WO2010053305A2 - Module de balayage tactile à rayons infrarouges - Google Patents

Module de balayage tactile à rayons infrarouges Download PDF

Info

Publication number
WO2010053305A2
WO2010053305A2 PCT/KR2009/006509 KR2009006509W WO2010053305A2 WO 2010053305 A2 WO2010053305 A2 WO 2010053305A2 KR 2009006509 W KR2009006509 W KR 2009006509W WO 2010053305 A2 WO2010053305 A2 WO 2010053305A2
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
unit
signal
module
coordinate
Prior art date
Application number
PCT/KR2009/006509
Other languages
English (en)
Korean (ko)
Other versions
WO2010053305A3 (fr
Inventor
김용철
Original Assignee
주식회사 알엔디플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알엔디플러스 filed Critical 주식회사 알엔디플러스
Publication of WO2010053305A2 publication Critical patent/WO2010053305A2/fr
Publication of WO2010053305A3 publication Critical patent/WO2010053305A3/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup

Definitions

  • the present invention relates to an infrared touch scanning module, and more particularly, to a coordinate scanning apparatus of a touch screen used in an automated apparatus capable of processing an ultra-fast object detection function and multi-point coordinates by measuring an object's position in a pulsed infrared transmission and reception method.
  • Infrared touch generally measures the position of an object in accordance with a result of transmission and reception by the obstruction of the objects of the arranged infrared transceiver elements.
  • the infrared signal is radiated as an AC signal of several tens to hundreds of KHz, and then averages the collected AC signals according to the presence or absence of an object, and measures the size of the signal.
  • An object of the present invention is to provide an infrared type unit module that is easier to calculate coordinates faster than a unit module including a transmitting and receiving element used in a conventional touch screen.
  • Another object of the present invention is to provide a means for improving the overall scan speed while using the above-described unit module.
  • an object of the present invention is to provide a means for calculating the coordinates of the correct touch using the scan speed improving means.
  • Another object of the present invention is to provide a means for calculating a multi-coordinate and a diameter for each touch.
  • the infrared unit module includes a transmitter, a receiver, and a counter.
  • the transmitter transmits a pulsed infrared signal.
  • the receiver receives an infrared signal transmitted from the transmitter and generates a predetermined signal only in a frequency band in which a signal having a reference voltage or more is received.
  • the counting unit sums the signal output from the receiving unit and the reference clock and counts the number of clocks in the portion where the predetermined signal of light occurs.
  • the infrared touch scanning module includes a signal switch, a sensing unit, and a control unit in addition to the infrared unit module.
  • the infrared unit module is disposed such that the transmitter and the receiver are alternately positioned at opposite sides of the touch screen scanning area.
  • the driving circuit turns on and off the operation of each transmitter and receiver.
  • the signal crossover functions as a path control function for transmitting and receiving signals to transmitter and receiver circuits sequentially and simultaneously.
  • the control unit divides each infrared unit module into a certain number of groups, controls one transmitter to transmit infrared signals for each group, and calculates coordinates by receiving a receiver distinguishing signal and a received signal strength from a signal crossing unit.
  • the control unit may control a group of adjacent infrared unit modules to transmit infrared rays in opposite directions.
  • control unit may calculate the average value of the minimum coordinate value and the maximum coordinate value of the received signal with the effective intensity except the effect of the interference as the coordinate value of each coordinate system.
  • control unit calculates a multi-coordinate value by using a minimum value and a maximum value for each group when a signal received with a valid intensity consists of several consecutive groups.
  • the controller may calculate a difference between the minimum coordinate value and the maximum coordinate value of the signal received with the effective intensity as the diameter value of the object.
  • control unit may calculate a diameter value for each group by using a minimum value and a maximum value for each group when a signal received with an effective intensity consists of several consecutive groups.
  • control unit may determine the multi-point input when the signal received with the effective intensity is composed of a plurality of consecutive groups and calculate a value for each group.
  • the D-processing module may further include a post-processing module that determines that the input is normal only when it is input within a preset limit.
  • the representative coordinate value is set for each divided area, and when each coordinate group by the multi-point input is included in a specific divided area, the representative coordinate value is recognized as the coordinate value for the corresponding input. It may further include a processing module.
  • the diameter of the i-th read object when the coordinate group is continuously changed by multi-point input Since the kth of If the P is greater than 0 to calculate the may further include a post-processing module to determine to pull or push.
  • the method may further include a post-processing module that determines that each Z value is smaller than 0 and enlarged when larger than zero.
  • the method may further include a post-processing module configured to determine the direction of rotation based on the sign of the T value.
  • FIG. 1 is a block diagram showing the configuration of an infrared unit module according to the present invention.
  • Figure 2 is a graph showing the principle of the infrared unit module according to the present invention.
  • FIG. 3 is a reference diagram for comparing the operating principle of the infrared unit module and the conventional infrared unit module according to the present invention.
  • FIG. 4 is a block diagram showing a configuration of an infrared touch scanning module according to the present invention.
  • Figure 5 is a schematic diagram showing the operation of the infrared touch scanning module according to the present invention.
