (left) and detail of one of the SPCEs (right).
  • Section B shows the experimental setup for performing electrochemical measurements with the camera system: eight SPCEs are mounted in the camera system and connected to the potentiostat sequentially.
  • Section C shows a detail of the eight chamber system where the eight SPCEs are introduced for subsequent cell culture.
  • Figure 9 depicts scanning electron microscopy (SEM) images of the electrochemical transducer (SPCE) (left) and details of the HMy2 6 (section A) and PC-3 7 (section B) cells that have grown on their surface.
  • SEM scanning electron microscopy
  • the images that appear in the upper right corners correspond to cells that have grown on the plastic surface of the SPCEs. It is verified that the cells have grown on carbon and that their morphology is not affected on this material.
  • the units are represented below: mm is millimeters and ⁇ m is micrometers.
  • FIG. 10 section A represents the comparative study of the response Electrochemical obtained for the HMy2 6 and PC-3 7 cell lines against the different antibodies tested.
  • the ⁇ lgM and ⁇ DR antibodies are those that have been conjugated with gold nanoparticle.
  • the first three columns correspond to the target and direct tests and the last two columns correspond to the indirect tests.
  • Section B represents the response obtained by flow cytometry for the two cell lines against the antibodies used. The specificity that had been obtained with the electrocatalytic method is corroborated.
  • the units are represented below: c is current, ⁇ A are microamps, BL is the target, Ab are the antibodies tested and fi /% is a percentage of fluorescence intensity.
  • Hydrogen Tetrachloroaurate (III) Trihydrate (HAuCI 4 -3H 2 O, 99.9%) and trisodium citrate were purchased from Sigma-Aldrich. All buffer reagents and other inorganic chemicals were supplied by Sigma, Aldrich or Fluka, unless otherwise indicated. All chemicals were used as received and all aqueous solutions were prepared with double distilled water.
  • the phosphate solution buffer (PBS) consists of 0.01 M buffered saline phosphate, 0.137 M NaCI and 0.003 M KCI (pH 7.4).
  • Hydrochloric acid (HCI) is quality analysis. Their solutions were prepared with ultra-pure water.
  • HMy2 6 HLA-DR +
  • PC-3 7 HLA-DR-
  • All cells were cultured in RPMI 1640 medium (Gibco, Life technologies, Grand Island, Scotland) supplemented with 10% fetal bovine serum (FCS) (PAA, Linz, Austria), penicillin (100 U / mi) and glutamine ( 2mM) (Gibco) at 37 0 C in a humidified atmosphere containing 5% CO 2.
  • FCS fetal bovine serum
  • PAA penicillin
  • 2mM glutamine
  • HLA-DR human anti-human HLA-DR monoclonal antibody
  • mAb mouse anti-human HLA-DR monoclonal antibody
  • BH1 human IgM mAb antibody that recognizes human HLA class II molecules in The surface of human monocytes, B lymphocytes, tumor cell lines B (HMy2, Raji and Dausi) and tumor cells of patients suffering from hematological malignancies.
  • human mAbs 32.4 are used as a positive recognition control of the cells tested.
  • BH1 and 32.4 mAbs rabbit anti-human IgM polyclonal antibodies conjugated to fluorescein isothiocyanate (FITC) (DakoCytomation, Spain) are used as secondary antibodies, allowing the electrochemical method to be checked with flow cytometric measurements.
  • FITC fluorescein isothiocyanate
  • the cells were visualized with inverted and direct microscopes (Olympus 1X50 and BX51 respectively, Olympus Optical. Tokyo, Japan) and the photographs were taken with an Olympus DP71 camera.
  • the electrochemical transducer used for in-situ cell growth was constructed by the researchers and was an SPCE.
  • the substrate used is a transparent polyester sheet (Austostat HT5 of the McDermid Autotype company) and the total sensor size was 29 mm x 6.7 mm (cf. FIG. 1).
  • the generated current was recorded by chronoamperometry, using a Ivium Compactstat potentiostat-electroplating (Ivium Technologies, The Netherlands).
  • Example 1 Cyclic voltamperograms in 1 M HCI.
  • Example 3 Incubation of cells on the surface of the SPCE in chamber.
  • Working electrode 2 was introduced into a Lab-Tek TM with 8-well plates (Nunc, Thermo Fisher scientific), after removing the joint, it was fixed with the mounting culture medium. Then each well was added 700 .mu.l 200,000 cells in culture medium and incubated at 37 0 C in a humidified atmosphere containing 5% CO2 for 48 h. (cf. FIG. 4 (top) and 5 (A, B and C) and FIG. 8 (B 1 C).
  • Figure 9 shows the two cell lines grown on the surface of the SPCE.
  • Example 4 Incubation of cells on the surface of the SPCE in Petri dish.
  • SPCEs were introduced into the Corning® petri dishes, DxH35 mm x 10 mm, untreated (SIGMA-ALDRICH). Then 200,000 cells were added 3 ml of culture medium and incubated at 37 0 C in a humidified atmosphere containing 5% CO2 for 48 h (cf. FIG. 4 (bottom) and 5 D).
  • Example 5 Synthesis of gold nanoparticles and their conjugation with specific antibodies.
  • the nanoparticles were prepared by reducing hydrogen tetrachloroaurate (III) with trisodium citrate, according to the method described by Turkevich (cf. J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951, vol. 11, pp. 55-75) .
  • Turkevich cf. J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951, vol. 11, pp. 55-75
  • 5 ml of a trisodium citrate solution was quickly added.
  • the reaction mixture turned deep red, indicating the formation of the gold nanoparticles, the solution was cooled while maintaining the stirring.
  • nanoparticles were conjugated in a similar manner with anti-IgM antibodies ( ⁇ lgM) and with BSA.
  • Example 6 A. Incubation of cells with nanoparticles 8 conjugated with anti-DR mAb v BSA.
  • the cells had been incubated with the primary antibodies (BH1 or 32.4 mAbs) for 30 minutes, they were washed with PBS. It was then incubated with a solution of nanoparticles 8 conjugated with ⁇ lgM and BSA for 30 minutes.
  • the primary antibodies BH1 or 32.4 mAbs
  • Example 7 Analytical signal based on the generation of hydrogen catalyzed by nanoparticle 8 conjugated with anti-DR mAb and BSA and, recording of the generated current.
  • the cells were washed with PBS and then 50 ⁇ l of a 1 M HCI solution was added on the surface of the 3 electrodes I 1 2 and 3. Then, the SPCE was connected to the potentiostat (cf. FIG. 8 B 1 C) and the working electrode 2 was subjected to a first potential of +1.35 v for 1 minute and then a second potential of -1 v was applied for 300 seconds, registering the generated cathodic current. This generated current is recorded by chronoamperometry. For this, you can use any potentiostat-galvanostat that integrates a measurement and current recording system. In this case, an Ivium Compactstat is used.
  • the reduction potential is applied for 300 seconds
  • the application time could be reduced up to 30 seconds, since from 30 seconds the cathodic current generated by the reduction of hydrogen ions is stabilized over time, such and as seen in Figure 2B.
  • Example 8 Analytical signal based on the generation of hydrogen catalyzed by the nanoparticle conjugated with anti-IgM and BSA and recording of the generated current (indirect test).
  • a first incubation of the cells with primary antibodies was performed in a similar manner to that detailed in Example 7. Subsequently it was washed with PBS and a second incubation was performed under identical conditions with nanoparticles conjugated with anti-IgM and BSA. .
  • the recording of the analytical signal was carried out following the same procedure detailed in example 7. The electrocatalytic responses are shown in Figure 10 A.

Abstract

The method for cell identification and quantification comprises bonding specific surface proteins of cells immobilised on the surface of the electrochemical transducer with specific antibodies conjugated with gold nanoparticles, and subsequent nanoparticle detection and quantification through hydrogen generation catalysed by said nanoparticles at an appropriate potential. It furthermore comprises the application thereof in a method of diagnosis and/or prognosis of a disease involving the expression of cell-surface proteins and the corresponding kits.

