WO2010053342A1 - System and method for collecting and reading of fluorescence in capillary tubes - Google Patents

System and method for collecting and reading of fluorescence in capillary tubes Download PDF

Info

Publication number
WO2010053342A1
WO2010053342A1 PCT/MX2008/000152 MX2008000152W WO2010053342A1 WO 2010053342 A1 WO2010053342 A1 WO 2010053342A1 MX 2008000152 W MX2008000152 W MX 2008000152W WO 2010053342 A1 WO2010053342 A1 WO 2010053342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
fluorescence
reading
reactor
samples
Prior art date
Application number
PCT/MX2008/000152
Other languages
Spanish (es)
French (fr)
Inventor
Alberto MORALES VILLAGRÁN
Original Assignee
Morales Villagran Alberto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morales Villagran Alberto filed Critical Morales Villagran Alberto
Priority to PCT/MX2008/000152 priority Critical patent/WO2010053342A1/en
Publication of WO2010053342A1 publication Critical patent/WO2010053342A1/en
Priority to MX2011004717A priority patent/MX2011004717A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1039Micropipettes, e.g. microcapillary tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the present invention relates to fluorescence reading systems for quantitative analysis of substances, and more specifically it relates to a system for collecting and reading fluorescence in capillaries for the identification and quantification of substances through the use of enzymatic biosensors and reactors.
  • An alternative for the quantitative analysis of various substances is based on the use of enzymatic or immunochemical reactors, in which thanks to the great biological specificity of these systems, they can react specifically with a particular analyte, producing a derivative with activity electro-active or optical, which can be measured quantitatively by amperometric detection, optical density, luminescence and / or fluorescence, the transduction of this signal being proportional to the concentration of the compound.
  • a derivative with activity electro-active or optical which can be measured quantitatively by amperometric detection, optical density, luminescence and / or fluorescence, the transduction of this signal being proportional to the concentration of the compound.
  • An example of this is the measurement of glucose concentration through the use of glucose oxidase, glucose is oxidized by the action of glucose oxidase to produce gluconic acid and hydrogen peroxide.
  • Hydrogen peroxide reacts in the presence of peroxidase with 4-hydroxybenzoic acid and with 4-aminoantipyridine to give rise to a red quinonimine dye.
  • the intensity of the color formed is proportional to the glucose concentration and can be measured spectrophotometrically between 460 and 560 nm.
  • the use of chemical concentration gradients can have various uses, for example in chromatography the use of solution gradients with different ionic or organic strength is very common.
  • the isolation and purification of subcellular fractions is another example where various gradients based on sucrose or other solutes are used, in order to produce gradients of different density for the centrifugation of homogeneous solutions of cells and thus be able to separate various subcellular components.
  • solutions of concentration of various compounds can be prepared in increasing or decreasing manner, in order to prepare solutions for performing calibration curves.
  • Discontinuous gradients are formed by carefully placing layers of solutions of different densities in centrifuge tubes.
  • the most widely used method to produce discontinuous gradients is to start with the densest solution and place lower density layers successively.
  • Continuous gradients are prepared from two components with different concentration placed in two reservoirs, connected to each other, fluid from the less concentrated solution is allowed to flow, allowing a similar volume of the concentrated solution to pass, simultaneously control devices are used of the flow rate and mixing for the homogenization of the solution.
  • the frequency of sampling determines the number of points to be obtained in the gradient curve.
  • This proposal is based on the use of two syringes for the construction of said gradients, (one milliliter maximum) mounted on a mechanical system, which is electronically controlled based on stepper motors to produce a programmed differential movement of each piston and thus generate a linear gradient in volumes not larger than one milliliter.
  • a mechanical system which is electronically controlled based on stepper motors to produce a programmed differential movement of each piston and thus generate a linear gradient in volumes not larger than one milliliter.
  • Another objective of the system of the present invention whose use makes the amount of reagents used, given the volume required to measure the analyte concentration, is minimal, which provides considerable savings in the analysis and quantification of substances.
  • Another feature of the new system is that it has the feasibility of attaching to existing fluorescence detectors by means of optical fibers, such that the existing digitalization and concentration analysis systems could be used.
  • An additional feature of the invention is that calibration curves can be performed with a linear gradient which provides greater accuracy in the calculation of the problem concentrations.
  • a main objective is to propose a new automatic device for the generation of linear gradients in small volumes that consists of an infusion pump for micro syringes in which the plunger of the micro syringes moves at a set speed and time to make the movement of each piston accelerate or decelerate linearly.
  • the introduction of automatic processes in analytical processes reduces human error and regularly makes the process more efficient.
  • Figure 1 illustrates a schematic representation of the capillary fluorescence collection and reading system of the present invention.
  • Figure 2 is a perspective view of the sample collector carousel.
  • Figure 3 is a view of the reading system of the invention in which the arrangement of the excitation and reading optical fibers, which are controlled by a CCD fluorescence detector through a computer, is observed.
  • Figure 4 is an approach view of the system for depositing the sample and the reactor in capillary tubes.
  • Figure 5 is an enlarged view of the capillary tube in which a damping device is observed.
  • Figure 6 is a screen representation of the reading of the values that result from the implementation of the system for the analysis of a given substance.
  • Figure 7 is a view showing the new gradient infusion pump specially designed for the present invention.
  • Figure 8 is a graph showing the calibration curve that reflects the linear relationship of the concentrations tested and the fluorescence measured for the case of a specific example proposed.
  • Figure 9 is a schematic representation of how the gradient reading was performed in real time in the flow cell for fluorescence measurement.
  • Figure 10 is representative of the absolute linear relationship that results from plotting the number of speeds with respect to the steps executed per second (Table 1) performed with the new gradient infusion pump.
  • Figure 11 is a graph that allows us to observe the linear relationship in the measure of the volumes obtained than in a test protocol, according to the calculation estimated by formula 1.
  • Figure 12 is a view of the mechanism that generates the rotating movement of the sample collection carousel.
  • This proposal proposes an alternative technological innovation to those already existing, for the identification and quantification of substances through the use of biosensors and enzymatic reactors, which avoids the Chromatographic separation process thanks to the high specificity of enzymes.
  • One of the modalities of the present invention relates to the automatic generation of gradients in volumes ranging from 0.010 to 1.0 milliliters, with a high degree of precision, which will allow this system to be used in experimentation processes, as well as in the industrial field
  • the analytical procedures use smaller amounts of sample and reagents every time, with the purpose of increasing sensitivity and saving of inputs, from which the need arises to build curves and concentration gradients in the order indicated above.
  • the use of microfluidic devices and procedures has been introduced in both the research and industrial area, where the proposed technological development will undoubtedly be of great use.
  • the invention consists of a system (100) for automatic collection and reading of samples, in the example described here, on a carousel (55) that has multiple perforations (57) in its periphery, in each of which a sealed capillary tube (60) is placed for the collection of samples of 2.5 ⁇ l volume together with a similar volume of enzymatic reactor or chromophore.
  • the capillary tubes (60) can be 1.5mm in length and lmm in internal diameter and function as small cuvettes, in which the fluorescence after the "off-line" collection can be measured, through a measuring system of light (20, 25, 26) or through any other fluorescence detection system, as long as the excitation light can be taken to the corresponding sample and the light emitted through optical fibers is collected (22, 24 ) as illustrated in figure 3.
  • the carousel (55) is mounted on a base (57) and is rotatably driven by a worm gear drive system (30) (Fig. 12) for which said carousel (55) is coupled to the axis of rotation of the drive system that rotates by means of a cogwheel, which in turn is driven by means of an endless screw.
  • This drive system has a turning ratio of 70: 1, such that for each revolution of the stepper motor (33), to which the collection system is coupled, the carousel rotates 1/70 of revolution.
  • the movement control system both of the carousel and of the sample and reactor deposit systems and of the fluorescence reading system, is controlled by means of an "Allegra" system marketed by Optimal Engineering Systems. Through this control system, the user can program the sampling rate as convenient or use some other automatic movement control system in the market.
  • the sample deposit system (50) is based on a system of conversion of rotary to linear movement, built on the basis of a linear guide that is coupled to a stepper motor through a belt and pulley geared (Fig. 4).
  • Said linear guide carries with it the deposit system consisting of a stainless steel needle (62), which is attached to a damping device (65) which allows a certain degree of tolerance in the deposit of each sample within the capillary tube (60) without bending the needle (62) deposited or piercing the capillary tube by the pressure exerted.
  • the control and programming of this system is based on a control box of the Allegra brand of the company Optimal Engineering Systems, said system has the necessary instructions and software for programming each of the movements that are required for the automation of this team. For the present case, and without this being interpreted in a limiting sense, it has been programmed for the collection and automatic measurement of up to 120 samples. Collection and reading times can be freely programmed by the user.
  • the infusion rate of the analyte and reactor is controlled with a pair of automatic infusion pumps (70) that together form a drive system in which each pump motorically pushes the plunger of a respective syringe (72,74) containing the sample to be analyzed and the reactor, to inject them into the capillary tubes (60) of the collection system.
  • Figure 7 shows the structure of only one of the mechanical devices of the drive system of each pump, whose operation is based on the conversion of rotary to linear movement, by coupling a stepper motor (75) with a auger packed screw (76), to which a set (77) is coupled for linear displacement along guides (78), which is the means that exerts the thrust force on the piston of its associated syringe (72,74 ).
  • Both the linear guide assembly (77) and the packed screw (76) of each drive system have the characteristic of producing a movement with zero "play” and with a power transmission increase system, which gives said system of absolute drive precision and repetition in the displacement by rotation or fraction of rotation of the stepper motor.
  • I n X 1 + J 2 + J 3 + «. +.
  • Xo is the initial or final speed depending on whether it accelerates or decelerates
  • X 1 is the second speed and so on until Xm is the last speed calculated; ei is the value of each increase.
  • the volume displaced in each syringe was mixed by means of the "Y" connection device (80) and the sample collection was carried out in ependorf tubes at intervals of 20 seconds.
  • the pipe (90) used to carry the analyte and the reactor from each syringe (72.74) to the "Y" connecting device (80) for depositing samples consisted of hollow fused silica tubes, in such a way that the dead volume is not significant for syringes of one milliliter. However, smaller diameter pipe should be used for 0.010 ml syringes.
  • Each infusion pump (70) has the ability to dose increasing or decreasing volumes automatically with absolute linearity for the creation of gradients.
  • the linear relationship can be observed in the measure of the volumes obtained which, according to the calculation estimated by formula 1, are absolutely close to the theoretical value, that is, in the test presented in this figure 11 estimated an increase by speed of 2.2 microliters for the syringes calibrated of one milliliter, having to obtain in the last collection 63.8 microliters, having been the linear regression calculated with the values obtained of 0.9978. It is estimated that the small differences are likely due to the measurement of the volumes obtained or differences in the collections, since they were made manually and, as mentioned above, it is very difficult to accurately measure these volumes so small because to the absence of devices in the market for this purpose.
  • a series of tubes is placed in a sample carrier device with the desired quantity for the subsequent sample collection; For the case exemplified in the present invention, a carousel carrier with a capacity of 120 samples is described.
  • the sample deposit system is aligned on the top of the first tube where the first sample will be placed, ensuring that it has the precise height programmed so that the sample deposit is at the bottom of each capillary, without the formation of empty spaces.
  • the sample of interest is flowed through one of the terminals of the Y-device, which may be the substance to be analyzed or a known concentration gradient of a standard solution for the preparation of a calibration curve;
  • the corresponding reactor that will reveal the concentration of the compound of interest or a substance that itself emits fluorescence and that is desired to be quantitatively evaluated is flowed through the other terminal of the Y-device.
  • the equipment in question has the necessary accessories to carry the excitation light on the top of the first capillary tube, this through an optical fiber (22), the distance from the tube to the fiber can be located according to the characteristics of the sample to be analyzed, with which the size of the optical fiber can be selected, thus selecting the intensity and type of wavelength with which it is desired to excite the sample,
  • the optical instruments can be selected according to the user's convenience, such as the light source and fluorescence detector.
  • the fluorescence emitted by the sample is transmitted to the detector through a second optical fiber (24) placed perpendicular to the capillary tube that will be excited simultaneously, in this equipment an optical detector is used based on a CCD detector of the company "Ocean Optics".
  • the reading program is selected, which has the same distance of "advance" as for the deposited one, so that, instead of the "collection” the excitation optical fiber will impact the It shows directly on top of each capillary.
  • the reading speed can also be programmed, for the described example, 5 seconds are sufficient for each reading, so that the reading of the full carousel is carried out in 6 minutes.
  • Acetylcholine The measurement of this compound has been carried out with standards of known concentration, the principle consists in the use of the enzymes acetylcholinesterase, choline oxidase and peroxidase. Acetylcholinesterase degrades acetylcholine with choline and acetate production, choline oxidase produces H 2 O 2 and betaine.
  • the generated H 2 O 2 is identified and quantified by the oxidation of the AMPLEX RED compound in the presence of peroxidase whose derivative is resorufin that has the ability to emit fluorescence at 590 nm when excited with a wavelength of 560 nm; The intensity of the fluorescence is directly proportional to the amount of compound present in each sample.
  • calibration curves are carried out with the use of the gradient pump.
  • the incubation period with the reactor depends on the analyte to be measured; In this case, the samples deposited in the capillaries are incubated for one hour and subsequently the corresponding fluorescence reading is taken.
  • Amplex Red provides a sensitive method to detect hydrogen peroxide as a reaction product of oxidases that generate it.
  • glutamic acid it is oxidized by glutamate oxidase to produce ⁇ -ketoglutarate, NH3 and hydrogen peroxide.
  • Hydrogen peroxide reacts with Amplex Red in a 1: 1 stoichiometry in the peroxidase catalyzed reaction to generate a highly fluorescent product (resorufin).
  • Resorufin has a maximum absorption and fluorescent emission of approximately 571 nm and 585 nm respectively.
  • DMSO Dimethylsulfoxide
  • HRP Peroxidase
  • H 2 O 2 Hydrogen peroxide
  • Buffer Tris-HCl 0.5 M 5 pH 7.5
  • Glutamate oxidase Glutamic Acid
  • the reactor must contain the following quantities of each component: o HRP: 0.25 U / ml or GIuOx: 0.08 U / ml or Amplex: 100 ⁇ M
  • sampling means the process by which the deposit or "injection” of the samples and reactors in the capillary tubes is performed.