  • FIG. 6 is a schematic view for explaining the coordinate calculation according to the present invention.
  • FIG. 7 is a schematic diagram for explaining a virtual image during multi-coordinate calculation according to the present invention.
  • FIG. 8 is a flowchart illustrating a multi-coordinate calculation process according to the present invention.
  • FIG. 9 is a block diagram illustrating an example of connecting to various input devices after a scanning process according to the present invention.
  • FIG. 10 is a flowchart showing the operation steps in the post-processing module according to the present invention.
  • FIG. 11 is a schematic diagram for explaining the grid area limitation according to the present invention.
  • FIG. 12 is a flowchart illustrating basic action recognition by multiple points according to the present invention.
  • the infrared unit module is a device constituting the unit of the infrared input module constituting the touch screen input device is configured as shown in FIG. A plurality of such unit modules are provided to configure one touch screen input device. It will be described in detail below.
  • the infrared ray transmitter 108 includes an amplifier 111 for amplifying a pulsed signal such as the transmission signal 112, a light emitting element 109, a signal switch 110, and a signal switching signal TR.
  • the receiving unit 116 outputs a signal such as 114 by comparing the receiving element 106, the signal switch 105, the narrow band filter 104 for processing the received signal 113, the signal and the reference voltage REF. It consists of a comparator 103.
  • the signal output from the comparator 103 adds the reference frequency 115 (CLK) to the AND logic 102 and then adds the frequency through the frequency counter 101 when the magnitude of the light is greater than the reference voltage REF. The number of the received light is converted into digital.
  • the infrared unit module 100 will be described by dividing it into the cases of 201 to 203 according to the degree of interference of the object between the transmitter 106 and the receiver 116. That is, when the transmitter transmits the pulse signal 204, when there is no object in the transmission / reception element 201, when the object attenuates and transmits about 50% of the transmitted light (202), and the entire transmission / reception by the object. This dividing case (203) will be described.
  • the entire signal outputs the longest duty cycle value based on REF. This result outputs the number CLK (n) of the clock through 102 and 101 of FIG.
  • the object When the object attenuates and transmits about 50% of the transmitted light (202), it outputs about 50% CLK (n) than when there is no object (201) in between, and when the entire transmission / reception is attenuated by the object ( 203 outputs CLK (n) as zero.
  • this method passes through the band pass filter BPF so that the received signal b2 received from one cycle of the outgoing signal b1 passes only the band above the reference voltage REF as shown in FIG.
  • the clock signal b3 (see [Fig. 1] 115) corresponding to the output waveform (refer to 114 in [Fig. 1]) after being made, and the total received frequency signal a2 for the plurality of cycle signals a1.
  • RMS average value
  • positioning of the infrared unit module 100 that is, transmission / reception of a transmission / reception element is the maximum factor for determining the response speed.
  • This example was configured as shown in Figure 4 to improve the reaction rate.
  • the infrared touch scanning module 300 of the present embodiment scans a user's touch by emitting infrared rays in both directions, rather than a method of emitting infrared rays in a single direction, unlike in the related art. It demonstrates concretely below.
  • the infrared touch scanning module 300 of the present embodiment includes a transmitter driver circuit 301, a receiver driver circuit 302, an analog switch 304, a receiver 116, a transmitter 108, and a controller 317. .
  • the transmitter 108 and the receiver 116 of the infrared unit module 100 quantify the interference of the object through the transmission and reception of the infrared pulse signal in the manner described above.
  • the transmitting unit 118 and the receiving unit 116 are alternately arranged and neighboring module groups 402. ) Is arranged in reverse order of the transmitter 118 and the receiver 116.
  • Each module group is arranged such that the transmitter 106 (see 309 of FIG. 4) for transmitting an infrared signal and the receiver 116 (see 306 of [FIG. 4]) for receiving the infrared signal face each other.
  • Both module groups 401 and 402 arranged to face each other are defined as a pair of module groups.
  • the sensing unit 304 detects the coordinates of each module group that is arranged and operated continuously on the touch screen in the upper and lower sides and the left and right sides, respectively.
  • Each detector 304 divides the touch screen onto an X-axis and a Y-axis, and then outputs the coordinates and infrared intensity of each module or a pair of modules in which a signal is detected.
  • the pair of modules adjacent to the left and the right start to emit infrared rays in the opposite direction to the pair of adjacent modules such as 309 and 307 312 of FIG. 4.
  • the direction of the transmitting unit 106 that transmits infrared rays at the same time for each adjacent module group is changed, the interference of each other can be minimized.
  • the CLK (n) can be calculated at least eight times faster than the method of sequentially dividing the touch screen into X and Y axes and sequentially scanning the touch screen.
  • the total number of the infrared unit module 100 disposed is related to the scanning resolution. That is, the more the infrared unit module 100 is arranged, the more accurate the scan is possible.
  • CLK (n) for each X and Y is stored in the memory of the controller 317 in the above-described manner and then calculated as follows.
  • threshold A which is Is defined as an effective calculated value considering the degree to which the infrared signal is interfered by the object 10.
  • the coordinates are calculated as follows using the first valid value and the last valid value.
  • n means the first valid value
  • m means the last valid value
  • the number of modules covered by the object is mn (m> n). This is common for the x and y axes as well.
  • the coordinate value is obtained by calculating the average of two valid values as follows.
  • the diameter of the object 10 is calculated as follows.