Description

MÉTODO DE IDENTIFICACIÓN Y CUANTIFICACIÓN DE CÉLULAS CON NANOPARTÍCULAS DE ORO POR REDUCCIÓN DE IONES HIDRÓGENO METHOD OF IDENTIFICATION AND QUANTIFICATION OF CELLS WITH GOLD NANOPARTICLES BY REDUCTION OF HYDROGEN IONS
La presente invención se refiere a un método de identificación de células, basado en el uso de nanopartículas de oro conjugadas a anticuerpos específicos de las proteínas de superficie de las células y en Ia utilización de un método electrocatalítico para Ia detección de estas nanopartículas, así como su aplicación en el diagnóstico y/o pronóstico de una enfermedad.The present invention relates to a method of cell identification, based on the use of gold nanoparticles conjugated to specific antibodies of the cell surface proteins and on the use of an electrocatalytic method for the detection of these nanoparticles, as well as its application in the diagnosis and / or prognosis of a disease.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
La detección de células, en particular células tumorales, ha sido un campo de gran interés en los últimos años. Este interés es debido al hecho de que Ia presencia de estas células en sangre periférica es indicativa de una enfermedad, así como de una baja efectividad en tratamientos terapéuticos.The detection of cells, particularly tumor cells, has been a field of great interest in recent years. This interest is due to the fact that the presence of these cells in peripheral blood is indicative of a disease, as well as a low effectiveness in therapeutic treatments.
Los métodos actuales utilizados para el diagnóstico, como por ejemplo citometría de flujo e histoquímica son poco precisos, caros, con tiempos de análisis largos y requieren de instrumentación muy avanzada. En los últimos años se han desarrollado nuevos métodos basados en Ia detección de células utilizando anticuerpos específicos.The current methods used for diagnosis, such as flow cytometry and histochemistry are not very accurate, expensive, with long analysis times and require very advanced instrumentation. In recent years, new methods based on the detection of cells using specific antibodies have been developed.
Por otro lado, el uso de biosensores para Ia identificación de células se ha desarrollado para el seguimiento de los cambios morfológicos y fotoquímicos de células adheridas a estos sensores, usando un sistema de detección de impedancia eléctrica y el estudio de Ia respuesta celular a sustancias químicas, como por ejemplo Ia monitorización de Ia acidificación del medio en cultivos de células vivas.On the other hand, the use of biosensors for the identification of cells has been developed to monitor the morphological and photochemical changes of cells adhered to these sensors, using an electrical impedance detection system and the study of the cellular response to chemical substances. , such as the monitoring of the acidification of the medium in live cell cultures.
En alguno de los métodos mencionados anteriormente, se requiere Ia inmovilización de las células en una superficie, como Ia superficie de un transductor electroquímico. Esta inmovilización se realiza mediante técnicas de adsorción, sandwich, de atrapado o uniones covalentes entre otras. Estas técnicas presentan el inconveniente que dificultan Ia fijación de las células en Ia superficie del transductor y su posterior análisis. Asimismo, Ia limitación básica de las técnicas de adsorción y atrapado pasivo es Ia inestabilidad de las células durante el uso continuado de éstas. Se ha demostrado que un aumento en Ia porosidad de Ia superficie favorece esta inmovilización celular. Las nanopartículas pueden utilizarse para inducir este aumento de Ia porosidad, formando interfases o matrices biomiméticas no tóxicas entre Ia célula y Ia superficie del transductor electroquímico. La débil interacción entre las nanopartículas y Ia superficie de las células aporta un ambiente similar a un sistema nativo y permite una mayor libertad de orientación de las biomoléculas. Estas matrices poliméricas están formadas por las nanopartículas y productos con una buena biocompatibilidad y alta capacidad gel ¡ficante como puede ser el chitosan. En estos casos concretos que existe un recubrimiento de Ia superficie del transductor, Ia detección de Ia presencia de las células se realiza mediante Ia correlación mostrada entre el incremento de Ia resistencia de transferencia de electrones y Ia concentración de las células en Ia superficie del transductor.In some of the methods mentioned above, the immobilization of the cells on a surface, such as the surface of an electrochemical transducer, is required. This immobilization is carried out by adsorption, sandwich, trapping or covalent bonding techniques, among others. These techniques have the disadvantage that hinder the fixation of the cells on the surface of the transducer and its subsequent analysis. Likewise, the basic limitation of adsorption and passive entrapment techniques is the instability of the cells during their continued use. It has been shown that an increase in surface porosity favors this cell immobilization. The nanoparticles can be used to induce this increase in porosity, forming non-toxic biomimetic interfaces or matrices between the cell and the surface of the electrochemical transducer. The weak interaction between the nanoparticles and the surface of the cells provides an environment similar to a native system and allows greater freedom of orientation of the biomolecules. These polymeric matrices are formed by nanoparticles and products with a good biocompatibility and high spicy gel capacity such as chitosan. In these specific cases that there is a coating of the transducer surface, the detection of the presence of the cells is carried out by means of the correlation shown between the increase in the resistance of electron transfer and the concentration of the cells on the transducer surface.
En el caso de las nanopartículas de oro (AuNPs), éstas presentan propiedades electroactivas que hacen que Ia detección electroquímica esté especialmente indicada, aprovechando así las ventajas intrínsecas de las técnicas electroquímicas (tales como polarografía diferencial de Pulso, voltamperometría de pulso diferencial, voltamperometría de onda cuadrada y potenciometría) como son su rapidez, sencillez y bajo coste. Habitualmente, esta detección se lleva a cabo indirectamente, disolviéndolas en una mezcla de ácido bromhídrico/bromo y detectando posteriormente Ia solución de Au3+ resultante. Últimamente se han desarrollado métodos de detección directa, basados en una oxidación electroquímica de las AuNPs a Au 3+ (cf. Pumera et al., "Direct voltammetric determination of gold nanoparticles using graphite- epoxy composite electrode", Electrochimica Acta 2005, vol. 50, pp 3702-3707) sobre Ia superficie del transductor electroquímico y posterior detección in-situ. Asimismo, existen otros métodos indirectos basados en el efecto catalítico que ejercen las AuNPs sobre Ia reducción de ciertos iones. En Ia mayoría de estos casos, Ia sensibilidad de Ia detección se aumenta por deposición química o electroquímica de plata en Ia superficie de Ia nanopartícula.In the case of gold nanoparticles (AuNPs), these have electroactive properties that make electrochemical detection especially indicated, thus taking advantage of the intrinsic advantages of electrochemical techniques (such as differential pulse polarography, differential pulse voltammetry, voltammetry of square wave and potentiometry) such as its speed, simplicity and low cost. Usually, this detection is carried out indirectly, dissolving them in a mixture of hydrobromic acid / bromine and subsequently detecting the resulting Au3 + solution. Lately, direct detection methods have been developed, based on an electrochemical oxidation of AuNPs to Au 3+ (cf. Pumera et al., "Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode", Electrochimica Acta 2005, vol. 50, pp 3702-3707) on the surface of the electrochemical transducer and subsequent in-situ detection. There are also other indirect methods based on the catalytic effect that AuNPs exert on the reduction of certain ions. In most of these cases, the sensitivity of the detection is increased by chemical or electrochemical deposition of silver on the surface of the nanoparticle.
Aunque estos métodos catalíticos presentan una mayor sensibilidad que los métodos directos, todavía existen ciertos inconvenientes, como por ejemplo, tiempos de análisis prolongados debido a Ia complejidad de los procesos implicados en Ia detección, o el estricto control de las condiciones de reacción, como es el caso de las condiciones de deposición de Ia plata sobre Ia superficie de Ia AuNPs.Although these catalytic methods have a greater sensitivity than direct methods, there are still certain drawbacks, such as prolonged analysis times due to the complexity of the processes involved in the detection, or the strict control of reaction conditions, as is the case of the deposition conditions of the silver on The surface of the AuNPs.
Así, de Io que se conoce en el estado de Ia técnica se desprende que todavía existe Ia necesidad de proporcionar métodos que aporten una mayor sensibilidad, exactitud y rapidez, y que al mismo tiempo, requieran instrumentación más sencilla y manejable, para mejorar Ia identificación de células y establecer más rápidamente el diagnóstico y/o el pronóstico de una enfermedad.Thus, from what is known in the state of the art, it follows that there is still a need to provide methods that provide greater sensitivity, accuracy and speed, and at the same time, require simpler and more manageable instrumentation, to improve identification. of cells and establish more quickly the diagnosis and / or prognosis of a disease.
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Los investigadores han encontrado un método de identificación y cuantificación de células, basado en el uso de nanopartículas de oro conjugadas a anticuerpos específicos de las proteínas de superficie de las células a identificar y en Ia utilización de un método electrocatalítico que mide Ia corriente catódica generada en Ia evolución de hidrógeno por reducción de los iones de hidrógeno del medio, siendo Ia reducción catalizada por las nanopartículas de oro.The researchers have found a method of identification and quantification of cells, based on the use of gold nanoparticles conjugated to specific antibodies of the surface proteins of the cells to be identified and on the use of an electrocatalytic method that measures the cathodic current generated in The evolution of hydrogen by reduction of the hydrogen ions of the medium, the reduction being catalyzed by the gold nanoparticles.
Este método es ventajoso porque permite Ia identificación y cuantificación de células mediante un método rápido y sensible, así como llevar a cabo el diagnóstico y/o de pronóstico de una enfermedad en muestras aisladas de un paciente susceptible de presentar Ia enfermedad y sus correspondientes kits de identificación, de diagnóstico y/o de pronóstico de manera rápida y precisa.This method is advantageous because it allows the identification and quantification of cells by a rapid and sensitive method, as well as carrying out the diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease and its corresponding kits identification, diagnosis and / or prognosis quickly and accurately.
Así, un aspecto de Ia presente invención es proporcionar un método de identificación de células que comprende: (a) Poner en contacto un transductor electroquímico y las células a identificar en un medio de cultivo apropiado a una temperatura determinada y durante el tiempo necesario, para inmovilizar y hacer crecer las células en Ia superficie del transductor electroquímico; (b) Poner en contacto una suspensión de nanopartículas de oro con un anticuerpo o combinación de anticuerpos específicos de las proteínas de superficie de las células a identificar; (c) Poner en contacto las células inmovilizadas en Ia superficie del transductor electroquímico con las nanopartículas de oro 8 resultantes de Ia etapa (b), a una temperatura apropiada; (d) Aplicar un potencial reductor durante un tiempo apropiado en un medio ácido, con Io cual se produce Ia reducción catalizada por las nanopartículas de oro 8, de los iones hidrógeno del medio a hidrógeno; (e) Medir Ia corriente catódica generada en Ia reducción de los iones hidrógeno; (f) Restar el valor neto de Ia corriente generada por el transductor electroquímico sin células inmovilizadas, del valor obtenido en el apartado (e) y correlacionar Ia diferencia de intensidad de corriente observada con Ia presencia o ausencia de nanopartículas de oro 8 unidas a las proteínas de superficie de las células a identificar.Thus, one aspect of the present invention is to provide a method of cell identification comprising: (a) Contacting an electrochemical transducer and the cells to be identified in an appropriate culture medium at a certain temperature and for the necessary time, to immobilize and grow the cells on the surface of the electrochemical transducer; (b) Contacting a suspension of gold nanoparticles with an antibody or combination of antibodies specific to the surface proteins of the cells to be identified; (c) Contact the immobilized cells on the surface of the electrochemical transducer with the gold nanoparticles 8 resulting from stage (b), at an appropriate temperature; (d) Apply a potential reducer for an appropriate time in an acidic medium, with which the reduction catalyzed by the gold nanoparticles 8 occurs, of the hydrogen ions of the medium to hydrogen; (e) Measure the cathodic current generated in the reduction of hydrogen ions; (f) Subtract the net value of the current generated by the electrochemical transducer without immobilized cells, from the value obtained in section (e) and correlate the difference in current intensity observed with the presence or absence of gold nanoparticles 8 attached to the surface proteins of the cells to be identified.