Abstract

A system and method is described for collecting and reading of fluorescence for the quantitative analysis of different substances through the use of enzymatic biosensors and reactors. The system comprises the collection of samples in sealed capillary tubes which are placed in a carrying device, there being a specific volume of the samples to be analysed together with a similar volume of enzymatic reactor or chromophore, wherein the fluorescence may be measured by a system of fluorescence detection, excitation and emission light being carried by optical fibres.

Description

SISTEMAY MÉTODO PARA COLECTA Y LECTURA DE FLUORESCENCIA EN CAPILARES SISTEMAY METHOD FOR COLLECTING AND READING FLUORESCENCE IN CAPILLARS
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Campo de Ia Invención.Field of the Invention.
La presente invención se relaciona con sistemas de lectura de fluorescencia para el análisis cuantitativo de sustancias, y más específicamente se relaciona con un sistema de colecta y lectura de fluorescencia en capilares para la identificación y cuantificación de sustancias mediante el uso de biosensores y reactores enzimáticos.The present invention relates to fluorescence reading systems for quantitative analysis of substances, and more specifically it relates to a system for collecting and reading fluorescence in capillaries for the identification and quantification of substances through the use of enzymatic biosensors and reactors.
Arte previo relacionado.Related prior art.
Con el objeto de hacer más eficiente el análisis y de forma repetitiva, se han fabricado una serie de sistemas automáticos de lectura de fluorescencia, densidad óptica o luminiscencia (lectores de placa o '"píate readers"). Estos sistemas están equipados con detectores fluorescentes y en algunos casos con sistemas de dosificación automática de reactivos para la inducción de fluorescencia o quimioluminiscencia. Sin embargo, la cantidad mínima de muestra a utilizar es generalmente de 200 microlitros y con la capacidad de tomar lectura de forma automática de 96 o más muestras, dependiendo del tipo de equipo. Algunos detectores de fluorescencia se han modificado para la toma de lectura en muestras pequeñas, en los que se ha adecuado la celda para medir en un volumen de algunos 20 microlitros, aunque la toma de cada lectura se hace de forma manual. De esta manera, aun se requieren técnicas en las que se pueda medir de forma automática, con un alto grado de precisión y de forma masiva, la concentración de compuestos de interés biológico en volúmenes pequeños. Actualmente, para el análisis cuantitativo de diferentes sustancias se determina su concentración por medio de métodos ópticos, electroquímicos, radiométricos, inmunoquímicos, etc. En varios casos, la separación previa del analito de interés es imprescindible, para lo cual el uso de métodos cromatográficos de separación es la primera opción. Dichos sistemas están generalmente acoplados a diversos tipos de detectores y son los ópticos los de mayor uso. La precisión y reproducibilidad de las técnicas cromatográficas la han convertido en la herramienta de elección tanto en la industria como en el área de la investigación científica. Sin embargo, para lograr acceder a este tipo de metodologías se requiere de un gran entrenamiento y de recursos, ya que el grado de sofisticación y control de estos sistemas de análisis puede incrementar mucho los costos. Además, en muchos casos la separación y cuantificación de las muestras puede ser un proceso muy tardado (hasta media hora por muestra), y esto llega a representar un inconveniente importante si se desea identificar una sustancia en particular en un gran número de muestras, porque eleva el costo en el proceso de separación y análisis. Derivado de los inconvenientes anteriores, han surgido los sistemas de muestreo automático que facilitan en cierta medida el análisis de sustancias.In order to make the analysis more efficient and repetitively, a series of automatic fluorescence, optical density or luminescence reading systems (plate readers or "piate readers") have been manufactured. These systems are equipped with fluorescent detectors and in some cases with automatic reagent dosing systems for the induction of fluorescence or chemiluminescence. However, the minimum amount of sample to be used is generally 200 microliters and with the ability to automatically read 96 or more samples, depending on the type of equipment. Some fluorescence detectors have been modified for the reading in small samples, in which the cell has been adapted to measure in a volume of some 20 microliters, although the taking of each reading is done manually. In this way, techniques are still required in which the concentration of compounds of biological interest in small volumes can be measured automatically, with a high degree of precision and in a massive way. Currently, for the quantitative analysis of different substances their concentration is determined by means of optical, electrochemical, radiometric, immunochemical methods, etc. In several cases, prior separation of the analyte of interest is essential, for which the use of chromatographic separation methods is the first option. Such systems are generally coupled to various types of detectors and the optics are the most commonly used. The accuracy and reproducibility of chromatographic techniques have made it the tool of choice both in the industry and in the area of scientific research. However, to gain access to this type of methodologies requires great training and resources, since the degree of sophistication and control of these analysis systems can greatly increase costs. In addition, in many cases the separation and quantification of the samples can be a very time-consuming process (up to half an hour per sample), and this becomes a significant inconvenience if you want to identify a particular substance in a large number of samples, because raises the cost in the separation and analysis process. Derived from the above drawbacks, automatic sampling systems have emerged that facilitate the analysis of substances to some extent.
Una alternativa para el análisis cuantitativo de diversas sustancias se basa en la utilización de reactores enzimáticos o inmunoquímicos, en los cuales gracias a la gran especificidad biológica de dichos sistemas, éstos pueden reaccionar de manera específica con un analito en particular, produciendo un derivado con actividad electro-activa u óptica, el cual puede medirse cuantitativamente por detección amperométrica, densidad óptica, luminiscencia y/o fluorescencia, siendo la transducción de esta señal proporcional a la concentración del compuesto. Un ejemplo de esto es la medición de la concentración de glucosa a través del uso de la glucosa oxidasa, la glucosa se oxida por acción de la glucosa oxidasa para producir ácido glucónico y peróxido de hidrógeno. El peróxido de hidrógeno reacciona en presencia de peroxidasa con ácido 4-hidroxibenzoico y con 4- aminoantipiridina para dar lugar a un tinte de quinonimina rojo. La intensidad del color formado es proporcional a la concentración de glucosa y se puede medir espectrofotométricamente entre 460 y 560 nm. El uso de gradientes químicos de concentración puede tener diversas utilidades, por ejemplo en cromatografía es muy común el uso de gradientes de soluciones con diversa fuerza iónica u orgánica. El aislamiento y purificación de fracciones subcelulares es otro ejemplo en donde se utilizan diversos gradientes a base de sacarosa u otros solutos, con el fin de producir gradientes de diferente densidad para la centrifugación de soluciones homogéneas de células y así poder separar diversos componentes subcelulares. Igualmente, se pueden preparar soluciones de concentración de diversos compuestos en forma creciente o decreciente, con el fin de preparar soluciones para la realización de curvas de calibración.An alternative for the quantitative analysis of various substances is based on the use of enzymatic or immunochemical reactors, in which thanks to the great biological specificity of these systems, they can react specifically with a particular analyte, producing a derivative with activity electro-active or optical, which can be measured quantitatively by amperometric detection, optical density, luminescence and / or fluorescence, the transduction of this signal being proportional to the concentration of the compound. An example of this is the measurement of glucose concentration through the use of glucose oxidase, glucose is oxidized by the action of glucose oxidase to produce gluconic acid and hydrogen peroxide. Hydrogen peroxide reacts in the presence of peroxidase with 4-hydroxybenzoic acid and with 4-aminoantipyridine to give rise to a red quinonimine dye. The intensity of the color formed is proportional to the glucose concentration and can be measured spectrophotometrically between 460 and 560 nm. The use of chemical concentration gradients can have various uses, for example in chromatography the use of solution gradients with different ionic or organic strength is very common. The isolation and purification of subcellular fractions is another example where various gradients based on sucrose or other solutes are used, in order to produce gradients of different density for the centrifugation of homogeneous solutions of cells and thus be able to separate various subcellular components. Likewise, solutions of concentration of various compounds can be prepared in increasing or decreasing manner, in order to prepare solutions for performing calibration curves.
Los gradientes discontinuos se forman colocando con cuidado capas de disoluciones de densidades distintas en tubos de centrífuga. El método más ampliamente usado para producir gradientes discontinuos es comenzar con la solución más densa y colocar capas de menor densidad sucesivamente. Los gradientes continuos se preparan a partir de dos componentes con diferente concentración colocados en dos reservónos, conectados entre sí, se deja salir fluido de la solución menos concentrada, permitiendo que pase un volumen similar de la solución concentrada, simultáneamente se utilizan dispositivos para el control del caudal y de mezclado para el homogeneizado de la solución. La frecuencia de la toma de muestras determina el número de puntos que se quieren obtener en la curva del gradiente. El control automatizado en la preparación de gradientes ha venido a resolver muchos de los inconvenientes que se tienen en la ejecución manual, aunque el nivel de complejidad de los dispositivos, conlleva a un incremento en los costos, tal es el ejemplo de las bombas para cromatografía de líquidos de alta resolución (HPLC) en las que se pueden programar los tipos, caudales y tiempos de realización de los gradientes; sin embargo, dichas bombas llegan a costar varios miles de dólares.Discontinuous gradients are formed by carefully placing layers of solutions of different densities in centrifuge tubes. The most widely used method to produce discontinuous gradients is to start with the densest solution and place lower density layers successively. Continuous gradients are prepared from two components with different concentration placed in two reservoirs, connected to each other, fluid from the less concentrated solution is allowed to flow, allowing a similar volume of the concentrated solution to pass, simultaneously control devices are used of the flow rate and mixing for the homogenization of the solution. The frequency of sampling determines the number of points to be obtained in the gradient curve. Automated control in the preparation of gradients has come to solve many of the inconveniences that occur in manual execution, although the level of complexity of the devices, leads to an increase in costs, such is the example of chromatography pumps of high resolution liquids (HPLC) in which the types, flow rates and time of realization of the gradients can be programmed; However, these pumps cost several thousand dollars.