  • J is an index indicating the position and diameter of each object by recognizing each group as one object when several objects 10 are placed, that is, when successive effective values are measured by several groups.
  • FIG. 8 A flowchart for calculating multi-coordinates is shown in FIG. 8.
  • the scanned C (n) s are stored in the memory of the controller 317 for the calculation of the coordinates.
  • the index I for the X-axis or the Y-axis and the number J of the multi-coordinates are initialized (S20).
  • the index m of the received receiving module is initialized (S30).
  • the threshold value C (I)> A is determined, i.e., it is determined whether the receiver is interfered by an object (S40).
  • S50 To increase the value of one by one and go to step S40 (S50), if the value of the uninterrupted meaning is determined that m> 0, that is, whether there is an interference module (S60).
  • Each coordinate is , , Each diameter , It is expressed as
  • 804 and 803 correspond to virtual images.
  • the virtual image is masked by the real image, and the position of the object cannot be determined.
  • an infrared unit module for verifying this in addition to the X and Y axes, the probability of accurately identifying the position of the virtual image is increased.
  • FIG. 9 is a block diagram illustrating an example in which the calculated coordinates are stored in a memory and then connected to various input devices.
  • the coordinate data stored in the controller 701 is physically connected to the host driver 706 of the information apparatus through an interface such as USB / SERIAL / PS2, which is a wired method.
  • the wireless modem 702 may be transferred to the information device-side modem 704 and connected to the host driver 706 via the physical interface of the standard wired USB / SERIAl / PS2.
  • the data After being connected in the form of a standard HID (Human Interface Device) driver 707, the data is processed by the post-processing module 711, and then coordinated with a general input device (eg, a mouse-generally a single point recognition device).
  • a general input device eg, a mouse-generally a single point recognition device.
  • a specific event is delivered to various programs 710, and at the same time to the unique memory
  • the data may be stored to allow an application to read data from this memory, or may be configured to allow the application to access the data in a standard program format via a common TCP / IP server 709.
  • the job in the post-processing module 711 is the conditional processing based on the coordinates input from the host driver (S200), as shown in Figure 10, the transmission condition step (S210) for controlling the transmission of the position data ) And a path determining step (S220) for determining a trace of the object (s) and transmitting data in various transmission formats (S230).
  • step S200 of processing conditions based on the coordinates input from the host driver functions such as diameter limit, grid area limit, number limit, and order limit may be selectively performed as follows. Each function will be described below.
  • the diameter limit is the diameter of each object When it is calculated as (Min ⁇ D ⁇ Max) and (Minimum ⁇ D and D> Max), it is recognized as touch on the infrared side of the object. This method provides the function of minimizing malfunctions by detecting only an object having a specific diameter as a touch.
  • Grid region limitation is a function for minimizing the complexity between coordinates of the regions generated by logically dividing the entire region into portions, as shown in FIG. 11, respectively, as Gx 1103 and Gy1104, and in the case of 1102 and 1101, respectively. As shown below, if the set of coordinates is smaller than this area, it is the area limit function that selects only the center value and recognizes it as one coordinate. This feature reduces the complexity of the coordinates and provides the ability to recognize only movements in a large area as coordinates.
  • the number limit is a function that minimizes unwanted touches by providing a function that allows or restricts only the Nth coordinate or less from sequentially input coordinates, and the order limit is the first or Nth input only in the provision of the coordinates. It's a feature that you can limit.
  • step S220 a transmission condition is automatically and manually provided to provide a function of generating and transmitting data compatible with a standard input device driver displaying only one point coordinate.
  • Basic behavioral recognition may be, for example, push and pull, zoom, or turn.
  • Push and pull is the diameter of the i th read object Change If P> 0, it is determined as pulling, otherwise it is determined as pushing, and its size is calculated in proportion to the change of pushing and pulling area at P / k.
  • Zoom in / out is the coordinates on the x and y axes of the nth and mth coordinate groups measured at the i th measurement.
  • Wow Calculated by, the coordinate change on the x and y axis after kth Wow It is determined that Z is zoomed when Z ⁇ 0 and zoomed out when Z> 0.
  • the magnitude of the zooming in and out is calculated by the absolute value Z / k, so that the moving speed is proportional to the zooming in and out. do.
  • Rotation is the slope of these two points based on the coordinates on the x and y axes of the nth and mth coordinate groups measured at the i th measurement. Inclination after kth after calculating If T ⁇ 0, it is determined to be right turn, and if T> 0, it is determined to be left turn, and the magnitude of rotation is proportional to the absolute value of T / k.
  • FIG. 12 An algorithm for recognizing basic behavior by multiple points is shown in FIG. 12.
  • the coordinate reading counts i and k are initialized (S300).
  • the measurement value corresponding to the above basic behavior recognition is read (S310).
  • the measured value is calculated (S320)
  • the measured value is smaller than the threshold value, the same operation is repeated by reading the next time coordinate (S340).
  • the present invention facilitates faster calculation of coordinates than a unit module including a transmitting and receiving element conventionally used in a touch screen.
  • the present invention can improve the overall scan speed by introducing the concept of a unit module group and by making the outgoing signal cross.
  • the present invention can calculate the coordinates and diameter of the correct touch, and at the same time to calculate the coordinates and diameter of each even if multiple touch is made.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