Este método de identificación de células está basado en las propiedades catalíticas de las nanopartículas de oro para Ia generación de hidrógeno a partir de los iones hidrógeno. Las nanopartículas de oro en un medio ácido a un potencial adecuado, reducen catalíticamente los iones hidrógeno, generando hidrógeno y una corriente catalítica asociada. Esta corriente se mide cronoamperométricamente. La cronoamperometría consiste en someter a un potencial fijo al electrodo de trabajo y registrar Ia corriente generada a Io largo del tiempo. Para ello, se puede utilizar cualquier potenciostato- galvanostato que integre un sistema de medida y registro de corrientes. Posteriormente se correlaciona Ia diferencia de intensidad de corriente generada con Ia presencia o ausencia de las células de interés.This method of cell identification is based on the catalytic properties of gold nanoparticles for the generation of hydrogen from hydrogen ions. Gold nanoparticles in an acidic medium at a suitable potential, catalytically reduce hydrogen ions, generating hydrogen and an associated catalytic stream. This current is measured chronoamperometrically. Chronoamperometry consists in subjecting a fixed potential to the working electrode and recording the current generated over time. For this, you can use any potentiostat-galvanostat that integrates a measurement and current recording system. Subsequently, the current intensity difference generated is correlated with the presence or absence of the cells of interest.
Un sistema potenciostato-galvanostato permite realizar pruebas electroquímicas, suministrando una diferencia de potencial controlada y registrando Ia corriente que circula a través de una celda electroquímica (modo Potenciostato) o suministrando una corriente controlada registrando Ia diferencia de potencial en las terminales de Ia celda (modo Galvanostato).A potentiostat-galvanostat system allows electrochemical tests to be performed, providing a controlled potential difference and recording the current flowing through an electrochemical cell (Potentiostat mode) or providing a controlled current recording the potential difference in the cell terminals (mode Galvanostat).
El método catalítico de generación de hidrógeno catalizado por partículas metálicas ha sido descrito anteriormente para Ia cuantificación de iones metálicos tales como complejos de platino (II) y oro (I). Así, por ejemplo, los complejos de oro se han utilizado en Ia detección de secuencias específicas de ADN (cf. M. Díaz-González et al., "DNA hybridization biosensors using polylysine modified SPCEs", Biosensors and bioelectronics 2008, vol. 23, pp. 1340-1346). Por otro lado, también se han utilizado nanopartículas de oro formando parte de inmunocomplejos de partículas magnéticas con anticuerpos específicos conjugados y se han cuantificado mediante detección electroquímica directa, aplicando Ia técnica de voltamperometría diferencial de pulso (cf. A. Ambrosi et al., "double-codified gold nanolabels for enhanced immunoanalysis", Analvtical Chemistrv 2007, vol. 79, pp. 5232-5240). Sin embargo, aunque el método catalítico de generación de hidrógeno para Ia identificación de complejos de oro es conocido, nunca se ha sugerido para Ia identificación y cuantificación de AuNPs ni su aplicación en Ia identificación de células.The catalytic method of hydrogen generation catalyzed by metallic particles has been described above for the quantification of metal ions such as platinum (II) and gold (I) complexes. Thus, for example, gold complexes have been used in the detection of specific DNA sequences (cf. M. Díaz-González et al., "DNA hybridization biosensors using polylysine modified SPCEs", Biosensors and bioelectronics 2008, vol. 23 , pp. 1340-1346). On the other hand, gold nanoparticles have also been used as part of immunocomplexes of magnetic particles with specific conjugated antibodies and have been quantified by direct electrochemical detection, applying the differential voltammetry technique pulse (cf. A. Ambrosi et al., "double-codified gold nanolabels for enhanced immunoanalysis", Analvtical Chemistrv 2007, vol. 79, pp. 5232-5240). However, although the catalytic method of hydrogen generation for the identification of gold complexes is known, it has never been suggested for the identification and quantification of AuNPs or their application in the identification of cells.
Otra ventaja del método de identificación de células de Ia invención es que permite reducir el tiempo de análisis considerablemente, incluso hasta llegar a valores de 30 segundos. De este modo, se pueden llevar a cabo los métodos de diagnóstico y/o de pronóstico de Ia invención de manera más rápida y eficiente. Se ha observado que Ia corriente neta (diferencia entre Ia señal y el blanco) de catálisis es mucho más estable a tiempos cortos al utilizar las nanopartículas de oro conjugadas a anticuerpos específicos de Ia invención con respecto a los complejos de oro descritos en el estado de Ia técnica para el propósito de generar corriente.Another advantage of the method of identification of cells of the invention is that it allows to reduce the analysis time considerably, even reaching values of 30 seconds. In this way, the diagnostic and / or prognostic methods of the invention can be carried out more quickly and efficiently. It has been observed that the net current (difference between the signal and the target) of catalysis is much more stable at short times when using the gold nanoparticles conjugated to specific antibodies of the invention with respect to the gold complexes described in the state of The technique for the purpose of generating current.
Otra ventaja del método de identificación de células de Ia invención es que permite discriminar células que expresen determinadas proteínas de superficie, como las células HMy2 6, en presencia de diferentes porcentajes de células que expresen otras proteínas de superficie diferentes, como las células PC-3 7. La presencia de las células PC-3 7 no afecta a Ia señal analítica proveniente del reconocimiento de las células HMy2 6. Esta ventaja podría utilizarse para Ia discriminación de células tumorales en biopsias donde al menos 4000 células expresaran una proteína específica de superficie (cf. FIG. 7 apartado B).Another advantage of the cell identification method of the invention is that it allows discriminating cells that express certain surface proteins, such as HMy2 cells, in the presence of different percentages of cells that express other different surface proteins, such as PC-3 cells. 7. The presence of PC-3 7 cells does not affect the analytical signal from the recognition of HMy2 cells 6. This advantage could be used for the discrimination of tumor cells in biopsies where at least 4000 cells express a specific surface protein ( cf. FIG. 7 section B).
Los términos HMY y HMy-2 (6) se han utilizado indistintamente y se refieren a Ia misma célula. De igual modo, los términos PC3 y PC-3 (7) también se han utilizado indistintamente y se refieren a Ia misma célula.The terms HMY and HMy-2 (6) have been used interchangeably and refer to the same cell. Similarly, the terms PC3 and PC-3 (7) have also been used interchangeably and refer to the same cell.
Una realización preferida es un método de identificación y cuantificación de células que comprende: (a) llevar a cabo el método de identificación de células de Ia presente invención, y (b) cuantificar Ia cantidad de células mediante Ia siguiente ecuación:A preferred embodiment is a cell identification and quantification method comprising: (a) carrying out the cell identification method of the present invention, and (b) quantifying the amount of cells by means of the following equation:
Número de células= 1000 [(corriente generada (μA) - 0.497)70.0641] El valor de la señal registrada aumenta proporcionalmente al aumentar el número de células inmovilizadas en Ia superficie del SPCE con anticuerpos específicos conjugados con las nanopartículas de oro 8. En una realización preferida, las células inmovilizadas son células tumorales y células inflamatorias.Number of cells = 1000 [(generated current (μA) - 0.497) 70.0641] The value of the recorded signal increases proportionally as the number of immobilized cells on the surface of the SPCE increases with specific antibodies conjugated with the gold nanoparticles 8. In a preferred embodiment, the immobilized cells are tumor cells and inflammatory cells.
La correlación entre el número de células y el valor de Ia señal registrada presenta una relación lineal en el rango de entre 10000 a 200000 células, con un coeficiente de correlación de 0.9955 y un límite de detección de 4000 células (cf. FIG.7 apartado A).The correlation between the number of cells and the value of the registered signal has a linear relationship in the range of 10,000 to 200,000 cells, with a correlation coefficient of 0.9955 and a detection limit of 4000 cells (cf. FIG. 7 section TO).
Por otro lado, este método permite Ia inmovilización y crecimiento de células en Ia superficie del transductor electroquímico, Io que también aumenta Ia sensibilidad y favorece Ia disminución del tiempo de análisis. La detección en el mismo medio donde se inmovilizan y/o se proliferan las células a identificar, facilita Ia disminución de etapas y como consecuencia Ia simplificación del método.On the other hand, this method allows the immobilization and growth of cells on the surface of the electrochemical transducer, which also increases the sensitivity and favors the reduction of the analysis time. The detection in the same medium where the cells to be identified are immobilized and / or proliferate, facilitates the reduction of stages and as a consequence the simplification of the method.
Como se ha mencionado anteriormente, el método de Ia invención utiliza un transductor electroquímico. Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía, en otra diferente de salida. Concretamente un transductor electroquímico es el dispositivo que mide propiedades químicas de las sustancias tales como pH y potenciales de oxidación por medios electroquímicos. En una realización preferida, el transductor electroquímico utilizado para Ia identificación de células es un electrodo de carbono serigrafiado ("screen-printed carbón electrode", SPCE) (cf. FIG.1 y FIG. 8 A).As mentioned above, the method of the invention uses an electrochemical transducer. A transducer is a device capable of transforming or converting a certain type of energy, into a different one of output. Specifically, an electrochemical transducer is the device that measures chemical properties of substances such as pH and oxidation potentials by electrochemical means. In a preferred embodiment, the electrochemical transducer used for cell identification is a screen-printed carbon electrode (SPCE) (cf. FIG. 1 and FIG. 8 A).
En una realización particular, Ia inmovilización de las células en Ia superficie del transductor electroquímico se lleva a cabo a una temperatura adecuada, preferentemente a 37 0C.In a particular embodiment, the immobilization of cells on the surface of this transducer is carried out at a suitable temperature, preferably at 37 0 C.
En otra realización particular, Ia etapa (a) del método de identificación de células de Ia presente invención se lleva a cabo en una atmósfera que comprende un contenido de dióxido de carbono del 5%.In another particular embodiment, the step (a) of the cell identification method of the present invention is carried out in an atmosphere comprising a carbon dioxide content of 5%.