A pesar de los numerosos avances en materia de tecnología de producción de gradientes, éstos se enfocan principalmente a la cromatografía de líquidos, en donde los volúmenes a manejar son de ml/min, lo que significa un volumen considerable si una corrida cromatográfϊca tarda más o menos 15-20 minutos. Con la introducción de diversas microtécnicas en diversos campos de la biología y química, la realización de curvas de calibración en volúmenes pequeños es indispensable, sobre todo cuando todos los procesos se llevan a cabo en miniatura. Por lo que resulta importante el diseño de dispositivos que permitan realizar dichos gradientes en escalas similares a las microtécnicas, es decir por el orden de los microlitros o menores. A pesar de que existen dispositivos para medir con precisión alrededor de un microlitro, no dejan de ser manuales y frecuentemente el manejo de tales volúmenes conlleva a un error de carácter principalmente técnico, ya que es muy difícil tener reproducibilidad a escalas tan pequeñas.In spite of the numerous advances in the field of gradient production technology, these focus mainly on liquid chromatography, where the volumes to be handled are ml / min, which means a considerable volume if a chromatographic run takes longer or longer. minus 15-20 minutes. With the introduction of various microtechnics in various fields of biology and chemistry, the realization of calibration curves in small volumes is indispensable, especially when all processes are carried out in miniature. Therefore, it is important to design devices that allow such gradients to be performed on scales similar to microtechnics, that is, in the order of microliters or less. Although there are devices to measure accurately around a microliter, they are still manual and frequently handling such volumes leads to a mainly technical error, since it is very difficult to have reproducibility at such small scales.
Con el objeto de resolver esta barrera metodológica, se ha diseñado un sistema de generación de gradientes lineales en un volumen pequeño y en un tiempo razonablemente corto para la realización de curvas de calibración con varios puntos, con la finalidad de aplicar dichos sistemas a la experimentación bioquímica, particularmente en el estudio de la cinética de enzimas, en donde generalmente se estudia el perfil de actividad con no mas de 6 concentraciones crecientes de sustrato. En este sentido, la propuesta del desarrollo metodológico que aquí se plantea, permitirá realizar curvas de cinética enzimática con un gran número de puntos, es decir, mayor número de puntos en una curva, se traducen en mejor precisión del estudio. Los resultados obtenidos con este dispositivo aseguran con un alto grado de precisión la producción de un gradiente lineal en volúmenes pequeños.In order to solve this methodological barrier, a system of generating linear gradients has been designed in a small volume and in a reasonably short time to perform calibration curves with several points, in order to apply these systems to experimentation biochemistry, particularly in the study of enzyme kinetics, where the activity profile is generally studied with no more than 6 increasing concentrations of substrate. In this sense, the The methodological development proposal proposed here will allow to make enzymatic kinetic curves with a large number of points, that is, a greater number of points in a curve, which translates into better study accuracy. The results obtained with this device ensure with a high degree of precision the production of a linear gradient in small volumes.
La presente propuesta se basa en la utilización de dos jeringas para la construcción de dichos gradientes, (un mililitro como máximo) montadas sobre un sistema mecánico, que se controla electrónicamente a base de motores a pasos para producir un movimiento diferencial programado de cada émbolo y así generar un gradiente lineal en volúmenes no mayores a un mililitro. Con el presente prototipo se ha logrado construir gradientes claramente lineales en volúmenes que van de 0.010 a 1.00 mililitros, lo que permitirá utilizar esta metodología en las microtécnicas de análisis recientemente introducidas, tanto en el campo de experimentación como en el ámbito industrial.This proposal is based on the use of two syringes for the construction of said gradients, (one milliliter maximum) mounted on a mechanical system, which is electronically controlled based on stepper motors to produce a programmed differential movement of each piston and thus generate a linear gradient in volumes not larger than one milliliter. With the present prototype, it has been possible to build clearly linear gradients in volumes ranging from 0.010 to 1.00 milliliters, which will allow this methodology to be used in the micrototechnics of analysis recently introduced, both in the field of experimentation and in the industrial field.
SUMARIO DE LA INVENCIÓNSUMMARY OF THE INVENTION
Es un objeto de la presente invención proponer un novedoso equipo que tiene la capacidad de determinar la concentración de un analito en volúmenes pequeños y de forma automatizada. Esta característica es de particular importancia para aquellos casos en los que la cantidad de muestra es una limitante. Otro objetivo del sistema de la presente invención cuya utilización hace que la cantidad de reactivos utilizada, dado el volumen requerido para medir la concentración del analito, es mínima, lo que brinda un ahorro considerable en el análisis y cuantificación de sustancias. Otra característica del nuevo sistema es que tiene la factibilidad de acoplarse a detectores de fluorescencia ya existentes por medio de fibras ópticas, de tal manera que se podrían utilizar los sistemas de digitalización y análisis de la concentración ya existentes. Una característica adicional de la invención es que se pueden realizar curvas de calibración con un gradiente lineal lo que proporciona mayor precisión en los cálculos de las concentraciones problema.It is an object of the present invention to propose a novel equipment that has the ability to determine the concentration of an analyte in small volumes and in an automated manner. This characteristic is of particular importance for those cases in which the sample quantity is a limitation. Another objective of the system of the present invention whose use makes the amount of reagents used, given the volume required to measure the analyte concentration, is minimal, which provides considerable savings in the analysis and quantification of substances. Another feature of the new system is that it has the feasibility of attaching to existing fluorescence detectors by means of optical fibers, such that the existing digitalization and concentration analysis systems could be used. An additional feature of the invention is that calibration curves can be performed with a linear gradient which provides greater accuracy in the calculation of the problem concentrations.
Acorde con lo anterior, un objetivo principal es proponer un nuevo dispositivo automático para la generación de gradientes lineales en volúmenes pequeños que consiste en una bomba de infusión para micro jeringas en la cual el émbolo de las micro jeringas se mueve a una velocidad y tiempo establecidos para lograr que el movimiento de cada émbolo se acelere o desacelere linealmente. La introducción de procesos automáticos en los procesos analíticos reduce el error humano y regularmente hace más eficiente el proceso.According to the above, a main objective is to propose a new automatic device for the generation of linear gradients in small volumes that consists of an infusion pump for micro syringes in which the plunger of the micro syringes moves at a set speed and time to make the movement of each piston accelerate or decelerate linearly. The introduction of automatic processes in analytical processes reduces human error and regularly makes the process more efficient.
BREVE DESCRIPCIÓN DE LAS FIGURAS DE LA INVENCIÓNBRIEF DESCRIPTION OF THE FIGURES OF THE INVENTION
La figura 1 ilustra una representación esquemática del sistema de colecta y lectura de fluorescencia en capilares de la presente invención.Figure 1 illustrates a schematic representation of the capillary fluorescence collection and reading system of the present invention.
La figura 2 es una vista en perspectiva del carrusel colector de muestras.Figure 2 is a perspective view of the sample collector carousel.
La figura 3 es una vista del sistema de lectura de la invención en la que se observa la disposición de las fibras ópticas de excitación y lectura, que son controladas por un detector de fluorescencia CCD a través de una computadora.Figure 3 is a view of the reading system of the invention in which the arrangement of the excitation and reading optical fibers, which are controlled by a CCD fluorescence detector through a computer, is observed.
La figura 4 es una vista en acercamiento del sistema para depósito de la muestra y el reactor en tubos capilares. La figura 5 es una vista agrandada del tubo capilar en el que se observa un dispositivo de amortiguamiento.Figure 4 is an approach view of the system for depositing the sample and the reactor in capillary tubes. Figure 5 is an enlarged view of the capillary tube in which a damping device is observed.
La figura 6 es una representación en pantalla de la lectura de los valores que resultan de la puesta en práctica del sistema para el análisis de una sustancia determinada.Figure 6 is a screen representation of the reading of the values that result from the implementation of the system for the analysis of a given substance.
La figura 7 es una vista que muestra la nueva bomba de infusión de gradientes diseñada especialmente para la presente invención.Figure 7 is a view showing the new gradient infusion pump specially designed for the present invention.
La figura 8 es una gráfica que muestra la curva de calibración que refleja la relación lineal de las concentraciones probadas y la fluorescencia medida para el caso de un ejemplo específico propuesto.Figure 8 is a graph showing the calibration curve that reflects the linear relationship of the concentrations tested and the fluorescence measured for the case of a specific example proposed.
La figura 9 es una representación esquemática de cómo se realizó la lectura del gradiente en tiempo real en la celda de flujo para la medición de fluorescencia.Figure 9 is a schematic representation of how the gradient reading was performed in real time in the flow cell for fluorescence measurement.
La figura 10 es representativa de la relación lineal absoluta que resulta al graficar el número de velocidades con respecto a los pasos ejecutados por segundo (Tabla 1) realizados con la nueva bomba de infusión de gradientes.Figure 10 is representative of the absolute linear relationship that results from plotting the number of speeds with respect to the steps executed per second (Table 1) performed with the new gradient infusion pump.
La figura 11 es una gráfica que permite observar la relación lineal en la medida de los volúmenes obtenidos que en un protocolo de prueba, de acuerdo al cálculo estimado por la fórmula 1.Figure 11 is a graph that allows us to observe the linear relationship in the measure of the volumes obtained than in a test protocol, according to the calculation estimated by formula 1.
La figura 12 es una vista del mecanismo que genera el movimiento de giro del carrusel colector de muestras.Figure 12 is a view of the mechanism that generates the rotating movement of the sample collection carousel.
DESCRIPCIÓN DETALLADA DE LA MODALIDAD PREFERIDA DE LA INVENCIONDETAILED DESCRIPTION OF THE PREFERRED MODE OF THE INVENTION
En esta propuesta se plantea una innovación tecnológica alterna a las ya existentes, para la identificación y cuantificación de sustancias mediante el uso de biosensores y reactores enzimáticos, con lo que se evita el proceso de separación cromatográfica gracias a la alta especificidad de las enzimas.This proposal proposes an alternative technological innovation to those already existing, for the identification and quantification of substances through the use of biosensors and enzymatic reactors, which avoids the Chromatographic separation process thanks to the high specificity of enzymes.