La présente invention concerne un module de balayage tactile à rayons infrarouges, et plus particulièrement un appareil de balayage de coordonnées destiné à un écran tactile, à utiliser dans un dispositif qui mesure la position d'un objet dans un procédé d'émission/réception de rayons infrarouges du type impulsion et permet une détection d'objet et un traitement multipoint des coordonnées ultra-rapides. La présente invention concerne un module d'unité à rayons infrarouges dans un module d'entrée d'unité utilisé pour un appareil d'entrée d'écran tactile, ledit module d'unité à rayons infrarouges comportant une unité d'émission, une unité de réception et une unité de comptage. L'unité d'émission transmet des signaux à rayons infrarouges du type impulsion. L'unité de réception reçoit les signaux à rayons infrarouges émis depuis l'unité d'émission et génère un signal prédéterminé seulement à la bande de fréquences à laquelle est reçu un signal supérieur à une tension de référence. L'unité de comptage jauge le signal émis depuis l'unité de réception et une impulsion d'horloge de référence et compte le nombre d'impulsions d'horloge dans la section de lumière au niveau de laquelle est généré le signal prédéterminé. La présente invention permet le calcul rapide des coordonnées comparé aux modules d'unité conventionnels contenant des éléments d'émission et de réception utilisés dans un écran tactile. En outre, le présente invention emploie le concept de groupes de modules d'unité et commute les signaux d'émission, améliorant ainsi la vitesse globale de balayage.
PCT/KR2009/006509 2008-11-07 2009-11-06 Module de balayage tactile à rayons infrarouges WO2010053305A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080110533A KR100901971B1 (ko) 2008-11-07 2008-11-07 적외선 터치 스캐닝 모듈
KR10-2008-0110533 2008-11-07