Generalmente, Ia incubación de Ia nanopartícula de oro con el anticuerpo específico o combinación de anticuerpos de las proteínas de superficie que corresponde a Ia etapa (b) del método de identificación de Ia invención, se realiza a 25 0C, preferentemente durante aproximadamente 20 minutos.Generally, the incubation of the gold nanoparticle with the antibody specific antibodies or combination of surface proteins corresponding to step (b) of the identification method of the invention is performed at 25 0 C, preferably for about 20 minutes.
En una realización particular, un modo de aumentar Ia sensibilidad del método consiste en Ia amplificación de Ia señal analítica registrada llevando a cabo un inmunoensayo indirecto, utilizando anticuerpos secundarios. Estos anticuerpos secundarios se conjugan a las nanopartículas de oro y posteriormente se ponen en contacto con una solución de células a identificar conjugadas con anticuerpos primarios específicos frente a las proteínas de membrana. La amplificación en Ia señal analítica se debe al hecho de que a cada anticuerpo primario que se enlace a las proteínas de superficie celulares, se Ie enlazarán un gran número de anticuerpos secundarios marcados con nanopartícula.In a particular embodiment, one way of increasing the sensitivity of the method consists in the amplification of the analytical signal recorded by carrying out an indirect immunoassay, using secondary antibodies. These secondary antibodies are conjugated to the gold nanoparticles and subsequently contacted with a solution of cells to be identified conjugated with specific primary antibodies against membrane proteins. The amplification in the analytical signal is due to the fact that to each primary antibody that binds to the cell surface proteins, a large number of secondary antibodies labeled with nanoparticle will be bound.
Otra manera de aumentar Ia sensibilidad y selectividad del método es mediante el bloqueo o saturación de Ia superficie de Ia nanopartícula que se encuentra libre de anticuerpo. Para alcanzar esta saturación, se pueden utilizar diferentes técnicas, como por ejemplo aumentar Ia concentración de los mismos anticuerpos específicos o fragmentos de éstos en Ia etapa (b) o adicionar proteínas capaces de unirse inespecíficamente a Ia superficie libre de las nanopartículas.Another way to increase the sensitivity and selectivity of the method is by blocking or saturating the surface of the nanoparticle that is free of antibody. To achieve this saturation, different techniques can be used, such as increasing the concentration of the same specific antibodies or fragments thereof in step (b) or adding proteins capable of binding unspecifically to the free surface of the nanoparticles.
En una realización preferida, las nanopartículas de oro 8 resultantes de Ia etapa (b), se ponen en contacto con una sustancia capaz de saturar Ia superficie de Ia nanopartícula libre de anticuerpo, como por ejemplo albúmina de suero bovino (BSA) o caseína. En una realización particular, se utiliza BSA a una temperatura de 25 0C durante 20 minutos.In a preferred embodiment, the gold nanoparticles 8 resulting from step (b), are contacted with a substance capable of saturating the surface of the antibody-free nanoparticle, such as bovine serum albumin (BSA) or casein. In a particular embodiment, BSA is used at a temperature of 25 0 C for 20 minutes.
En otra realización particular, Ia incubación de las células inmovilizadas en Ia superficie del transductor electroquímico con el anticuerpo o combinación de anticuerpos específicos conjugados con Ia nanopartícula de oro 8 y con el BSA se realiza a 37 0C durante 30 minutos.In another particular embodiment, the incubation of the cells immobilized on the surface of the electrochemical transducer with specific antibody or combination of antibodies conjugated with gold nanoparticle Ia 8 and with BSA is performed at 37 0 C for 30 minutes.
Generalmente, el pH del medio ácido de Ia etapa (d) del método de identificación de células es igual o inferior a 5. Preferentemente, el pH es igual o inferior a 3. En una realización preferida, el medio ácido se alcanza por adición de un ácido seleccionado entre ácido clorhídrico, ácido sulfúrico, ácido fosfórico y ácido acético. En una realización más preferida, el ácido es ácido clorhídrico. En otra realización preferida, Ia muestra a identificar se somete a un potencial reductor comprendido entre -0.6 v y -1.4 v. Preferentemente, se aplica un potencial de pretratamiento de +1.35 v durante 1 minuto después de Ia etapa (c). En una realización particular, el potencial de reducción aplicado es de -1 v y el tiempo de aplicación 30 segundos.Generally, the pH of the acidic medium of step (d) of the cell identification method is equal to or less than 5. Preferably, the pH is equal to or less than 3. In a preferred embodiment, the acidic medium is reached by adding an acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid. In a more preferred embodiment, the acid is hydrochloric acid. In another preferred embodiment, the sample to be identified is subjected to a reducing potential between -0.6 v and -1.4 v. Preferably, a pretreatment potential of +1.35 v is applied for 1 minute after stage (c). In a particular embodiment, the reduction potential applied is -1 v and the application time 30 seconds.
En otra realización particular, Ia corriente catódica generada en Ia etapa (d) se mide cronoamperométricamente.In another particular embodiment, the cathodic current generated in stage (d) is measured chronoamperometrically.
El método comprende en una etapa posterior comparar esta corriente generada por células que presentan las proteínas de superficie conjugadas con Ia nanopartícula, como por ejemplo, las células HMy2 (HLA-DR+) 6 como se ilustra en el ejemplo 7, con Ia corriente generada por Ia adición de una solución de ácido clorhídrico 1 M a un blanco sin células inmovilizadas o a un blanco de células inmovilizadas que no expresen Ia proteína de superficie conjugada con Ia nanopartícula de oro tal como células PC-3 7. Éstas últimas son células de Ia línea tumoral de cáncer de próstata que no expresan Ia proteína de superficie DR. Así, en este caso concreto, se puede correlacionar de manera rápida Ia diferencia de intensidad observada con Ia presencia o ausencia de nanopartículas de oro 8 conjugadas con anti-DR mAb y BSA unidas con Ia proteína de superficie de las células a identificar HMy2 (HLA- DR+) 6 (cf. FIG.2).The method comprises at a later stage comparing this current generated by cells presenting the surface proteins conjugated with the nanoparticle, such as, for example, HMy2 (HLA-DR +) 6 cells as illustrated in example 7, with the current generated by The addition of a solution of 1 M hydrochloric acid to a blank without immobilized cells or to a blank of immobilized cells that do not express the surface protein conjugated with the gold nanoparticle such as PC-3 cells 7. The latter are cells of the line Tumor of prostate cancer that do not express the surface protein DR. Thus, in this specific case, the difference in intensity observed can be quickly correlated with the presence or absence of gold nanoparticles 8 conjugated with anti-DR mAb and BSA linked with the surface protein of the cells to be identified HMy2 (HLA - DR +) 6 (cf. FIG. 2).
En otra realización preferida, las células se seleccionan entre células tumorales y células inflamatorias que expresen proteínas específicas en Ia superficie de Ia célula. Preferentemente células tumorales. Y en otra realización particular, las células tumorales son de Ia línea tumoral HMy2 6 que expresa en superficie moléculas de HLA-DR.In another preferred embodiment, the cells are selected from tumor cells and inflammatory cells that express specific proteins on the surface of the cell. Preferably tumor cells. And in another particular embodiment, the tumor cells are of the HMy2 6 tumor line that expresses HLA-DR molecules on the surface.
Otro aspecto de Ia presente invención es el uso del método de identificación de células para diagnóstico y/o pronóstico de una enfermedad en muestras aisladas de un paciente susceptible de presentar Ia enfermedad, donde el anticuerpo o combinación de anticuerpos específicos de Ia etapa (b) reconocen marcadores específicos de Ia enfermedad a identificar. Una realización preferida es el uso del método de identificación y cuantificación de células para diagnóstico y/o pronóstico de una enfermedad en muestras aisladas de un paciente susceptible de presentar Ia enfermedad, donde el anticuerpo o combinación de anticuerpos específicos de Ia etapa (b) reconocen marcadores específicos de Ia enfermedad a identificar.Another aspect of the present invention is the use of the method of identification of cells for diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease, where the antibody or combination of antibodies specific to stage (b) recognize specific markers of the disease to be identified. A preferred embodiment is the use of the method of identification and quantification of cells for diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease, where the antibody or combination of antibodies specific to stage (b) recognize specific markers of the disease to be identified.
Los marcadores específicos son sustancias producidas por las células a identificar o inducidas por el huésped ante Ia presencia de una enfermedad que permiten establecer el diagnóstico o pronóstico de una enfermedad, realizar su seguimiento o comprobar Ia eficacia de un tratamiento. En este caso concreto, los marcadores utilizados deben expresarse en Ia superficie de Ia célula.The specific markers are substances produced by the cells to be identified or induced by the host in the presence of a disease that allow to establish the diagnosis or prognosis of a disease, monitor or verify the effectiveness of a treatment. In this specific case, the markers used must be expressed on the surface of the cell.
En una realización preferida, las células a identificar se seleccionan entre células tumorales y células inflamatorias que expresen los marcadores específicos de Ia enfermedad en Ia superficie de Ia célula. Preferentemente, son células tumorales.In a preferred embodiment, the cells to be identified are selected from tumor cells and inflammatory cells that express the specific markers of the disease on the surface of the cell. Preferably, they are tumor cells.
Otro aspecto de Ia presente invención es un kit de identificación de células, diagnóstico y/o de pronóstico de una enfermedad en muestras aisladas de un paciente, donde los medios necesarios para Ia identificación de células comprenden las nanopartículas de oro conjugadas con el anticuerpo o combinación de anticuerpos 8.Another aspect of the present invention is a kit for identification of cells, diagnosis and / or prognosis of a disease in isolated samples of a patient, where the means necessary for the identification of cells comprise gold nanoparticles conjugated with the antibody or combination of antibodies 8.
En una realización preferida, el kit además comprende un transductor electroquímico. En una realización particular, el transductor electroquímico es un SPCE.In a preferred embodiment, the kit further comprises an electrochemical transducer. In a particular embodiment, the electrochemical transducer is an SPCE.
Tal y como se ha comentado durante Ia presente invención, las nanopartículas de oro están conjugadas con un anticuerpo o combinación de anticuerpos específicos de Ia proteína de superficie de Ia célula a identificar.As mentioned during the present invention, gold nanoparticles are conjugated with an antibody or combination of antibodies specific to the surface protein of the cell to be identified.
Por el término "anticuerpo" se entiende un anticuerpo entero, incluyendo sin límite un anticuerpo quimérico, humanizado, recombinante, transgénico, injertado y de única cadena, y similares, o cualquier proteína de fusión, conjugada, fragmento, o derivados de éstos que contengan uno o más dominios que se unan selectivamente a proteínas específicas de superficie. El término anticuerpo incluye también una molécula de inmunoglobulina entera, un anticuerpo monoclonal, o un fragmento inmunológicamente efectivo de alguno de éstos.By the term "antibody" is meant an entire antibody, including without limitation a chimeric, humanized, recombinant, transgenic, grafted and single chain antibody, and the like, or any fusion protein, conjugate, fragment, or derivatives thereof containing one or more domains that selectively bind to specific surface proteins. He The term "antibody" also includes an entire immunoglobulin molecule, a monoclonal antibody, or an immunologically effective fragment of any of these.