Una de las modalidades de la presente invención se relaciona con la generación de forma automática de gradientes en volúmenes que van de 0.010 a 1.0 mililitros, con un alto grado de precisión, lo que permitirá utilizar este sistema en procesos de experimentación, así como en el ámbito industrial. Los procedimientos analíticos usan cada vez cantidades menores de muestra y reactivos, con el propósito de aumentar sensibilidad y ahorro de insumos, de lo que surge la necesidad de construir curvas y gradientes de concentración en el orden antes señalado. En años recientes se han introducido tanto en el área de investigación como industrial el uso de dispositivos y procedimientos de microfluídica, donde sin duda alguna el desarrollo tecnológico propuesto será de gran utilidad.One of the modalities of the present invention relates to the automatic generation of gradients in volumes ranging from 0.010 to 1.0 milliliters, with a high degree of precision, which will allow this system to be used in experimentation processes, as well as in the industrial field The analytical procedures use smaller amounts of sample and reagents every time, with the purpose of increasing sensitivity and saving of inputs, from which the need arises to build curves and concentration gradients in the order indicated above. In recent years, the use of microfluidic devices and procedures has been introduced in both the research and industrial area, where the proposed technological development will undoubtedly be of great use.
En una modalidad principal de la presente invención, se logró obtener un gradiente lineal en un volumen muy pequeño, que depende del tamaño de la jeringa utilizada (0.010-1.0 mi), de tal manera que si se desea realizar un gradiente con las características que aquí se plantean sería muy difícil lograr este propósito, ya que a pesar de. que en el mercado existen dispositivos con los que se puede medir con precisión un microlitro, resultaría imposible hacer un gradiente en un volumen total de 20 microlitros con las herramientas existentes, que equivale al mezclado automático de dos jeringas de 10 microlitros y sobre todo que se lleva a cabo con absoluta precisión temporal, es decir 580 segundos. El muestreo del gradiente resultante, igualmente se podrá realizar de forma automática. Dado los avances metodológicos de las microtécnicas, este procedimiento será sin duda alguna la herramienta de elección para la realización de curvas de calibración de cualquier solución estándar.In a main embodiment of the present invention, it was possible to obtain a linear gradient in a very small volume, which depends on the size of the syringe used (0.010-1.0 ml), so that if you want to make a gradient with the characteristics that here they would be very difficult to achieve this purpose, because in spite of. that in the market there are devices with which a microliter can be measured with precision, it would be impossible to make a gradient in a total volume of 20 microliters with the existing tools, which is equivalent to the automatic mixing of two 10 microliter syringes and especially carried out with absolute temporal precision, that is 580 seconds. Sampling of the resulting gradient can also be done automatically. Given the methodological advances of microtechnics, this procedure will undoubtedly be the tool of choice for performing calibration curves of any standard solution.
Con apego a la modalidad ejemplificada en la figura 1, la invención consiste en un sistema (100) para la colección automática y lectura de muestras, en el ejemplo aquí descrito, sobre un carrusel (55) que tiene múltiples perforaciones (57) en su periferia, en cada una de las cuales se coloca un tubo capilar sellado (60) para la colección de muestras de 2.5 μl de volumen junto con un volumen similar de reactor enzimático o cromóforo. Los tubos capilares (60) pueden ser de 1.5mm de longitud y lmm de diámetro interno y funcionan como pequeñas cubetas, en las que se puede medir la fluorescencia posterior a la colecta "off-line", a través de un sistema de medición de luz (20, 25, 26) o bien a través de cualquier otro sistema de detección de fluorescencia, siempre y cuando se pueda llevar la luz de excitación a la muestra correspondiente y se recoja la luz emitida a través de fibras ópticas (22, 24) como se ilustra en la figura 3.In accordance with the embodiment exemplified in Figure 1, the invention consists of a system (100) for automatic collection and reading of samples, in the example described here, on a carousel (55) that has multiple perforations (57) in its periphery, in each of which a sealed capillary tube (60) is placed for the collection of samples of 2.5 μl volume together with a similar volume of enzymatic reactor or chromophore. The capillary tubes (60) can be 1.5mm in length and lmm in internal diameter and function as small cuvettes, in which the fluorescence after the "off-line" collection can be measured, through a measuring system of light (20, 25, 26) or through any other fluorescence detection system, as long as the excitation light can be taken to the corresponding sample and the light emitted through optical fibers is collected (22, 24 ) as illustrated in figure 3.
El carrusel (55) está montado sobre una base (57) y es movido giratoriamente por un sistema (30) de accionamiento de engranaje de tornillo sin fin (Fig. 12) para lo cual dicho carrusel (55) está acoplado al eje de rotación del sistema de accionamiento que gira por medio de una rueda dentada, que a su vez es impulsada por medio de un tornillo sin fin. Este sistema de accionamiento tiene una proporción de giro de 70:1, de tal manera que por cada revolución del motor a pasos (33), al cual esta acoplado el sistema de colecta, el carrusel gira 1/70 de revolución. Para el presente caso, el sistema de control de movimiento, tanto del carrusel como de los sistemas de depósito de las muestras y reactores y del sistema de lectura de fluorescencia, se controla por medio de un sistema "Allegra" comercializado por Optimal Engineering Systems. Mediante este sistema de control, el usuario puede programar la velocidad de muestreo como le sea conveniente o bien usar algún otro sistema de control automático de movimiento existente en el mercado.The carousel (55) is mounted on a base (57) and is rotatably driven by a worm gear drive system (30) (Fig. 12) for which said carousel (55) is coupled to the axis of rotation of the drive system that rotates by means of a cogwheel, which in turn is driven by means of an endless screw. This drive system has a turning ratio of 70: 1, such that for each revolution of the stepper motor (33), to which the collection system is coupled, the carousel rotates 1/70 of revolution. In the present case, the movement control system, both of the carousel and of the sample and reactor deposit systems and of the fluorescence reading system, is controlled by means of an "Allegra" system marketed by Optimal Engineering Systems. Through this control system, the user can program the sampling rate as convenient or use some other automatic movement control system in the market.
El sistema (50) de depósito de muestras se basa en un sistema de conversión de movimiento giratorio a lineal, construido a base de una guía lineal que esta acoplada a un motor a pasos a través de una banda y polea engranada (Fig. 4). Dicha guía lineal lleva consigo el sistema de depósito que consiste de una aguja (62) de acero inoxidable, la cual está sujeta a un dispositivo de amortiguación (65) lo que permite cierto grado de tolerancia en el depósito de cada muestra dentro del tubo capilar (60) sin que se doble la aguja (62) de depositó o se perfore el tubo capilar por la presión ejercida. El control y programación de este sistema se basa en una caja controladora de la marca Allegra de la compañía Optimal Engineering Systems, dicho sistema cuenta con las instrucciones y software necesarios para la programación de cada uno de los movimientos que se requieren para la automatización de este equipo. Para el presente caso, y sin que ello se interprete en sentido limitativo, se ha programado para la colección y medición automática de hasta 120 muestras. Los tiempos de colecta y lectura pueden ser libremente programados por el usuario.The sample deposit system (50) is based on a system of conversion of rotary to linear movement, built on the basis of a linear guide that is coupled to a stepper motor through a belt and pulley geared (Fig. 4). Said linear guide carries with it the deposit system consisting of a stainless steel needle (62), which is attached to a damping device (65) which allows a certain degree of tolerance in the deposit of each sample within the capillary tube (60) without bending the needle (62) deposited or piercing the capillary tube by the pressure exerted. The control and programming of this system is based on a control box of the Allegra brand of the company Optimal Engineering Systems, said system has the necessary instructions and software for programming each of the movements that are required for the automation of this team. For the present case, and without this being interpreted in a limiting sense, it has been programmed for the collection and automatic measurement of up to 120 samples. Collection and reading times can be freely programmed by the user.
La velocidad de infusión del analito y reactor se controla con un par de bombas (70) de infusión automática que conforman conjuntamente un sistema de accionamiento en el que cada bomba empuja de forma motorizada el émbolo de una respectiva jeringa (72,74) que contiene la muestra a analizar y el reactor, para inyectar a éstos en los tubos capilares (60) del sistema de colecta. En la figura 7 se representa la estructura de solo uno de los dispositivos mecánicos del sistema de accionamiento de cada bomba, cuyo funcionamiento se basa en la conversión de movimiento giratorio a lineal, por medio del acoplamiento de un motor a pasos (75) con un tornillo embalado sinfín (76), al cual está acoplado un conjunto (77) para desplazamiento lineal a lo largo de unas guías (78), que es el medio que ejerce la fuerza de empuje en el émbolo de su jeringa asociada (72,74). Tanto el conjunto (77) de guía lineal como el tornillo embalado (76) de cada sistema de accionamiento tienen la característica de producir un movimiento con cero "juego" y con sistema de incremento de transmisión de potencia, lo que brinda a dicho sistema de accionamiento absoluta precisión y repetición en el desplazamiento por giro o fracción de giro del motor a pasos.The infusion rate of the analyte and reactor is controlled with a pair of automatic infusion pumps (70) that together form a drive system in which each pump motorically pushes the plunger of a respective syringe (72,74) containing the sample to be analyzed and the reactor, to inject them into the capillary tubes (60) of the collection system. Figure 7 shows the structure of only one of the mechanical devices of the drive system of each pump, whose operation is based on the conversion of rotary to linear movement, by coupling a stepper motor (75) with a auger packed screw (76), to which a set (77) is coupled for linear displacement along guides (78), which is the means that exerts the thrust force on the piston of its associated syringe (72,74 ). Both the linear guide assembly (77) and the packed screw (76) of each drive system have the characteristic of producing a movement with zero "play" and with a power transmission increase system, which gives said system of absolute drive precision and repetition in the displacement by rotation or fraction of rotation of the stepper motor.
Por lo que hace al sistema electrónico para el control del movimiento, con el propósito de obtener una desaceleración en los motores que controlan el dispositivo fue necesario obtener una fórmula 1 que permitiera calcular con precisión las velocidades de desaceleración con respecto al tiempo total del proceso (traducido en número de pasos del motor unipolar que, para el caso ejemplificado en esta solicitud, realiza 2175 pasos en un lapso de 9 minutos con 40 segundos) y que es suficiente para que se desplace el volumen total de una jeringa calibrada. La fórmula 1 con la cual se puede obtener el valor del incremento en un número finito de velocidades establecidas se obtiene como sigue:With regard to the electronic system for the control of movement, in order to obtain a deceleration in the motors that control the device, it was necessary to obtain a formula 1 that allowed to calculate with precision the deceleration speeds with respect to the total time of the process ( translated into the number of steps of the unipolar motor that, for the case exemplified in this application, performs 2175 steps in a span of 9 minutes with 40 seconds) and that is sufficient for the total volume of a calibrated syringe to be displaced. Formula 1 with which the value of the increase in a finite number of set speeds can be obtained is obtained as follows:
XÍ = Í + XQ = Í + Q = ÍX Í = Í + X Q = Í + Q = Í
X2 =X1 -^i = i ±i = 2i Xs = Xz + i = i + i -{- i = 3iX 2 = X 1 - ^ i = i ± i = 2i Xs = X z + i = i + i - {- i = 3i
X 1W1,l = al número de interacciones mX 1 W 1 , l = the number of interactions m