Publications (2)

Publication Number Publication Date
WO2010053305A2 true WO2010053305A2 (fr) 2010-05-14
WO2010053305A3 WO2010053305A3 (fr) 2010-08-12

Family

ID=40982539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006509 WO2010053305A2 (fr) 2008-11-07 2009-11-06 Module de balayage tactile à rayons infrarouges

Country Status (2)

Country Link
KR (1) KR100901971B1 (fr)
WO (1) WO2010053305A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365479A (zh) * 2012-03-26 2013-10-23 友碁科技股份有限公司 光学式触控装置
WO2015148008A1 (fr) * 2014-03-28 2015-10-01 Intel Corporation Transmission de données pour des afficheurs à écran tactile
CN108847896A (zh) * 2018-08-29 2018-11-20 深圳市天英联合教育股份有限公司 红外触控屏光信号接收电路
CN110636889A (zh) * 2018-03-09 2019-12-31 深圳市大疆创新科技有限公司 检测方法及设备
CN110907948A (zh) * 2019-11-19 2020-03-24 宁波展海电子科技有限公司 应用于船用避碰系统的红外线信号滤波方法
CN113940576A (zh) * 2021-10-14 2022-01-18 上海利康消毒高科技有限公司 一种红外非接触出液器的出液方法
WO2023103140A1 (fr) * 2021-12-08 2023-06-15 深圳市鸿合创新信息技术有限责任公司 Procédé et appareil pour déterminer la position d'un point tactile, et dispositif électronique et support de stockage lisible par ordinateur non transitoire
CN116719437A (zh) * 2022-08-05 2023-09-08 广州众远智慧科技有限公司 红外触摸屏的扫描控制方法、扫描控制装置与显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950496B1 (ko) * 2009-08-28 2010-03-31 (주)네오와인 터치 시스템 및 이를 포함하는 디스플레이 장치
KR101135620B1 (ko) * 2009-11-06 2012-04-17 김용철 터치스크린 장치 및 그의 스캔 방법
KR101808523B1 (ko) * 2010-12-20 2017-12-13 엘지디스플레이 주식회사 광학식 터치 입력 장치 및 이의 구동 방법
WO2012108611A1 (fr) * 2011-02-10 2012-08-16 주식회사 알엔디플러스 Dispositif de traitement d'entrée tactile multipoint
CN107045410B (zh) * 2016-12-21 2022-05-10 北京汇冠触摸技术有限公司 一种用于红外触摸屏高精度计算的方法及系统
CN115307745A (zh) * 2022-08-29 2022-11-08 河北农业大学 一种基于红外热成像仪的羊只体温自动检测系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111324A (ko) * 2003-02-14 2005-11-24 넥스트 홀딩즈 리미티드 터치 스크린 신호 처리
KR100645746B1 (ko) * 2004-11-16 2006-11-15 주식회사 팬택 카메라 모듈을 이용한 적외선 신호 수신 기능을 가지는무선통신 단말기 및 그 방법
KR100782431B1 (ko) * 2006-09-29 2007-12-05 주식회사 넥시오 적외선 터치스크린의 다점 좌표인식방법 및 접점면적인식방법
KR20080096975A (ko) * 2007-04-30 2008-11-04 안영수 터치스크린의 구동방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050111324A (ko) * 2003-02-14 2005-11-24 넥스트 홀딩즈 리미티드 터치 스크린 신호 처리
KR100645746B1 (ko) * 2004-11-16 2006-11-15 주식회사 팬택 카메라 모듈을 이용한 적외선 신호 수신 기능을 가지는무선통신 단말기 및 그 방법
KR100782431B1 (ko) * 2006-09-29 2007-12-05 주식회사 넥시오 적외선 터치스크린의 다점 좌표인식방법 및 접점면적인식방법
KR20080096975A (ko) * 2007-04-30 2008-11-04 안영수 터치스크린의 구동방법