Por un fragmento de anticuerpo se entiende un Fv, un disulfuro unido a fragmentos de Fv, scFv, Fab, F(ab'), o F(ab')2, que son bien conocidos en el estado de Ia técnica. Un fragmento de un anticuerpo representa cualquier parte del mismo con un tamaño adecuado y una conformación para unirse a las proteínas de superficie.By an antibody fragment is meant an Fv, a disulfide attached to fragments of Fv, scFv, Fab, F (ab '), or F (ab') 2, which are well known in the state of the art. A fragment of an antibody represents any part thereof with a suitable size and a conformation to bind to surface proteins.
Por el término "Fv" se entiende un fragmento variable de un anticuerpo. Por el término "scFv" se entiende un fragmento variable de cadena sencilla que corresponde a Ia mitad de un Fab donde únicamente está presente Ia parte que aporta Ia especificidad. El scFv se obtiene por Ia unión de Ia parte variable de las cadenas pesadas y ligeras de un anticuerpo.By the term "Fv" is meant a variable fragment of an antibody. The term "scFv" means a variable single chain variable fragment that corresponds to half of a Fab where only the part that provides the specificity is present. The scFv is obtained by the union of the variable part of the heavy and light chains of an antibody.
Por el término "Fab" se entiende un fragmento de un anticuerpo y de unión a un antígeno. Por el término "F(ab')" se entiende el fragmento de anticuerpo obtenido por Ia digestión de un anticuerpo entero con el enzima pepsina y por el término "F(ab')2" se entiende el fragmento de anticuerpo obtenido por Ia digestión de un anticuerpo entero con el enzima papaϊna.The term "Fab" means a fragment of an antibody and antigen binding. The term "F (ab ')" means the antibody fragment obtained by the digestion of an entire antibody with the enzyme pepsin and by the term "F (ab') 2" means the antibody fragment obtained by the digestion of an entire antibody with the enzyme papaϊna.
También se considera parte de Ia invención el método de identificación y cuantificación de nanopartículas de oro que comprende: (a) Poner en contacto una mezcla de nanopartículas de oro en un medio ácido, con Ia superficie de un transductor electroquímico; (b) Aplicar un potencial reductor durante un tiempo apropiado, con Io cual se produce Ia reducción catalizada por las nanopartículas de oro, de los iones hidrógeno del medio a hidrógeno; (c) Medir Ia corriente catódica generada en Ia reducción de los iones hidrógeno; (d) Restar el valor neto de Ia corriente generada por el transductor electroquímico en un medio ácido, del valor obtenido en el apartado (c) y correlacionar Ia diferencia de intensidad de corriente observada con Ia presencia o ausencia de nanopartículas de oro presentes en el medio y/o con Ia concentración de nanopartículas de oro presentes en el medio.The method of identification and quantification of gold nanoparticles is also considered part of the invention, comprising: (a) Contacting a mixture of gold nanoparticles in an acid medium, with the surface of an electrochemical transducer; (b) Apply a reducing potential for an appropriate time, whereby the reduction catalyzed by the gold nanoparticles of the hydrogen ions of the medium to hydrogen occurs; (c) Measure the cathodic current generated in the reduction of hydrogen ions; (d) Subtract the net value of the current generated by the electrochemical transducer in an acidic medium, from the value obtained in section (c) and correlate the difference in current intensity observed with the presence or absence of gold nanoparticles present in the medium and / or with the concentration of gold nanoparticles present in the medium.
Una ventaja de este procedimiento de identificación y cuantificación de nanopartículas de oro es que el efecto catalítico del oro en las nanopartículas se observa a potenciales menos negativos y se presenta de una manera más constante y reproducible, que cuando se utilizan complejos de oro. Ello conlleva un menor tiempo de análisis para conseguir una estabilización de Ia señal y por otro lado, evita el daño del electrodo. Además, debido al efecto catalítico de las nanopartículas, Ia corriente anódica generada es de mayor medida en función de Ia concentración de nanopartículas de oro (cf. FIG.6). La intensidad de Ia corriente registrada mediante cronoamperometría durante el estadio de electroreducción de los iones hidrógeno a un potencial fijo, es decir -1.0 v, se puede correlacionar con Ia presencia (cf. FIG 6A, derecha, curvas b'-g') o ausencia (cf. FIG 6A, derecha, curva a') de nanopartículas de oro en Ia superficie del SPCE. El incremento de Ia corriente catalítica registrada es proporcional al incremento de las concentraciones de nanopartículas de oro. En el caso de nanopartículas de oro conjugadas con anticuerpos, se observa una respuesta catalítica similar, (cf. FIG 6B, derecha).An advantage of this gold nanoparticle identification and quantification procedure is that the catalytic effect of gold on the nanoparticles is observed at less negative potentials and is presented in a more constant and reproducible, that when gold complexes are used. This entails a shorter analysis time to achieve a stabilization of the signal and, on the other hand, prevents damage to the electrode. In addition, due to the catalytic effect of the nanoparticles, the generated anodic current is of greater measure depending on the concentration of gold nanoparticles (cf. FIG. 6). The intensity of the current recorded by chronoamperometry during the electroreduction stage of hydrogen ions at a fixed potential, that is -1.0 v, can be correlated with the presence (cf. FIG 6A, right, curves b'-g ') or absence (cf. FIG 6A, right, curve a ') of gold nanoparticles on the surface of the SPCE. The increase in the recorded catalytic current is proportional to the increase in gold nanoparticle concentrations. In the case of gold nanoparticles conjugated with antibodies, a similar catalytic response is observed, (cf. FIG 6B, right).
En una realización preferida, Ia corriente catódica generada en Ia etapa (c) del método de identificación de nanopartículas de oro se mide a 200 segundos. El valor absoluto de Ia corriente generada a 200 segundos se selecciona como señal analítica para Ia cuantificación de las nanopartículas de oro 8.In a preferred embodiment, the cathodic current generated in step (c) of the gold nanoparticle identification method is measured at 200 seconds. The absolute value of the current generated at 200 seconds is selected as an analytical signal for the quantification of the gold nanoparticles 8.
En otra realización preferida, el número de nanopartículas de oro presentes en el medio se cuantifica mediante Ia siguiente ecuación: Número de nanopartículas = ant Ln [(corriente generada (μA) - 7.4554)/4.7399]x1.51 -107.In another preferred embodiment, the number of gold nanoparticles present in the medium is quantified by the following equation: Number of nanoparticles = ant Ln [(generated current (μA) - 7.4554) / 4.7399] x1.51 -10 7 .
En una realización particular Ia cantidad de muestra a cuantificar que se deposita en Ia superficie del transductor electroquímico es de 25μl.In a particular embodiment, the quantity of sample to be quantified that is deposited on the surface of the electrochemical transducer is 25 μl.
En una realización preferida el transductor electroquímico utilizado en Ia etapa (a) del método de identificación y cuantificación de nanopartículas de oro es un electrodo de carbono serigrafiado.In a preferred embodiment, the electrochemical transducer used in step (a) of the gold nanoparticle identification and quantification method is a screen-printed carbon electrode.
En una realización preferida, el potencial de reducción aplicado está comprendido entre -0.6 v y -1.4 v y en una realización particular, este potencial es de -1 v y el tiempo de aplicación 30 segundos. Generalmente, el pH del medio ácido de Ia etapa (d) del método de identificación de células es igual o inferior a 5. Preferentemente, el pH es igual o inferior a 3. En una realización preferida, el medio ácido se alcanza por adición de un ácido seleccionado entre ácido clorhídrico, ácido sulfúrico, ácido fosfórico y ácido acético. En una realización más preferida, el ácido es ácido clorhídrico.In a preferred embodiment, the applied reduction potential is between -0.6 v and -1.4 v and in a particular embodiment, this potential is -1 v and the application time 30 seconds. Generally, the pH of the acidic medium of stage (d) of the cell identification method is equal to or less than 5. Preferably, the pH is equal to or less than 3. In a preferred embodiment, the acidic medium is reached by the addition of an acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid. In a more preferred embodiment, the acid is hydrochloric acid.
En otra realización preferida, el método de identificación y cuantificación de nanopartículas de oro además comprende aplicar un potencial de pretratamiento después de llevar a cabo Ia etapa (a). En una realización particular, este potencial es +1.35 v y se aplica durante 1 minuto.In another preferred embodiment, the method of identification and quantification of gold nanoparticles also comprises applying a pretreatment potential after carrying out step (a). In a particular embodiment, this potential is +1.35 v and is applied for 1 minute.
En otra realización preferida, Ia corriente catódica generada en Ia etapa (c) se mide cronoamperométricamente.In another preferred embodiment, the cathodic current generated in stage (c) is measured chronoamperometrically.
A Io largo de Ia descripción y las reivindicaciones Ia palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en Ia materia, otros objetos, ventajas y características de Ia invención se desprenderán en parte de Ia descripción y en parte de Ia práctica de Ia invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de Ia presente invención.Throughout the description and the claims, the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and characteristics of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
La Figura 1 representa un SPCE, utilizado como transductor electroquímico que comprende tres electrodos: 1 el electrodo de referencia de plata, 2 el electrodo de trabajo de carbono de 4 mm de diámetro para un volumen de muestra máximo de 50 μl y 3 el electrodo auxiliar. También se representa Ia capa aislante 4 y los contactos eléctricos 5.Figure 1 represents an SPCE, used as an electrochemical transducer comprising three electrodes: 1 the silver reference electrode, 2 the 4 mm diameter carbon working electrode for a maximum sample volume of 50 μl and 3 the auxiliary electrode . The insulating layer 4 and the electrical contacts 5 are also represented.
La Figura 2 representa en el apartado A un ejemplo del método de identificación de células HMY 6 utilizando células PC3 7 como blanco y las nanopartículas 8 conjugadas con el anticuerpo monoclonal anti-humano de ratón (anti-DR mAb) y BSA . En el apartado B se representa los cronoamperogramas obtenidos por aplicación de un potencial de -1.40 v durante 5 minutos por adición de 50 μl de una solución de HCI 1 M, donde 9 representa un blanco del SPCE con ácido clorhídrico. Las unidades del cronoamperograma se representan a continuación: t es tiempo, s son segundos, i es intensidad de corriente y μA son microampehos.Figure 2 represents in section A an example of the method of identification of HMY 6 cells using PC3 7 cells as blank and nanoparticles 8 conjugated to the mouse anti-human monoclonal antibody (anti-DR mAb) and BSA. Section B shows the chronoamperograms obtained by applying a potential of -1.40 v for 5 minutes by adding 50 μl of a 1 M HCI solution, where 9 represents a SPCE target with hydrochloric acid. The chronoamperogram units are represented below: t is time, s is seconds, i is current intensity and μA are microampehos.
La Figura 3 representa un ejemplo de un voltamperograma cíclico registrado desde +1.35 v hasta -1.40 v a una velocidad de barrido de 50 mv/s, después de adicionar 50 μl de una solución de HCI 1 M directamente en Ia superficie del SPCE (curva blanco IQ) o sobre Ia muestra de nanopartícula 8 conjugada con anti-DR mAb (curva H) y BSA. Las unidades del voltamperograma se representan a continuación: E es potencial, v son voltios, i es intensidad de corriente y μA son microamperios.Figure 3 represents an example of a cyclic voltamperogram recorded from +1.35 v to -1.40 a scanning speed of 50 mv / s, after adding 50 μl of a 1 M HCI solution directly on the SPCE surface (white curve IQ) or on the nanoparticle sample 8 conjugated with anti-DR mAb (curve H) and BSA. The voltamperogram units are represented below: E is potential, v is volts, i is current intensity and μA is microamps.