In =X1 + J2 +J3 + «. + .I n = X 1 + J 2 + J 3 + «. +.
H=I mH = I m
) ni = í + í2 + í3 + — +mt = Ϊ(1 + 2 + 3 + 4». + ni)) ni = í + í2 + í3 + - + mt = Ϊ (1 + 2 + 3 + 4 ». + ni)
Fl=IFl = I
Σ rú —iV) 1 = ϊ / iW»∑ + i)\ } = mimsro totola sumar I—ι \ ¿ j _ , , m=i n=i Formula 1Σ rustic —iV) 1 = ϊ / iW »∑ + i) \} = mimsro totola add I — ι \ ¿j _,, m = in = i Formula 1
donde: Xo, es la velocidad inicial o final dependiendo si acelera o desacelera;where: Xo, is the initial or final speed depending on whether it accelerates or decelerates;
X1 es la segunda velocidad y así sucesivamente hasta que Xm sea la última velocidad calculada; e i es el valor de cada incremento. Acorde con lo anterior, y con base en un ejemplo propuesto, los valores calculados para conseguir una aceleración o desaceleración lineal en un protocolo de prueba de 29 eventos fueron los que se indican en la siguiente tabla 1:X 1 is the second speed and so on until Xm is the last speed calculated; ei is the value of each increase. In accordance with the above, and based on a proposed example, the values calculated to achieve a linear acceleration or deceleration in a test protocol of 29 events were those indicated in the following table 1:
TABLA 1TABLE 1
Figure imgf000014_0001
Al graficar el número de velocidades con respecto a los pasos ejecutados por segundo programado en la bomba (70) de infusión diseñada, se observa una absoluta relación lineal (Fig. 10). Con base a los datos teóricos calculados se procedió a programar un micro controlador por cada bomba (70), de tal manera que al inicio del evento de la generación del gradiente, una jeringa (72) llena con solución al cero por ciento de concentración del estándar arrancará a la velocidad máxima y el segundo dispositivo con la jeringa (74) correspondiente conteniendo la solución estándar al 100 por ciento de concentración iniciará el recorrido a la velocidad mínima calculada. Las velocidades fueron disminuyendo y aumentando, respectivamente, cada 20 segundos de forma simultánea, de tal manera que el volumen total de cada jeringa se desplazara en el mismo tiempo (580 segundos). El mezclado del volumen desplazado en cada jeringa se realizó por medio del dispositivo (80) de conexión en "Y" y la colección de las muestras se llevó a cabo en tubos ependorf a intervalos de 20 segundos. La tubería (90) usada para llevar el analito y el reactor desde cada jeringa (72,74) hasta el dispositivo (80) de conexión en "Y" para depósito de muestras consistió en tubos de fibra hueca de sílice fundida, de tal manera que el volumen muerto no es significativo para jeringas de un mililitro. Sin embargo, deberá usarse tubería de menor diámetro para jeringas de 0.010 mi.
Figure imgf000014_0001
When plotting the number of speeds with respect to the steps executed per second programmed in the designed infusion pump (70), an absolute linear relationship is observed (Fig. 10). Based on the calculated theoretical data, a microcontroller was programmed for each pump (70), so that at the beginning of the gradient generation event, a syringe (72) filled with zero percent solution of the concentration of the Standard will start at maximum speed and the second device with the corresponding syringe (74) containing the standard solution at 100 percent concentration will start the journey at the minimum calculated speed. The speeds were decreasing and increasing, respectively, every 20 seconds simultaneously, so that the total volume of each syringe shifted at the same time (580 seconds). The volume displaced in each syringe was mixed by means of the "Y" connection device (80) and the sample collection was carried out in ependorf tubes at intervals of 20 seconds. The pipe (90) used to carry the analyte and the reactor from each syringe (72.74) to the "Y" connecting device (80) for depositing samples consisted of hollow fused silica tubes, in such a way that the dead volume is not significant for syringes of one milliliter. However, smaller diameter pipe should be used for 0.010 ml syringes.
Prueba de la bomba de infusión y generación de gradientes. Para probar las bombas de infusión (70) se llenaron por separado las dos jeringas (72, 74) con colorante vegetal y se realizaron colectas a los intervalos señalados de 20 segundos, de tal forma que se midió el volumen desplazado por cada intervalo, observando y corrigiendo el programa hasta la desaparición de cualquier error. Alternativamente, para validar la formación del gradiente, se diseñó un segundo protocolo, en el cual, en lugar de realizar colectas, se hizo pasar el mezclado al interior de una celda de lectura de fluorescencia en línea (Fig. 9), de tal manera que la formación del gradiente pudo leerse en tiempo real con una solución de resorufina, la cual fluoresce a 590 nanómetros. Las lecturas de la mezcla resultante se tomaron cada 5 segundos durante todo el evento.Infusion pump test and gradient generation. To test the infusion pumps (70) the two syringes (72, 74) were filled separately with vegetable dye and collections were made at the indicated intervals of 20 seconds, so that the volume displaced by each interval was measured, observing and correcting the program until the disappearance of any error. Alternatively, to validate the formation of the gradient, a second protocol was designed, in which, instead of making collections, the mixing was passed inside an online fluorescence reading cell (Fig. 9), in such a way that the gradient formation could be read in real time with a resorufin solution, which fluoresces at 590 nanometers. Readings of the resulting mixture were taken every 5 seconds throughout the event.
Cada bomba (70) de infusión tiene la capacidad de dosificar volúmenes crecientes o decrecientes de forma automática con absoluta linearidad para la creación de gradientes. En la figura 11 se puede observar la relación lineal en la medida de los volúmenes obtenidos que, de acuerdo al cálculo estimado por la fórmula 1, se acercan absolutamente al valor teórico, es decir, en la prueba que se presenta en esta figura 11 se estimó un incremento por velocidad de 2.2 microlitros para las jeringas calibradas de un mililitro, debiendo obtener en la última colecta 63,8 microlitros, habiendo sido la regresión lineal calculada con los valores obtenidos de 0.9978. Se estima que es probable que las pequeñas diferencias se hayan debido a la medición de los volúmenes obtenidos o bien a diferencias en las colectas, ya que se hicieron manualmente y, como se mencionó anteriormente, es muy difícil medir con precisión estos volúmenes tan pequeños debido a la ausencia de dispositivos en el mercado para tal fin.Each infusion pump (70) has the ability to dose increasing or decreasing volumes automatically with absolute linearity for the creation of gradients. In figure 11, the linear relationship can be observed in the measure of the volumes obtained which, according to the calculation estimated by formula 1, are absolutely close to the theoretical value, that is, in the test presented in this figure 11 estimated an increase by speed of 2.2 microliters for the syringes calibrated of one milliliter, having to obtain in the last collection 63.8 microliters, having been the linear regression calculated with the values obtained of 0.9978. It is estimated that the small differences are likely due to the measurement of the volumes obtained or differences in the collections, since they were made manually and, as mentioned above, it is very difficult to accurately measure these volumes so small because to the absence of devices in the market for this purpose.
Con el objetivo de obtener una lectura cuantitativa de los resultados, se realizó una prueba adicional con lectura en línea de un compuesto que fluoresce a 587 nanómetros. Las lecturas en el detector fluorescente (95) se tomaron en tiempo real, es decir, mientras se formaba el gradiente, el cual se introdujo a la celda de fluorescencia, las lecturas se tomaron cada 5 segundos en un ángulo de 90 grados para la excitación y emisión en la forma en que se representa en la figura 9. Algunos valores de las lecturas resultantes se muestran en forma gráfica en la figura 6. En otra modalidad alterna de la invención, se propone un método para la colecta de muestras y lectura de fluorescencia en capilares. Este método esta especialmente concebido para leer muestras de volumen pequeño de sustancias de interés biológico, sin que ello implique restringir el uso de otras sustancias con la capacidad de emitir fluorescencia en otras áreas de interés tanto biomédico como industrial.In order to obtain a quantitative reading of the results, an additional test was performed with online reading of a compound that fluoresces at 587 nanometers. The readings in the fluorescent detector (95) were taken in real time, that is, while the gradient was formed, which was introduced to the fluorescence cell, the readings were taken every 5 seconds at a 90 degree angle for excitation and emission in the way it is represented in Figure 9. Some values of the resulting readings are shown graphically in Figure 6. In another alternate embodiment of the invention, a method for collecting samples and reading fluorescence in capillaries is proposed. This method is specially designed to read small volume samples of substances of biological interest, without implying restricting the use of other substances with the ability to emit fluorescence in other areas of both biomedical and industrial interest.
El nuevo método se caracteriza por las siguientes etapas:The new method is characterized by the following stages:
1.- Se procede al sellado por calor de tubos capilares de aproximadamente 1.5 mm de diámetro x 13 mm de longitud, asegurando que todos tengan aproximadamente la misma longitud.1.- Heat sealing of capillary tubes approximately 1.5 mm in diameter x 13 mm in length is carried out, ensuring that they are all approximately the same length.
2. - Se coloca una serie de tubos en un dispositivo portador de muestras con la cantidad deseada para la subsiguiente colección de muestras; para el caso ejemplificado en la presente invención, se describe un portador tipo carrusel con capacidad de 120 muestras. 3.- Se alinea el sistema de depósito de muestras sobre la parte superior del primer tubo donde se colocará la primera muestra, asegurando que tenga la altura precisa programada para que el depósito de la muestra quede en el fondo de cada capilar, sin la formación de espacios vacíos.2. - A series of tubes is placed in a sample carrier device with the desired quantity for the subsequent sample collection; For the case exemplified in the present invention, a carousel carrier with a capacity of 120 samples is described. 3.- The sample deposit system is aligned on the top of the first tube where the first sample will be placed, ensuring that it has the precise height programmed so that the sample deposit is at the bottom of each capillary, without the formation of empty spaces.
4. Se hace fluir la muestra de interés, a través de una de las terminales del dispositivo en Y, que puede ser la propia sustancia a analizar o bien un gradiente de concentración conocido de una solución estándar para la preparación de una curva de calibración; por la otra terminal del dispositivo en Y se hace fluir el reactor correspondiente que revelará la concentración del compuesto de interés o bien una sustancia que por si misma emita fluorescencia y que se desee evaluar cuantitativamente.4. The sample of interest is flowed through one of the terminals of the Y-device, which may be the substance to be analyzed or a known concentration gradient of a standard solution for the preparation of a calibration curve; The corresponding reactor that will reveal the concentration of the compound of interest or a substance that itself emits fluorescence and that is desired to be quantitatively evaluated is flowed through the other terminal of the Y-device.
5.- Una vez realizado el procedimiento anterior, se establece el programa que colocará la muestra de forma conjunta con el reactor enzimático y/o fluoróforo en cada tubo capilar, esto es, velocidad de muestreo y número total de muestras a colectar. 6.- Cuando así se requiera, se deja transcurrir el tiempo de reacción necesario para el desarrollo de fluorescencia para entonces proceder a la lectura.5.- Once the previous procedure has been carried out, the program that will place the sample together with the enzymatic reactor and / or fluorophore in each capillary tube is established, that is, the sampling rate and the total number of samples to be collected. 6.- When so required, the reaction time necessary for the development of fluorescence is allowed to pass and then proceed to the reading.