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103365479A (zh) * 2012-03-26 2013-10-23 友碁科技股份有限公司 光学式触控装置
WO2015148008A1 (fr) * 2014-03-28 2015-10-01 Intel Corporation Transmission de données pour des afficheurs à écran tactile
US9367174B2 (en) 2014-03-28 2016-06-14 Intel Corporation Wireless peripheral data transmission for touchscreen displays
CN110636889A (zh) * 2018-03-09 2019-12-31 深圳市大疆创新科技有限公司 检测方法及设备
CN108847896A (zh) * 2018-08-29 2018-11-20 深圳市天英联合教育股份有限公司 红外触控屏光信号接收电路
CN110907948A (zh) * 2019-11-19 2020-03-24 宁波展海电子科技有限公司 应用于船用避碰系统的红外线信号滤波方法
CN110907948B (zh) * 2019-11-19 2023-08-29 宁波展海电子科技有限公司 应用于船用避碰系统的红外线信号滤波方法
CN113940576A (zh) * 2021-10-14 2022-01-18 上海利康消毒高科技有限公司 一种红外非接触出液器的出液方法
CN113940576B (zh) * 2021-10-14 2023-08-15 上海利康消毒高科技有限公司 一种红外非接触出液器的出液方法
WO2023103140A1 (fr) * 2021-12-08 2023-06-15 深圳市鸿合创新信息技术有限责任公司 Procédé et appareil pour déterminer la position d'un point tactile, et dispositif électronique et support de stockage lisible par ordinateur non transitoire
CN116719437A (zh) * 2022-08-05 2023-09-08 广州众远智慧科技有限公司 红外触摸屏的扫描控制方法、扫描控制装置与显示装置

Also Published As

Publication number Publication date
KR100901971B1 (ko) 2009-06-10
WO2010053305A3 (fr) 2010-08-12

Similar Documents

Publication Publication Date Title
WO2010053305A2 (fr) Module de balayage tactile à rayons infrarouges
WO2010030077A2 (fr) Écran tactile et procédé d'entrée d'informations d'utilisateur sur un écran faisant appel à une connaissance du contexte
WO2012099363A2 (fr) Procédé et appareil de traitement d'un signal tactile dans une unité de commande à capteur tactile
EP2649511A2 (fr) Système d'affichage tridimensionnel (3d) répondant au mouvement d'un utilisateur, et interface utilisateur pour le système d'affichage 3d
WO2013183938A1 (fr) Procédé et appareil d'interface utilisateur basés sur une reconnaissance d'emplacement spatial
WO2015141891A1 (fr) Dispositif d'affichage et son procédé de commande
WO2011025170A2 (fr) Appareil d'entrée et procédé permettant de détecter la position de contact d'un appareil d'entrée
WO2012176953A1 (fr) Compteur de personnes ayant une interface de réglage et son procédé de réglage
WO2011068268A1 (fr) Procédé de contrôle de del
WO2012093873A2 (fr) Procédé permettant de détecter la position de contact d'un écran tactile et écran tactile utilisant celui-ci
WO2018199630A1 (fr) Système et procédé de surveillance intégrée utilisant une capture d'image
WO2009157732A2 (fr) Procédé et dispositif de commande du mouvement d'un curseur
WO2014129825A1 (fr) Circuit de sélection de coordonnée et procédé d'un système de détection de toucher différentielle
WO2019212109A1 (fr) Dispositif de capteur tactile infrarouge à reconnaissance d'écriture améliorée
WO2017116082A1 (fr) Circuit de pilotage de panneau tactile mettant en œuvre une pluralité de modes par l'intermédiaire d'un circuit de détection, et procédé de détection tactile utilisant ledit circuit
WO2020171607A1 (fr) Circuit tactile pour empêcher un toucher erroné dû à un changement de température, dispositif électronique comprenant le circuit tactile et son procédé de fonctionnement
WO2015167275A1 (fr) Procédé de détection d'entrée tactile, appareil pour détecter une entrée tactile et appareil pour entrer une entrée tactile
WO2010137799A2 (fr) Dispositif et procédé de saisie
WO2014171720A1 (fr) Dispositif électronique et procédé de prévention d'erreur d'entrée tactile
WO2013180317A1 (fr) Appareil de commande à distance d'une caméra ip à l'aide d'une entrée tactile d'un terminal mobile
WO2017126838A2 (fr) Dispositif de pointage portable
WO2024096230A1 (fr) Procédé et dispositif pour déterminer des espaces de stationnement sur la base de zones occupées ou inoccupées
WO2012018192A2 (fr) Système de repérage et procédé utilisant des cadres de reconnaissance de coordonnées
WO2023068436A1 (fr) Dispositif de conception automatique pour installations mep basées sur la réalité étendue (xr) et son procédé de fonctionnement
WO2024080814A1 (fr) Circuit de détection tactile et procédé de détection tactile associé

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824988

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824988

Country of ref document: EP

Kind code of ref document: A2