La Figura 4 representa imágenes de microscopio de líneas celulares de tumor humano B HMY 6 y de líneas celulares de tumor humano de próstata PC3 7 creciendo en cámara (parte superior) o en placa de petri (parte inferior).Figure 4 depicts microscope images of human tumor cell lines B HMY 6 and human prostate tumor cell lines PC3 7 growing in chamber (top) or in petri dish (bottom).
La Figura 5 representa fotografías del sistema de incubación utilizando placa de 8 pocilios en cámara (A, B y C) o placa de Petri (D).Figure 5 depicts photographs of the incubation system using 8-well chamber plate (A, B and C) or Petri dish (D).
La Figura 6 representa en el apartado A izquierda ejemplos de voltamperogramas cíclicos registrados desde +1.35 v hasta -1.40 v a una velocidad de barrido de 50 mv/s, después de Ia adición de una solución de HCI 1 M sobre Ia superficie del SPCE (curva blanco a) o sobre concentraciones crecientes de nanopartículas 8 en Ia superficie del SPCE (concentración de nanopartículas de 0.96pM en curva b; 4.8 pM en curva c; 24 pM en curva d; 12OpM en curva e; 60OpM en curva f y 3nM en curva g).Figure 6 shows in section A left examples of cyclic voltamperograms recorded from +1.35 v to -1.40 a scanning speed of 50 mv / s, after the addition of a solution of 1 M HCI on the surface of the SPCE (curve) blank a) or on increasing concentrations of nanoparticles 8 on the surface of the SPCE (concentration of nanoparticles of 0.96pM in curve b; 4.8 pM in curve c; 24 pM in curve d; 12OpM in curve e; 60OpM in curve f and 3nM in curve g).
En el apartado B izquierdo se representan ejemplos de voltamperogramas cíclicos registrados en las condiciones mencionadas en el apartado A, después de Ia adición de una solución de HCI 1 M sobre Ia superficie delExamples of cyclic voltamperograms recorded in the conditions mentioned in section A are shown in section B, after the addition of a 1 M HCI solution on the surface of the
SPCE (curva blanco a) o sobre una solución de nanopartículas 8 conjugadas con anticuerpos específicos anti-DR mAb (curva b).SPCE (white curve a) or on a solution of nanoparticles 8 conjugated with specific anti-DR mAb antibodies (curve b).
En los apartados A y B de Ia derecha se representan los cronoamperogramas registrados aplicando un potencial de -1.0Ov durante 5 minutos sobre Ia superficie del SPCE (apartado A derecha curva a'), concentraciones crecientes de una solución de nanopartícula (apartado A derecha curvas b'-g') y en una solución de nanopartícula conjugada con anticuerpos específicos anti-DR mAb (apartado B derecha curva b').In sections A and B of the right, the recorded chronoamperograms are applied applying a potential of -1.0Ov for 5 minutes on the surface of the SPCE (section A right curve a '), increasing concentrations of a nanoparticle solution (section A right curves b'-g ') and in a nanoparticle solution conjugated with specific anti-DR mAb antibodies (section B right curve b ').
Las unidades se representan a continuación: E es potencial, v son voltios, i es intensidad de corriente, μA son microamperios, t es tiempo, s son segundos, pM son picomoles y nM son nanomoles.The units are represented below: E is potential, v are volts, i is current intensity, μA are microamps, t is time, s are seconds, pM are picomoles and nM are nanomoles.
La Figura 7 apartado A representa el efecto sobre las señales electrocatalíticas del número de células que expresan Ia proteína de superficie HLA DR, después de Ia incubación con nanopartículas conjugadas con anticuerpos específicos anti-DR mAb (αDR). El apartado B representa señales electrocatalíticas obtenidas con células HMy2 6 después de Ia incubación con nanopartículas de oro conjugadas con anticuerpos específicos anti-DR mAb (αDR) en presencia de células PC-3 7 a diferentes porcentajes, donde el porcentaje de 100% corresponde a 200000 células. Las unidades se representan a continuación: c es corriente, μA son microamperios, BL es el blanco y en son número de células.Figure 7 section A represents the effect on electrocatalytic signals of the number of cells expressing the HLA DR surface protein, after incubation with nanoparticles conjugated with specific anti-DR mAb antibodies (αDR). Section B represents electrocatalytic signals obtained with HMy2 cells 6 after incubation with gold nanoparticles conjugated with specific anti-DR mAb antibodies (αDR) in the presence of PC-3 cells 7 at different percentages, where the percentage of 100% corresponds to 200,000 cells The units are represented below: c is current, μA is microamps, BL is the target and in number of cells.
La Figura 8 representa en el apartado A Ia hoja con 45 SPCEs obtenida tras Ia fabricación con Ia máquina de serigrafiado (izquierdo) y detalle de uno de los SPCEs (derecha). En el apartado B se muestra el montaje experimental para Ia realización de las medidas electroquímicas con el sistema de cámara: ocho SPCEs se montan en el sistema de cámara y se conectan al potenciostato secuencialmente. En el apartado C se muestra un detalle del sistema de ocho cámaras en donde se introducen los ocho SPCEs para el posterior cultivo celular.Figure 8 represents in section A the sheet with 45 SPCEs obtained after manufacturing with the screen printing machine (left) and detail of one of the SPCEs (right). Section B shows the experimental setup for performing electrochemical measurements with the camera system: eight SPCEs are mounted in the camera system and connected to the potentiostat sequentially. Section C shows a detail of the eight chamber system where the eight SPCEs are introduced for subsequent cell culture.
La Figura 9 representa imágenes de microscopía electrónica de barrido (SEM) del transductor electroquímico (SPCE) (izquierda) y detalles de las células HMy2 6 (apartado A) y PC-3 7 (apartado B) que han crecido sobre su superficie. Las imágenes que aparecen en las esquinas superiores derechas corresponden a células que han crecido en Ia superficie plástica de los SPCEs. Se comprueba que las células han crecido sobre el carbono y que su morfología no se ve afectada sobre este material. Las unidades se representan a a continuación: mm es milímetros y μm es micrómetros.Figure 9 depicts scanning electron microscopy (SEM) images of the electrochemical transducer (SPCE) (left) and details of the HMy2 6 (section A) and PC-3 7 (section B) cells that have grown on their surface. The images that appear in the upper right corners correspond to cells that have grown on the plastic surface of the SPCEs. It is verified that the cells have grown on carbon and that their morphology is not affected on this material. The units are represented below: mm is millimeters and μm is micrometers.
La Figura 10 apartado A representa el estudio comparativo de Ia respuesta electroquímica obtenida para las líneas celulares HMy2 6 y PC-3 7 frente a los diferentes anticuerpos probados. Los anticuerpos αlgM y αDR son los que se han conjugado con nanopartícula de oro. Las tres primeras columnas corresponden al blanco y a ensayos directos y las dos últimas columnas corresponden a los ensayos indirectos. El apartado B representa Ia respuesta obtenida por citometría de flujo para las dos líneas celulares frente a los anticuerpos utilizados. Se corrobora Ia especificad que se había obtenido con el método electrocatalítico. Las unidades se representan a continuación: c es corriente, μA son microamperios, BL es el blanco, Ab son los anticuerpos ensayados y fi / % es porcentaje de intensidad de fluorescencia.Figure 10 section A represents the comparative study of the response Electrochemical obtained for the HMy2 6 and PC-3 7 cell lines against the different antibodies tested. The αlgM and αDR antibodies are those that have been conjugated with gold nanoparticle. The first three columns correspond to the target and direct tests and the last two columns correspond to the indirect tests. Section B represents the response obtained by flow cytometry for the two cell lines against the antibodies used. The specificity that had been obtained with the electrocatalytic method is corroborated. The units are represented below: c is current, μA are microamps, BL is the target, Ab are the antibodies tested and fi /% is a percentage of fluorescence intensity.
EJEMPLOSEXAMPLES
Consideraciones generalesGeneral considerations
Trihidrato de Tetracloroaurato (III) de hidrógeno (HAuCI4-3H2O, 99.9%) y citrato trisódico se compraron a Sigma-Aldrich. Todos los reactivos tampones y otros productos químicos inorgánicos fueron suministrados por Sigma, Aldrich o Fluka, salvo que se indique Io contrario. Todos los productos químicos se utilizaron tal y como se recibieron y todas las soluciones acuosas se prepararon con agua doblemente destilada. El tampón de solución fosfato (PBS) consiste en 0.01 M fosfato salino tamponado, 0.137 M NaCI y 0.003 M KCI (pH 7.4). El ácido clorhídrico (HCI) es calidad de análisis. Sus soluciones se prepararon con agua ultra-pura. Las líneas de células tumorales utilizadas en este estudio fueron HMy2 6 (HLA-DR+) y PC-3 7 (HLA-DR-). Todas las células se cultivaron en el medio RPMI 1640 (Gibco, Life technologies, Grand Island, Escocia) suplementado con 10% de suero fetal bovino (FCS) (PAA, Linz, Austria), penicilina (100 U/ mi) y glutamina (2 mM) (Gibco) a 37 0C en una atmósfera humidificada con un contenido de CO2 del 5%. Las mediciones de Ia expresión de HLA-DR se llevaron a cabo utilizando un anticuerpo monoclonal HLA-DR antihumano de ratón (mAb) (Immunotech, Marsella, Francia) y BH1 , un anticuerpo IgM mAb humano que reconoce moléculas de HLA clase Il humano en Ia superficie de monocitos humanos, linfocitos B, líneas de células tumorales B (HMy2, Raji y Dausi) y células tumorales de pacientes que sufren de neoplasias hematológicas. Como control de reconocimiento positivo de las células testadas, se utiliza mAb humanos 32.4. En el caso de BH1 y 32.4 mAbs, anticuerpos policlonales IgM antihumanos de conejo conjugados con isotiocianato de fluoresceina (FITC) (DakoCytomation, España) se usan como anticuerpos secundarios, permitiendo contrastar el método electroquímico con medidas por citometría de flujo.Hydrogen Tetrachloroaurate (III) Trihydrate (HAuCI 4 -3H 2 O, 99.9%) and trisodium citrate were purchased from Sigma-Aldrich. All buffer reagents and other inorganic chemicals were supplied by Sigma, Aldrich or Fluka, unless otherwise indicated. All chemicals were used as received and all aqueous solutions were prepared with double distilled water. The phosphate solution buffer (PBS) consists of 0.01 M buffered saline phosphate, 0.137 M NaCI and 0.003 M KCI (pH 7.4). Hydrochloric acid (HCI) is quality analysis. Their solutions were prepared with ultra-pure water. The tumor cell lines used in this study were HMy2 6 (HLA-DR +) and PC-3 7 (HLA-DR-). All cells were cultured in RPMI 1640 medium (Gibco, Life technologies, Grand Island, Scotland) supplemented with 10% fetal bovine serum (FCS) (PAA, Linz, Austria), penicillin (100 U / mi) and glutamine ( 2mM) (Gibco) at 37 0 C in a humidified atmosphere containing 5% CO 2. The measurements of the expression of HLA-DR were carried out using a mouse anti-human HLA-DR monoclonal antibody (mAb) (Immunotech, Marseille, France) and BH1, a human IgM mAb antibody that recognizes human HLA class II molecules in The surface of human monocytes, B lymphocytes, tumor cell lines B (HMy2, Raji and Dausi) and tumor cells of patients suffering from hematological malignancies. As a positive recognition control of the cells tested, human mAbs 32.4 are used. In the case of BH1 and 32.4 mAbs, rabbit anti-human IgM polyclonal antibodies conjugated to fluorescein isothiocyanate (FITC) (DakoCytomation, Spain) are used as secondary antibodies, allowing the electrochemical method to be checked with flow cytometric measurements.
Las células se visualizaron con microscopios invertidos y directos (Olympus 1X50 y BX51 respectivamente, Olympus Optical. Tokyo, Japón) y las fotografías se tomaron con una cámara Olympus DP71.The cells were visualized with inverted and direct microscopes (Olympus 1X50 and BX51 respectively, Olympus Optical. Tokyo, Japan) and the photographs were taken with an Olympus DP71 camera.
El transductor electroquímico utilizado para el crecimiento in-situ de las células se construyó por los investigadores y era un SPCE. El sustrato utilizado es una hoja de poliéster transparente (Austostat HT5 de Ia empresa McDermid Autotype) y el tamaño total del sensor era 29 mm x 6.7 mm (cf. FIG.1 ).The electrochemical transducer used for in-situ cell growth was constructed by the researchers and was an SPCE. The substrate used is a transparent polyester sheet (Austostat HT5 of the McDermid Autotype company) and the total sensor size was 29 mm x 6.7 mm (cf. FIG. 1).
La corriente generada se registró mediante cronoamperometría, utilizando un potenciostato-galvanostato Ivium Compactstat (Ivium Technologies, Holanda).The generated current was recorded by chronoamperometry, using a Ivium Compactstat potentiostat-electroplating (Ivium Technologies, The Netherlands).