7.- Para la toma de lectura, el equipo en cuestión cuenta con los accesorios necesarios para llevar la luz de excitación sobre la parte superior del primer tubo capilar, esto a través de una fibra óptica (22), la distancia del tubo a la fibra podrá ser ubicada de acuerdo a las características de la muestra a analizar, con lo cual se puede seleccionar el tamaño de la fibra óptica, seleccionando de esta manera, la intensidad y tipo de longitud de onda con la cual se desea excitar la muestra, los instrumentos ópticos pueden seleccionarse de acuerdo a las conveniencias del usuario, como pueden ser la fuente de luz y detector de fluorescencia. La fluorescencia emitida por la muestra se transmite al detector a través de una segunda fibra óptica (24) colocada de forma perpendicular al tubo capilar que se estará excitando simultáneamente, en el presente equipo se utiliza un detector óptico a base de un detector CCD de la compañía "Ocean Optics".7.- For the reading, the equipment in question has the necessary accessories to carry the excitation light on the top of the first capillary tube, this through an optical fiber (22), the distance from the tube to the fiber can be located according to the characteristics of the sample to be analyzed, with which the size of the optical fiber can be selected, thus selecting the intensity and type of wavelength with which it is desired to excite the sample, The optical instruments can be selected according to the user's convenience, such as the light source and fluorescence detector. The fluorescence emitted by the sample is transmitted to the detector through a second optical fiber (24) placed perpendicular to the capillary tube that will be excited simultaneously, in this equipment an optical detector is used based on a CCD detector of the company "Ocean Optics".
8,- Para la toma de lectura, se selecciona el programa de lectura, el cual tiene la misma distancia de "avance" que para el depositado, de tal forma que, en lugar de la "colecta" la fibra óptica de excitación impactará la muestra directamente sobre la parte superior de cada capilar. En este procedimiento también se puede programar la velocidad de lectura, para el ejemplo descrito, son suficientes 5 segundos para cada lectura, de tal forma que la lectura del carrusel lleno, se lleva a cabo en 6 minutos.8, - For the reading take, the reading program is selected, which has the same distance of "advance" as for the deposited one, so that, instead of the "collection" the excitation optical fiber will impact the It shows directly on top of each capillary. In this procedure the reading speed can also be programmed, for the described example, 5 seconds are sufficient for each reading, so that the reading of the full carousel is carried out in 6 minutes.
EJEMPLOS DE APLICACIÓN DEL SISTEMA.EXAMPLES OF APPLICATION OF THE SYSTEM.
EJEMPLO 1EXAMPLE 1
Sustancia Analizada: Acetilcolina La medición de este compuesto se ha realizado con estándares de concentración conocida, el principio consiste en la utilización de las enzimas acetilcolinesterasa, colina oxidasa y peroxidasa. La acetilcolinesterasa degrada a la acetilcolina con la producción colina y acetato, la colina oxidasa produce H2O2 y betaína. El H2O2 generado se identifica y cuantifica por la oxidación del compuesto AMPLEX RED en presencia de peroxidasa cuyo derivado es la resorufina que tiene la capacidad de emitir fluorescencia a 590 nm cuando se excita con una longitud de onda de 560 nm; la intensidad de la fluorescencia es directamente proporcional a la cantidad de compuesto presente en cada muestra.Substance analyzed: Acetylcholine The measurement of this compound has been carried out with standards of known concentration, the principle consists in the use of the enzymes acetylcholinesterase, choline oxidase and peroxidase. Acetylcholinesterase degrades acetylcholine with choline and acetate production, choline oxidase produces H 2 O 2 and betaine. The generated H 2 O 2 is identified and quantified by the oxidation of the AMPLEX RED compound in the presence of peroxidase whose derivative is resorufin that has the ability to emit fluorescence at 590 nm when excited with a wavelength of 560 nm; The intensity of the fluorescence is directly proportional to the amount of compound present in each sample.
Tomando la ventaja de la capacidad del sistema en la medición automatizada de muestras, las curvas de calibración se llevan a cabo con el uso de la bomba de gradiente. El periodo de incubación con el reactor depende del analito a medir; en este caso, las muestras depositadas en los capilares se incuban por una hora y posteriormente se toma la lectura de la fluorescencia correspondiente.Taking advantage of the system capacity in automated sample measurement, calibration curves are carried out with the use of the gradient pump. The incubation period with the reactor depends on the analyte to be measured; In this case, the samples deposited in the capillaries are incubated for one hour and subsequently the corresponding fluorescence reading is taken.
EJEMPLO 2 El Amplex Red provee un método sensible para detectar peróxido de hidrógeno como producto de reacción de oxidasas que lo generen. En el ensayo para el ácido glutámico, éste se oxida por la glutamato oxidasa para producir α-ketoglutarato, NH3 y peróxido de hidrógeno. El peróxido de hidrógeno reacciona con el Amplex Red en una estoiquiometria 1:1 en la reacción catalizada por la peroxidasa para generar un producto altamente fluorescente (resorufina). La resorufina tiene una absorción y una emisión fluorescente máxima de aproximadamente 571 nm y 585 nm respectivamente. Con este kit de la casa "In vitrogen" se pueden detectar niveles tan bajos como 40 nM en una reacción que se lleva a cabo en 30 minutos.EXAMPLE 2 Amplex Red provides a sensitive method to detect hydrogen peroxide as a reaction product of oxidases that generate it. In the test for glutamic acid, it is oxidized by glutamate oxidase to produce α-ketoglutarate, NH3 and hydrogen peroxide. Hydrogen peroxide reacts with Amplex Red in a 1: 1 stoichiometry in the peroxidase catalyzed reaction to generate a highly fluorescent product (resorufin). Resorufin has a maximum absorption and fluorescent emission of approximately 571 nm and 585 nm respectively. With this kit from the house "In vitrogen" can be detected levels as low as 40 nM in a reaction that takes place in 30 minutes.
AMPLEX RED PARA GLUTAMICO Componentes: Amplex RedAMPLEX RED FOR GLUTAMIC Components: Amplex Red
Dimetilsulfóxido (DMSO) Peroxidasa (HRP) Peróxido de hidrógeno (H2O2) Buffer (Tris-HCl 0.5 M5 pH 7.5) Glutamato oxidasa (GIuOx) Acido Glutámico MpnosódicoDimethylsulfoxide (DMSO) Peroxidase (HRP) Hydrogen peroxide (H 2 O 2 ) Buffer (Tris-HCl 0.5 M 5 pH 7.5) Glutamate oxidase (GIuOx) Mpnosodium Glutamic Acid
Preparación de soluciones. - Basadas en las instrucciones del kit Amplex-Red Glutamic Acid/Glutamate Oxidase (marca Invitrogen, cat. Al 2221)5 en el cual se establece la preparación de cada componente según la siguiente relación: o Amplex Red o Peroxidasa: 100 U/ml o H2O2 20 mM: 23 μl de peróxido al 30% en 977 μl de dH2O. o Glutamato oxidasa (GIuOx): 5 U/ml o Acido glutámico 200 mM.Solution preparation - Based on the instructions of the Amplex-Red Glutamic Acid / Glutamate Oxidase kit (Invitrogen brand, cat. Al 2221) 5 in which the preparation of each component is established according to the following relationship: o Amplex Red or Peroxidase: 100 U / ml or 20 mM H 2 O 2 : 23 μl of 30% peroxide in 977 μl of dH 2 O. o Glutamate oxidase (GIuOx): 5 U / ml or 200 mM glutamic acid.
El reactor debe contener las siguientes cantidades de cada componente: o HRP: 0.25 U/ml o GIuOx: 0.08 U/ml o Amplex: 100 μM Una vez hecha la mezcla que formará el reactor, ésta se mezcla con un volumen similar de la muestra a analizar, la cual se agrega simultáneamente a cada tubo capilar, como se describió previamente, es decir, 2.5 μl de muestra con 2.5 μl de reactor.The reactor must contain the following quantities of each component: o HRP: 0.25 U / ml or GIuOx: 0.08 U / ml or Amplex: 100 μM Once the mixture that will form the reactor is made, it is mixed with a similar volume of the sample to be analyzed, which is added simultaneously to each capillary tube, as previously described, that is, 2.5 μl of sample with 2.5 μl of reactor .
Figure imgf000021_0001
Figure imgf000021_0001
Aun cuando la presente invención se ha descrito en base en un lector de muestras tipo carrusel, deberá entenderse que el sistema no se limita a esta aplicación en particular sino que igual puede usarse ventajosamente en un colector o sistema de lectura de desplazamiento lineal.Although the present invention has been described on the basis of a carousel-type sample reader, it should be understood that the system is not limited to this particular application but that it can also be used advantageously in a linear displacement reading system or collector.
En el contexto de la presente invención, "muestreo" significa el proceso mediante el cual se realiza el depósito o "inyección" de las muestras y reactores en los tubos capilares.In the context of the present invention, "sampling" means the process by which the deposit or "injection" of the samples and reactors in the capillary tubes is performed.
Aunque esta invención ha sido descrita en el contexto de la modalidad o forma de realización preferida, para los especialistas en la materia será evidente que el alcance del concepto ejemplificado se extiende más allá del diseño específicamente descrito e ilustrado a otras posibles modalidades alternas de materialización de la invención que sean factibles o viables. Además, aunque la invención se ha descrito en detalle, cualquier experto en el campo al que pertenece la invención podrá deducir que algunos elementos constitutivos del sistema pueden ser sustituidos o bien otros distintos incorporados a la luz de la descripción que antecede sin que ello modifique en esencia el resultado para el que ha sido concebido.Although this invention has been described in the context of the preferred embodiment or embodiment, it will be apparent to those skilled in the art that the scope of the exemplified concept extends beyond the design specifically described and illustrated to other possible alternative modalities of materialization of the invention that are feasible or viable. In addition, although the invention has been described in detail, any expert in the field to which the invention belongs may deduce that some constituent elements of the system may be substituted or others incorporated in the light of the foregoing description without modifying it in essence the result for which it has been conceived.
Habida cuenta de lo anterior, se entenderá que varios elementos del dispositivo pueden combinarse con otros o sustituirse por otros para conformar modos alternos de realización que conduzcan al mismo resultado. Por consiguiente, se pretende que el alcance de la presente invención no se interprete como limitado por la modalidad particularmente descrita, sino que quede determinado por una interpretación razonable del contenido de las siguientes reivindicaciones.In view of the above, it will be understood that several elements of the device may be combined with others or replaced by others to conform alternate modes of realization that lead to the same result. Accordingly, it is intended that the scope of the present invention not be construed as limited by the mode particularly described, but rather determined by a reasonable interpretation of the content of the following claims.
BIBLIOGRAFÍA.BIBLIOGRAPHY.
- Marchini B, De Nuccio L, Mazzei M, Mariottini GL. (2004). A fast centrifuge method for nematocyst isolation from Pelagia noctiluca Forskal (Cnidaria: Scyphozoa). Riv Biol. 97, 505-15.- Marchini B, De Nuccio L, Mazzei M, Mariottini GL. (2004). A fast centrifuge method for nematocyst isolation from Pelagia noctiluca Forskal (Cnidaria: Scyphozoa). Riv Biol. 97, 505-15.
- Rocklin R. D., Pohl C. A., Schibler J. A. (1987). Gradient elution in ion chromatography. Journal of chromatography. 411, 107-119. - Rocklin R. D., Pohl C. A., Schibler J. A. (1987). Gradient elution in ion chromatography. Journal of chromatography. 411, 107-119.

Claims

REIVINDICACIONES
1. Sistema de colecta y lectura de fluorescencia en capilares para la identificación y cuantificación de sustancias en volúmenes pequeños mediante el uso de biosensores y reactores enzimáticos; dicho sistema comprende: un sistema de colección automática de muestras a analizar que comprende un mecanismo que contiene múltiples perforaciones, en cada una de las cuales se coloca un tubo capilar sellado adaptado para la colección de muestras; en cada tubo capilar se colecta un volumen determinado de una muestra junto con un volumen similar de un reactor enzimático o cromóforo; un dispositivo de muestreo que comprende un medio para el depósito simultáneo de un reactor y de una muestra en cada tubo capilar colocado en el sistema de colección de muestras; dicho medio para depósito consiste en un dispositivo de conexión en Y por el cual convergen la muestra que contiene el analito y el reactor enzimático que desarrollará la reacción para el revelado y lectura posterior de fluorescencia inducida; un medio de excitación de la muestra de interés colectada en los tubos capilares del sistema de colección automática para aplicar una señal de excitación para inducir fluorescencia en dicha muestra; un detector de fluorescencia para medir la fluorescencia de las muestras que han sido sometidas a la señal de excitación; un sistema de accionamiento para la generación del gradiente, colecta y lectura de las muestras que van a ser analizadas; un sistema de control electrónico de los movimientos necesarios para el funcionamiento automático de los distintos componentes (generación de gradiente, depósito, cambio de muestra para la colecta y lectura de la misma); y un sistema de generación de gradiente para generar la relación de curvas de calibración en volúmenes pequeños, mediante el cálculo de la velocidad de inyección del analito y reactor para la mezcla de éstos en el dispositivo de conexión en Y del sistema de muestreo.1. System for collecting and reading fluorescence in capillaries for the identification and quantification of substances in small volumes through the use of biosensors and enzymatic reactors; said system comprises: an automatic sample collection system to be analyzed comprising a mechanism containing multiple perforations, in each of which a sealed capillary tube adapted for the sample collection is placed; a given volume of a sample is collected in each capillary tube together with a similar volume of an enzymatic reactor or chromophore; a sampling device comprising a means for the simultaneous deposition of a reactor and a sample in each capillary tube placed in the sample collection system; said reservoir means consists of a Y-connection device whereby the sample containing the analyte and the enzymatic reactor converge that will develop the reaction for the development and subsequent reading of induced fluorescence; a means of excitation of the sample of interest collected in the capillary tubes of the automatic collection system to apply an excitation signal to induce fluorescence in said sample; a fluorescence detector to measure the fluorescence of the samples that have been subjected to the excitation signal; a drive system for the generation of the gradient, collection and reading of the samples to be analyzed; an electronic control system of the movements necessary for the automatic operation of the different components (gradient generation, deposit, sample change for collection and reading of it); Y a gradient generation system to generate the ratio of calibration curves in small volumes, by calculating the injection rate of the analyte and reactor for mixing them in the Y-connection device of the sampling system.
2. El sistema de la reivindicación 1, en el que el sistema de generación de gradiente comprende unas bombas de infusión que inyectan la muestra a analizar y el reactor en los tubos capilares a velocidades predeterminadas.2. The system of claim 1, wherein the gradient generation system comprises infusion pumps that inject the sample to be analyzed and the reactor into the capillary tubes at predetermined rates.
3. El sistema de la reivindicación 1, en el que el dispositivo de muestreo opera con un sistema de conversión de movimiento giratorio a lineal, construido a base de una guía lineal que esta acoplada a un motor a pasos a través de una banda y polea engranada; dicha guía lineal lleva consigo al medio de depósito que está sujeto a un dispositivo de amortiguación que permite llevar a cabo el depósito de cada muestra dentro del tubo capilar sin que se doble el medio de depósito o se perfore dicho tubo capilar por la presión ejercida por dicho medio de depósito.3. The system of claim 1, wherein the sampling device operates with a rotary to linear movement conversion system, constructed from a linear guide that is coupled to a stepper motor through a belt and pulley in Granada; said linear guide carries with it the reservoir means which is subject to a damping device that allows the deposit of each sample within the capillary tube to be carried out without the reservoir means bending or said capillary tube being punctured by the pressure exerted by said means of deposit.
4. El sistema de la reivindicación 1, que incluye un sistema de accionamiento de las bombas de infusión que consiste en un motor a pasos conectado con un engranaje sinfín el cual a su vez esta acoplado con un conjunto de deslizamiento lineal con guías; en donde dicho conjunto de deslizamiento lineal ejerce una fuerza de empuje en unas jeringas del dispositivo de depósito de las muestras y el reactor.4. The system of claim 1, which includes an infusion pump drive system consisting of a stepper motor connected with an endless gear which in turn is coupled with a linear sliding assembly with guides; wherein said linear sliding assembly exerts a pushing force on syringes of the sample deposit device and the reactor.
5. El sistema de la reivindicación 1, en el que los tiempos de colecta y de lectura son programados libremente por el usuario. 5. The system of claim 1, wherein the collection and reading times are freely programmed by the user.
6. Un método para colecta y lectura de fluorescencia en capilares, el cual se lleva a cabo en un dispositivo de colecta y lectura de muestras en el que se colocan previamente una pluralidad de tubos capilares para depósito de muestras; dicho método comprende: alinear el sistema de depósito de muestras sobre la parte superior de un primer tubo capilar en el que se colocará una primera muestra, y hacer fluir la muestra de interés a través de una de las ramificaciones de un dispositivo de conexión en Y, y un reactor por la otra ramificación del dispositivo de conexión en Y para revelar la concentración de la muestra de interés para depositarlos en el tubo capilar; calcular la velocidad de muestreo y el número total de muestras a colectar para programar la colocación simultánea de las muestras de interés y el reactor y/o fluoróforo en los tubos capilares; depositar en los tubos capilares el resto de las muestras y reactores que se van a analizar; aplicar a las muestras una señal de excitación en una intensidad y longitud de onda que es determinada según el tipo de muestra que se va a analizar, dicha señal de excitación se aplica sobre la parte superior de cada tubo capilar; detectar la fluorescencia emitida por la muestra que esta siendo excitada, a través de un medio de detección de fluorescencia colocado perpendicularmente a la muestra; y tomar lectura del valor de fluorescencia emitida por las muestras sometidas al análisis.6. A method for collecting and reading fluorescence in capillaries, which is carried out in a sample collection and reading device in which a plurality of capillary tubes for sample deposition are previously placed; Said method comprises: aligning the sample deposit system on the top of a first capillary tube in which a first sample will be placed, and flowing the sample of interest through one of the branches of a Y-connection device , and a reactor through the other branch of the Y-connection device to reveal the concentration of the sample of interest to deposit them in the capillary tube; calculate the sampling rate and the total number of samples to be collected to program the simultaneous placement of the samples of interest and the reactor and / or fluorophore in the capillary tubes; deposit the rest of the samples and reactors to be analyzed in the capillary tubes; apply to the samples an excitation signal at an intensity and wavelength that is determined according to the type of sample to be analyzed, said excitation signal is applied to the top of each capillary tube; detect the fluorescence emitted by the sample being excited, through a fluorescence detection means placed perpendicular to the sample; and take a reading of the fluorescence value emitted by the samples submitted to the analysis.
7. El método de la reivindicación 6, en el que la muestra de interés puede consistir en una sustancia que por si misma emita fluorescencia. 7. The method of claim 6, wherein the sample of interest may consist of a substance that itself emits fluorescence.
8. El método de la reivindicación 6, en el que se establece previamente la velocidad de lectura para la toma de lectura de la fluorescencia emitida por las muestras.8. The method of claim 6, wherein the read rate for the reading of the fluorescence emitted by the samples is previously established.
9. El método de la reivindicación 6, en el que se colocan tantos tubos capilares como muestras vayan a analizarse.9. The method of claim 6, wherein as many capillary tubes are placed as samples are to be analyzed.
10. El método de la reivindicación 6, en el que se calcula la altura precisa del sistema de depósito de las muestras para asegurar que éstas queden depositadas en el fondo de cada tubo capilar, sin la formación de espacios vacíos.10. The method of claim 6, wherein the precise height of the sample deposit system is calculated to ensure that they are deposited at the bottom of each capillary tube, without the formation of empty spaces.
11. El método de la reivindicación 6, en el que la muestra de interés puede ser un gradiente de concentración conocido de una solución estándar para la preparación de una curva de calibración.11. The method of claim 6, wherein the sample of interest may be a known concentration gradient of a standard solution for the preparation of a calibration curve.
12. El método de la reivindicación 6, en el que previo a la toma de lectura, cuando así se requiera, se deja transcurrir el tiempo de reacción necesario para el desarrollo de fluorescencia para entonces proceder a la lectura.12. The method of claim 6, wherein prior to reading, when required, the reaction time necessary for the development of fluorescence is allowed to proceed to then read.
13. El método de la reivindicación 6, en el que la muestra de interés y el reactor se depositan en los tubos capilares a una velocidad preseleccionada mediante bombas de gradientes.13. The method of claim 6, wherein the sample of interest and the reactor are deposited in the capillary tubes at a speed preselected by gradient pumps.
14. El método de la reivindicación 6, en el que la muestra de interés y el reactor se depositan en los tubos capilares simultáneamente. 14. The method of claim 6, wherein the sample of interest and the reactor are deposited in the capillary tubes simultaneously.
15. El método de la reivindicación 6, en el que los tubos capilares son sellados por calor antes de colocarse en el dispositivo de muestreo para la colección de muestras.15. The method of claim 6, wherein the capillary tubes are heat sealed before being placed in the sampling device for sample collection.
16. El método de la reivindicación 6, en el que la velocidad de aceleración positiva o negativa para la formación de gradientes se calcula mediante la siguiente fórmula:16. The method of claim 6, wherein the positive or negative acceleration rate for gradient formation is calculated by the following formula:
ni —i / = i I I = nwnera total a sumarni —i / = i I = nwnera total to add
«=1 s=l ^ J donde: m es el número de velocidades o cambios de aceleración número total a sumar es la distancia recorrida por los émbolos o el volumen desplazado en un espacio y tiempo finitos. i es el valor del incremento que se va sumando a cada velocidad. «= 1 s = l ^ J where: m is the number of speeds or acceleration changes total number to add is the distance traveled by the pistons or the volume displaced in a finite space and time. i is the value of the increment that is added to each speed.
PCT/MX2008/000152 2008-11-05 2008-11-05 System and method for collecting and reading of fluorescence in capillary tubes WO2010053342A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/MX2008/000152 WO2010053342A1 (en) 2008-11-05 2008-11-05 System and method for collecting and reading of fluorescence in capillary tubes
MX2011004717A MX2011004717A (en) 2008-11-05 2011-05-04 System and method for collecting and reading of fluorescence in capillary tubes.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000152 WO2010053342A1 (en) 2008-11-05 2008-11-05 System and method for collecting and reading of fluorescence in capillary tubes