Ejemplo 1 : Voltamperogramas cíclicos en HCI 1 M.Example 1: Cyclic voltamperograms in 1 M HCI.
Se añadieron 50 μl de HCI 1 M en Ia superficie del SPCE y se registró un voltamperograma cíclico desde +1.35 v hasta -1.40 v, a una velocidad de barrido de 50 mv/s, obteniendo una curva del blanco (curva 10, FIG. 3 y curva a, FIG. 6A). Por otro lado, se mezclaron 25 μl de una solución de HCI 2 M con 25 μl de una solución de las AuNPs a concentraciones crecientes. Las mezclas resultantes se depositaron en las superficies de otros SPCEs. De nuevo se registraron voltamperogramas cíclicos desde +1.35 v hasta -1.40 v, a una velocidad de barrido de 50 mv/s, obteniendo las curvas IJ., FIG. 3 y curvas b-g, FIG. 6A, en donde se observa un desplazamiento de potencial respecto a Ia curva del blanco que corresponde al efecto catalítico de las nanopartículas y que aumenta con Ia concentración de éstas.50 μl of 1 M HCI was added to the SPCE surface and a cyclic voltamperogram was recorded from +1.35 v to -1.40 v, at a scanning speed of 50 mv / s, obtaining a blank curve (curve 10, FIG. 3 and curve a, FIG. 6A). On the other hand, 25 µl of a 2M HCI solution was mixed with 25 µl of an AuNPs solution at increasing concentrations. The resulting mixtures were deposited on the surfaces of other SPCEs. Again, cyclic voltamperograms were recorded from +1.35 v to -1.40 v, at a scanning speed of 50 mv / s, obtaining the IJ curves., FIG. 3 and curves b-g, FIG. 6A, where a potential shift is observed with respect to the curve of the target corresponding to the catalytic effect of the nanoparticles and which increases with the concentration of these.
Los mismos experimentos se realizaron para AuNPs 8 conjugadas con anti- DR mAb y BSA, observándose de nuevo un desplazamiento de potenciales entre el blanco de HCI 1 M (curva IQ, FIG. 3 y curva a, FIG. 6B) y Ia disolución de AuNPs 8_conjugadas con anticuerpo (curva V\_, FIG. 3 y curva b, FIG. 6B). Ejemplo 2: incubación de células en frasco.The same experiments were performed for AuNPs 8 conjugated with anti-DR mAb and BSA, again observing a potential shift between the blank of 1 M HCI (IQ curve, FIG. 3 and curve a, FIG. 6B) and the dissolution of AuNPs 8_conjugated with antibody (curve V \, FIG. 3 and curve b, FIG. 6B). Example 2: incubation of cells in flask.
Las líneas celulares HMy2 6 y PC-3 7 se cultivaron en un medio de cultivo a 37 0C en una atmósfera humidificada con un contenido de CO2 del 5% durante 48 h en un frasco de cultivo de tejidos (Falcon, Belcton Dickinson and Company Franklin Lakes, NJ, USA).Cell lines HMy2 6 and PC-3 7 cultured in a culture medium at 37 0 C in a humidified atmosphere containing 5% CO2 for 48 h in a flask tissue culture (Falcon, Belcton Dickinson and Company Franklin Lakes, NJ, USA).
Ejemplo 3: Incubación de células en Ia superficie del SPCE en cámara.Example 3: Incubation of cells on the surface of the SPCE in chamber.
El electrodo de trabajo 2 se introdujo dentro de una Lab-Tek™ con placas de 8 pocilios (Nunc, Thermo Fisher scientific), después de eliminar Ia junta, se fijó con el medio de cultivo mounting. A continuación, se añadieron en cada pocilio 200.000 células en 700 μl del medio de cultivo y se incubaron a 37 0C en una atmósfera humidificada con un contenido de CO2 del 5% durante 48 h. (cf. FIG. 4 (parte superior) y 5 (A, B y C) y FIG. 8 (B1C). En Ia figura 9 se observan las dos líneas celulares crecidas sobre Ia superficie del SPCE.Working electrode 2 was introduced into a Lab-Tek ™ with 8-well plates (Nunc, Thermo Fisher scientific), after removing the joint, it was fixed with the mounting culture medium. Then each well was added 700 .mu.l 200,000 cells in culture medium and incubated at 37 0 C in a humidified atmosphere containing 5% CO2 for 48 h. (cf. FIG. 4 (top) and 5 (A, B and C) and FIG. 8 (B 1 C). Figure 9 shows the two cell lines grown on the surface of the SPCE.
Ejemplo 4: Incubación de células en Ia superficie del SPCE en placa de Petri.Example 4: Incubation of cells on the surface of the SPCE in Petri dish.
Se introdujeron los SPCE en las placas de petri Corning®, DxH35 mm x 10 mm, sin tratar (SIGMA-ALDRICH). A continuación se añadieron 200.000 células en 3 mi de medio de cultivo y se incubaron a 37 0C en una atmósfera humidificada con un contenido de CO2 del 5% durante 48 h (cf. FIG. 4 (parte inferior) y 5 D).SPCEs were introduced into the Corning® petri dishes, DxH35 mm x 10 mm, untreated (SIGMA-ALDRICH). Then 200,000 cells were added 3 ml of culture medium and incubated at 37 0 C in a humidified atmosphere containing 5% CO2 for 48 h (cf. FIG. 4 (bottom) and 5 D).
Ejemplo 5: Síntesis de las nanopartículas de oro y su conjugación con anticuerpos específicos.Example 5: Synthesis of gold nanoparticles and their conjugation with specific antibodies.
Las nanopartículas se prepararon por reducción del tetracloroaurato (III) de hidrógeno con citrato trisódico, según método descrito por Turkevich (cf J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951 , vol. 11 , pp. 55-75). A una solución de 200 mi de HAuCI4 0.01 % en ebullición con agitación vigorosa, se adicionaron rápidamente 5 mi de una solución de citrato trisódico. Cuando Ia mezcla de reacción se volvió de color rojo intenso, indicando Ia formación de las nanopartículas de oro, Ia solución se enfrió manteniendo Ia agitación. Se mezclaron 2 mi de Ia suspensión de nanopartículas de oro con 100 μl (de 100 μg/ mi) de anti-DR mAb y se incubaron a 25 0C durante 20 minutos. A continuación se realizó una etapa de bloqueo con 150 μl (de 1 mg/ mi) de albúmina de suero bovino (BSA) manteniendo Ia temperatura a 25 0C durante 20 minutos. Finalmente, Ia mezcla resultante se centrifugó a 14.000 rpm durante 20 minutos y las nanopartículas 8 conjugadas con anti-DR mAb y BSA se reconstituyeron con PBS.The nanoparticles were prepared by reducing hydrogen tetrachloroaurate (III) with trisodium citrate, according to the method described by Turkevich (cf. J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951, vol. 11, pp. 55-75) . To a solution of 200 ml of 0.01% boiling HAuCI 4 with vigorous stirring, 5 ml of a trisodium citrate solution was quickly added. When the reaction mixture turned deep red, indicating the formation of the gold nanoparticles, the solution was cooled while maintaining the stirring. 2 ml of the mixed suspension of gold nanoparticles with 100 .mu.l (100 .mu.g / ml) of anti-DR mAb and incubated at 25 0 C for 20 minutes. Then a step 150 .mu.l lock (1 mg / ml) of bovine serum albumin (BSA) , maintaining the temperature at 25 0 C for 20 minutes was performed. Finally, the resulting mixture was centrifuged at 14,000 rpm for 20 minutes and nanoparticles 8 conjugated with anti-DR mAb and BSA were reconstituted with PBS.
Para los ensayos indirectos, se conjugaron de un modo similar las nanopartículas con anticuerpos anti-lgM (αlgM) y con BSA.For indirect tests, nanoparticles were conjugated in a similar manner with anti-IgM antibodies (αlgM) and with BSA.
Ejemplo 6: A. Incubación de células con las nanopartículas 8 conjugadas con anti-DR mAb v BSA.Example 6: A. Incubation of cells with nanoparticles 8 conjugated with anti-DR mAb v BSA.
Una vez las células habían crecido en Ia superficie del SPCE, se lavaron con PBS. A continuación se adicionaron 50 μl de una solución de nanopartículas 8 conjugadas con anti-DR mAb y BSA sobre el electrodo de trabajo 2 y se mantuvieron durante 30 minutos a 37 0C.Once the cells had grown on the surface of the SPCE, they were washed with PBS. Then 50 μl of a solution of nanoparticles 8 conjugated with anti-DR mAb and BSA were added on the working electrode 2 and kept for 30 minutes at 37 ° C.
B. Incubación de células con las nanopartículas 8 conjugadas con αlgM y BSA.B. Incubation of cells with nanoparticles 8 conjugated to αlgM and BSA.
Una vez las células se habían incubado con los anticuerpos primarios (BH1 o 32.4 mAbs) durante 30 minutos, se lavaron con PBS. A continuación se incubó con una solución de nanopartículas 8 conjugadas con αlgM y BSA durante 30 minutos.Once the cells had been incubated with the primary antibodies (BH1 or 32.4 mAbs) for 30 minutes, they were washed with PBS. It was then incubated with a solution of nanoparticles 8 conjugated with αlgM and BSA for 30 minutes.
Ejemplo 7: Señal analítica basada en Ia generación de hidrógeno catalizada por Ia nanopartícula 8 conjugadas con anti-DR mAb y BSA y, registro de Ia corriente generada.Example 7: Analytical signal based on the generation of hydrogen catalyzed by nanoparticle 8 conjugated with anti-DR mAb and BSA and, recording of the generated current.
Las células se lavaron con PBS y a continuación se adicionaron 50 μl de una solución de HCI 1 M sobre Ia superficie de los 3 electrodos I12 y 3. Después, el SPCE se conectó al potenciostato (cf. FIG. 8 B1C) y el electrodo de trabajo 2 se sometió a un primer potencial de +1.35 v durante 1 minuto y luego se aplicó un segundo potencial de -1 v durante 300 segundos, registrándose Ia corriente catódica generada. Esta corriente generada se registra por cronoamperometría. Para ello, se puede utilizar cualquier potenciostato-galvanostato que integre un sistema de medida y registro de corrientes. En este caso, se utiliza un Ivium Compactstat.The cells were washed with PBS and then 50 μl of a 1 M HCI solution was added on the surface of the 3 electrodes I 1 2 and 3. Then, the SPCE was connected to the potentiostat (cf. FIG. 8 B 1 C) and the working electrode 2 was subjected to a first potential of +1.35 v for 1 minute and then a second potential of -1 v was applied for 300 seconds, registering the generated cathodic current. This generated current is recorded by chronoamperometry. For this, you can use any potentiostat-galvanostat that integrates a measurement and current recording system. In this case, an Ivium Compactstat is used.
Aunque en este ejemplo el potencial de reducción se aplica durante 300 segundos, el tiempo de aplicación podría reducirse hasta 30 segundos, ya que a partir de 30 segundos Ia corriente catódica generada por Ia reducción de los iones hidrógeno se encuentra estabilizada en el tiempo, tal y como se observa en Ia figura 2B.Although in this example the reduction potential is applied for 300 seconds, the application time could be reduced up to 30 seconds, since from 30 seconds the cathodic current generated by the reduction of hydrogen ions is stabilized over time, such and as seen in Figure 2B.
Ejemplo 8. Señal analítica basada en Ia generación de hidrógeno catalizada por Ia nanopartícula conjugadas con anti-lgM y BSA y, registro de Ia corriente generada (ensayo indirecto).Example 8. Analytical signal based on the generation of hydrogen catalyzed by the nanoparticle conjugated with anti-IgM and BSA and recording of the generated current (indirect test).
Se realizó una primera incubación de las células con anticuerpos primarios (BH1 ó 32.4) de un modo similar al detallado en el ejemplo 7. Posteriormente se lavó con PBS y se realizó una segunda incubación en idénticas condiciones con nanopartículas conjugadas con anti-lgM y BSA. El registro de Ia señal analítica se llevó a cabo siguiendo el mismo procedimiento detallado en el ejemplo 7. Las respuestas electrocatalíticas se muestran en Ia Figura 10 A.A first incubation of the cells with primary antibodies (BH1 or 32.4) was performed in a similar manner to that detailed in Example 7. Subsequently it was washed with PBS and a second incubation was performed under identical conditions with nanoparticles conjugated with anti-IgM and BSA. . The recording of the analytical signal was carried out following the same procedure detailed in example 7. The electrocatalytic responses are shown in Figure 10 A.
REFERENCIAS MENCIONADAS EN LA SOLICITUDREFERENCES MENTIONED IN THE APPLICATION
1. Pumera et al., "Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode", Electrochimica Acta, 2005, vol. 50, p. 3702-3707. 2. M. Díaz-González et al., "DNA hybridization biosensors using polylysine modified SPCEs", Biosensors and bioelectronics, 2008, vol. 23, p. 1340-1346.1. Pumera et al., "Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode", Electrochimica Acta, 2005, vol. 50, p. 3702-3707. 2. M. Díaz-González et al., "DNA hybridization biosensors using polylysine modified SPCEs", Biosensors and bioelectronics, 2008, vol. 23, p. 1340-1346.
3. A. Ambrosi et al., "double-codified gold nanolabels for enhanced immunoanalysis", Analvtical Chemistrv, 2007, vol. 79, p. 5232-5240.3. A. Ambrosi et al., "Double-codified gold nanolabels for enhanced immunoanalysis", Analvtical Chemistrv, 2007, vol. 79, p. 5232-5240.
4. J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951 , vol. 11 , p. 55-75. 4. J. Turkevich et al., Faradav Discussion of the Chemical Society, 1951, vol. 11, p. 55-75.