Publications (1)

Publication Number Publication Date
WO2010053342A1 true WO2010053342A1 (en) 2010-05-14

Family

ID=42153047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000152 WO2010053342A1 (en) 2008-11-05 2008-11-05 System and method for collecting and reading of fluorescence in capillary tubes

Country Status (1)

Country Link
WO (1) WO2010053342A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165232A1 (en) * 2012-05-02 2013-11-07 Alberto Morales Villagran Device for on-line measurement of neurotransmitters using enzymatic reactors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567294A (en) * 1996-01-30 1996-10-22 Board Of Governors, University Of Alberta Multiple capillary biochemical analyzer with barrier member
US6017765A (en) * 1997-02-24 2000-01-25 Hitachi, Ltd. Fluorescence detection capillary array electrophoresis analyzer
US20020048809A1 (en) * 1997-06-16 2002-04-25 Lafferty William Micharl Capillary array-based sample screening
WO2002044703A2 (en) * 2000-12-01 2002-06-06 Cetek Corporation High throughput capillary electrophoresis system
US20030150727A1 (en) * 1999-01-27 2003-08-14 Affymetrix, Inc. Monster capillary array electrophoresis scanner
WO2006025703A1 (en) * 2004-09-02 2006-03-09 Bioneer Corporation Miniaturized apparatus for real-time monitoring
WO2007137273A2 (en) * 2006-05-22 2007-11-29 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567294A (en) * 1996-01-30 1996-10-22 Board Of Governors, University Of Alberta Multiple capillary biochemical analyzer with barrier member
US6017765A (en) * 1997-02-24 2000-01-25 Hitachi, Ltd. Fluorescence detection capillary array electrophoresis analyzer
US20020048809A1 (en) * 1997-06-16 2002-04-25 Lafferty William Micharl Capillary array-based sample screening
US20030150727A1 (en) * 1999-01-27 2003-08-14 Affymetrix, Inc. Monster capillary array electrophoresis scanner
WO2002044703A2 (en) * 2000-12-01 2002-06-06 Cetek Corporation High throughput capillary electrophoresis system
WO2006025703A1 (en) * 2004-09-02 2006-03-09 Bioneer Corporation Miniaturized apparatus for real-time monitoring
WO2007137273A2 (en) * 2006-05-22 2007-11-29 Lumencor, Inc. Bioanalytical instrumentation using a light source subsystem

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165232A1 (en) * 2012-05-02 2013-11-07 Alberto Morales Villagran Device for on-line measurement of neurotransmitters using enzymatic reactors
US20150140586A1 (en) * 2012-05-02 2015-05-21 Alberto Morales Villagran Device for online measurement of neurotransmitters using enzymatic reactors
US9879305B2 (en) * 2012-05-02 2018-01-30 Alberto Morales Villagran Device for online measurement of neurotransmitters using enzymatic reactors
US20180119199A1 (en) * 2012-05-02 2018-05-03 Alberto Morales Villagran Device for online measurement of neurotransmitters using enzymatic reactors

Similar Documents

Publication Publication Date Title
Badr et al. Fluorescent ion-selective optode membranes incorporated onto a centrifugal microfluidics platform
Valcárcel et al. Flow–Through (Bio) Chemical Sensors
ES2231460T3 (en) PROCEDURE AND DEVICE FOR THE DETERMINATION OF PARAMETERS DEPENDING ON TEMPERATURE, SUCH AS THE PARAMETERS OF ASSOCIATION / DISPOSAL AND / OR THE CONSTANT OF BALANCE OF COMPLEXES CONSTITUTED BY AT LEAST TWO COMPONENTS.
Grist et al. Optical oxygen sensors for applications in microfluidic cell culture
CN101300472B (en) Device and method for the detection of particles
CN101672841B (en) Detection instrument and detection method for biological sample
CA2687848C (en) Reaction vessel with integrated optical and fluid control elements
Frankaer et al. Optical chemical sensor using intensity ratiometric fluorescence signals for fast and reliable pH determination
US20070122819A1 (en) Analyte assay structure in microfluidic chip for quantitative analysis and method for using the same
Borecki et al. Optoelectronic capillary sensors in microfluidic and point-of-care instrumentation
US6409909B1 (en) Modular sensor system for the industrial process measurement technique
Azimzadeh et al. Microfluidic-based oxygen (O2) sensors for on-chip monitoring of cell, tissue and organ metabolism
Schroll et al. Semi-infinite linear diffusion spectroelectrochemistry on an aqueous micro-drop
Wang et al. Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations
Weihs et al. Resonance energy transfer-based biosensors for point-of-need diagnosis—progress and perspectives
Wang et al. Autonomous and in situ ocean environmental monitoring on optofluidic platform
GB2423266A (en) A structure and method for detecting an analyte in a microfluidic chip
Zilberman et al. Microfluidic optoelectronic sensor based on a composite halochromic material for dissolved carbon dioxide detection
Frankær et al. Investigating the Time Response of an Optical pH Sensor Based on a Polysiloxane–Polyethylene Glycol Composite Material Impregnated with a pH-Responsive Triangulenium Dye
Urriza-Arsuaga et al. Luminescence-based sensors for bioprocess applications
WO2016062788A1 (en) Microfluidic chip for biological analysis
WO2010053342A1 (en) System and method for collecting and reading of fluorescence in capillary tubes
CN1276250C (en) Optical fiber in situ monitor for dissolution and release of medicine
Kumar et al. A portable ‘plug-and-play’fibre optic sensor for in-situ measurements of pH values for microfluidic applications
CN1271401C (en) Optical fiber in situ tester for dissolution and release of medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/004717

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08878009

Country of ref document: EP

Kind code of ref document: A1