Claims

REIVINDICACIONES
1. Método de identificación de células que comprende:1. Method of identification of cells comprising:
(a) Poner en contacto un transductor electroquímico y las células a identificar en un medio de cultivo apropiado a una temperatura determinada y durante el tiempo necesario, para inmovilizar y hacer crecer las células en Ia superficie del transductor electroquímico;(a) Contact an electrochemical transducer and the cells to be identified in an appropriate culture medium at a certain temperature and for the time necessary, to immobilize and grow the cells on the surface of the electrochemical transducer;
(b) Poner en contacto una suspensión de nanopartículas de oro con un anticuerpo o combinación de anticuerpos específicos de las proteínas de superficie de las células a identificar;(b) Contacting a suspension of gold nanoparticles with an antibody or combination of antibodies specific to the surface proteins of the cells to be identified;
(c) Poner en contacto las células inmovilizadas en Ia superficie del transductor electroquímico con las nanopartículas de oro (8) resultantes de Ia etapa (b), a una temperatura apropiada;(c) Contact the immobilized cells on the surface of the electrochemical transducer with the gold nanoparticles (8) resulting from stage (b), at an appropriate temperature;
(d) Aplicar un potencial reductor durante un tiempo apropiado en un medio ácido, con Io cual se produce Ia reducción catalizada por las nanopartículas de oro (8), de los iones hidrógeno del medio a hidrógeno;(d) Apply a reducing potential for an appropriate time in an acidic medium, whereby the reduction catalyzed by the gold nanoparticles (8) of the hydrogen ions of the medium to hydrogen occurs;
(e) Medir Ia corriente catódica generada en Ia reducción de los iones hidrógeno;(e) Measure the cathodic current generated in the reduction of hydrogen ions;
(f) Restar el valor neto de Ia corriente generada por el transductor electroquímico sin células inmovilizadas, del valor obtenido en el apartado (e) y correlacionar Ia diferencia de intensidad de corriente observada con Ia presencia o ausencia de nanopartículas de oro (8) unidas a las proteínas de superficie de las células a identificar.(f) Subtract the net value of the current generated by the electrochemical transducer without immobilized cells, from the value obtained in section (e) and correlate the difference in current intensity observed with the presence or absence of gold nanoparticles (8) attached to the surface proteins of the cells to be identified.
2. Método de identificación según Ia reivindicación 1 , donde el transductor electroquímico es un electrodo de carbono serigrafiado.2. Identification method according to claim 1, wherein the electrochemical transducer is a screen-printed carbon electrode.
3. Método de identificación según cualquiera de las reivindicaciones 1-2, donde el potencial de reducción está comprendido entre -0.6 v y -1.4 v.3. Identification method according to any of claims 1-2, wherein the reduction potential is between -0.6 v and -1.4 v.
4. Método de identificación según cualquiera de las reivindicaciones 1-3, donde el medio ácido se alcanza por adición de un ácido seleccionado entre el grupo que consiste en ácido clorhídrico, ácido sulfúrico, ácido fosfórico y ácido acético.4. Identification method according to any of claims 1-3, wherein the acidic medium is reached by the addition of an acid selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid.
5. Método de identificación según reivindicación 4, donde el ácido es ácido clorhídrico. 5. Identification method according to claim 4, wherein the acid is hydrochloric acid.
6. Método de identificación según cualquiera de las reivindicaciones 1-5, que además comprende poner en contacto las nanopartículas resultantes de Ia etapa (b) con una sustancia capaz de saturar Ia superficie de Ia nanopartícula.6. Identification method according to any of claims 1-5, which further comprises contacting the nanoparticles resulting from step (b) with a substance capable of saturating the surface of the nanoparticle.
7. Método de identificación según cualquiera de las reivindicaciones 1-6, que además comprende aplicar un potencial de pretratamiento después de llevar a cabo Ia etapa (c).7. Identification method according to any of claims 1-6, which further comprises applying a pretreatment potential after carrying out step (c).
8. Método de identificación según cualquiera de las reivindicaciones 1-7, donde Ia corriente catódica de Ia etapa (d) se mide cronoamperométricamente.8. Identification method according to any of claims 1-7, wherein the cathodic current of stage (d) is measured chronoamperometrically.
9. Método de identificación según cualquiera de las reivindicaciones 1-8, donde las células se seleccionan entre células tumorales y células inflamatorias.9. Identification method according to any of claims 1-8, wherein the cells are selected from tumor cells and inflammatory cells.
10. Método de identificación según cualquiera de las reivindicaciones 1-9, donde las células son células tumorales.10. Identification method according to any of claims 1-9, wherein the cells are tumor cells.
11. Método de identificación y cuantificación de células que comprende: (a) llevar a cabo el método de identificación de células de cualquiera de las reivindicaciones 1 -10, y (b) cuantificar Ia cantidad de células mediante Ia siguiente ecuación: Número de células= 1000 [(corriente generada (μA) - 0.497)/0.0641]11. Method of identification and quantification of cells comprising: (a) carrying out the method of identification of cells of any of claims 1-10, and (b) quantifying the amount of cells by means of the following equation: Number of cells = 1000 [(generated current (μA) - 0.497) /0.0641]
12. Uso del método de identificación de células según cualquiera de las reivindicaciones 1 -10, para diagnóstico y/o pronóstico de una enfermedad en muestras aisladas de un paciente susceptible de presentar Ia enfermedad, donde el anticuerpo o combinación de anticuerpos específicos de Ia etapa (b) reconocen marcadores específicos de Ia enfermedad a identificar.12. Use of the cell identification method according to any of claims 1-10, for diagnosis and / or prognosis of a disease in isolated samples of a patient susceptible to presenting the disease, where the antibody or combination of specific antibodies of the stage (b) recognize specific markers of the disease to be identified.
13. Uso del método de identificación de células según Ia reivindicación 12, para diagnóstico y/o pronóstico de una enfermedad, donde las células a identificar se seleccionan entre células tumorales y células inflamatorias. 13. Use of the cell identification method according to claim 12, for diagnosis and / or prognosis of a disease, wherein the cells to be identified are selected from tumor cells and inflammatory cells.
14. Uso del método de identificación y cuantificación de células según Ia reivindicación 11 , para diagnóstico y/o pronóstico de una enfermedad, en muestras aisladas de un paciente susceptible de presentar Ia enfermedad, donde el anticuerpo o combinación de anticuerpos específicos de Ia etapa (b) reconocen marcadores específicos de Ia enfermedad a identificar.14. Use of the method of identification and quantification of cells according to claim 11, for diagnosis and / or prognosis of a disease, in isolated samples of a patient capable of presenting the disease, where the antibody or combination of antibodies specific to the stage ( b) recognize specific markers of the disease to be identified.
15. Uso del método de identificación y cuantificación de células según Ia reivindicación 14, para diagnóstico y/o pronóstico de una enfermedad, donde las células a identificar se seleccionan entre células tumorales y células inflamatorias.15. Use of the method of identification and quantification of cells according to claim 14, for diagnosis and / or prognosis of a disease, wherein the cells to be identified are selected from tumor cells and inflammatory cells.
16. Kit de identificación de células, diagnóstico y/o pronóstico de una enfermedad en muestras aisladas de un paciente, donde los medios necesarios para Ia identificación de células comprenden las nanopartículas de oro conjugadas con el anticuerpo o combinación de anticuerpos (8).16. Kit for identification of cells, diagnosis and / or prognosis of a disease in isolated samples of a patient, where the necessary means for the identification of cells comprise gold nanoparticles conjugated with the antibody or combination of antibodies (8).
17. Kit según Ia reivindicación 16, que además comprende un transductor electroquímico.17. Kit according to claim 16, which further comprises an electrochemical transducer.
18. Método de identificación y cuantificación de nanopartículas de oro que comprende:18. Method of identification and quantification of gold nanoparticles comprising:
(a) Poner en contacto una mezcla de nanopartículas de oro en un medio ácido, con Ia superficie de un transductor electroquímico;(a) Contact a mixture of gold nanoparticles in an acid medium, with the surface of an electrochemical transducer;
(b) Aplicar un potencial reductor durante un tiempo apropiado, con Io cual se produce Ia reducción catalizada por las nanopartículas de oro, de los iones hidrógeno del medio a hidrógeno;(b) Apply a reducing potential for an appropriate time, whereby the reduction catalyzed by the gold nanoparticles of the hydrogen ions of the medium to hydrogen occurs;
(c) Medir Ia corriente catódica generada en Ia reducción de los iones hidrógeno;(c) Measure the cathodic current generated in the reduction of hydrogen ions;
(d) Restar el valor neto de Ia corriente generada por el transductor electroquímico en un medio ácido, del valor obtenido en el apartado (c) y correlacionar Ia diferencia de intensidad de corriente observada con Ia presencia o ausencia de nanopartículas de oro presentes en el medio y/o con Ia concentración de nanopartículas de oro presentes en el medio.(d) Subtract the net value of the current generated by the electrochemical transducer in an acidic medium, from the value obtained in section (c) and correlate the difference in current intensity observed with the presence or absence of gold nanoparticles present in the medium and / or with the concentration of gold nanoparticles present in the medium.
19. Método de identificación y cuantificación según Ia reivindicación 18, donde el transductor electroquímico es un electrodo de carbono serigrafiado. 19. Identification and quantification method according to claim 18, wherein the electrochemical transducer is a screen-printed carbon electrode.
20. Método de identificación y cuantificación según cualquiera de las reivindicaciones 18-19, donde el potencial de reducción está comprendido entre -0.6 v y -1.4 v.20. Method of identification and quantification according to any of claims 18-19, wherein the reduction potential is between -0.6 v and -1.4 v.
21. Método de identificación y cuantificación según cualquiera de las reivindicaciones 18-20, donde el medio ácido se alcanza por adición de un ácido seleccionado entre el grupo que consiste en ácido clorhídrico, ácido sulfúrico, ácido fosfórico y ácido acético.21. Identification and quantification method according to any of claims 18-20, wherein the acidic medium is reached by the addition of an acid selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid and acetic acid.
22. Método de identificación y cuantificación según Ia reivindicación 21 , donde el ácido es ácido clorhídrico.22. Identification and quantification method according to claim 21, wherein the acid is hydrochloric acid.
23. Método de identificación y cuantificación según cualquiera de las reivindicaciones 18-22, que además comprende aplicar un potencial de pretratamiento después de llevar a cabo Ia etapa (a).23. Identification and quantification method according to any of claims 18-22, which further comprises applying a pretreatment potential after carrying out step (a).
24. Método de identificación y cuantificación según cualquiera de las reivindicaciones 18-23, donde Ia corriente catódica de Ia etapa (c) se mide cronoamperométricamente.24. Method of identification and quantification according to any of claims 18-23, wherein the cathodic current of stage (c) is measured chronoamperometrically.
25. Método de identificación y cuantificación según cualquiera de las reivindicaciones 18-24, donde Ia corriente catódica de Ia etapa (c) se mide a 200 segundos.25. Method of identification and quantification according to any of claims 18-24, wherein the cathodic current of stage (c) is measured at 200 seconds.
26. Método de identificación y cuantificación según Ia reivindicación 25, donde el número de nanopartículas de oro presentes en el medio se cuantifica mediante Ia siguiente ecuación:26. Identification and quantification method according to claim 25, wherein the number of gold nanoparticles present in the medium is quantified by means of the following equation:
Número de nanopartículas = ant Ln [(corriente generada (μA) - 7.4554)/4.7399]x1.51 -107 Number of nanoparticles = ant Ln [(generated current (μA) - 7.4554) /4.7399] x1.51 -10 7
PCT/ES2009/070489 2008-11-12 2009-11-10 Method for cell identification and quantification with gold nanoparticles through hydrogen ion reduction WO2010055183A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200803275 2008-11-12
ES200803275A ES2338977B1 (en) 2008-11-12 2008-11-12 METHOD OF IDENTIFICATION OF CELLS WITH GOLD NANOPARTICLES BY REDUCTION OF HYDROGEN IONS.

Publications (1)

Publication Number Publication Date
WO2010055183A1 true WO2010055183A1 (en) 2010-05-20

Family

ID=42123200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070489 WO2010055183A1 (en) 2008-11-12 2009-11-10 Method for cell identification and quantification with gold nanoparticles through hydrogen ion reduction

Country Status (2)

Country Link
ES (1) ES2338977B1 (en)
WO (1) WO2010055183A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031337A1 (en) * 2004-06-22 2007-02-08 Reinhard Schulte Nanoparticle enhanced proton computed tomography and proton therapy
US20080050769A1 (en) * 2006-08-25 2008-02-28 Jung-Tang Huang Method for detecting bioparticles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031337A1 (en) * 2004-06-22 2007-02-08 Reinhard Schulte Nanoparticle enhanced proton computed tomography and proton therapy
US20080050769A1 (en) * 2006-08-25 2008-02-28 Jung-Tang Huang Method for detecting bioparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EL SAYED I.H. ET AL: "Surface Plasmon Resonance Scattering and Absorpcion of anti-EGFR Antibody Conjugate Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer", NANO LETTERS, vol. 5, no. 5, 2005, pages 829 - 834 *
PISSUWAN D. ET AL: "Gold Nanosphere-Antibody Conjugates for Hyperthermal Therapeutic Applications", GOLD BULLETIN, vol. 40, no. 2, 2007, pages 121 - 129 *

Also Published As

Publication number Publication date
ES2338977A1 (en) 2010-05-13
ES2338977B1 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
Shui et al. A novel electrochemical aptamer–antibody sandwich assay for the detection of tau-381 in human serum
Sun et al. DNA nanotetrahedron-assisted electrochemical aptasensor for cardiac troponin I detection based on the co-catalysis of hybrid nanozyme, natural enzyme and artificial DNAzyme
Manickam et al. Recent advances in cytochrome c biosensing technologies
Hasanzadeh et al. Electrochemical nanobiosensing in whole blood: Recent advances
Shekari et al. Dual assaying of breast cancer biomarkers by using a sandwich–type electrochemical aptasensor based on a gold nanoparticles–3D graphene hydrogel nanocomposite and redox probes labeled aptamers
de la Escosura-Muñiz et al. Nanochannels for diagnostic of thrombin-related diseases in human blood
Jia et al. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay
de la Escosura-Muniz et al. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles
Freitas et al. Immunomagnetic bead-based bioassay for the voltammetric analysis of the breast cancer biomarker HER2-ECD and tumour cells using quantum dots as detection labels
KR102657461B1 (en) Single-cell intracellular nano-PH probe
Zheng et al. Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface
Chen et al. Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids
Khristunova et al. Electrochemical immunoassay for the detection of antibodies to tick-borne encephalitis virus by using various types of bioconjugates based on silver nanoparticles
CN106198699B (en) Prepare two kinds of secondary antibody conjugates and its at the same the method that detects alpha-fetoprotein and carcinomebryonic antigen
CN112816533A (en) Beta-amyloid oligomer sensor with copper nanocluster as electrochemical signal probe
Negahdary et al. A cardiac troponin T biosensor based on aptamer self-assembling on gold
Shahdost-Fard et al. Designing of an ultrasensitive BCM-7 aptasensor based on an SPCE modified with AuNR for promising distinguishing of autism disorder
Kalyani et al. Detection of a novel glycodelin biomarker using electrochemical immunosensor for endometriosis
Huang et al. Electrochemical immunosensor based on superwettable microdroplet array for detecting multiple Alzheimer’s disease biomarkers
Ahmadi et al. Affinity-based electrochemical biosensor with antifouling properties for detection of lysophosphatidic acid, a promising early-stage ovarian cancer biomarker
Han et al. Multifunctional peptide-oligonucleotide conjugate promoted sensitive electrochemical biosensing of cardiac troponin I
RU2425382C1 (en) Method of blood plasma proximate analysis for cardiomyoglobin by means of electrochemical immunosensor
Chen et al. Highly sensitive sandwich-type immunosensor with enhanced electrocatalytic durian-shaped MoS2/AuPtPd nanoparticles for human growth differentiation factor-15 detection
WO2010055183A1 (en) Method for cell identification and quantification with gold nanoparticles through hydrogen ion reduction
CN116324414A (en) Method for detecting analytes by means of metal nanoparticles on electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09825791

Country of ref document: EP

Kind code of ref document: A1